]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
PR ipa/91089 - Setup predicate for switch default case in IPA
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-cache-depth=@var{n} @gol
213 -fconstexpr-loop-limit=@var{n} -fconstexpr-ops-limit=@var{n} @gol
214 -fno-elide-constructors @gol
215 -fno-enforce-eh-specs @gol
216 -fno-gnu-keywords @gol
217 -fno-implicit-templates @gol
218 -fno-implicit-inline-templates @gol
219 -fno-implement-inlines -fms-extensions @gol
220 -fnew-inheriting-ctors @gol
221 -fnew-ttp-matching @gol
222 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
223 -fno-optional-diags -fpermissive @gol
224 -fno-pretty-templates @gol
225 -fno-rtti -fsized-deallocation @gol
226 -ftemplate-backtrace-limit=@var{n} @gol
227 -ftemplate-depth=@var{n} @gol
228 -fno-threadsafe-statics -fuse-cxa-atexit @gol
229 -fno-weak -nostdinc++ @gol
230 -fvisibility-inlines-hidden @gol
231 -fvisibility-ms-compat @gol
232 -fext-numeric-literals @gol
233 -Wabi=@var{n} -Wabi-tag -Wcomma-subscript -Wconversion-null @gol
234 -Wctor-dtor-privacy @gol
235 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
236 -Wliteral-suffix @gol
237 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
238 -Wnamespaces -Wnarrowing @gol
239 -Wpessimizing-move -Wredundant-move @gol
240 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
241 -Wnon-virtual-dtor -Wreorder -Wregister @gol
242 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
243 -Wno-non-template-friend -Wold-style-cast @gol
244 -Woverloaded-virtual -Wno-pmf-conversions @gol
245 -Wno-class-conversion -Wno-terminate @gol
246 -Wsign-promo -Wvirtual-inheritance -Wvolatile}
247
248 @item Objective-C and Objective-C++ Language Options
249 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
250 Objective-C and Objective-C++ Dialects}.
251 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
252 -fgnu-runtime -fnext-runtime @gol
253 -fno-nil-receivers @gol
254 -fobjc-abi-version=@var{n} @gol
255 -fobjc-call-cxx-cdtors @gol
256 -fobjc-direct-dispatch @gol
257 -fobjc-exceptions @gol
258 -fobjc-gc @gol
259 -fobjc-nilcheck @gol
260 -fobjc-std=objc1 @gol
261 -fno-local-ivars @gol
262 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
263 -freplace-objc-classes @gol
264 -fzero-link @gol
265 -gen-decls @gol
266 -Wassign-intercept @gol
267 -Wno-protocol -Wselector @gol
268 -Wstrict-selector-match @gol
269 -Wundeclared-selector}
270
271 @item Diagnostic Message Formatting Options
272 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
273 @gccoptlist{-fmessage-length=@var{n} @gol
274 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
275 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
276 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
277 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
278 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
279 -fdiagnostics-minimum-margin-width=@var{width} @gol
280 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
281 -fdiagnostics-show-template-tree -fno-elide-type @gol
282 -fno-show-column}
283
284 @item Warning Options
285 @xref{Warning Options,,Options to Request or Suppress Warnings}.
286 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
287 -pedantic-errors @gol
288 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
289 -Waggregate-return -Waligned-new @gol
290 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
291 -Walloca -Walloca-larger-than=@var{byte-size} @gol
292 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
293 -Wno-attributes -Wattribute-alias=@var{n} @gol
294 -Wbool-compare -Wbool-operation @gol
295 -Wno-builtin-declaration-mismatch @gol
296 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
297 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
298 -Wc++20-compat @gol
299 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
300 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
301 -Wclobbered -Wcomment -Wconditionally-supported @gol
302 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
303 -Wdelete-incomplete @gol
304 -Wno-attribute-warning @gol
305 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
306 -Wdisabled-optimization @gol
307 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
308 -Wno-div-by-zero -Wdouble-promotion @gol
309 -Wduplicated-branches -Wduplicated-cond @gol
310 -Wempty-body -Wenum-compare -Wenum-conversion @gol
311 -Wno-endif-labels -Wexpansion-to-defined @gol
312 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
313 -Wfloat-equal -Wformat -Wformat=2 @gol
314 -Wno-format-contains-nul -Wno-format-extra-args @gol
315 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
316 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
317 -Wformat-y2k -Wframe-address @gol
318 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
319 -Wjump-misses-init @gol
320 -Whsa -Wif-not-aligned @gol
321 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
322 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
323 -Wimplicit-function-declaration -Wimplicit-int @gol
324 -Winaccessible-base @gol
325 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
326 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
327 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
328 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
329 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
330 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
331 -Wmissing-field-initializers -Wmissing-format-attribute @gol
332 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
333 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
334 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
335 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
336 -Woverride-init-side-effects -Woverlength-strings @gol
337 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
338 -Wparentheses -Wno-pedantic-ms-format @gol
339 -Wplacement-new -Wplacement-new=@var{n} @gol
340 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
341 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
342 -Wrestrict -Wno-return-local-addr @gol
343 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
344 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
345 -Wshift-overflow -Wshift-overflow=@var{n} @gol
346 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
347 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
348 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
349 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
350 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
351 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
352 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
353 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
354 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
355 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
356 -Wswitch-unreachable -Wsync-nand @gol
357 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
358 -Wtype-limits -Wundef @gol
359 -Wuninitialized -Wunknown-pragmas @gol
360 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
361 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
362 -Wunused-parameter -Wno-unused-result @gol
363 -Wunused-value -Wunused-variable @gol
364 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
365 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
366 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
367 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
368 -Wwrite-strings @gol
369 -Wzero-as-null-pointer-constant}
370
371 @item C and Objective-C-only Warning Options
372 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
373 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
374 -Wold-style-declaration -Wold-style-definition @gol
375 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
376 -Wdeclaration-after-statement -Wpointer-sign}
377
378 @item Debugging Options
379 @xref{Debugging Options,,Options for Debugging Your Program}.
380 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
381 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
382 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
383 -gas-loc-support -gno-as-loc-support @gol
384 -gas-locview-support -gno-as-locview-support @gol
385 -gcolumn-info -gno-column-info @gol
386 -gstatement-frontiers -gno-statement-frontiers @gol
387 -gvariable-location-views -gno-variable-location-views @gol
388 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
389 -ginline-points -gno-inline-points @gol
390 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
391 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
392 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
393 -fno-eliminate-unused-debug-types @gol
394 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
395 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
396 -fno-eliminate-unused-debug-symbols -femit-class-debug-always @gol
397 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
398 -fvar-tracking -fvar-tracking-assignments}
399
400 @item Optimization Options
401 @xref{Optimize Options,,Options that Control Optimization}.
402 @gccoptlist{-faggressive-loop-optimizations @gol
403 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
404 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
405 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
406 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
407 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
408 -fauto-inc-dec -fbranch-probabilities @gol
409 -fcaller-saves @gol
410 -fcombine-stack-adjustments -fconserve-stack @gol
411 -fcompare-elim -fcprop-registers -fcrossjumping @gol
412 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
413 -fcx-limited-range @gol
414 -fdata-sections -fdce -fdelayed-branch @gol
415 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
416 -fdevirtualize-at-ltrans -fdse @gol
417 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
418 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
419 -ffinite-loops @gol
420 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
421 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
422 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
423 -fif-conversion2 -findirect-inlining @gol
424 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
425 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
426 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
427 -fipa-reference -fipa-reference-addressable @gol
428 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
429 -flive-patching=@var{level} @gol
430 -fira-region=@var{region} -fira-hoist-pressure @gol
431 -fira-loop-pressure -fno-ira-share-save-slots @gol
432 -fno-ira-share-spill-slots @gol
433 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
434 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
435 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
436 -floop-block -floop-interchange -floop-strip-mine @gol
437 -floop-unroll-and-jam -floop-nest-optimize @gol
438 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
439 -flto-partition=@var{alg} -fmerge-all-constants @gol
440 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
441 -fmove-loop-invariants -fno-branch-count-reg @gol
442 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
443 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
444 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
445 -fno-sched-spec -fno-signed-zeros @gol
446 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
447 -fomit-frame-pointer -foptimize-sibling-calls @gol
448 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
449 -fprefetch-loop-arrays @gol
450 -fprofile-correction @gol
451 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
452 -fprofile-reorder-functions @gol
453 -freciprocal-math -free -frename-registers -freorder-blocks @gol
454 -freorder-blocks-algorithm=@var{algorithm} @gol
455 -freorder-blocks-and-partition -freorder-functions @gol
456 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
457 -frounding-math -fsave-optimization-record @gol
458 -fsched2-use-superblocks -fsched-pressure @gol
459 -fsched-spec-load -fsched-spec-load-dangerous @gol
460 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
461 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
462 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
463 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
464 -fschedule-fusion @gol
465 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
466 -fselective-scheduling -fselective-scheduling2 @gol
467 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
468 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
469 -fsignaling-nans @gol
470 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
471 -fsplit-paths @gol
472 -fsplit-wide-types -fsplit-wide-types-early -fssa-backprop -fssa-phiopt @gol
473 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
474 -fthread-jumps -ftracer -ftree-bit-ccp @gol
475 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
476 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
477 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
478 -ftree-loop-if-convert -ftree-loop-im @gol
479 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
480 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
481 -ftree-loop-vectorize @gol
482 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
483 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
484 -ftree-switch-conversion -ftree-tail-merge @gol
485 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
486 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
487 -funsafe-math-optimizations -funswitch-loops @gol
488 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
489 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
490 --param @var{name}=@var{value}
491 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
492
493 @item Program Instrumentation Options
494 @xref{Instrumentation Options,,Program Instrumentation Options}.
495 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
496 -fprofile-abs-path @gol
497 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
498 -fprofile-note=@var{path} -fprofile-update=@var{method} @gol
499 -fprofile-filter-files=@var{regex} -fprofile-exclude-files=@var{regex} @gol
500 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
501 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
502 -fsanitize-undefined-trap-on-error -fbounds-check @gol
503 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
504 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
505 -fstack-protector-explicit -fstack-check @gol
506 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
507 -fno-stack-limit -fsplit-stack @gol
508 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
509 -fvtv-counts -fvtv-debug @gol
510 -finstrument-functions @gol
511 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
512 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
513
514 @item Preprocessor Options
515 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
516 @gccoptlist{-A@var{question}=@var{answer} @gol
517 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
518 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
519 -dD -dI -dM -dN -dU @gol
520 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
521 -fexec-charset=@var{charset} -fextended-identifiers @gol
522 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
523 -fmax-include-depth=@var{depth} @gol
524 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
525 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
526 -fwide-exec-charset=@var{charset} -fworking-directory @gol
527 -H -imacros @var{file} -include @var{file} @gol
528 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
529 -no-integrated-cpp -P -pthread -remap @gol
530 -traditional -traditional-cpp -trigraphs @gol
531 -U@var{macro} -undef @gol
532 -Wp,@var{option} -Xpreprocessor @var{option}}
533
534 @item Assembler Options
535 @xref{Assembler Options,,Passing Options to the Assembler}.
536 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
537
538 @item Linker Options
539 @xref{Link Options,,Options for Linking}.
540 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
541 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
542 -e @var{entry} --entry=@var{entry} @gol
543 -pie -pthread -r -rdynamic @gol
544 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
545 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
546 -shared -shared-libgcc -symbolic @gol
547 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
548 -u @var{symbol} -z @var{keyword}}
549
550 @item Directory Options
551 @xref{Directory Options,,Options for Directory Search}.
552 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
553 -idirafter @var{dir} @gol
554 -imacros @var{file} -imultilib @var{dir} @gol
555 -iplugindir=@var{dir} -iprefix @var{file} @gol
556 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
557 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
558 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
559 -nostdinc -nostdinc++ --sysroot=@var{dir}}
560
561 @item Code Generation Options
562 @xref{Code Gen Options,,Options for Code Generation Conventions}.
563 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
564 -ffixed-@var{reg} -fexceptions @gol
565 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
566 -fasynchronous-unwind-tables @gol
567 -fno-gnu-unique @gol
568 -finhibit-size-directive -fno-common -fno-ident @gol
569 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
570 -fno-jump-tables @gol
571 -frecord-gcc-switches @gol
572 -freg-struct-return -fshort-enums -fshort-wchar @gol
573 -fverbose-asm -fpack-struct[=@var{n}] @gol
574 -fleading-underscore -ftls-model=@var{model} @gol
575 -fstack-reuse=@var{reuse_level} @gol
576 -ftrampolines -ftrapv -fwrapv @gol
577 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
578 -fstrict-volatile-bitfields -fsync-libcalls}
579
580 @item Developer Options
581 @xref{Developer Options,,GCC Developer Options}.
582 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
583 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
584 -fdbg-cnt=@var{counter-value-list} @gol
585 -fdisable-ipa-@var{pass_name} @gol
586 -fdisable-rtl-@var{pass_name} @gol
587 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
588 -fdisable-tree-@var{pass_name} @gol
589 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
590 -fdump-debug -fdump-earlydebug @gol
591 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
592 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
593 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
594 -fdump-lang-all @gol
595 -fdump-lang-@var{switch} @gol
596 -fdump-lang-@var{switch}-@var{options} @gol
597 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
598 -fdump-passes @gol
599 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
600 -fdump-statistics @gol
601 -fdump-tree-all @gol
602 -fdump-tree-@var{switch} @gol
603 -fdump-tree-@var{switch}-@var{options} @gol
604 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
605 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
606 -fenable-@var{kind}-@var{pass} @gol
607 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
608 -fira-verbose=@var{n} @gol
609 -flto-report -flto-report-wpa -fmem-report-wpa @gol
610 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
611 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
612 -fprofile-report @gol
613 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
614 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
615 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
616 -fvar-tracking-assignments-toggle -gtoggle @gol
617 -print-file-name=@var{library} -print-libgcc-file-name @gol
618 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
619 -print-prog-name=@var{program} -print-search-dirs -Q @gol
620 -print-sysroot -print-sysroot-headers-suffix @gol
621 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
622
623 @item Machine-Dependent Options
624 @xref{Submodel Options,,Machine-Dependent Options}.
625 @c This list is ordered alphanumerically by subsection name.
626 @c Try and put the significant identifier (CPU or system) first,
627 @c so users have a clue at guessing where the ones they want will be.
628
629 @emph{AArch64 Options}
630 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
631 -mgeneral-regs-only @gol
632 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
633 -mstrict-align -mno-strict-align @gol
634 -momit-leaf-frame-pointer @gol
635 -mtls-dialect=desc -mtls-dialect=traditional @gol
636 -mtls-size=@var{size} @gol
637 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
638 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
639 -mpc-relative-literal-loads @gol
640 -msign-return-address=@var{scope} @gol
641 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
642 +@var{b-key}]|@var{bti} @gol
643 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
644 -moverride=@var{string} -mverbose-cost-dump @gol
645 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
646 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
647
648 @emph{Adapteva Epiphany Options}
649 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
650 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
651 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
652 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
653 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
654 -msplit-vecmove-early -m1reg-@var{reg}}
655
656 @emph{AMD GCN Options}
657 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
658
659 @emph{ARC Options}
660 @gccoptlist{-mbarrel-shifter -mjli-always @gol
661 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
662 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
663 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
664 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
665 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
666 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
667 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
668 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
669 -mvolatile-cache -mtp-regno=@var{regno} @gol
670 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
671 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
672 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
673 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
674 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
675 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
676 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
677 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
678
679 @emph{ARM Options}
680 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
681 -mabi=@var{name} @gol
682 -mapcs-stack-check -mno-apcs-stack-check @gol
683 -mapcs-reentrant -mno-apcs-reentrant @gol
684 -mgeneral-regs-only @gol
685 -msched-prolog -mno-sched-prolog @gol
686 -mlittle-endian -mbig-endian @gol
687 -mbe8 -mbe32 @gol
688 -mfloat-abi=@var{name} @gol
689 -mfp16-format=@var{name}
690 -mthumb-interwork -mno-thumb-interwork @gol
691 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
692 -mtune=@var{name} -mprint-tune-info @gol
693 -mstructure-size-boundary=@var{n} @gol
694 -mabort-on-noreturn @gol
695 -mlong-calls -mno-long-calls @gol
696 -msingle-pic-base -mno-single-pic-base @gol
697 -mpic-register=@var{reg} @gol
698 -mnop-fun-dllimport @gol
699 -mpoke-function-name @gol
700 -mthumb -marm -mflip-thumb @gol
701 -mtpcs-frame -mtpcs-leaf-frame @gol
702 -mcaller-super-interworking -mcallee-super-interworking @gol
703 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
704 -mword-relocations @gol
705 -mfix-cortex-m3-ldrd @gol
706 -munaligned-access @gol
707 -mneon-for-64bits @gol
708 -mslow-flash-data @gol
709 -masm-syntax-unified @gol
710 -mrestrict-it @gol
711 -mverbose-cost-dump @gol
712 -mpure-code @gol
713 -mcmse @gol
714 -mfdpic}
715
716 @emph{AVR Options}
717 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
718 -mbranch-cost=@var{cost} @gol
719 -mcall-prologues -mgas-isr-prologues -mint8 @gol
720 -mn_flash=@var{size} -mno-interrupts @gol
721 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
722 -mfract-convert-truncate @gol
723 -mshort-calls -nodevicelib @gol
724 -Waddr-space-convert -Wmisspelled-isr}
725
726 @emph{Blackfin Options}
727 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
728 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
729 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
730 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
731 -mno-id-shared-library -mshared-library-id=@var{n} @gol
732 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
733 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
734 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
735 -micplb}
736
737 @emph{C6X Options}
738 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
739 -msim -msdata=@var{sdata-type}}
740
741 @emph{CRIS Options}
742 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
743 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
744 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
745 -mstack-align -mdata-align -mconst-align @gol
746 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
747 -melf -maout -melinux -mlinux -sim -sim2 @gol
748 -mmul-bug-workaround -mno-mul-bug-workaround}
749
750 @emph{CR16 Options}
751 @gccoptlist{-mmac @gol
752 -mcr16cplus -mcr16c @gol
753 -msim -mint32 -mbit-ops
754 -mdata-model=@var{model}}
755
756 @emph{C-SKY Options}
757 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
758 -mbig-endian -EB -mlittle-endian -EL @gol
759 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
760 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
761 -mdsp -medsp -mvdsp @gol
762 -mdiv -msmart -mhigh-registers -manchor @gol
763 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
764 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
765
766 @emph{Darwin Options}
767 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
768 -arch_only -bind_at_load -bundle -bundle_loader @gol
769 -client_name -compatibility_version -current_version @gol
770 -dead_strip @gol
771 -dependency-file -dylib_file -dylinker_install_name @gol
772 -dynamic -dynamiclib -exported_symbols_list @gol
773 -filelist -flat_namespace -force_cpusubtype_ALL @gol
774 -force_flat_namespace -headerpad_max_install_names @gol
775 -iframework @gol
776 -image_base -init -install_name -keep_private_externs @gol
777 -multi_module -multiply_defined -multiply_defined_unused @gol
778 -noall_load -no_dead_strip_inits_and_terms @gol
779 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
780 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
781 -private_bundle -read_only_relocs -sectalign @gol
782 -sectobjectsymbols -whyload -seg1addr @gol
783 -sectcreate -sectobjectsymbols -sectorder @gol
784 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
785 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
786 -segprot -segs_read_only_addr -segs_read_write_addr @gol
787 -single_module -static -sub_library -sub_umbrella @gol
788 -twolevel_namespace -umbrella -undefined @gol
789 -unexported_symbols_list -weak_reference_mismatches @gol
790 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
791 -mkernel -mone-byte-bool}
792
793 @emph{DEC Alpha Options}
794 @gccoptlist{-mno-fp-regs -msoft-float @gol
795 -mieee -mieee-with-inexact -mieee-conformant @gol
796 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
797 -mtrap-precision=@var{mode} -mbuild-constants @gol
798 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
799 -mbwx -mmax -mfix -mcix @gol
800 -mfloat-vax -mfloat-ieee @gol
801 -mexplicit-relocs -msmall-data -mlarge-data @gol
802 -msmall-text -mlarge-text @gol
803 -mmemory-latency=@var{time}}
804
805 @emph{eBPF Options}
806 @gccoptlist{-mbig-endian -mlittle-endian -mkernel=@var{version}
807 -mframe-limit=@var{bytes}}
808
809 @emph{FR30 Options}
810 @gccoptlist{-msmall-model -mno-lsim}
811
812 @emph{FT32 Options}
813 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
814
815 @emph{FRV Options}
816 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
817 -mhard-float -msoft-float @gol
818 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
819 -mdouble -mno-double @gol
820 -mmedia -mno-media -mmuladd -mno-muladd @gol
821 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
822 -mlinked-fp -mlong-calls -malign-labels @gol
823 -mlibrary-pic -macc-4 -macc-8 @gol
824 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
825 -moptimize-membar -mno-optimize-membar @gol
826 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
827 -mvliw-branch -mno-vliw-branch @gol
828 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
829 -mno-nested-cond-exec -mtomcat-stats @gol
830 -mTLS -mtls @gol
831 -mcpu=@var{cpu}}
832
833 @emph{GNU/Linux Options}
834 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
835 -tno-android-cc -tno-android-ld}
836
837 @emph{H8/300 Options}
838 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
839
840 @emph{HPPA Options}
841 @gccoptlist{-march=@var{architecture-type} @gol
842 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
843 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
844 -mfixed-range=@var{register-range} @gol
845 -mjump-in-delay -mlinker-opt -mlong-calls @gol
846 -mlong-load-store -mno-disable-fpregs @gol
847 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
848 -mno-jump-in-delay -mno-long-load-store @gol
849 -mno-portable-runtime -mno-soft-float @gol
850 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
851 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
852 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
853 -munix=@var{unix-std} -nolibdld -static -threads}
854
855 @emph{IA-64 Options}
856 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
857 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
858 -mconstant-gp -mauto-pic -mfused-madd @gol
859 -minline-float-divide-min-latency @gol
860 -minline-float-divide-max-throughput @gol
861 -mno-inline-float-divide @gol
862 -minline-int-divide-min-latency @gol
863 -minline-int-divide-max-throughput @gol
864 -mno-inline-int-divide @gol
865 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
866 -mno-inline-sqrt @gol
867 -mdwarf2-asm -mearly-stop-bits @gol
868 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
869 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
870 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
871 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
872 -msched-spec-ldc -msched-spec-control-ldc @gol
873 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
874 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
875 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
876 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
877
878 @emph{LM32 Options}
879 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
880 -msign-extend-enabled -muser-enabled}
881
882 @emph{M32R/D Options}
883 @gccoptlist{-m32r2 -m32rx -m32r @gol
884 -mdebug @gol
885 -malign-loops -mno-align-loops @gol
886 -missue-rate=@var{number} @gol
887 -mbranch-cost=@var{number} @gol
888 -mmodel=@var{code-size-model-type} @gol
889 -msdata=@var{sdata-type} @gol
890 -mno-flush-func -mflush-func=@var{name} @gol
891 -mno-flush-trap -mflush-trap=@var{number} @gol
892 -G @var{num}}
893
894 @emph{M32C Options}
895 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
896
897 @emph{M680x0 Options}
898 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
899 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
900 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
901 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
902 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
903 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
904 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
905 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
906 -mxgot -mno-xgot -mlong-jump-table-offsets}
907
908 @emph{MCore Options}
909 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
910 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
911 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
912 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
913 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
914
915 @emph{MeP Options}
916 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
917 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
918 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
919 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
920 -mtiny=@var{n}}
921
922 @emph{MicroBlaze Options}
923 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
924 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
925 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
926 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
927 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
928 -mpic-data-is-text-relative}
929
930 @emph{MIPS Options}
931 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
932 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
933 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
934 -mips16 -mno-mips16 -mflip-mips16 @gol
935 -minterlink-compressed -mno-interlink-compressed @gol
936 -minterlink-mips16 -mno-interlink-mips16 @gol
937 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
938 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
939 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
940 -mno-float -msingle-float -mdouble-float @gol
941 -modd-spreg -mno-odd-spreg @gol
942 -mabs=@var{mode} -mnan=@var{encoding} @gol
943 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
944 -mmcu -mmno-mcu @gol
945 -meva -mno-eva @gol
946 -mvirt -mno-virt @gol
947 -mxpa -mno-xpa @gol
948 -mcrc -mno-crc @gol
949 -mginv -mno-ginv @gol
950 -mmicromips -mno-micromips @gol
951 -mmsa -mno-msa @gol
952 -mloongson-mmi -mno-loongson-mmi @gol
953 -mloongson-ext -mno-loongson-ext @gol
954 -mloongson-ext2 -mno-loongson-ext2 @gol
955 -mfpu=@var{fpu-type} @gol
956 -msmartmips -mno-smartmips @gol
957 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
958 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
959 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
960 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
961 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
962 -membedded-data -mno-embedded-data @gol
963 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
964 -mcode-readable=@var{setting} @gol
965 -msplit-addresses -mno-split-addresses @gol
966 -mexplicit-relocs -mno-explicit-relocs @gol
967 -mcheck-zero-division -mno-check-zero-division @gol
968 -mdivide-traps -mdivide-breaks @gol
969 -mload-store-pairs -mno-load-store-pairs @gol
970 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
971 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
972 -mfix-24k -mno-fix-24k @gol
973 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
974 -mfix-r5900 -mno-fix-r5900 @gol
975 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
976 -mfix-vr4120 -mno-fix-vr4120 @gol
977 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
978 -mflush-func=@var{func} -mno-flush-func @gol
979 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
980 -mcompact-branches=@var{policy} @gol
981 -mfp-exceptions -mno-fp-exceptions @gol
982 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
983 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
984 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
985 -mframe-header-opt -mno-frame-header-opt}
986
987 @emph{MMIX Options}
988 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
989 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
990 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
991 -mno-base-addresses -msingle-exit -mno-single-exit}
992
993 @emph{MN10300 Options}
994 @gccoptlist{-mmult-bug -mno-mult-bug @gol
995 -mno-am33 -mam33 -mam33-2 -mam34 @gol
996 -mtune=@var{cpu-type} @gol
997 -mreturn-pointer-on-d0 @gol
998 -mno-crt0 -mrelax -mliw -msetlb}
999
1000 @emph{Moxie Options}
1001 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
1002
1003 @emph{MSP430 Options}
1004 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
1005 -mwarn-mcu @gol
1006 -mcode-region= -mdata-region= @gol
1007 -msilicon-errata= -msilicon-errata-warn= @gol
1008 -mhwmult= -minrt}
1009
1010 @emph{NDS32 Options}
1011 @gccoptlist{-mbig-endian -mlittle-endian @gol
1012 -mreduced-regs -mfull-regs @gol
1013 -mcmov -mno-cmov @gol
1014 -mext-perf -mno-ext-perf @gol
1015 -mext-perf2 -mno-ext-perf2 @gol
1016 -mext-string -mno-ext-string @gol
1017 -mv3push -mno-v3push @gol
1018 -m16bit -mno-16bit @gol
1019 -misr-vector-size=@var{num} @gol
1020 -mcache-block-size=@var{num} @gol
1021 -march=@var{arch} @gol
1022 -mcmodel=@var{code-model} @gol
1023 -mctor-dtor -mrelax}
1024
1025 @emph{Nios II Options}
1026 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1027 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1028 -mel -meb @gol
1029 -mno-bypass-cache -mbypass-cache @gol
1030 -mno-cache-volatile -mcache-volatile @gol
1031 -mno-fast-sw-div -mfast-sw-div @gol
1032 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1033 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1034 -mcustom-fpu-cfg=@var{name} @gol
1035 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1036 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1037
1038 @emph{Nvidia PTX Options}
1039 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1040
1041 @emph{OpenRISC Options}
1042 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1043 -msoft-mul -msoft-div @gol
1044 -msoft-float -mhard-float -mdouble-float -munordered-float @gol
1045 -mcmov -mror -mrori -msext -msfimm -mshftimm}
1046
1047 @emph{PDP-11 Options}
1048 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1049 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1050 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1051
1052 @emph{picoChip Options}
1053 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1054 -msymbol-as-address -mno-inefficient-warnings}
1055
1056 @emph{PowerPC Options}
1057 See RS/6000 and PowerPC Options.
1058
1059 @emph{PRU Options}
1060 @gccoptlist{-mmcu=@var{mcu} -minrt -mno-relax -mloop @gol
1061 -mabi=@var{variant} @gol}
1062
1063 @emph{RISC-V Options}
1064 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1065 -mplt -mno-plt @gol
1066 -mabi=@var{ABI-string} @gol
1067 -mfdiv -mno-fdiv @gol
1068 -mdiv -mno-div @gol
1069 -march=@var{ISA-string} @gol
1070 -mtune=@var{processor-string} @gol
1071 -mpreferred-stack-boundary=@var{num} @gol
1072 -msmall-data-limit=@var{N-bytes} @gol
1073 -msave-restore -mno-save-restore @gol
1074 -mstrict-align -mno-strict-align @gol
1075 -mcmodel=medlow -mcmodel=medany @gol
1076 -mexplicit-relocs -mno-explicit-relocs @gol
1077 -mrelax -mno-relax @gol
1078 -mriscv-attribute -mmo-riscv-attribute @gol
1079 -malign-data=@var{type}}
1080
1081 @emph{RL78 Options}
1082 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1083 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1084 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1085
1086 @emph{RS/6000 and PowerPC Options}
1087 @gccoptlist{-mcpu=@var{cpu-type} @gol
1088 -mtune=@var{cpu-type} @gol
1089 -mcmodel=@var{code-model} @gol
1090 -mpowerpc64 @gol
1091 -maltivec -mno-altivec @gol
1092 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1093 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1094 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1095 -mfprnd -mno-fprnd @gol
1096 -mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp @gol
1097 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1098 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1099 -malign-power -malign-natural @gol
1100 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1101 -mupdate -mno-update @gol
1102 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1103 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1104 -mstrict-align -mno-strict-align -mrelocatable @gol
1105 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1106 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1107 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1108 -mprioritize-restricted-insns=@var{priority} @gol
1109 -msched-costly-dep=@var{dependence_type} @gol
1110 -minsert-sched-nops=@var{scheme} @gol
1111 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1112 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1113 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1114 -mtraceback=@var{traceback_type} @gol
1115 -maix-struct-return -msvr4-struct-return @gol
1116 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1117 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1118 -mblock-move-inline-limit=@var{num} @gol
1119 -mblock-compare-inline-limit=@var{num} @gol
1120 -mblock-compare-inline-loop-limit=@var{num} @gol
1121 -mstring-compare-inline-limit=@var{num} @gol
1122 -misel -mno-isel @gol
1123 -mvrsave -mno-vrsave @gol
1124 -mmulhw -mno-mulhw @gol
1125 -mdlmzb -mno-dlmzb @gol
1126 -mprototype -mno-prototype @gol
1127 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1128 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1129 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1130 -mno-recip-precision @gol
1131 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1132 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1133 -msave-toc-indirect -mno-save-toc-indirect @gol
1134 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1135 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1136 -mquad-memory -mno-quad-memory @gol
1137 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1138 -mcompat-align-parm -mno-compat-align-parm @gol
1139 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1140 -mgnu-attribute -mno-gnu-attribute @gol
1141 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1142 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1143
1144 @emph{RX Options}
1145 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1146 -mcpu=@gol
1147 -mbig-endian-data -mlittle-endian-data @gol
1148 -msmall-data @gol
1149 -msim -mno-sim@gol
1150 -mas100-syntax -mno-as100-syntax@gol
1151 -mrelax@gol
1152 -mmax-constant-size=@gol
1153 -mint-register=@gol
1154 -mpid@gol
1155 -mallow-string-insns -mno-allow-string-insns@gol
1156 -mjsr@gol
1157 -mno-warn-multiple-fast-interrupts@gol
1158 -msave-acc-in-interrupts}
1159
1160 @emph{S/390 and zSeries Options}
1161 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1162 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1163 -mlong-double-64 -mlong-double-128 @gol
1164 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1165 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1166 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1167 -mhtm -mvx -mzvector @gol
1168 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1169 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1170 -mhotpatch=@var{halfwords},@var{halfwords}}
1171
1172 @emph{Score Options}
1173 @gccoptlist{-meb -mel @gol
1174 -mnhwloop @gol
1175 -muls @gol
1176 -mmac @gol
1177 -mscore5 -mscore5u -mscore7 -mscore7d}
1178
1179 @emph{SH Options}
1180 @gccoptlist{-m1 -m2 -m2e @gol
1181 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1182 -m3 -m3e @gol
1183 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1184 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1185 -mb -ml -mdalign -mrelax @gol
1186 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1187 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1188 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1189 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1190 -maccumulate-outgoing-args @gol
1191 -matomic-model=@var{atomic-model} @gol
1192 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1193 -mcbranch-force-delay-slot @gol
1194 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1195 -mpretend-cmove -mtas}
1196
1197 @emph{Solaris 2 Options}
1198 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1199 -pthreads}
1200
1201 @emph{SPARC Options}
1202 @gccoptlist{-mcpu=@var{cpu-type} @gol
1203 -mtune=@var{cpu-type} @gol
1204 -mcmodel=@var{code-model} @gol
1205 -mmemory-model=@var{mem-model} @gol
1206 -m32 -m64 -mapp-regs -mno-app-regs @gol
1207 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1208 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1209 -mhard-quad-float -msoft-quad-float @gol
1210 -mstack-bias -mno-stack-bias @gol
1211 -mstd-struct-return -mno-std-struct-return @gol
1212 -munaligned-doubles -mno-unaligned-doubles @gol
1213 -muser-mode -mno-user-mode @gol
1214 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1215 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1216 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1217 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1218 -mpopc -mno-popc -msubxc -mno-subxc @gol
1219 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1220 -mlra -mno-lra}
1221
1222 @emph{System V Options}
1223 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1224
1225 @emph{TILE-Gx Options}
1226 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1227 -mcmodel=@var{code-model}}
1228
1229 @emph{TILEPro Options}
1230 @gccoptlist{-mcpu=@var{cpu} -m32}
1231
1232 @emph{V850 Options}
1233 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1234 -mprolog-function -mno-prolog-function -mspace @gol
1235 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1236 -mapp-regs -mno-app-regs @gol
1237 -mdisable-callt -mno-disable-callt @gol
1238 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1239 -mv850e -mv850 -mv850e3v5 @gol
1240 -mloop @gol
1241 -mrelax @gol
1242 -mlong-jumps @gol
1243 -msoft-float @gol
1244 -mhard-float @gol
1245 -mgcc-abi @gol
1246 -mrh850-abi @gol
1247 -mbig-switch}
1248
1249 @emph{VAX Options}
1250 @gccoptlist{-mg -mgnu -munix}
1251
1252 @emph{Visium Options}
1253 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1254 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1255
1256 @emph{VMS Options}
1257 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1258 -mpointer-size=@var{size}}
1259
1260 @emph{VxWorks Options}
1261 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1262 -Xbind-lazy -Xbind-now}
1263
1264 @emph{x86 Options}
1265 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1266 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1267 -mfpmath=@var{unit} @gol
1268 -masm=@var{dialect} -mno-fancy-math-387 @gol
1269 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1270 -mno-wide-multiply -mrtd -malign-double @gol
1271 -mpreferred-stack-boundary=@var{num} @gol
1272 -mincoming-stack-boundary=@var{num} @gol
1273 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1274 -mrecip -mrecip=@var{opt} @gol
1275 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1276 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1277 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1278 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1279 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1280 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1281 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1282 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1283 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1284 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1285 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1286 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1287 -mrdseed -msgx -mavx512vp2intersect@gol
1288 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1289 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1290 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1291 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1292 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1293 -mregparm=@var{num} -msseregparm @gol
1294 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1295 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1296 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1297 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1298 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1299 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1300 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1301 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1302 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1303 -mstack-protector-guard-reg=@var{reg} @gol
1304 -mstack-protector-guard-offset=@var{offset} @gol
1305 -mstack-protector-guard-symbol=@var{symbol} @gol
1306 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1307 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1308 -mindirect-branch-register}
1309
1310 @emph{x86 Windows Options}
1311 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1312 -mnop-fun-dllimport -mthread @gol
1313 -municode -mwin32 -mwindows -fno-set-stack-executable}
1314
1315 @emph{Xstormy16 Options}
1316 @gccoptlist{-msim}
1317
1318 @emph{Xtensa Options}
1319 @gccoptlist{-mconst16 -mno-const16 @gol
1320 -mfused-madd -mno-fused-madd @gol
1321 -mforce-no-pic @gol
1322 -mserialize-volatile -mno-serialize-volatile @gol
1323 -mtext-section-literals -mno-text-section-literals @gol
1324 -mauto-litpools -mno-auto-litpools @gol
1325 -mtarget-align -mno-target-align @gol
1326 -mlongcalls -mno-longcalls}
1327
1328 @emph{zSeries Options}
1329 See S/390 and zSeries Options.
1330 @end table
1331
1332
1333 @node Overall Options
1334 @section Options Controlling the Kind of Output
1335
1336 Compilation can involve up to four stages: preprocessing, compilation
1337 proper, assembly and linking, always in that order. GCC is capable of
1338 preprocessing and compiling several files either into several
1339 assembler input files, or into one assembler input file; then each
1340 assembler input file produces an object file, and linking combines all
1341 the object files (those newly compiled, and those specified as input)
1342 into an executable file.
1343
1344 @cindex file name suffix
1345 For any given input file, the file name suffix determines what kind of
1346 compilation is done:
1347
1348 @table @gcctabopt
1349 @item @var{file}.c
1350 C source code that must be preprocessed.
1351
1352 @item @var{file}.i
1353 C source code that should not be preprocessed.
1354
1355 @item @var{file}.ii
1356 C++ source code that should not be preprocessed.
1357
1358 @item @var{file}.m
1359 Objective-C source code. Note that you must link with the @file{libobjc}
1360 library to make an Objective-C program work.
1361
1362 @item @var{file}.mi
1363 Objective-C source code that should not be preprocessed.
1364
1365 @item @var{file}.mm
1366 @itemx @var{file}.M
1367 Objective-C++ source code. Note that you must link with the @file{libobjc}
1368 library to make an Objective-C++ program work. Note that @samp{.M} refers
1369 to a literal capital M@.
1370
1371 @item @var{file}.mii
1372 Objective-C++ source code that should not be preprocessed.
1373
1374 @item @var{file}.h
1375 C, C++, Objective-C or Objective-C++ header file to be turned into a
1376 precompiled header (default), or C, C++ header file to be turned into an
1377 Ada spec (via the @option{-fdump-ada-spec} switch).
1378
1379 @item @var{file}.cc
1380 @itemx @var{file}.cp
1381 @itemx @var{file}.cxx
1382 @itemx @var{file}.cpp
1383 @itemx @var{file}.CPP
1384 @itemx @var{file}.c++
1385 @itemx @var{file}.C
1386 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1387 the last two letters must both be literally @samp{x}. Likewise,
1388 @samp{.C} refers to a literal capital C@.
1389
1390 @item @var{file}.mm
1391 @itemx @var{file}.M
1392 Objective-C++ source code that must be preprocessed.
1393
1394 @item @var{file}.mii
1395 Objective-C++ source code that should not be preprocessed.
1396
1397 @item @var{file}.hh
1398 @itemx @var{file}.H
1399 @itemx @var{file}.hp
1400 @itemx @var{file}.hxx
1401 @itemx @var{file}.hpp
1402 @itemx @var{file}.HPP
1403 @itemx @var{file}.h++
1404 @itemx @var{file}.tcc
1405 C++ header file to be turned into a precompiled header or Ada spec.
1406
1407 @item @var{file}.f
1408 @itemx @var{file}.for
1409 @itemx @var{file}.ftn
1410 Fixed form Fortran source code that should not be preprocessed.
1411
1412 @item @var{file}.F
1413 @itemx @var{file}.FOR
1414 @itemx @var{file}.fpp
1415 @itemx @var{file}.FPP
1416 @itemx @var{file}.FTN
1417 Fixed form Fortran source code that must be preprocessed (with the traditional
1418 preprocessor).
1419
1420 @item @var{file}.f90
1421 @itemx @var{file}.f95
1422 @itemx @var{file}.f03
1423 @itemx @var{file}.f08
1424 Free form Fortran source code that should not be preprocessed.
1425
1426 @item @var{file}.F90
1427 @itemx @var{file}.F95
1428 @itemx @var{file}.F03
1429 @itemx @var{file}.F08
1430 Free form Fortran source code that must be preprocessed (with the
1431 traditional preprocessor).
1432
1433 @item @var{file}.go
1434 Go source code.
1435
1436 @item @var{file}.brig
1437 BRIG files (binary representation of HSAIL).
1438
1439 @item @var{file}.d
1440 D source code.
1441
1442 @item @var{file}.di
1443 D interface file.
1444
1445 @item @var{file}.dd
1446 D documentation code (Ddoc).
1447
1448 @item @var{file}.ads
1449 Ada source code file that contains a library unit declaration (a
1450 declaration of a package, subprogram, or generic, or a generic
1451 instantiation), or a library unit renaming declaration (a package,
1452 generic, or subprogram renaming declaration). Such files are also
1453 called @dfn{specs}.
1454
1455 @item @var{file}.adb
1456 Ada source code file containing a library unit body (a subprogram or
1457 package body). Such files are also called @dfn{bodies}.
1458
1459 @c GCC also knows about some suffixes for languages not yet included:
1460 @c Ratfor:
1461 @c @var{file}.r
1462
1463 @item @var{file}.s
1464 Assembler code.
1465
1466 @item @var{file}.S
1467 @itemx @var{file}.sx
1468 Assembler code that must be preprocessed.
1469
1470 @item @var{other}
1471 An object file to be fed straight into linking.
1472 Any file name with no recognized suffix is treated this way.
1473 @end table
1474
1475 @opindex x
1476 You can specify the input language explicitly with the @option{-x} option:
1477
1478 @table @gcctabopt
1479 @item -x @var{language}
1480 Specify explicitly the @var{language} for the following input files
1481 (rather than letting the compiler choose a default based on the file
1482 name suffix). This option applies to all following input files until
1483 the next @option{-x} option. Possible values for @var{language} are:
1484 @smallexample
1485 c c-header cpp-output
1486 c++ c++-header c++-cpp-output
1487 objective-c objective-c-header objective-c-cpp-output
1488 objective-c++ objective-c++-header objective-c++-cpp-output
1489 assembler assembler-with-cpp
1490 ada
1491 d
1492 f77 f77-cpp-input f95 f95-cpp-input
1493 go
1494 brig
1495 @end smallexample
1496
1497 @item -x none
1498 Turn off any specification of a language, so that subsequent files are
1499 handled according to their file name suffixes (as they are if @option{-x}
1500 has not been used at all).
1501 @end table
1502
1503 If you only want some of the stages of compilation, you can use
1504 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1505 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1506 @command{gcc} is to stop. Note that some combinations (for example,
1507 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1508
1509 @table @gcctabopt
1510 @item -c
1511 @opindex c
1512 Compile or assemble the source files, but do not link. The linking
1513 stage simply is not done. The ultimate output is in the form of an
1514 object file for each source file.
1515
1516 By default, the object file name for a source file is made by replacing
1517 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1518
1519 Unrecognized input files, not requiring compilation or assembly, are
1520 ignored.
1521
1522 @item -S
1523 @opindex S
1524 Stop after the stage of compilation proper; do not assemble. The output
1525 is in the form of an assembler code file for each non-assembler input
1526 file specified.
1527
1528 By default, the assembler file name for a source file is made by
1529 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1530
1531 Input files that don't require compilation are ignored.
1532
1533 @item -E
1534 @opindex E
1535 Stop after the preprocessing stage; do not run the compiler proper. The
1536 output is in the form of preprocessed source code, which is sent to the
1537 standard output.
1538
1539 Input files that don't require preprocessing are ignored.
1540
1541 @cindex output file option
1542 @item -o @var{file}
1543 @opindex o
1544 Place output in file @var{file}. This applies to whatever
1545 sort of output is being produced, whether it be an executable file,
1546 an object file, an assembler file or preprocessed C code.
1547
1548 If @option{-o} is not specified, the default is to put an executable
1549 file in @file{a.out}, the object file for
1550 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1551 assembler file in @file{@var{source}.s}, a precompiled header file in
1552 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1553 standard output.
1554
1555 @item -v
1556 @opindex v
1557 Print (on standard error output) the commands executed to run the stages
1558 of compilation. Also print the version number of the compiler driver
1559 program and of the preprocessor and the compiler proper.
1560
1561 @item -###
1562 @opindex ###
1563 Like @option{-v} except the commands are not executed and arguments
1564 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1565 This is useful for shell scripts to capture the driver-generated command lines.
1566
1567 @item --help
1568 @opindex help
1569 Print (on the standard output) a description of the command-line options
1570 understood by @command{gcc}. If the @option{-v} option is also specified
1571 then @option{--help} is also passed on to the various processes
1572 invoked by @command{gcc}, so that they can display the command-line options
1573 they accept. If the @option{-Wextra} option has also been specified
1574 (prior to the @option{--help} option), then command-line options that
1575 have no documentation associated with them are also displayed.
1576
1577 @item --target-help
1578 @opindex target-help
1579 Print (on the standard output) a description of target-specific command-line
1580 options for each tool. For some targets extra target-specific
1581 information may also be printed.
1582
1583 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1584 Print (on the standard output) a description of the command-line
1585 options understood by the compiler that fit into all specified classes
1586 and qualifiers. These are the supported classes:
1587
1588 @table @asis
1589 @item @samp{optimizers}
1590 Display all of the optimization options supported by the
1591 compiler.
1592
1593 @item @samp{warnings}
1594 Display all of the options controlling warning messages
1595 produced by the compiler.
1596
1597 @item @samp{target}
1598 Display target-specific options. Unlike the
1599 @option{--target-help} option however, target-specific options of the
1600 linker and assembler are not displayed. This is because those
1601 tools do not currently support the extended @option{--help=} syntax.
1602
1603 @item @samp{params}
1604 Display the values recognized by the @option{--param}
1605 option.
1606
1607 @item @var{language}
1608 Display the options supported for @var{language}, where
1609 @var{language} is the name of one of the languages supported in this
1610 version of GCC@.
1611
1612 @item @samp{common}
1613 Display the options that are common to all languages.
1614 @end table
1615
1616 These are the supported qualifiers:
1617
1618 @table @asis
1619 @item @samp{undocumented}
1620 Display only those options that are undocumented.
1621
1622 @item @samp{joined}
1623 Display options taking an argument that appears after an equal
1624 sign in the same continuous piece of text, such as:
1625 @samp{--help=target}.
1626
1627 @item @samp{separate}
1628 Display options taking an argument that appears as a separate word
1629 following the original option, such as: @samp{-o output-file}.
1630 @end table
1631
1632 Thus for example to display all the undocumented target-specific
1633 switches supported by the compiler, use:
1634
1635 @smallexample
1636 --help=target,undocumented
1637 @end smallexample
1638
1639 The sense of a qualifier can be inverted by prefixing it with the
1640 @samp{^} character, so for example to display all binary warning
1641 options (i.e., ones that are either on or off and that do not take an
1642 argument) that have a description, use:
1643
1644 @smallexample
1645 --help=warnings,^joined,^undocumented
1646 @end smallexample
1647
1648 The argument to @option{--help=} should not consist solely of inverted
1649 qualifiers.
1650
1651 Combining several classes is possible, although this usually
1652 restricts the output so much that there is nothing to display. One
1653 case where it does work, however, is when one of the classes is
1654 @var{target}. For example, to display all the target-specific
1655 optimization options, use:
1656
1657 @smallexample
1658 --help=target,optimizers
1659 @end smallexample
1660
1661 The @option{--help=} option can be repeated on the command line. Each
1662 successive use displays its requested class of options, skipping
1663 those that have already been displayed. If @option{--help} is also
1664 specified anywhere on the command line then this takes precedence
1665 over any @option{--help=} option.
1666
1667 If the @option{-Q} option appears on the command line before the
1668 @option{--help=} option, then the descriptive text displayed by
1669 @option{--help=} is changed. Instead of describing the displayed
1670 options, an indication is given as to whether the option is enabled,
1671 disabled or set to a specific value (assuming that the compiler
1672 knows this at the point where the @option{--help=} option is used).
1673
1674 Here is a truncated example from the ARM port of @command{gcc}:
1675
1676 @smallexample
1677 % gcc -Q -mabi=2 --help=target -c
1678 The following options are target specific:
1679 -mabi= 2
1680 -mabort-on-noreturn [disabled]
1681 -mapcs [disabled]
1682 @end smallexample
1683
1684 The output is sensitive to the effects of previous command-line
1685 options, so for example it is possible to find out which optimizations
1686 are enabled at @option{-O2} by using:
1687
1688 @smallexample
1689 -Q -O2 --help=optimizers
1690 @end smallexample
1691
1692 Alternatively you can discover which binary optimizations are enabled
1693 by @option{-O3} by using:
1694
1695 @smallexample
1696 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1697 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1698 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1699 @end smallexample
1700
1701 @item --version
1702 @opindex version
1703 Display the version number and copyrights of the invoked GCC@.
1704
1705 @item -pass-exit-codes
1706 @opindex pass-exit-codes
1707 Normally the @command{gcc} program exits with the code of 1 if any
1708 phase of the compiler returns a non-success return code. If you specify
1709 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1710 the numerically highest error produced by any phase returning an error
1711 indication. The C, C++, and Fortran front ends return 4 if an internal
1712 compiler error is encountered.
1713
1714 @item -pipe
1715 @opindex pipe
1716 Use pipes rather than temporary files for communication between the
1717 various stages of compilation. This fails to work on some systems where
1718 the assembler is unable to read from a pipe; but the GNU assembler has
1719 no trouble.
1720
1721 @item -specs=@var{file}
1722 @opindex specs
1723 Process @var{file} after the compiler reads in the standard @file{specs}
1724 file, in order to override the defaults which the @command{gcc} driver
1725 program uses when determining what switches to pass to @command{cc1},
1726 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1727 @option{-specs=@var{file}} can be specified on the command line, and they
1728 are processed in order, from left to right. @xref{Spec Files}, for
1729 information about the format of the @var{file}.
1730
1731 @item -wrapper
1732 @opindex wrapper
1733 Invoke all subcommands under a wrapper program. The name of the
1734 wrapper program and its parameters are passed as a comma separated
1735 list.
1736
1737 @smallexample
1738 gcc -c t.c -wrapper gdb,--args
1739 @end smallexample
1740
1741 @noindent
1742 This invokes all subprograms of @command{gcc} under
1743 @samp{gdb --args}, thus the invocation of @command{cc1} is
1744 @samp{gdb --args cc1 @dots{}}.
1745
1746 @item -ffile-prefix-map=@var{old}=@var{new}
1747 @opindex ffile-prefix-map
1748 When compiling files residing in directory @file{@var{old}}, record
1749 any references to them in the result of the compilation as if the
1750 files resided in directory @file{@var{new}} instead. Specifying this
1751 option is equivalent to specifying all the individual
1752 @option{-f*-prefix-map} options. This can be used to make reproducible
1753 builds that are location independent. See also
1754 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1755
1756 @item -fplugin=@var{name}.so
1757 @opindex fplugin
1758 Load the plugin code in file @var{name}.so, assumed to be a
1759 shared object to be dlopen'd by the compiler. The base name of
1760 the shared object file is used to identify the plugin for the
1761 purposes of argument parsing (See
1762 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1763 Each plugin should define the callback functions specified in the
1764 Plugins API.
1765
1766 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1767 @opindex fplugin-arg
1768 Define an argument called @var{key} with a value of @var{value}
1769 for the plugin called @var{name}.
1770
1771 @item -fdump-ada-spec@r{[}-slim@r{]}
1772 @opindex fdump-ada-spec
1773 For C and C++ source and include files, generate corresponding Ada specs.
1774 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1775 GNAT User's Guide}, which provides detailed documentation on this feature.
1776
1777 @item -fada-spec-parent=@var{unit}
1778 @opindex fada-spec-parent
1779 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1780 Ada specs as child units of parent @var{unit}.
1781
1782 @item -fdump-go-spec=@var{file}
1783 @opindex fdump-go-spec
1784 For input files in any language, generate corresponding Go
1785 declarations in @var{file}. This generates Go @code{const},
1786 @code{type}, @code{var}, and @code{func} declarations which may be a
1787 useful way to start writing a Go interface to code written in some
1788 other language.
1789
1790 @include @value{srcdir}/../libiberty/at-file.texi
1791 @end table
1792
1793 @node Invoking G++
1794 @section Compiling C++ Programs
1795
1796 @cindex suffixes for C++ source
1797 @cindex C++ source file suffixes
1798 C++ source files conventionally use one of the suffixes @samp{.C},
1799 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1800 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1801 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1802 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1803 files with these names and compiles them as C++ programs even if you
1804 call the compiler the same way as for compiling C programs (usually
1805 with the name @command{gcc}).
1806
1807 @findex g++
1808 @findex c++
1809 However, the use of @command{gcc} does not add the C++ library.
1810 @command{g++} is a program that calls GCC and automatically specifies linking
1811 against the C++ library. It treats @samp{.c},
1812 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1813 files unless @option{-x} is used. This program is also useful when
1814 precompiling a C header file with a @samp{.h} extension for use in C++
1815 compilations. On many systems, @command{g++} is also installed with
1816 the name @command{c++}.
1817
1818 @cindex invoking @command{g++}
1819 When you compile C++ programs, you may specify many of the same
1820 command-line options that you use for compiling programs in any
1821 language; or command-line options meaningful for C and related
1822 languages; or options that are meaningful only for C++ programs.
1823 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1824 explanations of options for languages related to C@.
1825 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1826 explanations of options that are meaningful only for C++ programs.
1827
1828 @node C Dialect Options
1829 @section Options Controlling C Dialect
1830 @cindex dialect options
1831 @cindex language dialect options
1832 @cindex options, dialect
1833
1834 The following options control the dialect of C (or languages derived
1835 from C, such as C++, Objective-C and Objective-C++) that the compiler
1836 accepts:
1837
1838 @table @gcctabopt
1839 @cindex ANSI support
1840 @cindex ISO support
1841 @item -ansi
1842 @opindex ansi
1843 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1844 equivalent to @option{-std=c++98}.
1845
1846 This turns off certain features of GCC that are incompatible with ISO
1847 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1848 such as the @code{asm} and @code{typeof} keywords, and
1849 predefined macros such as @code{unix} and @code{vax} that identify the
1850 type of system you are using. It also enables the undesirable and
1851 rarely used ISO trigraph feature. For the C compiler,
1852 it disables recognition of C++ style @samp{//} comments as well as
1853 the @code{inline} keyword.
1854
1855 The alternate keywords @code{__asm__}, @code{__extension__},
1856 @code{__inline__} and @code{__typeof__} continue to work despite
1857 @option{-ansi}. You would not want to use them in an ISO C program, of
1858 course, but it is useful to put them in header files that might be included
1859 in compilations done with @option{-ansi}. Alternate predefined macros
1860 such as @code{__unix__} and @code{__vax__} are also available, with or
1861 without @option{-ansi}.
1862
1863 The @option{-ansi} option does not cause non-ISO programs to be
1864 rejected gratuitously. For that, @option{-Wpedantic} is required in
1865 addition to @option{-ansi}. @xref{Warning Options}.
1866
1867 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1868 option is used. Some header files may notice this macro and refrain
1869 from declaring certain functions or defining certain macros that the
1870 ISO standard doesn't call for; this is to avoid interfering with any
1871 programs that might use these names for other things.
1872
1873 Functions that are normally built in but do not have semantics
1874 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1875 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1876 built-in functions provided by GCC}, for details of the functions
1877 affected.
1878
1879 @item -std=
1880 @opindex std
1881 Determine the language standard. @xref{Standards,,Language Standards
1882 Supported by GCC}, for details of these standard versions. This option
1883 is currently only supported when compiling C or C++.
1884
1885 The compiler can accept several base standards, such as @samp{c90} or
1886 @samp{c++98}, and GNU dialects of those standards, such as
1887 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1888 compiler accepts all programs following that standard plus those
1889 using GNU extensions that do not contradict it. For example,
1890 @option{-std=c90} turns off certain features of GCC that are
1891 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1892 keywords, but not other GNU extensions that do not have a meaning in
1893 ISO C90, such as omitting the middle term of a @code{?:}
1894 expression. On the other hand, when a GNU dialect of a standard is
1895 specified, all features supported by the compiler are enabled, even when
1896 those features change the meaning of the base standard. As a result, some
1897 strict-conforming programs may be rejected. The particular standard
1898 is used by @option{-Wpedantic} to identify which features are GNU
1899 extensions given that version of the standard. For example
1900 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1901 comments, while @option{-std=gnu99 -Wpedantic} does not.
1902
1903 A value for this option must be provided; possible values are
1904
1905 @table @samp
1906 @item c90
1907 @itemx c89
1908 @itemx iso9899:1990
1909 Support all ISO C90 programs (certain GNU extensions that conflict
1910 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1911
1912 @item iso9899:199409
1913 ISO C90 as modified in amendment 1.
1914
1915 @item c99
1916 @itemx c9x
1917 @itemx iso9899:1999
1918 @itemx iso9899:199x
1919 ISO C99. This standard is substantially completely supported, modulo
1920 bugs and floating-point issues
1921 (mainly but not entirely relating to optional C99 features from
1922 Annexes F and G). See
1923 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1924 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1925
1926 @item c11
1927 @itemx c1x
1928 @itemx iso9899:2011
1929 ISO C11, the 2011 revision of the ISO C standard. This standard is
1930 substantially completely supported, modulo bugs, floating-point issues
1931 (mainly but not entirely relating to optional C11 features from
1932 Annexes F and G) and the optional Annexes K (Bounds-checking
1933 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1934
1935 @item c17
1936 @itemx c18
1937 @itemx iso9899:2017
1938 @itemx iso9899:2018
1939 ISO C17, the 2017 revision of the ISO C standard
1940 (published in 2018). This standard is
1941 same as C11 except for corrections of defects (all of which are also
1942 applied with @option{-std=c11}) and a new value of
1943 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1944
1945 @item c2x
1946 The next version of the ISO C standard, still under development. The
1947 support for this version is experimental and incomplete.
1948
1949 @item gnu90
1950 @itemx gnu89
1951 GNU dialect of ISO C90 (including some C99 features).
1952
1953 @item gnu99
1954 @itemx gnu9x
1955 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1956
1957 @item gnu11
1958 @itemx gnu1x
1959 GNU dialect of ISO C11.
1960 The name @samp{gnu1x} is deprecated.
1961
1962 @item gnu17
1963 @itemx gnu18
1964 GNU dialect of ISO C17. This is the default for C code.
1965
1966 @item gnu2x
1967 The next version of the ISO C standard, still under development, plus
1968 GNU extensions. The support for this version is experimental and
1969 incomplete.
1970
1971 @item c++98
1972 @itemx c++03
1973 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1974 additional defect reports. Same as @option{-ansi} for C++ code.
1975
1976 @item gnu++98
1977 @itemx gnu++03
1978 GNU dialect of @option{-std=c++98}.
1979
1980 @item c++11
1981 @itemx c++0x
1982 The 2011 ISO C++ standard plus amendments.
1983 The name @samp{c++0x} is deprecated.
1984
1985 @item gnu++11
1986 @itemx gnu++0x
1987 GNU dialect of @option{-std=c++11}.
1988 The name @samp{gnu++0x} is deprecated.
1989
1990 @item c++14
1991 @itemx c++1y
1992 The 2014 ISO C++ standard plus amendments.
1993 The name @samp{c++1y} is deprecated.
1994
1995 @item gnu++14
1996 @itemx gnu++1y
1997 GNU dialect of @option{-std=c++14}.
1998 This is the default for C++ code.
1999 The name @samp{gnu++1y} is deprecated.
2000
2001 @item c++17
2002 @itemx c++1z
2003 The 2017 ISO C++ standard plus amendments.
2004 The name @samp{c++1z} is deprecated.
2005
2006 @item gnu++17
2007 @itemx gnu++1z
2008 GNU dialect of @option{-std=c++17}.
2009 The name @samp{gnu++1z} is deprecated.
2010
2011 @item c++2a
2012 The next revision of the ISO C++ standard, tentatively planned for
2013 2020. Support is highly experimental, and will almost certainly
2014 change in incompatible ways in future releases.
2015
2016 @item gnu++2a
2017 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2018 and will almost certainly change in incompatible ways in future
2019 releases.
2020 @end table
2021
2022 @item -fgnu89-inline
2023 @opindex fgnu89-inline
2024 The option @option{-fgnu89-inline} tells GCC to use the traditional
2025 GNU semantics for @code{inline} functions when in C99 mode.
2026 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2027 Using this option is roughly equivalent to adding the
2028 @code{gnu_inline} function attribute to all inline functions
2029 (@pxref{Function Attributes}).
2030
2031 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2032 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2033 specifies the default behavior).
2034 This option is not supported in @option{-std=c90} or
2035 @option{-std=gnu90} mode.
2036
2037 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2038 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2039 in effect for @code{inline} functions. @xref{Common Predefined
2040 Macros,,,cpp,The C Preprocessor}.
2041
2042 @item -fpermitted-flt-eval-methods=@var{style}
2043 @opindex fpermitted-flt-eval-methods
2044 @opindex fpermitted-flt-eval-methods=c11
2045 @opindex fpermitted-flt-eval-methods=ts-18661-3
2046 ISO/IEC TS 18661-3 defines new permissible values for
2047 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2048 a semantic type that is an interchange or extended format should be
2049 evaluated to the precision and range of that type. These new values are
2050 a superset of those permitted under C99/C11, which does not specify the
2051 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2052 conforming to C11 may not have been written expecting the possibility of
2053 the new values.
2054
2055 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2056 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2057 or the extended set of values specified in ISO/IEC TS 18661-3.
2058
2059 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2060
2061 The default when in a standards compliant mode (@option{-std=c11} or similar)
2062 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2063 dialect (@option{-std=gnu11} or similar) is
2064 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2065
2066 @item -aux-info @var{filename}
2067 @opindex aux-info
2068 Output to the given filename prototyped declarations for all functions
2069 declared and/or defined in a translation unit, including those in header
2070 files. This option is silently ignored in any language other than C@.
2071
2072 Besides declarations, the file indicates, in comments, the origin of
2073 each declaration (source file and line), whether the declaration was
2074 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2075 @samp{O} for old, respectively, in the first character after the line
2076 number and the colon), and whether it came from a declaration or a
2077 definition (@samp{C} or @samp{F}, respectively, in the following
2078 character). In the case of function definitions, a K&R-style list of
2079 arguments followed by their declarations is also provided, inside
2080 comments, after the declaration.
2081
2082 @item -fallow-parameterless-variadic-functions
2083 @opindex fallow-parameterless-variadic-functions
2084 Accept variadic functions without named parameters.
2085
2086 Although it is possible to define such a function, this is not very
2087 useful as it is not possible to read the arguments. This is only
2088 supported for C as this construct is allowed by C++.
2089
2090 @item -fno-asm
2091 @opindex fno-asm
2092 @opindex fasm
2093 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2094 keyword, so that code can use these words as identifiers. You can use
2095 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2096 instead. @option{-ansi} implies @option{-fno-asm}.
2097
2098 In C++, this switch only affects the @code{typeof} keyword, since
2099 @code{asm} and @code{inline} are standard keywords. You may want to
2100 use the @option{-fno-gnu-keywords} flag instead, which has the same
2101 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2102 switch only affects the @code{asm} and @code{typeof} keywords, since
2103 @code{inline} is a standard keyword in ISO C99.
2104
2105 @item -fno-builtin
2106 @itemx -fno-builtin-@var{function}
2107 @opindex fno-builtin
2108 @opindex fbuiltin
2109 @cindex built-in functions
2110 Don't recognize built-in functions that do not begin with
2111 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2112 functions provided by GCC}, for details of the functions affected,
2113 including those which are not built-in functions when @option{-ansi} or
2114 @option{-std} options for strict ISO C conformance are used because they
2115 do not have an ISO standard meaning.
2116
2117 GCC normally generates special code to handle certain built-in functions
2118 more efficiently; for instance, calls to @code{alloca} may become single
2119 instructions which adjust the stack directly, and calls to @code{memcpy}
2120 may become inline copy loops. The resulting code is often both smaller
2121 and faster, but since the function calls no longer appear as such, you
2122 cannot set a breakpoint on those calls, nor can you change the behavior
2123 of the functions by linking with a different library. In addition,
2124 when a function is recognized as a built-in function, GCC may use
2125 information about that function to warn about problems with calls to
2126 that function, or to generate more efficient code, even if the
2127 resulting code still contains calls to that function. For example,
2128 warnings are given with @option{-Wformat} for bad calls to
2129 @code{printf} when @code{printf} is built in and @code{strlen} is
2130 known not to modify global memory.
2131
2132 With the @option{-fno-builtin-@var{function}} option
2133 only the built-in function @var{function} is
2134 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2135 function is named that is not built-in in this version of GCC, this
2136 option is ignored. There is no corresponding
2137 @option{-fbuiltin-@var{function}} option; if you wish to enable
2138 built-in functions selectively when using @option{-fno-builtin} or
2139 @option{-ffreestanding}, you may define macros such as:
2140
2141 @smallexample
2142 #define abs(n) __builtin_abs ((n))
2143 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2144 @end smallexample
2145
2146 @item -fgimple
2147 @opindex fgimple
2148
2149 Enable parsing of function definitions marked with @code{__GIMPLE}.
2150 This is an experimental feature that allows unit testing of GIMPLE
2151 passes.
2152
2153 @item -fhosted
2154 @opindex fhosted
2155 @cindex hosted environment
2156
2157 Assert that compilation targets a hosted environment. This implies
2158 @option{-fbuiltin}. A hosted environment is one in which the
2159 entire standard library is available, and in which @code{main} has a return
2160 type of @code{int}. Examples are nearly everything except a kernel.
2161 This is equivalent to @option{-fno-freestanding}.
2162
2163 @item -ffreestanding
2164 @opindex ffreestanding
2165 @cindex hosted environment
2166
2167 Assert that compilation targets a freestanding environment. This
2168 implies @option{-fno-builtin}. A freestanding environment
2169 is one in which the standard library may not exist, and program startup may
2170 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2171 This is equivalent to @option{-fno-hosted}.
2172
2173 @xref{Standards,,Language Standards Supported by GCC}, for details of
2174 freestanding and hosted environments.
2175
2176 @item -fopenacc
2177 @opindex fopenacc
2178 @cindex OpenACC accelerator programming
2179 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2180 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2181 compiler generates accelerated code according to the OpenACC Application
2182 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2183 implies @option{-pthread}, and thus is only supported on targets that
2184 have support for @option{-pthread}.
2185
2186 @item -fopenacc-dim=@var{geom}
2187 @opindex fopenacc-dim
2188 @cindex OpenACC accelerator programming
2189 Specify default compute dimensions for parallel offload regions that do
2190 not explicitly specify. The @var{geom} value is a triple of
2191 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2192 can be omitted, to use a target-specific default value.
2193
2194 @item -fopenmp
2195 @opindex fopenmp
2196 @cindex OpenMP parallel
2197 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2198 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2199 compiler generates parallel code according to the OpenMP Application
2200 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2201 implies @option{-pthread}, and thus is only supported on targets that
2202 have support for @option{-pthread}. @option{-fopenmp} implies
2203 @option{-fopenmp-simd}.
2204
2205 @item -fopenmp-simd
2206 @opindex fopenmp-simd
2207 @cindex OpenMP SIMD
2208 @cindex SIMD
2209 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2210 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2211 are ignored.
2212
2213 @item -fgnu-tm
2214 @opindex fgnu-tm
2215 When the option @option{-fgnu-tm} is specified, the compiler
2216 generates code for the Linux variant of Intel's current Transactional
2217 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2218 an experimental feature whose interface may change in future versions
2219 of GCC, as the official specification changes. Please note that not
2220 all architectures are supported for this feature.
2221
2222 For more information on GCC's support for transactional memory,
2223 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2224 Transactional Memory Library}.
2225
2226 Note that the transactional memory feature is not supported with
2227 non-call exceptions (@option{-fnon-call-exceptions}).
2228
2229 @item -fms-extensions
2230 @opindex fms-extensions
2231 Accept some non-standard constructs used in Microsoft header files.
2232
2233 In C++ code, this allows member names in structures to be similar
2234 to previous types declarations.
2235
2236 @smallexample
2237 typedef int UOW;
2238 struct ABC @{
2239 UOW UOW;
2240 @};
2241 @end smallexample
2242
2243 Some cases of unnamed fields in structures and unions are only
2244 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2245 fields within structs/unions}, for details.
2246
2247 Note that this option is off for all targets except for x86
2248 targets using ms-abi.
2249
2250 @item -fplan9-extensions
2251 @opindex fplan9-extensions
2252 Accept some non-standard constructs used in Plan 9 code.
2253
2254 This enables @option{-fms-extensions}, permits passing pointers to
2255 structures with anonymous fields to functions that expect pointers to
2256 elements of the type of the field, and permits referring to anonymous
2257 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2258 struct/union fields within structs/unions}, for details. This is only
2259 supported for C, not C++.
2260
2261 @item -fcond-mismatch
2262 @opindex fcond-mismatch
2263 Allow conditional expressions with mismatched types in the second and
2264 third arguments. The value of such an expression is void. This option
2265 is not supported for C++.
2266
2267 @item -flax-vector-conversions
2268 @opindex flax-vector-conversions
2269 Allow implicit conversions between vectors with differing numbers of
2270 elements and/or incompatible element types. This option should not be
2271 used for new code.
2272
2273 @item -funsigned-char
2274 @opindex funsigned-char
2275 Let the type @code{char} be unsigned, like @code{unsigned char}.
2276
2277 Each kind of machine has a default for what @code{char} should
2278 be. It is either like @code{unsigned char} by default or like
2279 @code{signed char} by default.
2280
2281 Ideally, a portable program should always use @code{signed char} or
2282 @code{unsigned char} when it depends on the signedness of an object.
2283 But many programs have been written to use plain @code{char} and
2284 expect it to be signed, or expect it to be unsigned, depending on the
2285 machines they were written for. This option, and its inverse, let you
2286 make such a program work with the opposite default.
2287
2288 The type @code{char} is always a distinct type from each of
2289 @code{signed char} or @code{unsigned char}, even though its behavior
2290 is always just like one of those two.
2291
2292 @item -fsigned-char
2293 @opindex fsigned-char
2294 Let the type @code{char} be signed, like @code{signed char}.
2295
2296 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2297 the negative form of @option{-funsigned-char}. Likewise, the option
2298 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2299
2300 @item -fsigned-bitfields
2301 @itemx -funsigned-bitfields
2302 @itemx -fno-signed-bitfields
2303 @itemx -fno-unsigned-bitfields
2304 @opindex fsigned-bitfields
2305 @opindex funsigned-bitfields
2306 @opindex fno-signed-bitfields
2307 @opindex fno-unsigned-bitfields
2308 These options control whether a bit-field is signed or unsigned, when the
2309 declaration does not use either @code{signed} or @code{unsigned}. By
2310 default, such a bit-field is signed, because this is consistent: the
2311 basic integer types such as @code{int} are signed types.
2312
2313 @item -fsso-struct=@var{endianness}
2314 @opindex fsso-struct
2315 Set the default scalar storage order of structures and unions to the
2316 specified endianness. The accepted values are @samp{big-endian},
2317 @samp{little-endian} and @samp{native} for the native endianness of
2318 the target (the default). This option is not supported for C++.
2319
2320 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2321 code that is not binary compatible with code generated without it if the
2322 specified endianness is not the native endianness of the target.
2323 @end table
2324
2325 @node C++ Dialect Options
2326 @section Options Controlling C++ Dialect
2327
2328 @cindex compiler options, C++
2329 @cindex C++ options, command-line
2330 @cindex options, C++
2331 This section describes the command-line options that are only meaningful
2332 for C++ programs. You can also use most of the GNU compiler options
2333 regardless of what language your program is in. For example, you
2334 might compile a file @file{firstClass.C} like this:
2335
2336 @smallexample
2337 g++ -g -fstrict-enums -O -c firstClass.C
2338 @end smallexample
2339
2340 @noindent
2341 In this example, only @option{-fstrict-enums} is an option meant
2342 only for C++ programs; you can use the other options with any
2343 language supported by GCC@.
2344
2345 Some options for compiling C programs, such as @option{-std}, are also
2346 relevant for C++ programs.
2347 @xref{C Dialect Options,,Options Controlling C Dialect}.
2348
2349 Here is a list of options that are @emph{only} for compiling C++ programs:
2350
2351 @table @gcctabopt
2352
2353 @item -fabi-version=@var{n}
2354 @opindex fabi-version
2355 Use version @var{n} of the C++ ABI@. The default is version 0.
2356
2357 Version 0 refers to the version conforming most closely to
2358 the C++ ABI specification. Therefore, the ABI obtained using version 0
2359 will change in different versions of G++ as ABI bugs are fixed.
2360
2361 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2362
2363 Version 2 is the version of the C++ ABI that first appeared in G++
2364 3.4, and was the default through G++ 4.9.
2365
2366 Version 3 corrects an error in mangling a constant address as a
2367 template argument.
2368
2369 Version 4, which first appeared in G++ 4.5, implements a standard
2370 mangling for vector types.
2371
2372 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2373 attribute const/volatile on function pointer types, decltype of a
2374 plain decl, and use of a function parameter in the declaration of
2375 another parameter.
2376
2377 Version 6, which first appeared in G++ 4.7, corrects the promotion
2378 behavior of C++11 scoped enums and the mangling of template argument
2379 packs, const/static_cast, prefix ++ and --, and a class scope function
2380 used as a template argument.
2381
2382 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2383 builtin type and corrects the mangling of lambdas in default argument
2384 scope.
2385
2386 Version 8, which first appeared in G++ 4.9, corrects the substitution
2387 behavior of function types with function-cv-qualifiers.
2388
2389 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2390 @code{nullptr_t}.
2391
2392 Version 10, which first appeared in G++ 6.1, adds mangling of
2393 attributes that affect type identity, such as ia32 calling convention
2394 attributes (e.g.@: @samp{stdcall}).
2395
2396 Version 11, which first appeared in G++ 7, corrects the mangling of
2397 sizeof... expressions and operator names. For multiple entities with
2398 the same name within a function, that are declared in different scopes,
2399 the mangling now changes starting with the twelfth occurrence. It also
2400 implies @option{-fnew-inheriting-ctors}.
2401
2402 Version 12, which first appeared in G++ 8, corrects the calling
2403 conventions for empty classes on the x86_64 target and for classes
2404 with only deleted copy/move constructors. It accidentally changes the
2405 calling convention for classes with a deleted copy constructor and a
2406 trivial move constructor.
2407
2408 Version 13, which first appeared in G++ 8.2, fixes the accidental
2409 change in version 12.
2410
2411 See also @option{-Wabi}.
2412
2413 @item -fabi-compat-version=@var{n}
2414 @opindex fabi-compat-version
2415 On targets that support strong aliases, G++
2416 works around mangling changes by creating an alias with the correct
2417 mangled name when defining a symbol with an incorrect mangled name.
2418 This switch specifies which ABI version to use for the alias.
2419
2420 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2421 compatibility). If another ABI version is explicitly selected, this
2422 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2423 use @option{-fabi-compat-version=2}.
2424
2425 If this option is not provided but @option{-Wabi=@var{n}} is, that
2426 version is used for compatibility aliases. If this option is provided
2427 along with @option{-Wabi} (without the version), the version from this
2428 option is used for the warning.
2429
2430 @item -fno-access-control
2431 @opindex fno-access-control
2432 @opindex faccess-control
2433 Turn off all access checking. This switch is mainly useful for working
2434 around bugs in the access control code.
2435
2436 @item -faligned-new
2437 @opindex faligned-new
2438 Enable support for C++17 @code{new} of types that require more
2439 alignment than @code{void* ::operator new(std::size_t)} provides. A
2440 numeric argument such as @code{-faligned-new=32} can be used to
2441 specify how much alignment (in bytes) is provided by that function,
2442 but few users will need to override the default of
2443 @code{alignof(std::max_align_t)}.
2444
2445 This flag is enabled by default for @option{-std=c++17}.
2446
2447 @item -fchar8_t
2448 @itemx -fno-char8_t
2449 @opindex fchar8_t
2450 @opindex fno-char8_t
2451 Enable support for @code{char8_t} as adopted for C++2a. This includes
2452 the addition of a new @code{char8_t} fundamental type, changes to the
2453 types of UTF-8 string and character literals, new signatures for
2454 user-defined literals, associated standard library updates, and new
2455 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2456
2457 This option enables functions to be overloaded for ordinary and UTF-8
2458 strings:
2459
2460 @smallexample
2461 int f(const char *); // #1
2462 int f(const char8_t *); // #2
2463 int v1 = f("text"); // Calls #1
2464 int v2 = f(u8"text"); // Calls #2
2465 @end smallexample
2466
2467 @noindent
2468 and introduces new signatures for user-defined literals:
2469
2470 @smallexample
2471 int operator""_udl1(char8_t);
2472 int v3 = u8'x'_udl1;
2473 int operator""_udl2(const char8_t*, std::size_t);
2474 int v4 = u8"text"_udl2;
2475 template<typename T, T...> int operator""_udl3();
2476 int v5 = u8"text"_udl3;
2477 @end smallexample
2478
2479 @noindent
2480 The change to the types of UTF-8 string and character literals introduces
2481 incompatibilities with ISO C++11 and later standards. For example, the
2482 following code is well-formed under ISO C++11, but is ill-formed when
2483 @option{-fchar8_t} is specified.
2484
2485 @smallexample
2486 char ca[] = u8"xx"; // error: char-array initialized from wide
2487 // string
2488 const char *cp = u8"xx";// error: invalid conversion from
2489 // `const char8_t*' to `const char*'
2490 int f(const char*);
2491 auto v = f(u8"xx"); // error: invalid conversion from
2492 // `const char8_t*' to `const char*'
2493 std::string s@{u8"xx"@}; // error: no matching function for call to
2494 // `std::basic_string<char>::basic_string()'
2495 using namespace std::literals;
2496 s = u8"xx"s; // error: conversion from
2497 // `basic_string<char8_t>' to non-scalar
2498 // type `basic_string<char>' requested
2499 @end smallexample
2500
2501 @item -fcheck-new
2502 @opindex fcheck-new
2503 Check that the pointer returned by @code{operator new} is non-null
2504 before attempting to modify the storage allocated. This check is
2505 normally unnecessary because the C++ standard specifies that
2506 @code{operator new} only returns @code{0} if it is declared
2507 @code{throw()}, in which case the compiler always checks the
2508 return value even without this option. In all other cases, when
2509 @code{operator new} has a non-empty exception specification, memory
2510 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2511 @samp{new (nothrow)}.
2512
2513 @item -fconcepts
2514 @opindex fconcepts
2515 Enable support for the C++ Extensions for Concepts Technical
2516 Specification, ISO 19217 (2015), which allows code like
2517
2518 @smallexample
2519 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2520 template <Addable T> T add (T a, T b) @{ return a + b; @}
2521 @end smallexample
2522
2523 @item -fconstexpr-depth=@var{n}
2524 @opindex fconstexpr-depth
2525 Set the maximum nested evaluation depth for C++11 constexpr functions
2526 to @var{n}. A limit is needed to detect endless recursion during
2527 constant expression evaluation. The minimum specified by the standard
2528 is 512.
2529
2530 @item -fconstexpr-cache-depth=@var{n}
2531 @opindex fconstexpr-cache-depth
2532 Set the maximum level of nested evaluation depth for C++11 constexpr
2533 functions that will be cached to @var{n}. This is a heuristic that
2534 trades off compilation speed (when the cache avoids repeated
2535 calculations) against memory consumption (when the cache grows very
2536 large from highly recursive evaluations). The default is 8. Very few
2537 users are likely to want to adjust it, but if your code does heavy
2538 constexpr calculations you might want to experiment to find which
2539 value works best for you.
2540
2541 @item -fconstexpr-loop-limit=@var{n}
2542 @opindex fconstexpr-loop-limit
2543 Set the maximum number of iterations for a loop in C++14 constexpr functions
2544 to @var{n}. A limit is needed to detect infinite loops during
2545 constant expression evaluation. The default is 262144 (1<<18).
2546
2547 @item -fconstexpr-ops-limit=@var{n}
2548 @opindex fconstexpr-ops-limit
2549 Set the maximum number of operations during a single constexpr evaluation.
2550 Even when number of iterations of a single loop is limited with the above limit,
2551 if there are several nested loops and each of them has many iterations but still
2552 smaller than the above limit, or if in a body of some loop or even outside
2553 of a loop too many expressions need to be evaluated, the resulting constexpr
2554 evaluation might take too long.
2555 The default is 33554432 (1<<25).
2556
2557 @item -fno-elide-constructors
2558 @opindex fno-elide-constructors
2559 @opindex felide-constructors
2560 The C++ standard allows an implementation to omit creating a temporary
2561 that is only used to initialize another object of the same type.
2562 Specifying this option disables that optimization, and forces G++ to
2563 call the copy constructor in all cases. This option also causes G++
2564 to call trivial member functions which otherwise would be expanded inline.
2565
2566 In C++17, the compiler is required to omit these temporaries, but this
2567 option still affects trivial member functions.
2568
2569 @item -fno-enforce-eh-specs
2570 @opindex fno-enforce-eh-specs
2571 @opindex fenforce-eh-specs
2572 Don't generate code to check for violation of exception specifications
2573 at run time. This option violates the C++ standard, but may be useful
2574 for reducing code size in production builds, much like defining
2575 @code{NDEBUG}. This does not give user code permission to throw
2576 exceptions in violation of the exception specifications; the compiler
2577 still optimizes based on the specifications, so throwing an
2578 unexpected exception results in undefined behavior at run time.
2579
2580 @item -fextern-tls-init
2581 @itemx -fno-extern-tls-init
2582 @opindex fextern-tls-init
2583 @opindex fno-extern-tls-init
2584 The C++11 and OpenMP standards allow @code{thread_local} and
2585 @code{threadprivate} variables to have dynamic (runtime)
2586 initialization. To support this, any use of such a variable goes
2587 through a wrapper function that performs any necessary initialization.
2588 When the use and definition of the variable are in the same
2589 translation unit, this overhead can be optimized away, but when the
2590 use is in a different translation unit there is significant overhead
2591 even if the variable doesn't actually need dynamic initialization. If
2592 the programmer can be sure that no use of the variable in a
2593 non-defining TU needs to trigger dynamic initialization (either
2594 because the variable is statically initialized, or a use of the
2595 variable in the defining TU will be executed before any uses in
2596 another TU), they can avoid this overhead with the
2597 @option{-fno-extern-tls-init} option.
2598
2599 On targets that support symbol aliases, the default is
2600 @option{-fextern-tls-init}. On targets that do not support symbol
2601 aliases, the default is @option{-fno-extern-tls-init}.
2602
2603 @item -fno-gnu-keywords
2604 @opindex fno-gnu-keywords
2605 @opindex fgnu-keywords
2606 Do not recognize @code{typeof} as a keyword, so that code can use this
2607 word as an identifier. You can use the keyword @code{__typeof__} instead.
2608 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2609 @option{-std=c++98}, @option{-std=c++11}, etc.
2610
2611 @item -fno-implicit-templates
2612 @opindex fno-implicit-templates
2613 @opindex fimplicit-templates
2614 Never emit code for non-inline templates that are instantiated
2615 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2616 If you use this option, you must take care to structure your code to
2617 include all the necessary explicit instantiations to avoid getting
2618 undefined symbols at link time.
2619 @xref{Template Instantiation}, for more information.
2620
2621 @item -fno-implicit-inline-templates
2622 @opindex fno-implicit-inline-templates
2623 @opindex fimplicit-inline-templates
2624 Don't emit code for implicit instantiations of inline templates, either.
2625 The default is to handle inlines differently so that compiles with and
2626 without optimization need the same set of explicit instantiations.
2627
2628 @item -fno-implement-inlines
2629 @opindex fno-implement-inlines
2630 @opindex fimplement-inlines
2631 To save space, do not emit out-of-line copies of inline functions
2632 controlled by @code{#pragma implementation}. This causes linker
2633 errors if these functions are not inlined everywhere they are called.
2634
2635 @item -fms-extensions
2636 @opindex fms-extensions
2637 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2638 int and getting a pointer to member function via non-standard syntax.
2639
2640 @item -fnew-inheriting-ctors
2641 @opindex fnew-inheriting-ctors
2642 Enable the P0136 adjustment to the semantics of C++11 constructor
2643 inheritance. This is part of C++17 but also considered to be a Defect
2644 Report against C++11 and C++14. This flag is enabled by default
2645 unless @option{-fabi-version=10} or lower is specified.
2646
2647 @item -fnew-ttp-matching
2648 @opindex fnew-ttp-matching
2649 Enable the P0522 resolution to Core issue 150, template template
2650 parameters and default arguments: this allows a template with default
2651 template arguments as an argument for a template template parameter
2652 with fewer template parameters. This flag is enabled by default for
2653 @option{-std=c++17}.
2654
2655 @item -fno-nonansi-builtins
2656 @opindex fno-nonansi-builtins
2657 @opindex fnonansi-builtins
2658 Disable built-in declarations of functions that are not mandated by
2659 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2660 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2661
2662 @item -fnothrow-opt
2663 @opindex fnothrow-opt
2664 Treat a @code{throw()} exception specification as if it were a
2665 @code{noexcept} specification to reduce or eliminate the text size
2666 overhead relative to a function with no exception specification. If
2667 the function has local variables of types with non-trivial
2668 destructors, the exception specification actually makes the
2669 function smaller because the EH cleanups for those variables can be
2670 optimized away. The semantic effect is that an exception thrown out of
2671 a function with such an exception specification results in a call
2672 to @code{terminate} rather than @code{unexpected}.
2673
2674 @item -fno-operator-names
2675 @opindex fno-operator-names
2676 @opindex foperator-names
2677 Do not treat the operator name keywords @code{and}, @code{bitand},
2678 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2679 synonyms as keywords.
2680
2681 @item -fno-optional-diags
2682 @opindex fno-optional-diags
2683 @opindex foptional-diags
2684 Disable diagnostics that the standard says a compiler does not need to
2685 issue. Currently, the only such diagnostic issued by G++ is the one for
2686 a name having multiple meanings within a class.
2687
2688 @item -fpermissive
2689 @opindex fpermissive
2690 Downgrade some diagnostics about nonconformant code from errors to
2691 warnings. Thus, using @option{-fpermissive} allows some
2692 nonconforming code to compile.
2693
2694 @item -fno-pretty-templates
2695 @opindex fno-pretty-templates
2696 @opindex fpretty-templates
2697 When an error message refers to a specialization of a function
2698 template, the compiler normally prints the signature of the
2699 template followed by the template arguments and any typedefs or
2700 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2701 rather than @code{void f(int)}) so that it's clear which template is
2702 involved. When an error message refers to a specialization of a class
2703 template, the compiler omits any template arguments that match
2704 the default template arguments for that template. If either of these
2705 behaviors make it harder to understand the error message rather than
2706 easier, you can use @option{-fno-pretty-templates} to disable them.
2707
2708 @item -fno-rtti
2709 @opindex fno-rtti
2710 @opindex frtti
2711 Disable generation of information about every class with virtual
2712 functions for use by the C++ run-time type identification features
2713 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2714 of the language, you can save some space by using this flag. Note that
2715 exception handling uses the same information, but G++ generates it as
2716 needed. The @code{dynamic_cast} operator can still be used for casts that
2717 do not require run-time type information, i.e.@: casts to @code{void *} or to
2718 unambiguous base classes.
2719
2720 Mixing code compiled with @option{-frtti} with that compiled with
2721 @option{-fno-rtti} may not work. For example, programs may
2722 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2723 for a class compiled with @option{-frtti}.
2724
2725 @item -fsized-deallocation
2726 @opindex fsized-deallocation
2727 Enable the built-in global declarations
2728 @smallexample
2729 void operator delete (void *, std::size_t) noexcept;
2730 void operator delete[] (void *, std::size_t) noexcept;
2731 @end smallexample
2732 as introduced in C++14. This is useful for user-defined replacement
2733 deallocation functions that, for example, use the size of the object
2734 to make deallocation faster. Enabled by default under
2735 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2736 warns about places that might want to add a definition.
2737
2738 @item -fstrict-enums
2739 @opindex fstrict-enums
2740 Allow the compiler to optimize using the assumption that a value of
2741 enumerated type can only be one of the values of the enumeration (as
2742 defined in the C++ standard; basically, a value that can be
2743 represented in the minimum number of bits needed to represent all the
2744 enumerators). This assumption may not be valid if the program uses a
2745 cast to convert an arbitrary integer value to the enumerated type.
2746
2747 @item -fstrong-eval-order
2748 @opindex fstrong-eval-order
2749 Evaluate member access, array subscripting, and shift expressions in
2750 left-to-right order, and evaluate assignment in right-to-left order,
2751 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2752 @option{-fstrong-eval-order=some} enables just the ordering of member
2753 access and shift expressions, and is the default without
2754 @option{-std=c++17}.
2755
2756 @item -ftemplate-backtrace-limit=@var{n}
2757 @opindex ftemplate-backtrace-limit
2758 Set the maximum number of template instantiation notes for a single
2759 warning or error to @var{n}. The default value is 10.
2760
2761 @item -ftemplate-depth=@var{n}
2762 @opindex ftemplate-depth
2763 Set the maximum instantiation depth for template classes to @var{n}.
2764 A limit on the template instantiation depth is needed to detect
2765 endless recursions during template class instantiation. ANSI/ISO C++
2766 conforming programs must not rely on a maximum depth greater than 17
2767 (changed to 1024 in C++11). The default value is 900, as the compiler
2768 can run out of stack space before hitting 1024 in some situations.
2769
2770 @item -fno-threadsafe-statics
2771 @opindex fno-threadsafe-statics
2772 @opindex fthreadsafe-statics
2773 Do not emit the extra code to use the routines specified in the C++
2774 ABI for thread-safe initialization of local statics. You can use this
2775 option to reduce code size slightly in code that doesn't need to be
2776 thread-safe.
2777
2778 @item -fuse-cxa-atexit
2779 @opindex fuse-cxa-atexit
2780 Register destructors for objects with static storage duration with the
2781 @code{__cxa_atexit} function rather than the @code{atexit} function.
2782 This option is required for fully standards-compliant handling of static
2783 destructors, but only works if your C library supports
2784 @code{__cxa_atexit}.
2785
2786 @item -fno-use-cxa-get-exception-ptr
2787 @opindex fno-use-cxa-get-exception-ptr
2788 @opindex fuse-cxa-get-exception-ptr
2789 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2790 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2791 if the runtime routine is not available.
2792
2793 @item -fvisibility-inlines-hidden
2794 @opindex fvisibility-inlines-hidden
2795 This switch declares that the user does not attempt to compare
2796 pointers to inline functions or methods where the addresses of the two functions
2797 are taken in different shared objects.
2798
2799 The effect of this is that GCC may, effectively, mark inline methods with
2800 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2801 appear in the export table of a DSO and do not require a PLT indirection
2802 when used within the DSO@. Enabling this option can have a dramatic effect
2803 on load and link times of a DSO as it massively reduces the size of the
2804 dynamic export table when the library makes heavy use of templates.
2805
2806 The behavior of this switch is not quite the same as marking the
2807 methods as hidden directly, because it does not affect static variables
2808 local to the function or cause the compiler to deduce that
2809 the function is defined in only one shared object.
2810
2811 You may mark a method as having a visibility explicitly to negate the
2812 effect of the switch for that method. For example, if you do want to
2813 compare pointers to a particular inline method, you might mark it as
2814 having default visibility. Marking the enclosing class with explicit
2815 visibility has no effect.
2816
2817 Explicitly instantiated inline methods are unaffected by this option
2818 as their linkage might otherwise cross a shared library boundary.
2819 @xref{Template Instantiation}.
2820
2821 @item -fvisibility-ms-compat
2822 @opindex fvisibility-ms-compat
2823 This flag attempts to use visibility settings to make GCC's C++
2824 linkage model compatible with that of Microsoft Visual Studio.
2825
2826 The flag makes these changes to GCC's linkage model:
2827
2828 @enumerate
2829 @item
2830 It sets the default visibility to @code{hidden}, like
2831 @option{-fvisibility=hidden}.
2832
2833 @item
2834 Types, but not their members, are not hidden by default.
2835
2836 @item
2837 The One Definition Rule is relaxed for types without explicit
2838 visibility specifications that are defined in more than one
2839 shared object: those declarations are permitted if they are
2840 permitted when this option is not used.
2841 @end enumerate
2842
2843 In new code it is better to use @option{-fvisibility=hidden} and
2844 export those classes that are intended to be externally visible.
2845 Unfortunately it is possible for code to rely, perhaps accidentally,
2846 on the Visual Studio behavior.
2847
2848 Among the consequences of these changes are that static data members
2849 of the same type with the same name but defined in different shared
2850 objects are different, so changing one does not change the other;
2851 and that pointers to function members defined in different shared
2852 objects may not compare equal. When this flag is given, it is a
2853 violation of the ODR to define types with the same name differently.
2854
2855 @item -fno-weak
2856 @opindex fno-weak
2857 @opindex fweak
2858 Do not use weak symbol support, even if it is provided by the linker.
2859 By default, G++ uses weak symbols if they are available. This
2860 option exists only for testing, and should not be used by end-users;
2861 it results in inferior code and has no benefits. This option may
2862 be removed in a future release of G++.
2863
2864 @item -nostdinc++
2865 @opindex nostdinc++
2866 Do not search for header files in the standard directories specific to
2867 C++, but do still search the other standard directories. (This option
2868 is used when building the C++ library.)
2869 @end table
2870
2871 In addition, these optimization, warning, and code generation options
2872 have meanings only for C++ programs:
2873
2874 @table @gcctabopt
2875 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2876 @opindex Wabi
2877 @opindex Wno-abi
2878 Warn when G++ it generates code that is probably not compatible with
2879 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2880 ABI with each major release, normally @option{-Wabi} will warn only if
2881 there is a check added later in a release series for an ABI issue
2882 discovered since the initial release. @option{-Wabi} will warn about
2883 more things if an older ABI version is selected (with
2884 @option{-fabi-version=@var{n}}).
2885
2886 @option{-Wabi} can also be used with an explicit version number to
2887 warn about compatibility with a particular @option{-fabi-version}
2888 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2889 @option{-fabi-version=2}.
2890
2891 If an explicit version number is provided and
2892 @option{-fabi-compat-version} is not specified, the version number
2893 from this option is used for compatibility aliases. If no explicit
2894 version number is provided with this option, but
2895 @option{-fabi-compat-version} is specified, that version number is
2896 used for ABI warnings.
2897
2898 Although an effort has been made to warn about
2899 all such cases, there are probably some cases that are not warned about,
2900 even though G++ is generating incompatible code. There may also be
2901 cases where warnings are emitted even though the code that is generated
2902 is compatible.
2903
2904 You should rewrite your code to avoid these warnings if you are
2905 concerned about the fact that code generated by G++ may not be binary
2906 compatible with code generated by other compilers.
2907
2908 Known incompatibilities in @option{-fabi-version=2} (which was the
2909 default from GCC 3.4 to 4.9) include:
2910
2911 @itemize @bullet
2912
2913 @item
2914 A template with a non-type template parameter of reference type was
2915 mangled incorrectly:
2916 @smallexample
2917 extern int N;
2918 template <int &> struct S @{@};
2919 void n (S<N>) @{2@}
2920 @end smallexample
2921
2922 This was fixed in @option{-fabi-version=3}.
2923
2924 @item
2925 SIMD vector types declared using @code{__attribute ((vector_size))} were
2926 mangled in a non-standard way that does not allow for overloading of
2927 functions taking vectors of different sizes.
2928
2929 The mangling was changed in @option{-fabi-version=4}.
2930
2931 @item
2932 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2933 qualifiers, and @code{decltype} of a plain declaration was folded away.
2934
2935 These mangling issues were fixed in @option{-fabi-version=5}.
2936
2937 @item
2938 Scoped enumerators passed as arguments to a variadic function are
2939 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2940 On most targets this does not actually affect the parameter passing
2941 ABI, as there is no way to pass an argument smaller than @code{int}.
2942
2943 Also, the ABI changed the mangling of template argument packs,
2944 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2945 a class scope function used as a template argument.
2946
2947 These issues were corrected in @option{-fabi-version=6}.
2948
2949 @item
2950 Lambdas in default argument scope were mangled incorrectly, and the
2951 ABI changed the mangling of @code{nullptr_t}.
2952
2953 These issues were corrected in @option{-fabi-version=7}.
2954
2955 @item
2956 When mangling a function type with function-cv-qualifiers, the
2957 un-qualified function type was incorrectly treated as a substitution
2958 candidate.
2959
2960 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2961
2962 @item
2963 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2964 unaligned accesses. Note that this did not affect the ABI of a
2965 function with a @code{nullptr_t} parameter, as parameters have a
2966 minimum alignment.
2967
2968 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2969
2970 @item
2971 Target-specific attributes that affect the identity of a type, such as
2972 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2973 did not affect the mangled name, leading to name collisions when
2974 function pointers were used as template arguments.
2975
2976 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2977
2978 @end itemize
2979
2980 It also warns about psABI-related changes. The known psABI changes at this
2981 point include:
2982
2983 @itemize @bullet
2984
2985 @item
2986 For SysV/x86-64, unions with @code{long double} members are
2987 passed in memory as specified in psABI. For example:
2988
2989 @smallexample
2990 union U @{
2991 long double ld;
2992 int i;
2993 @};
2994 @end smallexample
2995
2996 @noindent
2997 @code{union U} is always passed in memory.
2998
2999 @end itemize
3000
3001 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3002 @opindex Wabi-tag
3003 @opindex Wabi-tag
3004 Warn when a type with an ABI tag is used in a context that does not
3005 have that ABI tag. See @ref{C++ Attributes} for more information
3006 about ABI tags.
3007
3008 @item -Wcomma-subscript @r{(C++ and Objective-C++ only)}
3009 @opindex Wcomma-subscript
3010 @opindex Wno-comma-subscript
3011 Warn about uses of a comma expression within a subscripting expression.
3012 This usage was deprecated in C++2a. However, a comma expression wrapped
3013 in @code{( )} is not deprecated. Example:
3014
3015 @smallexample
3016 @group
3017 void f(int *a, int b, int c) @{
3018 a[b,c]; // deprecated
3019 a[(b,c)]; // OK
3020 @}
3021 @end group
3022 @end smallexample
3023
3024 Enabled by default with @option{-std=c++2a}.
3025
3026 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3027 @opindex Wctor-dtor-privacy
3028 @opindex Wno-ctor-dtor-privacy
3029 Warn when a class seems unusable because all the constructors or
3030 destructors in that class are private, and it has neither friends nor
3031 public static member functions. Also warn if there are no non-private
3032 methods, and there's at least one private member function that isn't
3033 a constructor or destructor.
3034
3035 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3036 @opindex Wdelete-non-virtual-dtor
3037 @opindex Wno-delete-non-virtual-dtor
3038 Warn when @code{delete} is used to destroy an instance of a class that
3039 has virtual functions and non-virtual destructor. It is unsafe to delete
3040 an instance of a derived class through a pointer to a base class if the
3041 base class does not have a virtual destructor. This warning is enabled
3042 by @option{-Wall}.
3043
3044 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3045 @opindex Wdeprecated-copy
3046 @opindex Wno-deprecated-copy
3047 Warn that the implicit declaration of a copy constructor or copy
3048 assignment operator is deprecated if the class has a user-provided
3049 copy constructor or copy assignment operator, in C++11 and up. This
3050 warning is enabled by @option{-Wextra}. With
3051 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3052 user-provided destructor.
3053
3054 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3055 @opindex Winit-list-lifetime
3056 @opindex Wno-init-list-lifetime
3057 Do not warn about uses of @code{std::initializer_list} that are likely
3058 to result in dangling pointers. Since the underlying array for an
3059 @code{initializer_list} is handled like a normal C++ temporary object,
3060 it is easy to inadvertently keep a pointer to the array past the end
3061 of the array's lifetime. For example:
3062
3063 @itemize @bullet
3064 @item
3065 If a function returns a temporary @code{initializer_list}, or a local
3066 @code{initializer_list} variable, the array's lifetime ends at the end
3067 of the return statement, so the value returned has a dangling pointer.
3068
3069 @item
3070 If a new-expression creates an @code{initializer_list}, the array only
3071 lives until the end of the enclosing full-expression, so the
3072 @code{initializer_list} in the heap has a dangling pointer.
3073
3074 @item
3075 When an @code{initializer_list} variable is assigned from a
3076 brace-enclosed initializer list, the temporary array created for the
3077 right side of the assignment only lives until the end of the
3078 full-expression, so at the next statement the @code{initializer_list}
3079 variable has a dangling pointer.
3080
3081 @smallexample
3082 // li's initial underlying array lives as long as li
3083 std::initializer_list<int> li = @{ 1,2,3 @};
3084 // assignment changes li to point to a temporary array
3085 li = @{ 4, 5 @};
3086 // now the temporary is gone and li has a dangling pointer
3087 int i = li.begin()[0] // undefined behavior
3088 @end smallexample
3089
3090 @item
3091 When a list constructor stores the @code{begin} pointer from the
3092 @code{initializer_list} argument, this doesn't extend the lifetime of
3093 the array, so if a class variable is constructed from a temporary
3094 @code{initializer_list}, the pointer is left dangling by the end of
3095 the variable declaration statement.
3096
3097 @end itemize
3098
3099 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3100 @opindex Wliteral-suffix
3101 @opindex Wno-literal-suffix
3102 Warn when a string or character literal is followed by a ud-suffix which does
3103 not begin with an underscore. As a conforming extension, GCC treats such
3104 suffixes as separate preprocessing tokens in order to maintain backwards
3105 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3106 For example:
3107
3108 @smallexample
3109 #define __STDC_FORMAT_MACROS
3110 #include <inttypes.h>
3111 #include <stdio.h>
3112
3113 int main() @{
3114 int64_t i64 = 123;
3115 printf("My int64: %" PRId64"\n", i64);
3116 @}
3117 @end smallexample
3118
3119 In this case, @code{PRId64} is treated as a separate preprocessing token.
3120
3121 Additionally, warn when a user-defined literal operator is declared with
3122 a literal suffix identifier that doesn't begin with an underscore. Literal
3123 suffix identifiers that don't begin with an underscore are reserved for
3124 future standardization.
3125
3126 This warning is enabled by default.
3127
3128 @item -Wlto-type-mismatch
3129 @opindex Wlto-type-mismatch
3130 @opindex Wno-lto-type-mismatch
3131
3132 During the link-time optimization warn about type mismatches in
3133 global declarations from different compilation units.
3134 Requires @option{-flto} to be enabled. Enabled by default.
3135
3136 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3137 @opindex Wnarrowing
3138 @opindex Wno-narrowing
3139 For C++11 and later standards, narrowing conversions are diagnosed by default,
3140 as required by the standard. A narrowing conversion from a constant produces
3141 an error, and a narrowing conversion from a non-constant produces a warning,
3142 but @option{-Wno-narrowing} suppresses the diagnostic.
3143 Note that this does not affect the meaning of well-formed code;
3144 narrowing conversions are still considered ill-formed in SFINAE contexts.
3145
3146 With @option{-Wnarrowing} in C++98, warn when a narrowing
3147 conversion prohibited by C++11 occurs within
3148 @samp{@{ @}}, e.g.
3149
3150 @smallexample
3151 int i = @{ 2.2 @}; // error: narrowing from double to int
3152 @end smallexample
3153
3154 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3155
3156 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3157 @opindex Wnoexcept
3158 @opindex Wno-noexcept
3159 Warn when a noexcept-expression evaluates to false because of a call
3160 to a function that does not have a non-throwing exception
3161 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3162 the compiler to never throw an exception.
3163
3164 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3165 @opindex Wnoexcept-type
3166 @opindex Wno-noexcept-type
3167 Warn if the C++17 feature making @code{noexcept} part of a function
3168 type changes the mangled name of a symbol relative to C++14. Enabled
3169 by @option{-Wabi} and @option{-Wc++17-compat}.
3170
3171 As an example:
3172
3173 @smallexample
3174 template <class T> void f(T t) @{ t(); @};
3175 void g() noexcept;
3176 void h() @{ f(g); @}
3177 @end smallexample
3178
3179 @noindent
3180 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3181 C++17 it calls @code{f<void(*)()noexcept>}.
3182
3183 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3184 @opindex Wclass-memaccess
3185 @opindex Wno-class-memaccess
3186 Warn when the destination of a call to a raw memory function such as
3187 @code{memset} or @code{memcpy} is an object of class type, and when writing
3188 into such an object might bypass the class non-trivial or deleted constructor
3189 or copy assignment, violate const-correctness or encapsulation, or corrupt
3190 virtual table pointers. Modifying the representation of such objects may
3191 violate invariants maintained by member functions of the class. For example,
3192 the call to @code{memset} below is undefined because it modifies a non-trivial
3193 class object and is, therefore, diagnosed. The safe way to either initialize
3194 or clear the storage of objects of such types is by using the appropriate
3195 constructor or assignment operator, if one is available.
3196 @smallexample
3197 std::string str = "abc";
3198 memset (&str, 0, sizeof str);
3199 @end smallexample
3200 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3201 Explicitly casting the pointer to the class object to @code{void *} or
3202 to a type that can be safely accessed by the raw memory function suppresses
3203 the warning.
3204
3205 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3206 @opindex Wnon-virtual-dtor
3207 @opindex Wno-non-virtual-dtor
3208 Warn when a class has virtual functions and an accessible non-virtual
3209 destructor itself or in an accessible polymorphic base class, in which
3210 case it is possible but unsafe to delete an instance of a derived
3211 class through a pointer to the class itself or base class. This
3212 warning is automatically enabled if @option{-Weffc++} is specified.
3213
3214 @item -Wregister @r{(C++ and Objective-C++ only)}
3215 @opindex Wregister
3216 @opindex Wno-register
3217 Warn on uses of the @code{register} storage class specifier, except
3218 when it is part of the GNU @ref{Explicit Register Variables} extension.
3219 The use of the @code{register} keyword as storage class specifier has
3220 been deprecated in C++11 and removed in C++17.
3221 Enabled by default with @option{-std=c++17}.
3222
3223 @item -Wreorder @r{(C++ and Objective-C++ only)}
3224 @opindex Wreorder
3225 @opindex Wno-reorder
3226 @cindex reordering, warning
3227 @cindex warning for reordering of member initializers
3228 Warn when the order of member initializers given in the code does not
3229 match the order in which they must be executed. For instance:
3230
3231 @smallexample
3232 struct A @{
3233 int i;
3234 int j;
3235 A(): j (0), i (1) @{ @}
3236 @};
3237 @end smallexample
3238
3239 @noindent
3240 The compiler rearranges the member initializers for @code{i}
3241 and @code{j} to match the declaration order of the members, emitting
3242 a warning to that effect. This warning is enabled by @option{-Wall}.
3243
3244 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3245 @opindex Wpessimizing-move
3246 @opindex Wno-pessimizing-move
3247 This warning warns when a call to @code{std::move} prevents copy
3248 elision. A typical scenario when copy elision can occur is when returning in
3249 a function with a class return type, when the expression being returned is the
3250 name of a non-volatile automatic object, and is not a function parameter, and
3251 has the same type as the function return type.
3252
3253 @smallexample
3254 struct T @{
3255 @dots{}
3256 @};
3257 T fn()
3258 @{
3259 T t;
3260 @dots{}
3261 return std::move (t);
3262 @}
3263 @end smallexample
3264
3265 But in this example, the @code{std::move} call prevents copy elision.
3266
3267 This warning is enabled by @option{-Wall}.
3268
3269 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3270 @opindex Wredundant-move
3271 @opindex Wno-redundant-move
3272 This warning warns about redundant calls to @code{std::move}; that is, when
3273 a move operation would have been performed even without the @code{std::move}
3274 call. This happens because the compiler is forced to treat the object as if
3275 it were an rvalue in certain situations such as returning a local variable,
3276 where copy elision isn't applicable. Consider:
3277
3278 @smallexample
3279 struct T @{
3280 @dots{}
3281 @};
3282 T fn(T t)
3283 @{
3284 @dots{}
3285 return std::move (t);
3286 @}
3287 @end smallexample
3288
3289 Here, the @code{std::move} call is redundant. Because G++ implements Core
3290 Issue 1579, another example is:
3291
3292 @smallexample
3293 struct T @{ // convertible to U
3294 @dots{}
3295 @};
3296 struct U @{
3297 @dots{}
3298 @};
3299 U fn()
3300 @{
3301 T t;
3302 @dots{}
3303 return std::move (t);
3304 @}
3305 @end smallexample
3306 In this example, copy elision isn't applicable because the type of the
3307 expression being returned and the function return type differ, yet G++
3308 treats the return value as if it were designated by an rvalue.
3309
3310 This warning is enabled by @option{-Wextra}.
3311
3312 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3313 @opindex fext-numeric-literals
3314 @opindex fno-ext-numeric-literals
3315 Accept imaginary, fixed-point, or machine-defined
3316 literal number suffixes as GNU extensions.
3317 When this option is turned off these suffixes are treated
3318 as C++11 user-defined literal numeric suffixes.
3319 This is on by default for all pre-C++11 dialects and all GNU dialects:
3320 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3321 @option{-std=gnu++14}.
3322 This option is off by default
3323 for ISO C++11 onwards (@option{-std=c++11}, ...).
3324 @end table
3325
3326 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3327
3328 @table @gcctabopt
3329 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3330 @opindex Weffc++
3331 @opindex Wno-effc++
3332 Warn about violations of the following style guidelines from Scott Meyers'
3333 @cite{Effective C++} series of books:
3334
3335 @itemize @bullet
3336 @item
3337 Define a copy constructor and an assignment operator for classes
3338 with dynamically-allocated memory.
3339
3340 @item
3341 Prefer initialization to assignment in constructors.
3342
3343 @item
3344 Have @code{operator=} return a reference to @code{*this}.
3345
3346 @item
3347 Don't try to return a reference when you must return an object.
3348
3349 @item
3350 Distinguish between prefix and postfix forms of increment and
3351 decrement operators.
3352
3353 @item
3354 Never overload @code{&&}, @code{||}, or @code{,}.
3355
3356 @end itemize
3357
3358 This option also enables @option{-Wnon-virtual-dtor}, which is also
3359 one of the effective C++ recommendations. However, the check is
3360 extended to warn about the lack of virtual destructor in accessible
3361 non-polymorphic bases classes too.
3362
3363 When selecting this option, be aware that the standard library
3364 headers do not obey all of these guidelines; use @samp{grep -v}
3365 to filter out those warnings.
3366
3367 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3368 @opindex Wstrict-null-sentinel
3369 @opindex Wno-strict-null-sentinel
3370 Warn about the use of an uncasted @code{NULL} as sentinel. When
3371 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3372 to @code{__null}. Although it is a null pointer constant rather than a
3373 null pointer, it is guaranteed to be of the same size as a pointer.
3374 But this use is not portable across different compilers.
3375
3376 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3377 @opindex Wno-non-template-friend
3378 @opindex Wnon-template-friend
3379 Disable warnings when non-template friend functions are declared
3380 within a template. In very old versions of GCC that predate implementation
3381 of the ISO standard, declarations such as
3382 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3383 could be interpreted as a particular specialization of a template
3384 function; the warning exists to diagnose compatibility problems,
3385 and is enabled by default.
3386
3387 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3388 @opindex Wold-style-cast
3389 @opindex Wno-old-style-cast
3390 Warn if an old-style (C-style) cast to a non-void type is used within
3391 a C++ program. The new-style casts (@code{dynamic_cast},
3392 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3393 less vulnerable to unintended effects and much easier to search for.
3394
3395 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3396 @opindex Woverloaded-virtual
3397 @opindex Wno-overloaded-virtual
3398 @cindex overloaded virtual function, warning
3399 @cindex warning for overloaded virtual function
3400 Warn when a function declaration hides virtual functions from a
3401 base class. For example, in:
3402
3403 @smallexample
3404 struct A @{
3405 virtual void f();
3406 @};
3407
3408 struct B: public A @{
3409 void f(int);
3410 @};
3411 @end smallexample
3412
3413 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3414 like:
3415
3416 @smallexample
3417 B* b;
3418 b->f();
3419 @end smallexample
3420
3421 @noindent
3422 fails to compile.
3423
3424 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3425 @opindex Wno-pmf-conversions
3426 @opindex Wpmf-conversions
3427 Disable the diagnostic for converting a bound pointer to member function
3428 to a plain pointer.
3429
3430 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3431 @opindex Wsign-promo
3432 @opindex Wno-sign-promo
3433 Warn when overload resolution chooses a promotion from unsigned or
3434 enumerated type to a signed type, over a conversion to an unsigned type of
3435 the same size. Previous versions of G++ tried to preserve
3436 unsignedness, but the standard mandates the current behavior.
3437
3438 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3439 @opindex Wtemplates
3440 @opindex Wno-templates
3441 Warn when a primary template declaration is encountered. Some coding
3442 rules disallow templates, and this may be used to enforce that rule.
3443 The warning is inactive inside a system header file, such as the STL, so
3444 one can still use the STL. One may also instantiate or specialize
3445 templates.
3446
3447 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3448 @opindex Wmultiple-inheritance
3449 @opindex Wno-multiple-inheritance
3450 Warn when a class is defined with multiple direct base classes. Some
3451 coding rules disallow multiple inheritance, and this may be used to
3452 enforce that rule. The warning is inactive inside a system header file,
3453 such as the STL, so one can still use the STL. One may also define
3454 classes that indirectly use multiple inheritance.
3455
3456 @item -Wvirtual-inheritance
3457 @opindex Wvirtual-inheritance
3458 @opindex Wno-virtual-inheritance
3459 Warn when a class is defined with a virtual direct base class. Some
3460 coding rules disallow multiple inheritance, and this may be used to
3461 enforce that rule. The warning is inactive inside a system header file,
3462 such as the STL, so one can still use the STL. One may also define
3463 classes that indirectly use virtual inheritance.
3464
3465 @item -Wnamespaces
3466 @opindex Wnamespaces
3467 @opindex Wno-namespaces
3468 Warn when a namespace definition is opened. Some coding rules disallow
3469 namespaces, and this may be used to enforce that rule. The warning is
3470 inactive inside a system header file, such as the STL, so one can still
3471 use the STL. One may also use using directives and qualified names.
3472
3473 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3474 @opindex Wterminate
3475 @opindex Wno-terminate
3476 Disable the warning about a throw-expression that will immediately
3477 result in a call to @code{terminate}.
3478
3479 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3480 @opindex Wno-class-conversion
3481 @opindex Wclass-conversion
3482 Disable the warning about the case when a conversion function converts an
3483 object to the same type, to a base class of that type, or to void; such
3484 a conversion function will never be called.
3485
3486 @item -Wvolatile @r{(C++ and Objective-C++ only)}
3487 @opindex Wvolatile
3488 @opindex Wno-volatile
3489 Warn about deprecated uses of the @code{volatile} qualifier. This includes
3490 postfix and prefix @code{++} and @code{--} expressions of
3491 @code{volatile}-qualified types, using simple assignments where the left
3492 operand is a @code{volatile}-qualified non-class type for their value,
3493 compound assignments where the left operand is a @code{volatile}-qualified
3494 non-class type, @code{volatile}-qualified function return type,
3495 @code{volatile}-qualified parameter type, and structured bindings of a
3496 @code{volatile}-qualified type. This usage was deprecated in C++20.
3497
3498 Enabled by default with @option{-std=c++2a}.
3499 @end table
3500
3501 @node Objective-C and Objective-C++ Dialect Options
3502 @section Options Controlling Objective-C and Objective-C++ Dialects
3503
3504 @cindex compiler options, Objective-C and Objective-C++
3505 @cindex Objective-C and Objective-C++ options, command-line
3506 @cindex options, Objective-C and Objective-C++
3507 (NOTE: This manual does not describe the Objective-C and Objective-C++
3508 languages themselves. @xref{Standards,,Language Standards
3509 Supported by GCC}, for references.)
3510
3511 This section describes the command-line options that are only meaningful
3512 for Objective-C and Objective-C++ programs. You can also use most of
3513 the language-independent GNU compiler options.
3514 For example, you might compile a file @file{some_class.m} like this:
3515
3516 @smallexample
3517 gcc -g -fgnu-runtime -O -c some_class.m
3518 @end smallexample
3519
3520 @noindent
3521 In this example, @option{-fgnu-runtime} is an option meant only for
3522 Objective-C and Objective-C++ programs; you can use the other options with
3523 any language supported by GCC@.
3524
3525 Note that since Objective-C is an extension of the C language, Objective-C
3526 compilations may also use options specific to the C front-end (e.g.,
3527 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3528 C++-specific options (e.g., @option{-Wabi}).
3529
3530 Here is a list of options that are @emph{only} for compiling Objective-C
3531 and Objective-C++ programs:
3532
3533 @table @gcctabopt
3534 @item -fconstant-string-class=@var{class-name}
3535 @opindex fconstant-string-class
3536 Use @var{class-name} as the name of the class to instantiate for each
3537 literal string specified with the syntax @code{@@"@dots{}"}. The default
3538 class name is @code{NXConstantString} if the GNU runtime is being used, and
3539 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3540 @option{-fconstant-cfstrings} option, if also present, overrides the
3541 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3542 to be laid out as constant CoreFoundation strings.
3543
3544 @item -fgnu-runtime
3545 @opindex fgnu-runtime
3546 Generate object code compatible with the standard GNU Objective-C
3547 runtime. This is the default for most types of systems.
3548
3549 @item -fnext-runtime
3550 @opindex fnext-runtime
3551 Generate output compatible with the NeXT runtime. This is the default
3552 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3553 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3554 used.
3555
3556 @item -fno-nil-receivers
3557 @opindex fno-nil-receivers
3558 @opindex fnil-receivers
3559 Assume that all Objective-C message dispatches (@code{[receiver
3560 message:arg]}) in this translation unit ensure that the receiver is
3561 not @code{nil}. This allows for more efficient entry points in the
3562 runtime to be used. This option is only available in conjunction with
3563 the NeXT runtime and ABI version 0 or 1.
3564
3565 @item -fobjc-abi-version=@var{n}
3566 @opindex fobjc-abi-version
3567 Use version @var{n} of the Objective-C ABI for the selected runtime.
3568 This option is currently supported only for the NeXT runtime. In that
3569 case, Version 0 is the traditional (32-bit) ABI without support for
3570 properties and other Objective-C 2.0 additions. Version 1 is the
3571 traditional (32-bit) ABI with support for properties and other
3572 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3573 nothing is specified, the default is Version 0 on 32-bit target
3574 machines, and Version 2 on 64-bit target machines.
3575
3576 @item -fobjc-call-cxx-cdtors
3577 @opindex fobjc-call-cxx-cdtors
3578 For each Objective-C class, check if any of its instance variables is a
3579 C++ object with a non-trivial default constructor. If so, synthesize a
3580 special @code{- (id) .cxx_construct} instance method which runs
3581 non-trivial default constructors on any such instance variables, in order,
3582 and then return @code{self}. Similarly, check if any instance variable
3583 is a C++ object with a non-trivial destructor, and if so, synthesize a
3584 special @code{- (void) .cxx_destruct} method which runs
3585 all such default destructors, in reverse order.
3586
3587 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3588 methods thusly generated only operate on instance variables
3589 declared in the current Objective-C class, and not those inherited
3590 from superclasses. It is the responsibility of the Objective-C
3591 runtime to invoke all such methods in an object's inheritance
3592 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3593 by the runtime immediately after a new object instance is allocated;
3594 the @code{- (void) .cxx_destruct} methods are invoked immediately
3595 before the runtime deallocates an object instance.
3596
3597 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3598 support for invoking the @code{- (id) .cxx_construct} and
3599 @code{- (void) .cxx_destruct} methods.
3600
3601 @item -fobjc-direct-dispatch
3602 @opindex fobjc-direct-dispatch
3603 Allow fast jumps to the message dispatcher. On Darwin this is
3604 accomplished via the comm page.
3605
3606 @item -fobjc-exceptions
3607 @opindex fobjc-exceptions
3608 Enable syntactic support for structured exception handling in
3609 Objective-C, similar to what is offered by C++. This option
3610 is required to use the Objective-C keywords @code{@@try},
3611 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3612 @code{@@synchronized}. This option is available with both the GNU
3613 runtime and the NeXT runtime (but not available in conjunction with
3614 the NeXT runtime on Mac OS X 10.2 and earlier).
3615
3616 @item -fobjc-gc
3617 @opindex fobjc-gc
3618 Enable garbage collection (GC) in Objective-C and Objective-C++
3619 programs. This option is only available with the NeXT runtime; the
3620 GNU runtime has a different garbage collection implementation that
3621 does not require special compiler flags.
3622
3623 @item -fobjc-nilcheck
3624 @opindex fobjc-nilcheck
3625 For the NeXT runtime with version 2 of the ABI, check for a nil
3626 receiver in method invocations before doing the actual method call.
3627 This is the default and can be disabled using
3628 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3629 checked for nil in this way no matter what this flag is set to.
3630 Currently this flag does nothing when the GNU runtime, or an older
3631 version of the NeXT runtime ABI, is used.
3632
3633 @item -fobjc-std=objc1
3634 @opindex fobjc-std
3635 Conform to the language syntax of Objective-C 1.0, the language
3636 recognized by GCC 4.0. This only affects the Objective-C additions to
3637 the C/C++ language; it does not affect conformance to C/C++ standards,
3638 which is controlled by the separate C/C++ dialect option flags. When
3639 this option is used with the Objective-C or Objective-C++ compiler,
3640 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3641 This is useful if you need to make sure that your Objective-C code can
3642 be compiled with older versions of GCC@.
3643
3644 @item -freplace-objc-classes
3645 @opindex freplace-objc-classes
3646 Emit a special marker instructing @command{ld(1)} not to statically link in
3647 the resulting object file, and allow @command{dyld(1)} to load it in at
3648 run time instead. This is used in conjunction with the Fix-and-Continue
3649 debugging mode, where the object file in question may be recompiled and
3650 dynamically reloaded in the course of program execution, without the need
3651 to restart the program itself. Currently, Fix-and-Continue functionality
3652 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3653 and later.
3654
3655 @item -fzero-link
3656 @opindex fzero-link
3657 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3658 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3659 compile time) with static class references that get initialized at load time,
3660 which improves run-time performance. Specifying the @option{-fzero-link} flag
3661 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3662 to be retained. This is useful in Zero-Link debugging mode, since it allows
3663 for individual class implementations to be modified during program execution.
3664 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3665 regardless of command-line options.
3666
3667 @item -fno-local-ivars
3668 @opindex fno-local-ivars
3669 @opindex flocal-ivars
3670 By default instance variables in Objective-C can be accessed as if
3671 they were local variables from within the methods of the class they're
3672 declared in. This can lead to shadowing between instance variables
3673 and other variables declared either locally inside a class method or
3674 globally with the same name. Specifying the @option{-fno-local-ivars}
3675 flag disables this behavior thus avoiding variable shadowing issues.
3676
3677 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3678 @opindex fivar-visibility
3679 Set the default instance variable visibility to the specified option
3680 so that instance variables declared outside the scope of any access
3681 modifier directives default to the specified visibility.
3682
3683 @item -gen-decls
3684 @opindex gen-decls
3685 Dump interface declarations for all classes seen in the source file to a
3686 file named @file{@var{sourcename}.decl}.
3687
3688 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3689 @opindex Wassign-intercept
3690 @opindex Wno-assign-intercept
3691 Warn whenever an Objective-C assignment is being intercepted by the
3692 garbage collector.
3693
3694 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3695 @opindex Wno-protocol
3696 @opindex Wprotocol
3697 If a class is declared to implement a protocol, a warning is issued for
3698 every method in the protocol that is not implemented by the class. The
3699 default behavior is to issue a warning for every method not explicitly
3700 implemented in the class, even if a method implementation is inherited
3701 from the superclass. If you use the @option{-Wno-protocol} option, then
3702 methods inherited from the superclass are considered to be implemented,
3703 and no warning is issued for them.
3704
3705 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3706 @opindex Wselector
3707 @opindex Wno-selector
3708 Warn if multiple methods of different types for the same selector are
3709 found during compilation. The check is performed on the list of methods
3710 in the final stage of compilation. Additionally, a check is performed
3711 for each selector appearing in a @code{@@selector(@dots{})}
3712 expression, and a corresponding method for that selector has been found
3713 during compilation. Because these checks scan the method table only at
3714 the end of compilation, these warnings are not produced if the final
3715 stage of compilation is not reached, for example because an error is
3716 found during compilation, or because the @option{-fsyntax-only} option is
3717 being used.
3718
3719 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3720 @opindex Wstrict-selector-match
3721 @opindex Wno-strict-selector-match
3722 Warn if multiple methods with differing argument and/or return types are
3723 found for a given selector when attempting to send a message using this
3724 selector to a receiver of type @code{id} or @code{Class}. When this flag
3725 is off (which is the default behavior), the compiler omits such warnings
3726 if any differences found are confined to types that share the same size
3727 and alignment.
3728
3729 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3730 @opindex Wundeclared-selector
3731 @opindex Wno-undeclared-selector
3732 Warn if a @code{@@selector(@dots{})} expression referring to an
3733 undeclared selector is found. A selector is considered undeclared if no
3734 method with that name has been declared before the
3735 @code{@@selector(@dots{})} expression, either explicitly in an
3736 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3737 an @code{@@implementation} section. This option always performs its
3738 checks as soon as a @code{@@selector(@dots{})} expression is found,
3739 while @option{-Wselector} only performs its checks in the final stage of
3740 compilation. This also enforces the coding style convention
3741 that methods and selectors must be declared before being used.
3742
3743 @item -print-objc-runtime-info
3744 @opindex print-objc-runtime-info
3745 Generate C header describing the largest structure that is passed by
3746 value, if any.
3747
3748 @end table
3749
3750 @node Diagnostic Message Formatting Options
3751 @section Options to Control Diagnostic Messages Formatting
3752 @cindex options to control diagnostics formatting
3753 @cindex diagnostic messages
3754 @cindex message formatting
3755
3756 Traditionally, diagnostic messages have been formatted irrespective of
3757 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3758 options described below
3759 to control the formatting algorithm for diagnostic messages,
3760 e.g.@: how many characters per line, how often source location
3761 information should be reported. Note that some language front ends may not
3762 honor these options.
3763
3764 @table @gcctabopt
3765 @item -fmessage-length=@var{n}
3766 @opindex fmessage-length
3767 Try to format error messages so that they fit on lines of about
3768 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3769 done; each error message appears on a single line. This is the
3770 default for all front ends.
3771
3772 Note - this option also affects the display of the @samp{#error} and
3773 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3774 function/type/variable attribute. It does not however affect the
3775 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3776
3777 @item -fdiagnostics-show-location=once
3778 @opindex fdiagnostics-show-location
3779 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3780 reporter to emit source location information @emph{once}; that is, in
3781 case the message is too long to fit on a single physical line and has to
3782 be wrapped, the source location won't be emitted (as prefix) again,
3783 over and over, in subsequent continuation lines. This is the default
3784 behavior.
3785
3786 @item -fdiagnostics-show-location=every-line
3787 Only meaningful in line-wrapping mode. Instructs the diagnostic
3788 messages reporter to emit the same source location information (as
3789 prefix) for physical lines that result from the process of breaking
3790 a message which is too long to fit on a single line.
3791
3792 @item -fdiagnostics-color[=@var{WHEN}]
3793 @itemx -fno-diagnostics-color
3794 @opindex fdiagnostics-color
3795 @cindex highlight, color
3796 @vindex GCC_COLORS @r{environment variable}
3797 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3798 or @samp{auto}. The default depends on how the compiler has been configured,
3799 it can be any of the above @var{WHEN} options or also @samp{never}
3800 if @env{GCC_COLORS} environment variable isn't present in the environment,
3801 and @samp{auto} otherwise.
3802 @samp{auto} means to use color only when the standard error is a terminal.
3803 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3804 aliases for @option{-fdiagnostics-color=always} and
3805 @option{-fdiagnostics-color=never}, respectively.
3806
3807 The colors are defined by the environment variable @env{GCC_COLORS}.
3808 Its value is a colon-separated list of capabilities and Select Graphic
3809 Rendition (SGR) substrings. SGR commands are interpreted by the
3810 terminal or terminal emulator. (See the section in the documentation
3811 of your text terminal for permitted values and their meanings as
3812 character attributes.) These substring values are integers in decimal
3813 representation and can be concatenated with semicolons.
3814 Common values to concatenate include
3815 @samp{1} for bold,
3816 @samp{4} for underline,
3817 @samp{5} for blink,
3818 @samp{7} for inverse,
3819 @samp{39} for default foreground color,
3820 @samp{30} to @samp{37} for foreground colors,
3821 @samp{90} to @samp{97} for 16-color mode foreground colors,
3822 @samp{38;5;0} to @samp{38;5;255}
3823 for 88-color and 256-color modes foreground colors,
3824 @samp{49} for default background color,
3825 @samp{40} to @samp{47} for background colors,
3826 @samp{100} to @samp{107} for 16-color mode background colors,
3827 and @samp{48;5;0} to @samp{48;5;255}
3828 for 88-color and 256-color modes background colors.
3829
3830 The default @env{GCC_COLORS} is
3831 @smallexample
3832 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3833 quote=01:fixit-insert=32:fixit-delete=31:\
3834 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3835 type-diff=01;32
3836 @end smallexample
3837 @noindent
3838 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3839 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3840 @samp{01} is bold, and @samp{31} is red.
3841 Setting @env{GCC_COLORS} to the empty string disables colors.
3842 Supported capabilities are as follows.
3843
3844 @table @code
3845 @item error=
3846 @vindex error GCC_COLORS @r{capability}
3847 SGR substring for error: markers.
3848
3849 @item warning=
3850 @vindex warning GCC_COLORS @r{capability}
3851 SGR substring for warning: markers.
3852
3853 @item note=
3854 @vindex note GCC_COLORS @r{capability}
3855 SGR substring for note: markers.
3856
3857 @item range1=
3858 @vindex range1 GCC_COLORS @r{capability}
3859 SGR substring for first additional range.
3860
3861 @item range2=
3862 @vindex range2 GCC_COLORS @r{capability}
3863 SGR substring for second additional range.
3864
3865 @item locus=
3866 @vindex locus GCC_COLORS @r{capability}
3867 SGR substring for location information, @samp{file:line} or
3868 @samp{file:line:column} etc.
3869
3870 @item quote=
3871 @vindex quote GCC_COLORS @r{capability}
3872 SGR substring for information printed within quotes.
3873
3874 @item fixit-insert=
3875 @vindex fixit-insert GCC_COLORS @r{capability}
3876 SGR substring for fix-it hints suggesting text to
3877 be inserted or replaced.
3878
3879 @item fixit-delete=
3880 @vindex fixit-delete GCC_COLORS @r{capability}
3881 SGR substring for fix-it hints suggesting text to
3882 be deleted.
3883
3884 @item diff-filename=
3885 @vindex diff-filename GCC_COLORS @r{capability}
3886 SGR substring for filename headers within generated patches.
3887
3888 @item diff-hunk=
3889 @vindex diff-hunk GCC_COLORS @r{capability}
3890 SGR substring for the starts of hunks within generated patches.
3891
3892 @item diff-delete=
3893 @vindex diff-delete GCC_COLORS @r{capability}
3894 SGR substring for deleted lines within generated patches.
3895
3896 @item diff-insert=
3897 @vindex diff-insert GCC_COLORS @r{capability}
3898 SGR substring for inserted lines within generated patches.
3899
3900 @item type-diff=
3901 @vindex type-diff GCC_COLORS @r{capability}
3902 SGR substring for highlighting mismatching types within template
3903 arguments in the C++ frontend.
3904 @end table
3905
3906 @item -fno-diagnostics-show-option
3907 @opindex fno-diagnostics-show-option
3908 @opindex fdiagnostics-show-option
3909 By default, each diagnostic emitted includes text indicating the
3910 command-line option that directly controls the diagnostic (if such an
3911 option is known to the diagnostic machinery). Specifying the
3912 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3913
3914 @item -fno-diagnostics-show-caret
3915 @opindex fno-diagnostics-show-caret
3916 @opindex fdiagnostics-show-caret
3917 By default, each diagnostic emitted includes the original source line
3918 and a caret @samp{^} indicating the column. This option suppresses this
3919 information. The source line is truncated to @var{n} characters, if
3920 the @option{-fmessage-length=n} option is given. When the output is done
3921 to the terminal, the width is limited to the width given by the
3922 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3923
3924 @item -fno-diagnostics-show-labels
3925 @opindex fno-diagnostics-show-labels
3926 @opindex fdiagnostics-show-labels
3927 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3928 diagnostics can label ranges of source code with pertinent information, such
3929 as the types of expressions:
3930
3931 @smallexample
3932 printf ("foo %s bar", long_i + long_j);
3933 ~^ ~~~~~~~~~~~~~~~
3934 | |
3935 char * long int
3936 @end smallexample
3937
3938 This option suppresses the printing of these labels (in the example above,
3939 the vertical bars and the ``char *'' and ``long int'' text).
3940
3941 @item -fno-diagnostics-show-line-numbers
3942 @opindex fno-diagnostics-show-line-numbers
3943 @opindex fdiagnostics-show-line-numbers
3944 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3945 a left margin is printed, showing line numbers. This option suppresses this
3946 left margin.
3947
3948 @item -fdiagnostics-minimum-margin-width=@var{width}
3949 @opindex fdiagnostics-minimum-margin-width
3950 This option controls the minimum width of the left margin printed by
3951 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3952
3953 @item -fdiagnostics-parseable-fixits
3954 @opindex fdiagnostics-parseable-fixits
3955 Emit fix-it hints in a machine-parseable format, suitable for consumption
3956 by IDEs. For each fix-it, a line will be printed after the relevant
3957 diagnostic, starting with the string ``fix-it:''. For example:
3958
3959 @smallexample
3960 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3961 @end smallexample
3962
3963 The location is expressed as a half-open range, expressed as a count of
3964 bytes, starting at byte 1 for the initial column. In the above example,
3965 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3966 given string:
3967
3968 @smallexample
3969 00000000011111111112222222222
3970 12345678901234567890123456789
3971 gtk_widget_showall (dlg);
3972 ^^^^^^^^^^^^^^^^^^
3973 gtk_widget_show_all
3974 @end smallexample
3975
3976 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3977 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3978 (e.g. vertical tab as ``\013'').
3979
3980 An empty replacement string indicates that the given range is to be removed.
3981 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3982 be inserted at the given position.
3983
3984 @item -fdiagnostics-generate-patch
3985 @opindex fdiagnostics-generate-patch
3986 Print fix-it hints to stderr in unified diff format, after any diagnostics
3987 are printed. For example:
3988
3989 @smallexample
3990 --- test.c
3991 +++ test.c
3992 @@ -42,5 +42,5 @@
3993
3994 void show_cb(GtkDialog *dlg)
3995 @{
3996 - gtk_widget_showall(dlg);
3997 + gtk_widget_show_all(dlg);
3998 @}
3999
4000 @end smallexample
4001
4002 The diff may or may not be colorized, following the same rules
4003 as for diagnostics (see @option{-fdiagnostics-color}).
4004
4005 @item -fdiagnostics-show-template-tree
4006 @opindex fdiagnostics-show-template-tree
4007
4008 In the C++ frontend, when printing diagnostics showing mismatching
4009 template types, such as:
4010
4011 @smallexample
4012 could not convert 'std::map<int, std::vector<double> >()'
4013 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4014 @end smallexample
4015
4016 the @option{-fdiagnostics-show-template-tree} flag enables printing a
4017 tree-like structure showing the common and differing parts of the types,
4018 such as:
4019
4020 @smallexample
4021 map<
4022 [...],
4023 vector<
4024 [double != float]>>
4025 @end smallexample
4026
4027 The parts that differ are highlighted with color (``double'' and
4028 ``float'' in this case).
4029
4030 @item -fno-elide-type
4031 @opindex fno-elide-type
4032 @opindex felide-type
4033 By default when the C++ frontend prints diagnostics showing mismatching
4034 template types, common parts of the types are printed as ``[...]'' to
4035 simplify the error message. For example:
4036
4037 @smallexample
4038 could not convert 'std::map<int, std::vector<double> >()'
4039 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4040 @end smallexample
4041
4042 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4043 This flag also affects the output of the
4044 @option{-fdiagnostics-show-template-tree} flag.
4045
4046 @item -fno-show-column
4047 @opindex fno-show-column
4048 @opindex fshow-column
4049 Do not print column numbers in diagnostics. This may be necessary if
4050 diagnostics are being scanned by a program that does not understand the
4051 column numbers, such as @command{dejagnu}.
4052
4053 @item -fdiagnostics-format=@var{FORMAT}
4054 @opindex fdiagnostics-format
4055 Select a different format for printing diagnostics.
4056 @var{FORMAT} is @samp{text} or @samp{json}.
4057 The default is @samp{text}.
4058
4059 The @samp{json} format consists of a top-level JSON array containing JSON
4060 objects representing the diagnostics.
4061
4062 The JSON is emitted as one line, without formatting; the examples below
4063 have been formatted for clarity.
4064
4065 Diagnostics can have child diagnostics. For example, this error and note:
4066
4067 @smallexample
4068 misleading-indentation.c:15:3: warning: this 'if' clause does not
4069 guard... [-Wmisleading-indentation]
4070 15 | if (flag)
4071 | ^~
4072 misleading-indentation.c:17:5: note: ...this statement, but the latter
4073 is misleadingly indented as if it were guarded by the 'if'
4074 17 | y = 2;
4075 | ^
4076 @end smallexample
4077
4078 @noindent
4079 might be printed in JSON form (after formatting) like this:
4080
4081 @smallexample
4082 [
4083 @{
4084 "kind": "warning",
4085 "locations": [
4086 @{
4087 "caret": @{
4088 "column": 3,
4089 "file": "misleading-indentation.c",
4090 "line": 15
4091 @},
4092 "finish": @{
4093 "column": 4,
4094 "file": "misleading-indentation.c",
4095 "line": 15
4096 @}
4097 @}
4098 ],
4099 "message": "this \u2018if\u2019 clause does not guard...",
4100 "option": "-Wmisleading-indentation",
4101 "children": [
4102 @{
4103 "kind": "note",
4104 "locations": [
4105 @{
4106 "caret": @{
4107 "column": 5,
4108 "file": "misleading-indentation.c",
4109 "line": 17
4110 @}
4111 @}
4112 ],
4113 "message": "...this statement, but the latter is @dots{}"
4114 @}
4115 ]
4116 @},
4117 @dots{}
4118 ]
4119 @end smallexample
4120
4121 @noindent
4122 where the @code{note} is a child of the @code{warning}.
4123
4124 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4125 an @code{option} key describing the command-line option controlling the
4126 warning.
4127
4128 A diagnostic can contain zero or more locations. Each location has up
4129 to three positions within it: a @code{caret} position and optional
4130 @code{start} and @code{finish} positions. A location can also have
4131 an optional @code{label} string. For example, this error:
4132
4133 @smallexample
4134 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4135 'struct s'@} and 'T' @{aka 'struct t'@})
4136 64 | return callee_4a () + callee_4b ();
4137 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4138 | | |
4139 | | T @{aka struct t@}
4140 | S @{aka struct s@}
4141 @end smallexample
4142
4143 @noindent
4144 has three locations. Its primary location is at the ``+'' token at column
4145 23. It has two secondary locations, describing the left and right-hand sides
4146 of the expression, which have labels. It might be printed in JSON form as:
4147
4148 @smallexample
4149 @{
4150 "children": [],
4151 "kind": "error",
4152 "locations": [
4153 @{
4154 "caret": @{
4155 "column": 23, "file": "bad-binary-ops.c", "line": 64
4156 @}
4157 @},
4158 @{
4159 "caret": @{
4160 "column": 10, "file": "bad-binary-ops.c", "line": 64
4161 @},
4162 "finish": @{
4163 "column": 21, "file": "bad-binary-ops.c", "line": 64
4164 @},
4165 "label": "S @{aka struct s@}"
4166 @},
4167 @{
4168 "caret": @{
4169 "column": 25, "file": "bad-binary-ops.c", "line": 64
4170 @},
4171 "finish": @{
4172 "column": 36, "file": "bad-binary-ops.c", "line": 64
4173 @},
4174 "label": "T @{aka struct t@}"
4175 @}
4176 ],
4177 "message": "invalid operands to binary + @dots{}"
4178 @}
4179 @end smallexample
4180
4181 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4182 consisting of half-open intervals, similar to the output of
4183 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4184 with a replacement fix-it hint:
4185
4186 @smallexample
4187 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4188 mean 'color'?
4189 8 | return ptr->colour;
4190 | ^~~~~~
4191 | color
4192 @end smallexample
4193
4194 @noindent
4195 might be printed in JSON form as:
4196
4197 @smallexample
4198 @{
4199 "children": [],
4200 "fixits": [
4201 @{
4202 "next": @{
4203 "column": 21,
4204 "file": "demo.c",
4205 "line": 8
4206 @},
4207 "start": @{
4208 "column": 15,
4209 "file": "demo.c",
4210 "line": 8
4211 @},
4212 "string": "color"
4213 @}
4214 ],
4215 "kind": "error",
4216 "locations": [
4217 @{
4218 "caret": @{
4219 "column": 15,
4220 "file": "demo.c",
4221 "line": 8
4222 @},
4223 "finish": @{
4224 "column": 20,
4225 "file": "demo.c",
4226 "line": 8
4227 @}
4228 @}
4229 ],
4230 "message": "\u2018struct s\u2019 has no member named @dots{}"
4231 @}
4232 @end smallexample
4233
4234 @noindent
4235 where the fix-it hint suggests replacing the text from @code{start} up
4236 to but not including @code{next} with @code{string}'s value. Deletions
4237 are expressed via an empty value for @code{string}, insertions by
4238 having @code{start} equal @code{next}.
4239
4240 @end table
4241
4242 @node Warning Options
4243 @section Options to Request or Suppress Warnings
4244 @cindex options to control warnings
4245 @cindex warning messages
4246 @cindex messages, warning
4247 @cindex suppressing warnings
4248
4249 Warnings are diagnostic messages that report constructions that
4250 are not inherently erroneous but that are risky or suggest there
4251 may have been an error.
4252
4253 The following language-independent options do not enable specific
4254 warnings but control the kinds of diagnostics produced by GCC@.
4255
4256 @table @gcctabopt
4257 @cindex syntax checking
4258 @item -fsyntax-only
4259 @opindex fsyntax-only
4260 Check the code for syntax errors, but don't do anything beyond that.
4261
4262 @item -fmax-errors=@var{n}
4263 @opindex fmax-errors
4264 Limits the maximum number of error messages to @var{n}, at which point
4265 GCC bails out rather than attempting to continue processing the source
4266 code. If @var{n} is 0 (the default), there is no limit on the number
4267 of error messages produced. If @option{-Wfatal-errors} is also
4268 specified, then @option{-Wfatal-errors} takes precedence over this
4269 option.
4270
4271 @item -w
4272 @opindex w
4273 Inhibit all warning messages.
4274
4275 @item -Werror
4276 @opindex Werror
4277 @opindex Wno-error
4278 Make all warnings into errors.
4279
4280 @item -Werror=
4281 @opindex Werror=
4282 @opindex Wno-error=
4283 Make the specified warning into an error. The specifier for a warning
4284 is appended; for example @option{-Werror=switch} turns the warnings
4285 controlled by @option{-Wswitch} into errors. This switch takes a
4286 negative form, to be used to negate @option{-Werror} for specific
4287 warnings; for example @option{-Wno-error=switch} makes
4288 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4289 is in effect.
4290
4291 The warning message for each controllable warning includes the
4292 option that controls the warning. That option can then be used with
4293 @option{-Werror=} and @option{-Wno-error=} as described above.
4294 (Printing of the option in the warning message can be disabled using the
4295 @option{-fno-diagnostics-show-option} flag.)
4296
4297 Note that specifying @option{-Werror=}@var{foo} automatically implies
4298 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4299 imply anything.
4300
4301 @item -Wfatal-errors
4302 @opindex Wfatal-errors
4303 @opindex Wno-fatal-errors
4304 This option causes the compiler to abort compilation on the first error
4305 occurred rather than trying to keep going and printing further error
4306 messages.
4307
4308 @end table
4309
4310 You can request many specific warnings with options beginning with
4311 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4312 implicit declarations. Each of these specific warning options also
4313 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4314 example, @option{-Wno-implicit}. This manual lists only one of the
4315 two forms, whichever is not the default. For further
4316 language-specific options also refer to @ref{C++ Dialect Options} and
4317 @ref{Objective-C and Objective-C++ Dialect Options}.
4318
4319 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4320 options, such as @option{-Wunused}, which may turn on further options,
4321 such as @option{-Wunused-value}. The combined effect of positive and
4322 negative forms is that more specific options have priority over less
4323 specific ones, independently of their position in the command-line. For
4324 options of the same specificity, the last one takes effect. Options
4325 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4326 as if they appeared at the end of the command-line.
4327
4328 When an unrecognized warning option is requested (e.g.,
4329 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4330 that the option is not recognized. However, if the @option{-Wno-} form
4331 is used, the behavior is slightly different: no diagnostic is
4332 produced for @option{-Wno-unknown-warning} unless other diagnostics
4333 are being produced. This allows the use of new @option{-Wno-} options
4334 with old compilers, but if something goes wrong, the compiler
4335 warns that an unrecognized option is present.
4336
4337 @table @gcctabopt
4338 @item -Wpedantic
4339 @itemx -pedantic
4340 @opindex pedantic
4341 @opindex Wpedantic
4342 @opindex Wno-pedantic
4343 Issue all the warnings demanded by strict ISO C and ISO C++;
4344 reject all programs that use forbidden extensions, and some other
4345 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4346 version of the ISO C standard specified by any @option{-std} option used.
4347
4348 Valid ISO C and ISO C++ programs should compile properly with or without
4349 this option (though a rare few require @option{-ansi} or a
4350 @option{-std} option specifying the required version of ISO C)@. However,
4351 without this option, certain GNU extensions and traditional C and C++
4352 features are supported as well. With this option, they are rejected.
4353
4354 @option{-Wpedantic} does not cause warning messages for use of the
4355 alternate keywords whose names begin and end with @samp{__}. This alternate
4356 format can also be used to disable warnings for non-ISO @samp{__intN} types,
4357 i.e. @samp{__intN__}.
4358 Pedantic warnings are also disabled in the expression that follows
4359 @code{__extension__}. However, only system header files should use
4360 these escape routes; application programs should avoid them.
4361 @xref{Alternate Keywords}.
4362
4363 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4364 C conformance. They soon find that it does not do quite what they want:
4365 it finds some non-ISO practices, but not all---only those for which
4366 ISO C @emph{requires} a diagnostic, and some others for which
4367 diagnostics have been added.
4368
4369 A feature to report any failure to conform to ISO C might be useful in
4370 some instances, but would require considerable additional work and would
4371 be quite different from @option{-Wpedantic}. We don't have plans to
4372 support such a feature in the near future.
4373
4374 Where the standard specified with @option{-std} represents a GNU
4375 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4376 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4377 extended dialect is based. Warnings from @option{-Wpedantic} are given
4378 where they are required by the base standard. (It does not make sense
4379 for such warnings to be given only for features not in the specified GNU
4380 C dialect, since by definition the GNU dialects of C include all
4381 features the compiler supports with the given option, and there would be
4382 nothing to warn about.)
4383
4384 @item -pedantic-errors
4385 @opindex pedantic-errors
4386 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4387 requires a diagnostic, in some cases where there is undefined behavior
4388 at compile-time and in some other cases that do not prevent compilation
4389 of programs that are valid according to the standard. This is not
4390 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4391 by this option and not enabled by the latter and vice versa.
4392
4393 @item -Wall
4394 @opindex Wall
4395 @opindex Wno-all
4396 This enables all the warnings about constructions that some users
4397 consider questionable, and that are easy to avoid (or modify to
4398 prevent the warning), even in conjunction with macros. This also
4399 enables some language-specific warnings described in @ref{C++ Dialect
4400 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4401
4402 @option{-Wall} turns on the following warning flags:
4403
4404 @gccoptlist{-Waddress @gol
4405 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4406 -Wbool-compare @gol
4407 -Wbool-operation @gol
4408 -Wc++11-compat -Wc++14-compat @gol
4409 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4410 -Wchar-subscripts @gol
4411 -Wcomment @gol
4412 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4413 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4414 -Wenum-conversion @r{in C/ObjC;} @gol
4415 -Wformat @gol
4416 -Wint-in-bool-context @gol
4417 -Wimplicit @r{(C and Objective-C only)} @gol
4418 -Wimplicit-int @r{(C and Objective-C only)} @gol
4419 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4420 -Winit-self @r{(only for C++)} @gol
4421 -Wlogical-not-parentheses @gol
4422 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4423 -Wmaybe-uninitialized @gol
4424 -Wmemset-elt-size @gol
4425 -Wmemset-transposed-args @gol
4426 -Wmisleading-indentation @r{(only for C/C++)} @gol
4427 -Wmissing-attributes @gol
4428 -Wmissing-braces @r{(only for C/ObjC)} @gol
4429 -Wmultistatement-macros @gol
4430 -Wnarrowing @r{(only for C++)} @gol
4431 -Wnonnull @gol
4432 -Wnonnull-compare @gol
4433 -Wopenmp-simd @gol
4434 -Wparentheses @gol
4435 -Wpessimizing-move @r{(only for C++)} @gol
4436 -Wpointer-sign @gol
4437 -Wreorder @gol
4438 -Wrestrict @gol
4439 -Wreturn-type @gol
4440 -Wsequence-point @gol
4441 -Wsign-compare @r{(only in C++)} @gol
4442 -Wsizeof-pointer-div @gol
4443 -Wsizeof-pointer-memaccess @gol
4444 -Wstrict-aliasing @gol
4445 -Wstrict-overflow=1 @gol
4446 -Wswitch @gol
4447 -Wtautological-compare @gol
4448 -Wtrigraphs @gol
4449 -Wuninitialized @gol
4450 -Wunknown-pragmas @gol
4451 -Wunused-function @gol
4452 -Wunused-label @gol
4453 -Wunused-value @gol
4454 -Wunused-variable @gol
4455 -Wvolatile-register-var}
4456
4457 Note that some warning flags are not implied by @option{-Wall}. Some of
4458 them warn about constructions that users generally do not consider
4459 questionable, but which occasionally you might wish to check for;
4460 others warn about constructions that are necessary or hard to avoid in
4461 some cases, and there is no simple way to modify the code to suppress
4462 the warning. Some of them are enabled by @option{-Wextra} but many of
4463 them must be enabled individually.
4464
4465 @item -Wextra
4466 @opindex W
4467 @opindex Wextra
4468 @opindex Wno-extra
4469 This enables some extra warning flags that are not enabled by
4470 @option{-Wall}. (This option used to be called @option{-W}. The older
4471 name is still supported, but the newer name is more descriptive.)
4472
4473 @gccoptlist{-Wclobbered @gol
4474 -Wcast-function-type @gol
4475 -Wdeprecated-copy @r{(C++ only)} @gol
4476 -Wempty-body @gol
4477 -Wignored-qualifiers @gol
4478 -Wimplicit-fallthrough=3 @gol
4479 -Wmissing-field-initializers @gol
4480 -Wmissing-parameter-type @r{(C only)} @gol
4481 -Wold-style-declaration @r{(C only)} @gol
4482 -Woverride-init @gol
4483 -Wsign-compare @r{(C only)} @gol
4484 -Wredundant-move @r{(only for C++)} @gol
4485 -Wtype-limits @gol
4486 -Wuninitialized @gol
4487 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4488 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4489 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4490
4491
4492 The option @option{-Wextra} also prints warning messages for the
4493 following cases:
4494
4495 @itemize @bullet
4496
4497 @item
4498 A pointer is compared against integer zero with @code{<}, @code{<=},
4499 @code{>}, or @code{>=}.
4500
4501 @item
4502 (C++ only) An enumerator and a non-enumerator both appear in a
4503 conditional expression.
4504
4505 @item
4506 (C++ only) Ambiguous virtual bases.
4507
4508 @item
4509 (C++ only) Subscripting an array that has been declared @code{register}.
4510
4511 @item
4512 (C++ only) Taking the address of a variable that has been declared
4513 @code{register}.
4514
4515 @item
4516 (C++ only) A base class is not initialized in the copy constructor
4517 of a derived class.
4518
4519 @end itemize
4520
4521 @item -Wchar-subscripts
4522 @opindex Wchar-subscripts
4523 @opindex Wno-char-subscripts
4524 Warn if an array subscript has type @code{char}. This is a common cause
4525 of error, as programmers often forget that this type is signed on some
4526 machines.
4527 This warning is enabled by @option{-Wall}.
4528
4529 @item -Wno-coverage-mismatch
4530 @opindex Wno-coverage-mismatch
4531 @opindex Wcoverage-mismatch
4532 Warn if feedback profiles do not match when using the
4533 @option{-fprofile-use} option.
4534 If a source file is changed between compiling with @option{-fprofile-generate}
4535 and with @option{-fprofile-use}, the files with the profile feedback can fail
4536 to match the source file and GCC cannot use the profile feedback
4537 information. By default, this warning is enabled and is treated as an
4538 error. @option{-Wno-coverage-mismatch} can be used to disable the
4539 warning or @option{-Wno-error=coverage-mismatch} can be used to
4540 disable the error. Disabling the error for this warning can result in
4541 poorly optimized code and is useful only in the
4542 case of very minor changes such as bug fixes to an existing code-base.
4543 Completely disabling the warning is not recommended.
4544
4545 @item -Wno-cpp
4546 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4547
4548 Suppress warning messages emitted by @code{#warning} directives.
4549
4550 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4551 @opindex Wdouble-promotion
4552 @opindex Wno-double-promotion
4553 Give a warning when a value of type @code{float} is implicitly
4554 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4555 floating-point unit implement @code{float} in hardware, but emulate
4556 @code{double} in software. On such a machine, doing computations
4557 using @code{double} values is much more expensive because of the
4558 overhead required for software emulation.
4559
4560 It is easy to accidentally do computations with @code{double} because
4561 floating-point literals are implicitly of type @code{double}. For
4562 example, in:
4563 @smallexample
4564 @group
4565 float area(float radius)
4566 @{
4567 return 3.14159 * radius * radius;
4568 @}
4569 @end group
4570 @end smallexample
4571 the compiler performs the entire computation with @code{double}
4572 because the floating-point literal is a @code{double}.
4573
4574 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4575 @opindex Wduplicate-decl-specifier
4576 @opindex Wno-duplicate-decl-specifier
4577 Warn if a declaration has duplicate @code{const}, @code{volatile},
4578 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4579 @option{-Wall}.
4580
4581 @item -Wformat
4582 @itemx -Wformat=@var{n}
4583 @opindex Wformat
4584 @opindex Wno-format
4585 @opindex ffreestanding
4586 @opindex fno-builtin
4587 @opindex Wformat=
4588 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4589 the arguments supplied have types appropriate to the format string
4590 specified, and that the conversions specified in the format string make
4591 sense. This includes standard functions, and others specified by format
4592 attributes (@pxref{Function Attributes}), in the @code{printf},
4593 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4594 not in the C standard) families (or other target-specific families).
4595 Which functions are checked without format attributes having been
4596 specified depends on the standard version selected, and such checks of
4597 functions without the attribute specified are disabled by
4598 @option{-ffreestanding} or @option{-fno-builtin}.
4599
4600 The formats are checked against the format features supported by GNU
4601 libc version 2.2. These include all ISO C90 and C99 features, as well
4602 as features from the Single Unix Specification and some BSD and GNU
4603 extensions. Other library implementations may not support all these
4604 features; GCC does not support warning about features that go beyond a
4605 particular library's limitations. However, if @option{-Wpedantic} is used
4606 with @option{-Wformat}, warnings are given about format features not
4607 in the selected standard version (but not for @code{strfmon} formats,
4608 since those are not in any version of the C standard). @xref{C Dialect
4609 Options,,Options Controlling C Dialect}.
4610
4611 @table @gcctabopt
4612 @item -Wformat=1
4613 @itemx -Wformat
4614 @opindex Wformat
4615 @opindex Wformat=1
4616 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4617 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4618 @option{-Wformat} also checks for null format arguments for several
4619 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4620 aspects of this level of format checking can be disabled by the
4621 options: @option{-Wno-format-contains-nul},
4622 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4623 @option{-Wformat} is enabled by @option{-Wall}.
4624
4625 @item -Wno-format-contains-nul
4626 @opindex Wno-format-contains-nul
4627 @opindex Wformat-contains-nul
4628 If @option{-Wformat} is specified, do not warn about format strings that
4629 contain NUL bytes.
4630
4631 @item -Wno-format-extra-args
4632 @opindex Wno-format-extra-args
4633 @opindex Wformat-extra-args
4634 If @option{-Wformat} is specified, do not warn about excess arguments to a
4635 @code{printf} or @code{scanf} format function. The C standard specifies
4636 that such arguments are ignored.
4637
4638 Where the unused arguments lie between used arguments that are
4639 specified with @samp{$} operand number specifications, normally
4640 warnings are still given, since the implementation could not know what
4641 type to pass to @code{va_arg} to skip the unused arguments. However,
4642 in the case of @code{scanf} formats, this option suppresses the
4643 warning if the unused arguments are all pointers, since the Single
4644 Unix Specification says that such unused arguments are allowed.
4645
4646 @item -Wformat-overflow
4647 @itemx -Wformat-overflow=@var{level}
4648 @opindex Wformat-overflow
4649 @opindex Wno-format-overflow
4650 Warn about calls to formatted input/output functions such as @code{sprintf}
4651 and @code{vsprintf} that might overflow the destination buffer. When the
4652 exact number of bytes written by a format directive cannot be determined
4653 at compile-time it is estimated based on heuristics that depend on the
4654 @var{level} argument and on optimization. While enabling optimization
4655 will in most cases improve the accuracy of the warning, it may also
4656 result in false positives.
4657
4658 @table @gcctabopt
4659 @item -Wformat-overflow
4660 @itemx -Wformat-overflow=1
4661 @opindex Wformat-overflow
4662 @opindex Wno-format-overflow
4663 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4664 employs a conservative approach that warns only about calls that most
4665 likely overflow the buffer. At this level, numeric arguments to format
4666 directives with unknown values are assumed to have the value of one, and
4667 strings of unknown length to be empty. Numeric arguments that are known
4668 to be bounded to a subrange of their type, or string arguments whose output
4669 is bounded either by their directive's precision or by a finite set of
4670 string literals, are assumed to take on the value within the range that
4671 results in the most bytes on output. For example, the call to @code{sprintf}
4672 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4673 the terminating NUL character (@code{'\0'}) appended by the function
4674 to the destination buffer will be written past its end. Increasing
4675 the size of the buffer by a single byte is sufficient to avoid the
4676 warning, though it may not be sufficient to avoid the overflow.
4677
4678 @smallexample
4679 void f (int a, int b)
4680 @{
4681 char buf [13];
4682 sprintf (buf, "a = %i, b = %i\n", a, b);
4683 @}
4684 @end smallexample
4685
4686 @item -Wformat-overflow=2
4687 Level @var{2} warns also about calls that might overflow the destination
4688 buffer given an argument of sufficient length or magnitude. At level
4689 @var{2}, unknown numeric arguments are assumed to have the minimum
4690 representable value for signed types with a precision greater than 1, and
4691 the maximum representable value otherwise. Unknown string arguments whose
4692 length cannot be assumed to be bounded either by the directive's precision,
4693 or by a finite set of string literals they may evaluate to, or the character
4694 array they may point to, are assumed to be 1 character long.
4695
4696 At level @var{2}, the call in the example above is again diagnosed, but
4697 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4698 @code{%i} directive will write some of its digits beyond the end of
4699 the destination buffer. To make the call safe regardless of the values
4700 of the two variables, the size of the destination buffer must be increased
4701 to at least 34 bytes. GCC includes the minimum size of the buffer in
4702 an informational note following the warning.
4703
4704 An alternative to increasing the size of the destination buffer is to
4705 constrain the range of formatted values. The maximum length of string
4706 arguments can be bounded by specifying the precision in the format
4707 directive. When numeric arguments of format directives can be assumed
4708 to be bounded by less than the precision of their type, choosing
4709 an appropriate length modifier to the format specifier will reduce
4710 the required buffer size. For example, if @var{a} and @var{b} in the
4711 example above can be assumed to be within the precision of
4712 the @code{short int} type then using either the @code{%hi} format
4713 directive or casting the argument to @code{short} reduces the maximum
4714 required size of the buffer to 24 bytes.
4715
4716 @smallexample
4717 void f (int a, int b)
4718 @{
4719 char buf [23];
4720 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4721 @}
4722 @end smallexample
4723 @end table
4724
4725 @item -Wno-format-zero-length
4726 @opindex Wno-format-zero-length
4727 @opindex Wformat-zero-length
4728 If @option{-Wformat} is specified, do not warn about zero-length formats.
4729 The C standard specifies that zero-length formats are allowed.
4730
4731
4732 @item -Wformat=2
4733 @opindex Wformat=2
4734 Enable @option{-Wformat} plus additional format checks. Currently
4735 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4736 -Wformat-y2k}.
4737
4738 @item -Wformat-nonliteral
4739 @opindex Wformat-nonliteral
4740 @opindex Wno-format-nonliteral
4741 If @option{-Wformat} is specified, also warn if the format string is not a
4742 string literal and so cannot be checked, unless the format function
4743 takes its format arguments as a @code{va_list}.
4744
4745 @item -Wformat-security
4746 @opindex Wformat-security
4747 @opindex Wno-format-security
4748 If @option{-Wformat} is specified, also warn about uses of format
4749 functions that represent possible security problems. At present, this
4750 warns about calls to @code{printf} and @code{scanf} functions where the
4751 format string is not a string literal and there are no format arguments,
4752 as in @code{printf (foo);}. This may be a security hole if the format
4753 string came from untrusted input and contains @samp{%n}. (This is
4754 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4755 in future warnings may be added to @option{-Wformat-security} that are not
4756 included in @option{-Wformat-nonliteral}.)
4757
4758 @item -Wformat-signedness
4759 @opindex Wformat-signedness
4760 @opindex Wno-format-signedness
4761 If @option{-Wformat} is specified, also warn if the format string
4762 requires an unsigned argument and the argument is signed and vice versa.
4763
4764 @item -Wformat-truncation
4765 @itemx -Wformat-truncation=@var{level}
4766 @opindex Wformat-truncation
4767 @opindex Wno-format-truncation
4768 Warn about calls to formatted input/output functions such as @code{snprintf}
4769 and @code{vsnprintf} that might result in output truncation. When the exact
4770 number of bytes written by a format directive cannot be determined at
4771 compile-time it is estimated based on heuristics that depend on
4772 the @var{level} argument and on optimization. While enabling optimization
4773 will in most cases improve the accuracy of the warning, it may also result
4774 in false positives. Except as noted otherwise, the option uses the same
4775 logic @option{-Wformat-overflow}.
4776
4777 @table @gcctabopt
4778 @item -Wformat-truncation
4779 @itemx -Wformat-truncation=1
4780 @opindex Wformat-truncation
4781 @opindex Wno-format-truncation
4782 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4783 employs a conservative approach that warns only about calls to bounded
4784 functions whose return value is unused and that will most likely result
4785 in output truncation.
4786
4787 @item -Wformat-truncation=2
4788 Level @var{2} warns also about calls to bounded functions whose return
4789 value is used and that might result in truncation given an argument of
4790 sufficient length or magnitude.
4791 @end table
4792
4793 @item -Wformat-y2k
4794 @opindex Wformat-y2k
4795 @opindex Wno-format-y2k
4796 If @option{-Wformat} is specified, also warn about @code{strftime}
4797 formats that may yield only a two-digit year.
4798 @end table
4799
4800 @item -Wnonnull
4801 @opindex Wnonnull
4802 @opindex Wno-nonnull
4803 Warn about passing a null pointer for arguments marked as
4804 requiring a non-null value by the @code{nonnull} function attribute.
4805
4806 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4807 can be disabled with the @option{-Wno-nonnull} option.
4808
4809 @item -Wnonnull-compare
4810 @opindex Wnonnull-compare
4811 @opindex Wno-nonnull-compare
4812 Warn when comparing an argument marked with the @code{nonnull}
4813 function attribute against null inside the function.
4814
4815 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4816 can be disabled with the @option{-Wno-nonnull-compare} option.
4817
4818 @item -Wnull-dereference
4819 @opindex Wnull-dereference
4820 @opindex Wno-null-dereference
4821 Warn if the compiler detects paths that trigger erroneous or
4822 undefined behavior due to dereferencing a null pointer. This option
4823 is only active when @option{-fdelete-null-pointer-checks} is active,
4824 which is enabled by optimizations in most targets. The precision of
4825 the warnings depends on the optimization options used.
4826
4827 @item -Winaccessible-base @r{(C++, Objective-C++ only)}
4828 @opindex Winaccessible-base
4829 @opindex Wno-inaccessible-base
4830 Warn when a base class is inaccessible in a class derived from it due to
4831 ambiguity. The warning is enabled by default. Note the warning for virtual
4832 bases is enabled by the @option{-Wextra} option.
4833 @smallexample
4834 @group
4835 struct A @{ int a; @};
4836
4837 struct B : A @{ @};
4838
4839 struct C : B, A @{ @};
4840 @end group
4841 @end smallexample
4842
4843 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4844 @opindex Winit-self
4845 @opindex Wno-init-self
4846 Warn about uninitialized variables that are initialized with themselves.
4847 Note this option can only be used with the @option{-Wuninitialized} option.
4848
4849 For example, GCC warns about @code{i} being uninitialized in the
4850 following snippet only when @option{-Winit-self} has been specified:
4851 @smallexample
4852 @group
4853 int f()
4854 @{
4855 int i = i;
4856 return i;
4857 @}
4858 @end group
4859 @end smallexample
4860
4861 This warning is enabled by @option{-Wall} in C++.
4862
4863 @item -Wimplicit-int @r{(C and Objective-C only)}
4864 @opindex Wimplicit-int
4865 @opindex Wno-implicit-int
4866 Warn when a declaration does not specify a type.
4867 This warning is enabled by @option{-Wall}.
4868
4869 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4870 @opindex Wimplicit-function-declaration
4871 @opindex Wno-implicit-function-declaration
4872 Give a warning whenever a function is used before being declared. In
4873 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4874 enabled by default and it is made into an error by
4875 @option{-pedantic-errors}. This warning is also enabled by
4876 @option{-Wall}.
4877
4878 @item -Wimplicit @r{(C and Objective-C only)}
4879 @opindex Wimplicit
4880 @opindex Wno-implicit
4881 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4882 This warning is enabled by @option{-Wall}.
4883
4884 @item -Wimplicit-fallthrough
4885 @opindex Wimplicit-fallthrough
4886 @opindex Wno-implicit-fallthrough
4887 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4888 and @option{-Wno-implicit-fallthrough} is the same as
4889 @option{-Wimplicit-fallthrough=0}.
4890
4891 @item -Wimplicit-fallthrough=@var{n}
4892 @opindex Wimplicit-fallthrough=
4893 Warn when a switch case falls through. For example:
4894
4895 @smallexample
4896 @group
4897 switch (cond)
4898 @{
4899 case 1:
4900 a = 1;
4901 break;
4902 case 2:
4903 a = 2;
4904 case 3:
4905 a = 3;
4906 break;
4907 @}
4908 @end group
4909 @end smallexample
4910
4911 This warning does not warn when the last statement of a case cannot
4912 fall through, e.g. when there is a return statement or a call to function
4913 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4914 also takes into account control flow statements, such as ifs, and only
4915 warns when appropriate. E.g.@:
4916
4917 @smallexample
4918 @group
4919 switch (cond)
4920 @{
4921 case 1:
4922 if (i > 3) @{
4923 bar (5);
4924 break;
4925 @} else if (i < 1) @{
4926 bar (0);
4927 @} else
4928 return;
4929 default:
4930 @dots{}
4931 @}
4932 @end group
4933 @end smallexample
4934
4935 Since there are occasions where a switch case fall through is desirable,
4936 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4937 to be used along with a null statement to suppress this warning that
4938 would normally occur:
4939
4940 @smallexample
4941 @group
4942 switch (cond)
4943 @{
4944 case 1:
4945 bar (0);
4946 __attribute__ ((fallthrough));
4947 default:
4948 @dots{}
4949 @}
4950 @end group
4951 @end smallexample
4952
4953 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4954 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4955 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4956 Instead of these attributes, it is also possible to add a fallthrough comment
4957 to silence the warning. The whole body of the C or C++ style comment should
4958 match the given regular expressions listed below. The option argument @var{n}
4959 specifies what kind of comments are accepted:
4960
4961 @itemize @bullet
4962
4963 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4964
4965 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4966 expression, any comment is used as fallthrough comment.
4967
4968 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4969 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4970
4971 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4972 following regular expressions:
4973
4974 @itemize @bullet
4975
4976 @item @code{-fallthrough}
4977
4978 @item @code{@@fallthrough@@}
4979
4980 @item @code{lint -fallthrough[ \t]*}
4981
4982 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4983
4984 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4985
4986 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4987
4988 @end itemize
4989
4990 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4991 following regular expressions:
4992
4993 @itemize @bullet
4994
4995 @item @code{-fallthrough}
4996
4997 @item @code{@@fallthrough@@}
4998
4999 @item @code{lint -fallthrough[ \t]*}
5000
5001 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
5002
5003 @end itemize
5004
5005 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
5006 fallthrough comments, only attributes disable the warning.
5007
5008 @end itemize
5009
5010 The comment needs to be followed after optional whitespace and other comments
5011 by @code{case} or @code{default} keywords or by a user label that precedes some
5012 @code{case} or @code{default} label.
5013
5014 @smallexample
5015 @group
5016 switch (cond)
5017 @{
5018 case 1:
5019 bar (0);
5020 /* FALLTHRU */
5021 default:
5022 @dots{}
5023 @}
5024 @end group
5025 @end smallexample
5026
5027 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
5028
5029 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
5030 @opindex Wif-not-aligned
5031 @opindex Wno-if-not-aligned
5032 Control if warning triggered by the @code{warn_if_not_aligned} attribute
5033 should be issued. This is enabled by default.
5034 Use @option{-Wno-if-not-aligned} to disable it.
5035
5036 @item -Wignored-qualifiers @r{(C and C++ only)}
5037 @opindex Wignored-qualifiers
5038 @opindex Wno-ignored-qualifiers
5039 Warn if the return type of a function has a type qualifier
5040 such as @code{const}. For ISO C such a type qualifier has no effect,
5041 since the value returned by a function is not an lvalue.
5042 For C++, the warning is only emitted for scalar types or @code{void}.
5043 ISO C prohibits qualified @code{void} return types on function
5044 definitions, so such return types always receive a warning
5045 even without this option.
5046
5047 This warning is also enabled by @option{-Wextra}.
5048
5049 @item -Wignored-attributes @r{(C and C++ only)}
5050 @opindex Wignored-attributes
5051 @opindex Wno-ignored-attributes
5052 Warn when an attribute is ignored. This is different from the
5053 @option{-Wattributes} option in that it warns whenever the compiler decides
5054 to drop an attribute, not that the attribute is either unknown, used in a
5055 wrong place, etc. This warning is enabled by default.
5056
5057 @item -Wmain
5058 @opindex Wmain
5059 @opindex Wno-main
5060 Warn if the type of @code{main} is suspicious. @code{main} should be
5061 a function with external linkage, returning int, taking either zero
5062 arguments, two, or three arguments of appropriate types. This warning
5063 is enabled by default in C++ and is enabled by either @option{-Wall}
5064 or @option{-Wpedantic}.
5065
5066 @item -Wmisleading-indentation @r{(C and C++ only)}
5067 @opindex Wmisleading-indentation
5068 @opindex Wno-misleading-indentation
5069 Warn when the indentation of the code does not reflect the block structure.
5070 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5071 @code{for} clauses with a guarded statement that does not use braces,
5072 followed by an unguarded statement with the same indentation.
5073
5074 In the following example, the call to ``bar'' is misleadingly indented as
5075 if it were guarded by the ``if'' conditional.
5076
5077 @smallexample
5078 if (some_condition ())
5079 foo ();
5080 bar (); /* Gotcha: this is not guarded by the "if". */
5081 @end smallexample
5082
5083 In the case of mixed tabs and spaces, the warning uses the
5084 @option{-ftabstop=} option to determine if the statements line up
5085 (defaulting to 8).
5086
5087 The warning is not issued for code involving multiline preprocessor logic
5088 such as the following example.
5089
5090 @smallexample
5091 if (flagA)
5092 foo (0);
5093 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5094 if (flagB)
5095 #endif
5096 foo (1);
5097 @end smallexample
5098
5099 The warning is not issued after a @code{#line} directive, since this
5100 typically indicates autogenerated code, and no assumptions can be made
5101 about the layout of the file that the directive references.
5102
5103 This warning is enabled by @option{-Wall} in C and C++.
5104
5105 @item -Wmissing-attributes
5106 @opindex Wmissing-attributes
5107 @opindex Wno-missing-attributes
5108 Warn when a declaration of a function is missing one or more attributes
5109 that a related function is declared with and whose absence may adversely
5110 affect the correctness or efficiency of generated code. For example,
5111 the warning is issued for declarations of aliases that use attributes
5112 to specify less restrictive requirements than those of their targets.
5113 This typically represents a potential optimization opportunity.
5114 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5115 issued when the alias is more restrictive than the target, which could
5116 lead to incorrect code generation.
5117 Attributes considered include @code{alloc_align}, @code{alloc_size},
5118 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5119 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5120 @code{returns_nonnull}, and @code{returns_twice}.
5121
5122 In C++, the warning is issued when an explicit specialization of a primary
5123 template declared with attribute @code{alloc_align}, @code{alloc_size},
5124 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5125 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5126 @code{error}, and @code{warning} suppress the warning.
5127 (@pxref{Function Attributes}).
5128
5129 You can use the @code{copy} attribute to apply the same
5130 set of attributes to a declaration as that on another declaration without
5131 explicitly enumerating the attributes. This attribute can be applied
5132 to declarations of functions (@pxref{Common Function Attributes}),
5133 variables (@pxref{Common Variable Attributes}), or types
5134 (@pxref{Common Type Attributes}).
5135
5136 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5137
5138 For example, since the declaration of the primary function template
5139 below makes use of both attribute @code{malloc} and @code{alloc_size}
5140 the declaration of the explicit specialization of the template is
5141 diagnosed because it is missing one of the attributes.
5142
5143 @smallexample
5144 template <class T>
5145 T* __attribute__ ((malloc, alloc_size (1)))
5146 allocate (size_t);
5147
5148 template <>
5149 void* __attribute__ ((malloc)) // missing alloc_size
5150 allocate<void> (size_t);
5151 @end smallexample
5152
5153 @item -Wmissing-braces
5154 @opindex Wmissing-braces
5155 @opindex Wno-missing-braces
5156 Warn if an aggregate or union initializer is not fully bracketed. In
5157 the following example, the initializer for @code{a} is not fully
5158 bracketed, but that for @code{b} is fully bracketed. This warning is
5159 enabled by @option{-Wall} in C.
5160
5161 @smallexample
5162 int a[2][2] = @{ 0, 1, 2, 3 @};
5163 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5164 @end smallexample
5165
5166 This warning is enabled by @option{-Wall}.
5167
5168 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5169 @opindex Wmissing-include-dirs
5170 @opindex Wno-missing-include-dirs
5171 Warn if a user-supplied include directory does not exist.
5172
5173 @item -Wmissing-profile
5174 @opindex Wmissing-profile
5175 @opindex Wno-missing-profile
5176 Warn if feedback profiles are missing when using the
5177 @option{-fprofile-use} option.
5178 This option diagnoses those cases where a new function or a new file is added
5179 to the user code between compiling with @option{-fprofile-generate} and with
5180 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5181 profile feedback data files do not contain any profile feedback information for
5182 the newly added function or file respectively. Also, in the case when profile
5183 count data (.gcda) files are removed, GCC cannot use any profile feedback
5184 information. In all these cases, warnings are issued to inform the user that a
5185 profile generation step is due. @option{-Wno-missing-profile} can be used to
5186 disable the warning. Ignoring the warning can result in poorly optimized code.
5187 Completely disabling the warning is not recommended and should be done only
5188 when non-existent profile data is justified.
5189
5190 @item -Wmultistatement-macros
5191 @opindex Wmultistatement-macros
5192 @opindex Wno-multistatement-macros
5193 Warn about unsafe multiple statement macros that appear to be guarded
5194 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5195 @code{while}, in which only the first statement is actually guarded after
5196 the macro is expanded.
5197
5198 For example:
5199
5200 @smallexample
5201 #define DOIT x++; y++
5202 if (c)
5203 DOIT;
5204 @end smallexample
5205
5206 will increment @code{y} unconditionally, not just when @code{c} holds.
5207 The can usually be fixed by wrapping the macro in a do-while loop:
5208 @smallexample
5209 #define DOIT do @{ x++; y++; @} while (0)
5210 if (c)
5211 DOIT;
5212 @end smallexample
5213
5214 This warning is enabled by @option{-Wall} in C and C++.
5215
5216 @item -Wparentheses
5217 @opindex Wparentheses
5218 @opindex Wno-parentheses
5219 Warn if parentheses are omitted in certain contexts, such
5220 as when there is an assignment in a context where a truth value
5221 is expected, or when operators are nested whose precedence people
5222 often get confused about.
5223
5224 Also warn if a comparison like @code{x<=y<=z} appears; this is
5225 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5226 interpretation from that of ordinary mathematical notation.
5227
5228 Also warn for dangerous uses of the GNU extension to
5229 @code{?:} with omitted middle operand. When the condition
5230 in the @code{?}: operator is a boolean expression, the omitted value is
5231 always 1. Often programmers expect it to be a value computed
5232 inside the conditional expression instead.
5233
5234 For C++ this also warns for some cases of unnecessary parentheses in
5235 declarations, which can indicate an attempt at a function call instead
5236 of a declaration:
5237 @smallexample
5238 @{
5239 // Declares a local variable called mymutex.
5240 std::unique_lock<std::mutex> (mymutex);
5241 // User meant std::unique_lock<std::mutex> lock (mymutex);
5242 @}
5243 @end smallexample
5244
5245 This warning is enabled by @option{-Wall}.
5246
5247 @item -Wsequence-point
5248 @opindex Wsequence-point
5249 @opindex Wno-sequence-point
5250 Warn about code that may have undefined semantics because of violations
5251 of sequence point rules in the C and C++ standards.
5252
5253 The C and C++ standards define the order in which expressions in a C/C++
5254 program are evaluated in terms of @dfn{sequence points}, which represent
5255 a partial ordering between the execution of parts of the program: those
5256 executed before the sequence point, and those executed after it. These
5257 occur after the evaluation of a full expression (one which is not part
5258 of a larger expression), after the evaluation of the first operand of a
5259 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5260 function is called (but after the evaluation of its arguments and the
5261 expression denoting the called function), and in certain other places.
5262 Other than as expressed by the sequence point rules, the order of
5263 evaluation of subexpressions of an expression is not specified. All
5264 these rules describe only a partial order rather than a total order,
5265 since, for example, if two functions are called within one expression
5266 with no sequence point between them, the order in which the functions
5267 are called is not specified. However, the standards committee have
5268 ruled that function calls do not overlap.
5269
5270 It is not specified when between sequence points modifications to the
5271 values of objects take effect. Programs whose behavior depends on this
5272 have undefined behavior; the C and C++ standards specify that ``Between
5273 the previous and next sequence point an object shall have its stored
5274 value modified at most once by the evaluation of an expression.
5275 Furthermore, the prior value shall be read only to determine the value
5276 to be stored.''. If a program breaks these rules, the results on any
5277 particular implementation are entirely unpredictable.
5278
5279 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5280 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5281 diagnosed by this option, and it may give an occasional false positive
5282 result, but in general it has been found fairly effective at detecting
5283 this sort of problem in programs.
5284
5285 The C++17 standard will define the order of evaluation of operands in
5286 more cases: in particular it requires that the right-hand side of an
5287 assignment be evaluated before the left-hand side, so the above
5288 examples are no longer undefined. But this warning will still warn
5289 about them, to help people avoid writing code that is undefined in C
5290 and earlier revisions of C++.
5291
5292 The standard is worded confusingly, therefore there is some debate
5293 over the precise meaning of the sequence point rules in subtle cases.
5294 Links to discussions of the problem, including proposed formal
5295 definitions, may be found on the GCC readings page, at
5296 @uref{http://gcc.gnu.org/@/readings.html}.
5297
5298 This warning is enabled by @option{-Wall} for C and C++.
5299
5300 @item -Wno-return-local-addr
5301 @opindex Wno-return-local-addr
5302 @opindex Wreturn-local-addr
5303 Do not warn about returning a pointer (or in C++, a reference) to a
5304 variable that goes out of scope after the function returns.
5305
5306 @item -Wreturn-type
5307 @opindex Wreturn-type
5308 @opindex Wno-return-type
5309 Warn whenever a function is defined with a return type that defaults
5310 to @code{int}. Also warn about any @code{return} statement with no
5311 return value in a function whose return type is not @code{void}
5312 (falling off the end of the function body is considered returning
5313 without a value).
5314
5315 For C only, warn about a @code{return} statement with an expression in a
5316 function whose return type is @code{void}, unless the expression type is
5317 also @code{void}. As a GNU extension, the latter case is accepted
5318 without a warning unless @option{-Wpedantic} is used. Attempting
5319 to use the return value of a non-@code{void} function other than @code{main}
5320 that flows off the end by reaching the closing curly brace that terminates
5321 the function is undefined.
5322
5323 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5324 than @code{main} results in undefined behavior even when the value of
5325 the function is not used.
5326
5327 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5328
5329 @item -Wshift-count-negative
5330 @opindex Wshift-count-negative
5331 @opindex Wno-shift-count-negative
5332 Warn if shift count is negative. This warning is enabled by default.
5333
5334 @item -Wshift-count-overflow
5335 @opindex Wshift-count-overflow
5336 @opindex Wno-shift-count-overflow
5337 Warn if shift count >= width of type. This warning is enabled by default.
5338
5339 @item -Wshift-negative-value
5340 @opindex Wshift-negative-value
5341 @opindex Wno-shift-negative-value
5342 Warn if left shifting a negative value. This warning is enabled by
5343 @option{-Wextra} in C99 and C++11 modes (and newer).
5344
5345 @item -Wshift-overflow
5346 @itemx -Wshift-overflow=@var{n}
5347 @opindex Wshift-overflow
5348 @opindex Wno-shift-overflow
5349 Warn about left shift overflows. This warning is enabled by
5350 default in C99 and C++11 modes (and newer).
5351
5352 @table @gcctabopt
5353 @item -Wshift-overflow=1
5354 This is the warning level of @option{-Wshift-overflow} and is enabled
5355 by default in C99 and C++11 modes (and newer). This warning level does
5356 not warn about left-shifting 1 into the sign bit. (However, in C, such
5357 an overflow is still rejected in contexts where an integer constant expression
5358 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5359 shifts always wrap.
5360
5361 @item -Wshift-overflow=2
5362 This warning level also warns about left-shifting 1 into the sign bit,
5363 unless C++14 mode (or newer) is active.
5364 @end table
5365
5366 @item -Wswitch
5367 @opindex Wswitch
5368 @opindex Wno-switch
5369 Warn whenever a @code{switch} statement has an index of enumerated type
5370 and lacks a @code{case} for one or more of the named codes of that
5371 enumeration. (The presence of a @code{default} label prevents this
5372 warning.) @code{case} labels outside the enumeration range also
5373 provoke warnings when this option is used (even if there is a
5374 @code{default} label).
5375 This warning is enabled by @option{-Wall}.
5376
5377 @item -Wswitch-default
5378 @opindex Wswitch-default
5379 @opindex Wno-switch-default
5380 Warn whenever a @code{switch} statement does not have a @code{default}
5381 case.
5382
5383 @item -Wswitch-enum
5384 @opindex Wswitch-enum
5385 @opindex Wno-switch-enum
5386 Warn whenever a @code{switch} statement has an index of enumerated type
5387 and lacks a @code{case} for one or more of the named codes of that
5388 enumeration. @code{case} labels outside the enumeration range also
5389 provoke warnings when this option is used. The only difference
5390 between @option{-Wswitch} and this option is that this option gives a
5391 warning about an omitted enumeration code even if there is a
5392 @code{default} label.
5393
5394 @item -Wswitch-bool
5395 @opindex Wswitch-bool
5396 @opindex Wno-switch-bool
5397 Warn whenever a @code{switch} statement has an index of boolean type
5398 and the case values are outside the range of a boolean type.
5399 It is possible to suppress this warning by casting the controlling
5400 expression to a type other than @code{bool}. For example:
5401 @smallexample
5402 @group
5403 switch ((int) (a == 4))
5404 @{
5405 @dots{}
5406 @}
5407 @end group
5408 @end smallexample
5409 This warning is enabled by default for C and C++ programs.
5410
5411 @item -Wswitch-outside-range
5412 @opindex Wswitch-outside-range
5413 @opindex Wno-switch-outside-range
5414 Warn whenever a @code{switch} case has a value that is outside of its
5415 respective type range. This warning is enabled by default for
5416 C and C++ programs.
5417
5418 @item -Wswitch-unreachable
5419 @opindex Wswitch-unreachable
5420 @opindex Wno-switch-unreachable
5421 Warn whenever a @code{switch} statement contains statements between the
5422 controlling expression and the first case label, which will never be
5423 executed. For example:
5424 @smallexample
5425 @group
5426 switch (cond)
5427 @{
5428 i = 15;
5429 @dots{}
5430 case 5:
5431 @dots{}
5432 @}
5433 @end group
5434 @end smallexample
5435 @option{-Wswitch-unreachable} does not warn if the statement between the
5436 controlling expression and the first case label is just a declaration:
5437 @smallexample
5438 @group
5439 switch (cond)
5440 @{
5441 int i;
5442 @dots{}
5443 case 5:
5444 i = 5;
5445 @dots{}
5446 @}
5447 @end group
5448 @end smallexample
5449 This warning is enabled by default for C and C++ programs.
5450
5451 @item -Wsync-nand @r{(C and C++ only)}
5452 @opindex Wsync-nand
5453 @opindex Wno-sync-nand
5454 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5455 built-in functions are used. These functions changed semantics in GCC 4.4.
5456
5457 @item -Wunused-but-set-parameter
5458 @opindex Wunused-but-set-parameter
5459 @opindex Wno-unused-but-set-parameter
5460 Warn whenever a function parameter is assigned to, but otherwise unused
5461 (aside from its declaration).
5462
5463 To suppress this warning use the @code{unused} attribute
5464 (@pxref{Variable Attributes}).
5465
5466 This warning is also enabled by @option{-Wunused} together with
5467 @option{-Wextra}.
5468
5469 @item -Wunused-but-set-variable
5470 @opindex Wunused-but-set-variable
5471 @opindex Wno-unused-but-set-variable
5472 Warn whenever a local variable is assigned to, but otherwise unused
5473 (aside from its declaration).
5474 This warning is enabled by @option{-Wall}.
5475
5476 To suppress this warning use the @code{unused} attribute
5477 (@pxref{Variable Attributes}).
5478
5479 This warning is also enabled by @option{-Wunused}, which is enabled
5480 by @option{-Wall}.
5481
5482 @item -Wunused-function
5483 @opindex Wunused-function
5484 @opindex Wno-unused-function
5485 Warn whenever a static function is declared but not defined or a
5486 non-inline static function is unused.
5487 This warning is enabled by @option{-Wall}.
5488
5489 @item -Wunused-label
5490 @opindex Wunused-label
5491 @opindex Wno-unused-label
5492 Warn whenever a label is declared but not used.
5493 This warning is enabled by @option{-Wall}.
5494
5495 To suppress this warning use the @code{unused} attribute
5496 (@pxref{Variable Attributes}).
5497
5498 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5499 @opindex Wunused-local-typedefs
5500 @opindex Wno-unused-local-typedefs
5501 Warn when a typedef locally defined in a function is not used.
5502 This warning is enabled by @option{-Wall}.
5503
5504 @item -Wunused-parameter
5505 @opindex Wunused-parameter
5506 @opindex Wno-unused-parameter
5507 Warn whenever a function parameter is unused aside from its declaration.
5508
5509 To suppress this warning use the @code{unused} attribute
5510 (@pxref{Variable Attributes}).
5511
5512 @item -Wno-unused-result
5513 @opindex Wunused-result
5514 @opindex Wno-unused-result
5515 Do not warn if a caller of a function marked with attribute
5516 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5517 its return value. The default is @option{-Wunused-result}.
5518
5519 @item -Wunused-variable
5520 @opindex Wunused-variable
5521 @opindex Wno-unused-variable
5522 Warn whenever a local or static variable is unused aside from its
5523 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5524 but not for C++. This warning is enabled by @option{-Wall}.
5525
5526 To suppress this warning use the @code{unused} attribute
5527 (@pxref{Variable Attributes}).
5528
5529 @item -Wunused-const-variable
5530 @itemx -Wunused-const-variable=@var{n}
5531 @opindex Wunused-const-variable
5532 @opindex Wno-unused-const-variable
5533 Warn whenever a constant static variable is unused aside from its declaration.
5534 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5535 for C, but not for C++. In C this declares variable storage, but in C++ this
5536 is not an error since const variables take the place of @code{#define}s.
5537
5538 To suppress this warning use the @code{unused} attribute
5539 (@pxref{Variable Attributes}).
5540
5541 @table @gcctabopt
5542 @item -Wunused-const-variable=1
5543 This is the warning level that is enabled by @option{-Wunused-variable} for
5544 C. It warns only about unused static const variables defined in the main
5545 compilation unit, but not about static const variables declared in any
5546 header included.
5547
5548 @item -Wunused-const-variable=2
5549 This warning level also warns for unused constant static variables in
5550 headers (excluding system headers). This is the warning level of
5551 @option{-Wunused-const-variable} and must be explicitly requested since
5552 in C++ this isn't an error and in C it might be harder to clean up all
5553 headers included.
5554 @end table
5555
5556 @item -Wunused-value
5557 @opindex Wunused-value
5558 @opindex Wno-unused-value
5559 Warn whenever a statement computes a result that is explicitly not
5560 used. To suppress this warning cast the unused expression to
5561 @code{void}. This includes an expression-statement or the left-hand
5562 side of a comma expression that contains no side effects. For example,
5563 an expression such as @code{x[i,j]} causes a warning, while
5564 @code{x[(void)i,j]} does not.
5565
5566 This warning is enabled by @option{-Wall}.
5567
5568 @item -Wunused
5569 @opindex Wunused
5570 @opindex Wno-unused
5571 All the above @option{-Wunused} options combined.
5572
5573 In order to get a warning about an unused function parameter, you must
5574 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5575 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5576
5577 @item -Wuninitialized
5578 @opindex Wuninitialized
5579 @opindex Wno-uninitialized
5580 Warn if an automatic variable is used without first being initialized
5581 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5582 warn if a non-static reference or non-static @code{const} member
5583 appears in a class without constructors.
5584
5585 If you want to warn about code that uses the uninitialized value of the
5586 variable in its own initializer, use the @option{-Winit-self} option.
5587
5588 These warnings occur for individual uninitialized or clobbered
5589 elements of structure, union or array variables as well as for
5590 variables that are uninitialized or clobbered as a whole. They do
5591 not occur for variables or elements declared @code{volatile}. Because
5592 these warnings depend on optimization, the exact variables or elements
5593 for which there are warnings depends on the precise optimization
5594 options and version of GCC used.
5595
5596 Note that there may be no warning about a variable that is used only
5597 to compute a value that itself is never used, because such
5598 computations may be deleted by data flow analysis before the warnings
5599 are printed.
5600
5601 @item -Winvalid-memory-model
5602 @opindex Winvalid-memory-model
5603 @opindex Wno-invalid-memory-model
5604 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5605 and the C11 atomic generic functions with a memory consistency argument
5606 that is either invalid for the operation or outside the range of values
5607 of the @code{memory_order} enumeration. For example, since the
5608 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5609 defined for the relaxed, release, and sequentially consistent memory
5610 orders the following code is diagnosed:
5611
5612 @smallexample
5613 void store (int *i)
5614 @{
5615 __atomic_store_n (i, 0, memory_order_consume);
5616 @}
5617 @end smallexample
5618
5619 @option{-Winvalid-memory-model} is enabled by default.
5620
5621 @item -Wmaybe-uninitialized
5622 @opindex Wmaybe-uninitialized
5623 @opindex Wno-maybe-uninitialized
5624 For an automatic (i.e.@: local) variable, if there exists a path from the
5625 function entry to a use of the variable that is initialized, but there exist
5626 some other paths for which the variable is not initialized, the compiler
5627 emits a warning if it cannot prove the uninitialized paths are not
5628 executed at run time.
5629
5630 These warnings are only possible in optimizing compilation, because otherwise
5631 GCC does not keep track of the state of variables.
5632
5633 These warnings are made optional because GCC may not be able to determine when
5634 the code is correct in spite of appearing to have an error. Here is one
5635 example of how this can happen:
5636
5637 @smallexample
5638 @group
5639 @{
5640 int x;
5641 switch (y)
5642 @{
5643 case 1: x = 1;
5644 break;
5645 case 2: x = 4;
5646 break;
5647 case 3: x = 5;
5648 @}
5649 foo (x);
5650 @}
5651 @end group
5652 @end smallexample
5653
5654 @noindent
5655 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5656 always initialized, but GCC doesn't know this. To suppress the
5657 warning, you need to provide a default case with assert(0) or
5658 similar code.
5659
5660 @cindex @code{longjmp} warnings
5661 This option also warns when a non-volatile automatic variable might be
5662 changed by a call to @code{longjmp}.
5663 The compiler sees only the calls to @code{setjmp}. It cannot know
5664 where @code{longjmp} will be called; in fact, a signal handler could
5665 call it at any point in the code. As a result, you may get a warning
5666 even when there is in fact no problem because @code{longjmp} cannot
5667 in fact be called at the place that would cause a problem.
5668
5669 Some spurious warnings can be avoided if you declare all the functions
5670 you use that never return as @code{noreturn}. @xref{Function
5671 Attributes}.
5672
5673 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5674
5675 @item -Wunknown-pragmas
5676 @opindex Wunknown-pragmas
5677 @opindex Wno-unknown-pragmas
5678 @cindex warning for unknown pragmas
5679 @cindex unknown pragmas, warning
5680 @cindex pragmas, warning of unknown
5681 Warn when a @code{#pragma} directive is encountered that is not understood by
5682 GCC@. If this command-line option is used, warnings are even issued
5683 for unknown pragmas in system header files. This is not the case if
5684 the warnings are only enabled by the @option{-Wall} command-line option.
5685
5686 @item -Wno-pragmas
5687 @opindex Wno-pragmas
5688 @opindex Wpragmas
5689 Do not warn about misuses of pragmas, such as incorrect parameters,
5690 invalid syntax, or conflicts between pragmas. See also
5691 @option{-Wunknown-pragmas}.
5692
5693 @item -Wno-prio-ctor-dtor
5694 @opindex Wno-prio-ctor-dtor
5695 @opindex Wprio-ctor-dtor
5696 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5697 The use of constructor and destructor attributes allow you to assign a
5698 priority to the constructor/destructor to control its order of execution
5699 before @code{main} is called or after it returns. The priority values must be
5700 greater than 100 as the compiler reserves priority values between 0--100 for
5701 the implementation.
5702
5703 @item -Wstrict-aliasing
5704 @opindex Wstrict-aliasing
5705 @opindex Wno-strict-aliasing
5706 This option is only active when @option{-fstrict-aliasing} is active.
5707 It warns about code that might break the strict aliasing rules that the
5708 compiler is using for optimization. The warning does not catch all
5709 cases, but does attempt to catch the more common pitfalls. It is
5710 included in @option{-Wall}.
5711 It is equivalent to @option{-Wstrict-aliasing=3}
5712
5713 @item -Wstrict-aliasing=n
5714 @opindex Wstrict-aliasing=n
5715 This option is only active when @option{-fstrict-aliasing} is active.
5716 It warns about code that might break the strict aliasing rules that the
5717 compiler is using for optimization.
5718 Higher levels correspond to higher accuracy (fewer false positives).
5719 Higher levels also correspond to more effort, similar to the way @option{-O}
5720 works.
5721 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5722
5723 Level 1: Most aggressive, quick, least accurate.
5724 Possibly useful when higher levels
5725 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5726 false negatives. However, it has many false positives.
5727 Warns for all pointer conversions between possibly incompatible types,
5728 even if never dereferenced. Runs in the front end only.
5729
5730 Level 2: Aggressive, quick, not too precise.
5731 May still have many false positives (not as many as level 1 though),
5732 and few false negatives (but possibly more than level 1).
5733 Unlike level 1, it only warns when an address is taken. Warns about
5734 incomplete types. Runs in the front end only.
5735
5736 Level 3 (default for @option{-Wstrict-aliasing}):
5737 Should have very few false positives and few false
5738 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5739 Takes care of the common pun+dereference pattern in the front end:
5740 @code{*(int*)&some_float}.
5741 If optimization is enabled, it also runs in the back end, where it deals
5742 with multiple statement cases using flow-sensitive points-to information.
5743 Only warns when the converted pointer is dereferenced.
5744 Does not warn about incomplete types.
5745
5746 @item -Wstrict-overflow
5747 @itemx -Wstrict-overflow=@var{n}
5748 @opindex Wstrict-overflow
5749 @opindex Wno-strict-overflow
5750 This option is only active when signed overflow is undefined.
5751 It warns about cases where the compiler optimizes based on the
5752 assumption that signed overflow does not occur. Note that it does not
5753 warn about all cases where the code might overflow: it only warns
5754 about cases where the compiler implements some optimization. Thus
5755 this warning depends on the optimization level.
5756
5757 An optimization that assumes that signed overflow does not occur is
5758 perfectly safe if the values of the variables involved are such that
5759 overflow never does, in fact, occur. Therefore this warning can
5760 easily give a false positive: a warning about code that is not
5761 actually a problem. To help focus on important issues, several
5762 warning levels are defined. No warnings are issued for the use of
5763 undefined signed overflow when estimating how many iterations a loop
5764 requires, in particular when determining whether a loop will be
5765 executed at all.
5766
5767 @table @gcctabopt
5768 @item -Wstrict-overflow=1
5769 Warn about cases that are both questionable and easy to avoid. For
5770 example the compiler simplifies
5771 @code{x + 1 > x} to @code{1}. This level of
5772 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5773 are not, and must be explicitly requested.
5774
5775 @item -Wstrict-overflow=2
5776 Also warn about other cases where a comparison is simplified to a
5777 constant. For example: @code{abs (x) >= 0}. This can only be
5778 simplified when signed integer overflow is undefined, because
5779 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5780 zero. @option{-Wstrict-overflow} (with no level) is the same as
5781 @option{-Wstrict-overflow=2}.
5782
5783 @item -Wstrict-overflow=3
5784 Also warn about other cases where a comparison is simplified. For
5785 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5786
5787 @item -Wstrict-overflow=4
5788 Also warn about other simplifications not covered by the above cases.
5789 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5790
5791 @item -Wstrict-overflow=5
5792 Also warn about cases where the compiler reduces the magnitude of a
5793 constant involved in a comparison. For example: @code{x + 2 > y} is
5794 simplified to @code{x + 1 >= y}. This is reported only at the
5795 highest warning level because this simplification applies to many
5796 comparisons, so this warning level gives a very large number of
5797 false positives.
5798 @end table
5799
5800 @item -Wstringop-overflow
5801 @itemx -Wstringop-overflow=@var{type}
5802 @opindex Wstringop-overflow
5803 @opindex Wno-stringop-overflow
5804 Warn for calls to string manipulation functions such as @code{memcpy} and
5805 @code{strcpy} that are determined to overflow the destination buffer. The
5806 optional argument is one greater than the type of Object Size Checking to
5807 perform to determine the size of the destination. @xref{Object Size Checking}.
5808 The argument is meaningful only for functions that operate on character arrays
5809 but not for raw memory functions like @code{memcpy} which always make use
5810 of Object Size type-0. The option also warns for calls that specify a size
5811 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5812 The option produces the best results with optimization enabled but can detect
5813 a small subset of simple buffer overflows even without optimization in
5814 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5815 correspond to the standard functions. In any case, the option warns about
5816 just a subset of buffer overflows detected by the corresponding overflow
5817 checking built-ins. For example, the option will issue a warning for
5818 the @code{strcpy} call below because it copies at least 5 characters
5819 (the string @code{"blue"} including the terminating NUL) into the buffer
5820 of size 4.
5821
5822 @smallexample
5823 enum Color @{ blue, purple, yellow @};
5824 const char* f (enum Color clr)
5825 @{
5826 static char buf [4];
5827 const char *str;
5828 switch (clr)
5829 @{
5830 case blue: str = "blue"; break;
5831 case purple: str = "purple"; break;
5832 case yellow: str = "yellow"; break;
5833 @}
5834
5835 return strcpy (buf, str); // warning here
5836 @}
5837 @end smallexample
5838
5839 Option @option{-Wstringop-overflow=2} is enabled by default.
5840
5841 @table @gcctabopt
5842 @item -Wstringop-overflow
5843 @itemx -Wstringop-overflow=1
5844 @opindex Wstringop-overflow
5845 @opindex Wno-stringop-overflow
5846 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5847 to determine the sizes of destination objects. This is the default setting
5848 of the option. At this setting the option will not warn for writes past
5849 the end of subobjects of larger objects accessed by pointers unless the
5850 size of the largest surrounding object is known. When the destination may
5851 be one of several objects it is assumed to be the largest one of them. On
5852 Linux systems, when optimization is enabled at this setting the option warns
5853 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5854 a non-zero value.
5855
5856 @item -Wstringop-overflow=2
5857 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5858 to determine the sizes of destination objects. At this setting the option
5859 will warn about overflows when writing to members of the largest complete
5860 objects whose exact size is known. It will, however, not warn for excessive
5861 writes to the same members of unknown objects referenced by pointers since
5862 they may point to arrays containing unknown numbers of elements.
5863
5864 @item -Wstringop-overflow=3
5865 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5866 to determine the sizes of destination objects. At this setting the option
5867 warns about overflowing the smallest object or data member. This is the
5868 most restrictive setting of the option that may result in warnings for safe
5869 code.
5870
5871 @item -Wstringop-overflow=4
5872 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5873 to determine the sizes of destination objects. At this setting the option
5874 will warn about overflowing any data members, and when the destination is
5875 one of several objects it uses the size of the largest of them to decide
5876 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5877 setting of the option may result in warnings for benign code.
5878 @end table
5879
5880 @item -Wstringop-truncation
5881 @opindex Wstringop-truncation
5882 @opindex Wno-stringop-truncation
5883 Warn for calls to bounded string manipulation functions such as @code{strncat},
5884 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5885 or leave the destination unchanged.
5886
5887 In the following example, the call to @code{strncat} specifies a bound that
5888 is less than the length of the source string. As a result, the copy of
5889 the source will be truncated and so the call is diagnosed. To avoid the
5890 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5891
5892 @smallexample
5893 void append (char *buf, size_t bufsize)
5894 @{
5895 strncat (buf, ".txt", 3);
5896 @}
5897 @end smallexample
5898
5899 As another example, the following call to @code{strncpy} results in copying
5900 to @code{d} just the characters preceding the terminating NUL, without
5901 appending the NUL to the end. Assuming the result of @code{strncpy} is
5902 necessarily a NUL-terminated string is a common mistake, and so the call
5903 is diagnosed. To avoid the warning when the result is not expected to be
5904 NUL-terminated, call @code{memcpy} instead.
5905
5906 @smallexample
5907 void copy (char *d, const char *s)
5908 @{
5909 strncpy (d, s, strlen (s));
5910 @}
5911 @end smallexample
5912
5913 In the following example, the call to @code{strncpy} specifies the size
5914 of the destination buffer as the bound. If the length of the source
5915 string is equal to or greater than this size the result of the copy will
5916 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5917 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5918 element of the buffer to @code{NUL}.
5919
5920 @smallexample
5921 void copy (const char *s)
5922 @{
5923 char buf[80];
5924 strncpy (buf, s, sizeof buf);
5925 @dots{}
5926 @}
5927 @end smallexample
5928
5929 In situations where a character array is intended to store a sequence
5930 of bytes with no terminating @code{NUL} such an array may be annotated
5931 with attribute @code{nonstring} to avoid this warning. Such arrays,
5932 however, are not suitable arguments to functions that expect
5933 @code{NUL}-terminated strings. To help detect accidental misuses of
5934 such arrays GCC issues warnings unless it can prove that the use is
5935 safe. @xref{Common Variable Attributes}.
5936
5937 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5938 @opindex Wsuggest-attribute=
5939 @opindex Wno-suggest-attribute=
5940 Warn for cases where adding an attribute may be beneficial. The
5941 attributes currently supported are listed below.
5942
5943 @table @gcctabopt
5944 @item -Wsuggest-attribute=pure
5945 @itemx -Wsuggest-attribute=const
5946 @itemx -Wsuggest-attribute=noreturn
5947 @itemx -Wmissing-noreturn
5948 @itemx -Wsuggest-attribute=malloc
5949 @opindex Wsuggest-attribute=pure
5950 @opindex Wno-suggest-attribute=pure
5951 @opindex Wsuggest-attribute=const
5952 @opindex Wno-suggest-attribute=const
5953 @opindex Wsuggest-attribute=noreturn
5954 @opindex Wno-suggest-attribute=noreturn
5955 @opindex Wmissing-noreturn
5956 @opindex Wno-missing-noreturn
5957 @opindex Wsuggest-attribute=malloc
5958 @opindex Wno-suggest-attribute=malloc
5959
5960 Warn about functions that might be candidates for attributes
5961 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5962 only warns for functions visible in other compilation units or (in the case of
5963 @code{pure} and @code{const}) if it cannot prove that the function returns
5964 normally. A function returns normally if it doesn't contain an infinite loop or
5965 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5966 requires option @option{-fipa-pure-const}, which is enabled by default at
5967 @option{-O} and higher. Higher optimization levels improve the accuracy
5968 of the analysis.
5969
5970 @item -Wsuggest-attribute=format
5971 @itemx -Wmissing-format-attribute
5972 @opindex Wsuggest-attribute=format
5973 @opindex Wmissing-format-attribute
5974 @opindex Wno-suggest-attribute=format
5975 @opindex Wno-missing-format-attribute
5976 @opindex Wformat
5977 @opindex Wno-format
5978
5979 Warn about function pointers that might be candidates for @code{format}
5980 attributes. Note these are only possible candidates, not absolute ones.
5981 GCC guesses that function pointers with @code{format} attributes that
5982 are used in assignment, initialization, parameter passing or return
5983 statements should have a corresponding @code{format} attribute in the
5984 resulting type. I.e.@: the left-hand side of the assignment or
5985 initialization, the type of the parameter variable, or the return type
5986 of the containing function respectively should also have a @code{format}
5987 attribute to avoid the warning.
5988
5989 GCC also warns about function definitions that might be
5990 candidates for @code{format} attributes. Again, these are only
5991 possible candidates. GCC guesses that @code{format} attributes
5992 might be appropriate for any function that calls a function like
5993 @code{vprintf} or @code{vscanf}, but this might not always be the
5994 case, and some functions for which @code{format} attributes are
5995 appropriate may not be detected.
5996
5997 @item -Wsuggest-attribute=cold
5998 @opindex Wsuggest-attribute=cold
5999 @opindex Wno-suggest-attribute=cold
6000
6001 Warn about functions that might be candidates for @code{cold} attribute. This
6002 is based on static detection and generally will only warn about functions which
6003 always leads to a call to another @code{cold} function such as wrappers of
6004 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
6005 @end table
6006
6007 @item -Wsuggest-final-types
6008 @opindex Wno-suggest-final-types
6009 @opindex Wsuggest-final-types
6010 Warn about types with virtual methods where code quality would be improved
6011 if the type were declared with the C++11 @code{final} specifier,
6012 or, if possible,
6013 declared in an anonymous namespace. This allows GCC to more aggressively
6014 devirtualize the polymorphic calls. This warning is more effective with
6015 link-time optimization,
6016 where the information about the class hierarchy graph is
6017 more complete.
6018
6019 @item -Wsuggest-final-methods
6020 @opindex Wno-suggest-final-methods
6021 @opindex Wsuggest-final-methods
6022 Warn about virtual methods where code quality would be improved if the method
6023 were declared with the C++11 @code{final} specifier,
6024 or, if possible, its type were
6025 declared in an anonymous namespace or with the @code{final} specifier.
6026 This warning is
6027 more effective with link-time optimization, where the information about the
6028 class hierarchy graph is more complete. It is recommended to first consider
6029 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
6030 annotations.
6031
6032 @item -Wsuggest-override
6033 Warn about overriding virtual functions that are not marked with the override
6034 keyword.
6035
6036 @item -Walloc-zero
6037 @opindex Wno-alloc-zero
6038 @opindex Walloc-zero
6039 Warn about calls to allocation functions decorated with attribute
6040 @code{alloc_size} that specify zero bytes, including those to the built-in
6041 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
6042 @code{malloc}, and @code{realloc}. Because the behavior of these functions
6043 when called with a zero size differs among implementations (and in the case
6044 of @code{realloc} has been deprecated) relying on it may result in subtle
6045 portability bugs and should be avoided.
6046
6047 @item -Walloc-size-larger-than=@var{byte-size}
6048 @opindex Walloc-size-larger-than=
6049 @opindex Wno-alloc-size-larger-than
6050 Warn about calls to functions decorated with attribute @code{alloc_size}
6051 that attempt to allocate objects larger than the specified number of bytes,
6052 or where the result of the size computation in an integer type with infinite
6053 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6054 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6055 Warnings controlled by the option can be disabled either by specifying
6056 @var{byte-size} of @samp{SIZE_MAX} or more or by
6057 @option{-Wno-alloc-size-larger-than}.
6058 @xref{Function Attributes}.
6059
6060 @item -Wno-alloc-size-larger-than
6061 @opindex Wno-alloc-size-larger-than
6062 Disable @option{-Walloc-size-larger-than=} warnings. The option is
6063 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6064 larger.
6065
6066 @item -Walloca
6067 @opindex Wno-alloca
6068 @opindex Walloca
6069 This option warns on all uses of @code{alloca} in the source.
6070
6071 @item -Walloca-larger-than=@var{byte-size}
6072 @opindex Walloca-larger-than=
6073 @opindex Wno-alloca-larger-than
6074 This option warns on calls to @code{alloca} with an integer argument whose
6075 value is either zero, or that is not bounded by a controlling predicate
6076 that limits its value to at most @var{byte-size}. It also warns for calls
6077 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6078 types are considered unbounded even if they appear to be constrained to
6079 the expected range.
6080
6081 For example, a bounded case of @code{alloca} could be:
6082
6083 @smallexample
6084 void func (size_t n)
6085 @{
6086 void *p;
6087 if (n <= 1000)
6088 p = alloca (n);
6089 else
6090 p = malloc (n);
6091 f (p);
6092 @}
6093 @end smallexample
6094
6095 In the above example, passing @code{-Walloca-larger-than=1000} would not
6096 issue a warning because the call to @code{alloca} is known to be at most
6097 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6098 the compiler would emit a warning.
6099
6100 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6101 controlling predicate constraining its integer argument. For example:
6102
6103 @smallexample
6104 void func ()
6105 @{
6106 void *p = alloca (n);
6107 f (p);
6108 @}
6109 @end smallexample
6110
6111 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6112 a warning, but this time because of the lack of bounds checking.
6113
6114 Note, that even seemingly correct code involving signed integers could
6115 cause a warning:
6116
6117 @smallexample
6118 void func (signed int n)
6119 @{
6120 if (n < 500)
6121 @{
6122 p = alloca (n);
6123 f (p);
6124 @}
6125 @}
6126 @end smallexample
6127
6128 In the above example, @var{n} could be negative, causing a larger than
6129 expected argument to be implicitly cast into the @code{alloca} call.
6130
6131 This option also warns when @code{alloca} is used in a loop.
6132
6133 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6134 but is usually only effective when @option{-ftree-vrp} is active (default
6135 for @option{-O2} and above).
6136
6137 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6138
6139 @item -Wno-alloca-larger-than
6140 @opindex Wno-alloca-larger-than
6141 Disable @option{-Walloca-larger-than=} warnings. The option is
6142 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6143
6144 @item -Warray-bounds
6145 @itemx -Warray-bounds=@var{n}
6146 @opindex Wno-array-bounds
6147 @opindex Warray-bounds
6148 This option is only active when @option{-ftree-vrp} is active
6149 (default for @option{-O2} and above). It warns about subscripts to arrays
6150 that are always out of bounds. This warning is enabled by @option{-Wall}.
6151
6152 @table @gcctabopt
6153 @item -Warray-bounds=1
6154 This is the warning level of @option{-Warray-bounds} and is enabled
6155 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6156
6157 @item -Warray-bounds=2
6158 This warning level also warns about out of bounds access for
6159 arrays at the end of a struct and for arrays accessed through
6160 pointers. This warning level may give a larger number of
6161 false positives and is deactivated by default.
6162 @end table
6163
6164 @item -Wattribute-alias=@var{n}
6165 @itemx -Wno-attribute-alias
6166 @opindex Wattribute-alias
6167 @opindex Wno-attribute-alias
6168 Warn about declarations using the @code{alias} and similar attributes whose
6169 target is incompatible with the type of the alias.
6170 @xref{Function Attributes,,Declaring Attributes of Functions}.
6171
6172 @table @gcctabopt
6173 @item -Wattribute-alias=1
6174 The default warning level of the @option{-Wattribute-alias} option diagnoses
6175 incompatibilities between the type of the alias declaration and that of its
6176 target. Such incompatibilities are typically indicative of bugs.
6177
6178 @item -Wattribute-alias=2
6179
6180 At this level @option{-Wattribute-alias} also diagnoses cases where
6181 the attributes of the alias declaration are more restrictive than the
6182 attributes applied to its target. These mismatches can potentially
6183 result in incorrect code generation. In other cases they may be
6184 benign and could be resolved simply by adding the missing attribute to
6185 the target. For comparison, see the @option{-Wmissing-attributes}
6186 option, which controls diagnostics when the alias declaration is less
6187 restrictive than the target, rather than more restrictive.
6188
6189 Attributes considered include @code{alloc_align}, @code{alloc_size},
6190 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6191 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6192 @code{returns_nonnull}, and @code{returns_twice}.
6193 @end table
6194
6195 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6196 This is the default. You can disable these warnings with either
6197 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6198
6199 @item -Wbool-compare
6200 @opindex Wno-bool-compare
6201 @opindex Wbool-compare
6202 Warn about boolean expression compared with an integer value different from
6203 @code{true}/@code{false}. For instance, the following comparison is
6204 always false:
6205 @smallexample
6206 int n = 5;
6207 @dots{}
6208 if ((n > 1) == 2) @{ @dots{} @}
6209 @end smallexample
6210 This warning is enabled by @option{-Wall}.
6211
6212 @item -Wbool-operation
6213 @opindex Wno-bool-operation
6214 @opindex Wbool-operation
6215 Warn about suspicious operations on expressions of a boolean type. For
6216 instance, bitwise negation of a boolean is very likely a bug in the program.
6217 For C, this warning also warns about incrementing or decrementing a boolean,
6218 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6219 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6220
6221 This warning is enabled by @option{-Wall}.
6222
6223 @item -Wduplicated-branches
6224 @opindex Wno-duplicated-branches
6225 @opindex Wduplicated-branches
6226 Warn when an if-else has identical branches. This warning detects cases like
6227 @smallexample
6228 if (p != NULL)
6229 return 0;
6230 else
6231 return 0;
6232 @end smallexample
6233 It doesn't warn when both branches contain just a null statement. This warning
6234 also warn for conditional operators:
6235 @smallexample
6236 int i = x ? *p : *p;
6237 @end smallexample
6238
6239 @item -Wduplicated-cond
6240 @opindex Wno-duplicated-cond
6241 @opindex Wduplicated-cond
6242 Warn about duplicated conditions in an if-else-if chain. For instance,
6243 warn for the following code:
6244 @smallexample
6245 if (p->q != NULL) @{ @dots{} @}
6246 else if (p->q != NULL) @{ @dots{} @}
6247 @end smallexample
6248
6249 @item -Wframe-address
6250 @opindex Wno-frame-address
6251 @opindex Wframe-address
6252 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6253 is called with an argument greater than 0. Such calls may return indeterminate
6254 values or crash the program. The warning is included in @option{-Wall}.
6255
6256 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6257 @opindex Wno-discarded-qualifiers
6258 @opindex Wdiscarded-qualifiers
6259 Do not warn if type qualifiers on pointers are being discarded.
6260 Typically, the compiler warns if a @code{const char *} variable is
6261 passed to a function that takes a @code{char *} parameter. This option
6262 can be used to suppress such a warning.
6263
6264 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6265 @opindex Wno-discarded-array-qualifiers
6266 @opindex Wdiscarded-array-qualifiers
6267 Do not warn if type qualifiers on arrays which are pointer targets
6268 are being discarded. Typically, the compiler warns if a
6269 @code{const int (*)[]} variable is passed to a function that
6270 takes a @code{int (*)[]} parameter. This option can be used to
6271 suppress such a warning.
6272
6273 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6274 @opindex Wno-incompatible-pointer-types
6275 @opindex Wincompatible-pointer-types
6276 Do not warn when there is a conversion between pointers that have incompatible
6277 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6278 which warns for pointer argument passing or assignment with different
6279 signedness.
6280
6281 @item -Wno-int-conversion @r{(C and Objective-C only)}
6282 @opindex Wno-int-conversion
6283 @opindex Wint-conversion
6284 Do not warn about incompatible integer to pointer and pointer to integer
6285 conversions. This warning is about implicit conversions; for explicit
6286 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6287 @option{-Wno-pointer-to-int-cast} may be used.
6288
6289 @item -Wno-div-by-zero
6290 @opindex Wno-div-by-zero
6291 @opindex Wdiv-by-zero
6292 Do not warn about compile-time integer division by zero. Floating-point
6293 division by zero is not warned about, as it can be a legitimate way of
6294 obtaining infinities and NaNs.
6295
6296 @item -Wsystem-headers
6297 @opindex Wsystem-headers
6298 @opindex Wno-system-headers
6299 @cindex warnings from system headers
6300 @cindex system headers, warnings from
6301 Print warning messages for constructs found in system header files.
6302 Warnings from system headers are normally suppressed, on the assumption
6303 that they usually do not indicate real problems and would only make the
6304 compiler output harder to read. Using this command-line option tells
6305 GCC to emit warnings from system headers as if they occurred in user
6306 code. However, note that using @option{-Wall} in conjunction with this
6307 option does @emph{not} warn about unknown pragmas in system
6308 headers---for that, @option{-Wunknown-pragmas} must also be used.
6309
6310 @item -Wtautological-compare
6311 @opindex Wtautological-compare
6312 @opindex Wno-tautological-compare
6313 Warn if a self-comparison always evaluates to true or false. This
6314 warning detects various mistakes such as:
6315 @smallexample
6316 int i = 1;
6317 @dots{}
6318 if (i > i) @{ @dots{} @}
6319 @end smallexample
6320
6321 This warning also warns about bitwise comparisons that always evaluate
6322 to true or false, for instance:
6323 @smallexample
6324 if ((a & 16) == 10) @{ @dots{} @}
6325 @end smallexample
6326 will always be false.
6327
6328 This warning is enabled by @option{-Wall}.
6329
6330 @item -Wtrampolines
6331 @opindex Wtrampolines
6332 @opindex Wno-trampolines
6333 Warn about trampolines generated for pointers to nested functions.
6334 A trampoline is a small piece of data or code that is created at run
6335 time on the stack when the address of a nested function is taken, and is
6336 used to call the nested function indirectly. For some targets, it is
6337 made up of data only and thus requires no special treatment. But, for
6338 most targets, it is made up of code and thus requires the stack to be
6339 made executable in order for the program to work properly.
6340
6341 @item -Wfloat-equal
6342 @opindex Wfloat-equal
6343 @opindex Wno-float-equal
6344 Warn if floating-point values are used in equality comparisons.
6345
6346 The idea behind this is that sometimes it is convenient (for the
6347 programmer) to consider floating-point values as approximations to
6348 infinitely precise real numbers. If you are doing this, then you need
6349 to compute (by analyzing the code, or in some other way) the maximum or
6350 likely maximum error that the computation introduces, and allow for it
6351 when performing comparisons (and when producing output, but that's a
6352 different problem). In particular, instead of testing for equality, you
6353 should check to see whether the two values have ranges that overlap; and
6354 this is done with the relational operators, so equality comparisons are
6355 probably mistaken.
6356
6357 @item -Wtraditional @r{(C and Objective-C only)}
6358 @opindex Wtraditional
6359 @opindex Wno-traditional
6360 Warn about certain constructs that behave differently in traditional and
6361 ISO C@. Also warn about ISO C constructs that have no traditional C
6362 equivalent, and/or problematic constructs that should be avoided.
6363
6364 @itemize @bullet
6365 @item
6366 Macro parameters that appear within string literals in the macro body.
6367 In traditional C macro replacement takes place within string literals,
6368 but in ISO C it does not.
6369
6370 @item
6371 In traditional C, some preprocessor directives did not exist.
6372 Traditional preprocessors only considered a line to be a directive
6373 if the @samp{#} appeared in column 1 on the line. Therefore
6374 @option{-Wtraditional} warns about directives that traditional C
6375 understands but ignores because the @samp{#} does not appear as the
6376 first character on the line. It also suggests you hide directives like
6377 @code{#pragma} not understood by traditional C by indenting them. Some
6378 traditional implementations do not recognize @code{#elif}, so this option
6379 suggests avoiding it altogether.
6380
6381 @item
6382 A function-like macro that appears without arguments.
6383
6384 @item
6385 The unary plus operator.
6386
6387 @item
6388 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6389 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6390 constants.) Note, these suffixes appear in macros defined in the system
6391 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6392 Use of these macros in user code might normally lead to spurious
6393 warnings, however GCC's integrated preprocessor has enough context to
6394 avoid warning in these cases.
6395
6396 @item
6397 A function declared external in one block and then used after the end of
6398 the block.
6399
6400 @item
6401 A @code{switch} statement has an operand of type @code{long}.
6402
6403 @item
6404 A non-@code{static} function declaration follows a @code{static} one.
6405 This construct is not accepted by some traditional C compilers.
6406
6407 @item
6408 The ISO type of an integer constant has a different width or
6409 signedness from its traditional type. This warning is only issued if
6410 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6411 typically represent bit patterns, are not warned about.
6412
6413 @item
6414 Usage of ISO string concatenation is detected.
6415
6416 @item
6417 Initialization of automatic aggregates.
6418
6419 @item
6420 Identifier conflicts with labels. Traditional C lacks a separate
6421 namespace for labels.
6422
6423 @item
6424 Initialization of unions. If the initializer is zero, the warning is
6425 omitted. This is done under the assumption that the zero initializer in
6426 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6427 initializer warnings and relies on default initialization to zero in the
6428 traditional C case.
6429
6430 @item
6431 Conversions by prototypes between fixed/floating-point values and vice
6432 versa. The absence of these prototypes when compiling with traditional
6433 C causes serious problems. This is a subset of the possible
6434 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6435
6436 @item
6437 Use of ISO C style function definitions. This warning intentionally is
6438 @emph{not} issued for prototype declarations or variadic functions
6439 because these ISO C features appear in your code when using
6440 libiberty's traditional C compatibility macros, @code{PARAMS} and
6441 @code{VPARAMS}. This warning is also bypassed for nested functions
6442 because that feature is already a GCC extension and thus not relevant to
6443 traditional C compatibility.
6444 @end itemize
6445
6446 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6447 @opindex Wtraditional-conversion
6448 @opindex Wno-traditional-conversion
6449 Warn if a prototype causes a type conversion that is different from what
6450 would happen to the same argument in the absence of a prototype. This
6451 includes conversions of fixed point to floating and vice versa, and
6452 conversions changing the width or signedness of a fixed-point argument
6453 except when the same as the default promotion.
6454
6455 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6456 @opindex Wdeclaration-after-statement
6457 @opindex Wno-declaration-after-statement
6458 Warn when a declaration is found after a statement in a block. This
6459 construct, known from C++, was introduced with ISO C99 and is by default
6460 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6461
6462 @item -Wshadow
6463 @opindex Wshadow
6464 @opindex Wno-shadow
6465 Warn whenever a local variable or type declaration shadows another
6466 variable, parameter, type, class member (in C++), or instance variable
6467 (in Objective-C) or whenever a built-in function is shadowed. Note
6468 that in C++, the compiler warns if a local variable shadows an
6469 explicit typedef, but not if it shadows a struct/class/enum.
6470 Same as @option{-Wshadow=global}.
6471
6472 @item -Wno-shadow-ivar @r{(Objective-C only)}
6473 @opindex Wno-shadow-ivar
6474 @opindex Wshadow-ivar
6475 Do not warn whenever a local variable shadows an instance variable in an
6476 Objective-C method.
6477
6478 @item -Wshadow=global
6479 @opindex Wshadow=local
6480 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6481
6482 @item -Wshadow=local
6483 @opindex Wshadow=local
6484 Warn when a local variable shadows another local variable or parameter.
6485 This warning is enabled by @option{-Wshadow=global}.
6486
6487 @item -Wshadow=compatible-local
6488 @opindex Wshadow=compatible-local
6489 Warn when a local variable shadows another local variable or parameter
6490 whose type is compatible with that of the shadowing variable. In C++,
6491 type compatibility here means the type of the shadowing variable can be
6492 converted to that of the shadowed variable. The creation of this flag
6493 (in addition to @option{-Wshadow=local}) is based on the idea that when
6494 a local variable shadows another one of incompatible type, it is most
6495 likely intentional, not a bug or typo, as shown in the following example:
6496
6497 @smallexample
6498 @group
6499 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6500 @{
6501 for (int i = 0; i < N; ++i)
6502 @{
6503 ...
6504 @}
6505 ...
6506 @}
6507 @end group
6508 @end smallexample
6509
6510 Since the two variable @code{i} in the example above have incompatible types,
6511 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6512 Because their types are incompatible, if a programmer accidentally uses one
6513 in place of the other, type checking will catch that and emit an error or
6514 warning. So not warning (about shadowing) in this case will not lead to
6515 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6516 possibly reduce the number of warnings triggered by intentional shadowing.
6517
6518 This warning is enabled by @option{-Wshadow=local}.
6519
6520 @item -Wlarger-than=@var{byte-size}
6521 @opindex Wlarger-than=
6522 @opindex Wlarger-than-@var{byte-size}
6523 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6524 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6525 Warnings controlled by the option can be disabled either by specifying
6526 @var{byte-size} of @samp{SIZE_MAX} or more or by
6527 @option{-Wno-larger-than}.
6528
6529 @item -Wno-larger-than
6530 @opindex Wno-larger-than
6531 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6532 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6533
6534 @item -Wframe-larger-than=@var{byte-size}
6535 @opindex Wframe-larger-than=
6536 @opindex Wno-frame-larger-than
6537 Warn if the size of a function frame exceeds @var{byte-size}.
6538 The computation done to determine the stack frame size is approximate
6539 and not conservative.
6540 The actual requirements may be somewhat greater than @var{byte-size}
6541 even if you do not get a warning. In addition, any space allocated
6542 via @code{alloca}, variable-length arrays, or related constructs
6543 is not included by the compiler when determining
6544 whether or not to issue a warning.
6545 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6546 Warnings controlled by the option can be disabled either by specifying
6547 @var{byte-size} of @samp{SIZE_MAX} or more or by
6548 @option{-Wno-frame-larger-than}.
6549
6550 @item -Wno-frame-larger-than
6551 @opindex Wno-frame-larger-than
6552 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6553 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6554
6555 @item -Wno-free-nonheap-object
6556 @opindex Wno-free-nonheap-object
6557 @opindex Wfree-nonheap-object
6558 Do not warn when attempting to free an object that was not allocated
6559 on the heap.
6560
6561 @item -Wstack-usage=@var{byte-size}
6562 @opindex Wstack-usage
6563 @opindex Wno-stack-usage
6564 Warn if the stack usage of a function might exceed @var{byte-size}.
6565 The computation done to determine the stack usage is conservative.
6566 Any space allocated via @code{alloca}, variable-length arrays, or related
6567 constructs is included by the compiler when determining whether or not to
6568 issue a warning.
6569
6570 The message is in keeping with the output of @option{-fstack-usage}.
6571
6572 @itemize
6573 @item
6574 If the stack usage is fully static but exceeds the specified amount, it's:
6575
6576 @smallexample
6577 warning: stack usage is 1120 bytes
6578 @end smallexample
6579 @item
6580 If the stack usage is (partly) dynamic but bounded, it's:
6581
6582 @smallexample
6583 warning: stack usage might be 1648 bytes
6584 @end smallexample
6585 @item
6586 If the stack usage is (partly) dynamic and not bounded, it's:
6587
6588 @smallexample
6589 warning: stack usage might be unbounded
6590 @end smallexample
6591 @end itemize
6592
6593 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6594 Warnings controlled by the option can be disabled either by specifying
6595 @var{byte-size} of @samp{SIZE_MAX} or more or by
6596 @option{-Wno-stack-usage}.
6597
6598 @item -Wno-stack-usage
6599 @opindex Wno-stack-usage
6600 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6601 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6602
6603 @item -Wunsafe-loop-optimizations
6604 @opindex Wunsafe-loop-optimizations
6605 @opindex Wno-unsafe-loop-optimizations
6606 Warn if the loop cannot be optimized because the compiler cannot
6607 assume anything on the bounds of the loop indices. With
6608 @option{-funsafe-loop-optimizations} warn if the compiler makes
6609 such assumptions.
6610
6611 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6612 @opindex Wno-pedantic-ms-format
6613 @opindex Wpedantic-ms-format
6614 When used in combination with @option{-Wformat}
6615 and @option{-pedantic} without GNU extensions, this option
6616 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6617 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6618 which depend on the MS runtime.
6619
6620 @item -Waligned-new
6621 @opindex Waligned-new
6622 @opindex Wno-aligned-new
6623 Warn about a new-expression of a type that requires greater alignment
6624 than the @code{alignof(std::max_align_t)} but uses an allocation
6625 function without an explicit alignment parameter. This option is
6626 enabled by @option{-Wall}.
6627
6628 Normally this only warns about global allocation functions, but
6629 @option{-Waligned-new=all} also warns about class member allocation
6630 functions.
6631
6632 @item -Wplacement-new
6633 @itemx -Wplacement-new=@var{n}
6634 @opindex Wplacement-new
6635 @opindex Wno-placement-new
6636 Warn about placement new expressions with undefined behavior, such as
6637 constructing an object in a buffer that is smaller than the type of
6638 the object. For example, the placement new expression below is diagnosed
6639 because it attempts to construct an array of 64 integers in a buffer only
6640 64 bytes large.
6641 @smallexample
6642 char buf [64];
6643 new (buf) int[64];
6644 @end smallexample
6645 This warning is enabled by default.
6646
6647 @table @gcctabopt
6648 @item -Wplacement-new=1
6649 This is the default warning level of @option{-Wplacement-new}. At this
6650 level the warning is not issued for some strictly undefined constructs that
6651 GCC allows as extensions for compatibility with legacy code. For example,
6652 the following @code{new} expression is not diagnosed at this level even
6653 though it has undefined behavior according to the C++ standard because
6654 it writes past the end of the one-element array.
6655 @smallexample
6656 struct S @{ int n, a[1]; @};
6657 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6658 new (s->a)int [32]();
6659 @end smallexample
6660
6661 @item -Wplacement-new=2
6662 At this level, in addition to diagnosing all the same constructs as at level
6663 1, a diagnostic is also issued for placement new expressions that construct
6664 an object in the last member of structure whose type is an array of a single
6665 element and whose size is less than the size of the object being constructed.
6666 While the previous example would be diagnosed, the following construct makes
6667 use of the flexible member array extension to avoid the warning at level 2.
6668 @smallexample
6669 struct S @{ int n, a[]; @};
6670 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6671 new (s->a)int [32]();
6672 @end smallexample
6673
6674 @end table
6675
6676 @item -Wpointer-arith
6677 @opindex Wpointer-arith
6678 @opindex Wno-pointer-arith
6679 Warn about anything that depends on the ``size of'' a function type or
6680 of @code{void}. GNU C assigns these types a size of 1, for
6681 convenience in calculations with @code{void *} pointers and pointers
6682 to functions. In C++, warn also when an arithmetic operation involves
6683 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6684
6685 @item -Wpointer-compare
6686 @opindex Wpointer-compare
6687 @opindex Wno-pointer-compare
6688 Warn if a pointer is compared with a zero character constant. This usually
6689 means that the pointer was meant to be dereferenced. For example:
6690
6691 @smallexample
6692 const char *p = foo ();
6693 if (p == '\0')
6694 return 42;
6695 @end smallexample
6696
6697 Note that the code above is invalid in C++11.
6698
6699 This warning is enabled by default.
6700
6701 @item -Wtype-limits
6702 @opindex Wtype-limits
6703 @opindex Wno-type-limits
6704 Warn if a comparison is always true or always false due to the limited
6705 range of the data type, but do not warn for constant expressions. For
6706 example, warn if an unsigned variable is compared against zero with
6707 @code{<} or @code{>=}. This warning is also enabled by
6708 @option{-Wextra}.
6709
6710 @item -Wabsolute-value @r{(C and Objective-C only)}
6711 @opindex Wabsolute-value
6712 @opindex Wno-absolute-value
6713 Warn for calls to standard functions that compute the absolute value
6714 of an argument when a more appropriate standard function is available.
6715 For example, calling @code{abs(3.14)} triggers the warning because the
6716 appropriate function to call to compute the absolute value of a double
6717 argument is @code{fabs}. The option also triggers warnings when the
6718 argument in a call to such a function has an unsigned type. This
6719 warning can be suppressed with an explicit type cast and it is also
6720 enabled by @option{-Wextra}.
6721
6722 @include cppwarnopts.texi
6723
6724 @item -Wbad-function-cast @r{(C and Objective-C only)}
6725 @opindex Wbad-function-cast
6726 @opindex Wno-bad-function-cast
6727 Warn when a function call is cast to a non-matching type.
6728 For example, warn if a call to a function returning an integer type
6729 is cast to a pointer type.
6730
6731 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6732 @opindex Wc90-c99-compat
6733 @opindex Wno-c90-c99-compat
6734 Warn about features not present in ISO C90, but present in ISO C99.
6735 For instance, warn about use of variable length arrays, @code{long long}
6736 type, @code{bool} type, compound literals, designated initializers, and so
6737 on. This option is independent of the standards mode. Warnings are disabled
6738 in the expression that follows @code{__extension__}.
6739
6740 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6741 @opindex Wc99-c11-compat
6742 @opindex Wno-c99-c11-compat
6743 Warn about features not present in ISO C99, but present in ISO C11.
6744 For instance, warn about use of anonymous structures and unions,
6745 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6746 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6747 and so on. This option is independent of the standards mode. Warnings are
6748 disabled in the expression that follows @code{__extension__}.
6749
6750 @item -Wc++-compat @r{(C and Objective-C only)}
6751 @opindex Wc++-compat
6752 @opindex Wno-c++-compat
6753 Warn about ISO C constructs that are outside of the common subset of
6754 ISO C and ISO C++, e.g.@: request for implicit conversion from
6755 @code{void *} to a pointer to non-@code{void} type.
6756
6757 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6758 @opindex Wc++11-compat
6759 @opindex Wno-c++11-compat
6760 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6761 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6762 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6763 enabled by @option{-Wall}.
6764
6765 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6766 @opindex Wc++14-compat
6767 @opindex Wno-c++14-compat
6768 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6769 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6770
6771 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6772 @opindex Wc++17-compat
6773 @opindex Wno-c++17-compat
6774 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6775 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6776
6777 @item -Wc++20-compat @r{(C++ and Objective-C++ only)}
6778 @opindex Wc++20-compat
6779 @opindex Wno-c++20-compat
6780 Warn about C++ constructs whose meaning differs between ISO C++ 2017
6781 and ISO C++ 2020. This warning is enabled by @option{-Wall}.
6782
6783 @item -Wcast-qual
6784 @opindex Wcast-qual
6785 @opindex Wno-cast-qual
6786 Warn whenever a pointer is cast so as to remove a type qualifier from
6787 the target type. For example, warn if a @code{const char *} is cast
6788 to an ordinary @code{char *}.
6789
6790 Also warn when making a cast that introduces a type qualifier in an
6791 unsafe way. For example, casting @code{char **} to @code{const char **}
6792 is unsafe, as in this example:
6793
6794 @smallexample
6795 /* p is char ** value. */
6796 const char **q = (const char **) p;
6797 /* Assignment of readonly string to const char * is OK. */
6798 *q = "string";
6799 /* Now char** pointer points to read-only memory. */
6800 **p = 'b';
6801 @end smallexample
6802
6803 @item -Wcast-align
6804 @opindex Wcast-align
6805 @opindex Wno-cast-align
6806 Warn whenever a pointer is cast such that the required alignment of the
6807 target is increased. For example, warn if a @code{char *} is cast to
6808 an @code{int *} on machines where integers can only be accessed at
6809 two- or four-byte boundaries.
6810
6811 @item -Wcast-align=strict
6812 @opindex Wcast-align=strict
6813 Warn whenever a pointer is cast such that the required alignment of the
6814 target is increased. For example, warn if a @code{char *} is cast to
6815 an @code{int *} regardless of the target machine.
6816
6817 @item -Wcast-function-type
6818 @opindex Wcast-function-type
6819 @opindex Wno-cast-function-type
6820 Warn when a function pointer is cast to an incompatible function pointer.
6821 In a cast involving function types with a variable argument list only
6822 the types of initial arguments that are provided are considered.
6823 Any parameter of pointer-type matches any other pointer-type. Any benign
6824 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6825 on ILP32 targets. Likewise type qualifiers are ignored. The function
6826 type @code{void (*) (void)} is special and matches everything, which can
6827 be used to suppress this warning.
6828 In a cast involving pointer to member types this warning warns whenever
6829 the type cast is changing the pointer to member type.
6830 This warning is enabled by @option{-Wextra}.
6831
6832 @item -Wwrite-strings
6833 @opindex Wwrite-strings
6834 @opindex Wno-write-strings
6835 When compiling C, give string constants the type @code{const
6836 char[@var{length}]} so that copying the address of one into a
6837 non-@code{const} @code{char *} pointer produces a warning. These
6838 warnings help you find at compile time code that can try to write
6839 into a string constant, but only if you have been very careful about
6840 using @code{const} in declarations and prototypes. Otherwise, it is
6841 just a nuisance. This is why we did not make @option{-Wall} request
6842 these warnings.
6843
6844 When compiling C++, warn about the deprecated conversion from string
6845 literals to @code{char *}. This warning is enabled by default for C++
6846 programs.
6847
6848 @item -Wcatch-value
6849 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6850 @opindex Wcatch-value
6851 @opindex Wno-catch-value
6852 Warn about catch handlers that do not catch via reference.
6853 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6854 warn about polymorphic class types that are caught by value.
6855 With @option{-Wcatch-value=2} warn about all class types that are caught
6856 by value. With @option{-Wcatch-value=3} warn about all types that are
6857 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6858
6859 @item -Wclobbered
6860 @opindex Wclobbered
6861 @opindex Wno-clobbered
6862 Warn for variables that might be changed by @code{longjmp} or
6863 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6864
6865 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6866 @opindex Wconditionally-supported
6867 @opindex Wno-conditionally-supported
6868 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6869
6870 @item -Wconversion
6871 @opindex Wconversion
6872 @opindex Wno-conversion
6873 Warn for implicit conversions that may alter a value. This includes
6874 conversions between real and integer, like @code{abs (x)} when
6875 @code{x} is @code{double}; conversions between signed and unsigned,
6876 like @code{unsigned ui = -1}; and conversions to smaller types, like
6877 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6878 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6879 changed by the conversion like in @code{abs (2.0)}. Warnings about
6880 conversions between signed and unsigned integers can be disabled by
6881 using @option{-Wno-sign-conversion}.
6882
6883 For C++, also warn for confusing overload resolution for user-defined
6884 conversions; and conversions that never use a type conversion
6885 operator: conversions to @code{void}, the same type, a base class or a
6886 reference to them. Warnings about conversions between signed and
6887 unsigned integers are disabled by default in C++ unless
6888 @option{-Wsign-conversion} is explicitly enabled.
6889
6890 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6891 @opindex Wconversion-null
6892 @opindex Wno-conversion-null
6893 Do not warn for conversions between @code{NULL} and non-pointer
6894 types. @option{-Wconversion-null} is enabled by default.
6895
6896 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6897 @opindex Wzero-as-null-pointer-constant
6898 @opindex Wno-zero-as-null-pointer-constant
6899 Warn when a literal @samp{0} is used as null pointer constant. This can
6900 be useful to facilitate the conversion to @code{nullptr} in C++11.
6901
6902 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6903 @opindex Wsubobject-linkage
6904 @opindex Wno-subobject-linkage
6905 Warn if a class type has a base or a field whose type uses the anonymous
6906 namespace or depends on a type with no linkage. If a type A depends on
6907 a type B with no or internal linkage, defining it in multiple
6908 translation units would be an ODR violation because the meaning of B
6909 is different in each translation unit. If A only appears in a single
6910 translation unit, the best way to silence the warning is to give it
6911 internal linkage by putting it in an anonymous namespace as well. The
6912 compiler doesn't give this warning for types defined in the main .C
6913 file, as those are unlikely to have multiple definitions.
6914 @option{-Wsubobject-linkage} is enabled by default.
6915
6916 @item -Wdangling-else
6917 @opindex Wdangling-else
6918 @opindex Wno-dangling-else
6919 Warn about constructions where there may be confusion to which
6920 @code{if} statement an @code{else} branch belongs. Here is an example of
6921 such a case:
6922
6923 @smallexample
6924 @group
6925 @{
6926 if (a)
6927 if (b)
6928 foo ();
6929 else
6930 bar ();
6931 @}
6932 @end group
6933 @end smallexample
6934
6935 In C/C++, every @code{else} branch belongs to the innermost possible
6936 @code{if} statement, which in this example is @code{if (b)}. This is
6937 often not what the programmer expected, as illustrated in the above
6938 example by indentation the programmer chose. When there is the
6939 potential for this confusion, GCC issues a warning when this flag
6940 is specified. To eliminate the warning, add explicit braces around
6941 the innermost @code{if} statement so there is no way the @code{else}
6942 can belong to the enclosing @code{if}. The resulting code
6943 looks like this:
6944
6945 @smallexample
6946 @group
6947 @{
6948 if (a)
6949 @{
6950 if (b)
6951 foo ();
6952 else
6953 bar ();
6954 @}
6955 @}
6956 @end group
6957 @end smallexample
6958
6959 This warning is enabled by @option{-Wparentheses}.
6960
6961 @item -Wdate-time
6962 @opindex Wdate-time
6963 @opindex Wno-date-time
6964 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6965 are encountered as they might prevent bit-wise-identical reproducible
6966 compilations.
6967
6968 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6969 @opindex Wdelete-incomplete
6970 @opindex Wno-delete-incomplete
6971 Warn when deleting a pointer to incomplete type, which may cause
6972 undefined behavior at runtime. This warning is enabled by default.
6973
6974 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6975 @opindex Wuseless-cast
6976 @opindex Wno-useless-cast
6977 Warn when an expression is casted to its own type.
6978
6979 @item -Wempty-body
6980 @opindex Wempty-body
6981 @opindex Wno-empty-body
6982 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6983 while} statement. This warning is also enabled by @option{-Wextra}.
6984
6985 @item -Wenum-compare
6986 @opindex Wenum-compare
6987 @opindex Wno-enum-compare
6988 Warn about a comparison between values of different enumerated types.
6989 In C++ enumerated type mismatches in conditional expressions are also
6990 diagnosed and the warning is enabled by default. In C this warning is
6991 enabled by @option{-Wall}.
6992
6993 @item -Wenum-conversion @r{(C, Objective-C only)}
6994 @opindex Wenum-conversion
6995 @opindex Wno-enum-conversion
6996 Warn when a value of enumerated type is implicitly converted to a
6997 different enumerated type. This warning is enabled by @option{-Wextra}.
6998
6999 @item -Wextra-semi @r{(C++, Objective-C++ only)}
7000 @opindex Wextra-semi
7001 @opindex Wno-extra-semi
7002 Warn about redundant semicolon after in-class function definition.
7003
7004 @item -Wjump-misses-init @r{(C, Objective-C only)}
7005 @opindex Wjump-misses-init
7006 @opindex Wno-jump-misses-init
7007 Warn if a @code{goto} statement or a @code{switch} statement jumps
7008 forward across the initialization of a variable, or jumps backward to a
7009 label after the variable has been initialized. This only warns about
7010 variables that are initialized when they are declared. This warning is
7011 only supported for C and Objective-C; in C++ this sort of branch is an
7012 error in any case.
7013
7014 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
7015 can be disabled with the @option{-Wno-jump-misses-init} option.
7016
7017 @item -Wsign-compare
7018 @opindex Wsign-compare
7019 @opindex Wno-sign-compare
7020 @cindex warning for comparison of signed and unsigned values
7021 @cindex comparison of signed and unsigned values, warning
7022 @cindex signed and unsigned values, comparison warning
7023 Warn when a comparison between signed and unsigned values could produce
7024 an incorrect result when the signed value is converted to unsigned.
7025 In C++, this warning is also enabled by @option{-Wall}. In C, it is
7026 also enabled by @option{-Wextra}.
7027
7028 @item -Wsign-conversion
7029 @opindex Wsign-conversion
7030 @opindex Wno-sign-conversion
7031 Warn for implicit conversions that may change the sign of an integer
7032 value, like assigning a signed integer expression to an unsigned
7033 integer variable. An explicit cast silences the warning. In C, this
7034 option is enabled also by @option{-Wconversion}.
7035
7036 @item -Wfloat-conversion
7037 @opindex Wfloat-conversion
7038 @opindex Wno-float-conversion
7039 Warn for implicit conversions that reduce the precision of a real value.
7040 This includes conversions from real to integer, and from higher precision
7041 real to lower precision real values. This option is also enabled by
7042 @option{-Wconversion}.
7043
7044 @item -Wno-scalar-storage-order
7045 @opindex Wno-scalar-storage-order
7046 @opindex Wscalar-storage-order
7047 Do not warn on suspicious constructs involving reverse scalar storage order.
7048
7049 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
7050 @opindex Wsized-deallocation
7051 @opindex Wno-sized-deallocation
7052 Warn about a definition of an unsized deallocation function
7053 @smallexample
7054 void operator delete (void *) noexcept;
7055 void operator delete[] (void *) noexcept;
7056 @end smallexample
7057 without a definition of the corresponding sized deallocation function
7058 @smallexample
7059 void operator delete (void *, std::size_t) noexcept;
7060 void operator delete[] (void *, std::size_t) noexcept;
7061 @end smallexample
7062 or vice versa. Enabled by @option{-Wextra} along with
7063 @option{-fsized-deallocation}.
7064
7065 @item -Wsizeof-pointer-div
7066 @opindex Wsizeof-pointer-div
7067 @opindex Wno-sizeof-pointer-div
7068 Warn for suspicious divisions of two sizeof expressions that divide
7069 the pointer size by the element size, which is the usual way to compute
7070 the array size but won't work out correctly with pointers. This warning
7071 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7072 not an array, but a pointer. This warning is enabled by @option{-Wall}.
7073
7074 @item -Wsizeof-pointer-memaccess
7075 @opindex Wsizeof-pointer-memaccess
7076 @opindex Wno-sizeof-pointer-memaccess
7077 Warn for suspicious length parameters to certain string and memory built-in
7078 functions if the argument uses @code{sizeof}. This warning triggers for
7079 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7080 an array, but a pointer, and suggests a possible fix, or about
7081 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
7082 also warns about calls to bounded string copy functions like @code{strncat}
7083 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7084 the source array. For example, in the following function the call to
7085 @code{strncat} specifies the size of the source string as the bound. That
7086 is almost certainly a mistake and so the call is diagnosed.
7087 @smallexample
7088 void make_file (const char *name)
7089 @{
7090 char path[PATH_MAX];
7091 strncpy (path, name, sizeof path - 1);
7092 strncat (path, ".text", sizeof ".text");
7093 @dots{}
7094 @}
7095 @end smallexample
7096
7097 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7098
7099 @item -Wsizeof-array-argument
7100 @opindex Wsizeof-array-argument
7101 @opindex Wno-sizeof-array-argument
7102 Warn when the @code{sizeof} operator is applied to a parameter that is
7103 declared as an array in a function definition. This warning is enabled by
7104 default for C and C++ programs.
7105
7106 @item -Wmemset-elt-size
7107 @opindex Wmemset-elt-size
7108 @opindex Wno-memset-elt-size
7109 Warn for suspicious calls to the @code{memset} built-in function, if the
7110 first argument references an array, and the third argument is a number
7111 equal to the number of elements, but not equal to the size of the array
7112 in memory. This indicates that the user has omitted a multiplication by
7113 the element size. This warning is enabled by @option{-Wall}.
7114
7115 @item -Wmemset-transposed-args
7116 @opindex Wmemset-transposed-args
7117 @opindex Wno-memset-transposed-args
7118 Warn for suspicious calls to the @code{memset} built-in function where
7119 the second argument is not zero and the third argument is zero. For
7120 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7121 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7122 is only emitted if the third argument is a literal zero. Otherwise, if
7123 it is an expression that is folded to zero, or a cast of zero to some
7124 type, it is far less likely that the arguments have been mistakenly
7125 transposed and no warning is emitted. This warning is enabled
7126 by @option{-Wall}.
7127
7128 @item -Waddress
7129 @opindex Waddress
7130 @opindex Wno-address
7131 Warn about suspicious uses of memory addresses. These include using
7132 the address of a function in a conditional expression, such as
7133 @code{void func(void); if (func)}, and comparisons against the memory
7134 address of a string literal, such as @code{if (x == "abc")}. Such
7135 uses typically indicate a programmer error: the address of a function
7136 always evaluates to true, so their use in a conditional usually
7137 indicate that the programmer forgot the parentheses in a function
7138 call; and comparisons against string literals result in unspecified
7139 behavior and are not portable in C, so they usually indicate that the
7140 programmer intended to use @code{strcmp}. This warning is enabled by
7141 @option{-Wall}.
7142
7143 @item -Waddress-of-packed-member
7144 @opindex Waddress-of-packed-member
7145 @opindex Wno-address-of-packed-member
7146 Warn when the address of packed member of struct or union is taken,
7147 which usually results in an unaligned pointer value. This is
7148 enabled by default.
7149
7150 @item -Wlogical-op
7151 @opindex Wlogical-op
7152 @opindex Wno-logical-op
7153 Warn about suspicious uses of logical operators in expressions.
7154 This includes using logical operators in contexts where a
7155 bit-wise operator is likely to be expected. Also warns when
7156 the operands of a logical operator are the same:
7157 @smallexample
7158 extern int a;
7159 if (a < 0 && a < 0) @{ @dots{} @}
7160 @end smallexample
7161
7162 @item -Wlogical-not-parentheses
7163 @opindex Wlogical-not-parentheses
7164 @opindex Wno-logical-not-parentheses
7165 Warn about logical not used on the left hand side operand of a comparison.
7166 This option does not warn if the right operand is considered to be a boolean
7167 expression. Its purpose is to detect suspicious code like the following:
7168 @smallexample
7169 int a;
7170 @dots{}
7171 if (!a > 1) @{ @dots{} @}
7172 @end smallexample
7173
7174 It is possible to suppress the warning by wrapping the LHS into
7175 parentheses:
7176 @smallexample
7177 if ((!a) > 1) @{ @dots{} @}
7178 @end smallexample
7179
7180 This warning is enabled by @option{-Wall}.
7181
7182 @item -Waggregate-return
7183 @opindex Waggregate-return
7184 @opindex Wno-aggregate-return
7185 Warn if any functions that return structures or unions are defined or
7186 called. (In languages where you can return an array, this also elicits
7187 a warning.)
7188
7189 @item -Wno-aggressive-loop-optimizations
7190 @opindex Wno-aggressive-loop-optimizations
7191 @opindex Waggressive-loop-optimizations
7192 Warn if in a loop with constant number of iterations the compiler detects
7193 undefined behavior in some statement during one or more of the iterations.
7194
7195 @item -Wno-attributes
7196 @opindex Wno-attributes
7197 @opindex Wattributes
7198 Do not warn if an unexpected @code{__attribute__} is used, such as
7199 unrecognized attributes, function attributes applied to variables,
7200 etc. This does not stop errors for incorrect use of supported
7201 attributes.
7202
7203 @item -Wno-builtin-declaration-mismatch
7204 @opindex Wno-builtin-declaration-mismatch
7205 @opindex Wbuiltin-declaration-mismatch
7206 Warn if a built-in function is declared with an incompatible signature
7207 or as a non-function, or when a built-in function declared with a type
7208 that does not include a prototype is called with arguments whose promoted
7209 types do not match those expected by the function. When @option{-Wextra}
7210 is specified, also warn when a built-in function that takes arguments is
7211 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7212 warning is enabled by default. To avoid the warning include the appropriate
7213 header to bring the prototypes of built-in functions into scope.
7214
7215 For example, the call to @code{memset} below is diagnosed by the warning
7216 because the function expects a value of type @code{size_t} as its argument
7217 but the type of @code{32} is @code{int}. With @option{-Wextra},
7218 the declaration of the function is diagnosed as well.
7219 @smallexample
7220 extern void* memset ();
7221 void f (void *d)
7222 @{
7223 memset (d, '\0', 32);
7224 @}
7225 @end smallexample
7226
7227 @item -Wno-builtin-macro-redefined
7228 @opindex Wno-builtin-macro-redefined
7229 @opindex Wbuiltin-macro-redefined
7230 Do not warn if certain built-in macros are redefined. This suppresses
7231 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7232 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7233
7234 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7235 @opindex Wstrict-prototypes
7236 @opindex Wno-strict-prototypes
7237 Warn if a function is declared or defined without specifying the
7238 argument types. (An old-style function definition is permitted without
7239 a warning if preceded by a declaration that specifies the argument
7240 types.)
7241
7242 @item -Wold-style-declaration @r{(C and Objective-C only)}
7243 @opindex Wold-style-declaration
7244 @opindex Wno-old-style-declaration
7245 Warn for obsolescent usages, according to the C Standard, in a
7246 declaration. For example, warn if storage-class specifiers like
7247 @code{static} are not the first things in a declaration. This warning
7248 is also enabled by @option{-Wextra}.
7249
7250 @item -Wold-style-definition @r{(C and Objective-C only)}
7251 @opindex Wold-style-definition
7252 @opindex Wno-old-style-definition
7253 Warn if an old-style function definition is used. A warning is given
7254 even if there is a previous prototype.
7255
7256 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7257 @opindex Wmissing-parameter-type
7258 @opindex Wno-missing-parameter-type
7259 A function parameter is declared without a type specifier in K&R-style
7260 functions:
7261
7262 @smallexample
7263 void foo(bar) @{ @}
7264 @end smallexample
7265
7266 This warning is also enabled by @option{-Wextra}.
7267
7268 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7269 @opindex Wmissing-prototypes
7270 @opindex Wno-missing-prototypes
7271 Warn if a global function is defined without a previous prototype
7272 declaration. This warning is issued even if the definition itself
7273 provides a prototype. Use this option to detect global functions
7274 that do not have a matching prototype declaration in a header file.
7275 This option is not valid for C++ because all function declarations
7276 provide prototypes and a non-matching declaration declares an
7277 overload rather than conflict with an earlier declaration.
7278 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7279
7280 @item -Wmissing-declarations
7281 @opindex Wmissing-declarations
7282 @opindex Wno-missing-declarations
7283 Warn if a global function is defined without a previous declaration.
7284 Do so even if the definition itself provides a prototype.
7285 Use this option to detect global functions that are not declared in
7286 header files. In C, no warnings are issued for functions with previous
7287 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7288 missing prototypes. In C++, no warnings are issued for function templates,
7289 or for inline functions, or for functions in anonymous namespaces.
7290
7291 @item -Wmissing-field-initializers
7292 @opindex Wmissing-field-initializers
7293 @opindex Wno-missing-field-initializers
7294 @opindex W
7295 @opindex Wextra
7296 @opindex Wno-extra
7297 Warn if a structure's initializer has some fields missing. For
7298 example, the following code causes such a warning, because
7299 @code{x.h} is implicitly zero:
7300
7301 @smallexample
7302 struct s @{ int f, g, h; @};
7303 struct s x = @{ 3, 4 @};
7304 @end smallexample
7305
7306 This option does not warn about designated initializers, so the following
7307 modification does not trigger a warning:
7308
7309 @smallexample
7310 struct s @{ int f, g, h; @};
7311 struct s x = @{ .f = 3, .g = 4 @};
7312 @end smallexample
7313
7314 In C this option does not warn about the universal zero initializer
7315 @samp{@{ 0 @}}:
7316
7317 @smallexample
7318 struct s @{ int f, g, h; @};
7319 struct s x = @{ 0 @};
7320 @end smallexample
7321
7322 Likewise, in C++ this option does not warn about the empty @{ @}
7323 initializer, for example:
7324
7325 @smallexample
7326 struct s @{ int f, g, h; @};
7327 s x = @{ @};
7328 @end smallexample
7329
7330 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7331 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7332
7333 @item -Wno-multichar
7334 @opindex Wno-multichar
7335 @opindex Wmultichar
7336 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7337 Usually they indicate a typo in the user's code, as they have
7338 implementation-defined values, and should not be used in portable code.
7339
7340 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7341 @opindex Wnormalized=
7342 @opindex Wnormalized
7343 @opindex Wno-normalized
7344 @cindex NFC
7345 @cindex NFKC
7346 @cindex character set, input normalization
7347 In ISO C and ISO C++, two identifiers are different if they are
7348 different sequences of characters. However, sometimes when characters
7349 outside the basic ASCII character set are used, you can have two
7350 different character sequences that look the same. To avoid confusion,
7351 the ISO 10646 standard sets out some @dfn{normalization rules} which
7352 when applied ensure that two sequences that look the same are turned into
7353 the same sequence. GCC can warn you if you are using identifiers that
7354 have not been normalized; this option controls that warning.
7355
7356 There are four levels of warning supported by GCC@. The default is
7357 @option{-Wnormalized=nfc}, which warns about any identifier that is
7358 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7359 recommended form for most uses. It is equivalent to
7360 @option{-Wnormalized}.
7361
7362 Unfortunately, there are some characters allowed in identifiers by
7363 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7364 identifiers. That is, there's no way to use these symbols in portable
7365 ISO C or C++ and have all your identifiers in NFC@.
7366 @option{-Wnormalized=id} suppresses the warning for these characters.
7367 It is hoped that future versions of the standards involved will correct
7368 this, which is why this option is not the default.
7369
7370 You can switch the warning off for all characters by writing
7371 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7372 only do this if you are using some other normalization scheme (like
7373 ``D''), because otherwise you can easily create bugs that are
7374 literally impossible to see.
7375
7376 Some characters in ISO 10646 have distinct meanings but look identical
7377 in some fonts or display methodologies, especially once formatting has
7378 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7379 LETTER N'', displays just like a regular @code{n} that has been
7380 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7381 normalization scheme to convert all these into a standard form as
7382 well, and GCC warns if your code is not in NFKC if you use
7383 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7384 about every identifier that contains the letter O because it might be
7385 confused with the digit 0, and so is not the default, but may be
7386 useful as a local coding convention if the programming environment
7387 cannot be fixed to display these characters distinctly.
7388
7389 @item -Wno-attribute-warning
7390 @opindex Wno-attribute-warning
7391 @opindex Wattribute-warning
7392 Do not warn about usage of functions (@pxref{Function Attributes})
7393 declared with @code{warning} attribute. By default, this warning is
7394 enabled. @option{-Wno-attribute-warning} can be used to disable the
7395 warning or @option{-Wno-error=attribute-warning} can be used to
7396 disable the error when compiled with @option{-Werror} flag.
7397
7398 @item -Wno-deprecated
7399 @opindex Wno-deprecated
7400 @opindex Wdeprecated
7401 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7402
7403 @item -Wno-deprecated-declarations
7404 @opindex Wno-deprecated-declarations
7405 @opindex Wdeprecated-declarations
7406 Do not warn about uses of functions (@pxref{Function Attributes}),
7407 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7408 Attributes}) marked as deprecated by using the @code{deprecated}
7409 attribute.
7410
7411 @item -Wno-overflow
7412 @opindex Wno-overflow
7413 @opindex Woverflow
7414 Do not warn about compile-time overflow in constant expressions.
7415
7416 @item -Wno-odr
7417 @opindex Wno-odr
7418 @opindex Wodr
7419 Warn about One Definition Rule violations during link-time optimization.
7420 Enabled by default.
7421
7422 @item -Wopenmp-simd
7423 @opindex Wopenmp-simd
7424 @opindex Wno-openmp-simd
7425 Warn if the vectorizer cost model overrides the OpenMP
7426 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7427 option can be used to relax the cost model.
7428
7429 @item -Woverride-init @r{(C and Objective-C only)}
7430 @opindex Woverride-init
7431 @opindex Wno-override-init
7432 @opindex W
7433 @opindex Wextra
7434 @opindex Wno-extra
7435 Warn if an initialized field without side effects is overridden when
7436 using designated initializers (@pxref{Designated Inits, , Designated
7437 Initializers}).
7438
7439 This warning is included in @option{-Wextra}. To get other
7440 @option{-Wextra} warnings without this one, use @option{-Wextra
7441 -Wno-override-init}.
7442
7443 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7444 @opindex Woverride-init-side-effects
7445 @opindex Wno-override-init-side-effects
7446 Warn if an initialized field with side effects is overridden when
7447 using designated initializers (@pxref{Designated Inits, , Designated
7448 Initializers}). This warning is enabled by default.
7449
7450 @item -Wpacked
7451 @opindex Wpacked
7452 @opindex Wno-packed
7453 Warn if a structure is given the packed attribute, but the packed
7454 attribute has no effect on the layout or size of the structure.
7455 Such structures may be mis-aligned for little benefit. For
7456 instance, in this code, the variable @code{f.x} in @code{struct bar}
7457 is misaligned even though @code{struct bar} does not itself
7458 have the packed attribute:
7459
7460 @smallexample
7461 @group
7462 struct foo @{
7463 int x;
7464 char a, b, c, d;
7465 @} __attribute__((packed));
7466 struct bar @{
7467 char z;
7468 struct foo f;
7469 @};
7470 @end group
7471 @end smallexample
7472
7473 @item -Wpacked-bitfield-compat
7474 @opindex Wpacked-bitfield-compat
7475 @opindex Wno-packed-bitfield-compat
7476 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7477 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7478 the change can lead to differences in the structure layout. GCC
7479 informs you when the offset of such a field has changed in GCC 4.4.
7480 For example there is no longer a 4-bit padding between field @code{a}
7481 and @code{b} in this structure:
7482
7483 @smallexample
7484 struct foo
7485 @{
7486 char a:4;
7487 char b:8;
7488 @} __attribute__ ((packed));
7489 @end smallexample
7490
7491 This warning is enabled by default. Use
7492 @option{-Wno-packed-bitfield-compat} to disable this warning.
7493
7494 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7495 @opindex Wpacked-not-aligned
7496 @opindex Wno-packed-not-aligned
7497 Warn if a structure field with explicitly specified alignment in a
7498 packed struct or union is misaligned. For example, a warning will
7499 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7500 'struct S' is less than 8}, in this code:
7501
7502 @smallexample
7503 @group
7504 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7505 struct __attribute__ ((packed)) S @{
7506 struct S8 s8;
7507 @};
7508 @end group
7509 @end smallexample
7510
7511 This warning is enabled by @option{-Wall}.
7512
7513 @item -Wpadded
7514 @opindex Wpadded
7515 @opindex Wno-padded
7516 Warn if padding is included in a structure, either to align an element
7517 of the structure or to align the whole structure. Sometimes when this
7518 happens it is possible to rearrange the fields of the structure to
7519 reduce the padding and so make the structure smaller.
7520
7521 @item -Wredundant-decls
7522 @opindex Wredundant-decls
7523 @opindex Wno-redundant-decls
7524 Warn if anything is declared more than once in the same scope, even in
7525 cases where multiple declaration is valid and changes nothing.
7526
7527 @item -Wno-restrict
7528 @opindex Wrestrict
7529 @opindex Wno-restrict
7530 Warn when an object referenced by a @code{restrict}-qualified parameter
7531 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7532 argument, or when copies between such objects overlap. For example,
7533 the call to the @code{strcpy} function below attempts to truncate the string
7534 by replacing its initial characters with the last four. However, because
7535 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7536 the call is diagnosed.
7537
7538 @smallexample
7539 void foo (void)
7540 @{
7541 char a[] = "abcd1234";
7542 strcpy (a, a + 4);
7543 @dots{}
7544 @}
7545 @end smallexample
7546 The @option{-Wrestrict} option detects some instances of simple overlap
7547 even without optimization but works best at @option{-O2} and above. It
7548 is included in @option{-Wall}.
7549
7550 @item -Wnested-externs @r{(C and Objective-C only)}
7551 @opindex Wnested-externs
7552 @opindex Wno-nested-externs
7553 Warn if an @code{extern} declaration is encountered within a function.
7554
7555 @item -Wno-inherited-variadic-ctor
7556 @opindex Winherited-variadic-ctor
7557 @opindex Wno-inherited-variadic-ctor
7558 Suppress warnings about use of C++11 inheriting constructors when the
7559 base class inherited from has a C variadic constructor; the warning is
7560 on by default because the ellipsis is not inherited.
7561
7562 @item -Winline
7563 @opindex Winline
7564 @opindex Wno-inline
7565 Warn if a function that is declared as inline cannot be inlined.
7566 Even with this option, the compiler does not warn about failures to
7567 inline functions declared in system headers.
7568
7569 The compiler uses a variety of heuristics to determine whether or not
7570 to inline a function. For example, the compiler takes into account
7571 the size of the function being inlined and the amount of inlining
7572 that has already been done in the current function. Therefore,
7573 seemingly insignificant changes in the source program can cause the
7574 warnings produced by @option{-Winline} to appear or disappear.
7575
7576 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7577 @opindex Wno-invalid-offsetof
7578 @opindex Winvalid-offsetof
7579 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7580 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7581 to a non-standard-layout type is undefined. In existing C++ implementations,
7582 however, @code{offsetof} typically gives meaningful results.
7583 This flag is for users who are aware that they are
7584 writing nonportable code and who have deliberately chosen to ignore the
7585 warning about it.
7586
7587 The restrictions on @code{offsetof} may be relaxed in a future version
7588 of the C++ standard.
7589
7590 @item -Wint-in-bool-context
7591 @opindex Wint-in-bool-context
7592 @opindex Wno-int-in-bool-context
7593 Warn for suspicious use of integer values where boolean values are expected,
7594 such as conditional expressions (?:) using non-boolean integer constants in
7595 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7596 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7597 for all kinds of multiplications regardless of the data type.
7598 This warning is enabled by @option{-Wall}.
7599
7600 @item -Wno-int-to-pointer-cast
7601 @opindex Wno-int-to-pointer-cast
7602 @opindex Wint-to-pointer-cast
7603 Suppress warnings from casts to pointer type of an integer of a
7604 different size. In C++, casting to a pointer type of smaller size is
7605 an error. @option{Wint-to-pointer-cast} is enabled by default.
7606
7607
7608 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7609 @opindex Wno-pointer-to-int-cast
7610 @opindex Wpointer-to-int-cast
7611 Suppress warnings from casts from a pointer to an integer type of a
7612 different size.
7613
7614 @item -Winvalid-pch
7615 @opindex Winvalid-pch
7616 @opindex Wno-invalid-pch
7617 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7618 the search path but cannot be used.
7619
7620 @item -Wlong-long
7621 @opindex Wlong-long
7622 @opindex Wno-long-long
7623 Warn if @code{long long} type is used. This is enabled by either
7624 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7625 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7626
7627 @item -Wvariadic-macros
7628 @opindex Wvariadic-macros
7629 @opindex Wno-variadic-macros
7630 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7631 alternate syntax is used in ISO C99 mode. This is enabled by either
7632 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7633 messages, use @option{-Wno-variadic-macros}.
7634
7635 @item -Wvarargs
7636 @opindex Wvarargs
7637 @opindex Wno-varargs
7638 Warn upon questionable usage of the macros used to handle variable
7639 arguments like @code{va_start}. This is default. To inhibit the
7640 warning messages, use @option{-Wno-varargs}.
7641
7642 @item -Wvector-operation-performance
7643 @opindex Wvector-operation-performance
7644 @opindex Wno-vector-operation-performance
7645 Warn if vector operation is not implemented via SIMD capabilities of the
7646 architecture. Mainly useful for the performance tuning.
7647 Vector operation can be implemented @code{piecewise}, which means that the
7648 scalar operation is performed on every vector element;
7649 @code{in parallel}, which means that the vector operation is implemented
7650 using scalars of wider type, which normally is more performance efficient;
7651 and @code{as a single scalar}, which means that vector fits into a
7652 scalar type.
7653
7654 @item -Wno-virtual-move-assign
7655 @opindex Wvirtual-move-assign
7656 @opindex Wno-virtual-move-assign
7657 Suppress warnings about inheriting from a virtual base with a
7658 non-trivial C++11 move assignment operator. This is dangerous because
7659 if the virtual base is reachable along more than one path, it is
7660 moved multiple times, which can mean both objects end up in the
7661 moved-from state. If the move assignment operator is written to avoid
7662 moving from a moved-from object, this warning can be disabled.
7663
7664 @item -Wvla
7665 @opindex Wvla
7666 @opindex Wno-vla
7667 Warn if a variable-length array is used in the code.
7668 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7669 the variable-length array.
7670
7671 @item -Wvla-larger-than=@var{byte-size}
7672 @opindex Wvla-larger-than=
7673 @opindex Wno-vla-larger-than
7674 If this option is used, the compiler will warn for declarations of
7675 variable-length arrays whose size is either unbounded, or bounded
7676 by an argument that allows the array size to exceed @var{byte-size}
7677 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7678 works, but with variable-length arrays.
7679
7680 Note that GCC may optimize small variable-length arrays of a known
7681 value into plain arrays, so this warning may not get triggered for
7682 such arrays.
7683
7684 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7685 is typically only effective when @option{-ftree-vrp} is active (default
7686 for @option{-O2} and above).
7687
7688 See also @option{-Walloca-larger-than=@var{byte-size}}.
7689
7690 @item -Wno-vla-larger-than
7691 @opindex Wno-vla-larger-than
7692 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7693 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7694
7695 @item -Wvolatile-register-var
7696 @opindex Wvolatile-register-var
7697 @opindex Wno-volatile-register-var
7698 Warn if a register variable is declared volatile. The volatile
7699 modifier does not inhibit all optimizations that may eliminate reads
7700 and/or writes to register variables. This warning is enabled by
7701 @option{-Wall}.
7702
7703 @item -Wdisabled-optimization
7704 @opindex Wdisabled-optimization
7705 @opindex Wno-disabled-optimization
7706 Warn if a requested optimization pass is disabled. This warning does
7707 not generally indicate that there is anything wrong with your code; it
7708 merely indicates that GCC's optimizers are unable to handle the code
7709 effectively. Often, the problem is that your code is too big or too
7710 complex; GCC refuses to optimize programs when the optimization
7711 itself is likely to take inordinate amounts of time.
7712
7713 @item -Wpointer-sign @r{(C and Objective-C only)}
7714 @opindex Wpointer-sign
7715 @opindex Wno-pointer-sign
7716 Warn for pointer argument passing or assignment with different signedness.
7717 This option is only supported for C and Objective-C@. It is implied by
7718 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7719 @option{-Wno-pointer-sign}.
7720
7721 @item -Wstack-protector
7722 @opindex Wstack-protector
7723 @opindex Wno-stack-protector
7724 This option is only active when @option{-fstack-protector} is active. It
7725 warns about functions that are not protected against stack smashing.
7726
7727 @item -Woverlength-strings
7728 @opindex Woverlength-strings
7729 @opindex Wno-overlength-strings
7730 Warn about string constants that are longer than the ``minimum
7731 maximum'' length specified in the C standard. Modern compilers
7732 generally allow string constants that are much longer than the
7733 standard's minimum limit, but very portable programs should avoid
7734 using longer strings.
7735
7736 The limit applies @emph{after} string constant concatenation, and does
7737 not count the trailing NUL@. In C90, the limit was 509 characters; in
7738 C99, it was raised to 4095. C++98 does not specify a normative
7739 minimum maximum, so we do not diagnose overlength strings in C++@.
7740
7741 This option is implied by @option{-Wpedantic}, and can be disabled with
7742 @option{-Wno-overlength-strings}.
7743
7744 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7745 @opindex Wunsuffixed-float-constants
7746 @opindex Wno-unsuffixed-float-constants
7747
7748 Issue a warning for any floating constant that does not have
7749 a suffix. When used together with @option{-Wsystem-headers} it
7750 warns about such constants in system header files. This can be useful
7751 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7752 from the decimal floating-point extension to C99.
7753
7754 @item -Wno-designated-init @r{(C and Objective-C only)}
7755 Suppress warnings when a positional initializer is used to initialize
7756 a structure that has been marked with the @code{designated_init}
7757 attribute.
7758
7759 @item -Whsa
7760 Issue a warning when HSAIL cannot be emitted for the compiled function or
7761 OpenMP construct.
7762
7763 @end table
7764
7765 @node Debugging Options
7766 @section Options for Debugging Your Program
7767 @cindex options, debugging
7768 @cindex debugging information options
7769
7770 To tell GCC to emit extra information for use by a debugger, in almost
7771 all cases you need only to add @option{-g} to your other options.
7772
7773 GCC allows you to use @option{-g} with
7774 @option{-O}. The shortcuts taken by optimized code may occasionally
7775 be surprising: some variables you declared may not exist
7776 at all; flow of control may briefly move where you did not expect it;
7777 some statements may not be executed because they compute constant
7778 results or their values are already at hand; some statements may
7779 execute in different places because they have been moved out of loops.
7780 Nevertheless it is possible to debug optimized output. This makes
7781 it reasonable to use the optimizer for programs that might have bugs.
7782
7783 If you are not using some other optimization option, consider
7784 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7785 With no @option{-O} option at all, some compiler passes that collect
7786 information useful for debugging do not run at all, so that
7787 @option{-Og} may result in a better debugging experience.
7788
7789 @table @gcctabopt
7790 @item -g
7791 @opindex g
7792 Produce debugging information in the operating system's native format
7793 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7794 information.
7795
7796 On most systems that use stabs format, @option{-g} enables use of extra
7797 debugging information that only GDB can use; this extra information
7798 makes debugging work better in GDB but probably makes other debuggers
7799 crash or
7800 refuse to read the program. If you want to control for certain whether
7801 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7802 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7803
7804 @item -ggdb
7805 @opindex ggdb
7806 Produce debugging information for use by GDB@. This means to use the
7807 most expressive format available (DWARF, stabs, or the native format
7808 if neither of those are supported), including GDB extensions if at all
7809 possible.
7810
7811 @item -gdwarf
7812 @itemx -gdwarf-@var{version}
7813 @opindex gdwarf
7814 Produce debugging information in DWARF format (if that is supported).
7815 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7816 for most targets is 4. DWARF Version 5 is only experimental.
7817
7818 Note that with DWARF Version 2, some ports require and always
7819 use some non-conflicting DWARF 3 extensions in the unwind tables.
7820
7821 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7822 for maximum benefit.
7823
7824 GCC no longer supports DWARF Version 1, which is substantially
7825 different than Version 2 and later. For historical reasons, some
7826 other DWARF-related options such as
7827 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7828 in their names, but apply to all currently-supported versions of DWARF.
7829
7830 @item -gstabs
7831 @opindex gstabs
7832 Produce debugging information in stabs format (if that is supported),
7833 without GDB extensions. This is the format used by DBX on most BSD
7834 systems. On MIPS, Alpha and System V Release 4 systems this option
7835 produces stabs debugging output that is not understood by DBX@.
7836 On System V Release 4 systems this option requires the GNU assembler.
7837
7838 @item -gstabs+
7839 @opindex gstabs+
7840 Produce debugging information in stabs format (if that is supported),
7841 using GNU extensions understood only by the GNU debugger (GDB)@. The
7842 use of these extensions is likely to make other debuggers crash or
7843 refuse to read the program.
7844
7845 @item -gxcoff
7846 @opindex gxcoff
7847 Produce debugging information in XCOFF format (if that is supported).
7848 This is the format used by the DBX debugger on IBM RS/6000 systems.
7849
7850 @item -gxcoff+
7851 @opindex gxcoff+
7852 Produce debugging information in XCOFF format (if that is supported),
7853 using GNU extensions understood only by the GNU debugger (GDB)@. The
7854 use of these extensions is likely to make other debuggers crash or
7855 refuse to read the program, and may cause assemblers other than the GNU
7856 assembler (GAS) to fail with an error.
7857
7858 @item -gvms
7859 @opindex gvms
7860 Produce debugging information in Alpha/VMS debug format (if that is
7861 supported). This is the format used by DEBUG on Alpha/VMS systems.
7862
7863 @item -g@var{level}
7864 @itemx -ggdb@var{level}
7865 @itemx -gstabs@var{level}
7866 @itemx -gxcoff@var{level}
7867 @itemx -gvms@var{level}
7868 Request debugging information and also use @var{level} to specify how
7869 much information. The default level is 2.
7870
7871 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7872 @option{-g}.
7873
7874 Level 1 produces minimal information, enough for making backtraces in
7875 parts of the program that you don't plan to debug. This includes
7876 descriptions of functions and external variables, and line number
7877 tables, but no information about local variables.
7878
7879 Level 3 includes extra information, such as all the macro definitions
7880 present in the program. Some debuggers support macro expansion when
7881 you use @option{-g3}.
7882
7883 If you use multiple @option{-g} options, with or without level numbers,
7884 the last such option is the one that is effective.
7885
7886 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7887 confusion with @option{-gdwarf-@var{level}}.
7888 Instead use an additional @option{-g@var{level}} option to change the
7889 debug level for DWARF.
7890
7891 @item -fno-eliminate-unused-debug-symbols
7892 @opindex feliminate-unused-debug-symbols
7893 @opindex fno-eliminate-unused-debug-symbols
7894 By default, no debug information is produced for symbols that are not actually
7895 used. Use this option if you want debug information for all symbols.
7896
7897 @item -femit-class-debug-always
7898 @opindex femit-class-debug-always
7899 Instead of emitting debugging information for a C++ class in only one
7900 object file, emit it in all object files using the class. This option
7901 should be used only with debuggers that are unable to handle the way GCC
7902 normally emits debugging information for classes because using this
7903 option increases the size of debugging information by as much as a
7904 factor of two.
7905
7906 @item -fno-merge-debug-strings
7907 @opindex fmerge-debug-strings
7908 @opindex fno-merge-debug-strings
7909 Direct the linker to not merge together strings in the debugging
7910 information that are identical in different object files. Merging is
7911 not supported by all assemblers or linkers. Merging decreases the size
7912 of the debug information in the output file at the cost of increasing
7913 link processing time. Merging is enabled by default.
7914
7915 @item -fdebug-prefix-map=@var{old}=@var{new}
7916 @opindex fdebug-prefix-map
7917 When compiling files residing in directory @file{@var{old}}, record
7918 debugging information describing them as if the files resided in
7919 directory @file{@var{new}} instead. This can be used to replace a
7920 build-time path with an install-time path in the debug info. It can
7921 also be used to change an absolute path to a relative path by using
7922 @file{.} for @var{new}. This can give more reproducible builds, which
7923 are location independent, but may require an extra command to tell GDB
7924 where to find the source files. See also @option{-ffile-prefix-map}.
7925
7926 @item -fvar-tracking
7927 @opindex fvar-tracking
7928 Run variable tracking pass. It computes where variables are stored at each
7929 position in code. Better debugging information is then generated
7930 (if the debugging information format supports this information).
7931
7932 It is enabled by default when compiling with optimization (@option{-Os},
7933 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7934 the debug info format supports it.
7935
7936 @item -fvar-tracking-assignments
7937 @opindex fvar-tracking-assignments
7938 @opindex fno-var-tracking-assignments
7939 Annotate assignments to user variables early in the compilation and
7940 attempt to carry the annotations over throughout the compilation all the
7941 way to the end, in an attempt to improve debug information while
7942 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7943
7944 It can be enabled even if var-tracking is disabled, in which case
7945 annotations are created and maintained, but discarded at the end.
7946 By default, this flag is enabled together with @option{-fvar-tracking},
7947 except when selective scheduling is enabled.
7948
7949 @item -gsplit-dwarf
7950 @opindex gsplit-dwarf
7951 Separate as much DWARF debugging information as possible into a
7952 separate output file with the extension @file{.dwo}. This option allows
7953 the build system to avoid linking files with debug information. To
7954 be useful, this option requires a debugger capable of reading @file{.dwo}
7955 files.
7956
7957 @item -gdescribe-dies
7958 @opindex gdescribe-dies
7959 Add description attributes to some DWARF DIEs that have no name attribute,
7960 such as artificial variables, external references and call site
7961 parameter DIEs.
7962
7963 @item -gpubnames
7964 @opindex gpubnames
7965 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7966
7967 @item -ggnu-pubnames
7968 @opindex ggnu-pubnames
7969 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7970 suitable for conversion into a GDB@ index. This option is only useful
7971 with a linker that can produce GDB@ index version 7.
7972
7973 @item -fdebug-types-section
7974 @opindex fdebug-types-section
7975 @opindex fno-debug-types-section
7976 When using DWARF Version 4 or higher, type DIEs can be put into
7977 their own @code{.debug_types} section instead of making them part of the
7978 @code{.debug_info} section. It is more efficient to put them in a separate
7979 comdat section since the linker can then remove duplicates.
7980 But not all DWARF consumers support @code{.debug_types} sections yet
7981 and on some objects @code{.debug_types} produces larger instead of smaller
7982 debugging information.
7983
7984 @item -grecord-gcc-switches
7985 @itemx -gno-record-gcc-switches
7986 @opindex grecord-gcc-switches
7987 @opindex gno-record-gcc-switches
7988 This switch causes the command-line options used to invoke the
7989 compiler that may affect code generation to be appended to the
7990 DW_AT_producer attribute in DWARF debugging information. The options
7991 are concatenated with spaces separating them from each other and from
7992 the compiler version.
7993 It is enabled by default.
7994 See also @option{-frecord-gcc-switches} for another
7995 way of storing compiler options into the object file.
7996
7997 @item -gstrict-dwarf
7998 @opindex gstrict-dwarf
7999 Disallow using extensions of later DWARF standard version than selected
8000 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
8001 DWARF extensions from later standard versions is allowed.
8002
8003 @item -gno-strict-dwarf
8004 @opindex gno-strict-dwarf
8005 Allow using extensions of later DWARF standard version than selected with
8006 @option{-gdwarf-@var{version}}.
8007
8008 @item -gas-loc-support
8009 @opindex gas-loc-support
8010 Inform the compiler that the assembler supports @code{.loc} directives.
8011 It may then use them for the assembler to generate DWARF2+ line number
8012 tables.
8013
8014 This is generally desirable, because assembler-generated line-number
8015 tables are a lot more compact than those the compiler can generate
8016 itself.
8017
8018 This option will be enabled by default if, at GCC configure time, the
8019 assembler was found to support such directives.
8020
8021 @item -gno-as-loc-support
8022 @opindex gno-as-loc-support
8023 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
8024 line number tables are to be generated.
8025
8026 @item -gas-locview-support
8027 @opindex gas-locview-support
8028 Inform the compiler that the assembler supports @code{view} assignment
8029 and reset assertion checking in @code{.loc} directives.
8030
8031 This option will be enabled by default if, at GCC configure time, the
8032 assembler was found to support them.
8033
8034 @item -gno-as-locview-support
8035 Force GCC to assign view numbers internally, if
8036 @option{-gvariable-location-views} are explicitly requested.
8037
8038 @item -gcolumn-info
8039 @itemx -gno-column-info
8040 @opindex gcolumn-info
8041 @opindex gno-column-info
8042 Emit location column information into DWARF debugging information, rather
8043 than just file and line.
8044 This option is enabled by default.
8045
8046 @item -gstatement-frontiers
8047 @itemx -gno-statement-frontiers
8048 @opindex gstatement-frontiers
8049 @opindex gno-statement-frontiers
8050 This option causes GCC to create markers in the internal representation
8051 at the beginning of statements, and to keep them roughly in place
8052 throughout compilation, using them to guide the output of @code{is_stmt}
8053 markers in the line number table. This is enabled by default when
8054 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
8055 @dots{}), and outputting DWARF 2 debug information at the normal level.
8056
8057 @item -gvariable-location-views
8058 @itemx -gvariable-location-views=incompat5
8059 @itemx -gno-variable-location-views
8060 @opindex gvariable-location-views
8061 @opindex gvariable-location-views=incompat5
8062 @opindex gno-variable-location-views
8063 Augment variable location lists with progressive view numbers implied
8064 from the line number table. This enables debug information consumers to
8065 inspect state at certain points of the program, even if no instructions
8066 associated with the corresponding source locations are present at that
8067 point. If the assembler lacks support for view numbers in line number
8068 tables, this will cause the compiler to emit the line number table,
8069 which generally makes them somewhat less compact. The augmented line
8070 number tables and location lists are fully backward-compatible, so they
8071 can be consumed by debug information consumers that are not aware of
8072 these augmentations, but they won't derive any benefit from them either.
8073
8074 This is enabled by default when outputting DWARF 2 debug information at
8075 the normal level, as long as there is assembler support,
8076 @option{-fvar-tracking-assignments} is enabled and
8077 @option{-gstrict-dwarf} is not. When assembler support is not
8078 available, this may still be enabled, but it will force GCC to output
8079 internal line number tables, and if
8080 @option{-ginternal-reset-location-views} is not enabled, that will most
8081 certainly lead to silently mismatching location views.
8082
8083 There is a proposed representation for view numbers that is not backward
8084 compatible with the location list format introduced in DWARF 5, that can
8085 be enabled with @option{-gvariable-location-views=incompat5}. This
8086 option may be removed in the future, is only provided as a reference
8087 implementation of the proposed representation. Debug information
8088 consumers are not expected to support this extended format, and they
8089 would be rendered unable to decode location lists using it.
8090
8091 @item -ginternal-reset-location-views
8092 @itemx -gnointernal-reset-location-views
8093 @opindex ginternal-reset-location-views
8094 @opindex gno-internal-reset-location-views
8095 Attempt to determine location views that can be omitted from location
8096 view lists. This requires the compiler to have very accurate insn
8097 length estimates, which isn't always the case, and it may cause
8098 incorrect view lists to be generated silently when using an assembler
8099 that does not support location view lists. The GNU assembler will flag
8100 any such error as a @code{view number mismatch}. This is only enabled
8101 on ports that define a reliable estimation function.
8102
8103 @item -ginline-points
8104 @itemx -gno-inline-points
8105 @opindex ginline-points
8106 @opindex gno-inline-points
8107 Generate extended debug information for inlined functions. Location
8108 view tracking markers are inserted at inlined entry points, so that
8109 address and view numbers can be computed and output in debug
8110 information. This can be enabled independently of location views, in
8111 which case the view numbers won't be output, but it can only be enabled
8112 along with statement frontiers, and it is only enabled by default if
8113 location views are enabled.
8114
8115 @item -gz@r{[}=@var{type}@r{]}
8116 @opindex gz
8117 Produce compressed debug sections in DWARF format, if that is supported.
8118 If @var{type} is not given, the default type depends on the capabilities
8119 of the assembler and linker used. @var{type} may be one of
8120 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8121 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8122 compression in traditional GNU format). If the linker doesn't support
8123 writing compressed debug sections, the option is rejected. Otherwise,
8124 if the assembler does not support them, @option{-gz} is silently ignored
8125 when producing object files.
8126
8127 @item -femit-struct-debug-baseonly
8128 @opindex femit-struct-debug-baseonly
8129 Emit debug information for struct-like types
8130 only when the base name of the compilation source file
8131 matches the base name of file in which the struct is defined.
8132
8133 This option substantially reduces the size of debugging information,
8134 but at significant potential loss in type information to the debugger.
8135 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8136 See @option{-femit-struct-debug-detailed} for more detailed control.
8137
8138 This option works only with DWARF debug output.
8139
8140 @item -femit-struct-debug-reduced
8141 @opindex femit-struct-debug-reduced
8142 Emit debug information for struct-like types
8143 only when the base name of the compilation source file
8144 matches the base name of file in which the type is defined,
8145 unless the struct is a template or defined in a system header.
8146
8147 This option significantly reduces the size of debugging information,
8148 with some potential loss in type information to the debugger.
8149 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8150 See @option{-femit-struct-debug-detailed} for more detailed control.
8151
8152 This option works only with DWARF debug output.
8153
8154 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8155 @opindex femit-struct-debug-detailed
8156 Specify the struct-like types
8157 for which the compiler generates debug information.
8158 The intent is to reduce duplicate struct debug information
8159 between different object files within the same program.
8160
8161 This option is a detailed version of
8162 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8163 which serves for most needs.
8164
8165 A specification has the syntax@*
8166 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8167
8168 The optional first word limits the specification to
8169 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8170 A struct type is used directly when it is the type of a variable, member.
8171 Indirect uses arise through pointers to structs.
8172 That is, when use of an incomplete struct is valid, the use is indirect.
8173 An example is
8174 @samp{struct one direct; struct two * indirect;}.
8175
8176 The optional second word limits the specification to
8177 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8178 Generic structs are a bit complicated to explain.
8179 For C++, these are non-explicit specializations of template classes,
8180 or non-template classes within the above.
8181 Other programming languages have generics,
8182 but @option{-femit-struct-debug-detailed} does not yet implement them.
8183
8184 The third word specifies the source files for those
8185 structs for which the compiler should emit debug information.
8186 The values @samp{none} and @samp{any} have the normal meaning.
8187 The value @samp{base} means that
8188 the base of name of the file in which the type declaration appears
8189 must match the base of the name of the main compilation file.
8190 In practice, this means that when compiling @file{foo.c}, debug information
8191 is generated for types declared in that file and @file{foo.h},
8192 but not other header files.
8193 The value @samp{sys} means those types satisfying @samp{base}
8194 or declared in system or compiler headers.
8195
8196 You may need to experiment to determine the best settings for your application.
8197
8198 The default is @option{-femit-struct-debug-detailed=all}.
8199
8200 This option works only with DWARF debug output.
8201
8202 @item -fno-dwarf2-cfi-asm
8203 @opindex fdwarf2-cfi-asm
8204 @opindex fno-dwarf2-cfi-asm
8205 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8206 instead of using GAS @code{.cfi_*} directives.
8207
8208 @item -fno-eliminate-unused-debug-types
8209 @opindex feliminate-unused-debug-types
8210 @opindex fno-eliminate-unused-debug-types
8211 Normally, when producing DWARF output, GCC avoids producing debug symbol
8212 output for types that are nowhere used in the source file being compiled.
8213 Sometimes it is useful to have GCC emit debugging
8214 information for all types declared in a compilation
8215 unit, regardless of whether or not they are actually used
8216 in that compilation unit, for example
8217 if, in the debugger, you want to cast a value to a type that is
8218 not actually used in your program (but is declared). More often,
8219 however, this results in a significant amount of wasted space.
8220 @end table
8221
8222 @node Optimize Options
8223 @section Options That Control Optimization
8224 @cindex optimize options
8225 @cindex options, optimization
8226
8227 These options control various sorts of optimizations.
8228
8229 Without any optimization option, the compiler's goal is to reduce the
8230 cost of compilation and to make debugging produce the expected
8231 results. Statements are independent: if you stop the program with a
8232 breakpoint between statements, you can then assign a new value to any
8233 variable or change the program counter to any other statement in the
8234 function and get exactly the results you expect from the source
8235 code.
8236
8237 Turning on optimization flags makes the compiler attempt to improve
8238 the performance and/or code size at the expense of compilation time
8239 and possibly the ability to debug the program.
8240
8241 The compiler performs optimization based on the knowledge it has of the
8242 program. Compiling multiple files at once to a single output file mode allows
8243 the compiler to use information gained from all of the files when compiling
8244 each of them.
8245
8246 Not all optimizations are controlled directly by a flag. Only
8247 optimizations that have a flag are listed in this section.
8248
8249 Most optimizations are completely disabled at @option{-O0} or if an
8250 @option{-O} level is not set on the command line, even if individual
8251 optimization flags are specified. Similarly, @option{-Og} suppresses
8252 many optimization passes.
8253
8254 Depending on the target and how GCC was configured, a slightly different
8255 set of optimizations may be enabled at each @option{-O} level than
8256 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8257 to find out the exact set of optimizations that are enabled at each level.
8258 @xref{Overall Options}, for examples.
8259
8260 @table @gcctabopt
8261 @item -O
8262 @itemx -O1
8263 @opindex O
8264 @opindex O1
8265 Optimize. Optimizing compilation takes somewhat more time, and a lot
8266 more memory for a large function.
8267
8268 With @option{-O}, the compiler tries to reduce code size and execution
8269 time, without performing any optimizations that take a great deal of
8270 compilation time.
8271
8272 @c Note that in addition to the default_options_table list in opts.c,
8273 @c several optimization flags default to true but control optimization
8274 @c passes that are explicitly disabled at -O0.
8275
8276 @option{-O} turns on the following optimization flags:
8277
8278 @c Please keep the following list alphabetized.
8279 @gccoptlist{-fauto-inc-dec @gol
8280 -fbranch-count-reg @gol
8281 -fcombine-stack-adjustments @gol
8282 -fcompare-elim @gol
8283 -fcprop-registers @gol
8284 -fdce @gol
8285 -fdefer-pop @gol
8286 -fdelayed-branch @gol
8287 -fdse @gol
8288 -fforward-propagate @gol
8289 -fguess-branch-probability @gol
8290 -fif-conversion @gol
8291 -fif-conversion2 @gol
8292 -finline-functions-called-once @gol
8293 -fipa-profile @gol
8294 -fipa-pure-const @gol
8295 -fipa-reference @gol
8296 -fipa-reference-addressable @gol
8297 -fmerge-constants @gol
8298 -fmove-loop-invariants @gol
8299 -fomit-frame-pointer @gol
8300 -freorder-blocks @gol
8301 -fshrink-wrap @gol
8302 -fshrink-wrap-separate @gol
8303 -fsplit-wide-types @gol
8304 -fssa-backprop @gol
8305 -fssa-phiopt @gol
8306 -ftree-bit-ccp @gol
8307 -ftree-ccp @gol
8308 -ftree-ch @gol
8309 -ftree-coalesce-vars @gol
8310 -ftree-copy-prop @gol
8311 -ftree-dce @gol
8312 -ftree-dominator-opts @gol
8313 -ftree-dse @gol
8314 -ftree-forwprop @gol
8315 -ftree-fre @gol
8316 -ftree-phiprop @gol
8317 -ftree-pta @gol
8318 -ftree-scev-cprop @gol
8319 -ftree-sink @gol
8320 -ftree-slsr @gol
8321 -ftree-sra @gol
8322 -ftree-ter @gol
8323 -funit-at-a-time}
8324
8325 @item -O2
8326 @opindex O2
8327 Optimize even more. GCC performs nearly all supported optimizations
8328 that do not involve a space-speed tradeoff.
8329 As compared to @option{-O}, this option increases both compilation time
8330 and the performance of the generated code.
8331
8332 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8333 also turns on the following optimization flags:
8334
8335 @c Please keep the following list alphabetized!
8336 @gccoptlist{-falign-functions -falign-jumps @gol
8337 -falign-labels -falign-loops @gol
8338 -fcaller-saves @gol
8339 -fcode-hoisting @gol
8340 -fcrossjumping @gol
8341 -fcse-follow-jumps -fcse-skip-blocks @gol
8342 -fdelete-null-pointer-checks @gol
8343 -fdevirtualize -fdevirtualize-speculatively @gol
8344 -fexpensive-optimizations @gol
8345 -ffinite-loops @gol
8346 -fgcse -fgcse-lm @gol
8347 -fhoist-adjacent-loads @gol
8348 -finline-small-functions @gol
8349 -findirect-inlining @gol
8350 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8351 -fipa-ra -fipa-sra -fipa-vrp @gol
8352 -fisolate-erroneous-paths-dereference @gol
8353 -flra-remat @gol
8354 -foptimize-sibling-calls @gol
8355 -foptimize-strlen @gol
8356 -fpartial-inlining @gol
8357 -fpeephole2 @gol
8358 -freorder-blocks-algorithm=stc @gol
8359 -freorder-blocks-and-partition -freorder-functions @gol
8360 -frerun-cse-after-loop @gol
8361 -fschedule-insns -fschedule-insns2 @gol
8362 -fsched-interblock -fsched-spec @gol
8363 -fstore-merging @gol
8364 -fstrict-aliasing @gol
8365 -fthread-jumps @gol
8366 -ftree-builtin-call-dce @gol
8367 -ftree-pre @gol
8368 -ftree-switch-conversion -ftree-tail-merge @gol
8369 -ftree-vrp}
8370
8371 Please note the warning under @option{-fgcse} about
8372 invoking @option{-O2} on programs that use computed gotos.
8373
8374 @item -O3
8375 @opindex O3
8376 Optimize yet more. @option{-O3} turns on all optimizations specified
8377 by @option{-O2} and also turns on the following optimization flags:
8378
8379 @c Please keep the following list alphabetized!
8380 @gccoptlist{-fgcse-after-reload @gol
8381 -finline-functions @gol
8382 -fipa-cp-clone
8383 -floop-interchange @gol
8384 -floop-unroll-and-jam @gol
8385 -fpeel-loops @gol
8386 -fpredictive-commoning @gol
8387 -fsplit-paths @gol
8388 -ftree-loop-distribute-patterns @gol
8389 -ftree-loop-distribution @gol
8390 -ftree-loop-vectorize @gol
8391 -ftree-partial-pre @gol
8392 -ftree-slp-vectorize @gol
8393 -funswitch-loops @gol
8394 -fvect-cost-model @gol
8395 -fversion-loops-for-strides}
8396
8397 @item -O0
8398 @opindex O0
8399 Reduce compilation time and make debugging produce the expected
8400 results. This is the default.
8401
8402 @item -Os
8403 @opindex Os
8404 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8405 except those that often increase code size:
8406
8407 @gccoptlist{-falign-functions -falign-jumps @gol
8408 -falign-labels -falign-loops @gol
8409 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8410
8411 It also enables @option{-finline-functions}, causes the compiler to tune for
8412 code size rather than execution speed, and performs further optimizations
8413 designed to reduce code size.
8414
8415 @item -Ofast
8416 @opindex Ofast
8417 Disregard strict standards compliance. @option{-Ofast} enables all
8418 @option{-O3} optimizations. It also enables optimizations that are not
8419 valid for all standard-compliant programs.
8420 It turns on @option{-ffast-math} and the Fortran-specific
8421 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8422 specified, and @option{-fno-protect-parens}.
8423
8424 @item -Og
8425 @opindex Og
8426 Optimize debugging experience. @option{-Og} should be the optimization
8427 level of choice for the standard edit-compile-debug cycle, offering
8428 a reasonable level of optimization while maintaining fast compilation
8429 and a good debugging experience. It is a better choice than @option{-O0}
8430 for producing debuggable code because some compiler passes
8431 that collect debug information are disabled at @option{-O0}.
8432
8433 Like @option{-O0}, @option{-Og} completely disables a number of
8434 optimization passes so that individual options controlling them have
8435 no effect. Otherwise @option{-Og} enables all @option{-O1}
8436 optimization flags except for those that may interfere with debugging:
8437
8438 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8439 -fdse -fif-conversion -fif-conversion2 @gol
8440 -finline-functions-called-once @gol
8441 -fmove-loop-invariants -fssa-phiopt @gol
8442 -ftree-bit-ccp -ftree-dse -ftree-pta -ftree-sra}
8443
8444 @end table
8445
8446 If you use multiple @option{-O} options, with or without level numbers,
8447 the last such option is the one that is effective.
8448
8449 Options of the form @option{-f@var{flag}} specify machine-independent
8450 flags. Most flags have both positive and negative forms; the negative
8451 form of @option{-ffoo} is @option{-fno-foo}. In the table
8452 below, only one of the forms is listed---the one you typically
8453 use. You can figure out the other form by either removing @samp{no-}
8454 or adding it.
8455
8456 The following options control specific optimizations. They are either
8457 activated by @option{-O} options or are related to ones that are. You
8458 can use the following flags in the rare cases when ``fine-tuning'' of
8459 optimizations to be performed is desired.
8460
8461 @table @gcctabopt
8462 @item -fno-defer-pop
8463 @opindex fno-defer-pop
8464 @opindex fdefer-pop
8465 For machines that must pop arguments after a function call, always pop
8466 the arguments as soon as each function returns.
8467 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8468 this allows the compiler to let arguments accumulate on the stack for several
8469 function calls and pop them all at once.
8470
8471 @item -fforward-propagate
8472 @opindex fforward-propagate
8473 Perform a forward propagation pass on RTL@. The pass tries to combine two
8474 instructions and checks if the result can be simplified. If loop unrolling
8475 is active, two passes are performed and the second is scheduled after
8476 loop unrolling.
8477
8478 This option is enabled by default at optimization levels @option{-O},
8479 @option{-O2}, @option{-O3}, @option{-Os}.
8480
8481 @item -ffp-contract=@var{style}
8482 @opindex ffp-contract
8483 @option{-ffp-contract=off} disables floating-point expression contraction.
8484 @option{-ffp-contract=fast} enables floating-point expression contraction
8485 such as forming of fused multiply-add operations if the target has
8486 native support for them.
8487 @option{-ffp-contract=on} enables floating-point expression contraction
8488 if allowed by the language standard. This is currently not implemented
8489 and treated equal to @option{-ffp-contract=off}.
8490
8491 The default is @option{-ffp-contract=fast}.
8492
8493 @item -fomit-frame-pointer
8494 @opindex fomit-frame-pointer
8495 Omit the frame pointer in functions that don't need one. This avoids the
8496 instructions to save, set up and restore the frame pointer; on many targets
8497 it also makes an extra register available.
8498
8499 On some targets this flag has no effect because the standard calling sequence
8500 always uses a frame pointer, so it cannot be omitted.
8501
8502 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8503 is used in all functions. Several targets always omit the frame pointer in
8504 leaf functions.
8505
8506 Enabled by default at @option{-O} and higher.
8507
8508 @item -foptimize-sibling-calls
8509 @opindex foptimize-sibling-calls
8510 Optimize sibling and tail recursive calls.
8511
8512 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8513
8514 @item -foptimize-strlen
8515 @opindex foptimize-strlen
8516 Optimize various standard C string functions (e.g.@: @code{strlen},
8517 @code{strchr} or @code{strcpy}) and
8518 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8519
8520 Enabled at levels @option{-O2}, @option{-O3}.
8521
8522 @item -fno-inline
8523 @opindex fno-inline
8524 @opindex finline
8525 Do not expand any functions inline apart from those marked with
8526 the @code{always_inline} attribute. This is the default when not
8527 optimizing.
8528
8529 Single functions can be exempted from inlining by marking them
8530 with the @code{noinline} attribute.
8531
8532 @item -finline-small-functions
8533 @opindex finline-small-functions
8534 Integrate functions into their callers when their body is smaller than expected
8535 function call code (so overall size of program gets smaller). The compiler
8536 heuristically decides which functions are simple enough to be worth integrating
8537 in this way. This inlining applies to all functions, even those not declared
8538 inline.
8539
8540 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8541
8542 @item -findirect-inlining
8543 @opindex findirect-inlining
8544 Inline also indirect calls that are discovered to be known at compile
8545 time thanks to previous inlining. This option has any effect only
8546 when inlining itself is turned on by the @option{-finline-functions}
8547 or @option{-finline-small-functions} options.
8548
8549 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8550
8551 @item -finline-functions
8552 @opindex finline-functions
8553 Consider all functions for inlining, even if they are not declared inline.
8554 The compiler heuristically decides which functions are worth integrating
8555 in this way.
8556
8557 If all calls to a given function are integrated, and the function is
8558 declared @code{static}, then the function is normally not output as
8559 assembler code in its own right.
8560
8561 Enabled at levels @option{-O3}, @option{-Os}. Also enabled
8562 by @option{-fprofile-use} and @option{-fauto-profile}.
8563
8564 @item -finline-functions-called-once
8565 @opindex finline-functions-called-once
8566 Consider all @code{static} functions called once for inlining into their
8567 caller even if they are not marked @code{inline}. If a call to a given
8568 function is integrated, then the function is not output as assembler code
8569 in its own right.
8570
8571 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8572 but not @option{-Og}.
8573
8574 @item -fearly-inlining
8575 @opindex fearly-inlining
8576 Inline functions marked by @code{always_inline} and functions whose body seems
8577 smaller than the function call overhead early before doing
8578 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8579 makes profiling significantly cheaper and usually inlining faster on programs
8580 having large chains of nested wrapper functions.
8581
8582 Enabled by default.
8583
8584 @item -fipa-sra
8585 @opindex fipa-sra
8586 Perform interprocedural scalar replacement of aggregates, removal of
8587 unused parameters and replacement of parameters passed by reference
8588 by parameters passed by value.
8589
8590 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8591
8592 @item -finline-limit=@var{n}
8593 @opindex finline-limit
8594 By default, GCC limits the size of functions that can be inlined. This flag
8595 allows coarse control of this limit. @var{n} is the size of functions that
8596 can be inlined in number of pseudo instructions.
8597
8598 Inlining is actually controlled by a number of parameters, which may be
8599 specified individually by using @option{--param @var{name}=@var{value}}.
8600 The @option{-finline-limit=@var{n}} option sets some of these parameters
8601 as follows:
8602
8603 @table @gcctabopt
8604 @item max-inline-insns-single
8605 is set to @var{n}/2.
8606 @item max-inline-insns-auto
8607 is set to @var{n}/2.
8608 @end table
8609
8610 See below for a documentation of the individual
8611 parameters controlling inlining and for the defaults of these parameters.
8612
8613 @emph{Note:} there may be no value to @option{-finline-limit} that results
8614 in default behavior.
8615
8616 @emph{Note:} pseudo instruction represents, in this particular context, an
8617 abstract measurement of function's size. In no way does it represent a count
8618 of assembly instructions and as such its exact meaning might change from one
8619 release to an another.
8620
8621 @item -fno-keep-inline-dllexport
8622 @opindex fno-keep-inline-dllexport
8623 @opindex fkeep-inline-dllexport
8624 This is a more fine-grained version of @option{-fkeep-inline-functions},
8625 which applies only to functions that are declared using the @code{dllexport}
8626 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8627 Functions}.
8628
8629 @item -fkeep-inline-functions
8630 @opindex fkeep-inline-functions
8631 In C, emit @code{static} functions that are declared @code{inline}
8632 into the object file, even if the function has been inlined into all
8633 of its callers. This switch does not affect functions using the
8634 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8635 inline functions into the object file.
8636
8637 @item -fkeep-static-functions
8638 @opindex fkeep-static-functions
8639 Emit @code{static} functions into the object file, even if the function
8640 is never used.
8641
8642 @item -fkeep-static-consts
8643 @opindex fkeep-static-consts
8644 Emit variables declared @code{static const} when optimization isn't turned
8645 on, even if the variables aren't referenced.
8646
8647 GCC enables this option by default. If you want to force the compiler to
8648 check if a variable is referenced, regardless of whether or not
8649 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8650
8651 @item -fmerge-constants
8652 @opindex fmerge-constants
8653 Attempt to merge identical constants (string constants and floating-point
8654 constants) across compilation units.
8655
8656 This option is the default for optimized compilation if the assembler and
8657 linker support it. Use @option{-fno-merge-constants} to inhibit this
8658 behavior.
8659
8660 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8661
8662 @item -fmerge-all-constants
8663 @opindex fmerge-all-constants
8664 Attempt to merge identical constants and identical variables.
8665
8666 This option implies @option{-fmerge-constants}. In addition to
8667 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8668 arrays or initialized constant variables with integral or floating-point
8669 types. Languages like C or C++ require each variable, including multiple
8670 instances of the same variable in recursive calls, to have distinct locations,
8671 so using this option results in non-conforming
8672 behavior.
8673
8674 @item -fmodulo-sched
8675 @opindex fmodulo-sched
8676 Perform swing modulo scheduling immediately before the first scheduling
8677 pass. This pass looks at innermost loops and reorders their
8678 instructions by overlapping different iterations.
8679
8680 @item -fmodulo-sched-allow-regmoves
8681 @opindex fmodulo-sched-allow-regmoves
8682 Perform more aggressive SMS-based modulo scheduling with register moves
8683 allowed. By setting this flag certain anti-dependences edges are
8684 deleted, which triggers the generation of reg-moves based on the
8685 life-range analysis. This option is effective only with
8686 @option{-fmodulo-sched} enabled.
8687
8688 @item -fno-branch-count-reg
8689 @opindex fno-branch-count-reg
8690 @opindex fbranch-count-reg
8691 Disable the optimization pass that scans for opportunities to use
8692 ``decrement and branch'' instructions on a count register instead of
8693 instruction sequences that decrement a register, compare it against zero, and
8694 then branch based upon the result. This option is only meaningful on
8695 architectures that support such instructions, which include x86, PowerPC,
8696 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8697 doesn't remove the decrement and branch instructions from the generated
8698 instruction stream introduced by other optimization passes.
8699
8700 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8701 except for @option{-Og}.
8702
8703 @item -fno-function-cse
8704 @opindex fno-function-cse
8705 @opindex ffunction-cse
8706 Do not put function addresses in registers; make each instruction that
8707 calls a constant function contain the function's address explicitly.
8708
8709 This option results in less efficient code, but some strange hacks
8710 that alter the assembler output may be confused by the optimizations
8711 performed when this option is not used.
8712
8713 The default is @option{-ffunction-cse}
8714
8715 @item -fno-zero-initialized-in-bss
8716 @opindex fno-zero-initialized-in-bss
8717 @opindex fzero-initialized-in-bss
8718 If the target supports a BSS section, GCC by default puts variables that
8719 are initialized to zero into BSS@. This can save space in the resulting
8720 code.
8721
8722 This option turns off this behavior because some programs explicitly
8723 rely on variables going to the data section---e.g., so that the
8724 resulting executable can find the beginning of that section and/or make
8725 assumptions based on that.
8726
8727 The default is @option{-fzero-initialized-in-bss}.
8728
8729 @item -fthread-jumps
8730 @opindex fthread-jumps
8731 Perform optimizations that check to see if a jump branches to a
8732 location where another comparison subsumed by the first is found. If
8733 so, the first branch is redirected to either the destination of the
8734 second branch or a point immediately following it, depending on whether
8735 the condition is known to be true or false.
8736
8737 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8738
8739 @item -fsplit-wide-types
8740 @opindex fsplit-wide-types
8741 When using a type that occupies multiple registers, such as @code{long
8742 long} on a 32-bit system, split the registers apart and allocate them
8743 independently. This normally generates better code for those types,
8744 but may make debugging more difficult.
8745
8746 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8747 @option{-Os}.
8748
8749 @item -fsplit-wide-types-early
8750 @opindex fsplit-wide-types-early
8751 Fully split wide types early, instead of very late.
8752 This option has no effect unless @option{-fsplit-wide-types} is turned on.
8753
8754 This is the default on some targets.
8755
8756 @item -fcse-follow-jumps
8757 @opindex fcse-follow-jumps
8758 In common subexpression elimination (CSE), scan through jump instructions
8759 when the target of the jump is not reached by any other path. For
8760 example, when CSE encounters an @code{if} statement with an
8761 @code{else} clause, CSE follows the jump when the condition
8762 tested is false.
8763
8764 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8765
8766 @item -fcse-skip-blocks
8767 @opindex fcse-skip-blocks
8768 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8769 follow jumps that conditionally skip over blocks. When CSE
8770 encounters a simple @code{if} statement with no else clause,
8771 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8772 body of the @code{if}.
8773
8774 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8775
8776 @item -frerun-cse-after-loop
8777 @opindex frerun-cse-after-loop
8778 Re-run common subexpression elimination after loop optimizations are
8779 performed.
8780
8781 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8782
8783 @item -fgcse
8784 @opindex fgcse
8785 Perform a global common subexpression elimination pass.
8786 This pass also performs global constant and copy propagation.
8787
8788 @emph{Note:} When compiling a program using computed gotos, a GCC
8789 extension, you may get better run-time performance if you disable
8790 the global common subexpression elimination pass by adding
8791 @option{-fno-gcse} to the command line.
8792
8793 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8794
8795 @item -fgcse-lm
8796 @opindex fgcse-lm
8797 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8798 attempts to move loads that are only killed by stores into themselves. This
8799 allows a loop containing a load/store sequence to be changed to a load outside
8800 the loop, and a copy/store within the loop.
8801
8802 Enabled by default when @option{-fgcse} is enabled.
8803
8804 @item -fgcse-sm
8805 @opindex fgcse-sm
8806 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8807 global common subexpression elimination. This pass attempts to move
8808 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8809 loops containing a load/store sequence can be changed to a load before
8810 the loop and a store after the loop.
8811
8812 Not enabled at any optimization level.
8813
8814 @item -fgcse-las
8815 @opindex fgcse-las
8816 When @option{-fgcse-las} is enabled, the global common subexpression
8817 elimination pass eliminates redundant loads that come after stores to the
8818 same memory location (both partial and full redundancies).
8819
8820 Not enabled at any optimization level.
8821
8822 @item -fgcse-after-reload
8823 @opindex fgcse-after-reload
8824 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8825 pass is performed after reload. The purpose of this pass is to clean up
8826 redundant spilling.
8827
8828 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8829
8830 @item -faggressive-loop-optimizations
8831 @opindex faggressive-loop-optimizations
8832 This option tells the loop optimizer to use language constraints to
8833 derive bounds for the number of iterations of a loop. This assumes that
8834 loop code does not invoke undefined behavior by for example causing signed
8835 integer overflows or out-of-bound array accesses. The bounds for the
8836 number of iterations of a loop are used to guide loop unrolling and peeling
8837 and loop exit test optimizations.
8838 This option is enabled by default.
8839
8840 @item -funconstrained-commons
8841 @opindex funconstrained-commons
8842 This option tells the compiler that variables declared in common blocks
8843 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8844 prevents certain optimizations that depend on knowing the array bounds.
8845
8846 @item -fcrossjumping
8847 @opindex fcrossjumping
8848 Perform cross-jumping transformation.
8849 This transformation unifies equivalent code and saves code size. The
8850 resulting code may or may not perform better than without cross-jumping.
8851
8852 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8853
8854 @item -fauto-inc-dec
8855 @opindex fauto-inc-dec
8856 Combine increments or decrements of addresses with memory accesses.
8857 This pass is always skipped on architectures that do not have
8858 instructions to support this. Enabled by default at @option{-O} and
8859 higher on architectures that support this.
8860
8861 @item -fdce
8862 @opindex fdce
8863 Perform dead code elimination (DCE) on RTL@.
8864 Enabled by default at @option{-O} and higher.
8865
8866 @item -fdse
8867 @opindex fdse
8868 Perform dead store elimination (DSE) on RTL@.
8869 Enabled by default at @option{-O} and higher.
8870
8871 @item -fif-conversion
8872 @opindex fif-conversion
8873 Attempt to transform conditional jumps into branch-less equivalents. This
8874 includes use of conditional moves, min, max, set flags and abs instructions, and
8875 some tricks doable by standard arithmetics. The use of conditional execution
8876 on chips where it is available is controlled by @option{-fif-conversion2}.
8877
8878 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8879 not with @option{-Og}.
8880
8881 @item -fif-conversion2
8882 @opindex fif-conversion2
8883 Use conditional execution (where available) to transform conditional jumps into
8884 branch-less equivalents.
8885
8886 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8887 not with @option{-Og}.
8888
8889 @item -fdeclone-ctor-dtor
8890 @opindex fdeclone-ctor-dtor
8891 The C++ ABI requires multiple entry points for constructors and
8892 destructors: one for a base subobject, one for a complete object, and
8893 one for a virtual destructor that calls operator delete afterwards.
8894 For a hierarchy with virtual bases, the base and complete variants are
8895 clones, which means two copies of the function. With this option, the
8896 base and complete variants are changed to be thunks that call a common
8897 implementation.
8898
8899 Enabled by @option{-Os}.
8900
8901 @item -fdelete-null-pointer-checks
8902 @opindex fdelete-null-pointer-checks
8903 Assume that programs cannot safely dereference null pointers, and that
8904 no code or data element resides at address zero.
8905 This option enables simple constant
8906 folding optimizations at all optimization levels. In addition, other
8907 optimization passes in GCC use this flag to control global dataflow
8908 analyses that eliminate useless checks for null pointers; these assume
8909 that a memory access to address zero always results in a trap, so
8910 that if a pointer is checked after it has already been dereferenced,
8911 it cannot be null.
8912
8913 Note however that in some environments this assumption is not true.
8914 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8915 for programs that depend on that behavior.
8916
8917 This option is enabled by default on most targets. On Nios II ELF, it
8918 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8919
8920 Passes that use the dataflow information
8921 are enabled independently at different optimization levels.
8922
8923 @item -fdevirtualize
8924 @opindex fdevirtualize
8925 Attempt to convert calls to virtual functions to direct calls. This
8926 is done both within a procedure and interprocedurally as part of
8927 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8928 propagation (@option{-fipa-cp}).
8929 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8930
8931 @item -fdevirtualize-speculatively
8932 @opindex fdevirtualize-speculatively
8933 Attempt to convert calls to virtual functions to speculative direct calls.
8934 Based on the analysis of the type inheritance graph, determine for a given call
8935 the set of likely targets. If the set is small, preferably of size 1, change
8936 the call into a conditional deciding between direct and indirect calls. The
8937 speculative calls enable more optimizations, such as inlining. When they seem
8938 useless after further optimization, they are converted back into original form.
8939
8940 @item -fdevirtualize-at-ltrans
8941 @opindex fdevirtualize-at-ltrans
8942 Stream extra information needed for aggressive devirtualization when running
8943 the link-time optimizer in local transformation mode.
8944 This option enables more devirtualization but
8945 significantly increases the size of streamed data. For this reason it is
8946 disabled by default.
8947
8948 @item -fexpensive-optimizations
8949 @opindex fexpensive-optimizations
8950 Perform a number of minor optimizations that are relatively expensive.
8951
8952 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8953
8954 @item -free
8955 @opindex free
8956 Attempt to remove redundant extension instructions. This is especially
8957 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8958 registers after writing to their lower 32-bit half.
8959
8960 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8961 @option{-O3}, @option{-Os}.
8962
8963 @item -fno-lifetime-dse
8964 @opindex fno-lifetime-dse
8965 @opindex flifetime-dse
8966 In C++ the value of an object is only affected by changes within its
8967 lifetime: when the constructor begins, the object has an indeterminate
8968 value, and any changes during the lifetime of the object are dead when
8969 the object is destroyed. Normally dead store elimination will take
8970 advantage of this; if your code relies on the value of the object
8971 storage persisting beyond the lifetime of the object, you can use this
8972 flag to disable this optimization. To preserve stores before the
8973 constructor starts (e.g.@: because your operator new clears the object
8974 storage) but still treat the object as dead after the destructor you,
8975 can use @option{-flifetime-dse=1}. The default behavior can be
8976 explicitly selected with @option{-flifetime-dse=2}.
8977 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8978
8979 @item -flive-range-shrinkage
8980 @opindex flive-range-shrinkage
8981 Attempt to decrease register pressure through register live range
8982 shrinkage. This is helpful for fast processors with small or moderate
8983 size register sets.
8984
8985 @item -fira-algorithm=@var{algorithm}
8986 @opindex fira-algorithm
8987 Use the specified coloring algorithm for the integrated register
8988 allocator. The @var{algorithm} argument can be @samp{priority}, which
8989 specifies Chow's priority coloring, or @samp{CB}, which specifies
8990 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8991 for all architectures, but for those targets that do support it, it is
8992 the default because it generates better code.
8993
8994 @item -fira-region=@var{region}
8995 @opindex fira-region
8996 Use specified regions for the integrated register allocator. The
8997 @var{region} argument should be one of the following:
8998
8999 @table @samp
9000
9001 @item all
9002 Use all loops as register allocation regions.
9003 This can give the best results for machines with a small and/or
9004 irregular register set.
9005
9006 @item mixed
9007 Use all loops except for loops with small register pressure
9008 as the regions. This value usually gives
9009 the best results in most cases and for most architectures,
9010 and is enabled by default when compiling with optimization for speed
9011 (@option{-O}, @option{-O2}, @dots{}).
9012
9013 @item one
9014 Use all functions as a single region.
9015 This typically results in the smallest code size, and is enabled by default for
9016 @option{-Os} or @option{-O0}.
9017
9018 @end table
9019
9020 @item -fira-hoist-pressure
9021 @opindex fira-hoist-pressure
9022 Use IRA to evaluate register pressure in the code hoisting pass for
9023 decisions to hoist expressions. This option usually results in smaller
9024 code, but it can slow the compiler down.
9025
9026 This option is enabled at level @option{-Os} for all targets.
9027
9028 @item -fira-loop-pressure
9029 @opindex fira-loop-pressure
9030 Use IRA to evaluate register pressure in loops for decisions to move
9031 loop invariants. This option usually results in generation
9032 of faster and smaller code on machines with large register files (>= 32
9033 registers), but it can slow the compiler down.
9034
9035 This option is enabled at level @option{-O3} for some targets.
9036
9037 @item -fno-ira-share-save-slots
9038 @opindex fno-ira-share-save-slots
9039 @opindex fira-share-save-slots
9040 Disable sharing of stack slots used for saving call-used hard
9041 registers living through a call. Each hard register gets a
9042 separate stack slot, and as a result function stack frames are
9043 larger.
9044
9045 @item -fno-ira-share-spill-slots
9046 @opindex fno-ira-share-spill-slots
9047 @opindex fira-share-spill-slots
9048 Disable sharing of stack slots allocated for pseudo-registers. Each
9049 pseudo-register that does not get a hard register gets a separate
9050 stack slot, and as a result function stack frames are larger.
9051
9052 @item -flra-remat
9053 @opindex flra-remat
9054 Enable CFG-sensitive rematerialization in LRA. Instead of loading
9055 values of spilled pseudos, LRA tries to rematerialize (recalculate)
9056 values if it is profitable.
9057
9058 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9059
9060 @item -fdelayed-branch
9061 @opindex fdelayed-branch
9062 If supported for the target machine, attempt to reorder instructions
9063 to exploit instruction slots available after delayed branch
9064 instructions.
9065
9066 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
9067 but not at @option{-Og}.
9068
9069 @item -fschedule-insns
9070 @opindex fschedule-insns
9071 If supported for the target machine, attempt to reorder instructions to
9072 eliminate execution stalls due to required data being unavailable. This
9073 helps machines that have slow floating point or memory load instructions
9074 by allowing other instructions to be issued until the result of the load
9075 or floating-point instruction is required.
9076
9077 Enabled at levels @option{-O2}, @option{-O3}.
9078
9079 @item -fschedule-insns2
9080 @opindex fschedule-insns2
9081 Similar to @option{-fschedule-insns}, but requests an additional pass of
9082 instruction scheduling after register allocation has been done. This is
9083 especially useful on machines with a relatively small number of
9084 registers and where memory load instructions take more than one cycle.
9085
9086 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9087
9088 @item -fno-sched-interblock
9089 @opindex fno-sched-interblock
9090 @opindex fsched-interblock
9091 Disable instruction scheduling across basic blocks, which
9092 is normally enabled when scheduling before register allocation, i.e.@:
9093 with @option{-fschedule-insns} or at @option{-O2} or higher.
9094
9095 @item -fno-sched-spec
9096 @opindex fno-sched-spec
9097 @opindex fsched-spec
9098 Disable speculative motion of non-load instructions, which
9099 is normally enabled when scheduling before register allocation, i.e.@:
9100 with @option{-fschedule-insns} or at @option{-O2} or higher.
9101
9102 @item -fsched-pressure
9103 @opindex fsched-pressure
9104 Enable register pressure sensitive insn scheduling before register
9105 allocation. This only makes sense when scheduling before register
9106 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9107 @option{-O2} or higher. Usage of this option can improve the
9108 generated code and decrease its size by preventing register pressure
9109 increase above the number of available hard registers and subsequent
9110 spills in register allocation.
9111
9112 @item -fsched-spec-load
9113 @opindex fsched-spec-load
9114 Allow speculative motion of some load instructions. This only makes
9115 sense when scheduling before register allocation, i.e.@: with
9116 @option{-fschedule-insns} or at @option{-O2} or higher.
9117
9118 @item -fsched-spec-load-dangerous
9119 @opindex fsched-spec-load-dangerous
9120 Allow speculative motion of more load instructions. This only makes
9121 sense when scheduling before register allocation, i.e.@: with
9122 @option{-fschedule-insns} or at @option{-O2} or higher.
9123
9124 @item -fsched-stalled-insns
9125 @itemx -fsched-stalled-insns=@var{n}
9126 @opindex fsched-stalled-insns
9127 Define how many insns (if any) can be moved prematurely from the queue
9128 of stalled insns into the ready list during the second scheduling pass.
9129 @option{-fno-sched-stalled-insns} means that no insns are moved
9130 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9131 on how many queued insns can be moved prematurely.
9132 @option{-fsched-stalled-insns} without a value is equivalent to
9133 @option{-fsched-stalled-insns=1}.
9134
9135 @item -fsched-stalled-insns-dep
9136 @itemx -fsched-stalled-insns-dep=@var{n}
9137 @opindex fsched-stalled-insns-dep
9138 Define how many insn groups (cycles) are examined for a dependency
9139 on a stalled insn that is a candidate for premature removal from the queue
9140 of stalled insns. This has an effect only during the second scheduling pass,
9141 and only if @option{-fsched-stalled-insns} is used.
9142 @option{-fno-sched-stalled-insns-dep} is equivalent to
9143 @option{-fsched-stalled-insns-dep=0}.
9144 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9145 @option{-fsched-stalled-insns-dep=1}.
9146
9147 @item -fsched2-use-superblocks
9148 @opindex fsched2-use-superblocks
9149 When scheduling after register allocation, use superblock scheduling.
9150 This allows motion across basic block boundaries,
9151 resulting in faster schedules. This option is experimental, as not all machine
9152 descriptions used by GCC model the CPU closely enough to avoid unreliable
9153 results from the algorithm.
9154
9155 This only makes sense when scheduling after register allocation, i.e.@: with
9156 @option{-fschedule-insns2} or at @option{-O2} or higher.
9157
9158 @item -fsched-group-heuristic
9159 @opindex fsched-group-heuristic
9160 Enable the group heuristic in the scheduler. This heuristic favors
9161 the instruction that belongs to a schedule group. This is enabled
9162 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9163 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9164
9165 @item -fsched-critical-path-heuristic
9166 @opindex fsched-critical-path-heuristic
9167 Enable the critical-path heuristic in the scheduler. This heuristic favors
9168 instructions on the critical path. This is enabled by default when
9169 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9170 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9171
9172 @item -fsched-spec-insn-heuristic
9173 @opindex fsched-spec-insn-heuristic
9174 Enable the speculative instruction heuristic in the scheduler. This
9175 heuristic favors speculative instructions with greater dependency weakness.
9176 This is enabled by default when scheduling is enabled, i.e.@:
9177 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9178 or at @option{-O2} or higher.
9179
9180 @item -fsched-rank-heuristic
9181 @opindex fsched-rank-heuristic
9182 Enable the rank heuristic in the scheduler. This heuristic favors
9183 the instruction belonging to a basic block with greater size or frequency.
9184 This is enabled by default when scheduling is enabled, i.e.@:
9185 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9186 at @option{-O2} or higher.
9187
9188 @item -fsched-last-insn-heuristic
9189 @opindex fsched-last-insn-heuristic
9190 Enable the last-instruction heuristic in the scheduler. This heuristic
9191 favors the instruction that is less dependent on the last instruction
9192 scheduled. This is enabled by default when scheduling is enabled,
9193 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9194 at @option{-O2} or higher.
9195
9196 @item -fsched-dep-count-heuristic
9197 @opindex fsched-dep-count-heuristic
9198 Enable the dependent-count heuristic in the scheduler. This heuristic
9199 favors the instruction that has more instructions depending on it.
9200 This is enabled by default when scheduling is enabled, i.e.@:
9201 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9202 at @option{-O2} or higher.
9203
9204 @item -freschedule-modulo-scheduled-loops
9205 @opindex freschedule-modulo-scheduled-loops
9206 Modulo scheduling is performed before traditional scheduling. If a loop
9207 is modulo scheduled, later scheduling passes may change its schedule.
9208 Use this option to control that behavior.
9209
9210 @item -fselective-scheduling
9211 @opindex fselective-scheduling
9212 Schedule instructions using selective scheduling algorithm. Selective
9213 scheduling runs instead of the first scheduler pass.
9214
9215 @item -fselective-scheduling2
9216 @opindex fselective-scheduling2
9217 Schedule instructions using selective scheduling algorithm. Selective
9218 scheduling runs instead of the second scheduler pass.
9219
9220 @item -fsel-sched-pipelining
9221 @opindex fsel-sched-pipelining
9222 Enable software pipelining of innermost loops during selective scheduling.
9223 This option has no effect unless one of @option{-fselective-scheduling} or
9224 @option{-fselective-scheduling2} is turned on.
9225
9226 @item -fsel-sched-pipelining-outer-loops
9227 @opindex fsel-sched-pipelining-outer-loops
9228 When pipelining loops during selective scheduling, also pipeline outer loops.
9229 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9230
9231 @item -fsemantic-interposition
9232 @opindex fsemantic-interposition
9233 Some object formats, like ELF, allow interposing of symbols by the
9234 dynamic linker.
9235 This means that for symbols exported from the DSO, the compiler cannot perform
9236 interprocedural propagation, inlining and other optimizations in anticipation
9237 that the function or variable in question may change. While this feature is
9238 useful, for example, to rewrite memory allocation functions by a debugging
9239 implementation, it is expensive in the terms of code quality.
9240 With @option{-fno-semantic-interposition} the compiler assumes that
9241 if interposition happens for functions the overwriting function will have
9242 precisely the same semantics (and side effects).
9243 Similarly if interposition happens
9244 for variables, the constructor of the variable will be the same. The flag
9245 has no effect for functions explicitly declared inline
9246 (where it is never allowed for interposition to change semantics)
9247 and for symbols explicitly declared weak.
9248
9249 @item -fshrink-wrap
9250 @opindex fshrink-wrap
9251 Emit function prologues only before parts of the function that need it,
9252 rather than at the top of the function. This flag is enabled by default at
9253 @option{-O} and higher.
9254
9255 @item -fshrink-wrap-separate
9256 @opindex fshrink-wrap-separate
9257 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9258 those parts are only executed when needed.
9259 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9260 is also turned on and the target supports this.
9261
9262 @item -fcaller-saves
9263 @opindex fcaller-saves
9264 Enable allocation of values to registers that are clobbered by
9265 function calls, by emitting extra instructions to save and restore the
9266 registers around such calls. Such allocation is done only when it
9267 seems to result in better code.
9268
9269 This option is always enabled by default on certain machines, usually
9270 those which have no call-preserved registers to use instead.
9271
9272 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9273
9274 @item -fcombine-stack-adjustments
9275 @opindex fcombine-stack-adjustments
9276 Tracks stack adjustments (pushes and pops) and stack memory references
9277 and then tries to find ways to combine them.
9278
9279 Enabled by default at @option{-O1} and higher.
9280
9281 @item -fipa-ra
9282 @opindex fipa-ra
9283 Use caller save registers for allocation if those registers are not used by
9284 any called function. In that case it is not necessary to save and restore
9285 them around calls. This is only possible if called functions are part of
9286 same compilation unit as current function and they are compiled before it.
9287
9288 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9289 is disabled if generated code will be instrumented for profiling
9290 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9291 exactly (this happens on targets that do not expose prologues
9292 and epilogues in RTL).
9293
9294 @item -fconserve-stack
9295 @opindex fconserve-stack
9296 Attempt to minimize stack usage. The compiler attempts to use less
9297 stack space, even if that makes the program slower. This option
9298 implies setting the @option{large-stack-frame} parameter to 100
9299 and the @option{large-stack-frame-growth} parameter to 400.
9300
9301 @item -ftree-reassoc
9302 @opindex ftree-reassoc
9303 Perform reassociation on trees. This flag is enabled by default
9304 at @option{-O} and higher.
9305
9306 @item -fcode-hoisting
9307 @opindex fcode-hoisting
9308 Perform code hoisting. Code hoisting tries to move the
9309 evaluation of expressions executed on all paths to the function exit
9310 as early as possible. This is especially useful as a code size
9311 optimization, but it often helps for code speed as well.
9312 This flag is enabled by default at @option{-O2} and higher.
9313
9314 @item -ftree-pre
9315 @opindex ftree-pre
9316 Perform partial redundancy elimination (PRE) on trees. This flag is
9317 enabled by default at @option{-O2} and @option{-O3}.
9318
9319 @item -ftree-partial-pre
9320 @opindex ftree-partial-pre
9321 Make partial redundancy elimination (PRE) more aggressive. This flag is
9322 enabled by default at @option{-O3}.
9323
9324 @item -ftree-forwprop
9325 @opindex ftree-forwprop
9326 Perform forward propagation on trees. This flag is enabled by default
9327 at @option{-O} and higher.
9328
9329 @item -ftree-fre
9330 @opindex ftree-fre
9331 Perform full redundancy elimination (FRE) on trees. The difference
9332 between FRE and PRE is that FRE only considers expressions
9333 that are computed on all paths leading to the redundant computation.
9334 This analysis is faster than PRE, though it exposes fewer redundancies.
9335 This flag is enabled by default at @option{-O} and higher.
9336
9337 @item -ftree-phiprop
9338 @opindex ftree-phiprop
9339 Perform hoisting of loads from conditional pointers on trees. This
9340 pass is enabled by default at @option{-O} and higher.
9341
9342 @item -fhoist-adjacent-loads
9343 @opindex fhoist-adjacent-loads
9344 Speculatively hoist loads from both branches of an if-then-else if the
9345 loads are from adjacent locations in the same structure and the target
9346 architecture has a conditional move instruction. This flag is enabled
9347 by default at @option{-O2} and higher.
9348
9349 @item -ftree-copy-prop
9350 @opindex ftree-copy-prop
9351 Perform copy propagation on trees. This pass eliminates unnecessary
9352 copy operations. This flag is enabled by default at @option{-O} and
9353 higher.
9354
9355 @item -fipa-pure-const
9356 @opindex fipa-pure-const
9357 Discover which functions are pure or constant.
9358 Enabled by default at @option{-O} and higher.
9359
9360 @item -fipa-reference
9361 @opindex fipa-reference
9362 Discover which static variables do not escape the
9363 compilation unit.
9364 Enabled by default at @option{-O} and higher.
9365
9366 @item -fipa-reference-addressable
9367 @opindex fipa-reference-addressable
9368 Discover read-only, write-only and non-addressable static variables.
9369 Enabled by default at @option{-O} and higher.
9370
9371 @item -fipa-stack-alignment
9372 @opindex fipa-stack-alignment
9373 Reduce stack alignment on call sites if possible.
9374 Enabled by default.
9375
9376 @item -fipa-pta
9377 @opindex fipa-pta
9378 Perform interprocedural pointer analysis and interprocedural modification
9379 and reference analysis. This option can cause excessive memory and
9380 compile-time usage on large compilation units. It is not enabled by
9381 default at any optimization level.
9382
9383 @item -fipa-profile
9384 @opindex fipa-profile
9385 Perform interprocedural profile propagation. The functions called only from
9386 cold functions are marked as cold. Also functions executed once (such as
9387 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9388 functions and loop less parts of functions executed once are then optimized for
9389 size.
9390 Enabled by default at @option{-O} and higher.
9391
9392 @item -fipa-cp
9393 @opindex fipa-cp
9394 Perform interprocedural constant propagation.
9395 This optimization analyzes the program to determine when values passed
9396 to functions are constants and then optimizes accordingly.
9397 This optimization can substantially increase performance
9398 if the application has constants passed to functions.
9399 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9400 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9401
9402 @item -fipa-cp-clone
9403 @opindex fipa-cp-clone
9404 Perform function cloning to make interprocedural constant propagation stronger.
9405 When enabled, interprocedural constant propagation performs function cloning
9406 when externally visible function can be called with constant arguments.
9407 Because this optimization can create multiple copies of functions,
9408 it may significantly increase code size
9409 (see @option{--param ipcp-unit-growth=@var{value}}).
9410 This flag is enabled by default at @option{-O3}.
9411 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9412
9413 @item -fipa-bit-cp
9414 @opindex fipa-bit-cp
9415 When enabled, perform interprocedural bitwise constant
9416 propagation. This flag is enabled by default at @option{-O2} and
9417 by @option{-fprofile-use} and @option{-fauto-profile}.
9418 It requires that @option{-fipa-cp} is enabled.
9419
9420 @item -fipa-vrp
9421 @opindex fipa-vrp
9422 When enabled, perform interprocedural propagation of value
9423 ranges. This flag is enabled by default at @option{-O2}. It requires
9424 that @option{-fipa-cp} is enabled.
9425
9426 @item -fipa-icf
9427 @opindex fipa-icf
9428 Perform Identical Code Folding for functions and read-only variables.
9429 The optimization reduces code size and may disturb unwind stacks by replacing
9430 a function by equivalent one with a different name. The optimization works
9431 more effectively with link-time optimization enabled.
9432
9433 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9434 works on different levels and thus the optimizations are not same - there are
9435 equivalences that are found only by GCC and equivalences found only by Gold.
9436
9437 This flag is enabled by default at @option{-O2} and @option{-Os}.
9438
9439 @item -flive-patching=@var{level}
9440 @opindex flive-patching
9441 Control GCC's optimizations to produce output suitable for live-patching.
9442
9443 If the compiler's optimization uses a function's body or information extracted
9444 from its body to optimize/change another function, the latter is called an
9445 impacted function of the former. If a function is patched, its impacted
9446 functions should be patched too.
9447
9448 The impacted functions are determined by the compiler's interprocedural
9449 optimizations. For example, a caller is impacted when inlining a function
9450 into its caller,
9451 cloning a function and changing its caller to call this new clone,
9452 or extracting a function's pureness/constness information to optimize
9453 its direct or indirect callers, etc.
9454
9455 Usually, the more IPA optimizations enabled, the larger the number of
9456 impacted functions for each function. In order to control the number of
9457 impacted functions and more easily compute the list of impacted function,
9458 IPA optimizations can be partially enabled at two different levels.
9459
9460 The @var{level} argument should be one of the following:
9461
9462 @table @samp
9463
9464 @item inline-clone
9465
9466 Only enable inlining and cloning optimizations, which includes inlining,
9467 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9468 As a result, when patching a function, all its callers and its clones'
9469 callers are impacted, therefore need to be patched as well.
9470
9471 @option{-flive-patching=inline-clone} disables the following optimization flags:
9472 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9473 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9474 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9475 -fipa-stack-alignment}
9476
9477 @item inline-only-static
9478
9479 Only enable inlining of static functions.
9480 As a result, when patching a static function, all its callers are impacted
9481 and so need to be patched as well.
9482
9483 In addition to all the flags that @option{-flive-patching=inline-clone}
9484 disables,
9485 @option{-flive-patching=inline-only-static} disables the following additional
9486 optimization flags:
9487 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9488
9489 @end table
9490
9491 When @option{-flive-patching} is specified without any value, the default value
9492 is @var{inline-clone}.
9493
9494 This flag is disabled by default.
9495
9496 Note that @option{-flive-patching} is not supported with link-time optimization
9497 (@option{-flto}).
9498
9499 @item -fisolate-erroneous-paths-dereference
9500 @opindex fisolate-erroneous-paths-dereference
9501 Detect paths that trigger erroneous or undefined behavior due to
9502 dereferencing a null pointer. Isolate those paths from the main control
9503 flow and turn the statement with erroneous or undefined behavior into a trap.
9504 This flag is enabled by default at @option{-O2} and higher and depends on
9505 @option{-fdelete-null-pointer-checks} also being enabled.
9506
9507 @item -fisolate-erroneous-paths-attribute
9508 @opindex fisolate-erroneous-paths-attribute
9509 Detect paths that trigger erroneous or undefined behavior due to a null value
9510 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9511 attribute. Isolate those paths from the main control flow and turn the
9512 statement with erroneous or undefined behavior into a trap. This is not
9513 currently enabled, but may be enabled by @option{-O2} in the future.
9514
9515 @item -ftree-sink
9516 @opindex ftree-sink
9517 Perform forward store motion on trees. This flag is
9518 enabled by default at @option{-O} and higher.
9519
9520 @item -ftree-bit-ccp
9521 @opindex ftree-bit-ccp
9522 Perform sparse conditional bit constant propagation on trees and propagate
9523 pointer alignment information.
9524 This pass only operates on local scalar variables and is enabled by default
9525 at @option{-O1} and higher, except for @option{-Og}.
9526 It requires that @option{-ftree-ccp} is enabled.
9527
9528 @item -ftree-ccp
9529 @opindex ftree-ccp
9530 Perform sparse conditional constant propagation (CCP) on trees. This
9531 pass only operates on local scalar variables and is enabled by default
9532 at @option{-O} and higher.
9533
9534 @item -fssa-backprop
9535 @opindex fssa-backprop
9536 Propagate information about uses of a value up the definition chain
9537 in order to simplify the definitions. For example, this pass strips
9538 sign operations if the sign of a value never matters. The flag is
9539 enabled by default at @option{-O} and higher.
9540
9541 @item -fssa-phiopt
9542 @opindex fssa-phiopt
9543 Perform pattern matching on SSA PHI nodes to optimize conditional
9544 code. This pass is enabled by default at @option{-O1} and higher,
9545 except for @option{-Og}.
9546
9547 @item -ftree-switch-conversion
9548 @opindex ftree-switch-conversion
9549 Perform conversion of simple initializations in a switch to
9550 initializations from a scalar array. This flag is enabled by default
9551 at @option{-O2} and higher.
9552
9553 @item -ftree-tail-merge
9554 @opindex ftree-tail-merge
9555 Look for identical code sequences. When found, replace one with a jump to the
9556 other. This optimization is known as tail merging or cross jumping. This flag
9557 is enabled by default at @option{-O2} and higher. The compilation time
9558 in this pass can
9559 be limited using @option{max-tail-merge-comparisons} parameter and
9560 @option{max-tail-merge-iterations} parameter.
9561
9562 @item -ftree-dce
9563 @opindex ftree-dce
9564 Perform dead code elimination (DCE) on trees. This flag is enabled by
9565 default at @option{-O} and higher.
9566
9567 @item -ftree-builtin-call-dce
9568 @opindex ftree-builtin-call-dce
9569 Perform conditional dead code elimination (DCE) for calls to built-in functions
9570 that may set @code{errno} but are otherwise free of side effects. This flag is
9571 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9572 specified.
9573
9574 @item -ffinite-loops
9575 @opindex ffinite-loops
9576 @opindex fno-finite-loops
9577 Assume that a loop with an exit will eventually take the exit and not loop
9578 indefinitely. This allows the compiler to remove loops that otherwise have
9579 no side-effects, not considering eventual endless looping as such.
9580
9581 This option is enabled by default at @option{-O2}.
9582
9583 @item -ftree-dominator-opts
9584 @opindex ftree-dominator-opts
9585 Perform a variety of simple scalar cleanups (constant/copy
9586 propagation, redundancy elimination, range propagation and expression
9587 simplification) based on a dominator tree traversal. This also
9588 performs jump threading (to reduce jumps to jumps). This flag is
9589 enabled by default at @option{-O} and higher.
9590
9591 @item -ftree-dse
9592 @opindex ftree-dse
9593 Perform dead store elimination (DSE) on trees. A dead store is a store into
9594 a memory location that is later overwritten by another store without
9595 any intervening loads. In this case the earlier store can be deleted. This
9596 flag is enabled by default at @option{-O} and higher.
9597
9598 @item -ftree-ch
9599 @opindex ftree-ch
9600 Perform loop header copying on trees. This is beneficial since it increases
9601 effectiveness of code motion optimizations. It also saves one jump. This flag
9602 is enabled by default at @option{-O} and higher. It is not enabled
9603 for @option{-Os}, since it usually increases code size.
9604
9605 @item -ftree-loop-optimize
9606 @opindex ftree-loop-optimize
9607 Perform loop optimizations on trees. This flag is enabled by default
9608 at @option{-O} and higher.
9609
9610 @item -ftree-loop-linear
9611 @itemx -floop-strip-mine
9612 @itemx -floop-block
9613 @opindex ftree-loop-linear
9614 @opindex floop-strip-mine
9615 @opindex floop-block
9616 Perform loop nest optimizations. Same as
9617 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9618 to be configured with @option{--with-isl} to enable the Graphite loop
9619 transformation infrastructure.
9620
9621 @item -fgraphite-identity
9622 @opindex fgraphite-identity
9623 Enable the identity transformation for graphite. For every SCoP we generate
9624 the polyhedral representation and transform it back to gimple. Using
9625 @option{-fgraphite-identity} we can check the costs or benefits of the
9626 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9627 are also performed by the code generator isl, like index splitting and
9628 dead code elimination in loops.
9629
9630 @item -floop-nest-optimize
9631 @opindex floop-nest-optimize
9632 Enable the isl based loop nest optimizer. This is a generic loop nest
9633 optimizer based on the Pluto optimization algorithms. It calculates a loop
9634 structure optimized for data-locality and parallelism. This option
9635 is experimental.
9636
9637 @item -floop-parallelize-all
9638 @opindex floop-parallelize-all
9639 Use the Graphite data dependence analysis to identify loops that can
9640 be parallelized. Parallelize all the loops that can be analyzed to
9641 not contain loop carried dependences without checking that it is
9642 profitable to parallelize the loops.
9643
9644 @item -ftree-coalesce-vars
9645 @opindex ftree-coalesce-vars
9646 While transforming the program out of the SSA representation, attempt to
9647 reduce copying by coalescing versions of different user-defined
9648 variables, instead of just compiler temporaries. This may severely
9649 limit the ability to debug an optimized program compiled with
9650 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9651 prevents SSA coalescing of user variables. This option is enabled by
9652 default if optimization is enabled, and it does very little otherwise.
9653
9654 @item -ftree-loop-if-convert
9655 @opindex ftree-loop-if-convert
9656 Attempt to transform conditional jumps in the innermost loops to
9657 branch-less equivalents. The intent is to remove control-flow from
9658 the innermost loops in order to improve the ability of the
9659 vectorization pass to handle these loops. This is enabled by default
9660 if vectorization is enabled.
9661
9662 @item -ftree-loop-distribution
9663 @opindex ftree-loop-distribution
9664 Perform loop distribution. This flag can improve cache performance on
9665 big loop bodies and allow further loop optimizations, like
9666 parallelization or vectorization, to take place. For example, the loop
9667 @smallexample
9668 DO I = 1, N
9669 A(I) = B(I) + C
9670 D(I) = E(I) * F
9671 ENDDO
9672 @end smallexample
9673 is transformed to
9674 @smallexample
9675 DO I = 1, N
9676 A(I) = B(I) + C
9677 ENDDO
9678 DO I = 1, N
9679 D(I) = E(I) * F
9680 ENDDO
9681 @end smallexample
9682 This flag is enabled by default at @option{-O3}.
9683 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9684
9685 @item -ftree-loop-distribute-patterns
9686 @opindex ftree-loop-distribute-patterns
9687 Perform loop distribution of patterns that can be code generated with
9688 calls to a library. This flag is enabled by default at @option{-O3}, and
9689 by @option{-fprofile-use} and @option{-fauto-profile}.
9690
9691 This pass distributes the initialization loops and generates a call to
9692 memset zero. For example, the loop
9693 @smallexample
9694 DO I = 1, N
9695 A(I) = 0
9696 B(I) = A(I) + I
9697 ENDDO
9698 @end smallexample
9699 is transformed to
9700 @smallexample
9701 DO I = 1, N
9702 A(I) = 0
9703 ENDDO
9704 DO I = 1, N
9705 B(I) = A(I) + I
9706 ENDDO
9707 @end smallexample
9708 and the initialization loop is transformed into a call to memset zero.
9709 This flag is enabled by default at @option{-O3}.
9710 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9711
9712 @item -floop-interchange
9713 @opindex floop-interchange
9714 Perform loop interchange outside of graphite. This flag can improve cache
9715 performance on loop nest and allow further loop optimizations, like
9716 vectorization, to take place. For example, the loop
9717 @smallexample
9718 for (int i = 0; i < N; i++)
9719 for (int j = 0; j < N; j++)
9720 for (int k = 0; k < N; k++)
9721 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9722 @end smallexample
9723 is transformed to
9724 @smallexample
9725 for (int i = 0; i < N; i++)
9726 for (int k = 0; k < N; k++)
9727 for (int j = 0; j < N; j++)
9728 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9729 @end smallexample
9730 This flag is enabled by default at @option{-O3}.
9731 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9732
9733 @item -floop-unroll-and-jam
9734 @opindex floop-unroll-and-jam
9735 Apply unroll and jam transformations on feasible loops. In a loop
9736 nest this unrolls the outer loop by some factor and fuses the resulting
9737 multiple inner loops. This flag is enabled by default at @option{-O3}.
9738 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9739
9740 @item -ftree-loop-im
9741 @opindex ftree-loop-im
9742 Perform loop invariant motion on trees. This pass moves only invariants that
9743 are hard to handle at RTL level (function calls, operations that expand to
9744 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9745 operands of conditions that are invariant out of the loop, so that we can use
9746 just trivial invariantness analysis in loop unswitching. The pass also includes
9747 store motion.
9748
9749 @item -ftree-loop-ivcanon
9750 @opindex ftree-loop-ivcanon
9751 Create a canonical counter for number of iterations in loops for which
9752 determining number of iterations requires complicated analysis. Later
9753 optimizations then may determine the number easily. Useful especially
9754 in connection with unrolling.
9755
9756 @item -ftree-scev-cprop
9757 @opindex ftree-scev-cprop
9758 Perform final value replacement. If a variable is modified in a loop
9759 in such a way that its value when exiting the loop can be determined using
9760 only its initial value and the number of loop iterations, replace uses of
9761 the final value by such a computation, provided it is sufficiently cheap.
9762 This reduces data dependencies and may allow further simplifications.
9763 Enabled by default at @option{-O} and higher.
9764
9765 @item -fivopts
9766 @opindex fivopts
9767 Perform induction variable optimizations (strength reduction, induction
9768 variable merging and induction variable elimination) on trees.
9769
9770 @item -ftree-parallelize-loops=n
9771 @opindex ftree-parallelize-loops
9772 Parallelize loops, i.e., split their iteration space to run in n threads.
9773 This is only possible for loops whose iterations are independent
9774 and can be arbitrarily reordered. The optimization is only
9775 profitable on multiprocessor machines, for loops that are CPU-intensive,
9776 rather than constrained e.g.@: by memory bandwidth. This option
9777 implies @option{-pthread}, and thus is only supported on targets
9778 that have support for @option{-pthread}.
9779
9780 @item -ftree-pta
9781 @opindex ftree-pta
9782 Perform function-local points-to analysis on trees. This flag is
9783 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9784
9785 @item -ftree-sra
9786 @opindex ftree-sra
9787 Perform scalar replacement of aggregates. This pass replaces structure
9788 references with scalars to prevent committing structures to memory too
9789 early. This flag is enabled by default at @option{-O1} and higher,
9790 except for @option{-Og}.
9791
9792 @item -fstore-merging
9793 @opindex fstore-merging
9794 Perform merging of narrow stores to consecutive memory addresses. This pass
9795 merges contiguous stores of immediate values narrower than a word into fewer
9796 wider stores to reduce the number of instructions. This is enabled by default
9797 at @option{-O2} and higher as well as @option{-Os}.
9798
9799 @item -ftree-ter
9800 @opindex ftree-ter
9801 Perform temporary expression replacement during the SSA->normal phase. Single
9802 use/single def temporaries are replaced at their use location with their
9803 defining expression. This results in non-GIMPLE code, but gives the expanders
9804 much more complex trees to work on resulting in better RTL generation. This is
9805 enabled by default at @option{-O} and higher.
9806
9807 @item -ftree-slsr
9808 @opindex ftree-slsr
9809 Perform straight-line strength reduction on trees. This recognizes related
9810 expressions involving multiplications and replaces them by less expensive
9811 calculations when possible. This is enabled by default at @option{-O} and
9812 higher.
9813
9814 @item -ftree-vectorize
9815 @opindex ftree-vectorize
9816 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9817 and @option{-ftree-slp-vectorize} if not explicitly specified.
9818
9819 @item -ftree-loop-vectorize
9820 @opindex ftree-loop-vectorize
9821 Perform loop vectorization on trees. This flag is enabled by default at
9822 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9823 and @option{-fauto-profile}.
9824
9825 @item -ftree-slp-vectorize
9826 @opindex ftree-slp-vectorize
9827 Perform basic block vectorization on trees. This flag is enabled by default at
9828 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9829 and @option{-fauto-profile}.
9830
9831 @item -fvect-cost-model=@var{model}
9832 @opindex fvect-cost-model
9833 Alter the cost model used for vectorization. The @var{model} argument
9834 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9835 With the @samp{unlimited} model the vectorized code-path is assumed
9836 to be profitable while with the @samp{dynamic} model a runtime check
9837 guards the vectorized code-path to enable it only for iteration
9838 counts that will likely execute faster than when executing the original
9839 scalar loop. The @samp{cheap} model disables vectorization of
9840 loops where doing so would be cost prohibitive for example due to
9841 required runtime checks for data dependence or alignment but otherwise
9842 is equal to the @samp{dynamic} model.
9843 The default cost model depends on other optimization flags and is
9844 either @samp{dynamic} or @samp{cheap}.
9845
9846 @item -fsimd-cost-model=@var{model}
9847 @opindex fsimd-cost-model
9848 Alter the cost model used for vectorization of loops marked with the OpenMP
9849 simd directive. The @var{model} argument should be one of
9850 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9851 have the same meaning as described in @option{-fvect-cost-model} and by
9852 default a cost model defined with @option{-fvect-cost-model} is used.
9853
9854 @item -ftree-vrp
9855 @opindex ftree-vrp
9856 Perform Value Range Propagation on trees. This is similar to the
9857 constant propagation pass, but instead of values, ranges of values are
9858 propagated. This allows the optimizers to remove unnecessary range
9859 checks like array bound checks and null pointer checks. This is
9860 enabled by default at @option{-O2} and higher. Null pointer check
9861 elimination is only done if @option{-fdelete-null-pointer-checks} is
9862 enabled.
9863
9864 @item -fsplit-paths
9865 @opindex fsplit-paths
9866 Split paths leading to loop backedges. This can improve dead code
9867 elimination and common subexpression elimination. This is enabled by
9868 default at @option{-O3} and above.
9869
9870 @item -fsplit-ivs-in-unroller
9871 @opindex fsplit-ivs-in-unroller
9872 Enables expression of values of induction variables in later iterations
9873 of the unrolled loop using the value in the first iteration. This breaks
9874 long dependency chains, thus improving efficiency of the scheduling passes.
9875
9876 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9877 same effect. However, that is not reliable in cases where the loop body
9878 is more complicated than a single basic block. It also does not work at all
9879 on some architectures due to restrictions in the CSE pass.
9880
9881 This optimization is enabled by default.
9882
9883 @item -fvariable-expansion-in-unroller
9884 @opindex fvariable-expansion-in-unroller
9885 With this option, the compiler creates multiple copies of some
9886 local variables when unrolling a loop, which can result in superior code.
9887
9888 This optimization is enabled by default for PowerPC targets, but disabled
9889 by default otherwise.
9890
9891 @item -fpartial-inlining
9892 @opindex fpartial-inlining
9893 Inline parts of functions. This option has any effect only
9894 when inlining itself is turned on by the @option{-finline-functions}
9895 or @option{-finline-small-functions} options.
9896
9897 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9898
9899 @item -fpredictive-commoning
9900 @opindex fpredictive-commoning
9901 Perform predictive commoning optimization, i.e., reusing computations
9902 (especially memory loads and stores) performed in previous
9903 iterations of loops.
9904
9905 This option is enabled at level @option{-O3}.
9906 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9907
9908 @item -fprefetch-loop-arrays
9909 @opindex fprefetch-loop-arrays
9910 If supported by the target machine, generate instructions to prefetch
9911 memory to improve the performance of loops that access large arrays.
9912
9913 This option may generate better or worse code; results are highly
9914 dependent on the structure of loops within the source code.
9915
9916 Disabled at level @option{-Os}.
9917
9918 @item -fno-printf-return-value
9919 @opindex fno-printf-return-value
9920 @opindex fprintf-return-value
9921 Do not substitute constants for known return value of formatted output
9922 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9923 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9924 transformation allows GCC to optimize or even eliminate branches based
9925 on the known return value of these functions called with arguments that
9926 are either constant, or whose values are known to be in a range that
9927 makes determining the exact return value possible. For example, when
9928 @option{-fprintf-return-value} is in effect, both the branch and the
9929 body of the @code{if} statement (but not the call to @code{snprint})
9930 can be optimized away when @code{i} is a 32-bit or smaller integer
9931 because the return value is guaranteed to be at most 8.
9932
9933 @smallexample
9934 char buf[9];
9935 if (snprintf (buf, "%08x", i) >= sizeof buf)
9936 @dots{}
9937 @end smallexample
9938
9939 The @option{-fprintf-return-value} option relies on other optimizations
9940 and yields best results with @option{-O2} and above. It works in tandem
9941 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9942 options. The @option{-fprintf-return-value} option is enabled by default.
9943
9944 @item -fno-peephole
9945 @itemx -fno-peephole2
9946 @opindex fno-peephole
9947 @opindex fpeephole
9948 @opindex fno-peephole2
9949 @opindex fpeephole2
9950 Disable any machine-specific peephole optimizations. The difference
9951 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9952 are implemented in the compiler; some targets use one, some use the
9953 other, a few use both.
9954
9955 @option{-fpeephole} is enabled by default.
9956 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9957
9958 @item -fno-guess-branch-probability
9959 @opindex fno-guess-branch-probability
9960 @opindex fguess-branch-probability
9961 Do not guess branch probabilities using heuristics.
9962
9963 GCC uses heuristics to guess branch probabilities if they are
9964 not provided by profiling feedback (@option{-fprofile-arcs}). These
9965 heuristics are based on the control flow graph. If some branch probabilities
9966 are specified by @code{__builtin_expect}, then the heuristics are
9967 used to guess branch probabilities for the rest of the control flow graph,
9968 taking the @code{__builtin_expect} info into account. The interactions
9969 between the heuristics and @code{__builtin_expect} can be complex, and in
9970 some cases, it may be useful to disable the heuristics so that the effects
9971 of @code{__builtin_expect} are easier to understand.
9972
9973 It is also possible to specify expected probability of the expression
9974 with @code{__builtin_expect_with_probability} built-in function.
9975
9976 The default is @option{-fguess-branch-probability} at levels
9977 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9978
9979 @item -freorder-blocks
9980 @opindex freorder-blocks
9981 Reorder basic blocks in the compiled function in order to reduce number of
9982 taken branches and improve code locality.
9983
9984 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9985
9986 @item -freorder-blocks-algorithm=@var{algorithm}
9987 @opindex freorder-blocks-algorithm
9988 Use the specified algorithm for basic block reordering. The
9989 @var{algorithm} argument can be @samp{simple}, which does not increase
9990 code size (except sometimes due to secondary effects like alignment),
9991 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9992 put all often executed code together, minimizing the number of branches
9993 executed by making extra copies of code.
9994
9995 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9996 @samp{stc} at levels @option{-O2}, @option{-O3}.
9997
9998 @item -freorder-blocks-and-partition
9999 @opindex freorder-blocks-and-partition
10000 In addition to reordering basic blocks in the compiled function, in order
10001 to reduce number of taken branches, partitions hot and cold basic blocks
10002 into separate sections of the assembly and @file{.o} files, to improve
10003 paging and cache locality performance.
10004
10005 This optimization is automatically turned off in the presence of
10006 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
10007 section attribute and on any architecture that does not support named
10008 sections. When @option{-fsplit-stack} is used this option is not
10009 enabled by default (to avoid linker errors), but may be enabled
10010 explicitly (if using a working linker).
10011
10012 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
10013
10014 @item -freorder-functions
10015 @opindex freorder-functions
10016 Reorder functions in the object file in order to
10017 improve code locality. This is implemented by using special
10018 subsections @code{.text.hot} for most frequently executed functions and
10019 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
10020 the linker so object file format must support named sections and linker must
10021 place them in a reasonable way.
10022
10023 This option isn't effective unless you either provide profile feedback
10024 (see @option{-fprofile-arcs} for details) or manually annotate functions with
10025 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
10026
10027 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10028
10029 @item -fstrict-aliasing
10030 @opindex fstrict-aliasing
10031 Allow the compiler to assume the strictest aliasing rules applicable to
10032 the language being compiled. For C (and C++), this activates
10033 optimizations based on the type of expressions. In particular, an
10034 object of one type is assumed never to reside at the same address as an
10035 object of a different type, unless the types are almost the same. For
10036 example, an @code{unsigned int} can alias an @code{int}, but not a
10037 @code{void*} or a @code{double}. A character type may alias any other
10038 type.
10039
10040 @anchor{Type-punning}Pay special attention to code like this:
10041 @smallexample
10042 union a_union @{
10043 int i;
10044 double d;
10045 @};
10046
10047 int f() @{
10048 union a_union t;
10049 t.d = 3.0;
10050 return t.i;
10051 @}
10052 @end smallexample
10053 The practice of reading from a different union member than the one most
10054 recently written to (called ``type-punning'') is common. Even with
10055 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
10056 is accessed through the union type. So, the code above works as
10057 expected. @xref{Structures unions enumerations and bit-fields
10058 implementation}. However, this code might not:
10059 @smallexample
10060 int f() @{
10061 union a_union t;
10062 int* ip;
10063 t.d = 3.0;
10064 ip = &t.i;
10065 return *ip;
10066 @}
10067 @end smallexample
10068
10069 Similarly, access by taking the address, casting the resulting pointer
10070 and dereferencing the result has undefined behavior, even if the cast
10071 uses a union type, e.g.:
10072 @smallexample
10073 int f() @{
10074 double d = 3.0;
10075 return ((union a_union *) &d)->i;
10076 @}
10077 @end smallexample
10078
10079 The @option{-fstrict-aliasing} option is enabled at levels
10080 @option{-O2}, @option{-O3}, @option{-Os}.
10081
10082 @item -falign-functions
10083 @itemx -falign-functions=@var{n}
10084 @itemx -falign-functions=@var{n}:@var{m}
10085 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10086 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10087 @opindex falign-functions
10088 Align the start of functions to the next power-of-two greater than
10089 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
10090 the first @var{m} bytes of the function can be fetched by the CPU
10091 without crossing an @var{n}-byte alignment boundary.
10092
10093 If @var{m} is not specified, it defaults to @var{n}.
10094
10095 Examples: @option{-falign-functions=32} aligns functions to the next
10096 32-byte boundary, @option{-falign-functions=24} aligns to the next
10097 32-byte boundary only if this can be done by skipping 23 bytes or less,
10098 @option{-falign-functions=32:7} aligns to the next
10099 32-byte boundary only if this can be done by skipping 6 bytes or less.
10100
10101 The second pair of @var{n2}:@var{m2} values allows you to specify
10102 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10103 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10104 otherwise aligns to the next 32-byte boundary if this can be done
10105 by skipping 2 bytes or less.
10106 If @var{m2} is not specified, it defaults to @var{n2}.
10107
10108 Some assemblers only support this flag when @var{n} is a power of two;
10109 in that case, it is rounded up.
10110
10111 @option{-fno-align-functions} and @option{-falign-functions=1} are
10112 equivalent and mean that functions are not aligned.
10113
10114 If @var{n} is not specified or is zero, use a machine-dependent default.
10115 The maximum allowed @var{n} option value is 65536.
10116
10117 Enabled at levels @option{-O2}, @option{-O3}.
10118
10119 @item -flimit-function-alignment
10120 If this option is enabled, the compiler tries to avoid unnecessarily
10121 overaligning functions. It attempts to instruct the assembler to align
10122 by the amount specified by @option{-falign-functions}, but not to
10123 skip more bytes than the size of the function.
10124
10125 @item -falign-labels
10126 @itemx -falign-labels=@var{n}
10127 @itemx -falign-labels=@var{n}:@var{m}
10128 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10129 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10130 @opindex falign-labels
10131 Align all branch targets to a power-of-two boundary.
10132
10133 Parameters of this option are analogous to the @option{-falign-functions} option.
10134 @option{-fno-align-labels} and @option{-falign-labels=1} are
10135 equivalent and mean that labels are not aligned.
10136
10137 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10138 are greater than this value, then their values are used instead.
10139
10140 If @var{n} is not specified or is zero, use a machine-dependent default
10141 which is very likely to be @samp{1}, meaning no alignment.
10142 The maximum allowed @var{n} option value is 65536.
10143
10144 Enabled at levels @option{-O2}, @option{-O3}.
10145
10146 @item -falign-loops
10147 @itemx -falign-loops=@var{n}
10148 @itemx -falign-loops=@var{n}:@var{m}
10149 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10150 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10151 @opindex falign-loops
10152 Align loops to a power-of-two boundary. If the loops are executed
10153 many times, this makes up for any execution of the dummy padding
10154 instructions.
10155
10156 Parameters of this option are analogous to the @option{-falign-functions} option.
10157 @option{-fno-align-loops} and @option{-falign-loops=1} are
10158 equivalent and mean that loops are not aligned.
10159 The maximum allowed @var{n} option value is 65536.
10160
10161 If @var{n} is not specified or is zero, use a machine-dependent default.
10162
10163 Enabled at levels @option{-O2}, @option{-O3}.
10164
10165 @item -falign-jumps
10166 @itemx -falign-jumps=@var{n}
10167 @itemx -falign-jumps=@var{n}:@var{m}
10168 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10169 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10170 @opindex falign-jumps
10171 Align branch targets to a power-of-two boundary, for branch targets
10172 where the targets can only be reached by jumping. In this case,
10173 no dummy operations need be executed.
10174
10175 Parameters of this option are analogous to the @option{-falign-functions} option.
10176 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10177 equivalent and mean that loops are not aligned.
10178
10179 If @var{n} is not specified or is zero, use a machine-dependent default.
10180 The maximum allowed @var{n} option value is 65536.
10181
10182 Enabled at levels @option{-O2}, @option{-O3}.
10183
10184 @item -funit-at-a-time
10185 @opindex funit-at-a-time
10186 This option is left for compatibility reasons. @option{-funit-at-a-time}
10187 has no effect, while @option{-fno-unit-at-a-time} implies
10188 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10189
10190 Enabled by default.
10191
10192 @item -fno-toplevel-reorder
10193 @opindex fno-toplevel-reorder
10194 @opindex ftoplevel-reorder
10195 Do not reorder top-level functions, variables, and @code{asm}
10196 statements. Output them in the same order that they appear in the
10197 input file. When this option is used, unreferenced static variables
10198 are not removed. This option is intended to support existing code
10199 that relies on a particular ordering. For new code, it is better to
10200 use attributes when possible.
10201
10202 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10203 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10204 Additionally @option{-fno-toplevel-reorder} implies
10205 @option{-fno-section-anchors}.
10206
10207 @item -fweb
10208 @opindex fweb
10209 Constructs webs as commonly used for register allocation purposes and assign
10210 each web individual pseudo register. This allows the register allocation pass
10211 to operate on pseudos directly, but also strengthens several other optimization
10212 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10213 however, make debugging impossible, since variables no longer stay in a
10214 ``home register''.
10215
10216 Enabled by default with @option{-funroll-loops}.
10217
10218 @item -fwhole-program
10219 @opindex fwhole-program
10220 Assume that the current compilation unit represents the whole program being
10221 compiled. All public functions and variables with the exception of @code{main}
10222 and those merged by attribute @code{externally_visible} become static functions
10223 and in effect are optimized more aggressively by interprocedural optimizers.
10224
10225 This option should not be used in combination with @option{-flto}.
10226 Instead relying on a linker plugin should provide safer and more precise
10227 information.
10228
10229 @item -flto[=@var{n}]
10230 @opindex flto
10231 This option runs the standard link-time optimizer. When invoked
10232 with source code, it generates GIMPLE (one of GCC's internal
10233 representations) and writes it to special ELF sections in the object
10234 file. When the object files are linked together, all the function
10235 bodies are read from these ELF sections and instantiated as if they
10236 had been part of the same translation unit.
10237
10238 To use the link-time optimizer, @option{-flto} and optimization
10239 options should be specified at compile time and during the final link.
10240 It is recommended that you compile all the files participating in the
10241 same link with the same options and also specify those options at
10242 link time.
10243 For example:
10244
10245 @smallexample
10246 gcc -c -O2 -flto foo.c
10247 gcc -c -O2 -flto bar.c
10248 gcc -o myprog -flto -O2 foo.o bar.o
10249 @end smallexample
10250
10251 The first two invocations to GCC save a bytecode representation
10252 of GIMPLE into special ELF sections inside @file{foo.o} and
10253 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10254 @file{foo.o} and @file{bar.o}, merges the two files into a single
10255 internal image, and compiles the result as usual. Since both
10256 @file{foo.o} and @file{bar.o} are merged into a single image, this
10257 causes all the interprocedural analyses and optimizations in GCC to
10258 work across the two files as if they were a single one. This means,
10259 for example, that the inliner is able to inline functions in
10260 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10261
10262 Another (simpler) way to enable link-time optimization is:
10263
10264 @smallexample
10265 gcc -o myprog -flto -O2 foo.c bar.c
10266 @end smallexample
10267
10268 The above generates bytecode for @file{foo.c} and @file{bar.c},
10269 merges them together into a single GIMPLE representation and optimizes
10270 them as usual to produce @file{myprog}.
10271
10272 The important thing to keep in mind is that to enable link-time
10273 optimizations you need to use the GCC driver to perform the link step.
10274 GCC automatically performs link-time optimization if any of the
10275 objects involved were compiled with the @option{-flto} command-line option.
10276 You can always override
10277 the automatic decision to do link-time optimization
10278 by passing @option{-fno-lto} to the link command.
10279
10280 To make whole program optimization effective, it is necessary to make
10281 certain whole program assumptions. The compiler needs to know
10282 what functions and variables can be accessed by libraries and runtime
10283 outside of the link-time optimized unit. When supported by the linker,
10284 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10285 to the compiler about used and externally visible symbols. When
10286 the linker plugin is not available, @option{-fwhole-program} should be
10287 used to allow the compiler to make these assumptions, which leads
10288 to more aggressive optimization decisions.
10289
10290 When a file is compiled with @option{-flto} without
10291 @option{-fuse-linker-plugin}, the generated object file is larger than
10292 a regular object file because it contains GIMPLE bytecodes and the usual
10293 final code (see @option{-ffat-lto-objects}. This means that
10294 object files with LTO information can be linked as normal object
10295 files; if @option{-fno-lto} is passed to the linker, no
10296 interprocedural optimizations are applied. Note that when
10297 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10298 but you cannot perform a regular, non-LTO link on them.
10299
10300 When producing the final binary, GCC only
10301 applies link-time optimizations to those files that contain bytecode.
10302 Therefore, you can mix and match object files and libraries with
10303 GIMPLE bytecodes and final object code. GCC automatically selects
10304 which files to optimize in LTO mode and which files to link without
10305 further processing.
10306
10307 Generally, options specified at link time override those
10308 specified at compile time, although in some cases GCC attempts to infer
10309 link-time options from the settings used to compile the input files.
10310
10311 If you do not specify an optimization level option @option{-O} at
10312 link time, then GCC uses the highest optimization level
10313 used when compiling the object files. Note that it is generally
10314 ineffective to specify an optimization level option only at link time and
10315 not at compile time, for two reasons. First, compiling without
10316 optimization suppresses compiler passes that gather information
10317 needed for effective optimization at link time. Second, some early
10318 optimization passes can be performed only at compile time and
10319 not at link time.
10320
10321 There are some code generation flags preserved by GCC when
10322 generating bytecodes, as they need to be used during the final link.
10323 Currently, the following options and their settings are taken from
10324 the first object file that explicitly specifies them:
10325 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10326 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10327 and all the @option{-m} target flags.
10328
10329 Certain ABI-changing flags are required to match in all compilation units,
10330 and trying to override this at link time with a conflicting value
10331 is ignored. This includes options such as @option{-freg-struct-return}
10332 and @option{-fpcc-struct-return}.
10333
10334 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10335 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10336 are passed through to the link stage and merged conservatively for
10337 conflicting translation units. Specifically
10338 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10339 precedence; and for example @option{-ffp-contract=off} takes precedence
10340 over @option{-ffp-contract=fast}. You can override them at link time.
10341
10342 To enable debug info generation you need to supply @option{-g} at
10343 compile-time. If any of the input files at link time were built
10344 with debug info generation enabled the link will enable debug info
10345 generation as well. Any elaborate debug info settings
10346 like the dwarf level @option{-gdwarf-5} need to be explicitly repeated
10347 at the linker command line and mixing different settings in different
10348 translation units is discouraged.
10349
10350 If LTO encounters objects with C linkage declared with incompatible
10351 types in separate translation units to be linked together (undefined
10352 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10353 issued. The behavior is still undefined at run time. Similar
10354 diagnostics may be raised for other languages.
10355
10356 Another feature of LTO is that it is possible to apply interprocedural
10357 optimizations on files written in different languages:
10358
10359 @smallexample
10360 gcc -c -flto foo.c
10361 g++ -c -flto bar.cc
10362 gfortran -c -flto baz.f90
10363 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10364 @end smallexample
10365
10366 Notice that the final link is done with @command{g++} to get the C++
10367 runtime libraries and @option{-lgfortran} is added to get the Fortran
10368 runtime libraries. In general, when mixing languages in LTO mode, you
10369 should use the same link command options as when mixing languages in a
10370 regular (non-LTO) compilation.
10371
10372 If object files containing GIMPLE bytecode are stored in a library archive, say
10373 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10374 are using a linker with plugin support. To create static libraries suitable
10375 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10376 and @command{ranlib};
10377 to show the symbols of object files with GIMPLE bytecode, use
10378 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10379 and @command{nm} have been compiled with plugin support. At link time, use the
10380 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10381 the LTO optimization process:
10382
10383 @smallexample
10384 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10385 @end smallexample
10386
10387 With the linker plugin enabled, the linker extracts the needed
10388 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10389 to make them part of the aggregated GIMPLE image to be optimized.
10390
10391 If you are not using a linker with plugin support and/or do not
10392 enable the linker plugin, then the objects inside @file{libfoo.a}
10393 are extracted and linked as usual, but they do not participate
10394 in the LTO optimization process. In order to make a static library suitable
10395 for both LTO optimization and usual linkage, compile its object files with
10396 @option{-flto} @option{-ffat-lto-objects}.
10397
10398 Link-time optimizations do not require the presence of the whole program to
10399 operate. If the program does not require any symbols to be exported, it is
10400 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10401 the interprocedural optimizers to use more aggressive assumptions which may
10402 lead to improved optimization opportunities.
10403 Use of @option{-fwhole-program} is not needed when linker plugin is
10404 active (see @option{-fuse-linker-plugin}).
10405
10406 The current implementation of LTO makes no
10407 attempt to generate bytecode that is portable between different
10408 types of hosts. The bytecode files are versioned and there is a
10409 strict version check, so bytecode files generated in one version of
10410 GCC do not work with an older or newer version of GCC.
10411
10412 Link-time optimization does not work well with generation of debugging
10413 information on systems other than those using a combination of ELF and
10414 DWARF.
10415
10416 If you specify the optional @var{n}, the optimization and code
10417 generation done at link time is executed in parallel using @var{n}
10418 parallel jobs by utilizing an installed @command{make} program. The
10419 environment variable @env{MAKE} may be used to override the program
10420 used.
10421
10422 You can also specify @option{-flto=jobserver} to use GNU make's
10423 job server mode to determine the number of parallel jobs. This
10424 is useful when the Makefile calling GCC is already executing in parallel.
10425 You must prepend a @samp{+} to the command recipe in the parent Makefile
10426 for this to work. This option likely only works if @env{MAKE} is
10427 GNU make. Even without the option value, GCC tries to automatically
10428 detect a running GNU make's job server.
10429
10430 Use @option{-flto=auto} to use GNU make's job server, if available,
10431 or otherwise fall back to autodetection of the number of CPU threads
10432 present in your system.
10433
10434 @item -flto-partition=@var{alg}
10435 @opindex flto-partition
10436 Specify the partitioning algorithm used by the link-time optimizer.
10437 The value is either @samp{1to1} to specify a partitioning mirroring
10438 the original source files or @samp{balanced} to specify partitioning
10439 into equally sized chunks (whenever possible) or @samp{max} to create
10440 new partition for every symbol where possible. Specifying @samp{none}
10441 as an algorithm disables partitioning and streaming completely.
10442 The default value is @samp{balanced}. While @samp{1to1} can be used
10443 as an workaround for various code ordering issues, the @samp{max}
10444 partitioning is intended for internal testing only.
10445 The value @samp{one} specifies that exactly one partition should be
10446 used while the value @samp{none} bypasses partitioning and executes
10447 the link-time optimization step directly from the WPA phase.
10448
10449 @item -flto-compression-level=@var{n}
10450 @opindex flto-compression-level
10451 This option specifies the level of compression used for intermediate
10452 language written to LTO object files, and is only meaningful in
10453 conjunction with LTO mode (@option{-flto}). Valid
10454 values are 0 (no compression) to 9 (maximum compression). Values
10455 outside this range are clamped to either 0 or 9. If the option is not
10456 given, a default balanced compression setting is used.
10457
10458 @item -fuse-linker-plugin
10459 @opindex fuse-linker-plugin
10460 Enables the use of a linker plugin during link-time optimization. This
10461 option relies on plugin support in the linker, which is available in gold
10462 or in GNU ld 2.21 or newer.
10463
10464 This option enables the extraction of object files with GIMPLE bytecode out
10465 of library archives. This improves the quality of optimization by exposing
10466 more code to the link-time optimizer. This information specifies what
10467 symbols can be accessed externally (by non-LTO object or during dynamic
10468 linking). Resulting code quality improvements on binaries (and shared
10469 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10470 See @option{-flto} for a description of the effect of this flag and how to
10471 use it.
10472
10473 This option is enabled by default when LTO support in GCC is enabled
10474 and GCC was configured for use with
10475 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10476
10477 @item -ffat-lto-objects
10478 @opindex ffat-lto-objects
10479 Fat LTO objects are object files that contain both the intermediate language
10480 and the object code. This makes them usable for both LTO linking and normal
10481 linking. This option is effective only when compiling with @option{-flto}
10482 and is ignored at link time.
10483
10484 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10485 requires the complete toolchain to be aware of LTO. It requires a linker with
10486 linker plugin support for basic functionality. Additionally,
10487 @command{nm}, @command{ar} and @command{ranlib}
10488 need to support linker plugins to allow a full-featured build environment
10489 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10490 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10491 to these tools. With non fat LTO makefiles need to be modified to use them.
10492
10493 Note that modern binutils provide plugin auto-load mechanism.
10494 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10495 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10496 @command{gcc-ranlib}).
10497
10498 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10499 support.
10500
10501 @item -fcompare-elim
10502 @opindex fcompare-elim
10503 After register allocation and post-register allocation instruction splitting,
10504 identify arithmetic instructions that compute processor flags similar to a
10505 comparison operation based on that arithmetic. If possible, eliminate the
10506 explicit comparison operation.
10507
10508 This pass only applies to certain targets that cannot explicitly represent
10509 the comparison operation before register allocation is complete.
10510
10511 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10512
10513 @item -fcprop-registers
10514 @opindex fcprop-registers
10515 After register allocation and post-register allocation instruction splitting,
10516 perform a copy-propagation pass to try to reduce scheduling dependencies
10517 and occasionally eliminate the copy.
10518
10519 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10520
10521 @item -fprofile-correction
10522 @opindex fprofile-correction
10523 Profiles collected using an instrumented binary for multi-threaded programs may
10524 be inconsistent due to missed counter updates. When this option is specified,
10525 GCC uses heuristics to correct or smooth out such inconsistencies. By
10526 default, GCC emits an error message when an inconsistent profile is detected.
10527
10528 This option is enabled by @option{-fauto-profile}.
10529
10530 @item -fprofile-use
10531 @itemx -fprofile-use=@var{path}
10532 @opindex fprofile-use
10533 Enable profile feedback-directed optimizations,
10534 and the following optimizations, many of which
10535 are generally profitable only with profile feedback available:
10536
10537 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10538 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10539 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10540 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10541 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10542 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10543 -fprofile-reorder-functions}
10544
10545 Before you can use this option, you must first generate profiling information.
10546 @xref{Instrumentation Options}, for information about the
10547 @option{-fprofile-generate} option.
10548
10549 By default, GCC emits an error message if the feedback profiles do not
10550 match the source code. This error can be turned into a warning by using
10551 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10552 optimized code. Additionally, by default, GCC also emits a warning message if
10553 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10554
10555 If @var{path} is specified, GCC looks at the @var{path} to find
10556 the profile feedback data files. See @option{-fprofile-dir}.
10557
10558 @item -fauto-profile
10559 @itemx -fauto-profile=@var{path}
10560 @opindex fauto-profile
10561 Enable sampling-based feedback-directed optimizations,
10562 and the following optimizations,
10563 many of which are generally profitable only with profile feedback available:
10564
10565 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10566 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10567 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10568 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10569 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10570 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10571 -fprofile-correction}
10572
10573 @var{path} is the name of a file containing AutoFDO profile information.
10574 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10575
10576 Producing an AutoFDO profile data file requires running your program
10577 with the @command{perf} utility on a supported GNU/Linux target system.
10578 For more information, see @uref{https://perf.wiki.kernel.org/}.
10579
10580 E.g.
10581 @smallexample
10582 perf record -e br_inst_retired:near_taken -b -o perf.data \
10583 -- your_program
10584 @end smallexample
10585
10586 Then use the @command{create_gcov} tool to convert the raw profile data
10587 to a format that can be used by GCC.@ You must also supply the
10588 unstripped binary for your program to this tool.
10589 See @uref{https://github.com/google/autofdo}.
10590
10591 E.g.
10592 @smallexample
10593 create_gcov --binary=your_program.unstripped --profile=perf.data \
10594 --gcov=profile.afdo
10595 @end smallexample
10596 @end table
10597
10598 The following options control compiler behavior regarding floating-point
10599 arithmetic. These options trade off between speed and
10600 correctness. All must be specifically enabled.
10601
10602 @table @gcctabopt
10603 @item -ffloat-store
10604 @opindex ffloat-store
10605 Do not store floating-point variables in registers, and inhibit other
10606 options that might change whether a floating-point value is taken from a
10607 register or memory.
10608
10609 @cindex floating-point precision
10610 This option prevents undesirable excess precision on machines such as
10611 the 68000 where the floating registers (of the 68881) keep more
10612 precision than a @code{double} is supposed to have. Similarly for the
10613 x86 architecture. For most programs, the excess precision does only
10614 good, but a few programs rely on the precise definition of IEEE floating
10615 point. Use @option{-ffloat-store} for such programs, after modifying
10616 them to store all pertinent intermediate computations into variables.
10617
10618 @item -fexcess-precision=@var{style}
10619 @opindex fexcess-precision
10620 This option allows further control over excess precision on machines
10621 where floating-point operations occur in a format with more precision or
10622 range than the IEEE standard and interchange floating-point types. By
10623 default, @option{-fexcess-precision=fast} is in effect; this means that
10624 operations may be carried out in a wider precision than the types specified
10625 in the source if that would result in faster code, and it is unpredictable
10626 when rounding to the types specified in the source code takes place.
10627 When compiling C, if @option{-fexcess-precision=standard} is specified then
10628 excess precision follows the rules specified in ISO C99; in particular,
10629 both casts and assignments cause values to be rounded to their
10630 semantic types (whereas @option{-ffloat-store} only affects
10631 assignments). This option is enabled by default for C if a strict
10632 conformance option such as @option{-std=c99} is used.
10633 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10634 regardless of whether a strict conformance option is used.
10635
10636 @opindex mfpmath
10637 @option{-fexcess-precision=standard} is not implemented for languages
10638 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10639 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10640 semantics apply without excess precision, and in the latter, rounding
10641 is unpredictable.
10642
10643 @item -ffast-math
10644 @opindex ffast-math
10645 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10646 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10647 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10648 @option{-fexcess-precision=fast}.
10649
10650 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10651
10652 This option is not turned on by any @option{-O} option besides
10653 @option{-Ofast} since it can result in incorrect output for programs
10654 that depend on an exact implementation of IEEE or ISO rules/specifications
10655 for math functions. It may, however, yield faster code for programs
10656 that do not require the guarantees of these specifications.
10657
10658 @item -fno-math-errno
10659 @opindex fno-math-errno
10660 @opindex fmath-errno
10661 Do not set @code{errno} after calling math functions that are executed
10662 with a single instruction, e.g., @code{sqrt}. A program that relies on
10663 IEEE exceptions for math error handling may want to use this flag
10664 for speed while maintaining IEEE arithmetic compatibility.
10665
10666 This option is not turned on by any @option{-O} option since
10667 it can result in incorrect output for programs that depend on
10668 an exact implementation of IEEE or ISO rules/specifications for
10669 math functions. It may, however, yield faster code for programs
10670 that do not require the guarantees of these specifications.
10671
10672 The default is @option{-fmath-errno}.
10673
10674 On Darwin systems, the math library never sets @code{errno}. There is
10675 therefore no reason for the compiler to consider the possibility that
10676 it might, and @option{-fno-math-errno} is the default.
10677
10678 @item -funsafe-math-optimizations
10679 @opindex funsafe-math-optimizations
10680
10681 Allow optimizations for floating-point arithmetic that (a) assume
10682 that arguments and results are valid and (b) may violate IEEE or
10683 ANSI standards. When used at link time, it may include libraries
10684 or startup files that change the default FPU control word or other
10685 similar optimizations.
10686
10687 This option is not turned on by any @option{-O} option since
10688 it can result in incorrect output for programs that depend on
10689 an exact implementation of IEEE or ISO rules/specifications for
10690 math functions. It may, however, yield faster code for programs
10691 that do not require the guarantees of these specifications.
10692 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10693 @option{-fassociative-math} and @option{-freciprocal-math}.
10694
10695 The default is @option{-fno-unsafe-math-optimizations}.
10696
10697 @item -fassociative-math
10698 @opindex fassociative-math
10699
10700 Allow re-association of operands in series of floating-point operations.
10701 This violates the ISO C and C++ language standard by possibly changing
10702 computation result. NOTE: re-ordering may change the sign of zero as
10703 well as ignore NaNs and inhibit or create underflow or overflow (and
10704 thus cannot be used on code that relies on rounding behavior like
10705 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10706 and thus may not be used when ordered comparisons are required.
10707 This option requires that both @option{-fno-signed-zeros} and
10708 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10709 much sense with @option{-frounding-math}. For Fortran the option
10710 is automatically enabled when both @option{-fno-signed-zeros} and
10711 @option{-fno-trapping-math} are in effect.
10712
10713 The default is @option{-fno-associative-math}.
10714
10715 @item -freciprocal-math
10716 @opindex freciprocal-math
10717
10718 Allow the reciprocal of a value to be used instead of dividing by
10719 the value if this enables optimizations. For example @code{x / y}
10720 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10721 is subject to common subexpression elimination. Note that this loses
10722 precision and increases the number of flops operating on the value.
10723
10724 The default is @option{-fno-reciprocal-math}.
10725
10726 @item -ffinite-math-only
10727 @opindex ffinite-math-only
10728 Allow optimizations for floating-point arithmetic that assume
10729 that arguments and results are not NaNs or +-Infs.
10730
10731 This option is not turned on by any @option{-O} option since
10732 it can result in incorrect output for programs that depend on
10733 an exact implementation of IEEE or ISO rules/specifications for
10734 math functions. It may, however, yield faster code for programs
10735 that do not require the guarantees of these specifications.
10736
10737 The default is @option{-fno-finite-math-only}.
10738
10739 @item -fno-signed-zeros
10740 @opindex fno-signed-zeros
10741 @opindex fsigned-zeros
10742 Allow optimizations for floating-point arithmetic that ignore the
10743 signedness of zero. IEEE arithmetic specifies the behavior of
10744 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10745 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10746 This option implies that the sign of a zero result isn't significant.
10747
10748 The default is @option{-fsigned-zeros}.
10749
10750 @item -fno-trapping-math
10751 @opindex fno-trapping-math
10752 @opindex ftrapping-math
10753 Compile code assuming that floating-point operations cannot generate
10754 user-visible traps. These traps include division by zero, overflow,
10755 underflow, inexact result and invalid operation. This option requires
10756 that @option{-fno-signaling-nans} be in effect. Setting this option may
10757 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10758
10759 This option should never be turned on by any @option{-O} option since
10760 it can result in incorrect output for programs that depend on
10761 an exact implementation of IEEE or ISO rules/specifications for
10762 math functions.
10763
10764 The default is @option{-ftrapping-math}.
10765
10766 @item -frounding-math
10767 @opindex frounding-math
10768 Disable transformations and optimizations that assume default floating-point
10769 rounding behavior. This is round-to-zero for all floating point
10770 to integer conversions, and round-to-nearest for all other arithmetic
10771 truncations. This option should be specified for programs that change
10772 the FP rounding mode dynamically, or that may be executed with a
10773 non-default rounding mode. This option disables constant folding of
10774 floating-point expressions at compile time (which may be affected by
10775 rounding mode) and arithmetic transformations that are unsafe in the
10776 presence of sign-dependent rounding modes.
10777
10778 The default is @option{-fno-rounding-math}.
10779
10780 This option is experimental and does not currently guarantee to
10781 disable all GCC optimizations that are affected by rounding mode.
10782 Future versions of GCC may provide finer control of this setting
10783 using C99's @code{FENV_ACCESS} pragma. This command-line option
10784 will be used to specify the default state for @code{FENV_ACCESS}.
10785
10786 @item -fsignaling-nans
10787 @opindex fsignaling-nans
10788 Compile code assuming that IEEE signaling NaNs may generate user-visible
10789 traps during floating-point operations. Setting this option disables
10790 optimizations that may change the number of exceptions visible with
10791 signaling NaNs. This option implies @option{-ftrapping-math}.
10792
10793 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10794 be defined.
10795
10796 The default is @option{-fno-signaling-nans}.
10797
10798 This option is experimental and does not currently guarantee to
10799 disable all GCC optimizations that affect signaling NaN behavior.
10800
10801 @item -fno-fp-int-builtin-inexact
10802 @opindex fno-fp-int-builtin-inexact
10803 @opindex ffp-int-builtin-inexact
10804 Do not allow the built-in functions @code{ceil}, @code{floor},
10805 @code{round} and @code{trunc}, and their @code{float} and @code{long
10806 double} variants, to generate code that raises the ``inexact''
10807 floating-point exception for noninteger arguments. ISO C99 and C11
10808 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10809 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10810 functions to do so.
10811
10812 The default is @option{-ffp-int-builtin-inexact}, allowing the
10813 exception to be raised. This option does nothing unless
10814 @option{-ftrapping-math} is in effect.
10815
10816 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10817 generate a call to a library function then the ``inexact'' exception
10818 may be raised if the library implementation does not follow TS 18661.
10819
10820 @item -fsingle-precision-constant
10821 @opindex fsingle-precision-constant
10822 Treat floating-point constants as single precision instead of
10823 implicitly converting them to double-precision constants.
10824
10825 @item -fcx-limited-range
10826 @opindex fcx-limited-range
10827 When enabled, this option states that a range reduction step is not
10828 needed when performing complex division. Also, there is no checking
10829 whether the result of a complex multiplication or division is @code{NaN
10830 + I*NaN}, with an attempt to rescue the situation in that case. The
10831 default is @option{-fno-cx-limited-range}, but is enabled by
10832 @option{-ffast-math}.
10833
10834 This option controls the default setting of the ISO C99
10835 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10836 all languages.
10837
10838 @item -fcx-fortran-rules
10839 @opindex fcx-fortran-rules
10840 Complex multiplication and division follow Fortran rules. Range
10841 reduction is done as part of complex division, but there is no checking
10842 whether the result of a complex multiplication or division is @code{NaN
10843 + I*NaN}, with an attempt to rescue the situation in that case.
10844
10845 The default is @option{-fno-cx-fortran-rules}.
10846
10847 @end table
10848
10849 The following options control optimizations that may improve
10850 performance, but are not enabled by any @option{-O} options. This
10851 section includes experimental options that may produce broken code.
10852
10853 @table @gcctabopt
10854 @item -fbranch-probabilities
10855 @opindex fbranch-probabilities
10856 After running a program compiled with @option{-fprofile-arcs}
10857 (@pxref{Instrumentation Options}),
10858 you can compile it a second time using
10859 @option{-fbranch-probabilities}, to improve optimizations based on
10860 the number of times each branch was taken. When a program
10861 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10862 counts to a file called @file{@var{sourcename}.gcda} for each source
10863 file. The information in this data file is very dependent on the
10864 structure of the generated code, so you must use the same source code
10865 and the same optimization options for both compilations.
10866
10867 With @option{-fbranch-probabilities}, GCC puts a
10868 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10869 These can be used to improve optimization. Currently, they are only
10870 used in one place: in @file{reorg.c}, instead of guessing which path a
10871 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10872 exactly determine which path is taken more often.
10873
10874 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10875
10876 @item -fprofile-values
10877 @opindex fprofile-values
10878 If combined with @option{-fprofile-arcs}, it adds code so that some
10879 data about values of expressions in the program is gathered.
10880
10881 With @option{-fbranch-probabilities}, it reads back the data gathered
10882 from profiling values of expressions for usage in optimizations.
10883
10884 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10885 @option{-fauto-profile}.
10886
10887 @item -fprofile-reorder-functions
10888 @opindex fprofile-reorder-functions
10889 Function reordering based on profile instrumentation collects
10890 first time of execution of a function and orders these functions
10891 in ascending order.
10892
10893 Enabled with @option{-fprofile-use}.
10894
10895 @item -fvpt
10896 @opindex fvpt
10897 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10898 to add code to gather information about values of expressions.
10899
10900 With @option{-fbranch-probabilities}, it reads back the data gathered
10901 and actually performs the optimizations based on them.
10902 Currently the optimizations include specialization of division operations
10903 using the knowledge about the value of the denominator.
10904
10905 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10906
10907 @item -frename-registers
10908 @opindex frename-registers
10909 Attempt to avoid false dependencies in scheduled code by making use
10910 of registers left over after register allocation. This optimization
10911 most benefits processors with lots of registers. Depending on the
10912 debug information format adopted by the target, however, it can
10913 make debugging impossible, since variables no longer stay in
10914 a ``home register''.
10915
10916 Enabled by default with @option{-funroll-loops}.
10917
10918 @item -fschedule-fusion
10919 @opindex fschedule-fusion
10920 Performs a target dependent pass over the instruction stream to schedule
10921 instructions of same type together because target machine can execute them
10922 more efficiently if they are adjacent to each other in the instruction flow.
10923
10924 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10925
10926 @item -ftracer
10927 @opindex ftracer
10928 Perform tail duplication to enlarge superblock size. This transformation
10929 simplifies the control flow of the function allowing other optimizations to do
10930 a better job.
10931
10932 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10933
10934 @item -funroll-loops
10935 @opindex funroll-loops
10936 Unroll loops whose number of iterations can be determined at compile time or
10937 upon entry to the loop. @option{-funroll-loops} implies
10938 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10939 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10940 a small constant number of iterations). This option makes code larger, and may
10941 or may not make it run faster.
10942
10943 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10944
10945 @item -funroll-all-loops
10946 @opindex funroll-all-loops
10947 Unroll all loops, even if their number of iterations is uncertain when
10948 the loop is entered. This usually makes programs run more slowly.
10949 @option{-funroll-all-loops} implies the same options as
10950 @option{-funroll-loops}.
10951
10952 @item -fpeel-loops
10953 @opindex fpeel-loops
10954 Peels loops for which there is enough information that they do not
10955 roll much (from profile feedback or static analysis). It also turns on
10956 complete loop peeling (i.e.@: complete removal of loops with small constant
10957 number of iterations).
10958
10959 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10960
10961 @item -fmove-loop-invariants
10962 @opindex fmove-loop-invariants
10963 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10964 at level @option{-O1} and higher, except for @option{-Og}.
10965
10966 @item -fsplit-loops
10967 @opindex fsplit-loops
10968 Split a loop into two if it contains a condition that's always true
10969 for one side of the iteration space and false for the other.
10970
10971 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10972
10973 @item -funswitch-loops
10974 @opindex funswitch-loops
10975 Move branches with loop invariant conditions out of the loop, with duplicates
10976 of the loop on both branches (modified according to result of the condition).
10977
10978 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10979
10980 @item -fversion-loops-for-strides
10981 @opindex fversion-loops-for-strides
10982 If a loop iterates over an array with a variable stride, create another
10983 version of the loop that assumes the stride is always one. For example:
10984
10985 @smallexample
10986 for (int i = 0; i < n; ++i)
10987 x[i * stride] = @dots{};
10988 @end smallexample
10989
10990 becomes:
10991
10992 @smallexample
10993 if (stride == 1)
10994 for (int i = 0; i < n; ++i)
10995 x[i] = @dots{};
10996 else
10997 for (int i = 0; i < n; ++i)
10998 x[i * stride] = @dots{};
10999 @end smallexample
11000
11001 This is particularly useful for assumed-shape arrays in Fortran where
11002 (for example) it allows better vectorization assuming contiguous accesses.
11003 This flag is enabled by default at @option{-O3}.
11004 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
11005
11006 @item -ffunction-sections
11007 @itemx -fdata-sections
11008 @opindex ffunction-sections
11009 @opindex fdata-sections
11010 Place each function or data item into its own section in the output
11011 file if the target supports arbitrary sections. The name of the
11012 function or the name of the data item determines the section's name
11013 in the output file.
11014
11015 Use these options on systems where the linker can perform optimizations to
11016 improve locality of reference in the instruction space. Most systems using the
11017 ELF object format have linkers with such optimizations. On AIX, the linker
11018 rearranges sections (CSECTs) based on the call graph. The performance impact
11019 varies.
11020
11021 Together with a linker garbage collection (linker @option{--gc-sections}
11022 option) these options may lead to smaller statically-linked executables (after
11023 stripping).
11024
11025 On ELF/DWARF systems these options do not degenerate the quality of the debug
11026 information. There could be issues with other object files/debug info formats.
11027
11028 Only use these options when there are significant benefits from doing so. When
11029 you specify these options, the assembler and linker create larger object and
11030 executable files and are also slower. These options affect code generation.
11031 They prevent optimizations by the compiler and assembler using relative
11032 locations inside a translation unit since the locations are unknown until
11033 link time. An example of such an optimization is relaxing calls to short call
11034 instructions.
11035
11036 @item -fstdarg-opt
11037 @opindex fstdarg-opt
11038 Optimize the prologue of variadic argument functions with respect to usage of
11039 those arguments.
11040
11041 @item -fsection-anchors
11042 @opindex fsection-anchors
11043 Try to reduce the number of symbolic address calculations by using
11044 shared ``anchor'' symbols to address nearby objects. This transformation
11045 can help to reduce the number of GOT entries and GOT accesses on some
11046 targets.
11047
11048 For example, the implementation of the following function @code{foo}:
11049
11050 @smallexample
11051 static int a, b, c;
11052 int foo (void) @{ return a + b + c; @}
11053 @end smallexample
11054
11055 @noindent
11056 usually calculates the addresses of all three variables, but if you
11057 compile it with @option{-fsection-anchors}, it accesses the variables
11058 from a common anchor point instead. The effect is similar to the
11059 following pseudocode (which isn't valid C):
11060
11061 @smallexample
11062 int foo (void)
11063 @{
11064 register int *xr = &x;
11065 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
11066 @}
11067 @end smallexample
11068
11069 Not all targets support this option.
11070
11071 @item --param @var{name}=@var{value}
11072 @opindex param
11073 In some places, GCC uses various constants to control the amount of
11074 optimization that is done. For example, GCC does not inline functions
11075 that contain more than a certain number of instructions. You can
11076 control some of these constants on the command line using the
11077 @option{--param} option.
11078
11079 The names of specific parameters, and the meaning of the values, are
11080 tied to the internals of the compiler, and are subject to change
11081 without notice in future releases.
11082
11083 In order to get minimal, maximal and default value of a parameter,
11084 one can use @option{--help=param -Q} options.
11085
11086 In each case, the @var{value} is an integer. The allowable choices for
11087 @var{name} are:
11088
11089 @table @gcctabopt
11090 @item predictable-branch-outcome
11091 When branch is predicted to be taken with probability lower than this threshold
11092 (in percent), then it is considered well predictable.
11093
11094 @item max-rtl-if-conversion-insns
11095 RTL if-conversion tries to remove conditional branches around a block and
11096 replace them with conditionally executed instructions. This parameter
11097 gives the maximum number of instructions in a block which should be
11098 considered for if-conversion. The compiler will
11099 also use other heuristics to decide whether if-conversion is likely to be
11100 profitable.
11101
11102 @item max-rtl-if-conversion-predictable-cost
11103 @itemx max-rtl-if-conversion-unpredictable-cost
11104 RTL if-conversion will try to remove conditional branches around a block
11105 and replace them with conditionally executed instructions. These parameters
11106 give the maximum permissible cost for the sequence that would be generated
11107 by if-conversion depending on whether the branch is statically determined
11108 to be predictable or not. The units for this parameter are the same as
11109 those for the GCC internal seq_cost metric. The compiler will try to
11110 provide a reasonable default for this parameter using the BRANCH_COST
11111 target macro.
11112
11113 @item max-crossjump-edges
11114 The maximum number of incoming edges to consider for cross-jumping.
11115 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11116 the number of edges incoming to each block. Increasing values mean
11117 more aggressive optimization, making the compilation time increase with
11118 probably small improvement in executable size.
11119
11120 @item min-crossjump-insns
11121 The minimum number of instructions that must be matched at the end
11122 of two blocks before cross-jumping is performed on them. This
11123 value is ignored in the case where all instructions in the block being
11124 cross-jumped from are matched.
11125
11126 @item max-grow-copy-bb-insns
11127 The maximum code size expansion factor when copying basic blocks
11128 instead of jumping. The expansion is relative to a jump instruction.
11129
11130 @item max-goto-duplication-insns
11131 The maximum number of instructions to duplicate to a block that jumps
11132 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11133 passes, GCC factors computed gotos early in the compilation process,
11134 and unfactors them as late as possible. Only computed jumps at the
11135 end of a basic blocks with no more than max-goto-duplication-insns are
11136 unfactored.
11137
11138 @item max-delay-slot-insn-search
11139 The maximum number of instructions to consider when looking for an
11140 instruction to fill a delay slot. If more than this arbitrary number of
11141 instructions are searched, the time savings from filling the delay slot
11142 are minimal, so stop searching. Increasing values mean more
11143 aggressive optimization, making the compilation time increase with probably
11144 small improvement in execution time.
11145
11146 @item max-delay-slot-live-search
11147 When trying to fill delay slots, the maximum number of instructions to
11148 consider when searching for a block with valid live register
11149 information. Increasing this arbitrarily chosen value means more
11150 aggressive optimization, increasing the compilation time. This parameter
11151 should be removed when the delay slot code is rewritten to maintain the
11152 control-flow graph.
11153
11154 @item max-gcse-memory
11155 The approximate maximum amount of memory that can be allocated in
11156 order to perform the global common subexpression elimination
11157 optimization. If more memory than specified is required, the
11158 optimization is not done.
11159
11160 @item max-gcse-insertion-ratio
11161 If the ratio of expression insertions to deletions is larger than this value
11162 for any expression, then RTL PRE inserts or removes the expression and thus
11163 leaves partially redundant computations in the instruction stream.
11164
11165 @item max-pending-list-length
11166 The maximum number of pending dependencies scheduling allows
11167 before flushing the current state and starting over. Large functions
11168 with few branches or calls can create excessively large lists which
11169 needlessly consume memory and resources.
11170
11171 @item max-modulo-backtrack-attempts
11172 The maximum number of backtrack attempts the scheduler should make
11173 when modulo scheduling a loop. Larger values can exponentially increase
11174 compilation time.
11175
11176 @item max-inline-insns-single
11177 Several parameters control the tree inliner used in GCC@.
11178 This number sets the maximum number of instructions (counted in GCC's
11179 internal representation) in a single function that the tree inliner
11180 considers for inlining. This only affects functions declared
11181 inline and methods implemented in a class declaration (C++).
11182
11183 @item max-inline-insns-auto
11184 When you use @option{-finline-functions} (included in @option{-O3}),
11185 a lot of functions that would otherwise not be considered for inlining
11186 by the compiler are investigated. To those functions, a different
11187 (more restrictive) limit compared to functions declared inline can
11188 be applied.
11189
11190 @item max-inline-insns-small
11191 This is bound applied to calls which are considered relevant with
11192 @option{-finline-small-functions}.
11193
11194 @item max-inline-insns-size
11195 This is bound applied to calls which are optimized for size. Small growth
11196 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11197
11198 @item uninlined-function-insns
11199 Number of instructions accounted by inliner for function overhead such as
11200 function prologue and epilogue.
11201
11202 @item uninlined-function-time
11203 Extra time accounted by inliner for function overhead such as time needed to
11204 execute function prologue and epilogue
11205
11206 @item uninlined-thunk-insns
11207 @item uninlined-thunk-time
11208 Same as @option{--param uninlined-function-insns} and
11209 @option{--param uninlined-function-time} but applied to function thunks
11210
11211 @item inline-min-speedup
11212 When estimated performance improvement of caller + callee runtime exceeds this
11213 threshold (in percent), the function can be inlined regardless of the limit on
11214 @option{--param max-inline-insns-single} and @option{--param
11215 max-inline-insns-auto}.
11216
11217 @item large-function-insns
11218 The limit specifying really large functions. For functions larger than this
11219 limit after inlining, inlining is constrained by
11220 @option{--param large-function-growth}. This parameter is useful primarily
11221 to avoid extreme compilation time caused by non-linear algorithms used by the
11222 back end.
11223
11224 @item large-function-growth
11225 Specifies maximal growth of large function caused by inlining in percents.
11226 For example, parameter value 100 limits large function growth to 2.0 times
11227 the original size.
11228
11229 @item large-unit-insns
11230 The limit specifying large translation unit. Growth caused by inlining of
11231 units larger than this limit is limited by @option{--param inline-unit-growth}.
11232 For small units this might be too tight.
11233 For example, consider a unit consisting of function A
11234 that is inline and B that just calls A three times. If B is small relative to
11235 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11236 large units consisting of small inlineable functions, however, the overall unit
11237 growth limit is needed to avoid exponential explosion of code size. Thus for
11238 smaller units, the size is increased to @option{--param large-unit-insns}
11239 before applying @option{--param inline-unit-growth}.
11240
11241 @item inline-unit-growth
11242 Specifies maximal overall growth of the compilation unit caused by inlining.
11243 For example, parameter value 20 limits unit growth to 1.2 times the original
11244 size. Cold functions (either marked cold via an attribute or by profile
11245 feedback) are not accounted into the unit size.
11246
11247 @item ipcp-unit-growth
11248 Specifies maximal overall growth of the compilation unit caused by
11249 interprocedural constant propagation. For example, parameter value 10 limits
11250 unit growth to 1.1 times the original size.
11251
11252 @item large-stack-frame
11253 The limit specifying large stack frames. While inlining the algorithm is trying
11254 to not grow past this limit too much.
11255
11256 @item large-stack-frame-growth
11257 Specifies maximal growth of large stack frames caused by inlining in percents.
11258 For example, parameter value 1000 limits large stack frame growth to 11 times
11259 the original size.
11260
11261 @item max-inline-insns-recursive
11262 @itemx max-inline-insns-recursive-auto
11263 Specifies the maximum number of instructions an out-of-line copy of a
11264 self-recursive inline
11265 function can grow into by performing recursive inlining.
11266
11267 @option{--param max-inline-insns-recursive} applies to functions
11268 declared inline.
11269 For functions not declared inline, recursive inlining
11270 happens only when @option{-finline-functions} (included in @option{-O3}) is
11271 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11272
11273 @item max-inline-recursive-depth
11274 @itemx max-inline-recursive-depth-auto
11275 Specifies the maximum recursion depth used for recursive inlining.
11276
11277 @option{--param max-inline-recursive-depth} applies to functions
11278 declared inline. For functions not declared inline, recursive inlining
11279 happens only when @option{-finline-functions} (included in @option{-O3}) is
11280 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11281
11282 @item min-inline-recursive-probability
11283 Recursive inlining is profitable only for function having deep recursion
11284 in average and can hurt for function having little recursion depth by
11285 increasing the prologue size or complexity of function body to other
11286 optimizers.
11287
11288 When profile feedback is available (see @option{-fprofile-generate}) the actual
11289 recursion depth can be guessed from the probability that function recurses
11290 via a given call expression. This parameter limits inlining only to call
11291 expressions whose probability exceeds the given threshold (in percents).
11292
11293 @item early-inlining-insns
11294 Specify growth that the early inliner can make. In effect it increases
11295 the amount of inlining for code having a large abstraction penalty.
11296
11297 @item max-early-inliner-iterations
11298 Limit of iterations of the early inliner. This basically bounds
11299 the number of nested indirect calls the early inliner can resolve.
11300 Deeper chains are still handled by late inlining.
11301
11302 @item comdat-sharing-probability
11303 Probability (in percent) that C++ inline function with comdat visibility
11304 are shared across multiple compilation units.
11305
11306 @item profile-func-internal-id
11307 A parameter to control whether to use function internal id in profile
11308 database lookup. If the value is 0, the compiler uses an id that
11309 is based on function assembler name and filename, which makes old profile
11310 data more tolerant to source changes such as function reordering etc.
11311
11312 @item min-vect-loop-bound
11313 The minimum number of iterations under which loops are not vectorized
11314 when @option{-ftree-vectorize} is used. The number of iterations after
11315 vectorization needs to be greater than the value specified by this option
11316 to allow vectorization.
11317
11318 @item gcse-cost-distance-ratio
11319 Scaling factor in calculation of maximum distance an expression
11320 can be moved by GCSE optimizations. This is currently supported only in the
11321 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11322 is with simple expressions, i.e., the expressions that have cost
11323 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11324 hoisting of simple expressions.
11325
11326 @item gcse-unrestricted-cost
11327 Cost, roughly measured as the cost of a single typical machine
11328 instruction, at which GCSE optimizations do not constrain
11329 the distance an expression can travel. This is currently
11330 supported only in the code hoisting pass. The lesser the cost,
11331 the more aggressive code hoisting is. Specifying 0
11332 allows all expressions to travel unrestricted distances.
11333
11334 @item max-hoist-depth
11335 The depth of search in the dominator tree for expressions to hoist.
11336 This is used to avoid quadratic behavior in hoisting algorithm.
11337 The value of 0 does not limit on the search, but may slow down compilation
11338 of huge functions.
11339
11340 @item max-tail-merge-comparisons
11341 The maximum amount of similar bbs to compare a bb with. This is used to
11342 avoid quadratic behavior in tree tail merging.
11343
11344 @item max-tail-merge-iterations
11345 The maximum amount of iterations of the pass over the function. This is used to
11346 limit compilation time in tree tail merging.
11347
11348 @item store-merging-allow-unaligned
11349 Allow the store merging pass to introduce unaligned stores if it is legal to
11350 do so.
11351
11352 @item max-stores-to-merge
11353 The maximum number of stores to attempt to merge into wider stores in the store
11354 merging pass.
11355
11356 @item max-unrolled-insns
11357 The maximum number of instructions that a loop may have to be unrolled.
11358 If a loop is unrolled, this parameter also determines how many times
11359 the loop code is unrolled.
11360
11361 @item max-average-unrolled-insns
11362 The maximum number of instructions biased by probabilities of their execution
11363 that a loop may have to be unrolled. If a loop is unrolled,
11364 this parameter also determines how many times the loop code is unrolled.
11365
11366 @item max-unroll-times
11367 The maximum number of unrollings of a single loop.
11368
11369 @item max-peeled-insns
11370 The maximum number of instructions that a loop may have to be peeled.
11371 If a loop is peeled, this parameter also determines how many times
11372 the loop code is peeled.
11373
11374 @item max-peel-times
11375 The maximum number of peelings of a single loop.
11376
11377 @item max-peel-branches
11378 The maximum number of branches on the hot path through the peeled sequence.
11379
11380 @item max-completely-peeled-insns
11381 The maximum number of insns of a completely peeled loop.
11382
11383 @item max-completely-peel-times
11384 The maximum number of iterations of a loop to be suitable for complete peeling.
11385
11386 @item max-completely-peel-loop-nest-depth
11387 The maximum depth of a loop nest suitable for complete peeling.
11388
11389 @item max-unswitch-insns
11390 The maximum number of insns of an unswitched loop.
11391
11392 @item max-unswitch-level
11393 The maximum number of branches unswitched in a single loop.
11394
11395 @item lim-expensive
11396 The minimum cost of an expensive expression in the loop invariant motion.
11397
11398 @item iv-consider-all-candidates-bound
11399 Bound on number of candidates for induction variables, below which
11400 all candidates are considered for each use in induction variable
11401 optimizations. If there are more candidates than this,
11402 only the most relevant ones are considered to avoid quadratic time complexity.
11403
11404 @item iv-max-considered-uses
11405 The induction variable optimizations give up on loops that contain more
11406 induction variable uses.
11407
11408 @item iv-always-prune-cand-set-bound
11409 If the number of candidates in the set is smaller than this value,
11410 always try to remove unnecessary ivs from the set
11411 when adding a new one.
11412
11413 @item avg-loop-niter
11414 Average number of iterations of a loop.
11415
11416 @item dse-max-object-size
11417 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11418 Larger values may result in larger compilation times.
11419
11420 @item dse-max-alias-queries-per-store
11421 Maximum number of queries into the alias oracle per store.
11422 Larger values result in larger compilation times and may result in more
11423 removed dead stores.
11424
11425 @item scev-max-expr-size
11426 Bound on size of expressions used in the scalar evolutions analyzer.
11427 Large expressions slow the analyzer.
11428
11429 @item scev-max-expr-complexity
11430 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11431 Complex expressions slow the analyzer.
11432
11433 @item max-tree-if-conversion-phi-args
11434 Maximum number of arguments in a PHI supported by TREE if conversion
11435 unless the loop is marked with simd pragma.
11436
11437 @item vect-max-version-for-alignment-checks
11438 The maximum number of run-time checks that can be performed when
11439 doing loop versioning for alignment in the vectorizer.
11440
11441 @item vect-max-version-for-alias-checks
11442 The maximum number of run-time checks that can be performed when
11443 doing loop versioning for alias in the vectorizer.
11444
11445 @item vect-max-peeling-for-alignment
11446 The maximum number of loop peels to enhance access alignment
11447 for vectorizer. Value -1 means no limit.
11448
11449 @item max-iterations-to-track
11450 The maximum number of iterations of a loop the brute-force algorithm
11451 for analysis of the number of iterations of the loop tries to evaluate.
11452
11453 @item hot-bb-count-fraction
11454 The denominator n of fraction 1/n of the maximal execution count of a
11455 basic block in the entire program that a basic block needs to at least
11456 have in order to be considered hot. The default is 10000, which means
11457 that a basic block is considered hot if its execution count is greater
11458 than 1/10000 of the maximal execution count. 0 means that it is never
11459 considered hot. Used in non-LTO mode.
11460
11461 @item hot-bb-count-ws-permille
11462 The number of most executed permilles, ranging from 0 to 1000, of the
11463 profiled execution of the entire program to which the execution count
11464 of a basic block must be part of in order to be considered hot. The
11465 default is 990, which means that a basic block is considered hot if
11466 its execution count contributes to the upper 990 permilles, or 99.0%,
11467 of the profiled execution of the entire program. 0 means that it is
11468 never considered hot. Used in LTO mode.
11469
11470 @item hot-bb-frequency-fraction
11471 The denominator n of fraction 1/n of the execution frequency of the
11472 entry block of a function that a basic block of this function needs
11473 to at least have in order to be considered hot. The default is 1000,
11474 which means that a basic block is considered hot in a function if it
11475 is executed more frequently than 1/1000 of the frequency of the entry
11476 block of the function. 0 means that it is never considered hot.
11477
11478 @item unlikely-bb-count-fraction
11479 The denominator n of fraction 1/n of the number of profiled runs of
11480 the entire program below which the execution count of a basic block
11481 must be in order for the basic block to be considered unlikely executed.
11482 The default is 20, which means that a basic block is considered unlikely
11483 executed if it is executed in fewer than 1/20, or 5%, of the runs of
11484 the program. 0 means that it is always considered unlikely executed.
11485
11486 @item max-predicted-iterations
11487 The maximum number of loop iterations we predict statically. This is useful
11488 in cases where a function contains a single loop with known bound and
11489 another loop with unknown bound.
11490 The known number of iterations is predicted correctly, while
11491 the unknown number of iterations average to roughly 10. This means that the
11492 loop without bounds appears artificially cold relative to the other one.
11493
11494 @item builtin-expect-probability
11495 Control the probability of the expression having the specified value. This
11496 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11497
11498 @item builtin-string-cmp-inline-length
11499 The maximum length of a constant string for a builtin string cmp call
11500 eligible for inlining.
11501
11502 @item align-threshold
11503
11504 Select fraction of the maximal frequency of executions of a basic block in
11505 a function to align the basic block.
11506
11507 @item align-loop-iterations
11508
11509 A loop expected to iterate at least the selected number of iterations is
11510 aligned.
11511
11512 @item tracer-dynamic-coverage
11513 @itemx tracer-dynamic-coverage-feedback
11514
11515 This value is used to limit superblock formation once the given percentage of
11516 executed instructions is covered. This limits unnecessary code size
11517 expansion.
11518
11519 The @option{tracer-dynamic-coverage-feedback} parameter
11520 is used only when profile
11521 feedback is available. The real profiles (as opposed to statically estimated
11522 ones) are much less balanced allowing the threshold to be larger value.
11523
11524 @item tracer-max-code-growth
11525 Stop tail duplication once code growth has reached given percentage. This is
11526 a rather artificial limit, as most of the duplicates are eliminated later in
11527 cross jumping, so it may be set to much higher values than is the desired code
11528 growth.
11529
11530 @item tracer-min-branch-ratio
11531
11532 Stop reverse growth when the reverse probability of best edge is less than this
11533 threshold (in percent).
11534
11535 @item tracer-min-branch-probability
11536 @itemx tracer-min-branch-probability-feedback
11537
11538 Stop forward growth if the best edge has probability lower than this
11539 threshold.
11540
11541 Similarly to @option{tracer-dynamic-coverage} two parameters are
11542 provided. @option{tracer-min-branch-probability-feedback} is used for
11543 compilation with profile feedback and @option{tracer-min-branch-probability}
11544 compilation without. The value for compilation with profile feedback
11545 needs to be more conservative (higher) in order to make tracer
11546 effective.
11547
11548 @item stack-clash-protection-guard-size
11549 Specify the size of the operating system provided stack guard as
11550 2 raised to @var{num} bytes. Higher values may reduce the
11551 number of explicit probes, but a value larger than the operating system
11552 provided guard will leave code vulnerable to stack clash style attacks.
11553
11554 @item stack-clash-protection-probe-interval
11555 Stack clash protection involves probing stack space as it is allocated. This
11556 param controls the maximum distance between probes into the stack as 2 raised
11557 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11558 larger than the operating system provided guard will leave code vulnerable to
11559 stack clash style attacks.
11560
11561 @item max-cse-path-length
11562
11563 The maximum number of basic blocks on path that CSE considers.
11564
11565 @item max-cse-insns
11566 The maximum number of instructions CSE processes before flushing.
11567
11568 @item ggc-min-expand
11569
11570 GCC uses a garbage collector to manage its own memory allocation. This
11571 parameter specifies the minimum percentage by which the garbage
11572 collector's heap should be allowed to expand between collections.
11573 Tuning this may improve compilation speed; it has no effect on code
11574 generation.
11575
11576 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11577 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11578 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11579 GCC is not able to calculate RAM on a particular platform, the lower
11580 bound of 30% is used. Setting this parameter and
11581 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11582 every opportunity. This is extremely slow, but can be useful for
11583 debugging.
11584
11585 @item ggc-min-heapsize
11586
11587 Minimum size of the garbage collector's heap before it begins bothering
11588 to collect garbage. The first collection occurs after the heap expands
11589 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11590 tuning this may improve compilation speed, and has no effect on code
11591 generation.
11592
11593 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11594 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11595 with a lower bound of 4096 (four megabytes) and an upper bound of
11596 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11597 particular platform, the lower bound is used. Setting this parameter
11598 very large effectively disables garbage collection. Setting this
11599 parameter and @option{ggc-min-expand} to zero causes a full collection
11600 to occur at every opportunity.
11601
11602 @item max-reload-search-insns
11603 The maximum number of instruction reload should look backward for equivalent
11604 register. Increasing values mean more aggressive optimization, making the
11605 compilation time increase with probably slightly better performance.
11606
11607 @item max-cselib-memory-locations
11608 The maximum number of memory locations cselib should take into account.
11609 Increasing values mean more aggressive optimization, making the compilation time
11610 increase with probably slightly better performance.
11611
11612 @item max-sched-ready-insns
11613 The maximum number of instructions ready to be issued the scheduler should
11614 consider at any given time during the first scheduling pass. Increasing
11615 values mean more thorough searches, making the compilation time increase
11616 with probably little benefit.
11617
11618 @item max-sched-region-blocks
11619 The maximum number of blocks in a region to be considered for
11620 interblock scheduling.
11621
11622 @item max-pipeline-region-blocks
11623 The maximum number of blocks in a region to be considered for
11624 pipelining in the selective scheduler.
11625
11626 @item max-sched-region-insns
11627 The maximum number of insns in a region to be considered for
11628 interblock scheduling.
11629
11630 @item max-pipeline-region-insns
11631 The maximum number of insns in a region to be considered for
11632 pipelining in the selective scheduler.
11633
11634 @item min-spec-prob
11635 The minimum probability (in percents) of reaching a source block
11636 for interblock speculative scheduling.
11637
11638 @item max-sched-extend-regions-iters
11639 The maximum number of iterations through CFG to extend regions.
11640 A value of 0 disables region extensions.
11641
11642 @item max-sched-insn-conflict-delay
11643 The maximum conflict delay for an insn to be considered for speculative motion.
11644
11645 @item sched-spec-prob-cutoff
11646 The minimal probability of speculation success (in percents), so that
11647 speculative insns are scheduled.
11648
11649 @item sched-state-edge-prob-cutoff
11650 The minimum probability an edge must have for the scheduler to save its
11651 state across it.
11652
11653 @item sched-mem-true-dep-cost
11654 Minimal distance (in CPU cycles) between store and load targeting same
11655 memory locations.
11656
11657 @item selsched-max-lookahead
11658 The maximum size of the lookahead window of selective scheduling. It is a
11659 depth of search for available instructions.
11660
11661 @item selsched-max-sched-times
11662 The maximum number of times that an instruction is scheduled during
11663 selective scheduling. This is the limit on the number of iterations
11664 through which the instruction may be pipelined.
11665
11666 @item selsched-insns-to-rename
11667 The maximum number of best instructions in the ready list that are considered
11668 for renaming in the selective scheduler.
11669
11670 @item sms-min-sc
11671 The minimum value of stage count that swing modulo scheduler
11672 generates.
11673
11674 @item max-last-value-rtl
11675 The maximum size measured as number of RTLs that can be recorded in an expression
11676 in combiner for a pseudo register as last known value of that register.
11677
11678 @item max-combine-insns
11679 The maximum number of instructions the RTL combiner tries to combine.
11680
11681 @item integer-share-limit
11682 Small integer constants can use a shared data structure, reducing the
11683 compiler's memory usage and increasing its speed. This sets the maximum
11684 value of a shared integer constant.
11685
11686 @item ssp-buffer-size
11687 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11688 protection when @option{-fstack-protection} is used.
11689
11690 @item min-size-for-stack-sharing
11691 The minimum size of variables taking part in stack slot sharing when not
11692 optimizing.
11693
11694 @item max-jump-thread-duplication-stmts
11695 Maximum number of statements allowed in a block that needs to be
11696 duplicated when threading jumps.
11697
11698 @item max-fields-for-field-sensitive
11699 Maximum number of fields in a structure treated in
11700 a field sensitive manner during pointer analysis.
11701
11702 @item prefetch-latency
11703 Estimate on average number of instructions that are executed before
11704 prefetch finishes. The distance prefetched ahead is proportional
11705 to this constant. Increasing this number may also lead to less
11706 streams being prefetched (see @option{simultaneous-prefetches}).
11707
11708 @item simultaneous-prefetches
11709 Maximum number of prefetches that can run at the same time.
11710
11711 @item l1-cache-line-size
11712 The size of cache line in L1 data cache, in bytes.
11713
11714 @item l1-cache-size
11715 The size of L1 data cache, in kilobytes.
11716
11717 @item l2-cache-size
11718 The size of L2 data cache, in kilobytes.
11719
11720 @item prefetch-dynamic-strides
11721 Whether the loop array prefetch pass should issue software prefetch hints
11722 for strides that are non-constant. In some cases this may be
11723 beneficial, though the fact the stride is non-constant may make it
11724 hard to predict when there is clear benefit to issuing these hints.
11725
11726 Set to 1 if the prefetch hints should be issued for non-constant
11727 strides. Set to 0 if prefetch hints should be issued only for strides that
11728 are known to be constant and below @option{prefetch-minimum-stride}.
11729
11730 @item prefetch-minimum-stride
11731 Minimum constant stride, in bytes, to start using prefetch hints for. If
11732 the stride is less than this threshold, prefetch hints will not be issued.
11733
11734 This setting is useful for processors that have hardware prefetchers, in
11735 which case there may be conflicts between the hardware prefetchers and
11736 the software prefetchers. If the hardware prefetchers have a maximum
11737 stride they can handle, it should be used here to improve the use of
11738 software prefetchers.
11739
11740 A value of -1 means we don't have a threshold and therefore
11741 prefetch hints can be issued for any constant stride.
11742
11743 This setting is only useful for strides that are known and constant.
11744
11745 @item loop-interchange-max-num-stmts
11746 The maximum number of stmts in a loop to be interchanged.
11747
11748 @item loop-interchange-stride-ratio
11749 The minimum ratio between stride of two loops for interchange to be profitable.
11750
11751 @item min-insn-to-prefetch-ratio
11752 The minimum ratio between the number of instructions and the
11753 number of prefetches to enable prefetching in a loop.
11754
11755 @item prefetch-min-insn-to-mem-ratio
11756 The minimum ratio between the number of instructions and the
11757 number of memory references to enable prefetching in a loop.
11758
11759 @item use-canonical-types
11760 Whether the compiler should use the ``canonical'' type system.
11761 Should always be 1, which uses a more efficient internal
11762 mechanism for comparing types in C++ and Objective-C++. However, if
11763 bugs in the canonical type system are causing compilation failures,
11764 set this value to 0 to disable canonical types.
11765
11766 @item switch-conversion-max-branch-ratio
11767 Switch initialization conversion refuses to create arrays that are
11768 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11769 branches in the switch.
11770
11771 @item max-partial-antic-length
11772 Maximum length of the partial antic set computed during the tree
11773 partial redundancy elimination optimization (@option{-ftree-pre}) when
11774 optimizing at @option{-O3} and above. For some sorts of source code
11775 the enhanced partial redundancy elimination optimization can run away,
11776 consuming all of the memory available on the host machine. This
11777 parameter sets a limit on the length of the sets that are computed,
11778 which prevents the runaway behavior. Setting a value of 0 for
11779 this parameter allows an unlimited set length.
11780
11781 @item rpo-vn-max-loop-depth
11782 Maximum loop depth that is value-numbered optimistically.
11783 When the limit hits the innermost
11784 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11785 loop nest are value-numbered optimistically and the remaining ones not.
11786
11787 @item sccvn-max-alias-queries-per-access
11788 Maximum number of alias-oracle queries we perform when looking for
11789 redundancies for loads and stores. If this limit is hit the search
11790 is aborted and the load or store is not considered redundant. The
11791 number of queries is algorithmically limited to the number of
11792 stores on all paths from the load to the function entry.
11793
11794 @item ira-max-loops-num
11795 IRA uses regional register allocation by default. If a function
11796 contains more loops than the number given by this parameter, only at most
11797 the given number of the most frequently-executed loops form regions
11798 for regional register allocation.
11799
11800 @item ira-max-conflict-table-size
11801 Although IRA uses a sophisticated algorithm to compress the conflict
11802 table, the table can still require excessive amounts of memory for
11803 huge functions. If the conflict table for a function could be more
11804 than the size in MB given by this parameter, the register allocator
11805 instead uses a faster, simpler, and lower-quality
11806 algorithm that does not require building a pseudo-register conflict table.
11807
11808 @item ira-loop-reserved-regs
11809 IRA can be used to evaluate more accurate register pressure in loops
11810 for decisions to move loop invariants (see @option{-O3}). The number
11811 of available registers reserved for some other purposes is given
11812 by this parameter. Default of the parameter
11813 is the best found from numerous experiments.
11814
11815 @item lra-inheritance-ebb-probability-cutoff
11816 LRA tries to reuse values reloaded in registers in subsequent insns.
11817 This optimization is called inheritance. EBB is used as a region to
11818 do this optimization. The parameter defines a minimal fall-through
11819 edge probability in percentage used to add BB to inheritance EBB in
11820 LRA. The default value was chosen
11821 from numerous runs of SPEC2000 on x86-64.
11822
11823 @item loop-invariant-max-bbs-in-loop
11824 Loop invariant motion can be very expensive, both in compilation time and
11825 in amount of needed compile-time memory, with very large loops. Loops
11826 with more basic blocks than this parameter won't have loop invariant
11827 motion optimization performed on them.
11828
11829 @item loop-max-datarefs-for-datadeps
11830 Building data dependencies is expensive for very large loops. This
11831 parameter limits the number of data references in loops that are
11832 considered for data dependence analysis. These large loops are no
11833 handled by the optimizations using loop data dependencies.
11834
11835 @item max-vartrack-size
11836 Sets a maximum number of hash table slots to use during variable
11837 tracking dataflow analysis of any function. If this limit is exceeded
11838 with variable tracking at assignments enabled, analysis for that
11839 function is retried without it, after removing all debug insns from
11840 the function. If the limit is exceeded even without debug insns, var
11841 tracking analysis is completely disabled for the function. Setting
11842 the parameter to zero makes it unlimited.
11843
11844 @item max-vartrack-expr-depth
11845 Sets a maximum number of recursion levels when attempting to map
11846 variable names or debug temporaries to value expressions. This trades
11847 compilation time for more complete debug information. If this is set too
11848 low, value expressions that are available and could be represented in
11849 debug information may end up not being used; setting this higher may
11850 enable the compiler to find more complex debug expressions, but compile
11851 time and memory use may grow.
11852
11853 @item max-debug-marker-count
11854 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11855 markers) to avoid complexity explosion at inlining or expanding to RTL.
11856 If a function has more such gimple stmts than the set limit, such stmts
11857 will be dropped from the inlined copy of a function, and from its RTL
11858 expansion.
11859
11860 @item min-nondebug-insn-uid
11861 Use uids starting at this parameter for nondebug insns. The range below
11862 the parameter is reserved exclusively for debug insns created by
11863 @option{-fvar-tracking-assignments}, but debug insns may get
11864 (non-overlapping) uids above it if the reserved range is exhausted.
11865
11866 @item ipa-sra-ptr-growth-factor
11867 IPA-SRA replaces a pointer to an aggregate with one or more new
11868 parameters only when their cumulative size is less or equal to
11869 @option{ipa-sra-ptr-growth-factor} times the size of the original
11870 pointer parameter.
11871
11872 @item sra-max-scalarization-size-Ospeed
11873 @itemx sra-max-scalarization-size-Osize
11874 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11875 replace scalar parts of aggregates with uses of independent scalar
11876 variables. These parameters control the maximum size, in storage units,
11877 of aggregate which is considered for replacement when compiling for
11878 speed
11879 (@option{sra-max-scalarization-size-Ospeed}) or size
11880 (@option{sra-max-scalarization-size-Osize}) respectively.
11881
11882 @item tm-max-aggregate-size
11883 When making copies of thread-local variables in a transaction, this
11884 parameter specifies the size in bytes after which variables are
11885 saved with the logging functions as opposed to save/restore code
11886 sequence pairs. This option only applies when using
11887 @option{-fgnu-tm}.
11888
11889 @item graphite-max-nb-scop-params
11890 To avoid exponential effects in the Graphite loop transforms, the
11891 number of parameters in a Static Control Part (SCoP) is bounded.
11892 A value of zero can be used to lift
11893 the bound. A variable whose value is unknown at compilation time and
11894 defined outside a SCoP is a parameter of the SCoP.
11895
11896 @item loop-block-tile-size
11897 Loop blocking or strip mining transforms, enabled with
11898 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11899 loop in the loop nest by a given number of iterations. The strip
11900 length can be changed using the @option{loop-block-tile-size}
11901 parameter.
11902
11903 @item ipa-cp-value-list-size
11904 IPA-CP attempts to track all possible values and types passed to a function's
11905 parameter in order to propagate them and perform devirtualization.
11906 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11907 stores per one formal parameter of a function.
11908
11909 @item ipa-cp-eval-threshold
11910 IPA-CP calculates its own score of cloning profitability heuristics
11911 and performs those cloning opportunities with scores that exceed
11912 @option{ipa-cp-eval-threshold}.
11913
11914 @item ipa-cp-recursion-penalty
11915 Percentage penalty the recursive functions will receive when they
11916 are evaluated for cloning.
11917
11918 @item ipa-cp-single-call-penalty
11919 Percentage penalty functions containing a single call to another
11920 function will receive when they are evaluated for cloning.
11921
11922 @item ipa-max-agg-items
11923 IPA-CP is also capable to propagate a number of scalar values passed
11924 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11925 number of such values per one parameter.
11926
11927 @item ipa-cp-loop-hint-bonus
11928 When IPA-CP determines that a cloning candidate would make the number
11929 of iterations of a loop known, it adds a bonus of
11930 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11931 the candidate.
11932
11933 @item ipa-max-aa-steps
11934 During its analysis of function bodies, IPA-CP employs alias analysis
11935 in order to track values pointed to by function parameters. In order
11936 not spend too much time analyzing huge functions, it gives up and
11937 consider all memory clobbered after examining
11938 @option{ipa-max-aa-steps} statements modifying memory.
11939
11940 @item ipa-max-switch-predicate-bounds
11941 Maximal number of boundary endpoints of case ranges of switch statement.
11942 For switch exceeding this limit, IPA-CP will not construct cloning cost
11943 predicate, which is used to estimate cloning benefit, for default case
11944 of the switch statement.
11945
11946 @item lto-partitions
11947 Specify desired number of partitions produced during WHOPR compilation.
11948 The number of partitions should exceed the number of CPUs used for compilation.
11949
11950 @item lto-min-partition
11951 Size of minimal partition for WHOPR (in estimated instructions).
11952 This prevents expenses of splitting very small programs into too many
11953 partitions.
11954
11955 @item lto-max-partition
11956 Size of max partition for WHOPR (in estimated instructions).
11957 to provide an upper bound for individual size of partition.
11958 Meant to be used only with balanced partitioning.
11959
11960 @item lto-max-streaming-parallelism
11961 Maximal number of parallel processes used for LTO streaming.
11962
11963 @item cxx-max-namespaces-for-diagnostic-help
11964 The maximum number of namespaces to consult for suggestions when C++
11965 name lookup fails for an identifier.
11966
11967 @item sink-frequency-threshold
11968 The maximum relative execution frequency (in percents) of the target block
11969 relative to a statement's original block to allow statement sinking of a
11970 statement. Larger numbers result in more aggressive statement sinking.
11971 A small positive adjustment is applied for
11972 statements with memory operands as those are even more profitable so sink.
11973
11974 @item max-stores-to-sink
11975 The maximum number of conditional store pairs that can be sunk. Set to 0
11976 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11977 (@option{-ftree-loop-if-convert}) is disabled.
11978
11979 @item allow-store-data-races
11980 Allow optimizers to introduce new data races on stores.
11981 Set to 1 to allow, otherwise to 0.
11982
11983 @item case-values-threshold
11984 The smallest number of different values for which it is best to use a
11985 jump-table instead of a tree of conditional branches. If the value is
11986 0, use the default for the machine.
11987
11988 @item jump-table-max-growth-ratio-for-size
11989 The maximum code size growth ratio when expanding
11990 into a jump table (in percent). The parameter is used when
11991 optimizing for size.
11992
11993 @item jump-table-max-growth-ratio-for-speed
11994 The maximum code size growth ratio when expanding
11995 into a jump table (in percent). The parameter is used when
11996 optimizing for speed.
11997
11998 @item tree-reassoc-width
11999 Set the maximum number of instructions executed in parallel in
12000 reassociated tree. This parameter overrides target dependent
12001 heuristics used by default if has non zero value.
12002
12003 @item sched-pressure-algorithm
12004 Choose between the two available implementations of
12005 @option{-fsched-pressure}. Algorithm 1 is the original implementation
12006 and is the more likely to prevent instructions from being reordered.
12007 Algorithm 2 was designed to be a compromise between the relatively
12008 conservative approach taken by algorithm 1 and the rather aggressive
12009 approach taken by the default scheduler. It relies more heavily on
12010 having a regular register file and accurate register pressure classes.
12011 See @file{haifa-sched.c} in the GCC sources for more details.
12012
12013 The default choice depends on the target.
12014
12015 @item max-slsr-cand-scan
12016 Set the maximum number of existing candidates that are considered when
12017 seeking a basis for a new straight-line strength reduction candidate.
12018
12019 @item asan-globals
12020 Enable buffer overflow detection for global objects. This kind
12021 of protection is enabled by default if you are using
12022 @option{-fsanitize=address} option.
12023 To disable global objects protection use @option{--param asan-globals=0}.
12024
12025 @item asan-stack
12026 Enable buffer overflow detection for stack objects. This kind of
12027 protection is enabled by default when using @option{-fsanitize=address}.
12028 To disable stack protection use @option{--param asan-stack=0} option.
12029
12030 @item asan-instrument-reads
12031 Enable buffer overflow detection for memory reads. This kind of
12032 protection is enabled by default when using @option{-fsanitize=address}.
12033 To disable memory reads protection use
12034 @option{--param asan-instrument-reads=0}.
12035
12036 @item asan-instrument-writes
12037 Enable buffer overflow detection for memory writes. This kind of
12038 protection is enabled by default when using @option{-fsanitize=address}.
12039 To disable memory writes protection use
12040 @option{--param asan-instrument-writes=0} option.
12041
12042 @item asan-memintrin
12043 Enable detection for built-in functions. This kind of protection
12044 is enabled by default when using @option{-fsanitize=address}.
12045 To disable built-in functions protection use
12046 @option{--param asan-memintrin=0}.
12047
12048 @item asan-use-after-return
12049 Enable detection of use-after-return. This kind of protection
12050 is enabled by default when using the @option{-fsanitize=address} option.
12051 To disable it use @option{--param asan-use-after-return=0}.
12052
12053 Note: By default the check is disabled at run time. To enable it,
12054 add @code{detect_stack_use_after_return=1} to the environment variable
12055 @env{ASAN_OPTIONS}.
12056
12057 @item asan-instrumentation-with-call-threshold
12058 If number of memory accesses in function being instrumented
12059 is greater or equal to this number, use callbacks instead of inline checks.
12060 E.g. to disable inline code use
12061 @option{--param asan-instrumentation-with-call-threshold=0}.
12062
12063 @item use-after-scope-direct-emission-threshold
12064 If the size of a local variable in bytes is smaller or equal to this
12065 number, directly poison (or unpoison) shadow memory instead of using
12066 run-time callbacks.
12067
12068 @item max-fsm-thread-path-insns
12069 Maximum number of instructions to copy when duplicating blocks on a
12070 finite state automaton jump thread path.
12071
12072 @item max-fsm-thread-length
12073 Maximum number of basic blocks on a finite state automaton jump thread
12074 path.
12075
12076 @item max-fsm-thread-paths
12077 Maximum number of new jump thread paths to create for a finite state
12078 automaton.
12079
12080 @item parloops-chunk-size
12081 Chunk size of omp schedule for loops parallelized by parloops.
12082
12083 @item parloops-schedule
12084 Schedule type of omp schedule for loops parallelized by parloops (static,
12085 dynamic, guided, auto, runtime).
12086
12087 @item parloops-min-per-thread
12088 The minimum number of iterations per thread of an innermost parallelized
12089 loop for which the parallelized variant is preferred over the single threaded
12090 one. Note that for a parallelized loop nest the
12091 minimum number of iterations of the outermost loop per thread is two.
12092
12093 @item max-ssa-name-query-depth
12094 Maximum depth of recursion when querying properties of SSA names in things
12095 like fold routines. One level of recursion corresponds to following a
12096 use-def chain.
12097
12098 @item hsa-gen-debug-stores
12099 Enable emission of special debug stores within HSA kernels which are
12100 then read and reported by libgomp plugin. Generation of these stores
12101 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12102 enable it.
12103
12104 @item max-speculative-devirt-maydefs
12105 The maximum number of may-defs we analyze when looking for a must-def
12106 specifying the dynamic type of an object that invokes a virtual call
12107 we may be able to devirtualize speculatively.
12108
12109 @item max-vrp-switch-assertions
12110 The maximum number of assertions to add along the default edge of a switch
12111 statement during VRP.
12112
12113 @item unroll-jam-min-percent
12114 The minimum percentage of memory references that must be optimized
12115 away for the unroll-and-jam transformation to be considered profitable.
12116
12117 @item unroll-jam-max-unroll
12118 The maximum number of times the outer loop should be unrolled by
12119 the unroll-and-jam transformation.
12120
12121 @item max-rtl-if-conversion-unpredictable-cost
12122 Maximum permissible cost for the sequence that would be generated
12123 by the RTL if-conversion pass for a branch that is considered unpredictable.
12124
12125 @item max-variable-expansions-in-unroller
12126 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12127 of times that an individual variable will be expanded during loop unrolling.
12128
12129 @item tracer-min-branch-probability-feedback
12130 Stop forward growth if the probability of best edge is less than
12131 this threshold (in percent). Used when profile feedback is available.
12132
12133 @item partial-inlining-entry-probability
12134 Maximum probability of the entry BB of split region
12135 (in percent relative to entry BB of the function)
12136 to make partial inlining happen.
12137
12138 @item max-tracked-strlens
12139 Maximum number of strings for which strlen optimization pass will
12140 track string lengths.
12141
12142 @item gcse-after-reload-partial-fraction
12143 The threshold ratio for performing partial redundancy
12144 elimination after reload.
12145
12146 @item gcse-after-reload-critical-fraction
12147 The threshold ratio of critical edges execution count that
12148 permit performing redundancy elimination after reload.
12149
12150 @item max-loop-header-insns
12151 The maximum number of insns in loop header duplicated
12152 by the copy loop headers pass.
12153
12154 @item vect-epilogues-nomask
12155 Enable loop epilogue vectorization using smaller vector size.
12156
12157 @item slp-max-insns-in-bb
12158 Maximum number of instructions in basic block to be
12159 considered for SLP vectorization.
12160
12161 @item avoid-fma-max-bits
12162 Maximum number of bits for which we avoid creating FMAs.
12163
12164 @item sms-loop-average-count-threshold
12165 A threshold on the average loop count considered by the swing modulo scheduler.
12166
12167 @item sms-dfa-history
12168 The number of cycles the swing modulo scheduler considers when checking
12169 conflicts using DFA.
12170
12171 @item max-inline-insns-recursive-auto
12172 The maximum number of instructions non-inline function
12173 can grow to via recursive inlining.
12174
12175 @item graphite-allow-codegen-errors
12176 Whether codegen errors should be ICEs when @option{-fchecking}.
12177
12178 @item sms-max-ii-factor
12179 A factor for tuning the upper bound that swing modulo scheduler
12180 uses for scheduling a loop.
12181
12182 @item lra-max-considered-reload-pseudos
12183 The max number of reload pseudos which are considered during
12184 spilling a non-reload pseudo.
12185
12186 @item max-pow-sqrt-depth
12187 Maximum depth of sqrt chains to use when synthesizing exponentiation
12188 by a real constant.
12189
12190 @item max-dse-active-local-stores
12191 Maximum number of active local stores in RTL dead store elimination.
12192
12193 @item asan-instrument-allocas
12194 Enable asan allocas/VLAs protection.
12195
12196 @item max-iterations-computation-cost
12197 Bound on the cost of an expression to compute the number of iterations.
12198
12199 @item max-isl-operations
12200 Maximum number of isl operations, 0 means unlimited.
12201
12202 @item graphite-max-arrays-per-scop
12203 Maximum number of arrays per scop.
12204
12205 @item max-vartrack-reverse-op-size
12206 Max. size of loc list for which reverse ops should be added.
12207
12208 @item tracer-dynamic-coverage-feedback
12209 The percentage of function, weighted by execution frequency,
12210 that must be covered by trace formation.
12211 Used when profile feedback is available.
12212
12213 @item max-inline-recursive-depth-auto
12214 The maximum depth of recursive inlining for non-inline functions.
12215
12216 @item fsm-scale-path-stmts
12217 Scale factor to apply to the number of statements in a threading path
12218 when comparing to the number of (scaled) blocks.
12219
12220 @item fsm-maximum-phi-arguments
12221 Maximum number of arguments a PHI may have before the FSM threader
12222 will not try to thread through its block.
12223
12224 @item uninit-control-dep-attempts
12225 Maximum number of nested calls to search for control dependencies
12226 during uninitialized variable analysis.
12227
12228 @item max-once-peeled-insns
12229 The maximum number of insns of a peeled loop that rolls only once.
12230
12231 @item sra-max-scalarization-size-Osize
12232 Maximum size, in storage units, of an aggregate
12233 which should be considered for scalarization when compiling for size.
12234
12235 @item fsm-scale-path-blocks
12236 Scale factor to apply to the number of blocks in a threading path
12237 when comparing to the number of (scaled) statements.
12238
12239 @item sched-autopref-queue-depth
12240 Hardware autoprefetcher scheduler model control flag.
12241 Number of lookahead cycles the model looks into; at '
12242 ' only enable instruction sorting heuristic.
12243
12244 @item loop-versioning-max-inner-insns
12245 The maximum number of instructions that an inner loop can have
12246 before the loop versioning pass considers it too big to copy.
12247
12248 @item loop-versioning-max-outer-insns
12249 The maximum number of instructions that an outer loop can have
12250 before the loop versioning pass considers it too big to copy,
12251 discounting any instructions in inner loops that directly benefit
12252 from versioning.
12253
12254 @item ssa-name-def-chain-limit
12255 The maximum number of SSA_NAME assignments to follow in determining
12256 a property of a variable such as its value. This limits the number
12257 of iterations or recursive calls GCC performs when optimizing certain
12258 statements or when determining their validity prior to issuing
12259 diagnostics.
12260
12261 @end table
12262 @end table
12263
12264 @node Instrumentation Options
12265 @section Program Instrumentation Options
12266 @cindex instrumentation options
12267 @cindex program instrumentation options
12268 @cindex run-time error checking options
12269 @cindex profiling options
12270 @cindex options, program instrumentation
12271 @cindex options, run-time error checking
12272 @cindex options, profiling
12273
12274 GCC supports a number of command-line options that control adding
12275 run-time instrumentation to the code it normally generates.
12276 For example, one purpose of instrumentation is collect profiling
12277 statistics for use in finding program hot spots, code coverage
12278 analysis, or profile-guided optimizations.
12279 Another class of program instrumentation is adding run-time checking
12280 to detect programming errors like invalid pointer
12281 dereferences or out-of-bounds array accesses, as well as deliberately
12282 hostile attacks such as stack smashing or C++ vtable hijacking.
12283 There is also a general hook which can be used to implement other
12284 forms of tracing or function-level instrumentation for debug or
12285 program analysis purposes.
12286
12287 @table @gcctabopt
12288 @cindex @command{prof}
12289 @cindex @command{gprof}
12290 @item -p
12291 @itemx -pg
12292 @opindex p
12293 @opindex pg
12294 Generate extra code to write profile information suitable for the
12295 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12296 (for @option{-pg}). You must use this option when compiling
12297 the source files you want data about, and you must also use it when
12298 linking.
12299
12300 You can use the function attribute @code{no_instrument_function} to
12301 suppress profiling of individual functions when compiling with these options.
12302 @xref{Common Function Attributes}.
12303
12304 @item -fprofile-arcs
12305 @opindex fprofile-arcs
12306 Add code so that program flow @dfn{arcs} are instrumented. During
12307 execution the program records how many times each branch and call is
12308 executed and how many times it is taken or returns. On targets that support
12309 constructors with priority support, profiling properly handles constructors,
12310 destructors and C++ constructors (and destructors) of classes which are used
12311 as a type of a global variable.
12312
12313 When the compiled
12314 program exits it saves this data to a file called
12315 @file{@var{auxname}.gcda} for each source file. The data may be used for
12316 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12317 test coverage analysis (@option{-ftest-coverage}). Each object file's
12318 @var{auxname} is generated from the name of the output file, if
12319 explicitly specified and it is not the final executable, otherwise it is
12320 the basename of the source file. In both cases any suffix is removed
12321 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12322 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12323 @xref{Cross-profiling}.
12324
12325 @cindex @command{gcov}
12326 @item --coverage
12327 @opindex coverage
12328
12329 This option is used to compile and link code instrumented for coverage
12330 analysis. The option is a synonym for @option{-fprofile-arcs}
12331 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12332 linking). See the documentation for those options for more details.
12333
12334 @itemize
12335
12336 @item
12337 Compile the source files with @option{-fprofile-arcs} plus optimization
12338 and code generation options. For test coverage analysis, use the
12339 additional @option{-ftest-coverage} option. You do not need to profile
12340 every source file in a program.
12341
12342 @item
12343 Compile the source files additionally with @option{-fprofile-abs-path}
12344 to create absolute path names in the @file{.gcno} files. This allows
12345 @command{gcov} to find the correct sources in projects where compilations
12346 occur with different working directories.
12347
12348 @item
12349 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12350 (the latter implies the former).
12351
12352 @item
12353 Run the program on a representative workload to generate the arc profile
12354 information. This may be repeated any number of times. You can run
12355 concurrent instances of your program, and provided that the file system
12356 supports locking, the data files will be correctly updated. Unless
12357 a strict ISO C dialect option is in effect, @code{fork} calls are
12358 detected and correctly handled without double counting.
12359
12360 @item
12361 For profile-directed optimizations, compile the source files again with
12362 the same optimization and code generation options plus
12363 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12364 Control Optimization}).
12365
12366 @item
12367 For test coverage analysis, use @command{gcov} to produce human readable
12368 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12369 @command{gcov} documentation for further information.
12370
12371 @end itemize
12372
12373 With @option{-fprofile-arcs}, for each function of your program GCC
12374 creates a program flow graph, then finds a spanning tree for the graph.
12375 Only arcs that are not on the spanning tree have to be instrumented: the
12376 compiler adds code to count the number of times that these arcs are
12377 executed. When an arc is the only exit or only entrance to a block, the
12378 instrumentation code can be added to the block; otherwise, a new basic
12379 block must be created to hold the instrumentation code.
12380
12381 @need 2000
12382 @item -ftest-coverage
12383 @opindex ftest-coverage
12384 Produce a notes file that the @command{gcov} code-coverage utility
12385 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12386 show program coverage. Each source file's note file is called
12387 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12388 above for a description of @var{auxname} and instructions on how to
12389 generate test coverage data. Coverage data matches the source files
12390 more closely if you do not optimize.
12391
12392 @item -fprofile-abs-path
12393 @opindex fprofile-abs-path
12394 Automatically convert relative source file names to absolute path names
12395 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12396 sources in projects where compilations occur with different working
12397 directories.
12398
12399 @item -fprofile-dir=@var{path}
12400 @opindex fprofile-dir
12401
12402 Set the directory to search for the profile data files in to @var{path}.
12403 This option affects only the profile data generated by
12404 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12405 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12406 and its related options. Both absolute and relative paths can be used.
12407 By default, GCC uses the current directory as @var{path}, thus the
12408 profile data file appears in the same directory as the object file.
12409 In order to prevent the file name clashing, if the object file name is
12410 not an absolute path, we mangle the absolute path of the
12411 @file{@var{sourcename}.gcda} file and use it as the file name of a
12412 @file{.gcda} file. See similar option @option{-fprofile-note}.
12413
12414 When an executable is run in a massive parallel environment, it is recommended
12415 to save profile to different folders. That can be done with variables
12416 in @var{path} that are exported during run-time:
12417
12418 @table @gcctabopt
12419
12420 @item %p
12421 process ID.
12422
12423 @item %q@{VAR@}
12424 value of environment variable @var{VAR}
12425
12426 @end table
12427
12428 @item -fprofile-generate
12429 @itemx -fprofile-generate=@var{path}
12430 @opindex fprofile-generate
12431
12432 Enable options usually used for instrumenting application to produce
12433 profile useful for later recompilation with profile feedback based
12434 optimization. You must use @option{-fprofile-generate} both when
12435 compiling and when linking your program.
12436
12437 The following options are enabled:
12438 @option{-fprofile-arcs}, @option{-fprofile-values},
12439 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12440
12441 If @var{path} is specified, GCC looks at the @var{path} to find
12442 the profile feedback data files. See @option{-fprofile-dir}.
12443
12444 To optimize the program based on the collected profile information, use
12445 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12446
12447 @item -fprofile-note=@var{path}
12448 @opindex fprofile-note
12449
12450 If @var{path} is specified, GCC saves @file{.gcno} file into @var{path}
12451 location. If you combine the option with multiple source files,
12452 the @file{.gcno} file will be overwritten.
12453
12454 @item -fprofile-update=@var{method}
12455 @opindex fprofile-update
12456
12457 Alter the update method for an application instrumented for profile
12458 feedback based optimization. The @var{method} argument should be one of
12459 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12460 The first one is useful for single-threaded applications,
12461 while the second one prevents profile corruption by emitting thread-safe code.
12462
12463 @strong{Warning:} When an application does not properly join all threads
12464 (or creates an detached thread), a profile file can be still corrupted.
12465
12466 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12467 when supported by a target, or to @samp{single} otherwise. The GCC driver
12468 automatically selects @samp{prefer-atomic} when @option{-pthread}
12469 is present in the command line.
12470
12471 @item -fprofile-filter-files=@var{regex}
12472 @opindex fprofile-filter-files
12473
12474 Instrument only functions from files where names match
12475 any regular expression (separated by a semi-colon).
12476
12477 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12478 only @file{main.c} and all C files starting with 'module'.
12479
12480 @item -fprofile-exclude-files=@var{regex}
12481 @opindex fprofile-exclude-files
12482
12483 Instrument only functions from files where names do not match
12484 all the regular expressions (separated by a semi-colon).
12485
12486 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12487 of all files that are located in @file{/usr/} folder.
12488
12489 @item -fsanitize=address
12490 @opindex fsanitize=address
12491 Enable AddressSanitizer, a fast memory error detector.
12492 Memory access instructions are instrumented to detect
12493 out-of-bounds and use-after-free bugs.
12494 The option enables @option{-fsanitize-address-use-after-scope}.
12495 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12496 more details. The run-time behavior can be influenced using the
12497 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12498 the available options are shown at startup of the instrumented program. See
12499 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12500 for a list of supported options.
12501 The option cannot be combined with @option{-fsanitize=thread}.
12502
12503 @item -fsanitize=kernel-address
12504 @opindex fsanitize=kernel-address
12505 Enable AddressSanitizer for Linux kernel.
12506 See @uref{https://github.com/google/kasan/wiki} for more details.
12507
12508 @item -fsanitize=pointer-compare
12509 @opindex fsanitize=pointer-compare
12510 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12511 The option must be combined with either @option{-fsanitize=kernel-address} or
12512 @option{-fsanitize=address}
12513 The option cannot be combined with @option{-fsanitize=thread}.
12514 Note: By default the check is disabled at run time. To enable it,
12515 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12516 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12517 invalid operation only when both pointers are non-null.
12518
12519 @item -fsanitize=pointer-subtract
12520 @opindex fsanitize=pointer-subtract
12521 Instrument subtraction with pointer operands.
12522 The option must be combined with either @option{-fsanitize=kernel-address} or
12523 @option{-fsanitize=address}
12524 The option cannot be combined with @option{-fsanitize=thread}.
12525 Note: By default the check is disabled at run time. To enable it,
12526 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12527 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12528 invalid operation only when both pointers are non-null.
12529
12530 @item -fsanitize=thread
12531 @opindex fsanitize=thread
12532 Enable ThreadSanitizer, a fast data race detector.
12533 Memory access instructions are instrumented to detect
12534 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12535 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12536 environment variable; see
12537 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12538 supported options.
12539 The option cannot be combined with @option{-fsanitize=address},
12540 @option{-fsanitize=leak}.
12541
12542 Note that sanitized atomic builtins cannot throw exceptions when
12543 operating on invalid memory addresses with non-call exceptions
12544 (@option{-fnon-call-exceptions}).
12545
12546 @item -fsanitize=leak
12547 @opindex fsanitize=leak
12548 Enable LeakSanitizer, a memory leak detector.
12549 This option only matters for linking of executables and
12550 the executable is linked against a library that overrides @code{malloc}
12551 and other allocator functions. See
12552 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12553 details. The run-time behavior can be influenced using the
12554 @env{LSAN_OPTIONS} environment variable.
12555 The option cannot be combined with @option{-fsanitize=thread}.
12556
12557 @item -fsanitize=undefined
12558 @opindex fsanitize=undefined
12559 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12560 Various computations are instrumented to detect undefined behavior
12561 at runtime. Current suboptions are:
12562
12563 @table @gcctabopt
12564
12565 @item -fsanitize=shift
12566 @opindex fsanitize=shift
12567 This option enables checking that the result of a shift operation is
12568 not undefined. Note that what exactly is considered undefined differs
12569 slightly between C and C++, as well as between ISO C90 and C99, etc.
12570 This option has two suboptions, @option{-fsanitize=shift-base} and
12571 @option{-fsanitize=shift-exponent}.
12572
12573 @item -fsanitize=shift-exponent
12574 @opindex fsanitize=shift-exponent
12575 This option enables checking that the second argument of a shift operation
12576 is not negative and is smaller than the precision of the promoted first
12577 argument.
12578
12579 @item -fsanitize=shift-base
12580 @opindex fsanitize=shift-base
12581 If the second argument of a shift operation is within range, check that the
12582 result of a shift operation is not undefined. Note that what exactly is
12583 considered undefined differs slightly between C and C++, as well as between
12584 ISO C90 and C99, etc.
12585
12586 @item -fsanitize=integer-divide-by-zero
12587 @opindex fsanitize=integer-divide-by-zero
12588 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12589
12590 @item -fsanitize=unreachable
12591 @opindex fsanitize=unreachable
12592 With this option, the compiler turns the @code{__builtin_unreachable}
12593 call into a diagnostics message call instead. When reaching the
12594 @code{__builtin_unreachable} call, the behavior is undefined.
12595
12596 @item -fsanitize=vla-bound
12597 @opindex fsanitize=vla-bound
12598 This option instructs the compiler to check that the size of a variable
12599 length array is positive.
12600
12601 @item -fsanitize=null
12602 @opindex fsanitize=null
12603 This option enables pointer checking. Particularly, the application
12604 built with this option turned on will issue an error message when it
12605 tries to dereference a NULL pointer, or if a reference (possibly an
12606 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12607 on an object pointed by a NULL pointer.
12608
12609 @item -fsanitize=return
12610 @opindex fsanitize=return
12611 This option enables return statement checking. Programs
12612 built with this option turned on will issue an error message
12613 when the end of a non-void function is reached without actually
12614 returning a value. This option works in C++ only.
12615
12616 @item -fsanitize=signed-integer-overflow
12617 @opindex fsanitize=signed-integer-overflow
12618 This option enables signed integer overflow checking. We check that
12619 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12620 does not overflow in the signed arithmetics. Note, integer promotion
12621 rules must be taken into account. That is, the following is not an
12622 overflow:
12623 @smallexample
12624 signed char a = SCHAR_MAX;
12625 a++;
12626 @end smallexample
12627
12628 @item -fsanitize=bounds
12629 @opindex fsanitize=bounds
12630 This option enables instrumentation of array bounds. Various out of bounds
12631 accesses are detected. Flexible array members, flexible array member-like
12632 arrays, and initializers of variables with static storage are not instrumented.
12633
12634 @item -fsanitize=bounds-strict
12635 @opindex fsanitize=bounds-strict
12636 This option enables strict instrumentation of array bounds. Most out of bounds
12637 accesses are detected, including flexible array members and flexible array
12638 member-like arrays. Initializers of variables with static storage are not
12639 instrumented.
12640
12641 @item -fsanitize=alignment
12642 @opindex fsanitize=alignment
12643
12644 This option enables checking of alignment of pointers when they are
12645 dereferenced, or when a reference is bound to insufficiently aligned target,
12646 or when a method or constructor is invoked on insufficiently aligned object.
12647
12648 @item -fsanitize=object-size
12649 @opindex fsanitize=object-size
12650 This option enables instrumentation of memory references using the
12651 @code{__builtin_object_size} function. Various out of bounds pointer
12652 accesses are detected.
12653
12654 @item -fsanitize=float-divide-by-zero
12655 @opindex fsanitize=float-divide-by-zero
12656 Detect floating-point division by zero. Unlike other similar options,
12657 @option{-fsanitize=float-divide-by-zero} is not enabled by
12658 @option{-fsanitize=undefined}, since floating-point division by zero can
12659 be a legitimate way of obtaining infinities and NaNs.
12660
12661 @item -fsanitize=float-cast-overflow
12662 @opindex fsanitize=float-cast-overflow
12663 This option enables floating-point type to integer conversion checking.
12664 We check that the result of the conversion does not overflow.
12665 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12666 not enabled by @option{-fsanitize=undefined}.
12667 This option does not work well with @code{FE_INVALID} exceptions enabled.
12668
12669 @item -fsanitize=nonnull-attribute
12670 @opindex fsanitize=nonnull-attribute
12671
12672 This option enables instrumentation of calls, checking whether null values
12673 are not passed to arguments marked as requiring a non-null value by the
12674 @code{nonnull} function attribute.
12675
12676 @item -fsanitize=returns-nonnull-attribute
12677 @opindex fsanitize=returns-nonnull-attribute
12678
12679 This option enables instrumentation of return statements in functions
12680 marked with @code{returns_nonnull} function attribute, to detect returning
12681 of null values from such functions.
12682
12683 @item -fsanitize=bool
12684 @opindex fsanitize=bool
12685
12686 This option enables instrumentation of loads from bool. If a value other
12687 than 0/1 is loaded, a run-time error is issued.
12688
12689 @item -fsanitize=enum
12690 @opindex fsanitize=enum
12691
12692 This option enables instrumentation of loads from an enum type. If
12693 a value outside the range of values for the enum type is loaded,
12694 a run-time error is issued.
12695
12696 @item -fsanitize=vptr
12697 @opindex fsanitize=vptr
12698
12699 This option enables instrumentation of C++ member function calls, member
12700 accesses and some conversions between pointers to base and derived classes,
12701 to verify the referenced object has the correct dynamic type.
12702
12703 @item -fsanitize=pointer-overflow
12704 @opindex fsanitize=pointer-overflow
12705
12706 This option enables instrumentation of pointer arithmetics. If the pointer
12707 arithmetics overflows, a run-time error is issued.
12708
12709 @item -fsanitize=builtin
12710 @opindex fsanitize=builtin
12711
12712 This option enables instrumentation of arguments to selected builtin
12713 functions. If an invalid value is passed to such arguments, a run-time
12714 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12715 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12716 by this option.
12717
12718 @end table
12719
12720 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12721 @option{-fsanitize=undefined} gives a diagnostic message.
12722 This currently works only for the C family of languages.
12723
12724 @item -fno-sanitize=all
12725 @opindex fno-sanitize=all
12726
12727 This option disables all previously enabled sanitizers.
12728 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12729 together.
12730
12731 @item -fasan-shadow-offset=@var{number}
12732 @opindex fasan-shadow-offset
12733 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12734 It is useful for experimenting with different shadow memory layouts in
12735 Kernel AddressSanitizer.
12736
12737 @item -fsanitize-sections=@var{s1},@var{s2},...
12738 @opindex fsanitize-sections
12739 Sanitize global variables in selected user-defined sections. @var{si} may
12740 contain wildcards.
12741
12742 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12743 @opindex fsanitize-recover
12744 @opindex fno-sanitize-recover
12745 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12746 mentioned in comma-separated list of @var{opts}. Enabling this option
12747 for a sanitizer component causes it to attempt to continue
12748 running the program as if no error happened. This means multiple
12749 runtime errors can be reported in a single program run, and the exit
12750 code of the program may indicate success even when errors
12751 have been reported. The @option{-fno-sanitize-recover=} option
12752 can be used to alter
12753 this behavior: only the first detected error is reported
12754 and program then exits with a non-zero exit code.
12755
12756 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12757 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12758 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12759 @option{-fsanitize=bounds-strict},
12760 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12761 For these sanitizers error recovery is turned on by default,
12762 except @option{-fsanitize=address}, for which this feature is experimental.
12763 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12764 accepted, the former enables recovery for all sanitizers that support it,
12765 the latter disables recovery for all sanitizers that support it.
12766
12767 Even if a recovery mode is turned on the compiler side, it needs to be also
12768 enabled on the runtime library side, otherwise the failures are still fatal.
12769 The runtime library defaults to @code{halt_on_error=0} for
12770 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12771 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12772 setting the @code{halt_on_error} flag in the corresponding environment variable.
12773
12774 Syntax without an explicit @var{opts} parameter is deprecated. It is
12775 equivalent to specifying an @var{opts} list of:
12776
12777 @smallexample
12778 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12779 @end smallexample
12780
12781 @item -fsanitize-address-use-after-scope
12782 @opindex fsanitize-address-use-after-scope
12783 Enable sanitization of local variables to detect use-after-scope bugs.
12784 The option sets @option{-fstack-reuse} to @samp{none}.
12785
12786 @item -fsanitize-undefined-trap-on-error
12787 @opindex fsanitize-undefined-trap-on-error
12788 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12789 report undefined behavior using @code{__builtin_trap} rather than
12790 a @code{libubsan} library routine. The advantage of this is that the
12791 @code{libubsan} library is not needed and is not linked in, so this
12792 is usable even in freestanding environments.
12793
12794 @item -fsanitize-coverage=trace-pc
12795 @opindex fsanitize-coverage=trace-pc
12796 Enable coverage-guided fuzzing code instrumentation.
12797 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12798
12799 @item -fsanitize-coverage=trace-cmp
12800 @opindex fsanitize-coverage=trace-cmp
12801 Enable dataflow guided fuzzing code instrumentation.
12802 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12803 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12804 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12805 variable or @code{__sanitizer_cov_trace_const_cmp1},
12806 @code{__sanitizer_cov_trace_const_cmp2},
12807 @code{__sanitizer_cov_trace_const_cmp4} or
12808 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12809 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12810 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12811 @code{__sanitizer_cov_trace_switch} for switch statements.
12812
12813 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12814 @opindex fcf-protection
12815 Enable code instrumentation of control-flow transfers to increase
12816 program security by checking that target addresses of control-flow
12817 transfer instructions (such as indirect function call, function return,
12818 indirect jump) are valid. This prevents diverting the flow of control
12819 to an unexpected target. This is intended to protect against such
12820 threats as Return-oriented Programming (ROP), and similarly
12821 call/jmp-oriented programming (COP/JOP).
12822
12823 The value @code{branch} tells the compiler to implement checking of
12824 validity of control-flow transfer at the point of indirect branch
12825 instructions, i.e.@: call/jmp instructions. The value @code{return}
12826 implements checking of validity at the point of returning from a
12827 function. The value @code{full} is an alias for specifying both
12828 @code{branch} and @code{return}. The value @code{none} turns off
12829 instrumentation.
12830
12831 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12832 used. The first bit of @code{__CET__} is set to 1 for the value
12833 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12834 the @code{return}.
12835
12836 You can also use the @code{nocf_check} attribute to identify
12837 which functions and calls should be skipped from instrumentation
12838 (@pxref{Function Attributes}).
12839
12840 Currently the x86 GNU/Linux target provides an implementation based
12841 on Intel Control-flow Enforcement Technology (CET).
12842
12843 @item -fstack-protector
12844 @opindex fstack-protector
12845 Emit extra code to check for buffer overflows, such as stack smashing
12846 attacks. This is done by adding a guard variable to functions with
12847 vulnerable objects. This includes functions that call @code{alloca}, and
12848 functions with buffers larger than 8 bytes. The guards are initialized
12849 when a function is entered and then checked when the function exits.
12850 If a guard check fails, an error message is printed and the program exits.
12851
12852 @item -fstack-protector-all
12853 @opindex fstack-protector-all
12854 Like @option{-fstack-protector} except that all functions are protected.
12855
12856 @item -fstack-protector-strong
12857 @opindex fstack-protector-strong
12858 Like @option{-fstack-protector} but includes additional functions to
12859 be protected --- those that have local array definitions, or have
12860 references to local frame addresses.
12861
12862 @item -fstack-protector-explicit
12863 @opindex fstack-protector-explicit
12864 Like @option{-fstack-protector} but only protects those functions which
12865 have the @code{stack_protect} attribute.
12866
12867 @item -fstack-check
12868 @opindex fstack-check
12869 Generate code to verify that you do not go beyond the boundary of the
12870 stack. You should specify this flag if you are running in an
12871 environment with multiple threads, but you only rarely need to specify it in
12872 a single-threaded environment since stack overflow is automatically
12873 detected on nearly all systems if there is only one stack.
12874
12875 Note that this switch does not actually cause checking to be done; the
12876 operating system or the language runtime must do that. The switch causes
12877 generation of code to ensure that they see the stack being extended.
12878
12879 You can additionally specify a string parameter: @samp{no} means no
12880 checking, @samp{generic} means force the use of old-style checking,
12881 @samp{specific} means use the best checking method and is equivalent
12882 to bare @option{-fstack-check}.
12883
12884 Old-style checking is a generic mechanism that requires no specific
12885 target support in the compiler but comes with the following drawbacks:
12886
12887 @enumerate
12888 @item
12889 Modified allocation strategy for large objects: they are always
12890 allocated dynamically if their size exceeds a fixed threshold. Note this
12891 may change the semantics of some code.
12892
12893 @item
12894 Fixed limit on the size of the static frame of functions: when it is
12895 topped by a particular function, stack checking is not reliable and
12896 a warning is issued by the compiler.
12897
12898 @item
12899 Inefficiency: because of both the modified allocation strategy and the
12900 generic implementation, code performance is hampered.
12901 @end enumerate
12902
12903 Note that old-style stack checking is also the fallback method for
12904 @samp{specific} if no target support has been added in the compiler.
12905
12906 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12907 and stack overflows. @samp{specific} is an excellent choice when compiling
12908 Ada code. It is not generally sufficient to protect against stack-clash
12909 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12910
12911 @item -fstack-clash-protection
12912 @opindex fstack-clash-protection
12913 Generate code to prevent stack clash style attacks. When this option is
12914 enabled, the compiler will only allocate one page of stack space at a time
12915 and each page is accessed immediately after allocation. Thus, it prevents
12916 allocations from jumping over any stack guard page provided by the
12917 operating system.
12918
12919 Most targets do not fully support stack clash protection. However, on
12920 those targets @option{-fstack-clash-protection} will protect dynamic stack
12921 allocations. @option{-fstack-clash-protection} may also provide limited
12922 protection for static stack allocations if the target supports
12923 @option{-fstack-check=specific}.
12924
12925 @item -fstack-limit-register=@var{reg}
12926 @itemx -fstack-limit-symbol=@var{sym}
12927 @itemx -fno-stack-limit
12928 @opindex fstack-limit-register
12929 @opindex fstack-limit-symbol
12930 @opindex fno-stack-limit
12931 Generate code to ensure that the stack does not grow beyond a certain value,
12932 either the value of a register or the address of a symbol. If a larger
12933 stack is required, a signal is raised at run time. For most targets,
12934 the signal is raised before the stack overruns the boundary, so
12935 it is possible to catch the signal without taking special precautions.
12936
12937 For instance, if the stack starts at absolute address @samp{0x80000000}
12938 and grows downwards, you can use the flags
12939 @option{-fstack-limit-symbol=__stack_limit} and
12940 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12941 of 128KB@. Note that this may only work with the GNU linker.
12942
12943 You can locally override stack limit checking by using the
12944 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12945
12946 @item -fsplit-stack
12947 @opindex fsplit-stack
12948 Generate code to automatically split the stack before it overflows.
12949 The resulting program has a discontiguous stack which can only
12950 overflow if the program is unable to allocate any more memory. This
12951 is most useful when running threaded programs, as it is no longer
12952 necessary to calculate a good stack size to use for each thread. This
12953 is currently only implemented for the x86 targets running
12954 GNU/Linux.
12955
12956 When code compiled with @option{-fsplit-stack} calls code compiled
12957 without @option{-fsplit-stack}, there may not be much stack space
12958 available for the latter code to run. If compiling all code,
12959 including library code, with @option{-fsplit-stack} is not an option,
12960 then the linker can fix up these calls so that the code compiled
12961 without @option{-fsplit-stack} always has a large stack. Support for
12962 this is implemented in the gold linker in GNU binutils release 2.21
12963 and later.
12964
12965 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12966 @opindex fvtable-verify
12967 This option is only available when compiling C++ code.
12968 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12969 feature that verifies at run time, for every virtual call, that
12970 the vtable pointer through which the call is made is valid for the type of
12971 the object, and has not been corrupted or overwritten. If an invalid vtable
12972 pointer is detected at run time, an error is reported and execution of the
12973 program is immediately halted.
12974
12975 This option causes run-time data structures to be built at program startup,
12976 which are used for verifying the vtable pointers.
12977 The options @samp{std} and @samp{preinit}
12978 control the timing of when these data structures are built. In both cases the
12979 data structures are built before execution reaches @code{main}. Using
12980 @option{-fvtable-verify=std} causes the data structures to be built after
12981 shared libraries have been loaded and initialized.
12982 @option{-fvtable-verify=preinit} causes them to be built before shared
12983 libraries have been loaded and initialized.
12984
12985 If this option appears multiple times in the command line with different
12986 values specified, @samp{none} takes highest priority over both @samp{std} and
12987 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12988
12989 @item -fvtv-debug
12990 @opindex fvtv-debug
12991 When used in conjunction with @option{-fvtable-verify=std} or
12992 @option{-fvtable-verify=preinit}, causes debug versions of the
12993 runtime functions for the vtable verification feature to be called.
12994 This flag also causes the compiler to log information about which
12995 vtable pointers it finds for each class.
12996 This information is written to a file named @file{vtv_set_ptr_data.log}
12997 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12998 if that is defined or the current working directory otherwise.
12999
13000 Note: This feature @emph{appends} data to the log file. If you want a fresh log
13001 file, be sure to delete any existing one.
13002
13003 @item -fvtv-counts
13004 @opindex fvtv-counts
13005 This is a debugging flag. When used in conjunction with
13006 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
13007 causes the compiler to keep track of the total number of virtual calls
13008 it encounters and the number of verifications it inserts. It also
13009 counts the number of calls to certain run-time library functions
13010 that it inserts and logs this information for each compilation unit.
13011 The compiler writes this information to a file named
13012 @file{vtv_count_data.log} in the directory named by the environment
13013 variable @env{VTV_LOGS_DIR} if that is defined or the current working
13014 directory otherwise. It also counts the size of the vtable pointer sets
13015 for each class, and writes this information to @file{vtv_class_set_sizes.log}
13016 in the same directory.
13017
13018 Note: This feature @emph{appends} data to the log files. To get fresh log
13019 files, be sure to delete any existing ones.
13020
13021 @item -finstrument-functions
13022 @opindex finstrument-functions
13023 Generate instrumentation calls for entry and exit to functions. Just
13024 after function entry and just before function exit, the following
13025 profiling functions are called with the address of the current
13026 function and its call site. (On some platforms,
13027 @code{__builtin_return_address} does not work beyond the current
13028 function, so the call site information may not be available to the
13029 profiling functions otherwise.)
13030
13031 @smallexample
13032 void __cyg_profile_func_enter (void *this_fn,
13033 void *call_site);
13034 void __cyg_profile_func_exit (void *this_fn,
13035 void *call_site);
13036 @end smallexample
13037
13038 The first argument is the address of the start of the current function,
13039 which may be looked up exactly in the symbol table.
13040
13041 This instrumentation is also done for functions expanded inline in other
13042 functions. The profiling calls indicate where, conceptually, the
13043 inline function is entered and exited. This means that addressable
13044 versions of such functions must be available. If all your uses of a
13045 function are expanded inline, this may mean an additional expansion of
13046 code size. If you use @code{extern inline} in your C code, an
13047 addressable version of such functions must be provided. (This is
13048 normally the case anyway, but if you get lucky and the optimizer always
13049 expands the functions inline, you might have gotten away without
13050 providing static copies.)
13051
13052 A function may be given the attribute @code{no_instrument_function}, in
13053 which case this instrumentation is not done. This can be used, for
13054 example, for the profiling functions listed above, high-priority
13055 interrupt routines, and any functions from which the profiling functions
13056 cannot safely be called (perhaps signal handlers, if the profiling
13057 routines generate output or allocate memory).
13058 @xref{Common Function Attributes}.
13059
13060 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
13061 @opindex finstrument-functions-exclude-file-list
13062
13063 Set the list of functions that are excluded from instrumentation (see
13064 the description of @option{-finstrument-functions}). If the file that
13065 contains a function definition matches with one of @var{file}, then
13066 that function is not instrumented. The match is done on substrings:
13067 if the @var{file} parameter is a substring of the file name, it is
13068 considered to be a match.
13069
13070 For example:
13071
13072 @smallexample
13073 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
13074 @end smallexample
13075
13076 @noindent
13077 excludes any inline function defined in files whose pathnames
13078 contain @file{/bits/stl} or @file{include/sys}.
13079
13080 If, for some reason, you want to include letter @samp{,} in one of
13081 @var{sym}, write @samp{\,}. For example,
13082 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
13083 (note the single quote surrounding the option).
13084
13085 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
13086 @opindex finstrument-functions-exclude-function-list
13087
13088 This is similar to @option{-finstrument-functions-exclude-file-list},
13089 but this option sets the list of function names to be excluded from
13090 instrumentation. The function name to be matched is its user-visible
13091 name, such as @code{vector<int> blah(const vector<int> &)}, not the
13092 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
13093 match is done on substrings: if the @var{sym} parameter is a substring
13094 of the function name, it is considered to be a match. For C99 and C++
13095 extended identifiers, the function name must be given in UTF-8, not
13096 using universal character names.
13097
13098 @item -fpatchable-function-entry=@var{N}[,@var{M}]
13099 @opindex fpatchable-function-entry
13100 Generate @var{N} NOPs right at the beginning
13101 of each function, with the function entry point before the @var{M}th NOP.
13102 If @var{M} is omitted, it defaults to @code{0} so the
13103 function entry points to the address just at the first NOP.
13104 The NOP instructions reserve extra space which can be used to patch in
13105 any desired instrumentation at run time, provided that the code segment
13106 is writable. The amount of space is controllable indirectly via
13107 the number of NOPs; the NOP instruction used corresponds to the instruction
13108 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
13109 is target-specific and may also depend on the architecture variant and/or
13110 other compilation options.
13111
13112 For run-time identification, the starting addresses of these areas,
13113 which correspond to their respective function entries minus @var{M},
13114 are additionally collected in the @code{__patchable_function_entries}
13115 section of the resulting binary.
13116
13117 Note that the value of @code{__attribute__ ((patchable_function_entry
13118 (N,M)))} takes precedence over command-line option
13119 @option{-fpatchable-function-entry=N,M}. This can be used to increase
13120 the area size or to remove it completely on a single function.
13121 If @code{N=0}, no pad location is recorded.
13122
13123 The NOP instructions are inserted at---and maybe before, depending on
13124 @var{M}---the function entry address, even before the prologue.
13125
13126 @end table
13127
13128
13129 @node Preprocessor Options
13130 @section Options Controlling the Preprocessor
13131 @cindex preprocessor options
13132 @cindex options, preprocessor
13133
13134 These options control the C preprocessor, which is run on each C source
13135 file before actual compilation.
13136
13137 If you use the @option{-E} option, nothing is done except preprocessing.
13138 Some of these options make sense only together with @option{-E} because
13139 they cause the preprocessor output to be unsuitable for actual
13140 compilation.
13141
13142 In addition to the options listed here, there are a number of options
13143 to control search paths for include files documented in
13144 @ref{Directory Options}.
13145 Options to control preprocessor diagnostics are listed in
13146 @ref{Warning Options}.
13147
13148 @table @gcctabopt
13149 @include cppopts.texi
13150
13151 @item -Wp,@var{option}
13152 @opindex Wp
13153 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13154 and pass @var{option} directly through to the preprocessor. If
13155 @var{option} contains commas, it is split into multiple options at the
13156 commas. However, many options are modified, translated or interpreted
13157 by the compiler driver before being passed to the preprocessor, and
13158 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13159 interface is undocumented and subject to change, so whenever possible
13160 you should avoid using @option{-Wp} and let the driver handle the
13161 options instead.
13162
13163 @item -Xpreprocessor @var{option}
13164 @opindex Xpreprocessor
13165 Pass @var{option} as an option to the preprocessor. You can use this to
13166 supply system-specific preprocessor options that GCC does not
13167 recognize.
13168
13169 If you want to pass an option that takes an argument, you must use
13170 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13171
13172 @item -no-integrated-cpp
13173 @opindex no-integrated-cpp
13174 Perform preprocessing as a separate pass before compilation.
13175 By default, GCC performs preprocessing as an integrated part of
13176 input tokenization and parsing.
13177 If this option is provided, the appropriate language front end
13178 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13179 and Objective-C, respectively) is instead invoked twice,
13180 once for preprocessing only and once for actual compilation
13181 of the preprocessed input.
13182 This option may be useful in conjunction with the @option{-B} or
13183 @option{-wrapper} options to specify an alternate preprocessor or
13184 perform additional processing of the program source between
13185 normal preprocessing and compilation.
13186
13187 @end table
13188
13189 @node Assembler Options
13190 @section Passing Options to the Assembler
13191
13192 @c prevent bad page break with this line
13193 You can pass options to the assembler.
13194
13195 @table @gcctabopt
13196 @item -Wa,@var{option}
13197 @opindex Wa
13198 Pass @var{option} as an option to the assembler. If @var{option}
13199 contains commas, it is split into multiple options at the commas.
13200
13201 @item -Xassembler @var{option}
13202 @opindex Xassembler
13203 Pass @var{option} as an option to the assembler. You can use this to
13204 supply system-specific assembler options that GCC does not
13205 recognize.
13206
13207 If you want to pass an option that takes an argument, you must use
13208 @option{-Xassembler} twice, once for the option and once for the argument.
13209
13210 @end table
13211
13212 @node Link Options
13213 @section Options for Linking
13214 @cindex link options
13215 @cindex options, linking
13216
13217 These options come into play when the compiler links object files into
13218 an executable output file. They are meaningless if the compiler is
13219 not doing a link step.
13220
13221 @table @gcctabopt
13222 @cindex file names
13223 @item @var{object-file-name}
13224 A file name that does not end in a special recognized suffix is
13225 considered to name an object file or library. (Object files are
13226 distinguished from libraries by the linker according to the file
13227 contents.) If linking is done, these object files are used as input
13228 to the linker.
13229
13230 @item -c
13231 @itemx -S
13232 @itemx -E
13233 @opindex c
13234 @opindex S
13235 @opindex E
13236 If any of these options is used, then the linker is not run, and
13237 object file names should not be used as arguments. @xref{Overall
13238 Options}.
13239
13240 @item -flinker-output=@var{type}
13241 @opindex flinker-output
13242 This option controls code generation of the link-time optimizer. By
13243 default the linker output is automatically determined by the linker
13244 plugin. For debugging the compiler and if incremental linking with a
13245 non-LTO object file is desired, it may be useful to control the type
13246 manually.
13247
13248 If @var{type} is @samp{exec}, code generation produces a static
13249 binary. In this case @option{-fpic} and @option{-fpie} are both
13250 disabled.
13251
13252 If @var{type} is @samp{dyn}, code generation produces a shared
13253 library. In this case @option{-fpic} or @option{-fPIC} is preserved,
13254 but not enabled automatically. This allows to build shared libraries
13255 without position-independent code on architectures where this is
13256 possible, i.e.@: on x86.
13257
13258 If @var{type} is @samp{pie}, code generation produces an @option{-fpie}
13259 executable. This results in similar optimizations as @samp{exec}
13260 except that @option{-fpie} is not disabled if specified at compilation
13261 time.
13262
13263 If @var{type} is @samp{rel}, the compiler assumes that incremental linking is
13264 done. The sections containing intermediate code for link-time optimization are
13265 merged, pre-optimized, and output to the resulting object file. In addition, if
13266 @option{-ffat-lto-objects} is specified, binary code is produced for future
13267 non-LTO linking. The object file produced by incremental linking is smaller
13268 than a static library produced from the same object files. At link time the
13269 result of incremental linking also loads faster than a static
13270 library assuming that the majority of objects in the library are used.
13271
13272 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13273 code generation is forced, a final binary is produced, and the intermediate
13274 code for later link-time optimization is stripped. When multiple object files
13275 are linked together the resulting code is better optimized than with
13276 link-time optimizations disabled (for example, cross-module inlining
13277 happens), but most of benefits of whole program optimizations are lost.
13278
13279 During the incremental link (by @option{-r}) the linker plugin defaults to
13280 @option{rel}. With current interfaces to GNU Binutils it is however not
13281 possible to incrementally link LTO objects and non-LTO objects into a single
13282 mixed object file. If any of object files in incremental link cannot
13283 be used for link-time optimization, the linker plugin issues a warning and
13284 uses @samp{nolto-rel}. To maintain whole program optimization, it is
13285 recommended to link such objects into static library instead. Alternatively it
13286 is possible to use H.J. Lu's binutils with support for mixed objects.
13287
13288 @item -fuse-ld=bfd
13289 @opindex fuse-ld=bfd
13290 Use the @command{bfd} linker instead of the default linker.
13291
13292 @item -fuse-ld=gold
13293 @opindex fuse-ld=gold
13294 Use the @command{gold} linker instead of the default linker.
13295
13296 @item -fuse-ld=lld
13297 @opindex fuse-ld=lld
13298 Use the LLVM @command{lld} linker instead of the default linker.
13299
13300 @cindex Libraries
13301 @item -l@var{library}
13302 @itemx -l @var{library}
13303 @opindex l
13304 Search the library named @var{library} when linking. (The second
13305 alternative with the library as a separate argument is only for
13306 POSIX compliance and is not recommended.)
13307
13308 The @option{-l} option is passed directly to the linker by GCC. Refer
13309 to your linker documentation for exact details. The general
13310 description below applies to the GNU linker.
13311
13312 The linker searches a standard list of directories for the library.
13313 The directories searched include several standard system directories
13314 plus any that you specify with @option{-L}.
13315
13316 Static libraries are archives of object files, and have file names
13317 like @file{lib@var{library}.a}. Some targets also support shared
13318 libraries, which typically have names like @file{lib@var{library}.so}.
13319 If both static and shared libraries are found, the linker gives
13320 preference to linking with the shared library unless the
13321 @option{-static} option is used.
13322
13323 It makes a difference where in the command you write this option; the
13324 linker searches and processes libraries and object files in the order they
13325 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13326 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13327 to functions in @samp{z}, those functions may not be loaded.
13328
13329 @item -lobjc
13330 @opindex lobjc
13331 You need this special case of the @option{-l} option in order to
13332 link an Objective-C or Objective-C++ program.
13333
13334 @item -nostartfiles
13335 @opindex nostartfiles
13336 Do not use the standard system startup files when linking.
13337 The standard system libraries are used normally, unless @option{-nostdlib},
13338 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13339
13340 @item -nodefaultlibs
13341 @opindex nodefaultlibs
13342 Do not use the standard system libraries when linking.
13343 Only the libraries you specify are passed to the linker, and options
13344 specifying linkage of the system libraries, such as @option{-static-libgcc}
13345 or @option{-shared-libgcc}, are ignored.
13346 The standard startup files are used normally, unless @option{-nostartfiles}
13347 is used.
13348
13349 The compiler may generate calls to @code{memcmp},
13350 @code{memset}, @code{memcpy} and @code{memmove}.
13351 These entries are usually resolved by entries in
13352 libc. These entry points should be supplied through some other
13353 mechanism when this option is specified.
13354
13355 @item -nolibc
13356 @opindex nolibc
13357 Do not use the C library or system libraries tightly coupled with it when
13358 linking. Still link with the startup files, @file{libgcc} or toolchain
13359 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13360 or @file{libstdc++} unless options preventing their inclusion are used as
13361 well. This typically removes @option{-lc} from the link command line, as well
13362 as system libraries that normally go with it and become meaningless when
13363 absence of a C library is assumed, for example @option{-lpthread} or
13364 @option{-lm} in some configurations. This is intended for bare-board
13365 targets when there is indeed no C library available.
13366
13367 @item -nostdlib
13368 @opindex nostdlib
13369 Do not use the standard system startup files or libraries when linking.
13370 No startup files and only the libraries you specify are passed to
13371 the linker, and options specifying linkage of the system libraries, such as
13372 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13373
13374 The compiler may generate calls to @code{memcmp}, @code{memset},
13375 @code{memcpy} and @code{memmove}.
13376 These entries are usually resolved by entries in
13377 libc. These entry points should be supplied through some other
13378 mechanism when this option is specified.
13379
13380 @cindex @option{-lgcc}, use with @option{-nostdlib}
13381 @cindex @option{-nostdlib} and unresolved references
13382 @cindex unresolved references and @option{-nostdlib}
13383 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13384 @cindex @option{-nodefaultlibs} and unresolved references
13385 @cindex unresolved references and @option{-nodefaultlibs}
13386 One of the standard libraries bypassed by @option{-nostdlib} and
13387 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13388 which GCC uses to overcome shortcomings of particular machines, or special
13389 needs for some languages.
13390 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13391 Collection (GCC) Internals},
13392 for more discussion of @file{libgcc.a}.)
13393 In most cases, you need @file{libgcc.a} even when you want to avoid
13394 other standard libraries. In other words, when you specify @option{-nostdlib}
13395 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13396 This ensures that you have no unresolved references to internal GCC
13397 library subroutines.
13398 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13399 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13400 GNU Compiler Collection (GCC) Internals}.)
13401
13402 @item -e @var{entry}
13403 @itemx --entry=@var{entry}
13404 @opindex e
13405 @opindex entry
13406
13407 Specify that the program entry point is @var{entry}. The argument is
13408 interpreted by the linker; the GNU linker accepts either a symbol name
13409 or an address.
13410
13411 @item -pie
13412 @opindex pie
13413 Produce a dynamically linked position independent executable on targets
13414 that support it. For predictable results, you must also specify the same
13415 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13416 or model suboptions) when you specify this linker option.
13417
13418 @item -no-pie
13419 @opindex no-pie
13420 Don't produce a dynamically linked position independent executable.
13421
13422 @item -static-pie
13423 @opindex static-pie
13424 Produce a static position independent executable on targets that support
13425 it. A static position independent executable is similar to a static
13426 executable, but can be loaded at any address without a dynamic linker.
13427 For predictable results, you must also specify the same set of options
13428 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13429 suboptions) when you specify this linker option.
13430
13431 @item -pthread
13432 @opindex pthread
13433 Link with the POSIX threads library. This option is supported on
13434 GNU/Linux targets, most other Unix derivatives, and also on
13435 x86 Cygwin and MinGW targets. On some targets this option also sets
13436 flags for the preprocessor, so it should be used consistently for both
13437 compilation and linking.
13438
13439 @item -r
13440 @opindex r
13441 Produce a relocatable object as output. This is also known as partial
13442 linking.
13443
13444 @item -rdynamic
13445 @opindex rdynamic
13446 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13447 that support it. This instructs the linker to add all symbols, not
13448 only used ones, to the dynamic symbol table. This option is needed
13449 for some uses of @code{dlopen} or to allow obtaining backtraces
13450 from within a program.
13451
13452 @item -s
13453 @opindex s
13454 Remove all symbol table and relocation information from the executable.
13455
13456 @item -static
13457 @opindex static
13458 On systems that support dynamic linking, this overrides @option{-pie}
13459 and prevents linking with the shared libraries. On other systems, this
13460 option has no effect.
13461
13462 @item -shared
13463 @opindex shared
13464 Produce a shared object which can then be linked with other objects to
13465 form an executable. Not all systems support this option. For predictable
13466 results, you must also specify the same set of options used for compilation
13467 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13468 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13469 needs to build supplementary stub code for constructors to work. On
13470 multi-libbed systems, @samp{gcc -shared} must select the correct support
13471 libraries to link against. Failing to supply the correct flags may lead
13472 to subtle defects. Supplying them in cases where they are not necessary
13473 is innocuous.}
13474
13475 @item -shared-libgcc
13476 @itemx -static-libgcc
13477 @opindex shared-libgcc
13478 @opindex static-libgcc
13479 On systems that provide @file{libgcc} as a shared library, these options
13480 force the use of either the shared or static version, respectively.
13481 If no shared version of @file{libgcc} was built when the compiler was
13482 configured, these options have no effect.
13483
13484 There are several situations in which an application should use the
13485 shared @file{libgcc} instead of the static version. The most common
13486 of these is when the application wishes to throw and catch exceptions
13487 across different shared libraries. In that case, each of the libraries
13488 as well as the application itself should use the shared @file{libgcc}.
13489
13490 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13491 whenever you build a shared library or a main executable, because C++
13492 programs typically use exceptions, so this is the right thing to do.
13493
13494 If, instead, you use the GCC driver to create shared libraries, you may
13495 find that they are not always linked with the shared @file{libgcc}.
13496 If GCC finds, at its configuration time, that you have a non-GNU linker
13497 or a GNU linker that does not support option @option{--eh-frame-hdr},
13498 it links the shared version of @file{libgcc} into shared libraries
13499 by default. Otherwise, it takes advantage of the linker and optimizes
13500 away the linking with the shared version of @file{libgcc}, linking with
13501 the static version of libgcc by default. This allows exceptions to
13502 propagate through such shared libraries, without incurring relocation
13503 costs at library load time.
13504
13505 However, if a library or main executable is supposed to throw or catch
13506 exceptions, you must link it using the G++ driver, or using the option
13507 @option{-shared-libgcc}, such that it is linked with the shared
13508 @file{libgcc}.
13509
13510 @item -static-libasan
13511 @opindex static-libasan
13512 When the @option{-fsanitize=address} option is used to link a program,
13513 the GCC driver automatically links against @option{libasan}. If
13514 @file{libasan} is available as a shared library, and the @option{-static}
13515 option is not used, then this links against the shared version of
13516 @file{libasan}. The @option{-static-libasan} option directs the GCC
13517 driver to link @file{libasan} statically, without necessarily linking
13518 other libraries statically.
13519
13520 @item -static-libtsan
13521 @opindex static-libtsan
13522 When the @option{-fsanitize=thread} option is used to link a program,
13523 the GCC driver automatically links against @option{libtsan}. If
13524 @file{libtsan} is available as a shared library, and the @option{-static}
13525 option is not used, then this links against the shared version of
13526 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13527 driver to link @file{libtsan} statically, without necessarily linking
13528 other libraries statically.
13529
13530 @item -static-liblsan
13531 @opindex static-liblsan
13532 When the @option{-fsanitize=leak} option is used to link a program,
13533 the GCC driver automatically links against @option{liblsan}. If
13534 @file{liblsan} is available as a shared library, and the @option{-static}
13535 option is not used, then this links against the shared version of
13536 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13537 driver to link @file{liblsan} statically, without necessarily linking
13538 other libraries statically.
13539
13540 @item -static-libubsan
13541 @opindex static-libubsan
13542 When the @option{-fsanitize=undefined} option is used to link a program,
13543 the GCC driver automatically links against @option{libubsan}. If
13544 @file{libubsan} is available as a shared library, and the @option{-static}
13545 option is not used, then this links against the shared version of
13546 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13547 driver to link @file{libubsan} statically, without necessarily linking
13548 other libraries statically.
13549
13550 @item -static-libstdc++
13551 @opindex static-libstdc++
13552 When the @command{g++} program is used to link a C++ program, it
13553 normally automatically links against @option{libstdc++}. If
13554 @file{libstdc++} is available as a shared library, and the
13555 @option{-static} option is not used, then this links against the
13556 shared version of @file{libstdc++}. That is normally fine. However, it
13557 is sometimes useful to freeze the version of @file{libstdc++} used by
13558 the program without going all the way to a fully static link. The
13559 @option{-static-libstdc++} option directs the @command{g++} driver to
13560 link @file{libstdc++} statically, without necessarily linking other
13561 libraries statically.
13562
13563 @item -symbolic
13564 @opindex symbolic
13565 Bind references to global symbols when building a shared object. Warn
13566 about any unresolved references (unless overridden by the link editor
13567 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13568 this option.
13569
13570 @item -T @var{script}
13571 @opindex T
13572 @cindex linker script
13573 Use @var{script} as the linker script. This option is supported by most
13574 systems using the GNU linker. On some targets, such as bare-board
13575 targets without an operating system, the @option{-T} option may be required
13576 when linking to avoid references to undefined symbols.
13577
13578 @item -Xlinker @var{option}
13579 @opindex Xlinker
13580 Pass @var{option} as an option to the linker. You can use this to
13581 supply system-specific linker options that GCC does not recognize.
13582
13583 If you want to pass an option that takes a separate argument, you must use
13584 @option{-Xlinker} twice, once for the option and once for the argument.
13585 For example, to pass @option{-assert definitions}, you must write
13586 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13587 @option{-Xlinker "-assert definitions"}, because this passes the entire
13588 string as a single argument, which is not what the linker expects.
13589
13590 When using the GNU linker, it is usually more convenient to pass
13591 arguments to linker options using the @option{@var{option}=@var{value}}
13592 syntax than as separate arguments. For example, you can specify
13593 @option{-Xlinker -Map=output.map} rather than
13594 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13595 this syntax for command-line options.
13596
13597 @item -Wl,@var{option}
13598 @opindex Wl
13599 Pass @var{option} as an option to the linker. If @var{option} contains
13600 commas, it is split into multiple options at the commas. You can use this
13601 syntax to pass an argument to the option.
13602 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13603 linker. When using the GNU linker, you can also get the same effect with
13604 @option{-Wl,-Map=output.map}.
13605
13606 @item -u @var{symbol}
13607 @opindex u
13608 Pretend the symbol @var{symbol} is undefined, to force linking of
13609 library modules to define it. You can use @option{-u} multiple times with
13610 different symbols to force loading of additional library modules.
13611
13612 @item -z @var{keyword}
13613 @opindex z
13614 @option{-z} is passed directly on to the linker along with the keyword
13615 @var{keyword}. See the section in the documentation of your linker for
13616 permitted values and their meanings.
13617 @end table
13618
13619 @node Directory Options
13620 @section Options for Directory Search
13621 @cindex directory options
13622 @cindex options, directory search
13623 @cindex search path
13624
13625 These options specify directories to search for header files, for
13626 libraries and for parts of the compiler:
13627
13628 @table @gcctabopt
13629 @include cppdiropts.texi
13630
13631 @item -iplugindir=@var{dir}
13632 @opindex iplugindir=
13633 Set the directory to search for plugins that are passed
13634 by @option{-fplugin=@var{name}} instead of
13635 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13636 to be used by the user, but only passed by the driver.
13637
13638 @item -L@var{dir}
13639 @opindex L
13640 Add directory @var{dir} to the list of directories to be searched
13641 for @option{-l}.
13642
13643 @item -B@var{prefix}
13644 @opindex B
13645 This option specifies where to find the executables, libraries,
13646 include files, and data files of the compiler itself.
13647
13648 The compiler driver program runs one or more of the subprograms
13649 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13650 @var{prefix} as a prefix for each program it tries to run, both with and
13651 without @samp{@var{machine}/@var{version}/} for the corresponding target
13652 machine and compiler version.
13653
13654 For each subprogram to be run, the compiler driver first tries the
13655 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13656 is not specified, the driver tries two standard prefixes,
13657 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13658 those results in a file name that is found, the unmodified program
13659 name is searched for using the directories specified in your
13660 @env{PATH} environment variable.
13661
13662 The compiler checks to see if the path provided by @option{-B}
13663 refers to a directory, and if necessary it adds a directory
13664 separator character at the end of the path.
13665
13666 @option{-B} prefixes that effectively specify directory names also apply
13667 to libraries in the linker, because the compiler translates these
13668 options into @option{-L} options for the linker. They also apply to
13669 include files in the preprocessor, because the compiler translates these
13670 options into @option{-isystem} options for the preprocessor. In this case,
13671 the compiler appends @samp{include} to the prefix.
13672
13673 The runtime support file @file{libgcc.a} can also be searched for using
13674 the @option{-B} prefix, if needed. If it is not found there, the two
13675 standard prefixes above are tried, and that is all. The file is left
13676 out of the link if it is not found by those means.
13677
13678 Another way to specify a prefix much like the @option{-B} prefix is to use
13679 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13680 Variables}.
13681
13682 As a special kludge, if the path provided by @option{-B} is
13683 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13684 9, then it is replaced by @file{[dir/]include}. This is to help
13685 with boot-strapping the compiler.
13686
13687 @item -no-canonical-prefixes
13688 @opindex no-canonical-prefixes
13689 Do not expand any symbolic links, resolve references to @samp{/../}
13690 or @samp{/./}, or make the path absolute when generating a relative
13691 prefix.
13692
13693 @item --sysroot=@var{dir}
13694 @opindex sysroot
13695 Use @var{dir} as the logical root directory for headers and libraries.
13696 For example, if the compiler normally searches for headers in
13697 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13698 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13699
13700 If you use both this option and the @option{-isysroot} option, then
13701 the @option{--sysroot} option applies to libraries, but the
13702 @option{-isysroot} option applies to header files.
13703
13704 The GNU linker (beginning with version 2.16) has the necessary support
13705 for this option. If your linker does not support this option, the
13706 header file aspect of @option{--sysroot} still works, but the
13707 library aspect does not.
13708
13709 @item --no-sysroot-suffix
13710 @opindex no-sysroot-suffix
13711 For some targets, a suffix is added to the root directory specified
13712 with @option{--sysroot}, depending on the other options used, so that
13713 headers may for example be found in
13714 @file{@var{dir}/@var{suffix}/usr/include} instead of
13715 @file{@var{dir}/usr/include}. This option disables the addition of
13716 such a suffix.
13717
13718 @end table
13719
13720 @node Code Gen Options
13721 @section Options for Code Generation Conventions
13722 @cindex code generation conventions
13723 @cindex options, code generation
13724 @cindex run-time options
13725
13726 These machine-independent options control the interface conventions
13727 used in code generation.
13728
13729 Most of them have both positive and negative forms; the negative form
13730 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13731 one of the forms is listed---the one that is not the default. You
13732 can figure out the other form by either removing @samp{no-} or adding
13733 it.
13734
13735 @table @gcctabopt
13736 @item -fstack-reuse=@var{reuse-level}
13737 @opindex fstack_reuse
13738 This option controls stack space reuse for user declared local/auto variables
13739 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13740 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13741 local variables and temporaries, @samp{named_vars} enables the reuse only for
13742 user defined local variables with names, and @samp{none} disables stack reuse
13743 completely. The default value is @samp{all}. The option is needed when the
13744 program extends the lifetime of a scoped local variable or a compiler generated
13745 temporary beyond the end point defined by the language. When a lifetime of
13746 a variable ends, and if the variable lives in memory, the optimizing compiler
13747 has the freedom to reuse its stack space with other temporaries or scoped
13748 local variables whose live range does not overlap with it. Legacy code extending
13749 local lifetime is likely to break with the stack reuse optimization.
13750
13751 For example,
13752
13753 @smallexample
13754 int *p;
13755 @{
13756 int local1;
13757
13758 p = &local1;
13759 local1 = 10;
13760 ....
13761 @}
13762 @{
13763 int local2;
13764 local2 = 20;
13765 ...
13766 @}
13767
13768 if (*p == 10) // out of scope use of local1
13769 @{
13770
13771 @}
13772 @end smallexample
13773
13774 Another example:
13775 @smallexample
13776
13777 struct A
13778 @{
13779 A(int k) : i(k), j(k) @{ @}
13780 int i;
13781 int j;
13782 @};
13783
13784 A *ap;
13785
13786 void foo(const A& ar)
13787 @{
13788 ap = &ar;
13789 @}
13790
13791 void bar()
13792 @{
13793 foo(A(10)); // temp object's lifetime ends when foo returns
13794
13795 @{
13796 A a(20);
13797 ....
13798 @}
13799 ap->i+= 10; // ap references out of scope temp whose space
13800 // is reused with a. What is the value of ap->i?
13801 @}
13802
13803 @end smallexample
13804
13805 The lifetime of a compiler generated temporary is well defined by the C++
13806 standard. When a lifetime of a temporary ends, and if the temporary lives
13807 in memory, the optimizing compiler has the freedom to reuse its stack
13808 space with other temporaries or scoped local variables whose live range
13809 does not overlap with it. However some of the legacy code relies on
13810 the behavior of older compilers in which temporaries' stack space is
13811 not reused, the aggressive stack reuse can lead to runtime errors. This
13812 option is used to control the temporary stack reuse optimization.
13813
13814 @item -ftrapv
13815 @opindex ftrapv
13816 This option generates traps for signed overflow on addition, subtraction,
13817 multiplication operations.
13818 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13819 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13820 @option{-fwrapv} being effective. Note that only active options override, so
13821 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13822 results in @option{-ftrapv} being effective.
13823
13824 @item -fwrapv
13825 @opindex fwrapv
13826 This option instructs the compiler to assume that signed arithmetic
13827 overflow of addition, subtraction and multiplication wraps around
13828 using twos-complement representation. This flag enables some optimizations
13829 and disables others.
13830 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13831 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13832 @option{-fwrapv} being effective. Note that only active options override, so
13833 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13834 results in @option{-ftrapv} being effective.
13835
13836 @item -fwrapv-pointer
13837 @opindex fwrapv-pointer
13838 This option instructs the compiler to assume that pointer arithmetic
13839 overflow on addition and subtraction wraps around using twos-complement
13840 representation. This flag disables some optimizations which assume
13841 pointer overflow is invalid.
13842
13843 @item -fstrict-overflow
13844 @opindex fstrict-overflow
13845 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13846 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13847
13848 @item -fexceptions
13849 @opindex fexceptions
13850 Enable exception handling. Generates extra code needed to propagate
13851 exceptions. For some targets, this implies GCC generates frame
13852 unwind information for all functions, which can produce significant data
13853 size overhead, although it does not affect execution. If you do not
13854 specify this option, GCC enables it by default for languages like
13855 C++ that normally require exception handling, and disables it for
13856 languages like C that do not normally require it. However, you may need
13857 to enable this option when compiling C code that needs to interoperate
13858 properly with exception handlers written in C++. You may also wish to
13859 disable this option if you are compiling older C++ programs that don't
13860 use exception handling.
13861
13862 @item -fnon-call-exceptions
13863 @opindex fnon-call-exceptions
13864 Generate code that allows trapping instructions to throw exceptions.
13865 Note that this requires platform-specific runtime support that does
13866 not exist everywhere. Moreover, it only allows @emph{trapping}
13867 instructions to throw exceptions, i.e.@: memory references or floating-point
13868 instructions. It does not allow exceptions to be thrown from
13869 arbitrary signal handlers such as @code{SIGALRM}.
13870
13871 @item -fdelete-dead-exceptions
13872 @opindex fdelete-dead-exceptions
13873 Consider that instructions that may throw exceptions but don't otherwise
13874 contribute to the execution of the program can be optimized away.
13875 This option is enabled by default for the Ada front end, as permitted by
13876 the Ada language specification.
13877 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13878
13879 @item -funwind-tables
13880 @opindex funwind-tables
13881 Similar to @option{-fexceptions}, except that it just generates any needed
13882 static data, but does not affect the generated code in any other way.
13883 You normally do not need to enable this option; instead, a language processor
13884 that needs this handling enables it on your behalf.
13885
13886 @item -fasynchronous-unwind-tables
13887 @opindex fasynchronous-unwind-tables
13888 Generate unwind table in DWARF format, if supported by target machine. The
13889 table is exact at each instruction boundary, so it can be used for stack
13890 unwinding from asynchronous events (such as debugger or garbage collector).
13891
13892 @item -fno-gnu-unique
13893 @opindex fno-gnu-unique
13894 @opindex fgnu-unique
13895 On systems with recent GNU assembler and C library, the C++ compiler
13896 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13897 of template static data members and static local variables in inline
13898 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13899 is necessary to avoid problems with a library used by two different
13900 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13901 therefore disagreeing with the other one about the binding of the
13902 symbol. But this causes @code{dlclose} to be ignored for affected
13903 DSOs; if your program relies on reinitialization of a DSO via
13904 @code{dlclose} and @code{dlopen}, you can use
13905 @option{-fno-gnu-unique}.
13906
13907 @item -fpcc-struct-return
13908 @opindex fpcc-struct-return
13909 Return ``short'' @code{struct} and @code{union} values in memory like
13910 longer ones, rather than in registers. This convention is less
13911 efficient, but it has the advantage of allowing intercallability between
13912 GCC-compiled files and files compiled with other compilers, particularly
13913 the Portable C Compiler (pcc).
13914
13915 The precise convention for returning structures in memory depends
13916 on the target configuration macros.
13917
13918 Short structures and unions are those whose size and alignment match
13919 that of some integer type.
13920
13921 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13922 switch is not binary compatible with code compiled with the
13923 @option{-freg-struct-return} switch.
13924 Use it to conform to a non-default application binary interface.
13925
13926 @item -freg-struct-return
13927 @opindex freg-struct-return
13928 Return @code{struct} and @code{union} values in registers when possible.
13929 This is more efficient for small structures than
13930 @option{-fpcc-struct-return}.
13931
13932 If you specify neither @option{-fpcc-struct-return} nor
13933 @option{-freg-struct-return}, GCC defaults to whichever convention is
13934 standard for the target. If there is no standard convention, GCC
13935 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13936 the principal compiler. In those cases, we can choose the standard, and
13937 we chose the more efficient register return alternative.
13938
13939 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13940 switch is not binary compatible with code compiled with the
13941 @option{-fpcc-struct-return} switch.
13942 Use it to conform to a non-default application binary interface.
13943
13944 @item -fshort-enums
13945 @opindex fshort-enums
13946 Allocate to an @code{enum} type only as many bytes as it needs for the
13947 declared range of possible values. Specifically, the @code{enum} type
13948 is equivalent to the smallest integer type that has enough room.
13949
13950 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13951 code that is not binary compatible with code generated without that switch.
13952 Use it to conform to a non-default application binary interface.
13953
13954 @item -fshort-wchar
13955 @opindex fshort-wchar
13956 Override the underlying type for @code{wchar_t} to be @code{short
13957 unsigned int} instead of the default for the target. This option is
13958 useful for building programs to run under WINE@.
13959
13960 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13961 code that is not binary compatible with code generated without that switch.
13962 Use it to conform to a non-default application binary interface.
13963
13964 @item -fno-common
13965 @opindex fno-common
13966 @opindex fcommon
13967 @cindex tentative definitions
13968 In C code, this option controls the placement of global variables
13969 defined without an initializer, known as @dfn{tentative definitions}
13970 in the C standard. Tentative definitions are distinct from declarations
13971 of a variable with the @code{extern} keyword, which do not allocate storage.
13972
13973 Unix C compilers have traditionally allocated storage for
13974 uninitialized global variables in a common block. This allows the
13975 linker to resolve all tentative definitions of the same variable
13976 in different compilation units to the same object, or to a non-tentative
13977 definition.
13978 This is the behavior specified by @option{-fcommon}, and is the default for
13979 GCC on most targets.
13980 On the other hand, this behavior is not required by ISO
13981 C, and on some targets may carry a speed or code size penalty on
13982 variable references.
13983
13984 The @option{-fno-common} option specifies that the compiler should instead
13985 place uninitialized global variables in the BSS section of the object file.
13986 This inhibits the merging of tentative definitions by the linker so
13987 you get a multiple-definition error if the same
13988 variable is defined in more than one compilation unit.
13989 Compiling with @option{-fno-common} is useful on targets for which
13990 it provides better performance, or if you wish to verify that the
13991 program will work on other systems that always treat uninitialized
13992 variable definitions this way.
13993
13994 @item -fno-ident
13995 @opindex fno-ident
13996 @opindex fident
13997 Ignore the @code{#ident} directive.
13998
13999 @item -finhibit-size-directive
14000 @opindex finhibit-size-directive
14001 Don't output a @code{.size} assembler directive, or anything else that
14002 would cause trouble if the function is split in the middle, and the
14003 two halves are placed at locations far apart in memory. This option is
14004 used when compiling @file{crtstuff.c}; you should not need to use it
14005 for anything else.
14006
14007 @item -fverbose-asm
14008 @opindex fverbose-asm
14009 Put extra commentary information in the generated assembly code to
14010 make it more readable. This option is generally only of use to those
14011 who actually need to read the generated assembly code (perhaps while
14012 debugging the compiler itself).
14013
14014 @option{-fno-verbose-asm}, the default, causes the
14015 extra information to be omitted and is useful when comparing two assembler
14016 files.
14017
14018 The added comments include:
14019
14020 @itemize @bullet
14021
14022 @item
14023 information on the compiler version and command-line options,
14024
14025 @item
14026 the source code lines associated with the assembly instructions,
14027 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
14028
14029 @item
14030 hints on which high-level expressions correspond to
14031 the various assembly instruction operands.
14032
14033 @end itemize
14034
14035 For example, given this C source file:
14036
14037 @smallexample
14038 int test (int n)
14039 @{
14040 int i;
14041 int total = 0;
14042
14043 for (i = 0; i < n; i++)
14044 total += i * i;
14045
14046 return total;
14047 @}
14048 @end smallexample
14049
14050 compiling to (x86_64) assembly via @option{-S} and emitting the result
14051 direct to stdout via @option{-o} @option{-}
14052
14053 @smallexample
14054 gcc -S test.c -fverbose-asm -Os -o -
14055 @end smallexample
14056
14057 gives output similar to this:
14058
14059 @smallexample
14060 .file "test.c"
14061 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
14062 [...snip...]
14063 # options passed:
14064 [...snip...]
14065
14066 .text
14067 .globl test
14068 .type test, @@function
14069 test:
14070 .LFB0:
14071 .cfi_startproc
14072 # test.c:4: int total = 0;
14073 xorl %eax, %eax # <retval>
14074 # test.c:6: for (i = 0; i < n; i++)
14075 xorl %edx, %edx # i
14076 .L2:
14077 # test.c:6: for (i = 0; i < n; i++)
14078 cmpl %edi, %edx # n, i
14079 jge .L5 #,
14080 # test.c:7: total += i * i;
14081 movl %edx, %ecx # i, tmp92
14082 imull %edx, %ecx # i, tmp92
14083 # test.c:6: for (i = 0; i < n; i++)
14084 incl %edx # i
14085 # test.c:7: total += i * i;
14086 addl %ecx, %eax # tmp92, <retval>
14087 jmp .L2 #
14088 .L5:
14089 # test.c:10: @}
14090 ret
14091 .cfi_endproc
14092 .LFE0:
14093 .size test, .-test
14094 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
14095 .section .note.GNU-stack,"",@@progbits
14096 @end smallexample
14097
14098 The comments are intended for humans rather than machines and hence the
14099 precise format of the comments is subject to change.
14100
14101 @item -frecord-gcc-switches
14102 @opindex frecord-gcc-switches
14103 This switch causes the command line used to invoke the
14104 compiler to be recorded into the object file that is being created.
14105 This switch is only implemented on some targets and the exact format
14106 of the recording is target and binary file format dependent, but it
14107 usually takes the form of a section containing ASCII text. This
14108 switch is related to the @option{-fverbose-asm} switch, but that
14109 switch only records information in the assembler output file as
14110 comments, so it never reaches the object file.
14111 See also @option{-grecord-gcc-switches} for another
14112 way of storing compiler options into the object file.
14113
14114 @item -fpic
14115 @opindex fpic
14116 @cindex global offset table
14117 @cindex PIC
14118 Generate position-independent code (PIC) suitable for use in a shared
14119 library, if supported for the target machine. Such code accesses all
14120 constant addresses through a global offset table (GOT)@. The dynamic
14121 loader resolves the GOT entries when the program starts (the dynamic
14122 loader is not part of GCC; it is part of the operating system). If
14123 the GOT size for the linked executable exceeds a machine-specific
14124 maximum size, you get an error message from the linker indicating that
14125 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14126 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14127 on the m68k and RS/6000. The x86 has no such limit.)
14128
14129 Position-independent code requires special support, and therefore works
14130 only on certain machines. For the x86, GCC supports PIC for System V
14131 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
14132 position-independent.
14133
14134 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14135 are defined to 1.
14136
14137 @item -fPIC
14138 @opindex fPIC
14139 If supported for the target machine, emit position-independent code,
14140 suitable for dynamic linking and avoiding any limit on the size of the
14141 global offset table. This option makes a difference on AArch64, m68k,
14142 PowerPC and SPARC@.
14143
14144 Position-independent code requires special support, and therefore works
14145 only on certain machines.
14146
14147 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14148 are defined to 2.
14149
14150 @item -fpie
14151 @itemx -fPIE
14152 @opindex fpie
14153 @opindex fPIE
14154 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14155 generated position-independent code can be only linked into executables.
14156 Usually these options are used to compile code that will be linked using
14157 the @option{-pie} GCC option.
14158
14159 @option{-fpie} and @option{-fPIE} both define the macros
14160 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14161 for @option{-fpie} and 2 for @option{-fPIE}.
14162
14163 @item -fno-plt
14164 @opindex fno-plt
14165 @opindex fplt
14166 Do not use the PLT for external function calls in position-independent code.
14167 Instead, load the callee address at call sites from the GOT and branch to it.
14168 This leads to more efficient code by eliminating PLT stubs and exposing
14169 GOT loads to optimizations. On architectures such as 32-bit x86 where
14170 PLT stubs expect the GOT pointer in a specific register, this gives more
14171 register allocation freedom to the compiler.
14172 Lazy binding requires use of the PLT;
14173 with @option{-fno-plt} all external symbols are resolved at load time.
14174
14175 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14176 through the PLT for specific external functions.
14177
14178 In position-dependent code, a few targets also convert calls to
14179 functions that are marked to not use the PLT to use the GOT instead.
14180
14181 @item -fno-jump-tables
14182 @opindex fno-jump-tables
14183 @opindex fjump-tables
14184 Do not use jump tables for switch statements even where it would be
14185 more efficient than other code generation strategies. This option is
14186 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14187 building code that forms part of a dynamic linker and cannot
14188 reference the address of a jump table. On some targets, jump tables
14189 do not require a GOT and this option is not needed.
14190
14191 @item -ffixed-@var{reg}
14192 @opindex ffixed
14193 Treat the register named @var{reg} as a fixed register; generated code
14194 should never refer to it (except perhaps as a stack pointer, frame
14195 pointer or in some other fixed role).
14196
14197 @var{reg} must be the name of a register. The register names accepted
14198 are machine-specific and are defined in the @code{REGISTER_NAMES}
14199 macro in the machine description macro file.
14200
14201 This flag does not have a negative form, because it specifies a
14202 three-way choice.
14203
14204 @item -fcall-used-@var{reg}
14205 @opindex fcall-used
14206 Treat the register named @var{reg} as an allocable register that is
14207 clobbered by function calls. It may be allocated for temporaries or
14208 variables that do not live across a call. Functions compiled this way
14209 do not save and restore the register @var{reg}.
14210
14211 It is an error to use this flag with the frame pointer or stack pointer.
14212 Use of this flag for other registers that have fixed pervasive roles in
14213 the machine's execution model produces disastrous results.
14214
14215 This flag does not have a negative form, because it specifies a
14216 three-way choice.
14217
14218 @item -fcall-saved-@var{reg}
14219 @opindex fcall-saved
14220 Treat the register named @var{reg} as an allocable register saved by
14221 functions. It may be allocated even for temporaries or variables that
14222 live across a call. Functions compiled this way save and restore
14223 the register @var{reg} if they use it.
14224
14225 It is an error to use this flag with the frame pointer or stack pointer.
14226 Use of this flag for other registers that have fixed pervasive roles in
14227 the machine's execution model produces disastrous results.
14228
14229 A different sort of disaster results from the use of this flag for
14230 a register in which function values may be returned.
14231
14232 This flag does not have a negative form, because it specifies a
14233 three-way choice.
14234
14235 @item -fpack-struct[=@var{n}]
14236 @opindex fpack-struct
14237 Without a value specified, pack all structure members together without
14238 holes. When a value is specified (which must be a small power of two), pack
14239 structure members according to this value, representing the maximum
14240 alignment (that is, objects with default alignment requirements larger than
14241 this are output potentially unaligned at the next fitting location.
14242
14243 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14244 code that is not binary compatible with code generated without that switch.
14245 Additionally, it makes the code suboptimal.
14246 Use it to conform to a non-default application binary interface.
14247
14248 @item -fleading-underscore
14249 @opindex fleading-underscore
14250 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14251 change the way C symbols are represented in the object file. One use
14252 is to help link with legacy assembly code.
14253
14254 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14255 generate code that is not binary compatible with code generated without that
14256 switch. Use it to conform to a non-default application binary interface.
14257 Not all targets provide complete support for this switch.
14258
14259 @item -ftls-model=@var{model}
14260 @opindex ftls-model
14261 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14262 The @var{model} argument should be one of @samp{global-dynamic},
14263 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14264 Note that the choice is subject to optimization: the compiler may use
14265 a more efficient model for symbols not visible outside of the translation
14266 unit, or if @option{-fpic} is not given on the command line.
14267
14268 The default without @option{-fpic} is @samp{initial-exec}; with
14269 @option{-fpic} the default is @samp{global-dynamic}.
14270
14271 @item -ftrampolines
14272 @opindex ftrampolines
14273 For targets that normally need trampolines for nested functions, always
14274 generate them instead of using descriptors. Otherwise, for targets that
14275 do not need them, like for example HP-PA or IA-64, do nothing.
14276
14277 A trampoline is a small piece of code that is created at run time on the
14278 stack when the address of a nested function is taken, and is used to call
14279 the nested function indirectly. Therefore, it requires the stack to be
14280 made executable in order for the program to work properly.
14281
14282 @option{-fno-trampolines} is enabled by default on a language by language
14283 basis to let the compiler avoid generating them, if it computes that this
14284 is safe, and replace them with descriptors. Descriptors are made up of data
14285 only, but the generated code must be prepared to deal with them. As of this
14286 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14287
14288 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14289 @option{-fno-trampolines} are not binary compatible if nested functions are
14290 present. This option must therefore be used on a program-wide basis and be
14291 manipulated with extreme care.
14292
14293 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14294 @opindex fvisibility
14295 Set the default ELF image symbol visibility to the specified option---all
14296 symbols are marked with this unless overridden within the code.
14297 Using this feature can very substantially improve linking and
14298 load times of shared object libraries, produce more optimized
14299 code, provide near-perfect API export and prevent symbol clashes.
14300 It is @strong{strongly} recommended that you use this in any shared objects
14301 you distribute.
14302
14303 Despite the nomenclature, @samp{default} always means public; i.e.,
14304 available to be linked against from outside the shared object.
14305 @samp{protected} and @samp{internal} are pretty useless in real-world
14306 usage so the only other commonly used option is @samp{hidden}.
14307 The default if @option{-fvisibility} isn't specified is
14308 @samp{default}, i.e., make every symbol public.
14309
14310 A good explanation of the benefits offered by ensuring ELF
14311 symbols have the correct visibility is given by ``How To Write
14312 Shared Libraries'' by Ulrich Drepper (which can be found at
14313 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14314 solution made possible by this option to marking things hidden when
14315 the default is public is to make the default hidden and mark things
14316 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14317 and @code{__attribute__ ((visibility("default")))} instead of
14318 @code{__declspec(dllexport)} you get almost identical semantics with
14319 identical syntax. This is a great boon to those working with
14320 cross-platform projects.
14321
14322 For those adding visibility support to existing code, you may find
14323 @code{#pragma GCC visibility} of use. This works by you enclosing
14324 the declarations you wish to set visibility for with (for example)
14325 @code{#pragma GCC visibility push(hidden)} and
14326 @code{#pragma GCC visibility pop}.
14327 Bear in mind that symbol visibility should be viewed @strong{as
14328 part of the API interface contract} and thus all new code should
14329 always specify visibility when it is not the default; i.e., declarations
14330 only for use within the local DSO should @strong{always} be marked explicitly
14331 as hidden as so to avoid PLT indirection overheads---making this
14332 abundantly clear also aids readability and self-documentation of the code.
14333 Note that due to ISO C++ specification requirements, @code{operator new} and
14334 @code{operator delete} must always be of default visibility.
14335
14336 Be aware that headers from outside your project, in particular system
14337 headers and headers from any other library you use, may not be
14338 expecting to be compiled with visibility other than the default. You
14339 may need to explicitly say @code{#pragma GCC visibility push(default)}
14340 before including any such headers.
14341
14342 @code{extern} declarations are not affected by @option{-fvisibility}, so
14343 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14344 no modifications. However, this means that calls to @code{extern}
14345 functions with no explicit visibility use the PLT, so it is more
14346 effective to use @code{__attribute ((visibility))} and/or
14347 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14348 declarations should be treated as hidden.
14349
14350 Note that @option{-fvisibility} does affect C++ vague linkage
14351 entities. This means that, for instance, an exception class that is
14352 be thrown between DSOs must be explicitly marked with default
14353 visibility so that the @samp{type_info} nodes are unified between
14354 the DSOs.
14355
14356 An overview of these techniques, their benefits and how to use them
14357 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14358
14359 @item -fstrict-volatile-bitfields
14360 @opindex fstrict-volatile-bitfields
14361 This option should be used if accesses to volatile bit-fields (or other
14362 structure fields, although the compiler usually honors those types
14363 anyway) should use a single access of the width of the
14364 field's type, aligned to a natural alignment if possible. For
14365 example, targets with memory-mapped peripheral registers might require
14366 all such accesses to be 16 bits wide; with this flag you can
14367 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14368 is 16 bits on these targets) to force GCC to use 16-bit accesses
14369 instead of, perhaps, a more efficient 32-bit access.
14370
14371 If this option is disabled, the compiler uses the most efficient
14372 instruction. In the previous example, that might be a 32-bit load
14373 instruction, even though that accesses bytes that do not contain
14374 any portion of the bit-field, or memory-mapped registers unrelated to
14375 the one being updated.
14376
14377 In some cases, such as when the @code{packed} attribute is applied to a
14378 structure field, it may not be possible to access the field with a single
14379 read or write that is correctly aligned for the target machine. In this
14380 case GCC falls back to generating multiple accesses rather than code that
14381 will fault or truncate the result at run time.
14382
14383 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14384 not allowed to touch non bit-field members. It is therefore recommended
14385 to define all bits of the field's type as bit-field members.
14386
14387 The default value of this option is determined by the application binary
14388 interface for the target processor.
14389
14390 @item -fsync-libcalls
14391 @opindex fsync-libcalls
14392 This option controls whether any out-of-line instance of the @code{__sync}
14393 family of functions may be used to implement the C++11 @code{__atomic}
14394 family of functions.
14395
14396 The default value of this option is enabled, thus the only useful form
14397 of the option is @option{-fno-sync-libcalls}. This option is used in
14398 the implementation of the @file{libatomic} runtime library.
14399
14400 @end table
14401
14402 @node Developer Options
14403 @section GCC Developer Options
14404 @cindex developer options
14405 @cindex debugging GCC
14406 @cindex debug dump options
14407 @cindex dump options
14408 @cindex compilation statistics
14409
14410 This section describes command-line options that are primarily of
14411 interest to GCC developers, including options to support compiler
14412 testing and investigation of compiler bugs and compile-time
14413 performance problems. This includes options that produce debug dumps
14414 at various points in the compilation; that print statistics such as
14415 memory use and execution time; and that print information about GCC's
14416 configuration, such as where it searches for libraries. You should
14417 rarely need to use any of these options for ordinary compilation and
14418 linking tasks.
14419
14420 Many developer options that cause GCC to dump output to a file take an
14421 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14422 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14423 error.
14424
14425 If @samp{=@var{filename}} is omitted, a default dump file name is
14426 constructed by concatenating the base dump file name, a pass number,
14427 phase letter, and pass name. The base dump file name is the name of
14428 output file produced by the compiler if explicitly specified and not
14429 an executable; otherwise it is the source file name.
14430 The pass number is determined by the order passes are registered with
14431 the compiler's pass manager.
14432 This is generally the same as the order of execution, but passes
14433 registered by plugins, target-specific passes, or passes that are
14434 otherwise registered late are numbered higher than the pass named
14435 @samp{final}, even if they are executed earlier. The phase letter is
14436 one of @samp{i} (inter-procedural analysis), @samp{l}
14437 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14438 The files are created in the directory of the output file.
14439
14440 @table @gcctabopt
14441
14442 @item -d@var{letters}
14443 @itemx -fdump-rtl-@var{pass}
14444 @itemx -fdump-rtl-@var{pass}=@var{filename}
14445 @opindex d
14446 @opindex fdump-rtl-@var{pass}
14447 Says to make debugging dumps during compilation at times specified by
14448 @var{letters}. This is used for debugging the RTL-based passes of the
14449 compiler.
14450
14451 Some @option{-d@var{letters}} switches have different meaning when
14452 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14453 for information about preprocessor-specific dump options.
14454
14455 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14456 @option{-d} option @var{letters}. Here are the possible
14457 letters for use in @var{pass} and @var{letters}, and their meanings:
14458
14459 @table @gcctabopt
14460
14461 @item -fdump-rtl-alignments
14462 @opindex fdump-rtl-alignments
14463 Dump after branch alignments have been computed.
14464
14465 @item -fdump-rtl-asmcons
14466 @opindex fdump-rtl-asmcons
14467 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14468
14469 @item -fdump-rtl-auto_inc_dec
14470 @opindex fdump-rtl-auto_inc_dec
14471 Dump after auto-inc-dec discovery. This pass is only run on
14472 architectures that have auto inc or auto dec instructions.
14473
14474 @item -fdump-rtl-barriers
14475 @opindex fdump-rtl-barriers
14476 Dump after cleaning up the barrier instructions.
14477
14478 @item -fdump-rtl-bbpart
14479 @opindex fdump-rtl-bbpart
14480 Dump after partitioning hot and cold basic blocks.
14481
14482 @item -fdump-rtl-bbro
14483 @opindex fdump-rtl-bbro
14484 Dump after block reordering.
14485
14486 @item -fdump-rtl-btl1
14487 @itemx -fdump-rtl-btl2
14488 @opindex fdump-rtl-btl2
14489 @opindex fdump-rtl-btl2
14490 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14491 after the two branch
14492 target load optimization passes.
14493
14494 @item -fdump-rtl-bypass
14495 @opindex fdump-rtl-bypass
14496 Dump after jump bypassing and control flow optimizations.
14497
14498 @item -fdump-rtl-combine
14499 @opindex fdump-rtl-combine
14500 Dump after the RTL instruction combination pass.
14501
14502 @item -fdump-rtl-compgotos
14503 @opindex fdump-rtl-compgotos
14504 Dump after duplicating the computed gotos.
14505
14506 @item -fdump-rtl-ce1
14507 @itemx -fdump-rtl-ce2
14508 @itemx -fdump-rtl-ce3
14509 @opindex fdump-rtl-ce1
14510 @opindex fdump-rtl-ce2
14511 @opindex fdump-rtl-ce3
14512 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14513 @option{-fdump-rtl-ce3} enable dumping after the three
14514 if conversion passes.
14515
14516 @item -fdump-rtl-cprop_hardreg
14517 @opindex fdump-rtl-cprop_hardreg
14518 Dump after hard register copy propagation.
14519
14520 @item -fdump-rtl-csa
14521 @opindex fdump-rtl-csa
14522 Dump after combining stack adjustments.
14523
14524 @item -fdump-rtl-cse1
14525 @itemx -fdump-rtl-cse2
14526 @opindex fdump-rtl-cse1
14527 @opindex fdump-rtl-cse2
14528 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14529 the two common subexpression elimination passes.
14530
14531 @item -fdump-rtl-dce
14532 @opindex fdump-rtl-dce
14533 Dump after the standalone dead code elimination passes.
14534
14535 @item -fdump-rtl-dbr
14536 @opindex fdump-rtl-dbr
14537 Dump after delayed branch scheduling.
14538
14539 @item -fdump-rtl-dce1
14540 @itemx -fdump-rtl-dce2
14541 @opindex fdump-rtl-dce1
14542 @opindex fdump-rtl-dce2
14543 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14544 the two dead store elimination passes.
14545
14546 @item -fdump-rtl-eh
14547 @opindex fdump-rtl-eh
14548 Dump after finalization of EH handling code.
14549
14550 @item -fdump-rtl-eh_ranges
14551 @opindex fdump-rtl-eh_ranges
14552 Dump after conversion of EH handling range regions.
14553
14554 @item -fdump-rtl-expand
14555 @opindex fdump-rtl-expand
14556 Dump after RTL generation.
14557
14558 @item -fdump-rtl-fwprop1
14559 @itemx -fdump-rtl-fwprop2
14560 @opindex fdump-rtl-fwprop1
14561 @opindex fdump-rtl-fwprop2
14562 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14563 dumping after the two forward propagation passes.
14564
14565 @item -fdump-rtl-gcse1
14566 @itemx -fdump-rtl-gcse2
14567 @opindex fdump-rtl-gcse1
14568 @opindex fdump-rtl-gcse2
14569 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14570 after global common subexpression elimination.
14571
14572 @item -fdump-rtl-init-regs
14573 @opindex fdump-rtl-init-regs
14574 Dump after the initialization of the registers.
14575
14576 @item -fdump-rtl-initvals
14577 @opindex fdump-rtl-initvals
14578 Dump after the computation of the initial value sets.
14579
14580 @item -fdump-rtl-into_cfglayout
14581 @opindex fdump-rtl-into_cfglayout
14582 Dump after converting to cfglayout mode.
14583
14584 @item -fdump-rtl-ira
14585 @opindex fdump-rtl-ira
14586 Dump after iterated register allocation.
14587
14588 @item -fdump-rtl-jump
14589 @opindex fdump-rtl-jump
14590 Dump after the second jump optimization.
14591
14592 @item -fdump-rtl-loop2
14593 @opindex fdump-rtl-loop2
14594 @option{-fdump-rtl-loop2} enables dumping after the rtl
14595 loop optimization passes.
14596
14597 @item -fdump-rtl-mach
14598 @opindex fdump-rtl-mach
14599 Dump after performing the machine dependent reorganization pass, if that
14600 pass exists.
14601
14602 @item -fdump-rtl-mode_sw
14603 @opindex fdump-rtl-mode_sw
14604 Dump after removing redundant mode switches.
14605
14606 @item -fdump-rtl-rnreg
14607 @opindex fdump-rtl-rnreg
14608 Dump after register renumbering.
14609
14610 @item -fdump-rtl-outof_cfglayout
14611 @opindex fdump-rtl-outof_cfglayout
14612 Dump after converting from cfglayout mode.
14613
14614 @item -fdump-rtl-peephole2
14615 @opindex fdump-rtl-peephole2
14616 Dump after the peephole pass.
14617
14618 @item -fdump-rtl-postreload
14619 @opindex fdump-rtl-postreload
14620 Dump after post-reload optimizations.
14621
14622 @item -fdump-rtl-pro_and_epilogue
14623 @opindex fdump-rtl-pro_and_epilogue
14624 Dump after generating the function prologues and epilogues.
14625
14626 @item -fdump-rtl-sched1
14627 @itemx -fdump-rtl-sched2
14628 @opindex fdump-rtl-sched1
14629 @opindex fdump-rtl-sched2
14630 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14631 after the basic block scheduling passes.
14632
14633 @item -fdump-rtl-ree
14634 @opindex fdump-rtl-ree
14635 Dump after sign/zero extension elimination.
14636
14637 @item -fdump-rtl-seqabstr
14638 @opindex fdump-rtl-seqabstr
14639 Dump after common sequence discovery.
14640
14641 @item -fdump-rtl-shorten
14642 @opindex fdump-rtl-shorten
14643 Dump after shortening branches.
14644
14645 @item -fdump-rtl-sibling
14646 @opindex fdump-rtl-sibling
14647 Dump after sibling call optimizations.
14648
14649 @item -fdump-rtl-split1
14650 @itemx -fdump-rtl-split2
14651 @itemx -fdump-rtl-split3
14652 @itemx -fdump-rtl-split4
14653 @itemx -fdump-rtl-split5
14654 @opindex fdump-rtl-split1
14655 @opindex fdump-rtl-split2
14656 @opindex fdump-rtl-split3
14657 @opindex fdump-rtl-split4
14658 @opindex fdump-rtl-split5
14659 These options enable dumping after five rounds of
14660 instruction splitting.
14661
14662 @item -fdump-rtl-sms
14663 @opindex fdump-rtl-sms
14664 Dump after modulo scheduling. This pass is only run on some
14665 architectures.
14666
14667 @item -fdump-rtl-stack
14668 @opindex fdump-rtl-stack
14669 Dump after conversion from GCC's ``flat register file'' registers to the
14670 x87's stack-like registers. This pass is only run on x86 variants.
14671
14672 @item -fdump-rtl-subreg1
14673 @itemx -fdump-rtl-subreg2
14674 @opindex fdump-rtl-subreg1
14675 @opindex fdump-rtl-subreg2
14676 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14677 the two subreg expansion passes.
14678
14679 @item -fdump-rtl-unshare
14680 @opindex fdump-rtl-unshare
14681 Dump after all rtl has been unshared.
14682
14683 @item -fdump-rtl-vartrack
14684 @opindex fdump-rtl-vartrack
14685 Dump after variable tracking.
14686
14687 @item -fdump-rtl-vregs
14688 @opindex fdump-rtl-vregs
14689 Dump after converting virtual registers to hard registers.
14690
14691 @item -fdump-rtl-web
14692 @opindex fdump-rtl-web
14693 Dump after live range splitting.
14694
14695 @item -fdump-rtl-regclass
14696 @itemx -fdump-rtl-subregs_of_mode_init
14697 @itemx -fdump-rtl-subregs_of_mode_finish
14698 @itemx -fdump-rtl-dfinit
14699 @itemx -fdump-rtl-dfinish
14700 @opindex fdump-rtl-regclass
14701 @opindex fdump-rtl-subregs_of_mode_init
14702 @opindex fdump-rtl-subregs_of_mode_finish
14703 @opindex fdump-rtl-dfinit
14704 @opindex fdump-rtl-dfinish
14705 These dumps are defined but always produce empty files.
14706
14707 @item -da
14708 @itemx -fdump-rtl-all
14709 @opindex da
14710 @opindex fdump-rtl-all
14711 Produce all the dumps listed above.
14712
14713 @item -dA
14714 @opindex dA
14715 Annotate the assembler output with miscellaneous debugging information.
14716
14717 @item -dD
14718 @opindex dD
14719 Dump all macro definitions, at the end of preprocessing, in addition to
14720 normal output.
14721
14722 @item -dH
14723 @opindex dH
14724 Produce a core dump whenever an error occurs.
14725
14726 @item -dp
14727 @opindex dp
14728 Annotate the assembler output with a comment indicating which
14729 pattern and alternative is used. The length and cost of each instruction are
14730 also printed.
14731
14732 @item -dP
14733 @opindex dP
14734 Dump the RTL in the assembler output as a comment before each instruction.
14735 Also turns on @option{-dp} annotation.
14736
14737 @item -dx
14738 @opindex dx
14739 Just generate RTL for a function instead of compiling it. Usually used
14740 with @option{-fdump-rtl-expand}.
14741 @end table
14742
14743 @item -fdump-debug
14744 @opindex fdump-debug
14745 Dump debugging information generated during the debug
14746 generation phase.
14747
14748 @item -fdump-earlydebug
14749 @opindex fdump-earlydebug
14750 Dump debugging information generated during the early debug
14751 generation phase.
14752
14753 @item -fdump-noaddr
14754 @opindex fdump-noaddr
14755 When doing debugging dumps, suppress address output. This makes it more
14756 feasible to use diff on debugging dumps for compiler invocations with
14757 different compiler binaries and/or different
14758 text / bss / data / heap / stack / dso start locations.
14759
14760 @item -freport-bug
14761 @opindex freport-bug
14762 Collect and dump debug information into a temporary file if an
14763 internal compiler error (ICE) occurs.
14764
14765 @item -fdump-unnumbered
14766 @opindex fdump-unnumbered
14767 When doing debugging dumps, suppress instruction numbers and address output.
14768 This makes it more feasible to use diff on debugging dumps for compiler
14769 invocations with different options, in particular with and without
14770 @option{-g}.
14771
14772 @item -fdump-unnumbered-links
14773 @opindex fdump-unnumbered-links
14774 When doing debugging dumps (see @option{-d} option above), suppress
14775 instruction numbers for the links to the previous and next instructions
14776 in a sequence.
14777
14778 @item -fdump-ipa-@var{switch}
14779 @itemx -fdump-ipa-@var{switch}-@var{options}
14780 @opindex fdump-ipa
14781 Control the dumping at various stages of inter-procedural analysis
14782 language tree to a file. The file name is generated by appending a
14783 switch specific suffix to the source file name, and the file is created
14784 in the same directory as the output file. The following dumps are
14785 possible:
14786
14787 @table @samp
14788 @item all
14789 Enables all inter-procedural analysis dumps.
14790
14791 @item cgraph
14792 Dumps information about call-graph optimization, unused function removal,
14793 and inlining decisions.
14794
14795 @item inline
14796 Dump after function inlining.
14797
14798 @end table
14799
14800 Additionally, the options @option{-optimized}, @option{-missed},
14801 @option{-note}, and @option{-all} can be provided, with the same meaning
14802 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14803
14804 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14805 information on callsites that were inlined, along with callsites
14806 that were not inlined.
14807
14808 By default, the dump will contain messages about successful
14809 optimizations (equivalent to @option{-optimized}) together with
14810 low-level details about the analysis.
14811
14812 @item -fdump-lang-all
14813 @itemx -fdump-lang-@var{switch}
14814 @itemx -fdump-lang-@var{switch}-@var{options}
14815 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14816 @opindex fdump-lang-all
14817 @opindex fdump-lang
14818 Control the dumping of language-specific information. The @var{options}
14819 and @var{filename} portions behave as described in the
14820 @option{-fdump-tree} option. The following @var{switch} values are
14821 accepted:
14822
14823 @table @samp
14824 @item all
14825
14826 Enable all language-specific dumps.
14827
14828 @item class
14829 Dump class hierarchy information. Virtual table information is emitted
14830 unless '@option{slim}' is specified. This option is applicable to C++ only.
14831
14832 @item raw
14833 Dump the raw internal tree data. This option is applicable to C++ only.
14834
14835 @end table
14836
14837 @item -fdump-passes
14838 @opindex fdump-passes
14839 Print on @file{stderr} the list of optimization passes that are turned
14840 on and off by the current command-line options.
14841
14842 @item -fdump-statistics-@var{option}
14843 @opindex fdump-statistics
14844 Enable and control dumping of pass statistics in a separate file. The
14845 file name is generated by appending a suffix ending in
14846 @samp{.statistics} to the source file name, and the file is created in
14847 the same directory as the output file. If the @samp{-@var{option}}
14848 form is used, @samp{-stats} causes counters to be summed over the
14849 whole compilation unit while @samp{-details} dumps every event as
14850 the passes generate them. The default with no option is to sum
14851 counters for each function compiled.
14852
14853 @item -fdump-tree-all
14854 @itemx -fdump-tree-@var{switch}
14855 @itemx -fdump-tree-@var{switch}-@var{options}
14856 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14857 @opindex fdump-tree-all
14858 @opindex fdump-tree
14859 Control the dumping at various stages of processing the intermediate
14860 language tree to a file. If the @samp{-@var{options}}
14861 form is used, @var{options} is a list of @samp{-} separated options
14862 which control the details of the dump. Not all options are applicable
14863 to all dumps; those that are not meaningful are ignored. The
14864 following options are available
14865
14866 @table @samp
14867 @item address
14868 Print the address of each node. Usually this is not meaningful as it
14869 changes according to the environment and source file. Its primary use
14870 is for tying up a dump file with a debug environment.
14871 @item asmname
14872 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14873 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14874 use working backward from mangled names in the assembly file.
14875 @item slim
14876 When dumping front-end intermediate representations, inhibit dumping
14877 of members of a scope or body of a function merely because that scope
14878 has been reached. Only dump such items when they are directly reachable
14879 by some other path.
14880
14881 When dumping pretty-printed trees, this option inhibits dumping the
14882 bodies of control structures.
14883
14884 When dumping RTL, print the RTL in slim (condensed) form instead of
14885 the default LISP-like representation.
14886 @item raw
14887 Print a raw representation of the tree. By default, trees are
14888 pretty-printed into a C-like representation.
14889 @item details
14890 Enable more detailed dumps (not honored by every dump option). Also
14891 include information from the optimization passes.
14892 @item stats
14893 Enable dumping various statistics about the pass (not honored by every dump
14894 option).
14895 @item blocks
14896 Enable showing basic block boundaries (disabled in raw dumps).
14897 @item graph
14898 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14899 dump a representation of the control flow graph suitable for viewing with
14900 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14901 the file is pretty-printed as a subgraph, so that GraphViz can render them
14902 all in a single plot.
14903
14904 This option currently only works for RTL dumps, and the RTL is always
14905 dumped in slim form.
14906 @item vops
14907 Enable showing virtual operands for every statement.
14908 @item lineno
14909 Enable showing line numbers for statements.
14910 @item uid
14911 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14912 @item verbose
14913 Enable showing the tree dump for each statement.
14914 @item eh
14915 Enable showing the EH region number holding each statement.
14916 @item scev
14917 Enable showing scalar evolution analysis details.
14918 @item optimized
14919 Enable showing optimization information (only available in certain
14920 passes).
14921 @item missed
14922 Enable showing missed optimization information (only available in certain
14923 passes).
14924 @item note
14925 Enable other detailed optimization information (only available in
14926 certain passes).
14927 @item all
14928 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14929 and @option{lineno}.
14930 @item optall
14931 Turn on all optimization options, i.e., @option{optimized},
14932 @option{missed}, and @option{note}.
14933 @end table
14934
14935 To determine what tree dumps are available or find the dump for a pass
14936 of interest follow the steps below.
14937
14938 @enumerate
14939 @item
14940 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14941 look for a code that corresponds to the pass you are interested in.
14942 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14943 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14944 The number at the end distinguishes distinct invocations of the same pass.
14945 @item
14946 To enable the creation of the dump file, append the pass code to
14947 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14948 to enable the dump from the Early Value Range Propagation pass, invoke
14949 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14950 specify the name of the dump file. If you don't specify one, GCC
14951 creates as described below.
14952 @item
14953 Find the pass dump in a file whose name is composed of three components
14954 separated by a period: the name of the source file GCC was invoked to
14955 compile, a numeric suffix indicating the pass number followed by the
14956 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14957 and finally the pass code. For example, the Early VRP pass dump might
14958 be in a file named @file{myfile.c.038t.evrp} in the current working
14959 directory. Note that the numeric codes are not stable and may change
14960 from one version of GCC to another.
14961 @end enumerate
14962
14963 @item -fopt-info
14964 @itemx -fopt-info-@var{options}
14965 @itemx -fopt-info-@var{options}=@var{filename}
14966 @opindex fopt-info
14967 Controls optimization dumps from various optimization passes. If the
14968 @samp{-@var{options}} form is used, @var{options} is a list of
14969 @samp{-} separated option keywords to select the dump details and
14970 optimizations.
14971
14972 The @var{options} can be divided into three groups:
14973 @enumerate
14974 @item
14975 options describing what kinds of messages should be emitted,
14976 @item
14977 options describing the verbosity of the dump, and
14978 @item
14979 options describing which optimizations should be included.
14980 @end enumerate
14981 The options from each group can be freely mixed as they are
14982 non-overlapping. However, in case of any conflicts,
14983 the later options override the earlier options on the command
14984 line.
14985
14986 The following options control which kinds of messages should be emitted:
14987
14988 @table @samp
14989 @item optimized
14990 Print information when an optimization is successfully applied. It is
14991 up to a pass to decide which information is relevant. For example, the
14992 vectorizer passes print the source location of loops which are
14993 successfully vectorized.
14994 @item missed
14995 Print information about missed optimizations. Individual passes
14996 control which information to include in the output.
14997 @item note
14998 Print verbose information about optimizations, such as certain
14999 transformations, more detailed messages about decisions etc.
15000 @item all
15001 Print detailed optimization information. This includes
15002 @samp{optimized}, @samp{missed}, and @samp{note}.
15003 @end table
15004
15005 The following option controls the dump verbosity:
15006
15007 @table @samp
15008 @item internals
15009 By default, only ``high-level'' messages are emitted. This option enables
15010 additional, more detailed, messages, which are likely to only be of interest
15011 to GCC developers.
15012 @end table
15013
15014 One or more of the following option keywords can be used to describe a
15015 group of optimizations:
15016
15017 @table @samp
15018 @item ipa
15019 Enable dumps from all interprocedural optimizations.
15020 @item loop
15021 Enable dumps from all loop optimizations.
15022 @item inline
15023 Enable dumps from all inlining optimizations.
15024 @item omp
15025 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
15026 @item vec
15027 Enable dumps from all vectorization optimizations.
15028 @item optall
15029 Enable dumps from all optimizations. This is a superset of
15030 the optimization groups listed above.
15031 @end table
15032
15033 If @var{options} is
15034 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
15035 about successful optimizations from all the passes, omitting messages
15036 that are treated as ``internals''.
15037
15038 If the @var{filename} is provided, then the dumps from all the
15039 applicable optimizations are concatenated into the @var{filename}.
15040 Otherwise the dump is output onto @file{stderr}. Though multiple
15041 @option{-fopt-info} options are accepted, only one of them can include
15042 a @var{filename}. If other filenames are provided then all but the
15043 first such option are ignored.
15044
15045 Note that the output @var{filename} is overwritten
15046 in case of multiple translation units. If a combined output from
15047 multiple translation units is desired, @file{stderr} should be used
15048 instead.
15049
15050 In the following example, the optimization info is output to
15051 @file{stderr}:
15052
15053 @smallexample
15054 gcc -O3 -fopt-info
15055 @end smallexample
15056
15057 This example:
15058 @smallexample
15059 gcc -O3 -fopt-info-missed=missed.all
15060 @end smallexample
15061
15062 @noindent
15063 outputs missed optimization report from all the passes into
15064 @file{missed.all}, and this one:
15065
15066 @smallexample
15067 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
15068 @end smallexample
15069
15070 @noindent
15071 prints information about missed optimization opportunities from
15072 vectorization passes on @file{stderr}.
15073 Note that @option{-fopt-info-vec-missed} is equivalent to
15074 @option{-fopt-info-missed-vec}. The order of the optimization group
15075 names and message types listed after @option{-fopt-info} does not matter.
15076
15077 As another example,
15078 @smallexample
15079 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
15080 @end smallexample
15081
15082 @noindent
15083 outputs information about missed optimizations as well as
15084 optimized locations from all the inlining passes into
15085 @file{inline.txt}.
15086
15087 Finally, consider:
15088
15089 @smallexample
15090 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
15091 @end smallexample
15092
15093 @noindent
15094 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
15095 in conflict since only one output file is allowed. In this case, only
15096 the first option takes effect and the subsequent options are
15097 ignored. Thus only @file{vec.miss} is produced which contains
15098 dumps from the vectorizer about missed opportunities.
15099
15100 @item -fsave-optimization-record
15101 @opindex fsave-optimization-record
15102 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
15103 were performed, for those optimizations that support @option{-fopt-info}.
15104
15105 This option is experimental and the format of the data within the
15106 compressed JSON file is subject to change.
15107
15108 It is roughly equivalent to a machine-readable version of
15109 @option{-fopt-info-all}, as a collection of messages with source file,
15110 line number and column number, with the following additional data for
15111 each message:
15112
15113 @itemize @bullet
15114
15115 @item
15116 the execution count of the code being optimized, along with metadata about
15117 whether this was from actual profile data, or just an estimate, allowing
15118 consumers to prioritize messages by code hotness,
15119
15120 @item
15121 the function name of the code being optimized, where applicable,
15122
15123 @item
15124 the ``inlining chain'' for the code being optimized, so that when
15125 a function is inlined into several different places (which might
15126 themselves be inlined), the reader can distinguish between the copies,
15127
15128 @item
15129 objects identifying those parts of the message that refer to expressions,
15130 statements or symbol-table nodes, which of these categories they are, and,
15131 when available, their source code location,
15132
15133 @item
15134 the GCC pass that emitted the message, and
15135
15136 @item
15137 the location in GCC's own code from which the message was emitted
15138
15139 @end itemize
15140
15141 Additionally, some messages are logically nested within other
15142 messages, reflecting implementation details of the optimization
15143 passes.
15144
15145 @item -fsched-verbose=@var{n}
15146 @opindex fsched-verbose
15147 On targets that use instruction scheduling, this option controls the
15148 amount of debugging output the scheduler prints to the dump files.
15149
15150 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15151 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15152 For @var{n} greater than one, it also output basic block probabilities,
15153 detailed ready list information and unit/insn info. For @var{n} greater
15154 than two, it includes RTL at abort point, control-flow and regions info.
15155 And for @var{n} over four, @option{-fsched-verbose} also includes
15156 dependence info.
15157
15158
15159
15160 @item -fenable-@var{kind}-@var{pass}
15161 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15162 @opindex fdisable-
15163 @opindex fenable-
15164
15165 This is a set of options that are used to explicitly disable/enable
15166 optimization passes. These options are intended for use for debugging GCC.
15167 Compiler users should use regular options for enabling/disabling
15168 passes instead.
15169
15170 @table @gcctabopt
15171
15172 @item -fdisable-ipa-@var{pass}
15173 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15174 statically invoked in the compiler multiple times, the pass name should be
15175 appended with a sequential number starting from 1.
15176
15177 @item -fdisable-rtl-@var{pass}
15178 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15179 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15180 statically invoked in the compiler multiple times, the pass name should be
15181 appended with a sequential number starting from 1. @var{range-list} is a
15182 comma-separated list of function ranges or assembler names. Each range is a number
15183 pair separated by a colon. The range is inclusive in both ends. If the range
15184 is trivial, the number pair can be simplified as a single number. If the
15185 function's call graph node's @var{uid} falls within one of the specified ranges,
15186 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15187 function header of a dump file, and the pass names can be dumped by using
15188 option @option{-fdump-passes}.
15189
15190 @item -fdisable-tree-@var{pass}
15191 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15192 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15193 option arguments.
15194
15195 @item -fenable-ipa-@var{pass}
15196 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15197 statically invoked in the compiler multiple times, the pass name should be
15198 appended with a sequential number starting from 1.
15199
15200 @item -fenable-rtl-@var{pass}
15201 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15202 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15203 description and examples.
15204
15205 @item -fenable-tree-@var{pass}
15206 @itemx -fenable-tree-@var{pass}=@var{range-list}
15207 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15208 of option arguments.
15209
15210 @end table
15211
15212 Here are some examples showing uses of these options.
15213
15214 @smallexample
15215
15216 # disable ccp1 for all functions
15217 -fdisable-tree-ccp1
15218 # disable complete unroll for function whose cgraph node uid is 1
15219 -fenable-tree-cunroll=1
15220 # disable gcse2 for functions at the following ranges [1,1],
15221 # [300,400], and [400,1000]
15222 # disable gcse2 for functions foo and foo2
15223 -fdisable-rtl-gcse2=foo,foo2
15224 # disable early inlining
15225 -fdisable-tree-einline
15226 # disable ipa inlining
15227 -fdisable-ipa-inline
15228 # enable tree full unroll
15229 -fenable-tree-unroll
15230
15231 @end smallexample
15232
15233 @item -fchecking
15234 @itemx -fchecking=@var{n}
15235 @opindex fchecking
15236 @opindex fno-checking
15237 Enable internal consistency checking. The default depends on
15238 the compiler configuration. @option{-fchecking=2} enables further
15239 internal consistency checking that might affect code generation.
15240
15241 @item -frandom-seed=@var{string}
15242 @opindex frandom-seed
15243 This option provides a seed that GCC uses in place of
15244 random numbers in generating certain symbol names
15245 that have to be different in every compiled file. It is also used to
15246 place unique stamps in coverage data files and the object files that
15247 produce them. You can use the @option{-frandom-seed} option to produce
15248 reproducibly identical object files.
15249
15250 The @var{string} can either be a number (decimal, octal or hex) or an
15251 arbitrary string (in which case it's converted to a number by
15252 computing CRC32).
15253
15254 The @var{string} should be different for every file you compile.
15255
15256 @item -save-temps
15257 @itemx -save-temps=cwd
15258 @opindex save-temps
15259 Store the usual ``temporary'' intermediate files permanently; place them
15260 in the current directory and name them based on the source file. Thus,
15261 compiling @file{foo.c} with @option{-c -save-temps} produces files
15262 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15263 preprocessed @file{foo.i} output file even though the compiler now
15264 normally uses an integrated preprocessor.
15265
15266 When used in combination with the @option{-x} command-line option,
15267 @option{-save-temps} is sensible enough to avoid over writing an
15268 input source file with the same extension as an intermediate file.
15269 The corresponding intermediate file may be obtained by renaming the
15270 source file before using @option{-save-temps}.
15271
15272 If you invoke GCC in parallel, compiling several different source
15273 files that share a common base name in different subdirectories or the
15274 same source file compiled for multiple output destinations, it is
15275 likely that the different parallel compilers will interfere with each
15276 other, and overwrite the temporary files. For instance:
15277
15278 @smallexample
15279 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15280 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15281 @end smallexample
15282
15283 may result in @file{foo.i} and @file{foo.o} being written to
15284 simultaneously by both compilers.
15285
15286 @item -save-temps=obj
15287 @opindex save-temps=obj
15288 Store the usual ``temporary'' intermediate files permanently. If the
15289 @option{-o} option is used, the temporary files are based on the
15290 object file. If the @option{-o} option is not used, the
15291 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15292
15293 For example:
15294
15295 @smallexample
15296 gcc -save-temps=obj -c foo.c
15297 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15298 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15299 @end smallexample
15300
15301 @noindent
15302 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15303 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15304 @file{dir2/yfoobar.o}.
15305
15306 @item -time@r{[}=@var{file}@r{]}
15307 @opindex time
15308 Report the CPU time taken by each subprocess in the compilation
15309 sequence. For C source files, this is the compiler proper and assembler
15310 (plus the linker if linking is done).
15311
15312 Without the specification of an output file, the output looks like this:
15313
15314 @smallexample
15315 # cc1 0.12 0.01
15316 # as 0.00 0.01
15317 @end smallexample
15318
15319 The first number on each line is the ``user time'', that is time spent
15320 executing the program itself. The second number is ``system time'',
15321 time spent executing operating system routines on behalf of the program.
15322 Both numbers are in seconds.
15323
15324 With the specification of an output file, the output is appended to the
15325 named file, and it looks like this:
15326
15327 @smallexample
15328 0.12 0.01 cc1 @var{options}
15329 0.00 0.01 as @var{options}
15330 @end smallexample
15331
15332 The ``user time'' and the ``system time'' are moved before the program
15333 name, and the options passed to the program are displayed, so that one
15334 can later tell what file was being compiled, and with which options.
15335
15336 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15337 @opindex fdump-final-insns
15338 Dump the final internal representation (RTL) to @var{file}. If the
15339 optional argument is omitted (or if @var{file} is @code{.}), the name
15340 of the dump file is determined by appending @code{.gkd} to the
15341 compilation output file name.
15342
15343 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15344 @opindex fcompare-debug
15345 @opindex fno-compare-debug
15346 If no error occurs during compilation, run the compiler a second time,
15347 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15348 passed to the second compilation. Dump the final internal
15349 representation in both compilations, and print an error if they differ.
15350
15351 If the equal sign is omitted, the default @option{-gtoggle} is used.
15352
15353 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15354 and nonzero, implicitly enables @option{-fcompare-debug}. If
15355 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15356 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15357 is used.
15358
15359 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15360 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15361 of the final representation and the second compilation, preventing even
15362 @env{GCC_COMPARE_DEBUG} from taking effect.
15363
15364 To verify full coverage during @option{-fcompare-debug} testing, set
15365 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15366 which GCC rejects as an invalid option in any actual compilation
15367 (rather than preprocessing, assembly or linking). To get just a
15368 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15369 not overridden} will do.
15370
15371 @item -fcompare-debug-second
15372 @opindex fcompare-debug-second
15373 This option is implicitly passed to the compiler for the second
15374 compilation requested by @option{-fcompare-debug}, along with options to
15375 silence warnings, and omitting other options that would cause the compiler
15376 to produce output to files or to standard output as a side effect. Dump
15377 files and preserved temporary files are renamed so as to contain the
15378 @code{.gk} additional extension during the second compilation, to avoid
15379 overwriting those generated by the first.
15380
15381 When this option is passed to the compiler driver, it causes the
15382 @emph{first} compilation to be skipped, which makes it useful for little
15383 other than debugging the compiler proper.
15384
15385 @item -gtoggle
15386 @opindex gtoggle
15387 Turn off generation of debug info, if leaving out this option
15388 generates it, or turn it on at level 2 otherwise. The position of this
15389 argument in the command line does not matter; it takes effect after all
15390 other options are processed, and it does so only once, no matter how
15391 many times it is given. This is mainly intended to be used with
15392 @option{-fcompare-debug}.
15393
15394 @item -fvar-tracking-assignments-toggle
15395 @opindex fvar-tracking-assignments-toggle
15396 @opindex fno-var-tracking-assignments-toggle
15397 Toggle @option{-fvar-tracking-assignments}, in the same way that
15398 @option{-gtoggle} toggles @option{-g}.
15399
15400 @item -Q
15401 @opindex Q
15402 Makes the compiler print out each function name as it is compiled, and
15403 print some statistics about each pass when it finishes.
15404
15405 @item -ftime-report
15406 @opindex ftime-report
15407 Makes the compiler print some statistics about the time consumed by each
15408 pass when it finishes.
15409
15410 @item -ftime-report-details
15411 @opindex ftime-report-details
15412 Record the time consumed by infrastructure parts separately for each pass.
15413
15414 @item -fira-verbose=@var{n}
15415 @opindex fira-verbose
15416 Control the verbosity of the dump file for the integrated register allocator.
15417 The default value is 5. If the value @var{n} is greater or equal to 10,
15418 the dump output is sent to stderr using the same format as @var{n} minus 10.
15419
15420 @item -flto-report
15421 @opindex flto-report
15422 Prints a report with internal details on the workings of the link-time
15423 optimizer. The contents of this report vary from version to version.
15424 It is meant to be useful to GCC developers when processing object
15425 files in LTO mode (via @option{-flto}).
15426
15427 Disabled by default.
15428
15429 @item -flto-report-wpa
15430 @opindex flto-report-wpa
15431 Like @option{-flto-report}, but only print for the WPA phase of link-time
15432 optimization.
15433
15434 @item -fmem-report
15435 @opindex fmem-report
15436 Makes the compiler print some statistics about permanent memory
15437 allocation when it finishes.
15438
15439 @item -fmem-report-wpa
15440 @opindex fmem-report-wpa
15441 Makes the compiler print some statistics about permanent memory
15442 allocation for the WPA phase only.
15443
15444 @item -fpre-ipa-mem-report
15445 @opindex fpre-ipa-mem-report
15446 @item -fpost-ipa-mem-report
15447 @opindex fpost-ipa-mem-report
15448 Makes the compiler print some statistics about permanent memory
15449 allocation before or after interprocedural optimization.
15450
15451 @item -fprofile-report
15452 @opindex fprofile-report
15453 Makes the compiler print some statistics about consistency of the
15454 (estimated) profile and effect of individual passes.
15455
15456 @item -fstack-usage
15457 @opindex fstack-usage
15458 Makes the compiler output stack usage information for the program, on a
15459 per-function basis. The filename for the dump is made by appending
15460 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15461 the output file, if explicitly specified and it is not an executable,
15462 otherwise it is the basename of the source file. An entry is made up
15463 of three fields:
15464
15465 @itemize
15466 @item
15467 The name of the function.
15468 @item
15469 A number of bytes.
15470 @item
15471 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15472 @end itemize
15473
15474 The qualifier @code{static} means that the function manipulates the stack
15475 statically: a fixed number of bytes are allocated for the frame on function
15476 entry and released on function exit; no stack adjustments are otherwise made
15477 in the function. The second field is this fixed number of bytes.
15478
15479 The qualifier @code{dynamic} means that the function manipulates the stack
15480 dynamically: in addition to the static allocation described above, stack
15481 adjustments are made in the body of the function, for example to push/pop
15482 arguments around function calls. If the qualifier @code{bounded} is also
15483 present, the amount of these adjustments is bounded at compile time and
15484 the second field is an upper bound of the total amount of stack used by
15485 the function. If it is not present, the amount of these adjustments is
15486 not bounded at compile time and the second field only represents the
15487 bounded part.
15488
15489 @item -fstats
15490 @opindex fstats
15491 Emit statistics about front-end processing at the end of the compilation.
15492 This option is supported only by the C++ front end, and
15493 the information is generally only useful to the G++ development team.
15494
15495 @item -fdbg-cnt-list
15496 @opindex fdbg-cnt-list
15497 Print the name and the counter upper bound for all debug counters.
15498
15499
15500 @item -fdbg-cnt=@var{counter-value-list}
15501 @opindex fdbg-cnt
15502 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15503 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15504 tuples which sets the lower and the upper bound of each debug
15505 counter @var{name}. The @var{lower_bound} is optional and is zero
15506 initialized if not set.
15507 All debug counters have the initial upper bound of @code{UINT_MAX};
15508 thus @code{dbg_cnt} returns true always unless the upper bound
15509 is set by this option.
15510 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15511 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15512 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15513
15514 @item -print-file-name=@var{library}
15515 @opindex print-file-name
15516 Print the full absolute name of the library file @var{library} that
15517 would be used when linking---and don't do anything else. With this
15518 option, GCC does not compile or link anything; it just prints the
15519 file name.
15520
15521 @item -print-multi-directory
15522 @opindex print-multi-directory
15523 Print the directory name corresponding to the multilib selected by any
15524 other switches present in the command line. This directory is supposed
15525 to exist in @env{GCC_EXEC_PREFIX}.
15526
15527 @item -print-multi-lib
15528 @opindex print-multi-lib
15529 Print the mapping from multilib directory names to compiler switches
15530 that enable them. The directory name is separated from the switches by
15531 @samp{;}, and each switch starts with an @samp{@@} instead of the
15532 @samp{-}, without spaces between multiple switches. This is supposed to
15533 ease shell processing.
15534
15535 @item -print-multi-os-directory
15536 @opindex print-multi-os-directory
15537 Print the path to OS libraries for the selected
15538 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15539 present in the @file{lib} subdirectory and no multilibs are used, this is
15540 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15541 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15542 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15543 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15544
15545 @item -print-multiarch
15546 @opindex print-multiarch
15547 Print the path to OS libraries for the selected multiarch,
15548 relative to some @file{lib} subdirectory.
15549
15550 @item -print-prog-name=@var{program}
15551 @opindex print-prog-name
15552 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15553
15554 @item -print-libgcc-file-name
15555 @opindex print-libgcc-file-name
15556 Same as @option{-print-file-name=libgcc.a}.
15557
15558 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15559 but you do want to link with @file{libgcc.a}. You can do:
15560
15561 @smallexample
15562 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15563 @end smallexample
15564
15565 @item -print-search-dirs
15566 @opindex print-search-dirs
15567 Print the name of the configured installation directory and a list of
15568 program and library directories @command{gcc} searches---and don't do anything else.
15569
15570 This is useful when @command{gcc} prints the error message
15571 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15572 To resolve this you either need to put @file{cpp0} and the other compiler
15573 components where @command{gcc} expects to find them, or you can set the environment
15574 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15575 Don't forget the trailing @samp{/}.
15576 @xref{Environment Variables}.
15577
15578 @item -print-sysroot
15579 @opindex print-sysroot
15580 Print the target sysroot directory that is used during
15581 compilation. This is the target sysroot specified either at configure
15582 time or using the @option{--sysroot} option, possibly with an extra
15583 suffix that depends on compilation options. If no target sysroot is
15584 specified, the option prints nothing.
15585
15586 @item -print-sysroot-headers-suffix
15587 @opindex print-sysroot-headers-suffix
15588 Print the suffix added to the target sysroot when searching for
15589 headers, or give an error if the compiler is not configured with such
15590 a suffix---and don't do anything else.
15591
15592 @item -dumpmachine
15593 @opindex dumpmachine
15594 Print the compiler's target machine (for example,
15595 @samp{i686-pc-linux-gnu})---and don't do anything else.
15596
15597 @item -dumpversion
15598 @opindex dumpversion
15599 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15600 anything else. This is the compiler version used in filesystem paths and
15601 specs. Depending on how the compiler has been configured it can be just
15602 a single number (major version), two numbers separated by a dot (major and
15603 minor version) or three numbers separated by dots (major, minor and patchlevel
15604 version).
15605
15606 @item -dumpfullversion
15607 @opindex dumpfullversion
15608 Print the full compiler version---and don't do anything else. The output is
15609 always three numbers separated by dots, major, minor and patchlevel version.
15610
15611 @item -dumpspecs
15612 @opindex dumpspecs
15613 Print the compiler's built-in specs---and don't do anything else. (This
15614 is used when GCC itself is being built.) @xref{Spec Files}.
15615 @end table
15616
15617 @node Submodel Options
15618 @section Machine-Dependent Options
15619 @cindex submodel options
15620 @cindex specifying hardware config
15621 @cindex hardware models and configurations, specifying
15622 @cindex target-dependent options
15623 @cindex machine-dependent options
15624
15625 Each target machine supported by GCC can have its own options---for
15626 example, to allow you to compile for a particular processor variant or
15627 ABI, or to control optimizations specific to that machine. By
15628 convention, the names of machine-specific options start with
15629 @samp{-m}.
15630
15631 Some configurations of the compiler also support additional target-specific
15632 options, usually for compatibility with other compilers on the same
15633 platform.
15634
15635 @c This list is ordered alphanumerically by subsection name.
15636 @c It should be the same order and spelling as these options are listed
15637 @c in Machine Dependent Options
15638
15639 @menu
15640 * AArch64 Options::
15641 * Adapteva Epiphany Options::
15642 * AMD GCN Options::
15643 * ARC Options::
15644 * ARM Options::
15645 * AVR Options::
15646 * Blackfin Options::
15647 * C6X Options::
15648 * CRIS Options::
15649 * CR16 Options::
15650 * C-SKY Options::
15651 * Darwin Options::
15652 * DEC Alpha Options::
15653 * eBPF Options::
15654 * FR30 Options::
15655 * FT32 Options::
15656 * FRV Options::
15657 * GNU/Linux Options::
15658 * H8/300 Options::
15659 * HPPA Options::
15660 * IA-64 Options::
15661 * LM32 Options::
15662 * M32C Options::
15663 * M32R/D Options::
15664 * M680x0 Options::
15665 * MCore Options::
15666 * MeP Options::
15667 * MicroBlaze Options::
15668 * MIPS Options::
15669 * MMIX Options::
15670 * MN10300 Options::
15671 * Moxie Options::
15672 * MSP430 Options::
15673 * NDS32 Options::
15674 * Nios II Options::
15675 * Nvidia PTX Options::
15676 * OpenRISC Options::
15677 * PDP-11 Options::
15678 * picoChip Options::
15679 * PowerPC Options::
15680 * PRU Options::
15681 * RISC-V Options::
15682 * RL78 Options::
15683 * RS/6000 and PowerPC Options::
15684 * RX Options::
15685 * S/390 and zSeries Options::
15686 * Score Options::
15687 * SH Options::
15688 * Solaris 2 Options::
15689 * SPARC Options::
15690 * System V Options::
15691 * TILE-Gx Options::
15692 * TILEPro Options::
15693 * V850 Options::
15694 * VAX Options::
15695 * Visium Options::
15696 * VMS Options::
15697 * VxWorks Options::
15698 * x86 Options::
15699 * x86 Windows Options::
15700 * Xstormy16 Options::
15701 * Xtensa Options::
15702 * zSeries Options::
15703 @end menu
15704
15705 @node AArch64 Options
15706 @subsection AArch64 Options
15707 @cindex AArch64 Options
15708
15709 These options are defined for AArch64 implementations:
15710
15711 @table @gcctabopt
15712
15713 @item -mabi=@var{name}
15714 @opindex mabi
15715 Generate code for the specified data model. Permissible values
15716 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15717 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15718 but long int and pointers are 64 bits.
15719
15720 The default depends on the specific target configuration. Note that
15721 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15722 entire program with the same ABI, and link with a compatible set of libraries.
15723
15724 @item -mbig-endian
15725 @opindex mbig-endian
15726 Generate big-endian code. This is the default when GCC is configured for an
15727 @samp{aarch64_be-*-*} target.
15728
15729 @item -mgeneral-regs-only
15730 @opindex mgeneral-regs-only
15731 Generate code which uses only the general-purpose registers. This will prevent
15732 the compiler from using floating-point and Advanced SIMD registers but will not
15733 impose any restrictions on the assembler.
15734
15735 @item -mlittle-endian
15736 @opindex mlittle-endian
15737 Generate little-endian code. This is the default when GCC is configured for an
15738 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15739
15740 @item -mcmodel=tiny
15741 @opindex mcmodel=tiny
15742 Generate code for the tiny code model. The program and its statically defined
15743 symbols must be within 1MB of each other. Programs can be statically or
15744 dynamically linked.
15745
15746 @item -mcmodel=small
15747 @opindex mcmodel=small
15748 Generate code for the small code model. The program and its statically defined
15749 symbols must be within 4GB of each other. Programs can be statically or
15750 dynamically linked. This is the default code model.
15751
15752 @item -mcmodel=large
15753 @opindex mcmodel=large
15754 Generate code for the large code model. This makes no assumptions about
15755 addresses and sizes of sections. Programs can be statically linked only.
15756
15757 @item -mstrict-align
15758 @itemx -mno-strict-align
15759 @opindex mstrict-align
15760 @opindex mno-strict-align
15761 Avoid or allow generating memory accesses that may not be aligned on a natural
15762 object boundary as described in the architecture specification.
15763
15764 @item -momit-leaf-frame-pointer
15765 @itemx -mno-omit-leaf-frame-pointer
15766 @opindex momit-leaf-frame-pointer
15767 @opindex mno-omit-leaf-frame-pointer
15768 Omit or keep the frame pointer in leaf functions. The former behavior is the
15769 default.
15770
15771 @item -mstack-protector-guard=@var{guard}
15772 @itemx -mstack-protector-guard-reg=@var{reg}
15773 @itemx -mstack-protector-guard-offset=@var{offset}
15774 @opindex mstack-protector-guard
15775 @opindex mstack-protector-guard-reg
15776 @opindex mstack-protector-guard-offset
15777 Generate stack protection code using canary at @var{guard}. Supported
15778 locations are @samp{global} for a global canary or @samp{sysreg} for a
15779 canary in an appropriate system register.
15780
15781 With the latter choice the options
15782 @option{-mstack-protector-guard-reg=@var{reg}} and
15783 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15784 which system register to use as base register for reading the canary,
15785 and from what offset from that base register. There is no default
15786 register or offset as this is entirely for use within the Linux
15787 kernel.
15788
15789 @item -mstack-protector-guard=@var{guard}
15790 @itemx -mstack-protector-guard-reg=@var{reg}
15791 @itemx -mstack-protector-guard-offset=@var{offset}
15792 @opindex mstack-protector-guard
15793 @opindex mstack-protector-guard-reg
15794 @opindex mstack-protector-guard-offset
15795 Generate stack protection code using canary at @var{guard}. Supported
15796 locations are @samp{global} for a global canary or @samp{sysreg} for a
15797 canary in an appropriate system register.
15798
15799 With the latter choice the options
15800 @option{-mstack-protector-guard-reg=@var{reg}} and
15801 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15802 which system register to use as base register for reading the canary,
15803 and from what offset from that base register. There is no default
15804 register or offset as this is entirely for use within the Linux
15805 kernel.
15806
15807 @item -mtls-dialect=desc
15808 @opindex mtls-dialect=desc
15809 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15810 of TLS variables. This is the default.
15811
15812 @item -mtls-dialect=traditional
15813 @opindex mtls-dialect=traditional
15814 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15815 of TLS variables.
15816
15817 @item -mtls-size=@var{size}
15818 @opindex mtls-size
15819 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15820 This option requires binutils 2.26 or newer.
15821
15822 @item -mfix-cortex-a53-835769
15823 @itemx -mno-fix-cortex-a53-835769
15824 @opindex mfix-cortex-a53-835769
15825 @opindex mno-fix-cortex-a53-835769
15826 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15827 This involves inserting a NOP instruction between memory instructions and
15828 64-bit integer multiply-accumulate instructions.
15829
15830 @item -mfix-cortex-a53-843419
15831 @itemx -mno-fix-cortex-a53-843419
15832 @opindex mfix-cortex-a53-843419
15833 @opindex mno-fix-cortex-a53-843419
15834 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15835 This erratum workaround is made at link time and this will only pass the
15836 corresponding flag to the linker.
15837
15838 @item -mlow-precision-recip-sqrt
15839 @itemx -mno-low-precision-recip-sqrt
15840 @opindex mlow-precision-recip-sqrt
15841 @opindex mno-low-precision-recip-sqrt
15842 Enable or disable the reciprocal square root approximation.
15843 This option only has an effect if @option{-ffast-math} or
15844 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15845 precision of reciprocal square root results to about 16 bits for
15846 single precision and to 32 bits for double precision.
15847
15848 @item -mlow-precision-sqrt
15849 @itemx -mno-low-precision-sqrt
15850 @opindex mlow-precision-sqrt
15851 @opindex mno-low-precision-sqrt
15852 Enable or disable the square root approximation.
15853 This option only has an effect if @option{-ffast-math} or
15854 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15855 precision of square root results to about 16 bits for
15856 single precision and to 32 bits for double precision.
15857 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15858
15859 @item -mlow-precision-div
15860 @itemx -mno-low-precision-div
15861 @opindex mlow-precision-div
15862 @opindex mno-low-precision-div
15863 Enable or disable the division approximation.
15864 This option only has an effect if @option{-ffast-math} or
15865 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15866 precision of division results to about 16 bits for
15867 single precision and to 32 bits for double precision.
15868
15869 @item -mtrack-speculation
15870 @itemx -mno-track-speculation
15871 Enable or disable generation of additional code to track speculative
15872 execution through conditional branches. The tracking state can then
15873 be used by the compiler when expanding calls to
15874 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15875 sequence to be generated.
15876
15877 @item -march=@var{name}
15878 @opindex march
15879 Specify the name of the target architecture and, optionally, one or
15880 more feature modifiers. This option has the form
15881 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15882
15883 The permissible values for @var{arch} are @samp{armv8-a},
15884 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15885 @samp{armv8.5-a} or @var{native}.
15886
15887 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15888 support for the ARMv8.5-A architecture extensions.
15889
15890 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15891 support for the ARMv8.4-A architecture extensions.
15892
15893 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15894 support for the ARMv8.3-A architecture extensions.
15895
15896 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15897 support for the ARMv8.2-A architecture extensions.
15898
15899 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15900 support for the ARMv8.1-A architecture extension. In particular, it
15901 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15902
15903 The value @samp{native} is available on native AArch64 GNU/Linux and
15904 causes the compiler to pick the architecture of the host system. This
15905 option has no effect if the compiler is unable to recognize the
15906 architecture of the host system,
15907
15908 The permissible values for @var{feature} are listed in the sub-section
15909 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15910 Feature Modifiers}. Where conflicting feature modifiers are
15911 specified, the right-most feature is used.
15912
15913 GCC uses @var{name} to determine what kind of instructions it can emit
15914 when generating assembly code. If @option{-march} is specified
15915 without either of @option{-mtune} or @option{-mcpu} also being
15916 specified, the code is tuned to perform well across a range of target
15917 processors implementing the target architecture.
15918
15919 @item -mtune=@var{name}
15920 @opindex mtune
15921 Specify the name of the target processor for which GCC should tune the
15922 performance of the code. Permissible values for this option are:
15923 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15924 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15925 @samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
15926 @samp{cortex-a65}, @samp{cortex-a65ae}, @samp{cortex-a34},
15927 @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15928 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15929 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15930 @samp{octeontx81}, @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15931 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15932 @samp{thunderxt83}, @samp{thunderx2t99},
15933 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15934 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15935 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15936 @samp{native}.
15937
15938 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15939 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15940 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15941 should tune for a big.LITTLE system.
15942
15943 Additionally on native AArch64 GNU/Linux systems the value
15944 @samp{native} tunes performance to the host system. This option has no effect
15945 if the compiler is unable to recognize the processor of the host system.
15946
15947 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15948 are specified, the code is tuned to perform well across a range
15949 of target processors.
15950
15951 This option cannot be suffixed by feature modifiers.
15952
15953 @item -mcpu=@var{name}
15954 @opindex mcpu
15955 Specify the name of the target processor, optionally suffixed by one
15956 or more feature modifiers. This option has the form
15957 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15958 the permissible values for @var{cpu} are the same as those available
15959 for @option{-mtune}. The permissible values for @var{feature} are
15960 documented in the sub-section on
15961 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15962 Feature Modifiers}. Where conflicting feature modifiers are
15963 specified, the right-most feature is used.
15964
15965 GCC uses @var{name} to determine what kind of instructions it can emit when
15966 generating assembly code (as if by @option{-march}) and to determine
15967 the target processor for which to tune for performance (as if
15968 by @option{-mtune}). Where this option is used in conjunction
15969 with @option{-march} or @option{-mtune}, those options take precedence
15970 over the appropriate part of this option.
15971
15972 @item -moverride=@var{string}
15973 @opindex moverride
15974 Override tuning decisions made by the back-end in response to a
15975 @option{-mtune=} switch. The syntax, semantics, and accepted values
15976 for @var{string} in this option are not guaranteed to be consistent
15977 across releases.
15978
15979 This option is only intended to be useful when developing GCC.
15980
15981 @item -mverbose-cost-dump
15982 @opindex mverbose-cost-dump
15983 Enable verbose cost model dumping in the debug dump files. This option is
15984 provided for use in debugging the compiler.
15985
15986 @item -mpc-relative-literal-loads
15987 @itemx -mno-pc-relative-literal-loads
15988 @opindex mpc-relative-literal-loads
15989 @opindex mno-pc-relative-literal-loads
15990 Enable or disable PC-relative literal loads. With this option literal pools are
15991 accessed using a single instruction and emitted after each function. This
15992 limits the maximum size of functions to 1MB. This is enabled by default for
15993 @option{-mcmodel=tiny}.
15994
15995 @item -msign-return-address=@var{scope}
15996 @opindex msign-return-address
15997 Select the function scope on which return address signing will be applied.
15998 Permissible values are @samp{none}, which disables return address signing,
15999 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
16000 functions, and @samp{all}, which enables pointer signing for all functions. The
16001 default value is @samp{none}. This option has been deprecated by
16002 -mbranch-protection.
16003
16004 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
16005 @opindex mbranch-protection
16006 Select the branch protection features to use.
16007 @samp{none} is the default and turns off all types of branch protection.
16008 @samp{standard} turns on all types of branch protection features. If a feature
16009 has additional tuning options, then @samp{standard} sets it to its standard
16010 level.
16011 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
16012 level: signing functions that save the return address to memory (non-leaf
16013 functions will practically always do this) using the a-key. The optional
16014 argument @samp{leaf} can be used to extend the signing to include leaf
16015 functions. The optional argument @samp{b-key} can be used to sign the functions
16016 with the B-key instead of the A-key.
16017 @samp{bti} turns on branch target identification mechanism.
16018
16019 @item -msve-vector-bits=@var{bits}
16020 @opindex msve-vector-bits
16021 Specify the number of bits in an SVE vector register. This option only has
16022 an effect when SVE is enabled.
16023
16024 GCC supports two forms of SVE code generation: ``vector-length
16025 agnostic'' output that works with any size of vector register and
16026 ``vector-length specific'' output that allows GCC to make assumptions
16027 about the vector length when it is useful for optimization reasons.
16028 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
16029 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
16030 Specifying @samp{scalable} selects vector-length agnostic
16031 output. At present @samp{-msve-vector-bits=128} also generates vector-length
16032 agnostic output. All other values generate vector-length specific code.
16033 The behavior of these values may change in future releases and no value except
16034 @samp{scalable} should be relied on for producing code that is portable across
16035 different hardware SVE vector lengths.
16036
16037 The default is @samp{-msve-vector-bits=scalable}, which produces
16038 vector-length agnostic code.
16039 @end table
16040
16041 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
16042 @anchor{aarch64-feature-modifiers}
16043 @cindex @option{-march} feature modifiers
16044 @cindex @option{-mcpu} feature modifiers
16045 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
16046 the following and their inverses @option{no@var{feature}}:
16047
16048 @table @samp
16049 @item crc
16050 Enable CRC extension. This is on by default for
16051 @option{-march=armv8.1-a}.
16052 @item crypto
16053 Enable Crypto extension. This also enables Advanced SIMD and floating-point
16054 instructions.
16055 @item fp
16056 Enable floating-point instructions. This is on by default for all possible
16057 values for options @option{-march} and @option{-mcpu}.
16058 @item simd
16059 Enable Advanced SIMD instructions. This also enables floating-point
16060 instructions. This is on by default for all possible values for options
16061 @option{-march} and @option{-mcpu}.
16062 @item sve
16063 Enable Scalable Vector Extension instructions. This also enables Advanced
16064 SIMD and floating-point instructions.
16065 @item lse
16066 Enable Large System Extension instructions. This is on by default for
16067 @option{-march=armv8.1-a}.
16068 @item rdma
16069 Enable Round Double Multiply Accumulate instructions. This is on by default
16070 for @option{-march=armv8.1-a}.
16071 @item fp16
16072 Enable FP16 extension. This also enables floating-point instructions.
16073 @item fp16fml
16074 Enable FP16 fmla extension. This also enables FP16 extensions and
16075 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
16076
16077 @item rcpc
16078 Enable the RcPc extension. This does not change code generation from GCC,
16079 but is passed on to the assembler, enabling inline asm statements to use
16080 instructions from the RcPc extension.
16081 @item dotprod
16082 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
16083 @item aes
16084 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
16085 SIMD instructions.
16086 @item sha2
16087 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
16088 @item sha3
16089 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
16090 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
16091 @item sm4
16092 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
16093 Use of this option with architectures prior to Armv8.2-A is not supported.
16094 @item profile
16095 Enable the Statistical Profiling extension. This option is only to enable the
16096 extension at the assembler level and does not affect code generation.
16097 @item rng
16098 Enable the Armv8.5-a Random Number instructions. This option is only to
16099 enable the extension at the assembler level and does not affect code
16100 generation.
16101 @item memtag
16102 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
16103 enable the extension at the assembler level and does not affect code
16104 generation.
16105 @item sb
16106 Enable the Armv8-a Speculation Barrier instruction. This option is only to
16107 enable the extension at the assembler level and does not affect code
16108 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16109 @item ssbs
16110 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
16111 is only to enable the extension at the assembler level and does not affect code
16112 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16113 @item predres
16114 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16115 This option is only to enable the extension at the assembler level and does
16116 not affect code generation. This option is enabled by default for
16117 @item sve2
16118 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
16119 instructions.
16120 @item sve2-bitperm
16121 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
16122 @item sve2-sm4
16123 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
16124 @item sve2-aes
16125 Enable SVE2 aes instructions. This also enables SVE2 instructions.
16126 @item sve2-sha3
16127 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
16128 @option{-march=armv8.5-a}.
16129 @item tme
16130 Enable the Transactional Memory Extension.
16131
16132 @end table
16133
16134 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16135 which implies @option{fp}.
16136 Conversely, @option{nofp} implies @option{nosimd}, which implies
16137 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16138
16139 @node Adapteva Epiphany Options
16140 @subsection Adapteva Epiphany Options
16141
16142 These @samp{-m} options are defined for Adapteva Epiphany:
16143
16144 @table @gcctabopt
16145 @item -mhalf-reg-file
16146 @opindex mhalf-reg-file
16147 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16148 That allows code to run on hardware variants that lack these registers.
16149
16150 @item -mprefer-short-insn-regs
16151 @opindex mprefer-short-insn-regs
16152 Preferentially allocate registers that allow short instruction generation.
16153 This can result in increased instruction count, so this may either reduce or
16154 increase overall code size.
16155
16156 @item -mbranch-cost=@var{num}
16157 @opindex mbranch-cost
16158 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16159 This cost is only a heuristic and is not guaranteed to produce
16160 consistent results across releases.
16161
16162 @item -mcmove
16163 @opindex mcmove
16164 Enable the generation of conditional moves.
16165
16166 @item -mnops=@var{num}
16167 @opindex mnops
16168 Emit @var{num} NOPs before every other generated instruction.
16169
16170 @item -mno-soft-cmpsf
16171 @opindex mno-soft-cmpsf
16172 @opindex msoft-cmpsf
16173 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16174 and test the flags. This is faster than a software comparison, but can
16175 get incorrect results in the presence of NaNs, or when two different small
16176 numbers are compared such that their difference is calculated as zero.
16177 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16178 software comparisons.
16179
16180 @item -mstack-offset=@var{num}
16181 @opindex mstack-offset
16182 Set the offset between the top of the stack and the stack pointer.
16183 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16184 can be used by leaf functions without stack allocation.
16185 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16186 Note also that this option changes the ABI; compiling a program with a
16187 different stack offset than the libraries have been compiled with
16188 generally does not work.
16189 This option can be useful if you want to evaluate if a different stack
16190 offset would give you better code, but to actually use a different stack
16191 offset to build working programs, it is recommended to configure the
16192 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16193
16194 @item -mno-round-nearest
16195 @opindex mno-round-nearest
16196 @opindex mround-nearest
16197 Make the scheduler assume that the rounding mode has been set to
16198 truncating. The default is @option{-mround-nearest}.
16199
16200 @item -mlong-calls
16201 @opindex mlong-calls
16202 If not otherwise specified by an attribute, assume all calls might be beyond
16203 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16204 function address into a register before performing a (otherwise direct) call.
16205 This is the default.
16206
16207 @item -mshort-calls
16208 @opindex short-calls
16209 If not otherwise specified by an attribute, assume all direct calls are
16210 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16211 for direct calls. The default is @option{-mlong-calls}.
16212
16213 @item -msmall16
16214 @opindex msmall16
16215 Assume addresses can be loaded as 16-bit unsigned values. This does not
16216 apply to function addresses for which @option{-mlong-calls} semantics
16217 are in effect.
16218
16219 @item -mfp-mode=@var{mode}
16220 @opindex mfp-mode
16221 Set the prevailing mode of the floating-point unit.
16222 This determines the floating-point mode that is provided and expected
16223 at function call and return time. Making this mode match the mode you
16224 predominantly need at function start can make your programs smaller and
16225 faster by avoiding unnecessary mode switches.
16226
16227 @var{mode} can be set to one the following values:
16228
16229 @table @samp
16230 @item caller
16231 Any mode at function entry is valid, and retained or restored when
16232 the function returns, and when it calls other functions.
16233 This mode is useful for compiling libraries or other compilation units
16234 you might want to incorporate into different programs with different
16235 prevailing FPU modes, and the convenience of being able to use a single
16236 object file outweighs the size and speed overhead for any extra
16237 mode switching that might be needed, compared with what would be needed
16238 with a more specific choice of prevailing FPU mode.
16239
16240 @item truncate
16241 This is the mode used for floating-point calculations with
16242 truncating (i.e.@: round towards zero) rounding mode. That includes
16243 conversion from floating point to integer.
16244
16245 @item round-nearest
16246 This is the mode used for floating-point calculations with
16247 round-to-nearest-or-even rounding mode.
16248
16249 @item int
16250 This is the mode used to perform integer calculations in the FPU, e.g.@:
16251 integer multiply, or integer multiply-and-accumulate.
16252 @end table
16253
16254 The default is @option{-mfp-mode=caller}
16255
16256 @item -mno-split-lohi
16257 @itemx -mno-postinc
16258 @itemx -mno-postmodify
16259 @opindex mno-split-lohi
16260 @opindex msplit-lohi
16261 @opindex mno-postinc
16262 @opindex mpostinc
16263 @opindex mno-postmodify
16264 @opindex mpostmodify
16265 Code generation tweaks that disable, respectively, splitting of 32-bit
16266 loads, generation of post-increment addresses, and generation of
16267 post-modify addresses. The defaults are @option{msplit-lohi},
16268 @option{-mpost-inc}, and @option{-mpost-modify}.
16269
16270 @item -mnovect-double
16271 @opindex mno-vect-double
16272 @opindex mvect-double
16273 Change the preferred SIMD mode to SImode. The default is
16274 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16275
16276 @item -max-vect-align=@var{num}
16277 @opindex max-vect-align
16278 The maximum alignment for SIMD vector mode types.
16279 @var{num} may be 4 or 8. The default is 8.
16280 Note that this is an ABI change, even though many library function
16281 interfaces are unaffected if they don't use SIMD vector modes
16282 in places that affect size and/or alignment of relevant types.
16283
16284 @item -msplit-vecmove-early
16285 @opindex msplit-vecmove-early
16286 Split vector moves into single word moves before reload. In theory this
16287 can give better register allocation, but so far the reverse seems to be
16288 generally the case.
16289
16290 @item -m1reg-@var{reg}
16291 @opindex m1reg-
16292 Specify a register to hold the constant @minus{}1, which makes loading small negative
16293 constants and certain bitmasks faster.
16294 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16295 which specify use of that register as a fixed register,
16296 and @samp{none}, which means that no register is used for this
16297 purpose. The default is @option{-m1reg-none}.
16298
16299 @end table
16300
16301 @node AMD GCN Options
16302 @subsection AMD GCN Options
16303 @cindex AMD GCN Options
16304
16305 These options are defined specifically for the AMD GCN port.
16306
16307 @table @gcctabopt
16308
16309 @item -march=@var{gpu}
16310 @opindex march
16311 @itemx -mtune=@var{gpu}
16312 @opindex mtune
16313 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16314 are
16315
16316 @table @samp
16317 @opindex fiji
16318 @item fiji
16319 Compile for GCN3 Fiji devices (gfx803).
16320
16321 @item gfx900
16322 Compile for GCN5 Vega 10 devices (gfx900).
16323
16324 @item gfx906
16325 Compile for GCN5 Vega 20 devices (gfx906).
16326
16327 @end table
16328
16329 @item -mstack-size=@var{bytes}
16330 @opindex mstack-size
16331 Specify how many @var{bytes} of stack space will be requested for each GPU
16332 thread (wave-front). Beware that there may be many threads and limited memory
16333 available. The size of the stack allocation may also have an impact on
16334 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16335 1MB otherwise.
16336
16337 @end table
16338
16339 @node ARC Options
16340 @subsection ARC Options
16341 @cindex ARC options
16342
16343 The following options control the architecture variant for which code
16344 is being compiled:
16345
16346 @c architecture variants
16347 @table @gcctabopt
16348
16349 @item -mbarrel-shifter
16350 @opindex mbarrel-shifter
16351 Generate instructions supported by barrel shifter. This is the default
16352 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16353
16354 @item -mjli-always
16355 @opindex mjli-alawys
16356 Force to call a function using jli_s instruction. This option is
16357 valid only for ARCv2 architecture.
16358
16359 @item -mcpu=@var{cpu}
16360 @opindex mcpu
16361 Set architecture type, register usage, and instruction scheduling
16362 parameters for @var{cpu}. There are also shortcut alias options
16363 available for backward compatibility and convenience. Supported
16364 values for @var{cpu} are
16365
16366 @table @samp
16367 @opindex mA6
16368 @opindex mARC600
16369 @item arc600
16370 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16371
16372 @item arc601
16373 @opindex mARC601
16374 Compile for ARC601. Alias: @option{-mARC601}.
16375
16376 @item arc700
16377 @opindex mA7
16378 @opindex mARC700
16379 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16380 This is the default when configured with @option{--with-cpu=arc700}@.
16381
16382 @item arcem
16383 Compile for ARC EM.
16384
16385 @item archs
16386 Compile for ARC HS.
16387
16388 @item em
16389 Compile for ARC EM CPU with no hardware extensions.
16390
16391 @item em4
16392 Compile for ARC EM4 CPU.
16393
16394 @item em4_dmips
16395 Compile for ARC EM4 DMIPS CPU.
16396
16397 @item em4_fpus
16398 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16399 extension.
16400
16401 @item em4_fpuda
16402 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16403 double assist instructions.
16404
16405 @item hs
16406 Compile for ARC HS CPU with no hardware extensions except the atomic
16407 instructions.
16408
16409 @item hs34
16410 Compile for ARC HS34 CPU.
16411
16412 @item hs38
16413 Compile for ARC HS38 CPU.
16414
16415 @item hs38_linux
16416 Compile for ARC HS38 CPU with all hardware extensions on.
16417
16418 @item arc600_norm
16419 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16420
16421 @item arc600_mul32x16
16422 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16423 instructions enabled.
16424
16425 @item arc600_mul64
16426 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16427 instructions enabled.
16428
16429 @item arc601_norm
16430 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16431
16432 @item arc601_mul32x16
16433 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16434 instructions enabled.
16435
16436 @item arc601_mul64
16437 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16438 instructions enabled.
16439
16440 @item nps400
16441 Compile for ARC 700 on NPS400 chip.
16442
16443 @item em_mini
16444 Compile for ARC EM minimalist configuration featuring reduced register
16445 set.
16446
16447 @end table
16448
16449 @item -mdpfp
16450 @opindex mdpfp
16451 @itemx -mdpfp-compact
16452 @opindex mdpfp-compact
16453 Generate double-precision FPX instructions, tuned for the compact
16454 implementation.
16455
16456 @item -mdpfp-fast
16457 @opindex mdpfp-fast
16458 Generate double-precision FPX instructions, tuned for the fast
16459 implementation.
16460
16461 @item -mno-dpfp-lrsr
16462 @opindex mno-dpfp-lrsr
16463 Disable @code{lr} and @code{sr} instructions from using FPX extension
16464 aux registers.
16465
16466 @item -mea
16467 @opindex mea
16468 Generate extended arithmetic instructions. Currently only
16469 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16470 supported. This is always enabled for @option{-mcpu=ARC700}.
16471
16472 @item -mno-mpy
16473 @opindex mno-mpy
16474 @opindex mmpy
16475 Do not generate @code{mpy}-family instructions for ARC700. This option is
16476 deprecated.
16477
16478 @item -mmul32x16
16479 @opindex mmul32x16
16480 Generate 32x16-bit multiply and multiply-accumulate instructions.
16481
16482 @item -mmul64
16483 @opindex mmul64
16484 Generate @code{mul64} and @code{mulu64} instructions.
16485 Only valid for @option{-mcpu=ARC600}.
16486
16487 @item -mnorm
16488 @opindex mnorm
16489 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16490 is in effect.
16491
16492 @item -mspfp
16493 @opindex mspfp
16494 @itemx -mspfp-compact
16495 @opindex mspfp-compact
16496 Generate single-precision FPX instructions, tuned for the compact
16497 implementation.
16498
16499 @item -mspfp-fast
16500 @opindex mspfp-fast
16501 Generate single-precision FPX instructions, tuned for the fast
16502 implementation.
16503
16504 @item -msimd
16505 @opindex msimd
16506 Enable generation of ARC SIMD instructions via target-specific
16507 builtins. Only valid for @option{-mcpu=ARC700}.
16508
16509 @item -msoft-float
16510 @opindex msoft-float
16511 This option ignored; it is provided for compatibility purposes only.
16512 Software floating-point code is emitted by default, and this default
16513 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16514 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16515 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16516
16517 @item -mswap
16518 @opindex mswap
16519 Generate @code{swap} instructions.
16520
16521 @item -matomic
16522 @opindex matomic
16523 This enables use of the locked load/store conditional extension to implement
16524 atomic memory built-in functions. Not available for ARC 6xx or ARC
16525 EM cores.
16526
16527 @item -mdiv-rem
16528 @opindex mdiv-rem
16529 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16530
16531 @item -mcode-density
16532 @opindex mcode-density
16533 Enable code density instructions for ARC EM.
16534 This option is on by default for ARC HS.
16535
16536 @item -mll64
16537 @opindex mll64
16538 Enable double load/store operations for ARC HS cores.
16539
16540 @item -mtp-regno=@var{regno}
16541 @opindex mtp-regno
16542 Specify thread pointer register number.
16543
16544 @item -mmpy-option=@var{multo}
16545 @opindex mmpy-option
16546 Compile ARCv2 code with a multiplier design option. You can specify
16547 the option using either a string or numeric value for @var{multo}.
16548 @samp{wlh1} is the default value. The recognized values are:
16549
16550 @table @samp
16551 @item 0
16552 @itemx none
16553 No multiplier available.
16554
16555 @item 1
16556 @itemx w
16557 16x16 multiplier, fully pipelined.
16558 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16559
16560 @item 2
16561 @itemx wlh1
16562 32x32 multiplier, fully
16563 pipelined (1 stage). The following instructions are additionally
16564 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16565
16566 @item 3
16567 @itemx wlh2
16568 32x32 multiplier, fully pipelined
16569 (2 stages). The following instructions are additionally enabled: @code{mpy},
16570 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16571
16572 @item 4
16573 @itemx wlh3
16574 Two 16x16 multipliers, blocking,
16575 sequential. The following instructions are additionally enabled: @code{mpy},
16576 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16577
16578 @item 5
16579 @itemx wlh4
16580 One 16x16 multiplier, blocking,
16581 sequential. The following instructions are additionally enabled: @code{mpy},
16582 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16583
16584 @item 6
16585 @itemx wlh5
16586 One 32x4 multiplier, blocking,
16587 sequential. The following instructions are additionally enabled: @code{mpy},
16588 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16589
16590 @item 7
16591 @itemx plus_dmpy
16592 ARC HS SIMD support.
16593
16594 @item 8
16595 @itemx plus_macd
16596 ARC HS SIMD support.
16597
16598 @item 9
16599 @itemx plus_qmacw
16600 ARC HS SIMD support.
16601
16602 @end table
16603
16604 This option is only available for ARCv2 cores@.
16605
16606 @item -mfpu=@var{fpu}
16607 @opindex mfpu
16608 Enables support for specific floating-point hardware extensions for ARCv2
16609 cores. Supported values for @var{fpu} are:
16610
16611 @table @samp
16612
16613 @item fpus
16614 Enables support for single-precision floating-point hardware
16615 extensions@.
16616
16617 @item fpud
16618 Enables support for double-precision floating-point hardware
16619 extensions. The single-precision floating-point extension is also
16620 enabled. Not available for ARC EM@.
16621
16622 @item fpuda
16623 Enables support for double-precision floating-point hardware
16624 extensions using double-precision assist instructions. The single-precision
16625 floating-point extension is also enabled. This option is
16626 only available for ARC EM@.
16627
16628 @item fpuda_div
16629 Enables support for double-precision floating-point hardware
16630 extensions using double-precision assist instructions.
16631 The single-precision floating-point, square-root, and divide
16632 extensions are also enabled. This option is
16633 only available for ARC EM@.
16634
16635 @item fpuda_fma
16636 Enables support for double-precision floating-point hardware
16637 extensions using double-precision assist instructions.
16638 The single-precision floating-point and fused multiply and add
16639 hardware extensions are also enabled. This option is
16640 only available for ARC EM@.
16641
16642 @item fpuda_all
16643 Enables support for double-precision floating-point hardware
16644 extensions using double-precision assist instructions.
16645 All single-precision floating-point hardware extensions are also
16646 enabled. This option is only available for ARC EM@.
16647
16648 @item fpus_div
16649 Enables support for single-precision floating-point, square-root and divide
16650 hardware extensions@.
16651
16652 @item fpud_div
16653 Enables support for double-precision floating-point, square-root and divide
16654 hardware extensions. This option
16655 includes option @samp{fpus_div}. Not available for ARC EM@.
16656
16657 @item fpus_fma
16658 Enables support for single-precision floating-point and
16659 fused multiply and add hardware extensions@.
16660
16661 @item fpud_fma
16662 Enables support for double-precision floating-point and
16663 fused multiply and add hardware extensions. This option
16664 includes option @samp{fpus_fma}. Not available for ARC EM@.
16665
16666 @item fpus_all
16667 Enables support for all single-precision floating-point hardware
16668 extensions@.
16669
16670 @item fpud_all
16671 Enables support for all single- and double-precision floating-point
16672 hardware extensions. Not available for ARC EM@.
16673
16674 @end table
16675
16676 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16677 @opindex mirq-ctrl-saved
16678 Specifies general-purposes registers that the processor automatically
16679 saves/restores on interrupt entry and exit. @var{register-range} is
16680 specified as two registers separated by a dash. The register range
16681 always starts with @code{r0}, the upper limit is @code{fp} register.
16682 @var{blink} and @var{lp_count} are optional. This option is only
16683 valid for ARC EM and ARC HS cores.
16684
16685 @item -mrgf-banked-regs=@var{number}
16686 @opindex mrgf-banked-regs
16687 Specifies the number of registers replicated in second register bank
16688 on entry to fast interrupt. Fast interrupts are interrupts with the
16689 highest priority level P0. These interrupts save only PC and STATUS32
16690 registers to avoid memory transactions during interrupt entry and exit
16691 sequences. Use this option when you are using fast interrupts in an
16692 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16693
16694 @item -mlpc-width=@var{width}
16695 @opindex mlpc-width
16696 Specify the width of the @code{lp_count} register. Valid values for
16697 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16698 fixed to 32 bits. If the width is less than 32, the compiler does not
16699 attempt to transform loops in your program to use the zero-delay loop
16700 mechanism unless it is known that the @code{lp_count} register can
16701 hold the required loop-counter value. Depending on the width
16702 specified, the compiler and run-time library might continue to use the
16703 loop mechanism for various needs. This option defines macro
16704 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16705
16706 @item -mrf16
16707 @opindex mrf16
16708 This option instructs the compiler to generate code for a 16-entry
16709 register file. This option defines the @code{__ARC_RF16__}
16710 preprocessor macro.
16711
16712 @item -mbranch-index
16713 @opindex mbranch-index
16714 Enable use of @code{bi} or @code{bih} instructions to implement jump
16715 tables.
16716
16717 @end table
16718
16719 The following options are passed through to the assembler, and also
16720 define preprocessor macro symbols.
16721
16722 @c Flags used by the assembler, but for which we define preprocessor
16723 @c macro symbols as well.
16724 @table @gcctabopt
16725 @item -mdsp-packa
16726 @opindex mdsp-packa
16727 Passed down to the assembler to enable the DSP Pack A extensions.
16728 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16729 deprecated.
16730
16731 @item -mdvbf
16732 @opindex mdvbf
16733 Passed down to the assembler to enable the dual Viterbi butterfly
16734 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16735 option is deprecated.
16736
16737 @c ARC700 4.10 extension instruction
16738 @item -mlock
16739 @opindex mlock
16740 Passed down to the assembler to enable the locked load/store
16741 conditional extension. Also sets the preprocessor symbol
16742 @code{__Xlock}.
16743
16744 @item -mmac-d16
16745 @opindex mmac-d16
16746 Passed down to the assembler. Also sets the preprocessor symbol
16747 @code{__Xxmac_d16}. This option is deprecated.
16748
16749 @item -mmac-24
16750 @opindex mmac-24
16751 Passed down to the assembler. Also sets the preprocessor symbol
16752 @code{__Xxmac_24}. This option is deprecated.
16753
16754 @c ARC700 4.10 extension instruction
16755 @item -mrtsc
16756 @opindex mrtsc
16757 Passed down to the assembler to enable the 64-bit time-stamp counter
16758 extension instruction. Also sets the preprocessor symbol
16759 @code{__Xrtsc}. This option is deprecated.
16760
16761 @c ARC700 4.10 extension instruction
16762 @item -mswape
16763 @opindex mswape
16764 Passed down to the assembler to enable the swap byte ordering
16765 extension instruction. Also sets the preprocessor symbol
16766 @code{__Xswape}.
16767
16768 @item -mtelephony
16769 @opindex mtelephony
16770 Passed down to the assembler to enable dual- and single-operand
16771 instructions for telephony. Also sets the preprocessor symbol
16772 @code{__Xtelephony}. This option is deprecated.
16773
16774 @item -mxy
16775 @opindex mxy
16776 Passed down to the assembler to enable the XY memory extension. Also
16777 sets the preprocessor symbol @code{__Xxy}.
16778
16779 @end table
16780
16781 The following options control how the assembly code is annotated:
16782
16783 @c Assembly annotation options
16784 @table @gcctabopt
16785 @item -misize
16786 @opindex misize
16787 Annotate assembler instructions with estimated addresses.
16788
16789 @item -mannotate-align
16790 @opindex mannotate-align
16791 Explain what alignment considerations lead to the decision to make an
16792 instruction short or long.
16793
16794 @end table
16795
16796 The following options are passed through to the linker:
16797
16798 @c options passed through to the linker
16799 @table @gcctabopt
16800 @item -marclinux
16801 @opindex marclinux
16802 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16803 This option is enabled by default in tool chains built for
16804 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16805 when profiling is not requested.
16806
16807 @item -marclinux_prof
16808 @opindex marclinux_prof
16809 Passed through to the linker, to specify use of the
16810 @code{arclinux_prof} emulation. This option is enabled by default in
16811 tool chains built for @w{@code{arc-linux-uclibc}} and
16812 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16813
16814 @end table
16815
16816 The following options control the semantics of generated code:
16817
16818 @c semantically relevant code generation options
16819 @table @gcctabopt
16820 @item -mlong-calls
16821 @opindex mlong-calls
16822 Generate calls as register indirect calls, thus providing access
16823 to the full 32-bit address range.
16824
16825 @item -mmedium-calls
16826 @opindex mmedium-calls
16827 Don't use less than 25-bit addressing range for calls, which is the
16828 offset available for an unconditional branch-and-link
16829 instruction. Conditional execution of function calls is suppressed, to
16830 allow use of the 25-bit range, rather than the 21-bit range with
16831 conditional branch-and-link. This is the default for tool chains built
16832 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16833
16834 @item -G @var{num}
16835 @opindex G
16836 Put definitions of externally-visible data in a small data section if
16837 that data is no bigger than @var{num} bytes. The default value of
16838 @var{num} is 4 for any ARC configuration, or 8 when we have double
16839 load/store operations.
16840
16841 @item -mno-sdata
16842 @opindex mno-sdata
16843 @opindex msdata
16844 Do not generate sdata references. This is the default for tool chains
16845 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16846 targets.
16847
16848 @item -mvolatile-cache
16849 @opindex mvolatile-cache
16850 Use ordinarily cached memory accesses for volatile references. This is the
16851 default.
16852
16853 @item -mno-volatile-cache
16854 @opindex mno-volatile-cache
16855 @opindex mvolatile-cache
16856 Enable cache bypass for volatile references.
16857
16858 @end table
16859
16860 The following options fine tune code generation:
16861 @c code generation tuning options
16862 @table @gcctabopt
16863 @item -malign-call
16864 @opindex malign-call
16865 Do alignment optimizations for call instructions.
16866
16867 @item -mauto-modify-reg
16868 @opindex mauto-modify-reg
16869 Enable the use of pre/post modify with register displacement.
16870
16871 @item -mbbit-peephole
16872 @opindex mbbit-peephole
16873 Enable bbit peephole2.
16874
16875 @item -mno-brcc
16876 @opindex mno-brcc
16877 This option disables a target-specific pass in @file{arc_reorg} to
16878 generate compare-and-branch (@code{br@var{cc}}) instructions.
16879 It has no effect on
16880 generation of these instructions driven by the combiner pass.
16881
16882 @item -mcase-vector-pcrel
16883 @opindex mcase-vector-pcrel
16884 Use PC-relative switch case tables to enable case table shortening.
16885 This is the default for @option{-Os}.
16886
16887 @item -mcompact-casesi
16888 @opindex mcompact-casesi
16889 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16890 and only available for ARCv1 cores. This option is deprecated.
16891
16892 @item -mno-cond-exec
16893 @opindex mno-cond-exec
16894 Disable the ARCompact-specific pass to generate conditional
16895 execution instructions.
16896
16897 Due to delay slot scheduling and interactions between operand numbers,
16898 literal sizes, instruction lengths, and the support for conditional execution,
16899 the target-independent pass to generate conditional execution is often lacking,
16900 so the ARC port has kept a special pass around that tries to find more
16901 conditional execution generation opportunities after register allocation,
16902 branch shortening, and delay slot scheduling have been done. This pass
16903 generally, but not always, improves performance and code size, at the cost of
16904 extra compilation time, which is why there is an option to switch it off.
16905 If you have a problem with call instructions exceeding their allowable
16906 offset range because they are conditionalized, you should consider using
16907 @option{-mmedium-calls} instead.
16908
16909 @item -mearly-cbranchsi
16910 @opindex mearly-cbranchsi
16911 Enable pre-reload use of the @code{cbranchsi} pattern.
16912
16913 @item -mexpand-adddi
16914 @opindex mexpand-adddi
16915 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16916 @code{add.f}, @code{adc} etc. This option is deprecated.
16917
16918 @item -mindexed-loads
16919 @opindex mindexed-loads
16920 Enable the use of indexed loads. This can be problematic because some
16921 optimizers then assume that indexed stores exist, which is not
16922 the case.
16923
16924 @item -mlra
16925 @opindex mlra
16926 Enable Local Register Allocation. This is still experimental for ARC,
16927 so by default the compiler uses standard reload
16928 (i.e.@: @option{-mno-lra}).
16929
16930 @item -mlra-priority-none
16931 @opindex mlra-priority-none
16932 Don't indicate any priority for target registers.
16933
16934 @item -mlra-priority-compact
16935 @opindex mlra-priority-compact
16936 Indicate target register priority for r0..r3 / r12..r15.
16937
16938 @item -mlra-priority-noncompact
16939 @opindex mlra-priority-noncompact
16940 Reduce target register priority for r0..r3 / r12..r15.
16941
16942 @item -mmillicode
16943 @opindex mmillicode
16944 When optimizing for size (using @option{-Os}), prologues and epilogues
16945 that have to save or restore a large number of registers are often
16946 shortened by using call to a special function in libgcc; this is
16947 referred to as a @emph{millicode} call. As these calls can pose
16948 performance issues, and/or cause linking issues when linking in a
16949 nonstandard way, this option is provided to turn on or off millicode
16950 call generation.
16951
16952 @item -mcode-density-frame
16953 @opindex mcode-density-frame
16954 This option enable the compiler to emit @code{enter} and @code{leave}
16955 instructions. These instructions are only valid for CPUs with
16956 code-density feature.
16957
16958 @item -mmixed-code
16959 @opindex mmixed-code
16960 Tweak register allocation to help 16-bit instruction generation.
16961 This generally has the effect of decreasing the average instruction size
16962 while increasing the instruction count.
16963
16964 @item -mq-class
16965 @opindex mq-class
16966 Enable @samp{q} instruction alternatives.
16967 This is the default for @option{-Os}.
16968
16969 @item -mRcq
16970 @opindex mRcq
16971 Enable @samp{Rcq} constraint handling.
16972 Most short code generation depends on this.
16973 This is the default.
16974
16975 @item -mRcw
16976 @opindex mRcw
16977 Enable @samp{Rcw} constraint handling.
16978 Most ccfsm condexec mostly depends on this.
16979 This is the default.
16980
16981 @item -msize-level=@var{level}
16982 @opindex msize-level
16983 Fine-tune size optimization with regards to instruction lengths and alignment.
16984 The recognized values for @var{level} are:
16985 @table @samp
16986 @item 0
16987 No size optimization. This level is deprecated and treated like @samp{1}.
16988
16989 @item 1
16990 Short instructions are used opportunistically.
16991
16992 @item 2
16993 In addition, alignment of loops and of code after barriers are dropped.
16994
16995 @item 3
16996 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16997
16998 @end table
16999
17000 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
17001 the behavior when this is not set is equivalent to level @samp{1}.
17002
17003 @item -mtune=@var{cpu}
17004 @opindex mtune
17005 Set instruction scheduling parameters for @var{cpu}, overriding any implied
17006 by @option{-mcpu=}.
17007
17008 Supported values for @var{cpu} are
17009
17010 @table @samp
17011 @item ARC600
17012 Tune for ARC600 CPU.
17013
17014 @item ARC601
17015 Tune for ARC601 CPU.
17016
17017 @item ARC700
17018 Tune for ARC700 CPU with standard multiplier block.
17019
17020 @item ARC700-xmac
17021 Tune for ARC700 CPU with XMAC block.
17022
17023 @item ARC725D
17024 Tune for ARC725D CPU.
17025
17026 @item ARC750D
17027 Tune for ARC750D CPU.
17028
17029 @end table
17030
17031 @item -mmultcost=@var{num}
17032 @opindex mmultcost
17033 Cost to assume for a multiply instruction, with @samp{4} being equal to a
17034 normal instruction.
17035
17036 @item -munalign-prob-threshold=@var{probability}
17037 @opindex munalign-prob-threshold
17038 Set probability threshold for unaligning branches.
17039 When tuning for @samp{ARC700} and optimizing for speed, branches without
17040 filled delay slot are preferably emitted unaligned and long, unless
17041 profiling indicates that the probability for the branch to be taken
17042 is below @var{probability}. @xref{Cross-profiling}.
17043 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
17044
17045 @end table
17046
17047 The following options are maintained for backward compatibility, but
17048 are now deprecated and will be removed in a future release:
17049
17050 @c Deprecated options
17051 @table @gcctabopt
17052
17053 @item -margonaut
17054 @opindex margonaut
17055 Obsolete FPX.
17056
17057 @item -mbig-endian
17058 @opindex mbig-endian
17059 @itemx -EB
17060 @opindex EB
17061 Compile code for big-endian targets. Use of these options is now
17062 deprecated. Big-endian code is supported by configuring GCC to build
17063 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
17064 for which big endian is the default.
17065
17066 @item -mlittle-endian
17067 @opindex mlittle-endian
17068 @itemx -EL
17069 @opindex EL
17070 Compile code for little-endian targets. Use of these options is now
17071 deprecated. Little-endian code is supported by configuring GCC to build
17072 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
17073 for which little endian is the default.
17074
17075 @item -mbarrel_shifter
17076 @opindex mbarrel_shifter
17077 Replaced by @option{-mbarrel-shifter}.
17078
17079 @item -mdpfp_compact
17080 @opindex mdpfp_compact
17081 Replaced by @option{-mdpfp-compact}.
17082
17083 @item -mdpfp_fast
17084 @opindex mdpfp_fast
17085 Replaced by @option{-mdpfp-fast}.
17086
17087 @item -mdsp_packa
17088 @opindex mdsp_packa
17089 Replaced by @option{-mdsp-packa}.
17090
17091 @item -mEA
17092 @opindex mEA
17093 Replaced by @option{-mea}.
17094
17095 @item -mmac_24
17096 @opindex mmac_24
17097 Replaced by @option{-mmac-24}.
17098
17099 @item -mmac_d16
17100 @opindex mmac_d16
17101 Replaced by @option{-mmac-d16}.
17102
17103 @item -mspfp_compact
17104 @opindex mspfp_compact
17105 Replaced by @option{-mspfp-compact}.
17106
17107 @item -mspfp_fast
17108 @opindex mspfp_fast
17109 Replaced by @option{-mspfp-fast}.
17110
17111 @item -mtune=@var{cpu}
17112 @opindex mtune
17113 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17114 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17115 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17116
17117 @item -multcost=@var{num}
17118 @opindex multcost
17119 Replaced by @option{-mmultcost}.
17120
17121 @end table
17122
17123 @node ARM Options
17124 @subsection ARM Options
17125 @cindex ARM options
17126
17127 These @samp{-m} options are defined for the ARM port:
17128
17129 @table @gcctabopt
17130 @item -mabi=@var{name}
17131 @opindex mabi
17132 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
17133 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17134
17135 @item -mapcs-frame
17136 @opindex mapcs-frame
17137 Generate a stack frame that is compliant with the ARM Procedure Call
17138 Standard for all functions, even if this is not strictly necessary for
17139 correct execution of the code. Specifying @option{-fomit-frame-pointer}
17140 with this option causes the stack frames not to be generated for
17141 leaf functions. The default is @option{-mno-apcs-frame}.
17142 This option is deprecated.
17143
17144 @item -mapcs
17145 @opindex mapcs
17146 This is a synonym for @option{-mapcs-frame} and is deprecated.
17147
17148 @ignore
17149 @c not currently implemented
17150 @item -mapcs-stack-check
17151 @opindex mapcs-stack-check
17152 Generate code to check the amount of stack space available upon entry to
17153 every function (that actually uses some stack space). If there is
17154 insufficient space available then either the function
17155 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17156 called, depending upon the amount of stack space required. The runtime
17157 system is required to provide these functions. The default is
17158 @option{-mno-apcs-stack-check}, since this produces smaller code.
17159
17160 @c not currently implemented
17161 @item -mapcs-reentrant
17162 @opindex mapcs-reentrant
17163 Generate reentrant, position-independent code. The default is
17164 @option{-mno-apcs-reentrant}.
17165 @end ignore
17166
17167 @item -mthumb-interwork
17168 @opindex mthumb-interwork
17169 Generate code that supports calling between the ARM and Thumb
17170 instruction sets. Without this option, on pre-v5 architectures, the
17171 two instruction sets cannot be reliably used inside one program. The
17172 default is @option{-mno-thumb-interwork}, since slightly larger code
17173 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17174 configurations this option is meaningless.
17175
17176 @item -mno-sched-prolog
17177 @opindex mno-sched-prolog
17178 @opindex msched-prolog
17179 Prevent the reordering of instructions in the function prologue, or the
17180 merging of those instruction with the instructions in the function's
17181 body. This means that all functions start with a recognizable set
17182 of instructions (or in fact one of a choice from a small set of
17183 different function prologues), and this information can be used to
17184 locate the start of functions inside an executable piece of code. The
17185 default is @option{-msched-prolog}.
17186
17187 @item -mfloat-abi=@var{name}
17188 @opindex mfloat-abi
17189 Specifies which floating-point ABI to use. Permissible values
17190 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17191
17192 Specifying @samp{soft} causes GCC to generate output containing
17193 library calls for floating-point operations.
17194 @samp{softfp} allows the generation of code using hardware floating-point
17195 instructions, but still uses the soft-float calling conventions.
17196 @samp{hard} allows generation of floating-point instructions
17197 and uses FPU-specific calling conventions.
17198
17199 The default depends on the specific target configuration. Note that
17200 the hard-float and soft-float ABIs are not link-compatible; you must
17201 compile your entire program with the same ABI, and link with a
17202 compatible set of libraries.
17203
17204 @item -mgeneral-regs-only
17205 @opindex mgeneral-regs-only
17206 Generate code which uses only the general-purpose registers. This will prevent
17207 the compiler from using floating-point and Advanced SIMD registers but will not
17208 impose any restrictions on the assembler.
17209
17210 @item -mlittle-endian
17211 @opindex mlittle-endian
17212 Generate code for a processor running in little-endian mode. This is
17213 the default for all standard configurations.
17214
17215 @item -mbig-endian
17216 @opindex mbig-endian
17217 Generate code for a processor running in big-endian mode; the default is
17218 to compile code for a little-endian processor.
17219
17220 @item -mbe8
17221 @itemx -mbe32
17222 @opindex mbe8
17223 When linking a big-endian image select between BE8 and BE32 formats.
17224 The option has no effect for little-endian images and is ignored. The
17225 default is dependent on the selected target architecture. For ARMv6
17226 and later architectures the default is BE8, for older architectures
17227 the default is BE32. BE32 format has been deprecated by ARM.
17228
17229 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17230 @opindex march
17231 This specifies the name of the target ARM architecture. GCC uses this
17232 name to determine what kind of instructions it can emit when generating
17233 assembly code. This option can be used in conjunction with or instead
17234 of the @option{-mcpu=} option.
17235
17236 Permissible names are:
17237 @samp{armv4t},
17238 @samp{armv5t}, @samp{armv5te},
17239 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17240 @samp{armv6z}, @samp{armv6zk},
17241 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17242 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17243 @samp{armv8.4-a},
17244 @samp{armv8.5-a},
17245 @samp{armv7-r},
17246 @samp{armv8-r},
17247 @samp{armv6-m}, @samp{armv6s-m},
17248 @samp{armv7-m}, @samp{armv7e-m},
17249 @samp{armv8-m.base}, @samp{armv8-m.main},
17250 @samp{iwmmxt} and @samp{iwmmxt2}.
17251
17252 Additionally, the following architectures, which lack support for the
17253 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17254
17255 Many of the architectures support extensions. These can be added by
17256 appending @samp{+@var{extension}} to the architecture name. Extension
17257 options are processed in order and capabilities accumulate. An extension
17258 will also enable any necessary base extensions
17259 upon which it depends. For example, the @samp{+crypto} extension
17260 will always enable the @samp{+simd} extension. The exception to the
17261 additive construction is for extensions that are prefixed with
17262 @samp{+no@dots{}}: these extensions disable the specified option and
17263 any other extensions that may depend on the presence of that
17264 extension.
17265
17266 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17267 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17268 entirely disabled by the @samp{+nofp} option that follows it.
17269
17270 Most extension names are generically named, but have an effect that is
17271 dependent upon the architecture to which it is applied. For example,
17272 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17273 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17274 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17275 variant for @samp{armv8-a}.
17276
17277 The table below lists the supported extensions for each architecture.
17278 Architectures not mentioned do not support any extensions.
17279
17280 @table @samp
17281 @item armv5te
17282 @itemx armv6
17283 @itemx armv6j
17284 @itemx armv6k
17285 @itemx armv6kz
17286 @itemx armv6t2
17287 @itemx armv6z
17288 @itemx armv6zk
17289 @table @samp
17290 @item +fp
17291 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17292 used as an alias for this extension.
17293
17294 @item +nofp
17295 Disable the floating-point instructions.
17296 @end table
17297
17298 @item armv7
17299 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17300 @table @samp
17301 @item +fp
17302 The VFPv3 floating-point instructions, with 16 double-precision
17303 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17304 for this extension. Note that floating-point is not supported by the
17305 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17306 ARMv7-R architectures.
17307
17308 @item +nofp
17309 Disable the floating-point instructions.
17310 @end table
17311
17312 @item armv7-a
17313 @table @samp
17314 @item +mp
17315 The multiprocessing extension.
17316
17317 @item +sec
17318 The security extension.
17319
17320 @item +fp
17321 The VFPv3 floating-point instructions, with 16 double-precision
17322 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17323 for this extension.
17324
17325 @item +simd
17326 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17327 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17328 for this extension.
17329
17330 @item +vfpv3
17331 The VFPv3 floating-point instructions, with 32 double-precision
17332 registers.
17333
17334 @item +vfpv3-d16-fp16
17335 The VFPv3 floating-point instructions, with 16 double-precision
17336 registers and the half-precision floating-point conversion operations.
17337
17338 @item +vfpv3-fp16
17339 The VFPv3 floating-point instructions, with 32 double-precision
17340 registers and the half-precision floating-point conversion operations.
17341
17342 @item +vfpv4-d16
17343 The VFPv4 floating-point instructions, with 16 double-precision
17344 registers.
17345
17346 @item +vfpv4
17347 The VFPv4 floating-point instructions, with 32 double-precision
17348 registers.
17349
17350 @item +neon-fp16
17351 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17352 the half-precision floating-point conversion operations.
17353
17354 @item +neon-vfpv4
17355 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17356
17357 @item +nosimd
17358 Disable the Advanced SIMD instructions (does not disable floating point).
17359
17360 @item +nofp
17361 Disable the floating-point and Advanced SIMD instructions.
17362 @end table
17363
17364 @item armv7ve
17365 The extended version of the ARMv7-A architecture with support for
17366 virtualization.
17367 @table @samp
17368 @item +fp
17369 The VFPv4 floating-point instructions, with 16 double-precision registers.
17370 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17371
17372 @item +simd
17373 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17374 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17375
17376 @item +vfpv3-d16
17377 The VFPv3 floating-point instructions, with 16 double-precision
17378 registers.
17379
17380 @item +vfpv3
17381 The VFPv3 floating-point instructions, with 32 double-precision
17382 registers.
17383
17384 @item +vfpv3-d16-fp16
17385 The VFPv3 floating-point instructions, with 16 double-precision
17386 registers and the half-precision floating-point conversion operations.
17387
17388 @item +vfpv3-fp16
17389 The VFPv3 floating-point instructions, with 32 double-precision
17390 registers and the half-precision floating-point conversion operations.
17391
17392 @item +vfpv4-d16
17393 The VFPv4 floating-point instructions, with 16 double-precision
17394 registers.
17395
17396 @item +vfpv4
17397 The VFPv4 floating-point instructions, with 32 double-precision
17398 registers.
17399
17400 @item +neon
17401 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17402 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17403
17404 @item +neon-fp16
17405 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17406 the half-precision floating-point conversion operations.
17407
17408 @item +nosimd
17409 Disable the Advanced SIMD instructions (does not disable floating point).
17410
17411 @item +nofp
17412 Disable the floating-point and Advanced SIMD instructions.
17413 @end table
17414
17415 @item armv8-a
17416 @table @samp
17417 @item +crc
17418 The Cyclic Redundancy Check (CRC) instructions.
17419 @item +simd
17420 The ARMv8-A Advanced SIMD and floating-point instructions.
17421 @item +crypto
17422 The cryptographic instructions.
17423 @item +nocrypto
17424 Disable the cryptographic instructions.
17425 @item +nofp
17426 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17427 @item +sb
17428 Speculation Barrier Instruction.
17429 @item +predres
17430 Execution and Data Prediction Restriction Instructions.
17431 @end table
17432
17433 @item armv8.1-a
17434 @table @samp
17435 @item +simd
17436 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17437
17438 @item +crypto
17439 The cryptographic instructions. This also enables the Advanced SIMD and
17440 floating-point instructions.
17441
17442 @item +nocrypto
17443 Disable the cryptographic instructions.
17444
17445 @item +nofp
17446 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17447
17448 @item +sb
17449 Speculation Barrier Instruction.
17450
17451 @item +predres
17452 Execution and Data Prediction Restriction Instructions.
17453 @end table
17454
17455 @item armv8.2-a
17456 @itemx armv8.3-a
17457 @table @samp
17458 @item +fp16
17459 The half-precision floating-point data processing instructions.
17460 This also enables the Advanced SIMD and floating-point instructions.
17461
17462 @item +fp16fml
17463 The half-precision floating-point fmla extension. This also enables
17464 the half-precision floating-point extension and Advanced SIMD and
17465 floating-point instructions.
17466
17467 @item +simd
17468 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17469
17470 @item +crypto
17471 The cryptographic instructions. This also enables the Advanced SIMD and
17472 floating-point instructions.
17473
17474 @item +dotprod
17475 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17476
17477 @item +nocrypto
17478 Disable the cryptographic extension.
17479
17480 @item +nofp
17481 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17482
17483 @item +sb
17484 Speculation Barrier Instruction.
17485
17486 @item +predres
17487 Execution and Data Prediction Restriction Instructions.
17488 @end table
17489
17490 @item armv8.4-a
17491 @table @samp
17492 @item +fp16
17493 The half-precision floating-point data processing instructions.
17494 This also enables the Advanced SIMD and floating-point instructions as well
17495 as the Dot Product extension and the half-precision floating-point fmla
17496 extension.
17497
17498 @item +simd
17499 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17500 Dot Product extension.
17501
17502 @item +crypto
17503 The cryptographic instructions. This also enables the Advanced SIMD and
17504 floating-point instructions as well as the Dot Product extension.
17505
17506 @item +nocrypto
17507 Disable the cryptographic extension.
17508
17509 @item +nofp
17510 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17511
17512 @item +sb
17513 Speculation Barrier Instruction.
17514
17515 @item +predres
17516 Execution and Data Prediction Restriction Instructions.
17517 @end table
17518
17519 @item armv8.5-a
17520 @table @samp
17521 @item +fp16
17522 The half-precision floating-point data processing instructions.
17523 This also enables the Advanced SIMD and floating-point instructions as well
17524 as the Dot Product extension and the half-precision floating-point fmla
17525 extension.
17526
17527 @item +simd
17528 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17529 Dot Product extension.
17530
17531 @item +crypto
17532 The cryptographic instructions. This also enables the Advanced SIMD and
17533 floating-point instructions as well as the Dot Product extension.
17534
17535 @item +nocrypto
17536 Disable the cryptographic extension.
17537
17538 @item +nofp
17539 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17540 @end table
17541
17542 @item armv7-r
17543 @table @samp
17544 @item +fp.sp
17545 The single-precision VFPv3 floating-point instructions. The extension
17546 @samp{+vfpv3xd} can be used as an alias for this extension.
17547
17548 @item +fp
17549 The VFPv3 floating-point instructions with 16 double-precision registers.
17550 The extension +vfpv3-d16 can be used as an alias for this extension.
17551
17552 @item +vfpv3xd-d16-fp16
17553 The single-precision VFPv3 floating-point instructions with 16 double-precision
17554 registers and the half-precision floating-point conversion operations.
17555
17556 @item +vfpv3-d16-fp16
17557 The VFPv3 floating-point instructions with 16 double-precision
17558 registers and the half-precision floating-point conversion operations.
17559
17560 @item +nofp
17561 Disable the floating-point extension.
17562
17563 @item +idiv
17564 The ARM-state integer division instructions.
17565
17566 @item +noidiv
17567 Disable the ARM-state integer division extension.
17568 @end table
17569
17570 @item armv7e-m
17571 @table @samp
17572 @item +fp
17573 The single-precision VFPv4 floating-point instructions.
17574
17575 @item +fpv5
17576 The single-precision FPv5 floating-point instructions.
17577
17578 @item +fp.dp
17579 The single- and double-precision FPv5 floating-point instructions.
17580
17581 @item +nofp
17582 Disable the floating-point extensions.
17583 @end table
17584
17585 @item armv8-m.main
17586 @table @samp
17587 @item +dsp
17588 The DSP instructions.
17589
17590 @item +nodsp
17591 Disable the DSP extension.
17592
17593 @item +fp
17594 The single-precision floating-point instructions.
17595
17596 @item +fp.dp
17597 The single- and double-precision floating-point instructions.
17598
17599 @item +nofp
17600 Disable the floating-point extension.
17601 @end table
17602
17603 @item armv8-r
17604 @table @samp
17605 @item +crc
17606 The Cyclic Redundancy Check (CRC) instructions.
17607 @item +fp.sp
17608 The single-precision FPv5 floating-point instructions.
17609 @item +simd
17610 The ARMv8-A Advanced SIMD and floating-point instructions.
17611 @item +crypto
17612 The cryptographic instructions.
17613 @item +nocrypto
17614 Disable the cryptographic instructions.
17615 @item +nofp
17616 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17617 @end table
17618
17619 @end table
17620
17621 @option{-march=native} causes the compiler to auto-detect the architecture
17622 of the build computer. At present, this feature is only supported on
17623 GNU/Linux, and not all architectures are recognized. If the auto-detect
17624 is unsuccessful the option has no effect.
17625
17626 @item -mtune=@var{name}
17627 @opindex mtune
17628 This option specifies the name of the target ARM processor for
17629 which GCC should tune the performance of the code.
17630 For some ARM implementations better performance can be obtained by using
17631 this option.
17632 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17633 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17634 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17635 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17636 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17637 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17638 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17639 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17640 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17641 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17642 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17643 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17644 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17645 @samp{cortex-a76}, @samp{cortex-a76ae}, @samp{cortex-a77},
17646 @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17647 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17648 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17649 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17650 @samp{cortex-m35p},
17651 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17652 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17653 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17654 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17655 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17656
17657 Additionally, this option can specify that GCC should tune the performance
17658 of the code for a big.LITTLE system. Permissible names are:
17659 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17660 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17661 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17662 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17663
17664 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17665 performance for a blend of processors within architecture @var{arch}.
17666 The aim is to generate code that run well on the current most popular
17667 processors, balancing between optimizations that benefit some CPUs in the
17668 range, and avoiding performance pitfalls of other CPUs. The effects of
17669 this option may change in future GCC versions as CPU models come and go.
17670
17671 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17672 the extension options do not affect the tuning of the generated code.
17673
17674 @option{-mtune=native} causes the compiler to auto-detect the CPU
17675 of the build computer. At present, this feature is only supported on
17676 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17677 unsuccessful the option has no effect.
17678
17679 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17680 @opindex mcpu
17681 This specifies the name of the target ARM processor. GCC uses this name
17682 to derive the name of the target ARM architecture (as if specified
17683 by @option{-march}) and the ARM processor type for which to tune for
17684 performance (as if specified by @option{-mtune}). Where this option
17685 is used in conjunction with @option{-march} or @option{-mtune},
17686 those options take precedence over the appropriate part of this option.
17687
17688 Many of the supported CPUs implement optional architectural
17689 extensions. Where this is so the architectural extensions are
17690 normally enabled by default. If implementations that lack the
17691 extension exist, then the extension syntax can be used to disable
17692 those extensions that have been omitted. For floating-point and
17693 Advanced SIMD (Neon) instructions, the settings of the options
17694 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17695 floating-point and Advanced SIMD instructions will only be used if
17696 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17697 @option{-mfpu} other than @samp{auto} will override the available
17698 floating-point and SIMD extension instructions.
17699
17700 For example, @samp{cortex-a9} can be found in three major
17701 configurations: integer only, with just a floating-point unit or with
17702 floating-point and Advanced SIMD. The default is to enable all the
17703 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17704 be used to disable just the SIMD or both the SIMD and floating-point
17705 instructions respectively.
17706
17707 Permissible names for this option are the same as those for
17708 @option{-mtune}.
17709
17710 The following extension options are common to the listed CPUs:
17711
17712 @table @samp
17713 @item +nodsp
17714 Disable the DSP instructions on @samp{cortex-m33}, @samp{cortex-m35p}.
17715
17716 @item +nofp
17717 Disables the floating-point instructions on @samp{arm9e},
17718 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17719 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17720 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17721 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m33} and @samp{cortex-m35p}.
17722 Disables the floating-point and SIMD instructions on
17723 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17724 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17725 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17726 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17727 @samp{cortex-a53} and @samp{cortex-a55}.
17728
17729 @item +nofp.dp
17730 Disables the double-precision component of the floating-point instructions
17731 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17732 @samp{cortex-m7}.
17733
17734 @item +nosimd
17735 Disables the SIMD (but not floating-point) instructions on
17736 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17737 and @samp{cortex-a9}.
17738
17739 @item +crypto
17740 Enables the cryptographic instructions on @samp{cortex-a32},
17741 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17742 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17743 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17744 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17745 @samp{cortex-a75.cortex-a55}.
17746 @end table
17747
17748 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17749 VFPv3 with 16 double-precision registers. It supports the following
17750 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17751 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17752 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17753 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17754 the extensions to @option{-march=armv7-a}.
17755
17756 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17757 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17758 See @option{-mtune} for more information.
17759
17760 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17761 of the build computer. At present, this feature is only supported on
17762 GNU/Linux, and not all architectures are recognized. If the auto-detect
17763 is unsuccessful the option has no effect.
17764
17765 @item -mfpu=@var{name}
17766 @opindex mfpu
17767 This specifies what floating-point hardware (or hardware emulation) is
17768 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17769 @samp{vfpv3},
17770 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17771 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17772 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17773 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17774 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17775 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17776 is an alias for @samp{vfpv2}.
17777
17778 The setting @samp{auto} is the default and is special. It causes the
17779 compiler to select the floating-point and Advanced SIMD instructions
17780 based on the settings of @option{-mcpu} and @option{-march}.
17781
17782 If the selected floating-point hardware includes the NEON extension
17783 (e.g.@: @option{-mfpu=neon}), note that floating-point
17784 operations are not generated by GCC's auto-vectorization pass unless
17785 @option{-funsafe-math-optimizations} is also specified. This is
17786 because NEON hardware does not fully implement the IEEE 754 standard for
17787 floating-point arithmetic (in particular denormal values are treated as
17788 zero), so the use of NEON instructions may lead to a loss of precision.
17789
17790 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17791
17792 @item -mfp16-format=@var{name}
17793 @opindex mfp16-format
17794 Specify the format of the @code{__fp16} half-precision floating-point type.
17795 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17796 the default is @samp{none}, in which case the @code{__fp16} type is not
17797 defined. @xref{Half-Precision}, for more information.
17798
17799 @item -mstructure-size-boundary=@var{n}
17800 @opindex mstructure-size-boundary
17801 The sizes of all structures and unions are rounded up to a multiple
17802 of the number of bits set by this option. Permissible values are 8, 32
17803 and 64. The default value varies for different toolchains. For the COFF
17804 targeted toolchain the default value is 8. A value of 64 is only allowed
17805 if the underlying ABI supports it.
17806
17807 Specifying a larger number can produce faster, more efficient code, but
17808 can also increase the size of the program. Different values are potentially
17809 incompatible. Code compiled with one value cannot necessarily expect to
17810 work with code or libraries compiled with another value, if they exchange
17811 information using structures or unions.
17812
17813 This option is deprecated.
17814
17815 @item -mabort-on-noreturn
17816 @opindex mabort-on-noreturn
17817 Generate a call to the function @code{abort} at the end of a
17818 @code{noreturn} function. It is executed if the function tries to
17819 return.
17820
17821 @item -mlong-calls
17822 @itemx -mno-long-calls
17823 @opindex mlong-calls
17824 @opindex mno-long-calls
17825 Tells the compiler to perform function calls by first loading the
17826 address of the function into a register and then performing a subroutine
17827 call on this register. This switch is needed if the target function
17828 lies outside of the 64-megabyte addressing range of the offset-based
17829 version of subroutine call instruction.
17830
17831 Even if this switch is enabled, not all function calls are turned
17832 into long calls. The heuristic is that static functions, functions
17833 that have the @code{short_call} attribute, functions that are inside
17834 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17835 definitions have already been compiled within the current compilation
17836 unit are not turned into long calls. The exceptions to this rule are
17837 that weak function definitions, functions with the @code{long_call}
17838 attribute or the @code{section} attribute, and functions that are within
17839 the scope of a @code{#pragma long_calls} directive are always
17840 turned into long calls.
17841
17842 This feature is not enabled by default. Specifying
17843 @option{-mno-long-calls} restores the default behavior, as does
17844 placing the function calls within the scope of a @code{#pragma
17845 long_calls_off} directive. Note these switches have no effect on how
17846 the compiler generates code to handle function calls via function
17847 pointers.
17848
17849 @item -msingle-pic-base
17850 @opindex msingle-pic-base
17851 Treat the register used for PIC addressing as read-only, rather than
17852 loading it in the prologue for each function. The runtime system is
17853 responsible for initializing this register with an appropriate value
17854 before execution begins.
17855
17856 @item -mpic-register=@var{reg}
17857 @opindex mpic-register
17858 Specify the register to be used for PIC addressing.
17859 For standard PIC base case, the default is any suitable register
17860 determined by compiler. For single PIC base case, the default is
17861 @samp{R9} if target is EABI based or stack-checking is enabled,
17862 otherwise the default is @samp{R10}.
17863
17864 @item -mpic-data-is-text-relative
17865 @opindex mpic-data-is-text-relative
17866 Assume that the displacement between the text and data segments is fixed
17867 at static link time. This permits using PC-relative addressing
17868 operations to access data known to be in the data segment. For
17869 non-VxWorks RTP targets, this option is enabled by default. When
17870 disabled on such targets, it will enable @option{-msingle-pic-base} by
17871 default.
17872
17873 @item -mpoke-function-name
17874 @opindex mpoke-function-name
17875 Write the name of each function into the text section, directly
17876 preceding the function prologue. The generated code is similar to this:
17877
17878 @smallexample
17879 t0
17880 .ascii "arm_poke_function_name", 0
17881 .align
17882 t1
17883 .word 0xff000000 + (t1 - t0)
17884 arm_poke_function_name
17885 mov ip, sp
17886 stmfd sp!, @{fp, ip, lr, pc@}
17887 sub fp, ip, #4
17888 @end smallexample
17889
17890 When performing a stack backtrace, code can inspect the value of
17891 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17892 location @code{pc - 12} and the top 8 bits are set, then we know that
17893 there is a function name embedded immediately preceding this location
17894 and has length @code{((pc[-3]) & 0xff000000)}.
17895
17896 @item -mthumb
17897 @itemx -marm
17898 @opindex marm
17899 @opindex mthumb
17900
17901 Select between generating code that executes in ARM and Thumb
17902 states. The default for most configurations is to generate code
17903 that executes in ARM state, but the default can be changed by
17904 configuring GCC with the @option{--with-mode=}@var{state}
17905 configure option.
17906
17907 You can also override the ARM and Thumb mode for each function
17908 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17909 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17910
17911 @item -mflip-thumb
17912 @opindex mflip-thumb
17913 Switch ARM/Thumb modes on alternating functions.
17914 This option is provided for regression testing of mixed Thumb/ARM code
17915 generation, and is not intended for ordinary use in compiling code.
17916
17917 @item -mtpcs-frame
17918 @opindex mtpcs-frame
17919 Generate a stack frame that is compliant with the Thumb Procedure Call
17920 Standard for all non-leaf functions. (A leaf function is one that does
17921 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17922
17923 @item -mtpcs-leaf-frame
17924 @opindex mtpcs-leaf-frame
17925 Generate a stack frame that is compliant with the Thumb Procedure Call
17926 Standard for all leaf functions. (A leaf function is one that does
17927 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17928
17929 @item -mcallee-super-interworking
17930 @opindex mcallee-super-interworking
17931 Gives all externally visible functions in the file being compiled an ARM
17932 instruction set header which switches to Thumb mode before executing the
17933 rest of the function. This allows these functions to be called from
17934 non-interworking code. This option is not valid in AAPCS configurations
17935 because interworking is enabled by default.
17936
17937 @item -mcaller-super-interworking
17938 @opindex mcaller-super-interworking
17939 Allows calls via function pointers (including virtual functions) to
17940 execute correctly regardless of whether the target code has been
17941 compiled for interworking or not. There is a small overhead in the cost
17942 of executing a function pointer if this option is enabled. This option
17943 is not valid in AAPCS configurations because interworking is enabled
17944 by default.
17945
17946 @item -mtp=@var{name}
17947 @opindex mtp
17948 Specify the access model for the thread local storage pointer. The valid
17949 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17950 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17951 (supported in the arm6k architecture), and @samp{auto}, which uses the
17952 best available method for the selected processor. The default setting is
17953 @samp{auto}.
17954
17955 @item -mtls-dialect=@var{dialect}
17956 @opindex mtls-dialect
17957 Specify the dialect to use for accessing thread local storage. Two
17958 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17959 @samp{gnu} dialect selects the original GNU scheme for supporting
17960 local and global dynamic TLS models. The @samp{gnu2} dialect
17961 selects the GNU descriptor scheme, which provides better performance
17962 for shared libraries. The GNU descriptor scheme is compatible with
17963 the original scheme, but does require new assembler, linker and
17964 library support. Initial and local exec TLS models are unaffected by
17965 this option and always use the original scheme.
17966
17967 @item -mword-relocations
17968 @opindex mword-relocations
17969 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17970 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17971 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17972 is specified. This option conflicts with @option{-mslow-flash-data}.
17973
17974 @item -mfix-cortex-m3-ldrd
17975 @opindex mfix-cortex-m3-ldrd
17976 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17977 with overlapping destination and base registers are used. This option avoids
17978 generating these instructions. This option is enabled by default when
17979 @option{-mcpu=cortex-m3} is specified.
17980
17981 @item -munaligned-access
17982 @itemx -mno-unaligned-access
17983 @opindex munaligned-access
17984 @opindex mno-unaligned-access
17985 Enables (or disables) reading and writing of 16- and 32- bit values
17986 from addresses that are not 16- or 32- bit aligned. By default
17987 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17988 ARMv8-M Baseline architectures, and enabled for all other
17989 architectures. If unaligned access is not enabled then words in packed
17990 data structures are accessed a byte at a time.
17991
17992 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17993 generated object file to either true or false, depending upon the
17994 setting of this option. If unaligned access is enabled then the
17995 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17996 defined.
17997
17998 @item -mneon-for-64bits
17999 @opindex mneon-for-64bits
18000 This option is deprecated and has no effect.
18001
18002 @item -mslow-flash-data
18003 @opindex mslow-flash-data
18004 Assume loading data from flash is slower than fetching instruction.
18005 Therefore literal load is minimized for better performance.
18006 This option is only supported when compiling for ARMv7 M-profile and
18007 off by default. It conflicts with @option{-mword-relocations}.
18008
18009 @item -masm-syntax-unified
18010 @opindex masm-syntax-unified
18011 Assume inline assembler is using unified asm syntax. The default is
18012 currently off which implies divided syntax. This option has no impact
18013 on Thumb2. However, this may change in future releases of GCC.
18014 Divided syntax should be considered deprecated.
18015
18016 @item -mrestrict-it
18017 @opindex mrestrict-it
18018 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
18019 IT blocks can only contain a single 16-bit instruction from a select
18020 set of instructions. This option is on by default for ARMv8-A Thumb mode.
18021
18022 @item -mprint-tune-info
18023 @opindex mprint-tune-info
18024 Print CPU tuning information as comment in assembler file. This is
18025 an option used only for regression testing of the compiler and not
18026 intended for ordinary use in compiling code. This option is disabled
18027 by default.
18028
18029 @item -mverbose-cost-dump
18030 @opindex mverbose-cost-dump
18031 Enable verbose cost model dumping in the debug dump files. This option is
18032 provided for use in debugging the compiler.
18033
18034 @item -mpure-code
18035 @opindex mpure-code
18036 Do not allow constant data to be placed in code sections.
18037 Additionally, when compiling for ELF object format give all text sections the
18038 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
18039 is only available when generating non-pic code for M-profile targets with the
18040 MOVT instruction.
18041
18042 @item -mcmse
18043 @opindex mcmse
18044 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
18045 Development Tools Engineering Specification", which can be found on
18046 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
18047
18048 @item -mfdpic
18049 @itemx -mno-fdpic
18050 @opindex mfdpic
18051 @opindex mno-fdpic
18052 Select the FDPIC ABI, which uses 64-bit function descriptors to
18053 represent pointers to functions. When the compiler is configured for
18054 @code{arm-*-uclinuxfdpiceabi} targets, this option is on by default
18055 and implies @option{-fPIE} if none of the PIC/PIE-related options is
18056 provided. On other targets, it only enables the FDPIC-specific code
18057 generation features, and the user should explicitly provide the
18058 PIC/PIE-related options as needed.
18059
18060 Note that static linking is not supported because it would still
18061 involve the dynamic linker when the program self-relocates. If such
18062 behavior is acceptable, use -static and -Wl,-dynamic-linker options.
18063
18064 The opposite @option{-mno-fdpic} option is useful (and required) to
18065 build the Linux kernel using the same (@code{arm-*-uclinuxfdpiceabi})
18066 toolchain as the one used to build the userland programs.
18067
18068 @end table
18069
18070 @node AVR Options
18071 @subsection AVR Options
18072 @cindex AVR Options
18073
18074 These options are defined for AVR implementations:
18075
18076 @table @gcctabopt
18077 @item -mmcu=@var{mcu}
18078 @opindex mmcu
18079 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
18080
18081 The default for this option is@tie{}@samp{avr2}.
18082
18083 GCC supports the following AVR devices and ISAs:
18084
18085 @include avr-mmcu.texi
18086
18087 @item -mabsdata
18088 @opindex mabsdata
18089
18090 Assume that all data in static storage can be accessed by LDS / STS
18091 instructions. This option has only an effect on reduced Tiny devices like
18092 ATtiny40. See also the @code{absdata}
18093 @ref{AVR Variable Attributes,variable attribute}.
18094
18095 @item -maccumulate-args
18096 @opindex maccumulate-args
18097 Accumulate outgoing function arguments and acquire/release the needed
18098 stack space for outgoing function arguments once in function
18099 prologue/epilogue. Without this option, outgoing arguments are pushed
18100 before calling a function and popped afterwards.
18101
18102 Popping the arguments after the function call can be expensive on
18103 AVR so that accumulating the stack space might lead to smaller
18104 executables because arguments need not be removed from the
18105 stack after such a function call.
18106
18107 This option can lead to reduced code size for functions that perform
18108 several calls to functions that get their arguments on the stack like
18109 calls to printf-like functions.
18110
18111 @item -mbranch-cost=@var{cost}
18112 @opindex mbranch-cost
18113 Set the branch costs for conditional branch instructions to
18114 @var{cost}. Reasonable values for @var{cost} are small, non-negative
18115 integers. The default branch cost is 0.
18116
18117 @item -mcall-prologues
18118 @opindex mcall-prologues
18119 Functions prologues/epilogues are expanded as calls to appropriate
18120 subroutines. Code size is smaller.
18121
18122 @item -mgas-isr-prologues
18123 @opindex mgas-isr-prologues
18124 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
18125 instruction supported by GNU Binutils.
18126 If this option is on, the feature can still be disabled for individual
18127 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
18128 function attribute. This feature is activated per default
18129 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
18130 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18131
18132 @item -mint8
18133 @opindex mint8
18134 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
18135 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18136 and @code{long long} is 4 bytes. Please note that this option does not
18137 conform to the C standards, but it results in smaller code
18138 size.
18139
18140 @item -mmain-is-OS_task
18141 @opindex mmain-is-OS_task
18142 Do not save registers in @code{main}. The effect is the same like
18143 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18144 to @code{main}. It is activated per default if optimization is on.
18145
18146 @item -mn-flash=@var{num}
18147 @opindex mn-flash
18148 Assume that the flash memory has a size of
18149 @var{num} times 64@tie{}KiB.
18150
18151 @item -mno-interrupts
18152 @opindex mno-interrupts
18153 Generated code is not compatible with hardware interrupts.
18154 Code size is smaller.
18155
18156 @item -mrelax
18157 @opindex mrelax
18158 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18159 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18160 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18161 the assembler's command line and the @option{--relax} option to the
18162 linker's command line.
18163
18164 Jump relaxing is performed by the linker because jump offsets are not
18165 known before code is located. Therefore, the assembler code generated by the
18166 compiler is the same, but the instructions in the executable may
18167 differ from instructions in the assembler code.
18168
18169 Relaxing must be turned on if linker stubs are needed, see the
18170 section on @code{EIND} and linker stubs below.
18171
18172 @item -mrmw
18173 @opindex mrmw
18174 Assume that the device supports the Read-Modify-Write
18175 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18176
18177 @item -mshort-calls
18178 @opindex mshort-calls
18179
18180 Assume that @code{RJMP} and @code{RCALL} can target the whole
18181 program memory.
18182
18183 This option is used internally for multilib selection. It is
18184 not an optimization option, and you don't need to set it by hand.
18185
18186 @item -msp8
18187 @opindex msp8
18188 Treat the stack pointer register as an 8-bit register,
18189 i.e.@: assume the high byte of the stack pointer is zero.
18190 In general, you don't need to set this option by hand.
18191
18192 This option is used internally by the compiler to select and
18193 build multilibs for architectures @code{avr2} and @code{avr25}.
18194 These architectures mix devices with and without @code{SPH}.
18195 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18196 the compiler driver adds or removes this option from the compiler
18197 proper's command line, because the compiler then knows if the device
18198 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18199 register or not.
18200
18201 @item -mstrict-X
18202 @opindex mstrict-X
18203 Use address register @code{X} in a way proposed by the hardware. This means
18204 that @code{X} is only used in indirect, post-increment or
18205 pre-decrement addressing.
18206
18207 Without this option, the @code{X} register may be used in the same way
18208 as @code{Y} or @code{Z} which then is emulated by additional
18209 instructions.
18210 For example, loading a value with @code{X+const} addressing with a
18211 small non-negative @code{const < 64} to a register @var{Rn} is
18212 performed as
18213
18214 @example
18215 adiw r26, const ; X += const
18216 ld @var{Rn}, X ; @var{Rn} = *X
18217 sbiw r26, const ; X -= const
18218 @end example
18219
18220 @item -mtiny-stack
18221 @opindex mtiny-stack
18222 Only change the lower 8@tie{}bits of the stack pointer.
18223
18224 @item -mfract-convert-truncate
18225 @opindex mfract-convert-truncate
18226 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18227
18228 @item -nodevicelib
18229 @opindex nodevicelib
18230 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18231
18232 @item -Waddr-space-convert
18233 @opindex Waddr-space-convert
18234 @opindex Wno-addr-space-convert
18235 Warn about conversions between address spaces in the case where the
18236 resulting address space is not contained in the incoming address space.
18237
18238 @item -Wmisspelled-isr
18239 @opindex Wmisspelled-isr
18240 @opindex Wno-misspelled-isr
18241 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18242 Enabled by default.
18243 @end table
18244
18245 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18246 @cindex @code{EIND}
18247 Pointers in the implementation are 16@tie{}bits wide.
18248 The address of a function or label is represented as word address so
18249 that indirect jumps and calls can target any code address in the
18250 range of 64@tie{}Ki words.
18251
18252 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18253 bytes of program memory space, there is a special function register called
18254 @code{EIND} that serves as most significant part of the target address
18255 when @code{EICALL} or @code{EIJMP} instructions are used.
18256
18257 Indirect jumps and calls on these devices are handled as follows by
18258 the compiler and are subject to some limitations:
18259
18260 @itemize @bullet
18261
18262 @item
18263 The compiler never sets @code{EIND}.
18264
18265 @item
18266 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18267 instructions or might read @code{EIND} directly in order to emulate an
18268 indirect call/jump by means of a @code{RET} instruction.
18269
18270 @item
18271 The compiler assumes that @code{EIND} never changes during the startup
18272 code or during the application. In particular, @code{EIND} is not
18273 saved/restored in function or interrupt service routine
18274 prologue/epilogue.
18275
18276 @item
18277 For indirect calls to functions and computed goto, the linker
18278 generates @emph{stubs}. Stubs are jump pads sometimes also called
18279 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18280 The stub contains a direct jump to the desired address.
18281
18282 @item
18283 Linker relaxation must be turned on so that the linker generates
18284 the stubs correctly in all situations. See the compiler option
18285 @option{-mrelax} and the linker option @option{--relax}.
18286 There are corner cases where the linker is supposed to generate stubs
18287 but aborts without relaxation and without a helpful error message.
18288
18289 @item
18290 The default linker script is arranged for code with @code{EIND = 0}.
18291 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18292 linker script has to be used in order to place the sections whose
18293 name start with @code{.trampolines} into the segment where @code{EIND}
18294 points to.
18295
18296 @item
18297 The startup code from libgcc never sets @code{EIND}.
18298 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18299 For the impact of AVR-LibC on @code{EIND}, see the
18300 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18301
18302 @item
18303 It is legitimate for user-specific startup code to set up @code{EIND}
18304 early, for example by means of initialization code located in
18305 section @code{.init3}. Such code runs prior to general startup code
18306 that initializes RAM and calls constructors, but after the bit
18307 of startup code from AVR-LibC that sets @code{EIND} to the segment
18308 where the vector table is located.
18309 @example
18310 #include <avr/io.h>
18311
18312 static void
18313 __attribute__((section(".init3"),naked,used,no_instrument_function))
18314 init3_set_eind (void)
18315 @{
18316 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18317 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18318 @}
18319 @end example
18320
18321 @noindent
18322 The @code{__trampolines_start} symbol is defined in the linker script.
18323
18324 @item
18325 Stubs are generated automatically by the linker if
18326 the following two conditions are met:
18327 @itemize @minus
18328
18329 @item The address of a label is taken by means of the @code{gs} modifier
18330 (short for @emph{generate stubs}) like so:
18331 @example
18332 LDI r24, lo8(gs(@var{func}))
18333 LDI r25, hi8(gs(@var{func}))
18334 @end example
18335 @item The final location of that label is in a code segment
18336 @emph{outside} the segment where the stubs are located.
18337 @end itemize
18338
18339 @item
18340 The compiler emits such @code{gs} modifiers for code labels in the
18341 following situations:
18342 @itemize @minus
18343 @item Taking address of a function or code label.
18344 @item Computed goto.
18345 @item If prologue-save function is used, see @option{-mcall-prologues}
18346 command-line option.
18347 @item Switch/case dispatch tables. If you do not want such dispatch
18348 tables you can specify the @option{-fno-jump-tables} command-line option.
18349 @item C and C++ constructors/destructors called during startup/shutdown.
18350 @item If the tools hit a @code{gs()} modifier explained above.
18351 @end itemize
18352
18353 @item
18354 Jumping to non-symbolic addresses like so is @emph{not} supported:
18355
18356 @example
18357 int main (void)
18358 @{
18359 /* Call function at word address 0x2 */
18360 return ((int(*)(void)) 0x2)();
18361 @}
18362 @end example
18363
18364 Instead, a stub has to be set up, i.e.@: the function has to be called
18365 through a symbol (@code{func_4} in the example):
18366
18367 @example
18368 int main (void)
18369 @{
18370 extern int func_4 (void);
18371
18372 /* Call function at byte address 0x4 */
18373 return func_4();
18374 @}
18375 @end example
18376
18377 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18378 Alternatively, @code{func_4} can be defined in the linker script.
18379 @end itemize
18380
18381 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18382 @cindex @code{RAMPD}
18383 @cindex @code{RAMPX}
18384 @cindex @code{RAMPY}
18385 @cindex @code{RAMPZ}
18386 Some AVR devices support memories larger than the 64@tie{}KiB range
18387 that can be accessed with 16-bit pointers. To access memory locations
18388 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18389 register is used as high part of the address:
18390 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18391 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18392 register, respectively, to get a wide address. Similarly,
18393 @code{RAMPD} is used together with direct addressing.
18394
18395 @itemize
18396 @item
18397 The startup code initializes the @code{RAMP} special function
18398 registers with zero.
18399
18400 @item
18401 If a @ref{AVR Named Address Spaces,named address space} other than
18402 generic or @code{__flash} is used, then @code{RAMPZ} is set
18403 as needed before the operation.
18404
18405 @item
18406 If the device supports RAM larger than 64@tie{}KiB and the compiler
18407 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18408 is reset to zero after the operation.
18409
18410 @item
18411 If the device comes with a specific @code{RAMP} register, the ISR
18412 prologue/epilogue saves/restores that SFR and initializes it with
18413 zero in case the ISR code might (implicitly) use it.
18414
18415 @item
18416 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18417 If you use inline assembler to read from locations outside the
18418 16-bit address range and change one of the @code{RAMP} registers,
18419 you must reset it to zero after the access.
18420
18421 @end itemize
18422
18423 @subsubsection AVR Built-in Macros
18424
18425 GCC defines several built-in macros so that the user code can test
18426 for the presence or absence of features. Almost any of the following
18427 built-in macros are deduced from device capabilities and thus
18428 triggered by the @option{-mmcu=} command-line option.
18429
18430 For even more AVR-specific built-in macros see
18431 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18432
18433 @table @code
18434
18435 @item __AVR_ARCH__
18436 Build-in macro that resolves to a decimal number that identifies the
18437 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18438 Possible values are:
18439
18440 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18441 @code{4}, @code{5}, @code{51}, @code{6}
18442
18443 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18444 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18445
18446 respectively and
18447
18448 @code{100},
18449 @code{102}, @code{103}, @code{104},
18450 @code{105}, @code{106}, @code{107}
18451
18452 for @var{mcu}=@code{avrtiny},
18453 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18454 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18455 If @var{mcu} specifies a device, this built-in macro is set
18456 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18457 defined to @code{4}.
18458
18459 @item __AVR_@var{Device}__
18460 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18461 the device's name. For example, @option{-mmcu=atmega8} defines the
18462 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18463 @code{__AVR_ATtiny261A__}, etc.
18464
18465 The built-in macros' names follow
18466 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18467 the device name as from the AVR user manual. The difference between
18468 @var{Device} in the built-in macro and @var{device} in
18469 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18470
18471 If @var{device} is not a device but only a core architecture like
18472 @samp{avr51}, this macro is not defined.
18473
18474 @item __AVR_DEVICE_NAME__
18475 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18476 the device's name. For example, with @option{-mmcu=atmega8} the macro
18477 is defined to @code{atmega8}.
18478
18479 If @var{device} is not a device but only a core architecture like
18480 @samp{avr51}, this macro is not defined.
18481
18482 @item __AVR_XMEGA__
18483 The device / architecture belongs to the XMEGA family of devices.
18484
18485 @item __AVR_HAVE_ELPM__
18486 The device has the @code{ELPM} instruction.
18487
18488 @item __AVR_HAVE_ELPMX__
18489 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18490 R@var{n},Z+} instructions.
18491
18492 @item __AVR_HAVE_MOVW__
18493 The device has the @code{MOVW} instruction to perform 16-bit
18494 register-register moves.
18495
18496 @item __AVR_HAVE_LPMX__
18497 The device has the @code{LPM R@var{n},Z} and
18498 @code{LPM R@var{n},Z+} instructions.
18499
18500 @item __AVR_HAVE_MUL__
18501 The device has a hardware multiplier.
18502
18503 @item __AVR_HAVE_JMP_CALL__
18504 The device has the @code{JMP} and @code{CALL} instructions.
18505 This is the case for devices with more than 8@tie{}KiB of program
18506 memory.
18507
18508 @item __AVR_HAVE_EIJMP_EICALL__
18509 @itemx __AVR_3_BYTE_PC__
18510 The device has the @code{EIJMP} and @code{EICALL} instructions.
18511 This is the case for devices with more than 128@tie{}KiB of program memory.
18512 This also means that the program counter
18513 (PC) is 3@tie{}bytes wide.
18514
18515 @item __AVR_2_BYTE_PC__
18516 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18517 with up to 128@tie{}KiB of program memory.
18518
18519 @item __AVR_HAVE_8BIT_SP__
18520 @itemx __AVR_HAVE_16BIT_SP__
18521 The stack pointer (SP) register is treated as 8-bit respectively
18522 16-bit register by the compiler.
18523 The definition of these macros is affected by @option{-mtiny-stack}.
18524
18525 @item __AVR_HAVE_SPH__
18526 @itemx __AVR_SP8__
18527 The device has the SPH (high part of stack pointer) special function
18528 register or has an 8-bit stack pointer, respectively.
18529 The definition of these macros is affected by @option{-mmcu=} and
18530 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18531 by @option{-msp8}.
18532
18533 @item __AVR_HAVE_RAMPD__
18534 @itemx __AVR_HAVE_RAMPX__
18535 @itemx __AVR_HAVE_RAMPY__
18536 @itemx __AVR_HAVE_RAMPZ__
18537 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18538 @code{RAMPZ} special function register, respectively.
18539
18540 @item __NO_INTERRUPTS__
18541 This macro reflects the @option{-mno-interrupts} command-line option.
18542
18543 @item __AVR_ERRATA_SKIP__
18544 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18545 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18546 instructions because of a hardware erratum. Skip instructions are
18547 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18548 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18549 set.
18550
18551 @item __AVR_ISA_RMW__
18552 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18553
18554 @item __AVR_SFR_OFFSET__=@var{offset}
18555 Instructions that can address I/O special function registers directly
18556 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18557 address as if addressed by an instruction to access RAM like @code{LD}
18558 or @code{STS}. This offset depends on the device architecture and has
18559 to be subtracted from the RAM address in order to get the
18560 respective I/O@tie{}address.
18561
18562 @item __AVR_SHORT_CALLS__
18563 The @option{-mshort-calls} command line option is set.
18564
18565 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18566 Some devices support reading from flash memory by means of @code{LD*}
18567 instructions. The flash memory is seen in the data address space
18568 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18569 is not defined, this feature is not available. If defined,
18570 the address space is linear and there is no need to put
18571 @code{.rodata} into RAM. This is handled by the default linker
18572 description file, and is currently available for
18573 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18574 there is no need to use address spaces like @code{__flash} or
18575 features like attribute @code{progmem} and @code{pgm_read_*}.
18576
18577 @item __WITH_AVRLIBC__
18578 The compiler is configured to be used together with AVR-Libc.
18579 See the @option{--with-avrlibc} configure option.
18580
18581 @end table
18582
18583 @node Blackfin Options
18584 @subsection Blackfin Options
18585 @cindex Blackfin Options
18586
18587 @table @gcctabopt
18588 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18589 @opindex mcpu=
18590 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18591 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18592 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18593 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18594 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18595 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18596 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18597 @samp{bf561}, @samp{bf592}.
18598
18599 The optional @var{sirevision} specifies the silicon revision of the target
18600 Blackfin processor. Any workarounds available for the targeted silicon revision
18601 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18602 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18603 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18604 hexadecimal digits representing the major and minor numbers in the silicon
18605 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18606 is not defined. If @var{sirevision} is @samp{any}, the
18607 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18608 If this optional @var{sirevision} is not used, GCC assumes the latest known
18609 silicon revision of the targeted Blackfin processor.
18610
18611 GCC defines a preprocessor macro for the specified @var{cpu}.
18612 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18613 provided by libgloss to be linked in if @option{-msim} is not given.
18614
18615 Without this option, @samp{bf532} is used as the processor by default.
18616
18617 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18618 only the preprocessor macro is defined.
18619
18620 @item -msim
18621 @opindex msim
18622 Specifies that the program will be run on the simulator. This causes
18623 the simulator BSP provided by libgloss to be linked in. This option
18624 has effect only for @samp{bfin-elf} toolchain.
18625 Certain other options, such as @option{-mid-shared-library} and
18626 @option{-mfdpic}, imply @option{-msim}.
18627
18628 @item -momit-leaf-frame-pointer
18629 @opindex momit-leaf-frame-pointer
18630 Don't keep the frame pointer in a register for leaf functions. This
18631 avoids the instructions to save, set up and restore frame pointers and
18632 makes an extra register available in leaf functions.
18633
18634 @item -mspecld-anomaly
18635 @opindex mspecld-anomaly
18636 When enabled, the compiler ensures that the generated code does not
18637 contain speculative loads after jump instructions. If this option is used,
18638 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18639
18640 @item -mno-specld-anomaly
18641 @opindex mno-specld-anomaly
18642 @opindex mspecld-anomaly
18643 Don't generate extra code to prevent speculative loads from occurring.
18644
18645 @item -mcsync-anomaly
18646 @opindex mcsync-anomaly
18647 When enabled, the compiler ensures that the generated code does not
18648 contain CSYNC or SSYNC instructions too soon after conditional branches.
18649 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18650
18651 @item -mno-csync-anomaly
18652 @opindex mno-csync-anomaly
18653 @opindex mcsync-anomaly
18654 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18655 occurring too soon after a conditional branch.
18656
18657 @item -mlow64k
18658 @opindex mlow64k
18659 When enabled, the compiler is free to take advantage of the knowledge that
18660 the entire program fits into the low 64k of memory.
18661
18662 @item -mno-low64k
18663 @opindex mno-low64k
18664 Assume that the program is arbitrarily large. This is the default.
18665
18666 @item -mstack-check-l1
18667 @opindex mstack-check-l1
18668 Do stack checking using information placed into L1 scratchpad memory by the
18669 uClinux kernel.
18670
18671 @item -mid-shared-library
18672 @opindex mid-shared-library
18673 Generate code that supports shared libraries via the library ID method.
18674 This allows for execute in place and shared libraries in an environment
18675 without virtual memory management. This option implies @option{-fPIC}.
18676 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18677
18678 @item -mno-id-shared-library
18679 @opindex mno-id-shared-library
18680 @opindex mid-shared-library
18681 Generate code that doesn't assume ID-based shared libraries are being used.
18682 This is the default.
18683
18684 @item -mleaf-id-shared-library
18685 @opindex mleaf-id-shared-library
18686 Generate code that supports shared libraries via the library ID method,
18687 but assumes that this library or executable won't link against any other
18688 ID shared libraries. That allows the compiler to use faster code for jumps
18689 and calls.
18690
18691 @item -mno-leaf-id-shared-library
18692 @opindex mno-leaf-id-shared-library
18693 @opindex mleaf-id-shared-library
18694 Do not assume that the code being compiled won't link against any ID shared
18695 libraries. Slower code is generated for jump and call insns.
18696
18697 @item -mshared-library-id=n
18698 @opindex mshared-library-id
18699 Specifies the identification number of the ID-based shared library being
18700 compiled. Specifying a value of 0 generates more compact code; specifying
18701 other values forces the allocation of that number to the current
18702 library but is no more space- or time-efficient than omitting this option.
18703
18704 @item -msep-data
18705 @opindex msep-data
18706 Generate code that allows the data segment to be located in a different
18707 area of memory from the text segment. This allows for execute in place in
18708 an environment without virtual memory management by eliminating relocations
18709 against the text section.
18710
18711 @item -mno-sep-data
18712 @opindex mno-sep-data
18713 @opindex msep-data
18714 Generate code that assumes that the data segment follows the text segment.
18715 This is the default.
18716
18717 @item -mlong-calls
18718 @itemx -mno-long-calls
18719 @opindex mlong-calls
18720 @opindex mno-long-calls
18721 Tells the compiler to perform function calls by first loading the
18722 address of the function into a register and then performing a subroutine
18723 call on this register. This switch is needed if the target function
18724 lies outside of the 24-bit addressing range of the offset-based
18725 version of subroutine call instruction.
18726
18727 This feature is not enabled by default. Specifying
18728 @option{-mno-long-calls} restores the default behavior. Note these
18729 switches have no effect on how the compiler generates code to handle
18730 function calls via function pointers.
18731
18732 @item -mfast-fp
18733 @opindex mfast-fp
18734 Link with the fast floating-point library. This library relaxes some of
18735 the IEEE floating-point standard's rules for checking inputs against
18736 Not-a-Number (NAN), in the interest of performance.
18737
18738 @item -minline-plt
18739 @opindex minline-plt
18740 Enable inlining of PLT entries in function calls to functions that are
18741 not known to bind locally. It has no effect without @option{-mfdpic}.
18742
18743 @item -mmulticore
18744 @opindex mmulticore
18745 Build a standalone application for multicore Blackfin processors.
18746 This option causes proper start files and link scripts supporting
18747 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18748 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18749
18750 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18751 selects the one-application-per-core programming model. Without
18752 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18753 programming model is used. In this model, the main function of Core B
18754 should be named as @code{coreb_main}.
18755
18756 If this option is not used, the single-core application programming
18757 model is used.
18758
18759 @item -mcorea
18760 @opindex mcorea
18761 Build a standalone application for Core A of BF561 when using
18762 the one-application-per-core programming model. Proper start files
18763 and link scripts are used to support Core A, and the macro
18764 @code{__BFIN_COREA} is defined.
18765 This option can only be used in conjunction with @option{-mmulticore}.
18766
18767 @item -mcoreb
18768 @opindex mcoreb
18769 Build a standalone application for Core B of BF561 when using
18770 the one-application-per-core programming model. Proper start files
18771 and link scripts are used to support Core B, and the macro
18772 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18773 should be used instead of @code{main}.
18774 This option can only be used in conjunction with @option{-mmulticore}.
18775
18776 @item -msdram
18777 @opindex msdram
18778 Build a standalone application for SDRAM. Proper start files and
18779 link scripts are used to put the application into SDRAM, and the macro
18780 @code{__BFIN_SDRAM} is defined.
18781 The loader should initialize SDRAM before loading the application.
18782
18783 @item -micplb
18784 @opindex micplb
18785 Assume that ICPLBs are enabled at run time. This has an effect on certain
18786 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18787 are enabled; for standalone applications the default is off.
18788 @end table
18789
18790 @node C6X Options
18791 @subsection C6X Options
18792 @cindex C6X Options
18793
18794 @table @gcctabopt
18795 @item -march=@var{name}
18796 @opindex march
18797 This specifies the name of the target architecture. GCC uses this
18798 name to determine what kind of instructions it can emit when generating
18799 assembly code. Permissible names are: @samp{c62x},
18800 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18801
18802 @item -mbig-endian
18803 @opindex mbig-endian
18804 Generate code for a big-endian target.
18805
18806 @item -mlittle-endian
18807 @opindex mlittle-endian
18808 Generate code for a little-endian target. This is the default.
18809
18810 @item -msim
18811 @opindex msim
18812 Choose startup files and linker script suitable for the simulator.
18813
18814 @item -msdata=default
18815 @opindex msdata=default
18816 Put small global and static data in the @code{.neardata} section,
18817 which is pointed to by register @code{B14}. Put small uninitialized
18818 global and static data in the @code{.bss} section, which is adjacent
18819 to the @code{.neardata} section. Put small read-only data into the
18820 @code{.rodata} section. The corresponding sections used for large
18821 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18822
18823 @item -msdata=all
18824 @opindex msdata=all
18825 Put all data, not just small objects, into the sections reserved for
18826 small data, and use addressing relative to the @code{B14} register to
18827 access them.
18828
18829 @item -msdata=none
18830 @opindex msdata=none
18831 Make no use of the sections reserved for small data, and use absolute
18832 addresses to access all data. Put all initialized global and static
18833 data in the @code{.fardata} section, and all uninitialized data in the
18834 @code{.far} section. Put all constant data into the @code{.const}
18835 section.
18836 @end table
18837
18838 @node CRIS Options
18839 @subsection CRIS Options
18840 @cindex CRIS Options
18841
18842 These options are defined specifically for the CRIS ports.
18843
18844 @table @gcctabopt
18845 @item -march=@var{architecture-type}
18846 @itemx -mcpu=@var{architecture-type}
18847 @opindex march
18848 @opindex mcpu
18849 Generate code for the specified architecture. The choices for
18850 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18851 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18852 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18853 @samp{v10}.
18854
18855 @item -mtune=@var{architecture-type}
18856 @opindex mtune
18857 Tune to @var{architecture-type} everything applicable about the generated
18858 code, except for the ABI and the set of available instructions. The
18859 choices for @var{architecture-type} are the same as for
18860 @option{-march=@var{architecture-type}}.
18861
18862 @item -mmax-stack-frame=@var{n}
18863 @opindex mmax-stack-frame
18864 Warn when the stack frame of a function exceeds @var{n} bytes.
18865
18866 @item -metrax4
18867 @itemx -metrax100
18868 @opindex metrax4
18869 @opindex metrax100
18870 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18871 @option{-march=v3} and @option{-march=v8} respectively.
18872
18873 @item -mmul-bug-workaround
18874 @itemx -mno-mul-bug-workaround
18875 @opindex mmul-bug-workaround
18876 @opindex mno-mul-bug-workaround
18877 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18878 models where it applies. This option is active by default.
18879
18880 @item -mpdebug
18881 @opindex mpdebug
18882 Enable CRIS-specific verbose debug-related information in the assembly
18883 code. This option also has the effect of turning off the @samp{#NO_APP}
18884 formatted-code indicator to the assembler at the beginning of the
18885 assembly file.
18886
18887 @item -mcc-init
18888 @opindex mcc-init
18889 Do not use condition-code results from previous instruction; always emit
18890 compare and test instructions before use of condition codes.
18891
18892 @item -mno-side-effects
18893 @opindex mno-side-effects
18894 @opindex mside-effects
18895 Do not emit instructions with side effects in addressing modes other than
18896 post-increment.
18897
18898 @item -mstack-align
18899 @itemx -mno-stack-align
18900 @itemx -mdata-align
18901 @itemx -mno-data-align
18902 @itemx -mconst-align
18903 @itemx -mno-const-align
18904 @opindex mstack-align
18905 @opindex mno-stack-align
18906 @opindex mdata-align
18907 @opindex mno-data-align
18908 @opindex mconst-align
18909 @opindex mno-const-align
18910 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18911 stack frame, individual data and constants to be aligned for the maximum
18912 single data access size for the chosen CPU model. The default is to
18913 arrange for 32-bit alignment. ABI details such as structure layout are
18914 not affected by these options.
18915
18916 @item -m32-bit
18917 @itemx -m16-bit
18918 @itemx -m8-bit
18919 @opindex m32-bit
18920 @opindex m16-bit
18921 @opindex m8-bit
18922 Similar to the stack- data- and const-align options above, these options
18923 arrange for stack frame, writable data and constants to all be 32-bit,
18924 16-bit or 8-bit aligned. The default is 32-bit alignment.
18925
18926 @item -mno-prologue-epilogue
18927 @itemx -mprologue-epilogue
18928 @opindex mno-prologue-epilogue
18929 @opindex mprologue-epilogue
18930 With @option{-mno-prologue-epilogue}, the normal function prologue and
18931 epilogue which set up the stack frame are omitted and no return
18932 instructions or return sequences are generated in the code. Use this
18933 option only together with visual inspection of the compiled code: no
18934 warnings or errors are generated when call-saved registers must be saved,
18935 or storage for local variables needs to be allocated.
18936
18937 @item -mno-gotplt
18938 @itemx -mgotplt
18939 @opindex mno-gotplt
18940 @opindex mgotplt
18941 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18942 instruction sequences that load addresses for functions from the PLT part
18943 of the GOT rather than (traditional on other architectures) calls to the
18944 PLT@. The default is @option{-mgotplt}.
18945
18946 @item -melf
18947 @opindex melf
18948 Legacy no-op option only recognized with the cris-axis-elf and
18949 cris-axis-linux-gnu targets.
18950
18951 @item -mlinux
18952 @opindex mlinux
18953 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18954
18955 @item -sim
18956 @opindex sim
18957 This option, recognized for the cris-axis-elf, arranges
18958 to link with input-output functions from a simulator library. Code,
18959 initialized data and zero-initialized data are allocated consecutively.
18960
18961 @item -sim2
18962 @opindex sim2
18963 Like @option{-sim}, but pass linker options to locate initialized data at
18964 0x40000000 and zero-initialized data at 0x80000000.
18965 @end table
18966
18967 @node CR16 Options
18968 @subsection CR16 Options
18969 @cindex CR16 Options
18970
18971 These options are defined specifically for the CR16 ports.
18972
18973 @table @gcctabopt
18974
18975 @item -mmac
18976 @opindex mmac
18977 Enable the use of multiply-accumulate instructions. Disabled by default.
18978
18979 @item -mcr16cplus
18980 @itemx -mcr16c
18981 @opindex mcr16cplus
18982 @opindex mcr16c
18983 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
18984 is default.
18985
18986 @item -msim
18987 @opindex msim
18988 Links the library libsim.a which is in compatible with simulator. Applicable
18989 to ELF compiler only.
18990
18991 @item -mint32
18992 @opindex mint32
18993 Choose integer type as 32-bit wide.
18994
18995 @item -mbit-ops
18996 @opindex mbit-ops
18997 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18998
18999 @item -mdata-model=@var{model}
19000 @opindex mdata-model
19001 Choose a data model. The choices for @var{model} are @samp{near},
19002 @samp{far} or @samp{medium}. @samp{medium} is default.
19003 However, @samp{far} is not valid with @option{-mcr16c}, as the
19004 CR16C architecture does not support the far data model.
19005 @end table
19006
19007 @node C-SKY Options
19008 @subsection C-SKY Options
19009 @cindex C-SKY Options
19010
19011 GCC supports these options when compiling for C-SKY V2 processors.
19012
19013 @table @gcctabopt
19014
19015 @item -march=@var{arch}
19016 @opindex march=
19017 Specify the C-SKY target architecture. Valid values for @var{arch} are:
19018 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
19019 The default is @samp{ck810}.
19020
19021 @item -mcpu=@var{cpu}
19022 @opindex mcpu=
19023 Specify the C-SKY target processor. Valid values for @var{cpu} are:
19024 @samp{ck801}, @samp{ck801t},
19025 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
19026 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
19027 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
19028 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
19029 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
19030 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
19031 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
19032 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
19033 @samp{ck803eftr1}, @samp{ck803efhtr1},
19034 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
19035 @samp{ck803sef}, @samp{ck803seft},
19036 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
19037 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
19038 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
19039 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
19040
19041 @item -mbig-endian
19042 @opindex mbig-endian
19043 @itemx -EB
19044 @opindex EB
19045 @itemx -mlittle-endian
19046 @opindex mlittle-endian
19047 @itemx -EL
19048 @opindex EL
19049
19050 Select big- or little-endian code. The default is little-endian.
19051
19052 @item -mhard-float
19053 @opindex mhard-float
19054 @itemx -msoft-float
19055 @opindex msoft-float
19056
19057 Select hardware or software floating-point implementations.
19058 The default is soft float.
19059
19060 @item -mdouble-float
19061 @itemx -mno-double-float
19062 @opindex mdouble-float
19063 When @option{-mhard-float} is in effect, enable generation of
19064 double-precision float instructions. This is the default except
19065 when compiling for CK803.
19066
19067 @item -mfdivdu
19068 @itemx -mno-fdivdu
19069 @opindex mfdivdu
19070 When @option{-mhard-float} is in effect, enable generation of
19071 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
19072 This is the default except when compiling for CK803.
19073
19074 @item -mfpu=@var{fpu}
19075 @opindex mfpu=
19076 Select the floating-point processor. This option can only be used with
19077 @option{-mhard-float}.
19078 Values for @var{fpu} are
19079 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
19080 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
19081 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
19082
19083 @item -melrw
19084 @itemx -mno-elrw
19085 @opindex melrw
19086 Enable the extended @code{lrw} instruction. This option defaults to on
19087 for CK801 and off otherwise.
19088
19089 @item -mistack
19090 @itemx -mno-istack
19091 @opindex mistack
19092 Enable interrupt stack instructions; the default is off.
19093
19094 The @option{-mistack} option is required to handle the
19095 @code{interrupt} and @code{isr} function attributes
19096 (@pxref{C-SKY Function Attributes}).
19097
19098 @item -mmp
19099 @opindex mmp
19100 Enable multiprocessor instructions; the default is off.
19101
19102 @item -mcp
19103 @opindex mcp
19104 Enable coprocessor instructions; the default is off.
19105
19106 @item -mcache
19107 @opindex mcache
19108 Enable coprocessor instructions; the default is off.
19109
19110 @item -msecurity
19111 @opindex msecurity
19112 Enable C-SKY security instructions; the default is off.
19113
19114 @item -mtrust
19115 @opindex mtrust
19116 Enable C-SKY trust instructions; the default is off.
19117
19118 @item -mdsp
19119 @opindex mdsp
19120 @itemx -medsp
19121 @opindex medsp
19122 @itemx -mvdsp
19123 @opindex mvdsp
19124 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
19125 All of these options default to off.
19126
19127 @item -mdiv
19128 @itemx -mno-div
19129 @opindex mdiv
19130 Generate divide instructions. Default is off.
19131
19132 @item -msmart
19133 @itemx -mno-smart
19134 @opindex msmart
19135 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19136 use of 16-bit instructions. This option is ignored for CK801 where this
19137 is the required behavior, and it defaults to on for CK802.
19138 For other targets, the default is off.
19139
19140 @item -mhigh-registers
19141 @itemx -mno-high-registers
19142 @opindex mhigh-registers
19143 Generate code using the high registers numbered 16-31. This option
19144 is not supported on CK801, CK802, or CK803, and is enabled by default
19145 for other processors.
19146
19147 @item -manchor
19148 @itemx -mno-anchor
19149 @opindex manchor
19150 Generate code using global anchor symbol addresses.
19151
19152 @item -mpushpop
19153 @itemx -mno-pushpop
19154 @opindex mpushpop
19155 Generate code using @code{push} and @code{pop} instructions. This option
19156 defaults to on.
19157
19158 @item -mmultiple-stld
19159 @itemx -mstm
19160 @itemx -mno-multiple-stld
19161 @itemx -mno-stm
19162 @opindex mmultiple-stld
19163 Generate code using @code{stm} and @code{ldm} instructions. This option
19164 isn't supported on CK801 but is enabled by default on other processors.
19165
19166 @item -mconstpool
19167 @itemx -mno-constpool
19168 @opindex mconstpool
19169 Create constant pools in the compiler instead of deferring it to the
19170 assembler. This option is the default and required for correct code
19171 generation on CK801 and CK802, and is optional on other processors.
19172
19173 @item -mstack-size
19174 @item -mno-stack-size
19175 @opindex mstack-size
19176 Emit @code{.stack_size} directives for each function in the assembly
19177 output. This option defaults to off.
19178
19179 @item -mccrt
19180 @itemx -mno-ccrt
19181 @opindex mccrt
19182 Generate code for the C-SKY compiler runtime instead of libgcc. This
19183 option defaults to off.
19184
19185 @item -mbranch-cost=@var{n}
19186 @opindex mbranch-cost=
19187 Set the branch costs to roughly @code{n} instructions. The default is 1.
19188
19189 @item -msched-prolog
19190 @itemx -mno-sched-prolog
19191 @opindex msched-prolog
19192 Permit scheduling of function prologue and epilogue sequences. Using
19193 this option can result in code that is not compliant with the C-SKY V2 ABI
19194 prologue requirements and that cannot be debugged or backtraced.
19195 It is disabled by default.
19196
19197 @end table
19198
19199 @node Darwin Options
19200 @subsection Darwin Options
19201 @cindex Darwin options
19202
19203 These options are defined for all architectures running the Darwin operating
19204 system.
19205
19206 FSF GCC on Darwin does not create ``fat'' object files; it creates
19207 an object file for the single architecture that GCC was built to
19208 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19209 @option{-arch} options are used; it does so by running the compiler or
19210 linker multiple times and joining the results together with
19211 @file{lipo}.
19212
19213 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19214 @samp{i686}) is determined by the flags that specify the ISA
19215 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19216 @option{-force_cpusubtype_ALL} option can be used to override this.
19217
19218 The Darwin tools vary in their behavior when presented with an ISA
19219 mismatch. The assembler, @file{as}, only permits instructions to
19220 be used that are valid for the subtype of the file it is generating,
19221 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19222 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19223 and prints an error if asked to create a shared library with a less
19224 restrictive subtype than its input files (for instance, trying to put
19225 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19226 for executables, @command{ld}, quietly gives the executable the most
19227 restrictive subtype of any of its input files.
19228
19229 @table @gcctabopt
19230 @item -F@var{dir}
19231 @opindex F
19232 Add the framework directory @var{dir} to the head of the list of
19233 directories to be searched for header files. These directories are
19234 interleaved with those specified by @option{-I} options and are
19235 scanned in a left-to-right order.
19236
19237 A framework directory is a directory with frameworks in it. A
19238 framework is a directory with a @file{Headers} and/or
19239 @file{PrivateHeaders} directory contained directly in it that ends
19240 in @file{.framework}. The name of a framework is the name of this
19241 directory excluding the @file{.framework}. Headers associated with
19242 the framework are found in one of those two directories, with
19243 @file{Headers} being searched first. A subframework is a framework
19244 directory that is in a framework's @file{Frameworks} directory.
19245 Includes of subframework headers can only appear in a header of a
19246 framework that contains the subframework, or in a sibling subframework
19247 header. Two subframeworks are siblings if they occur in the same
19248 framework. A subframework should not have the same name as a
19249 framework; a warning is issued if this is violated. Currently a
19250 subframework cannot have subframeworks; in the future, the mechanism
19251 may be extended to support this. The standard frameworks can be found
19252 in @file{/System/Library/Frameworks} and
19253 @file{/Library/Frameworks}. An example include looks like
19254 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19255 the name of the framework and @file{header.h} is found in the
19256 @file{PrivateHeaders} or @file{Headers} directory.
19257
19258 @item -iframework@var{dir}
19259 @opindex iframework
19260 Like @option{-F} except the directory is a treated as a system
19261 directory. The main difference between this @option{-iframework} and
19262 @option{-F} is that with @option{-iframework} the compiler does not
19263 warn about constructs contained within header files found via
19264 @var{dir}. This option is valid only for the C family of languages.
19265
19266 @item -gused
19267 @opindex gused
19268 Emit debugging information for symbols that are used. For stabs
19269 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19270 This is by default ON@.
19271
19272 @item -gfull
19273 @opindex gfull
19274 Emit debugging information for all symbols and types.
19275
19276 @item -mmacosx-version-min=@var{version}
19277 The earliest version of MacOS X that this executable will run on
19278 is @var{version}. Typical values of @var{version} include @code{10.1},
19279 @code{10.2}, and @code{10.3.9}.
19280
19281 If the compiler was built to use the system's headers by default,
19282 then the default for this option is the system version on which the
19283 compiler is running, otherwise the default is to make choices that
19284 are compatible with as many systems and code bases as possible.
19285
19286 @item -mkernel
19287 @opindex mkernel
19288 Enable kernel development mode. The @option{-mkernel} option sets
19289 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19290 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19291 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19292 applicable. This mode also sets @option{-mno-altivec},
19293 @option{-msoft-float}, @option{-fno-builtin} and
19294 @option{-mlong-branch} for PowerPC targets.
19295
19296 @item -mone-byte-bool
19297 @opindex mone-byte-bool
19298 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19299 By default @code{sizeof(bool)} is @code{4} when compiling for
19300 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19301 option has no effect on x86.
19302
19303 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19304 to generate code that is not binary compatible with code generated
19305 without that switch. Using this switch may require recompiling all
19306 other modules in a program, including system libraries. Use this
19307 switch to conform to a non-default data model.
19308
19309 @item -mfix-and-continue
19310 @itemx -ffix-and-continue
19311 @itemx -findirect-data
19312 @opindex mfix-and-continue
19313 @opindex ffix-and-continue
19314 @opindex findirect-data
19315 Generate code suitable for fast turnaround development, such as to
19316 allow GDB to dynamically load @file{.o} files into already-running
19317 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19318 are provided for backwards compatibility.
19319
19320 @item -all_load
19321 @opindex all_load
19322 Loads all members of static archive libraries.
19323 See man ld(1) for more information.
19324
19325 @item -arch_errors_fatal
19326 @opindex arch_errors_fatal
19327 Cause the errors having to do with files that have the wrong architecture
19328 to be fatal.
19329
19330 @item -bind_at_load
19331 @opindex bind_at_load
19332 Causes the output file to be marked such that the dynamic linker will
19333 bind all undefined references when the file is loaded or launched.
19334
19335 @item -bundle
19336 @opindex bundle
19337 Produce a Mach-o bundle format file.
19338 See man ld(1) for more information.
19339
19340 @item -bundle_loader @var{executable}
19341 @opindex bundle_loader
19342 This option specifies the @var{executable} that will load the build
19343 output file being linked. See man ld(1) for more information.
19344
19345 @item -dynamiclib
19346 @opindex dynamiclib
19347 When passed this option, GCC produces a dynamic library instead of
19348 an executable when linking, using the Darwin @file{libtool} command.
19349
19350 @item -force_cpusubtype_ALL
19351 @opindex force_cpusubtype_ALL
19352 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19353 one controlled by the @option{-mcpu} or @option{-march} option.
19354
19355 @item -allowable_client @var{client_name}
19356 @itemx -client_name
19357 @itemx -compatibility_version
19358 @itemx -current_version
19359 @itemx -dead_strip
19360 @itemx -dependency-file
19361 @itemx -dylib_file
19362 @itemx -dylinker_install_name
19363 @itemx -dynamic
19364 @itemx -exported_symbols_list
19365 @itemx -filelist
19366 @need 800
19367 @itemx -flat_namespace
19368 @itemx -force_flat_namespace
19369 @itemx -headerpad_max_install_names
19370 @itemx -image_base
19371 @itemx -init
19372 @itemx -install_name
19373 @itemx -keep_private_externs
19374 @itemx -multi_module
19375 @itemx -multiply_defined
19376 @itemx -multiply_defined_unused
19377 @need 800
19378 @itemx -noall_load
19379 @itemx -no_dead_strip_inits_and_terms
19380 @itemx -nofixprebinding
19381 @itemx -nomultidefs
19382 @itemx -noprebind
19383 @itemx -noseglinkedit
19384 @itemx -pagezero_size
19385 @itemx -prebind
19386 @itemx -prebind_all_twolevel_modules
19387 @itemx -private_bundle
19388 @need 800
19389 @itemx -read_only_relocs
19390 @itemx -sectalign
19391 @itemx -sectobjectsymbols
19392 @itemx -whyload
19393 @itemx -seg1addr
19394 @itemx -sectcreate
19395 @itemx -sectobjectsymbols
19396 @itemx -sectorder
19397 @itemx -segaddr
19398 @itemx -segs_read_only_addr
19399 @need 800
19400 @itemx -segs_read_write_addr
19401 @itemx -seg_addr_table
19402 @itemx -seg_addr_table_filename
19403 @itemx -seglinkedit
19404 @itemx -segprot
19405 @itemx -segs_read_only_addr
19406 @itemx -segs_read_write_addr
19407 @itemx -single_module
19408 @itemx -static
19409 @itemx -sub_library
19410 @need 800
19411 @itemx -sub_umbrella
19412 @itemx -twolevel_namespace
19413 @itemx -umbrella
19414 @itemx -undefined
19415 @itemx -unexported_symbols_list
19416 @itemx -weak_reference_mismatches
19417 @itemx -whatsloaded
19418 @opindex allowable_client
19419 @opindex client_name
19420 @opindex compatibility_version
19421 @opindex current_version
19422 @opindex dead_strip
19423 @opindex dependency-file
19424 @opindex dylib_file
19425 @opindex dylinker_install_name
19426 @opindex dynamic
19427 @opindex exported_symbols_list
19428 @opindex filelist
19429 @opindex flat_namespace
19430 @opindex force_flat_namespace
19431 @opindex headerpad_max_install_names
19432 @opindex image_base
19433 @opindex init
19434 @opindex install_name
19435 @opindex keep_private_externs
19436 @opindex multi_module
19437 @opindex multiply_defined
19438 @opindex multiply_defined_unused
19439 @opindex noall_load
19440 @opindex no_dead_strip_inits_and_terms
19441 @opindex nofixprebinding
19442 @opindex nomultidefs
19443 @opindex noprebind
19444 @opindex noseglinkedit
19445 @opindex pagezero_size
19446 @opindex prebind
19447 @opindex prebind_all_twolevel_modules
19448 @opindex private_bundle
19449 @opindex read_only_relocs
19450 @opindex sectalign
19451 @opindex sectobjectsymbols
19452 @opindex whyload
19453 @opindex seg1addr
19454 @opindex sectcreate
19455 @opindex sectobjectsymbols
19456 @opindex sectorder
19457 @opindex segaddr
19458 @opindex segs_read_only_addr
19459 @opindex segs_read_write_addr
19460 @opindex seg_addr_table
19461 @opindex seg_addr_table_filename
19462 @opindex seglinkedit
19463 @opindex segprot
19464 @opindex segs_read_only_addr
19465 @opindex segs_read_write_addr
19466 @opindex single_module
19467 @opindex static
19468 @opindex sub_library
19469 @opindex sub_umbrella
19470 @opindex twolevel_namespace
19471 @opindex umbrella
19472 @opindex undefined
19473 @opindex unexported_symbols_list
19474 @opindex weak_reference_mismatches
19475 @opindex whatsloaded
19476 These options are passed to the Darwin linker. The Darwin linker man page
19477 describes them in detail.
19478 @end table
19479
19480 @node DEC Alpha Options
19481 @subsection DEC Alpha Options
19482
19483 These @samp{-m} options are defined for the DEC Alpha implementations:
19484
19485 @table @gcctabopt
19486 @item -mno-soft-float
19487 @itemx -msoft-float
19488 @opindex mno-soft-float
19489 @opindex msoft-float
19490 Use (do not use) the hardware floating-point instructions for
19491 floating-point operations. When @option{-msoft-float} is specified,
19492 functions in @file{libgcc.a} are used to perform floating-point
19493 operations. Unless they are replaced by routines that emulate the
19494 floating-point operations, or compiled in such a way as to call such
19495 emulations routines, these routines issue floating-point
19496 operations. If you are compiling for an Alpha without floating-point
19497 operations, you must ensure that the library is built so as not to call
19498 them.
19499
19500 Note that Alpha implementations without floating-point operations are
19501 required to have floating-point registers.
19502
19503 @item -mfp-reg
19504 @itemx -mno-fp-regs
19505 @opindex mfp-reg
19506 @opindex mno-fp-regs
19507 Generate code that uses (does not use) the floating-point register set.
19508 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19509 register set is not used, floating-point operands are passed in integer
19510 registers as if they were integers and floating-point results are passed
19511 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19512 so any function with a floating-point argument or return value called by code
19513 compiled with @option{-mno-fp-regs} must also be compiled with that
19514 option.
19515
19516 A typical use of this option is building a kernel that does not use,
19517 and hence need not save and restore, any floating-point registers.
19518
19519 @item -mieee
19520 @opindex mieee
19521 The Alpha architecture implements floating-point hardware optimized for
19522 maximum performance. It is mostly compliant with the IEEE floating-point
19523 standard. However, for full compliance, software assistance is
19524 required. This option generates code fully IEEE-compliant code
19525 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19526 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19527 defined during compilation. The resulting code is less efficient but is
19528 able to correctly support denormalized numbers and exceptional IEEE
19529 values such as not-a-number and plus/minus infinity. Other Alpha
19530 compilers call this option @option{-ieee_with_no_inexact}.
19531
19532 @item -mieee-with-inexact
19533 @opindex mieee-with-inexact
19534 This is like @option{-mieee} except the generated code also maintains
19535 the IEEE @var{inexact-flag}. Turning on this option causes the
19536 generated code to implement fully-compliant IEEE math. In addition to
19537 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19538 macro. On some Alpha implementations the resulting code may execute
19539 significantly slower than the code generated by default. Since there is
19540 very little code that depends on the @var{inexact-flag}, you should
19541 normally not specify this option. Other Alpha compilers call this
19542 option @option{-ieee_with_inexact}.
19543
19544 @item -mfp-trap-mode=@var{trap-mode}
19545 @opindex mfp-trap-mode
19546 This option controls what floating-point related traps are enabled.
19547 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19548 The trap mode can be set to one of four values:
19549
19550 @table @samp
19551 @item n
19552 This is the default (normal) setting. The only traps that are enabled
19553 are the ones that cannot be disabled in software (e.g., division by zero
19554 trap).
19555
19556 @item u
19557 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19558 as well.
19559
19560 @item su
19561 Like @samp{u}, but the instructions are marked to be safe for software
19562 completion (see Alpha architecture manual for details).
19563
19564 @item sui
19565 Like @samp{su}, but inexact traps are enabled as well.
19566 @end table
19567
19568 @item -mfp-rounding-mode=@var{rounding-mode}
19569 @opindex mfp-rounding-mode
19570 Selects the IEEE rounding mode. Other Alpha compilers call this option
19571 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19572 of:
19573
19574 @table @samp
19575 @item n
19576 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19577 the nearest machine number or towards the even machine number in case
19578 of a tie.
19579
19580 @item m
19581 Round towards minus infinity.
19582
19583 @item c
19584 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19585
19586 @item d
19587 Dynamic rounding mode. A field in the floating-point control register
19588 (@var{fpcr}, see Alpha architecture reference manual) controls the
19589 rounding mode in effect. The C library initializes this register for
19590 rounding towards plus infinity. Thus, unless your program modifies the
19591 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19592 @end table
19593
19594 @item -mtrap-precision=@var{trap-precision}
19595 @opindex mtrap-precision
19596 In the Alpha architecture, floating-point traps are imprecise. This
19597 means without software assistance it is impossible to recover from a
19598 floating trap and program execution normally needs to be terminated.
19599 GCC can generate code that can assist operating system trap handlers
19600 in determining the exact location that caused a floating-point trap.
19601 Depending on the requirements of an application, different levels of
19602 precisions can be selected:
19603
19604 @table @samp
19605 @item p
19606 Program precision. This option is the default and means a trap handler
19607 can only identify which program caused a floating-point exception.
19608
19609 @item f
19610 Function precision. The trap handler can determine the function that
19611 caused a floating-point exception.
19612
19613 @item i
19614 Instruction precision. The trap handler can determine the exact
19615 instruction that caused a floating-point exception.
19616 @end table
19617
19618 Other Alpha compilers provide the equivalent options called
19619 @option{-scope_safe} and @option{-resumption_safe}.
19620
19621 @item -mieee-conformant
19622 @opindex mieee-conformant
19623 This option marks the generated code as IEEE conformant. You must not
19624 use this option unless you also specify @option{-mtrap-precision=i} and either
19625 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19626 is to emit the line @samp{.eflag 48} in the function prologue of the
19627 generated assembly file.
19628
19629 @item -mbuild-constants
19630 @opindex mbuild-constants
19631 Normally GCC examines a 32- or 64-bit integer constant to
19632 see if it can construct it from smaller constants in two or three
19633 instructions. If it cannot, it outputs the constant as a literal and
19634 generates code to load it from the data segment at run time.
19635
19636 Use this option to require GCC to construct @emph{all} integer constants
19637 using code, even if it takes more instructions (the maximum is six).
19638
19639 You typically use this option to build a shared library dynamic
19640 loader. Itself a shared library, it must relocate itself in memory
19641 before it can find the variables and constants in its own data segment.
19642
19643 @item -mbwx
19644 @itemx -mno-bwx
19645 @itemx -mcix
19646 @itemx -mno-cix
19647 @itemx -mfix
19648 @itemx -mno-fix
19649 @itemx -mmax
19650 @itemx -mno-max
19651 @opindex mbwx
19652 @opindex mno-bwx
19653 @opindex mcix
19654 @opindex mno-cix
19655 @opindex mfix
19656 @opindex mno-fix
19657 @opindex mmax
19658 @opindex mno-max
19659 Indicate whether GCC should generate code to use the optional BWX,
19660 CIX, FIX and MAX instruction sets. The default is to use the instruction
19661 sets supported by the CPU type specified via @option{-mcpu=} option or that
19662 of the CPU on which GCC was built if none is specified.
19663
19664 @item -mfloat-vax
19665 @itemx -mfloat-ieee
19666 @opindex mfloat-vax
19667 @opindex mfloat-ieee
19668 Generate code that uses (does not use) VAX F and G floating-point
19669 arithmetic instead of IEEE single and double precision.
19670
19671 @item -mexplicit-relocs
19672 @itemx -mno-explicit-relocs
19673 @opindex mexplicit-relocs
19674 @opindex mno-explicit-relocs
19675 Older Alpha assemblers provided no way to generate symbol relocations
19676 except via assembler macros. Use of these macros does not allow
19677 optimal instruction scheduling. GNU binutils as of version 2.12
19678 supports a new syntax that allows the compiler to explicitly mark
19679 which relocations should apply to which instructions. This option
19680 is mostly useful for debugging, as GCC detects the capabilities of
19681 the assembler when it is built and sets the default accordingly.
19682
19683 @item -msmall-data
19684 @itemx -mlarge-data
19685 @opindex msmall-data
19686 @opindex mlarge-data
19687 When @option{-mexplicit-relocs} is in effect, static data is
19688 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19689 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19690 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19691 16-bit relocations off of the @code{$gp} register. This limits the
19692 size of the small data area to 64KB, but allows the variables to be
19693 directly accessed via a single instruction.
19694
19695 The default is @option{-mlarge-data}. With this option the data area
19696 is limited to just below 2GB@. Programs that require more than 2GB of
19697 data must use @code{malloc} or @code{mmap} to allocate the data in the
19698 heap instead of in the program's data segment.
19699
19700 When generating code for shared libraries, @option{-fpic} implies
19701 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19702
19703 @item -msmall-text
19704 @itemx -mlarge-text
19705 @opindex msmall-text
19706 @opindex mlarge-text
19707 When @option{-msmall-text} is used, the compiler assumes that the
19708 code of the entire program (or shared library) fits in 4MB, and is
19709 thus reachable with a branch instruction. When @option{-msmall-data}
19710 is used, the compiler can assume that all local symbols share the
19711 same @code{$gp} value, and thus reduce the number of instructions
19712 required for a function call from 4 to 1.
19713
19714 The default is @option{-mlarge-text}.
19715
19716 @item -mcpu=@var{cpu_type}
19717 @opindex mcpu
19718 Set the instruction set and instruction scheduling parameters for
19719 machine type @var{cpu_type}. You can specify either the @samp{EV}
19720 style name or the corresponding chip number. GCC supports scheduling
19721 parameters for the EV4, EV5 and EV6 family of processors and
19722 chooses the default values for the instruction set from the processor
19723 you specify. If you do not specify a processor type, GCC defaults
19724 to the processor on which the compiler was built.
19725
19726 Supported values for @var{cpu_type} are
19727
19728 @table @samp
19729 @item ev4
19730 @itemx ev45
19731 @itemx 21064
19732 Schedules as an EV4 and has no instruction set extensions.
19733
19734 @item ev5
19735 @itemx 21164
19736 Schedules as an EV5 and has no instruction set extensions.
19737
19738 @item ev56
19739 @itemx 21164a
19740 Schedules as an EV5 and supports the BWX extension.
19741
19742 @item pca56
19743 @itemx 21164pc
19744 @itemx 21164PC
19745 Schedules as an EV5 and supports the BWX and MAX extensions.
19746
19747 @item ev6
19748 @itemx 21264
19749 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19750
19751 @item ev67
19752 @itemx 21264a
19753 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19754 @end table
19755
19756 Native toolchains also support the value @samp{native},
19757 which selects the best architecture option for the host processor.
19758 @option{-mcpu=native} has no effect if GCC does not recognize
19759 the processor.
19760
19761 @item -mtune=@var{cpu_type}
19762 @opindex mtune
19763 Set only the instruction scheduling parameters for machine type
19764 @var{cpu_type}. The instruction set is not changed.
19765
19766 Native toolchains also support the value @samp{native},
19767 which selects the best architecture option for the host processor.
19768 @option{-mtune=native} has no effect if GCC does not recognize
19769 the processor.
19770
19771 @item -mmemory-latency=@var{time}
19772 @opindex mmemory-latency
19773 Sets the latency the scheduler should assume for typical memory
19774 references as seen by the application. This number is highly
19775 dependent on the memory access patterns used by the application
19776 and the size of the external cache on the machine.
19777
19778 Valid options for @var{time} are
19779
19780 @table @samp
19781 @item @var{number}
19782 A decimal number representing clock cycles.
19783
19784 @item L1
19785 @itemx L2
19786 @itemx L3
19787 @itemx main
19788 The compiler contains estimates of the number of clock cycles for
19789 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19790 (also called Dcache, Scache, and Bcache), as well as to main memory.
19791 Note that L3 is only valid for EV5.
19792
19793 @end table
19794 @end table
19795
19796 @node eBPF Options
19797 @subsection eBPF Options
19798 @cindex eBPF Options
19799
19800 @table @gcctabopt
19801 @item -mframe-limit=@var{bytes}
19802 This specifies the hard limit for frame sizes, in bytes. Currently,
19803 the value that can be specified should be less than or equal to
19804 @samp{32767}. Defaults to whatever limit is imposed by the version of
19805 the Linux kernel targeted.
19806
19807 @item -mkernel=@var{version}
19808 @opindex mkernel
19809 This specifies the minimum version of the kernel that will run the
19810 compiled program. GCC uses this version to determine which
19811 instructions to use, what kernel helpers to allow, etc. Currently,
19812 @var{version} can be one of @samp{4.0}, @samp{4.1}, @samp{4.2},
19813 @samp{4.3}, @samp{4.4}, @samp{4.5}, @samp{4.6}, @samp{4.7},
19814 @samp{4.8}, @samp{4.9}, @samp{4.10}, @samp{4.11}, @samp{4.12},
19815 @samp{4.13}, @samp{4.14}, @samp{4.15}, @samp{4.16}, @samp{4.17},
19816 @samp{4.18}, @samp{4.19}, @samp{4.20}, @samp{5.0}, @samp{5.1},
19817 @samp{5.2}, @samp{latest} and @samp{native}.
19818
19819 @item -mbig-endian
19820 @opindex mbig-endian
19821 Generate code for a big-endian target.
19822
19823 @item -mlittle-endian
19824 @opindex mlittle-endian
19825 Generate code for a little-endian target. This is the default.
19826 @end table
19827
19828 @node FR30 Options
19829 @subsection FR30 Options
19830 @cindex FR30 Options
19831
19832 These options are defined specifically for the FR30 port.
19833
19834 @table @gcctabopt
19835
19836 @item -msmall-model
19837 @opindex msmall-model
19838 Use the small address space model. This can produce smaller code, but
19839 it does assume that all symbolic values and addresses fit into a
19840 20-bit range.
19841
19842 @item -mno-lsim
19843 @opindex mno-lsim
19844 Assume that runtime support has been provided and so there is no need
19845 to include the simulator library (@file{libsim.a}) on the linker
19846 command line.
19847
19848 @end table
19849
19850 @node FT32 Options
19851 @subsection FT32 Options
19852 @cindex FT32 Options
19853
19854 These options are defined specifically for the FT32 port.
19855
19856 @table @gcctabopt
19857
19858 @item -msim
19859 @opindex msim
19860 Specifies that the program will be run on the simulator. This causes
19861 an alternate runtime startup and library to be linked.
19862 You must not use this option when generating programs that will run on
19863 real hardware; you must provide your own runtime library for whatever
19864 I/O functions are needed.
19865
19866 @item -mlra
19867 @opindex mlra
19868 Enable Local Register Allocation. This is still experimental for FT32,
19869 so by default the compiler uses standard reload.
19870
19871 @item -mnodiv
19872 @opindex mnodiv
19873 Do not use div and mod instructions.
19874
19875 @item -mft32b
19876 @opindex mft32b
19877 Enable use of the extended instructions of the FT32B processor.
19878
19879 @item -mcompress
19880 @opindex mcompress
19881 Compress all code using the Ft32B code compression scheme.
19882
19883 @item -mnopm
19884 @opindex mnopm
19885 Do not generate code that reads program memory.
19886
19887 @end table
19888
19889 @node FRV Options
19890 @subsection FRV Options
19891 @cindex FRV Options
19892
19893 @table @gcctabopt
19894 @item -mgpr-32
19895 @opindex mgpr-32
19896
19897 Only use the first 32 general-purpose registers.
19898
19899 @item -mgpr-64
19900 @opindex mgpr-64
19901
19902 Use all 64 general-purpose registers.
19903
19904 @item -mfpr-32
19905 @opindex mfpr-32
19906
19907 Use only the first 32 floating-point registers.
19908
19909 @item -mfpr-64
19910 @opindex mfpr-64
19911
19912 Use all 64 floating-point registers.
19913
19914 @item -mhard-float
19915 @opindex mhard-float
19916
19917 Use hardware instructions for floating-point operations.
19918
19919 @item -msoft-float
19920 @opindex msoft-float
19921
19922 Use library routines for floating-point operations.
19923
19924 @item -malloc-cc
19925 @opindex malloc-cc
19926
19927 Dynamically allocate condition code registers.
19928
19929 @item -mfixed-cc
19930 @opindex mfixed-cc
19931
19932 Do not try to dynamically allocate condition code registers, only
19933 use @code{icc0} and @code{fcc0}.
19934
19935 @item -mdword
19936 @opindex mdword
19937
19938 Change ABI to use double word insns.
19939
19940 @item -mno-dword
19941 @opindex mno-dword
19942 @opindex mdword
19943
19944 Do not use double word instructions.
19945
19946 @item -mdouble
19947 @opindex mdouble
19948
19949 Use floating-point double instructions.
19950
19951 @item -mno-double
19952 @opindex mno-double
19953
19954 Do not use floating-point double instructions.
19955
19956 @item -mmedia
19957 @opindex mmedia
19958
19959 Use media instructions.
19960
19961 @item -mno-media
19962 @opindex mno-media
19963
19964 Do not use media instructions.
19965
19966 @item -mmuladd
19967 @opindex mmuladd
19968
19969 Use multiply and add/subtract instructions.
19970
19971 @item -mno-muladd
19972 @opindex mno-muladd
19973
19974 Do not use multiply and add/subtract instructions.
19975
19976 @item -mfdpic
19977 @opindex mfdpic
19978
19979 Select the FDPIC ABI, which uses function descriptors to represent
19980 pointers to functions. Without any PIC/PIE-related options, it
19981 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
19982 assumes GOT entries and small data are within a 12-bit range from the
19983 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19984 are computed with 32 bits.
19985 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19986
19987 @item -minline-plt
19988 @opindex minline-plt
19989
19990 Enable inlining of PLT entries in function calls to functions that are
19991 not known to bind locally. It has no effect without @option{-mfdpic}.
19992 It's enabled by default if optimizing for speed and compiling for
19993 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19994 optimization option such as @option{-O3} or above is present in the
19995 command line.
19996
19997 @item -mTLS
19998 @opindex mTLS
19999
20000 Assume a large TLS segment when generating thread-local code.
20001
20002 @item -mtls
20003 @opindex mtls
20004
20005 Do not assume a large TLS segment when generating thread-local code.
20006
20007 @item -mgprel-ro
20008 @opindex mgprel-ro
20009
20010 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
20011 that is known to be in read-only sections. It's enabled by default,
20012 except for @option{-fpic} or @option{-fpie}: even though it may help
20013 make the global offset table smaller, it trades 1 instruction for 4.
20014 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
20015 one of which may be shared by multiple symbols, and it avoids the need
20016 for a GOT entry for the referenced symbol, so it's more likely to be a
20017 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
20018
20019 @item -multilib-library-pic
20020 @opindex multilib-library-pic
20021
20022 Link with the (library, not FD) pic libraries. It's implied by
20023 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
20024 @option{-fpic} without @option{-mfdpic}. You should never have to use
20025 it explicitly.
20026
20027 @item -mlinked-fp
20028 @opindex mlinked-fp
20029
20030 Follow the EABI requirement of always creating a frame pointer whenever
20031 a stack frame is allocated. This option is enabled by default and can
20032 be disabled with @option{-mno-linked-fp}.
20033
20034 @item -mlong-calls
20035 @opindex mlong-calls
20036
20037 Use indirect addressing to call functions outside the current
20038 compilation unit. This allows the functions to be placed anywhere
20039 within the 32-bit address space.
20040
20041 @item -malign-labels
20042 @opindex malign-labels
20043
20044 Try to align labels to an 8-byte boundary by inserting NOPs into the
20045 previous packet. This option only has an effect when VLIW packing
20046 is enabled. It doesn't create new packets; it merely adds NOPs to
20047 existing ones.
20048
20049 @item -mlibrary-pic
20050 @opindex mlibrary-pic
20051
20052 Generate position-independent EABI code.
20053
20054 @item -macc-4
20055 @opindex macc-4
20056
20057 Use only the first four media accumulator registers.
20058
20059 @item -macc-8
20060 @opindex macc-8
20061
20062 Use all eight media accumulator registers.
20063
20064 @item -mpack
20065 @opindex mpack
20066
20067 Pack VLIW instructions.
20068
20069 @item -mno-pack
20070 @opindex mno-pack
20071
20072 Do not pack VLIW instructions.
20073
20074 @item -mno-eflags
20075 @opindex mno-eflags
20076
20077 Do not mark ABI switches in e_flags.
20078
20079 @item -mcond-move
20080 @opindex mcond-move
20081
20082 Enable the use of conditional-move instructions (default).
20083
20084 This switch is mainly for debugging the compiler and will likely be removed
20085 in a future version.
20086
20087 @item -mno-cond-move
20088 @opindex mno-cond-move
20089
20090 Disable the use of conditional-move instructions.
20091
20092 This switch is mainly for debugging the compiler and will likely be removed
20093 in a future version.
20094
20095 @item -mscc
20096 @opindex mscc
20097
20098 Enable the use of conditional set instructions (default).
20099
20100 This switch is mainly for debugging the compiler and will likely be removed
20101 in a future version.
20102
20103 @item -mno-scc
20104 @opindex mno-scc
20105
20106 Disable the use of conditional set instructions.
20107
20108 This switch is mainly for debugging the compiler and will likely be removed
20109 in a future version.
20110
20111 @item -mcond-exec
20112 @opindex mcond-exec
20113
20114 Enable the use of conditional execution (default).
20115
20116 This switch is mainly for debugging the compiler and will likely be removed
20117 in a future version.
20118
20119 @item -mno-cond-exec
20120 @opindex mno-cond-exec
20121
20122 Disable the use of conditional execution.
20123
20124 This switch is mainly for debugging the compiler and will likely be removed
20125 in a future version.
20126
20127 @item -mvliw-branch
20128 @opindex mvliw-branch
20129
20130 Run a pass to pack branches into VLIW instructions (default).
20131
20132 This switch is mainly for debugging the compiler and will likely be removed
20133 in a future version.
20134
20135 @item -mno-vliw-branch
20136 @opindex mno-vliw-branch
20137
20138 Do not run a pass to pack branches into VLIW instructions.
20139
20140 This switch is mainly for debugging the compiler and will likely be removed
20141 in a future version.
20142
20143 @item -mmulti-cond-exec
20144 @opindex mmulti-cond-exec
20145
20146 Enable optimization of @code{&&} and @code{||} in conditional execution
20147 (default).
20148
20149 This switch is mainly for debugging the compiler and will likely be removed
20150 in a future version.
20151
20152 @item -mno-multi-cond-exec
20153 @opindex mno-multi-cond-exec
20154
20155 Disable optimization of @code{&&} and @code{||} in conditional execution.
20156
20157 This switch is mainly for debugging the compiler and will likely be removed
20158 in a future version.
20159
20160 @item -mnested-cond-exec
20161 @opindex mnested-cond-exec
20162
20163 Enable nested conditional execution optimizations (default).
20164
20165 This switch is mainly for debugging the compiler and will likely be removed
20166 in a future version.
20167
20168 @item -mno-nested-cond-exec
20169 @opindex mno-nested-cond-exec
20170
20171 Disable nested conditional execution optimizations.
20172
20173 This switch is mainly for debugging the compiler and will likely be removed
20174 in a future version.
20175
20176 @item -moptimize-membar
20177 @opindex moptimize-membar
20178
20179 This switch removes redundant @code{membar} instructions from the
20180 compiler-generated code. It is enabled by default.
20181
20182 @item -mno-optimize-membar
20183 @opindex mno-optimize-membar
20184 @opindex moptimize-membar
20185
20186 This switch disables the automatic removal of redundant @code{membar}
20187 instructions from the generated code.
20188
20189 @item -mtomcat-stats
20190 @opindex mtomcat-stats
20191
20192 Cause gas to print out tomcat statistics.
20193
20194 @item -mcpu=@var{cpu}
20195 @opindex mcpu
20196
20197 Select the processor type for which to generate code. Possible values are
20198 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20199 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20200
20201 @end table
20202
20203 @node GNU/Linux Options
20204 @subsection GNU/Linux Options
20205
20206 These @samp{-m} options are defined for GNU/Linux targets:
20207
20208 @table @gcctabopt
20209 @item -mglibc
20210 @opindex mglibc
20211 Use the GNU C library. This is the default except
20212 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20213 @samp{*-*-linux-*android*} targets.
20214
20215 @item -muclibc
20216 @opindex muclibc
20217 Use uClibc C library. This is the default on
20218 @samp{*-*-linux-*uclibc*} targets.
20219
20220 @item -mmusl
20221 @opindex mmusl
20222 Use the musl C library. This is the default on
20223 @samp{*-*-linux-*musl*} targets.
20224
20225 @item -mbionic
20226 @opindex mbionic
20227 Use Bionic C library. This is the default on
20228 @samp{*-*-linux-*android*} targets.
20229
20230 @item -mandroid
20231 @opindex mandroid
20232 Compile code compatible with Android platform. This is the default on
20233 @samp{*-*-linux-*android*} targets.
20234
20235 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20236 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20237 this option makes the GCC driver pass Android-specific options to the linker.
20238 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20239 to be defined.
20240
20241 @item -tno-android-cc
20242 @opindex tno-android-cc
20243 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20244 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20245 @option{-fno-rtti} by default.
20246
20247 @item -tno-android-ld
20248 @opindex tno-android-ld
20249 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20250 linking options to the linker.
20251
20252 @end table
20253
20254 @node H8/300 Options
20255 @subsection H8/300 Options
20256
20257 These @samp{-m} options are defined for the H8/300 implementations:
20258
20259 @table @gcctabopt
20260 @item -mrelax
20261 @opindex mrelax
20262 Shorten some address references at link time, when possible; uses the
20263 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20264 ld, Using ld}, for a fuller description.
20265
20266 @item -mh
20267 @opindex mh
20268 Generate code for the H8/300H@.
20269
20270 @item -ms
20271 @opindex ms
20272 Generate code for the H8S@.
20273
20274 @item -mn
20275 @opindex mn
20276 Generate code for the H8S and H8/300H in the normal mode. This switch
20277 must be used either with @option{-mh} or @option{-ms}.
20278
20279 @item -ms2600
20280 @opindex ms2600
20281 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20282
20283 @item -mexr
20284 @opindex mexr
20285 Extended registers are stored on stack before execution of function
20286 with monitor attribute. Default option is @option{-mexr}.
20287 This option is valid only for H8S targets.
20288
20289 @item -mno-exr
20290 @opindex mno-exr
20291 @opindex mexr
20292 Extended registers are not stored on stack before execution of function
20293 with monitor attribute. Default option is @option{-mno-exr}.
20294 This option is valid only for H8S targets.
20295
20296 @item -mint32
20297 @opindex mint32
20298 Make @code{int} data 32 bits by default.
20299
20300 @item -malign-300
20301 @opindex malign-300
20302 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20303 The default for the H8/300H and H8S is to align longs and floats on
20304 4-byte boundaries.
20305 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20306 This option has no effect on the H8/300.
20307 @end table
20308
20309 @node HPPA Options
20310 @subsection HPPA Options
20311 @cindex HPPA Options
20312
20313 These @samp{-m} options are defined for the HPPA family of computers:
20314
20315 @table @gcctabopt
20316 @item -march=@var{architecture-type}
20317 @opindex march
20318 Generate code for the specified architecture. The choices for
20319 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20320 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20321 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20322 architecture option for your machine. Code compiled for lower numbered
20323 architectures runs on higher numbered architectures, but not the
20324 other way around.
20325
20326 @item -mpa-risc-1-0
20327 @itemx -mpa-risc-1-1
20328 @itemx -mpa-risc-2-0
20329 @opindex mpa-risc-1-0
20330 @opindex mpa-risc-1-1
20331 @opindex mpa-risc-2-0
20332 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20333
20334 @item -mcaller-copies
20335 @opindex mcaller-copies
20336 The caller copies function arguments passed by hidden reference. This
20337 option should be used with care as it is not compatible with the default
20338 32-bit runtime. However, only aggregates larger than eight bytes are
20339 passed by hidden reference and the option provides better compatibility
20340 with OpenMP.
20341
20342 @item -mjump-in-delay
20343 @opindex mjump-in-delay
20344 This option is ignored and provided for compatibility purposes only.
20345
20346 @item -mdisable-fpregs
20347 @opindex mdisable-fpregs
20348 Prevent floating-point registers from being used in any manner. This is
20349 necessary for compiling kernels that perform lazy context switching of
20350 floating-point registers. If you use this option and attempt to perform
20351 floating-point operations, the compiler aborts.
20352
20353 @item -mdisable-indexing
20354 @opindex mdisable-indexing
20355 Prevent the compiler from using indexing address modes. This avoids some
20356 rather obscure problems when compiling MIG generated code under MACH@.
20357
20358 @item -mno-space-regs
20359 @opindex mno-space-regs
20360 @opindex mspace-regs
20361 Generate code that assumes the target has no space registers. This allows
20362 GCC to generate faster indirect calls and use unscaled index address modes.
20363
20364 Such code is suitable for level 0 PA systems and kernels.
20365
20366 @item -mfast-indirect-calls
20367 @opindex mfast-indirect-calls
20368 Generate code that assumes calls never cross space boundaries. This
20369 allows GCC to emit code that performs faster indirect calls.
20370
20371 This option does not work in the presence of shared libraries or nested
20372 functions.
20373
20374 @item -mfixed-range=@var{register-range}
20375 @opindex mfixed-range
20376 Generate code treating the given register range as fixed registers.
20377 A fixed register is one that the register allocator cannot use. This is
20378 useful when compiling kernel code. A register range is specified as
20379 two registers separated by a dash. Multiple register ranges can be
20380 specified separated by a comma.
20381
20382 @item -mlong-load-store
20383 @opindex mlong-load-store
20384 Generate 3-instruction load and store sequences as sometimes required by
20385 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20386 the HP compilers.
20387
20388 @item -mportable-runtime
20389 @opindex mportable-runtime
20390 Use the portable calling conventions proposed by HP for ELF systems.
20391
20392 @item -mgas
20393 @opindex mgas
20394 Enable the use of assembler directives only GAS understands.
20395
20396 @item -mschedule=@var{cpu-type}
20397 @opindex mschedule
20398 Schedule code according to the constraints for the machine type
20399 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20400 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20401 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20402 proper scheduling option for your machine. The default scheduling is
20403 @samp{8000}.
20404
20405 @item -mlinker-opt
20406 @opindex mlinker-opt
20407 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20408 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20409 linkers in which they give bogus error messages when linking some programs.
20410
20411 @item -msoft-float
20412 @opindex msoft-float
20413 Generate output containing library calls for floating point.
20414 @strong{Warning:} the requisite libraries are not available for all HPPA
20415 targets. Normally the facilities of the machine's usual C compiler are
20416 used, but this cannot be done directly in cross-compilation. You must make
20417 your own arrangements to provide suitable library functions for
20418 cross-compilation.
20419
20420 @option{-msoft-float} changes the calling convention in the output file;
20421 therefore, it is only useful if you compile @emph{all} of a program with
20422 this option. In particular, you need to compile @file{libgcc.a}, the
20423 library that comes with GCC, with @option{-msoft-float} in order for
20424 this to work.
20425
20426 @item -msio
20427 @opindex msio
20428 Generate the predefine, @code{_SIO}, for server IO@. The default is
20429 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20430 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20431 options are available under HP-UX and HI-UX@.
20432
20433 @item -mgnu-ld
20434 @opindex mgnu-ld
20435 Use options specific to GNU @command{ld}.
20436 This passes @option{-shared} to @command{ld} when
20437 building a shared library. It is the default when GCC is configured,
20438 explicitly or implicitly, with the GNU linker. This option does not
20439 affect which @command{ld} is called; it only changes what parameters
20440 are passed to that @command{ld}.
20441 The @command{ld} that is called is determined by the
20442 @option{--with-ld} configure option, GCC's program search path, and
20443 finally by the user's @env{PATH}. The linker used by GCC can be printed
20444 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20445 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20446
20447 @item -mhp-ld
20448 @opindex mhp-ld
20449 Use options specific to HP @command{ld}.
20450 This passes @option{-b} to @command{ld} when building
20451 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20452 links. It is the default when GCC is configured, explicitly or
20453 implicitly, with the HP linker. This option does not affect
20454 which @command{ld} is called; it only changes what parameters are passed to that
20455 @command{ld}.
20456 The @command{ld} that is called is determined by the @option{--with-ld}
20457 configure option, GCC's program search path, and finally by the user's
20458 @env{PATH}. The linker used by GCC can be printed using @samp{which
20459 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20460 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20461
20462 @item -mlong-calls
20463 @opindex mno-long-calls
20464 @opindex mlong-calls
20465 Generate code that uses long call sequences. This ensures that a call
20466 is always able to reach linker generated stubs. The default is to generate
20467 long calls only when the distance from the call site to the beginning
20468 of the function or translation unit, as the case may be, exceeds a
20469 predefined limit set by the branch type being used. The limits for
20470 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20471 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20472 240,000 bytes.
20473
20474 Distances are measured from the beginning of functions when using the
20475 @option{-ffunction-sections} option, or when using the @option{-mgas}
20476 and @option{-mno-portable-runtime} options together under HP-UX with
20477 the SOM linker.
20478
20479 It is normally not desirable to use this option as it degrades
20480 performance. However, it may be useful in large applications,
20481 particularly when partial linking is used to build the application.
20482
20483 The types of long calls used depends on the capabilities of the
20484 assembler and linker, and the type of code being generated. The
20485 impact on systems that support long absolute calls, and long pic
20486 symbol-difference or pc-relative calls should be relatively small.
20487 However, an indirect call is used on 32-bit ELF systems in pic code
20488 and it is quite long.
20489
20490 @item -munix=@var{unix-std}
20491 @opindex march
20492 Generate compiler predefines and select a startfile for the specified
20493 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20494 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20495 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20496 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20497 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20498 and later.
20499
20500 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20501 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20502 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20503 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20504 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20505 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20506
20507 It is @emph{important} to note that this option changes the interfaces
20508 for various library routines. It also affects the operational behavior
20509 of the C library. Thus, @emph{extreme} care is needed in using this
20510 option.
20511
20512 Library code that is intended to operate with more than one UNIX
20513 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20514 as appropriate. Most GNU software doesn't provide this capability.
20515
20516 @item -nolibdld
20517 @opindex nolibdld
20518 Suppress the generation of link options to search libdld.sl when the
20519 @option{-static} option is specified on HP-UX 10 and later.
20520
20521 @item -static
20522 @opindex static
20523 The HP-UX implementation of setlocale in libc has a dependency on
20524 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20525 when the @option{-static} option is specified, special link options
20526 are needed to resolve this dependency.
20527
20528 On HP-UX 10 and later, the GCC driver adds the necessary options to
20529 link with libdld.sl when the @option{-static} option is specified.
20530 This causes the resulting binary to be dynamic. On the 64-bit port,
20531 the linkers generate dynamic binaries by default in any case. The
20532 @option{-nolibdld} option can be used to prevent the GCC driver from
20533 adding these link options.
20534
20535 @item -threads
20536 @opindex threads
20537 Add support for multithreading with the @dfn{dce thread} library
20538 under HP-UX@. This option sets flags for both the preprocessor and
20539 linker.
20540 @end table
20541
20542 @node IA-64 Options
20543 @subsection IA-64 Options
20544 @cindex IA-64 Options
20545
20546 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20547
20548 @table @gcctabopt
20549 @item -mbig-endian
20550 @opindex mbig-endian
20551 Generate code for a big-endian target. This is the default for HP-UX@.
20552
20553 @item -mlittle-endian
20554 @opindex mlittle-endian
20555 Generate code for a little-endian target. This is the default for AIX5
20556 and GNU/Linux.
20557
20558 @item -mgnu-as
20559 @itemx -mno-gnu-as
20560 @opindex mgnu-as
20561 @opindex mno-gnu-as
20562 Generate (or don't) code for the GNU assembler. This is the default.
20563 @c Also, this is the default if the configure option @option{--with-gnu-as}
20564 @c is used.
20565
20566 @item -mgnu-ld
20567 @itemx -mno-gnu-ld
20568 @opindex mgnu-ld
20569 @opindex mno-gnu-ld
20570 Generate (or don't) code for the GNU linker. This is the default.
20571 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20572 @c is used.
20573
20574 @item -mno-pic
20575 @opindex mno-pic
20576 Generate code that does not use a global pointer register. The result
20577 is not position independent code, and violates the IA-64 ABI@.
20578
20579 @item -mvolatile-asm-stop
20580 @itemx -mno-volatile-asm-stop
20581 @opindex mvolatile-asm-stop
20582 @opindex mno-volatile-asm-stop
20583 Generate (or don't) a stop bit immediately before and after volatile asm
20584 statements.
20585
20586 @item -mregister-names
20587 @itemx -mno-register-names
20588 @opindex mregister-names
20589 @opindex mno-register-names
20590 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20591 the stacked registers. This may make assembler output more readable.
20592
20593 @item -mno-sdata
20594 @itemx -msdata
20595 @opindex mno-sdata
20596 @opindex msdata
20597 Disable (or enable) optimizations that use the small data section. This may
20598 be useful for working around optimizer bugs.
20599
20600 @item -mconstant-gp
20601 @opindex mconstant-gp
20602 Generate code that uses a single constant global pointer value. This is
20603 useful when compiling kernel code.
20604
20605 @item -mauto-pic
20606 @opindex mauto-pic
20607 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20608 This is useful when compiling firmware code.
20609
20610 @item -minline-float-divide-min-latency
20611 @opindex minline-float-divide-min-latency
20612 Generate code for inline divides of floating-point values
20613 using the minimum latency algorithm.
20614
20615 @item -minline-float-divide-max-throughput
20616 @opindex minline-float-divide-max-throughput
20617 Generate code for inline divides of floating-point values
20618 using the maximum throughput algorithm.
20619
20620 @item -mno-inline-float-divide
20621 @opindex mno-inline-float-divide
20622 Do not generate inline code for divides of floating-point values.
20623
20624 @item -minline-int-divide-min-latency
20625 @opindex minline-int-divide-min-latency
20626 Generate code for inline divides of integer values
20627 using the minimum latency algorithm.
20628
20629 @item -minline-int-divide-max-throughput
20630 @opindex minline-int-divide-max-throughput
20631 Generate code for inline divides of integer values
20632 using the maximum throughput algorithm.
20633
20634 @item -mno-inline-int-divide
20635 @opindex mno-inline-int-divide
20636 @opindex minline-int-divide
20637 Do not generate inline code for divides of integer values.
20638
20639 @item -minline-sqrt-min-latency
20640 @opindex minline-sqrt-min-latency
20641 Generate code for inline square roots
20642 using the minimum latency algorithm.
20643
20644 @item -minline-sqrt-max-throughput
20645 @opindex minline-sqrt-max-throughput
20646 Generate code for inline square roots
20647 using the maximum throughput algorithm.
20648
20649 @item -mno-inline-sqrt
20650 @opindex mno-inline-sqrt
20651 Do not generate inline code for @code{sqrt}.
20652
20653 @item -mfused-madd
20654 @itemx -mno-fused-madd
20655 @opindex mfused-madd
20656 @opindex mno-fused-madd
20657 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20658 instructions. The default is to use these instructions.
20659
20660 @item -mno-dwarf2-asm
20661 @itemx -mdwarf2-asm
20662 @opindex mno-dwarf2-asm
20663 @opindex mdwarf2-asm
20664 Don't (or do) generate assembler code for the DWARF line number debugging
20665 info. This may be useful when not using the GNU assembler.
20666
20667 @item -mearly-stop-bits
20668 @itemx -mno-early-stop-bits
20669 @opindex mearly-stop-bits
20670 @opindex mno-early-stop-bits
20671 Allow stop bits to be placed earlier than immediately preceding the
20672 instruction that triggered the stop bit. This can improve instruction
20673 scheduling, but does not always do so.
20674
20675 @item -mfixed-range=@var{register-range}
20676 @opindex mfixed-range
20677 Generate code treating the given register range as fixed registers.
20678 A fixed register is one that the register allocator cannot use. This is
20679 useful when compiling kernel code. A register range is specified as
20680 two registers separated by a dash. Multiple register ranges can be
20681 specified separated by a comma.
20682
20683 @item -mtls-size=@var{tls-size}
20684 @opindex mtls-size
20685 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20686 64.
20687
20688 @item -mtune=@var{cpu-type}
20689 @opindex mtune
20690 Tune the instruction scheduling for a particular CPU, Valid values are
20691 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20692 and @samp{mckinley}.
20693
20694 @item -milp32
20695 @itemx -mlp64
20696 @opindex milp32
20697 @opindex mlp64
20698 Generate code for a 32-bit or 64-bit environment.
20699 The 32-bit environment sets int, long and pointer to 32 bits.
20700 The 64-bit environment sets int to 32 bits and long and pointer
20701 to 64 bits. These are HP-UX specific flags.
20702
20703 @item -mno-sched-br-data-spec
20704 @itemx -msched-br-data-spec
20705 @opindex mno-sched-br-data-spec
20706 @opindex msched-br-data-spec
20707 (Dis/En)able data speculative scheduling before reload.
20708 This results in generation of @code{ld.a} instructions and
20709 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20710 The default setting is disabled.
20711
20712 @item -msched-ar-data-spec
20713 @itemx -mno-sched-ar-data-spec
20714 @opindex msched-ar-data-spec
20715 @opindex mno-sched-ar-data-spec
20716 (En/Dis)able data speculative scheduling after reload.
20717 This results in generation of @code{ld.a} instructions and
20718 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20719 The default setting is enabled.
20720
20721 @item -mno-sched-control-spec
20722 @itemx -msched-control-spec
20723 @opindex mno-sched-control-spec
20724 @opindex msched-control-spec
20725 (Dis/En)able control speculative scheduling. This feature is
20726 available only during region scheduling (i.e.@: before reload).
20727 This results in generation of the @code{ld.s} instructions and
20728 the corresponding check instructions @code{chk.s}.
20729 The default setting is disabled.
20730
20731 @item -msched-br-in-data-spec
20732 @itemx -mno-sched-br-in-data-spec
20733 @opindex msched-br-in-data-spec
20734 @opindex mno-sched-br-in-data-spec
20735 (En/Dis)able speculative scheduling of the instructions that
20736 are dependent on the data speculative loads before reload.
20737 This is effective only with @option{-msched-br-data-spec} enabled.
20738 The default setting is enabled.
20739
20740 @item -msched-ar-in-data-spec
20741 @itemx -mno-sched-ar-in-data-spec
20742 @opindex msched-ar-in-data-spec
20743 @opindex mno-sched-ar-in-data-spec
20744 (En/Dis)able speculative scheduling of the instructions that
20745 are dependent on the data speculative loads after reload.
20746 This is effective only with @option{-msched-ar-data-spec} enabled.
20747 The default setting is enabled.
20748
20749 @item -msched-in-control-spec
20750 @itemx -mno-sched-in-control-spec
20751 @opindex msched-in-control-spec
20752 @opindex mno-sched-in-control-spec
20753 (En/Dis)able speculative scheduling of the instructions that
20754 are dependent on the control speculative loads.
20755 This is effective only with @option{-msched-control-spec} enabled.
20756 The default setting is enabled.
20757
20758 @item -mno-sched-prefer-non-data-spec-insns
20759 @itemx -msched-prefer-non-data-spec-insns
20760 @opindex mno-sched-prefer-non-data-spec-insns
20761 @opindex msched-prefer-non-data-spec-insns
20762 If enabled, data-speculative instructions are chosen for schedule
20763 only if there are no other choices at the moment. This makes
20764 the use of the data speculation much more conservative.
20765 The default setting is disabled.
20766
20767 @item -mno-sched-prefer-non-control-spec-insns
20768 @itemx -msched-prefer-non-control-spec-insns
20769 @opindex mno-sched-prefer-non-control-spec-insns
20770 @opindex msched-prefer-non-control-spec-insns
20771 If enabled, control-speculative instructions are chosen for schedule
20772 only if there are no other choices at the moment. This makes
20773 the use of the control speculation much more conservative.
20774 The default setting is disabled.
20775
20776 @item -mno-sched-count-spec-in-critical-path
20777 @itemx -msched-count-spec-in-critical-path
20778 @opindex mno-sched-count-spec-in-critical-path
20779 @opindex msched-count-spec-in-critical-path
20780 If enabled, speculative dependencies are considered during
20781 computation of the instructions priorities. This makes the use of the
20782 speculation a bit more conservative.
20783 The default setting is disabled.
20784
20785 @item -msched-spec-ldc
20786 @opindex msched-spec-ldc
20787 Use a simple data speculation check. This option is on by default.
20788
20789 @item -msched-control-spec-ldc
20790 @opindex msched-spec-ldc
20791 Use a simple check for control speculation. This option is on by default.
20792
20793 @item -msched-stop-bits-after-every-cycle
20794 @opindex msched-stop-bits-after-every-cycle
20795 Place a stop bit after every cycle when scheduling. This option is on
20796 by default.
20797
20798 @item -msched-fp-mem-deps-zero-cost
20799 @opindex msched-fp-mem-deps-zero-cost
20800 Assume that floating-point stores and loads are not likely to cause a conflict
20801 when placed into the same instruction group. This option is disabled by
20802 default.
20803
20804 @item -msel-sched-dont-check-control-spec
20805 @opindex msel-sched-dont-check-control-spec
20806 Generate checks for control speculation in selective scheduling.
20807 This flag is disabled by default.
20808
20809 @item -msched-max-memory-insns=@var{max-insns}
20810 @opindex msched-max-memory-insns
20811 Limit on the number of memory insns per instruction group, giving lower
20812 priority to subsequent memory insns attempting to schedule in the same
20813 instruction group. Frequently useful to prevent cache bank conflicts.
20814 The default value is 1.
20815
20816 @item -msched-max-memory-insns-hard-limit
20817 @opindex msched-max-memory-insns-hard-limit
20818 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20819 disallowing more than that number in an instruction group.
20820 Otherwise, the limit is ``soft'', meaning that non-memory operations
20821 are preferred when the limit is reached, but memory operations may still
20822 be scheduled.
20823
20824 @end table
20825
20826 @node LM32 Options
20827 @subsection LM32 Options
20828 @cindex LM32 options
20829
20830 These @option{-m} options are defined for the LatticeMico32 architecture:
20831
20832 @table @gcctabopt
20833 @item -mbarrel-shift-enabled
20834 @opindex mbarrel-shift-enabled
20835 Enable barrel-shift instructions.
20836
20837 @item -mdivide-enabled
20838 @opindex mdivide-enabled
20839 Enable divide and modulus instructions.
20840
20841 @item -mmultiply-enabled
20842 @opindex multiply-enabled
20843 Enable multiply instructions.
20844
20845 @item -msign-extend-enabled
20846 @opindex msign-extend-enabled
20847 Enable sign extend instructions.
20848
20849 @item -muser-enabled
20850 @opindex muser-enabled
20851 Enable user-defined instructions.
20852
20853 @end table
20854
20855 @node M32C Options
20856 @subsection M32C Options
20857 @cindex M32C options
20858
20859 @table @gcctabopt
20860 @item -mcpu=@var{name}
20861 @opindex mcpu=
20862 Select the CPU for which code is generated. @var{name} may be one of
20863 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20864 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20865 the M32C/80 series.
20866
20867 @item -msim
20868 @opindex msim
20869 Specifies that the program will be run on the simulator. This causes
20870 an alternate runtime library to be linked in which supports, for
20871 example, file I/O@. You must not use this option when generating
20872 programs that will run on real hardware; you must provide your own
20873 runtime library for whatever I/O functions are needed.
20874
20875 @item -memregs=@var{number}
20876 @opindex memregs=
20877 Specifies the number of memory-based pseudo-registers GCC uses
20878 during code generation. These pseudo-registers are used like real
20879 registers, so there is a tradeoff between GCC's ability to fit the
20880 code into available registers, and the performance penalty of using
20881 memory instead of registers. Note that all modules in a program must
20882 be compiled with the same value for this option. Because of that, you
20883 must not use this option with GCC's default runtime libraries.
20884
20885 @end table
20886
20887 @node M32R/D Options
20888 @subsection M32R/D Options
20889 @cindex M32R/D options
20890
20891 These @option{-m} options are defined for Renesas M32R/D architectures:
20892
20893 @table @gcctabopt
20894 @item -m32r2
20895 @opindex m32r2
20896 Generate code for the M32R/2@.
20897
20898 @item -m32rx
20899 @opindex m32rx
20900 Generate code for the M32R/X@.
20901
20902 @item -m32r
20903 @opindex m32r
20904 Generate code for the M32R@. This is the default.
20905
20906 @item -mmodel=small
20907 @opindex mmodel=small
20908 Assume all objects live in the lower 16MB of memory (so that their addresses
20909 can be loaded with the @code{ld24} instruction), and assume all subroutines
20910 are reachable with the @code{bl} instruction.
20911 This is the default.
20912
20913 The addressability of a particular object can be set with the
20914 @code{model} attribute.
20915
20916 @item -mmodel=medium
20917 @opindex mmodel=medium
20918 Assume objects may be anywhere in the 32-bit address space (the compiler
20919 generates @code{seth/add3} instructions to load their addresses), and
20920 assume all subroutines are reachable with the @code{bl} instruction.
20921
20922 @item -mmodel=large
20923 @opindex mmodel=large
20924 Assume objects may be anywhere in the 32-bit address space (the compiler
20925 generates @code{seth/add3} instructions to load their addresses), and
20926 assume subroutines may not be reachable with the @code{bl} instruction
20927 (the compiler generates the much slower @code{seth/add3/jl}
20928 instruction sequence).
20929
20930 @item -msdata=none
20931 @opindex msdata=none
20932 Disable use of the small data area. Variables are put into
20933 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20934 @code{section} attribute has been specified).
20935 This is the default.
20936
20937 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20938 Objects may be explicitly put in the small data area with the
20939 @code{section} attribute using one of these sections.
20940
20941 @item -msdata=sdata
20942 @opindex msdata=sdata
20943 Put small global and static data in the small data area, but do not
20944 generate special code to reference them.
20945
20946 @item -msdata=use
20947 @opindex msdata=use
20948 Put small global and static data in the small data area, and generate
20949 special instructions to reference them.
20950
20951 @item -G @var{num}
20952 @opindex G
20953 @cindex smaller data references
20954 Put global and static objects less than or equal to @var{num} bytes
20955 into the small data or BSS sections instead of the normal data or BSS
20956 sections. The default value of @var{num} is 8.
20957 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20958 for this option to have any effect.
20959
20960 All modules should be compiled with the same @option{-G @var{num}} value.
20961 Compiling with different values of @var{num} may or may not work; if it
20962 doesn't the linker gives an error message---incorrect code is not
20963 generated.
20964
20965 @item -mdebug
20966 @opindex mdebug
20967 Makes the M32R-specific code in the compiler display some statistics
20968 that might help in debugging programs.
20969
20970 @item -malign-loops
20971 @opindex malign-loops
20972 Align all loops to a 32-byte boundary.
20973
20974 @item -mno-align-loops
20975 @opindex mno-align-loops
20976 Do not enforce a 32-byte alignment for loops. This is the default.
20977
20978 @item -missue-rate=@var{number}
20979 @opindex missue-rate=@var{number}
20980 Issue @var{number} instructions per cycle. @var{number} can only be 1
20981 or 2.
20982
20983 @item -mbranch-cost=@var{number}
20984 @opindex mbranch-cost=@var{number}
20985 @var{number} can only be 1 or 2. If it is 1 then branches are
20986 preferred over conditional code, if it is 2, then the opposite applies.
20987
20988 @item -mflush-trap=@var{number}
20989 @opindex mflush-trap=@var{number}
20990 Specifies the trap number to use to flush the cache. The default is
20991 12. Valid numbers are between 0 and 15 inclusive.
20992
20993 @item -mno-flush-trap
20994 @opindex mno-flush-trap
20995 Specifies that the cache cannot be flushed by using a trap.
20996
20997 @item -mflush-func=@var{name}
20998 @opindex mflush-func=@var{name}
20999 Specifies the name of the operating system function to call to flush
21000 the cache. The default is @samp{_flush_cache}, but a function call
21001 is only used if a trap is not available.
21002
21003 @item -mno-flush-func
21004 @opindex mno-flush-func
21005 Indicates that there is no OS function for flushing the cache.
21006
21007 @end table
21008
21009 @node M680x0 Options
21010 @subsection M680x0 Options
21011 @cindex M680x0 options
21012
21013 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
21014 The default settings depend on which architecture was selected when
21015 the compiler was configured; the defaults for the most common choices
21016 are given below.
21017
21018 @table @gcctabopt
21019 @item -march=@var{arch}
21020 @opindex march
21021 Generate code for a specific M680x0 or ColdFire instruction set
21022 architecture. Permissible values of @var{arch} for M680x0
21023 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
21024 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
21025 architectures are selected according to Freescale's ISA classification
21026 and the permissible values are: @samp{isaa}, @samp{isaaplus},
21027 @samp{isab} and @samp{isac}.
21028
21029 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
21030 code for a ColdFire target. The @var{arch} in this macro is one of the
21031 @option{-march} arguments given above.
21032
21033 When used together, @option{-march} and @option{-mtune} select code
21034 that runs on a family of similar processors but that is optimized
21035 for a particular microarchitecture.
21036
21037 @item -mcpu=@var{cpu}
21038 @opindex mcpu
21039 Generate code for a specific M680x0 or ColdFire processor.
21040 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
21041 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
21042 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
21043 below, which also classifies the CPUs into families:
21044
21045 @multitable @columnfractions 0.20 0.80
21046 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
21047 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
21048 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
21049 @item @samp{5206e} @tab @samp{5206e}
21050 @item @samp{5208} @tab @samp{5207} @samp{5208}
21051 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
21052 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
21053 @item @samp{5216} @tab @samp{5214} @samp{5216}
21054 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
21055 @item @samp{5225} @tab @samp{5224} @samp{5225}
21056 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
21057 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
21058 @item @samp{5249} @tab @samp{5249}
21059 @item @samp{5250} @tab @samp{5250}
21060 @item @samp{5271} @tab @samp{5270} @samp{5271}
21061 @item @samp{5272} @tab @samp{5272}
21062 @item @samp{5275} @tab @samp{5274} @samp{5275}
21063 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
21064 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
21065 @item @samp{5307} @tab @samp{5307}
21066 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
21067 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
21068 @item @samp{5407} @tab @samp{5407}
21069 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
21070 @end multitable
21071
21072 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
21073 @var{arch} is compatible with @var{cpu}. Other combinations of
21074 @option{-mcpu} and @option{-march} are rejected.
21075
21076 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
21077 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
21078 where the value of @var{family} is given by the table above.
21079
21080 @item -mtune=@var{tune}
21081 @opindex mtune
21082 Tune the code for a particular microarchitecture within the
21083 constraints set by @option{-march} and @option{-mcpu}.
21084 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
21085 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
21086 and @samp{cpu32}. The ColdFire microarchitectures
21087 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
21088
21089 You can also use @option{-mtune=68020-40} for code that needs
21090 to run relatively well on 68020, 68030 and 68040 targets.
21091 @option{-mtune=68020-60} is similar but includes 68060 targets
21092 as well. These two options select the same tuning decisions as
21093 @option{-m68020-40} and @option{-m68020-60} respectively.
21094
21095 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
21096 when tuning for 680x0 architecture @var{arch}. It also defines
21097 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
21098 option is used. If GCC is tuning for a range of architectures,
21099 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
21100 it defines the macros for every architecture in the range.
21101
21102 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
21103 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
21104 of the arguments given above.
21105
21106 @item -m68000
21107 @itemx -mc68000
21108 @opindex m68000
21109 @opindex mc68000
21110 Generate output for a 68000. This is the default
21111 when the compiler is configured for 68000-based systems.
21112 It is equivalent to @option{-march=68000}.
21113
21114 Use this option for microcontrollers with a 68000 or EC000 core,
21115 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
21116
21117 @item -m68010
21118 @opindex m68010
21119 Generate output for a 68010. This is the default
21120 when the compiler is configured for 68010-based systems.
21121 It is equivalent to @option{-march=68010}.
21122
21123 @item -m68020
21124 @itemx -mc68020
21125 @opindex m68020
21126 @opindex mc68020
21127 Generate output for a 68020. This is the default
21128 when the compiler is configured for 68020-based systems.
21129 It is equivalent to @option{-march=68020}.
21130
21131 @item -m68030
21132 @opindex m68030
21133 Generate output for a 68030. This is the default when the compiler is
21134 configured for 68030-based systems. It is equivalent to
21135 @option{-march=68030}.
21136
21137 @item -m68040
21138 @opindex m68040
21139 Generate output for a 68040. This is the default when the compiler is
21140 configured for 68040-based systems. It is equivalent to
21141 @option{-march=68040}.
21142
21143 This option inhibits the use of 68881/68882 instructions that have to be
21144 emulated by software on the 68040. Use this option if your 68040 does not
21145 have code to emulate those instructions.
21146
21147 @item -m68060
21148 @opindex m68060
21149 Generate output for a 68060. This is the default when the compiler is
21150 configured for 68060-based systems. It is equivalent to
21151 @option{-march=68060}.
21152
21153 This option inhibits the use of 68020 and 68881/68882 instructions that
21154 have to be emulated by software on the 68060. Use this option if your 68060
21155 does not have code to emulate those instructions.
21156
21157 @item -mcpu32
21158 @opindex mcpu32
21159 Generate output for a CPU32. This is the default
21160 when the compiler is configured for CPU32-based systems.
21161 It is equivalent to @option{-march=cpu32}.
21162
21163 Use this option for microcontrollers with a
21164 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21165 68336, 68340, 68341, 68349 and 68360.
21166
21167 @item -m5200
21168 @opindex m5200
21169 Generate output for a 520X ColdFire CPU@. This is the default
21170 when the compiler is configured for 520X-based systems.
21171 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21172 in favor of that option.
21173
21174 Use this option for microcontroller with a 5200 core, including
21175 the MCF5202, MCF5203, MCF5204 and MCF5206.
21176
21177 @item -m5206e
21178 @opindex m5206e
21179 Generate output for a 5206e ColdFire CPU@. The option is now
21180 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21181
21182 @item -m528x
21183 @opindex m528x
21184 Generate output for a member of the ColdFire 528X family.
21185 The option is now deprecated in favor of the equivalent
21186 @option{-mcpu=528x}.
21187
21188 @item -m5307
21189 @opindex m5307
21190 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
21191 in favor of the equivalent @option{-mcpu=5307}.
21192
21193 @item -m5407
21194 @opindex m5407
21195 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
21196 in favor of the equivalent @option{-mcpu=5407}.
21197
21198 @item -mcfv4e
21199 @opindex mcfv4e
21200 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21201 This includes use of hardware floating-point instructions.
21202 The option is equivalent to @option{-mcpu=547x}, and is now
21203 deprecated in favor of that option.
21204
21205 @item -m68020-40
21206 @opindex m68020-40
21207 Generate output for a 68040, without using any of the new instructions.
21208 This results in code that can run relatively efficiently on either a
21209 68020/68881 or a 68030 or a 68040. The generated code does use the
21210 68881 instructions that are emulated on the 68040.
21211
21212 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21213
21214 @item -m68020-60
21215 @opindex m68020-60
21216 Generate output for a 68060, without using any of the new instructions.
21217 This results in code that can run relatively efficiently on either a
21218 68020/68881 or a 68030 or a 68040. The generated code does use the
21219 68881 instructions that are emulated on the 68060.
21220
21221 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21222
21223 @item -mhard-float
21224 @itemx -m68881
21225 @opindex mhard-float
21226 @opindex m68881
21227 Generate floating-point instructions. This is the default for 68020
21228 and above, and for ColdFire devices that have an FPU@. It defines the
21229 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21230 on ColdFire targets.
21231
21232 @item -msoft-float
21233 @opindex msoft-float
21234 Do not generate floating-point instructions; use library calls instead.
21235 This is the default for 68000, 68010, and 68832 targets. It is also
21236 the default for ColdFire devices that have no FPU.
21237
21238 @item -mdiv
21239 @itemx -mno-div
21240 @opindex mdiv
21241 @opindex mno-div
21242 Generate (do not generate) ColdFire hardware divide and remainder
21243 instructions. If @option{-march} is used without @option{-mcpu},
21244 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21245 architectures. Otherwise, the default is taken from the target CPU
21246 (either the default CPU, or the one specified by @option{-mcpu}). For
21247 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21248 @option{-mcpu=5206e}.
21249
21250 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21251
21252 @item -mshort
21253 @opindex mshort
21254 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21255 Additionally, parameters passed on the stack are also aligned to a
21256 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21257
21258 @item -mno-short
21259 @opindex mno-short
21260 Do not consider type @code{int} to be 16 bits wide. This is the default.
21261
21262 @item -mnobitfield
21263 @itemx -mno-bitfield
21264 @opindex mnobitfield
21265 @opindex mno-bitfield
21266 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21267 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21268
21269 @item -mbitfield
21270 @opindex mbitfield
21271 Do use the bit-field instructions. The @option{-m68020} option implies
21272 @option{-mbitfield}. This is the default if you use a configuration
21273 designed for a 68020.
21274
21275 @item -mrtd
21276 @opindex mrtd
21277 Use a different function-calling convention, in which functions
21278 that take a fixed number of arguments return with the @code{rtd}
21279 instruction, which pops their arguments while returning. This
21280 saves one instruction in the caller since there is no need to pop
21281 the arguments there.
21282
21283 This calling convention is incompatible with the one normally
21284 used on Unix, so you cannot use it if you need to call libraries
21285 compiled with the Unix compiler.
21286
21287 Also, you must provide function prototypes for all functions that
21288 take variable numbers of arguments (including @code{printf});
21289 otherwise incorrect code is generated for calls to those
21290 functions.
21291
21292 In addition, seriously incorrect code results if you call a
21293 function with too many arguments. (Normally, extra arguments are
21294 harmlessly ignored.)
21295
21296 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21297 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21298
21299 The default is @option{-mno-rtd}.
21300
21301 @item -malign-int
21302 @itemx -mno-align-int
21303 @opindex malign-int
21304 @opindex mno-align-int
21305 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21306 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21307 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21308 Aligning variables on 32-bit boundaries produces code that runs somewhat
21309 faster on processors with 32-bit busses at the expense of more memory.
21310
21311 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21312 aligns structures containing the above types differently than
21313 most published application binary interface specifications for the m68k.
21314
21315 @item -mpcrel
21316 @opindex mpcrel
21317 Use the pc-relative addressing mode of the 68000 directly, instead of
21318 using a global offset table. At present, this option implies @option{-fpic},
21319 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21320 not presently supported with @option{-mpcrel}, though this could be supported for
21321 68020 and higher processors.
21322
21323 @item -mno-strict-align
21324 @itemx -mstrict-align
21325 @opindex mno-strict-align
21326 @opindex mstrict-align
21327 Do not (do) assume that unaligned memory references are handled by
21328 the system.
21329
21330 @item -msep-data
21331 Generate code that allows the data segment to be located in a different
21332 area of memory from the text segment. This allows for execute-in-place in
21333 an environment without virtual memory management. This option implies
21334 @option{-fPIC}.
21335
21336 @item -mno-sep-data
21337 Generate code that assumes that the data segment follows the text segment.
21338 This is the default.
21339
21340 @item -mid-shared-library
21341 Generate code that supports shared libraries via the library ID method.
21342 This allows for execute-in-place and shared libraries in an environment
21343 without virtual memory management. This option implies @option{-fPIC}.
21344
21345 @item -mno-id-shared-library
21346 Generate code that doesn't assume ID-based shared libraries are being used.
21347 This is the default.
21348
21349 @item -mshared-library-id=n
21350 Specifies the identification number of the ID-based shared library being
21351 compiled. Specifying a value of 0 generates more compact code; specifying
21352 other values forces the allocation of that number to the current
21353 library, but is no more space- or time-efficient than omitting this option.
21354
21355 @item -mxgot
21356 @itemx -mno-xgot
21357 @opindex mxgot
21358 @opindex mno-xgot
21359 When generating position-independent code for ColdFire, generate code
21360 that works if the GOT has more than 8192 entries. This code is
21361 larger and slower than code generated without this option. On M680x0
21362 processors, this option is not needed; @option{-fPIC} suffices.
21363
21364 GCC normally uses a single instruction to load values from the GOT@.
21365 While this is relatively efficient, it only works if the GOT
21366 is smaller than about 64k. Anything larger causes the linker
21367 to report an error such as:
21368
21369 @cindex relocation truncated to fit (ColdFire)
21370 @smallexample
21371 relocation truncated to fit: R_68K_GOT16O foobar
21372 @end smallexample
21373
21374 If this happens, you should recompile your code with @option{-mxgot}.
21375 It should then work with very large GOTs. However, code generated with
21376 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21377 the value of a global symbol.
21378
21379 Note that some linkers, including newer versions of the GNU linker,
21380 can create multiple GOTs and sort GOT entries. If you have such a linker,
21381 you should only need to use @option{-mxgot} when compiling a single
21382 object file that accesses more than 8192 GOT entries. Very few do.
21383
21384 These options have no effect unless GCC is generating
21385 position-independent code.
21386
21387 @item -mlong-jump-table-offsets
21388 @opindex mlong-jump-table-offsets
21389 Use 32-bit offsets in @code{switch} tables. The default is to use
21390 16-bit offsets.
21391
21392 @end table
21393
21394 @node MCore Options
21395 @subsection MCore Options
21396 @cindex MCore options
21397
21398 These are the @samp{-m} options defined for the Motorola M*Core
21399 processors.
21400
21401 @table @gcctabopt
21402
21403 @item -mhardlit
21404 @itemx -mno-hardlit
21405 @opindex mhardlit
21406 @opindex mno-hardlit
21407 Inline constants into the code stream if it can be done in two
21408 instructions or less.
21409
21410 @item -mdiv
21411 @itemx -mno-div
21412 @opindex mdiv
21413 @opindex mno-div
21414 Use the divide instruction. (Enabled by default).
21415
21416 @item -mrelax-immediate
21417 @itemx -mno-relax-immediate
21418 @opindex mrelax-immediate
21419 @opindex mno-relax-immediate
21420 Allow arbitrary-sized immediates in bit operations.
21421
21422 @item -mwide-bitfields
21423 @itemx -mno-wide-bitfields
21424 @opindex mwide-bitfields
21425 @opindex mno-wide-bitfields
21426 Always treat bit-fields as @code{int}-sized.
21427
21428 @item -m4byte-functions
21429 @itemx -mno-4byte-functions
21430 @opindex m4byte-functions
21431 @opindex mno-4byte-functions
21432 Force all functions to be aligned to a 4-byte boundary.
21433
21434 @item -mcallgraph-data
21435 @itemx -mno-callgraph-data
21436 @opindex mcallgraph-data
21437 @opindex mno-callgraph-data
21438 Emit callgraph information.
21439
21440 @item -mslow-bytes
21441 @itemx -mno-slow-bytes
21442 @opindex mslow-bytes
21443 @opindex mno-slow-bytes
21444 Prefer word access when reading byte quantities.
21445
21446 @item -mlittle-endian
21447 @itemx -mbig-endian
21448 @opindex mlittle-endian
21449 @opindex mbig-endian
21450 Generate code for a little-endian target.
21451
21452 @item -m210
21453 @itemx -m340
21454 @opindex m210
21455 @opindex m340
21456 Generate code for the 210 processor.
21457
21458 @item -mno-lsim
21459 @opindex mno-lsim
21460 Assume that runtime support has been provided and so omit the
21461 simulator library (@file{libsim.a)} from the linker command line.
21462
21463 @item -mstack-increment=@var{size}
21464 @opindex mstack-increment
21465 Set the maximum amount for a single stack increment operation. Large
21466 values can increase the speed of programs that contain functions
21467 that need a large amount of stack space, but they can also trigger a
21468 segmentation fault if the stack is extended too much. The default
21469 value is 0x1000.
21470
21471 @end table
21472
21473 @node MeP Options
21474 @subsection MeP Options
21475 @cindex MeP options
21476
21477 @table @gcctabopt
21478
21479 @item -mabsdiff
21480 @opindex mabsdiff
21481 Enables the @code{abs} instruction, which is the absolute difference
21482 between two registers.
21483
21484 @item -mall-opts
21485 @opindex mall-opts
21486 Enables all the optional instructions---average, multiply, divide, bit
21487 operations, leading zero, absolute difference, min/max, clip, and
21488 saturation.
21489
21490
21491 @item -maverage
21492 @opindex maverage
21493 Enables the @code{ave} instruction, which computes the average of two
21494 registers.
21495
21496 @item -mbased=@var{n}
21497 @opindex mbased=
21498 Variables of size @var{n} bytes or smaller are placed in the
21499 @code{.based} section by default. Based variables use the @code{$tp}
21500 register as a base register, and there is a 128-byte limit to the
21501 @code{.based} section.
21502
21503 @item -mbitops
21504 @opindex mbitops
21505 Enables the bit operation instructions---bit test (@code{btstm}), set
21506 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21507 test-and-set (@code{tas}).
21508
21509 @item -mc=@var{name}
21510 @opindex mc=
21511 Selects which section constant data is placed in. @var{name} may
21512 be @samp{tiny}, @samp{near}, or @samp{far}.
21513
21514 @item -mclip
21515 @opindex mclip
21516 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21517 useful unless you also provide @option{-mminmax}.
21518
21519 @item -mconfig=@var{name}
21520 @opindex mconfig=
21521 Selects one of the built-in core configurations. Each MeP chip has
21522 one or more modules in it; each module has a core CPU and a variety of
21523 coprocessors, optional instructions, and peripherals. The
21524 @code{MeP-Integrator} tool, not part of GCC, provides these
21525 configurations through this option; using this option is the same as
21526 using all the corresponding command-line options. The default
21527 configuration is @samp{default}.
21528
21529 @item -mcop
21530 @opindex mcop
21531 Enables the coprocessor instructions. By default, this is a 32-bit
21532 coprocessor. Note that the coprocessor is normally enabled via the
21533 @option{-mconfig=} option.
21534
21535 @item -mcop32
21536 @opindex mcop32
21537 Enables the 32-bit coprocessor's instructions.
21538
21539 @item -mcop64
21540 @opindex mcop64
21541 Enables the 64-bit coprocessor's instructions.
21542
21543 @item -mivc2
21544 @opindex mivc2
21545 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21546
21547 @item -mdc
21548 @opindex mdc
21549 Causes constant variables to be placed in the @code{.near} section.
21550
21551 @item -mdiv
21552 @opindex mdiv
21553 Enables the @code{div} and @code{divu} instructions.
21554
21555 @item -meb
21556 @opindex meb
21557 Generate big-endian code.
21558
21559 @item -mel
21560 @opindex mel
21561 Generate little-endian code.
21562
21563 @item -mio-volatile
21564 @opindex mio-volatile
21565 Tells the compiler that any variable marked with the @code{io}
21566 attribute is to be considered volatile.
21567
21568 @item -ml
21569 @opindex ml
21570 Causes variables to be assigned to the @code{.far} section by default.
21571
21572 @item -mleadz
21573 @opindex mleadz
21574 Enables the @code{leadz} (leading zero) instruction.
21575
21576 @item -mm
21577 @opindex mm
21578 Causes variables to be assigned to the @code{.near} section by default.
21579
21580 @item -mminmax
21581 @opindex mminmax
21582 Enables the @code{min} and @code{max} instructions.
21583
21584 @item -mmult
21585 @opindex mmult
21586 Enables the multiplication and multiply-accumulate instructions.
21587
21588 @item -mno-opts
21589 @opindex mno-opts
21590 Disables all the optional instructions enabled by @option{-mall-opts}.
21591
21592 @item -mrepeat
21593 @opindex mrepeat
21594 Enables the @code{repeat} and @code{erepeat} instructions, used for
21595 low-overhead looping.
21596
21597 @item -ms
21598 @opindex ms
21599 Causes all variables to default to the @code{.tiny} section. Note
21600 that there is a 65536-byte limit to this section. Accesses to these
21601 variables use the @code{%gp} base register.
21602
21603 @item -msatur
21604 @opindex msatur
21605 Enables the saturation instructions. Note that the compiler does not
21606 currently generate these itself, but this option is included for
21607 compatibility with other tools, like @code{as}.
21608
21609 @item -msdram
21610 @opindex msdram
21611 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21612
21613 @item -msim
21614 @opindex msim
21615 Link the simulator run-time libraries.
21616
21617 @item -msimnovec
21618 @opindex msimnovec
21619 Link the simulator runtime libraries, excluding built-in support
21620 for reset and exception vectors and tables.
21621
21622 @item -mtf
21623 @opindex mtf
21624 Causes all functions to default to the @code{.far} section. Without
21625 this option, functions default to the @code{.near} section.
21626
21627 @item -mtiny=@var{n}
21628 @opindex mtiny=
21629 Variables that are @var{n} bytes or smaller are allocated to the
21630 @code{.tiny} section. These variables use the @code{$gp} base
21631 register. The default for this option is 4, but note that there's a
21632 65536-byte limit to the @code{.tiny} section.
21633
21634 @end table
21635
21636 @node MicroBlaze Options
21637 @subsection MicroBlaze Options
21638 @cindex MicroBlaze Options
21639
21640 @table @gcctabopt
21641
21642 @item -msoft-float
21643 @opindex msoft-float
21644 Use software emulation for floating point (default).
21645
21646 @item -mhard-float
21647 @opindex mhard-float
21648 Use hardware floating-point instructions.
21649
21650 @item -mmemcpy
21651 @opindex mmemcpy
21652 Do not optimize block moves, use @code{memcpy}.
21653
21654 @item -mno-clearbss
21655 @opindex mno-clearbss
21656 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21657
21658 @item -mcpu=@var{cpu-type}
21659 @opindex mcpu=
21660 Use features of, and schedule code for, the given CPU.
21661 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21662 where @var{X} is a major version, @var{YY} is the minor version, and
21663 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21664 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21665
21666 @item -mxl-soft-mul
21667 @opindex mxl-soft-mul
21668 Use software multiply emulation (default).
21669
21670 @item -mxl-soft-div
21671 @opindex mxl-soft-div
21672 Use software emulation for divides (default).
21673
21674 @item -mxl-barrel-shift
21675 @opindex mxl-barrel-shift
21676 Use the hardware barrel shifter.
21677
21678 @item -mxl-pattern-compare
21679 @opindex mxl-pattern-compare
21680 Use pattern compare instructions.
21681
21682 @item -msmall-divides
21683 @opindex msmall-divides
21684 Use table lookup optimization for small signed integer divisions.
21685
21686 @item -mxl-stack-check
21687 @opindex mxl-stack-check
21688 This option is deprecated. Use @option{-fstack-check} instead.
21689
21690 @item -mxl-gp-opt
21691 @opindex mxl-gp-opt
21692 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21693
21694 @item -mxl-multiply-high
21695 @opindex mxl-multiply-high
21696 Use multiply high instructions for high part of 32x32 multiply.
21697
21698 @item -mxl-float-convert
21699 @opindex mxl-float-convert
21700 Use hardware floating-point conversion instructions.
21701
21702 @item -mxl-float-sqrt
21703 @opindex mxl-float-sqrt
21704 Use hardware floating-point square root instruction.
21705
21706 @item -mbig-endian
21707 @opindex mbig-endian
21708 Generate code for a big-endian target.
21709
21710 @item -mlittle-endian
21711 @opindex mlittle-endian
21712 Generate code for a little-endian target.
21713
21714 @item -mxl-reorder
21715 @opindex mxl-reorder
21716 Use reorder instructions (swap and byte reversed load/store).
21717
21718 @item -mxl-mode-@var{app-model}
21719 Select application model @var{app-model}. Valid models are
21720 @table @samp
21721 @item executable
21722 normal executable (default), uses startup code @file{crt0.o}.
21723
21724 @item -mpic-data-is-text-relative
21725 @opindex mpic-data-is-text-relative
21726 Assume that the displacement between the text and data segments is fixed
21727 at static link time. This allows data to be referenced by offset from start of
21728 text address instead of GOT since PC-relative addressing is not supported.
21729
21730 @item xmdstub
21731 for use with Xilinx Microprocessor Debugger (XMD) based
21732 software intrusive debug agent called xmdstub. This uses startup file
21733 @file{crt1.o} and sets the start address of the program to 0x800.
21734
21735 @item bootstrap
21736 for applications that are loaded using a bootloader.
21737 This model uses startup file @file{crt2.o} which does not contain a processor
21738 reset vector handler. This is suitable for transferring control on a
21739 processor reset to the bootloader rather than the application.
21740
21741 @item novectors
21742 for applications that do not require any of the
21743 MicroBlaze vectors. This option may be useful for applications running
21744 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21745 @end table
21746
21747 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21748 @option{-mxl-mode-@var{app-model}}.
21749
21750 @end table
21751
21752 @node MIPS Options
21753 @subsection MIPS Options
21754 @cindex MIPS options
21755
21756 @table @gcctabopt
21757
21758 @item -EB
21759 @opindex EB
21760 Generate big-endian code.
21761
21762 @item -EL
21763 @opindex EL
21764 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21765 configurations.
21766
21767 @item -march=@var{arch}
21768 @opindex march
21769 Generate code that runs on @var{arch}, which can be the name of a
21770 generic MIPS ISA, or the name of a particular processor.
21771 The ISA names are:
21772 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21773 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21774 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21775 @samp{mips64r5} and @samp{mips64r6}.
21776 The processor names are:
21777 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21778 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21779 @samp{5kc}, @samp{5kf},
21780 @samp{20kc},
21781 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21782 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21783 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21784 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21785 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21786 @samp{i6400}, @samp{i6500},
21787 @samp{interaptiv},
21788 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21789 @samp{gs464e}, @samp{gs264e},
21790 @samp{m4k},
21791 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21792 @samp{m5100}, @samp{m5101},
21793 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21794 @samp{orion},
21795 @samp{p5600}, @samp{p6600},
21796 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21797 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21798 @samp{r6000}, @samp{r8000},
21799 @samp{rm7000}, @samp{rm9000},
21800 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21801 @samp{sb1},
21802 @samp{sr71000},
21803 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21804 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21805 @samp{xlr} and @samp{xlp}.
21806 The special value @samp{from-abi} selects the
21807 most compatible architecture for the selected ABI (that is,
21808 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21809
21810 The native Linux/GNU toolchain also supports the value @samp{native},
21811 which selects the best architecture option for the host processor.
21812 @option{-march=native} has no effect if GCC does not recognize
21813 the processor.
21814
21815 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21816 (for example, @option{-march=r2k}). Prefixes are optional, and
21817 @samp{vr} may be written @samp{r}.
21818
21819 Names of the form @samp{@var{n}f2_1} refer to processors with
21820 FPUs clocked at half the rate of the core, names of the form
21821 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21822 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21823 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21824 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21825 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21826 accepted as synonyms for @samp{@var{n}f1_1}.
21827
21828 GCC defines two macros based on the value of this option. The first
21829 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21830 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21831 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21832 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21833 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21834
21835 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21836 above. In other words, it has the full prefix and does not
21837 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21838 the macro names the resolved architecture (either @code{"mips1"} or
21839 @code{"mips3"}). It names the default architecture when no
21840 @option{-march} option is given.
21841
21842 @item -mtune=@var{arch}
21843 @opindex mtune
21844 Optimize for @var{arch}. Among other things, this option controls
21845 the way instructions are scheduled, and the perceived cost of arithmetic
21846 operations. The list of @var{arch} values is the same as for
21847 @option{-march}.
21848
21849 When this option is not used, GCC optimizes for the processor
21850 specified by @option{-march}. By using @option{-march} and
21851 @option{-mtune} together, it is possible to generate code that
21852 runs on a family of processors, but optimize the code for one
21853 particular member of that family.
21854
21855 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21856 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21857 @option{-march} ones described above.
21858
21859 @item -mips1
21860 @opindex mips1
21861 Equivalent to @option{-march=mips1}.
21862
21863 @item -mips2
21864 @opindex mips2
21865 Equivalent to @option{-march=mips2}.
21866
21867 @item -mips3
21868 @opindex mips3
21869 Equivalent to @option{-march=mips3}.
21870
21871 @item -mips4
21872 @opindex mips4
21873 Equivalent to @option{-march=mips4}.
21874
21875 @item -mips32
21876 @opindex mips32
21877 Equivalent to @option{-march=mips32}.
21878
21879 @item -mips32r3
21880 @opindex mips32r3
21881 Equivalent to @option{-march=mips32r3}.
21882
21883 @item -mips32r5
21884 @opindex mips32r5
21885 Equivalent to @option{-march=mips32r5}.
21886
21887 @item -mips32r6
21888 @opindex mips32r6
21889 Equivalent to @option{-march=mips32r6}.
21890
21891 @item -mips64
21892 @opindex mips64
21893 Equivalent to @option{-march=mips64}.
21894
21895 @item -mips64r2
21896 @opindex mips64r2
21897 Equivalent to @option{-march=mips64r2}.
21898
21899 @item -mips64r3
21900 @opindex mips64r3
21901 Equivalent to @option{-march=mips64r3}.
21902
21903 @item -mips64r5
21904 @opindex mips64r5
21905 Equivalent to @option{-march=mips64r5}.
21906
21907 @item -mips64r6
21908 @opindex mips64r6
21909 Equivalent to @option{-march=mips64r6}.
21910
21911 @item -mips16
21912 @itemx -mno-mips16
21913 @opindex mips16
21914 @opindex mno-mips16
21915 Generate (do not generate) MIPS16 code. If GCC is targeting a
21916 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21917
21918 MIPS16 code generation can also be controlled on a per-function basis
21919 by means of @code{mips16} and @code{nomips16} attributes.
21920 @xref{Function Attributes}, for more information.
21921
21922 @item -mflip-mips16
21923 @opindex mflip-mips16
21924 Generate MIPS16 code on alternating functions. This option is provided
21925 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21926 not intended for ordinary use in compiling user code.
21927
21928 @item -minterlink-compressed
21929 @itemx -mno-interlink-compressed
21930 @opindex minterlink-compressed
21931 @opindex mno-interlink-compressed
21932 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21933 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21934
21935 For example, code using the standard ISA encoding cannot jump directly
21936 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21937 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21938 knows that the target of the jump is not compressed.
21939
21940 @item -minterlink-mips16
21941 @itemx -mno-interlink-mips16
21942 @opindex minterlink-mips16
21943 @opindex mno-interlink-mips16
21944 Aliases of @option{-minterlink-compressed} and
21945 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21946 and are retained for backwards compatibility.
21947
21948 @item -mabi=32
21949 @itemx -mabi=o64
21950 @itemx -mabi=n32
21951 @itemx -mabi=64
21952 @itemx -mabi=eabi
21953 @opindex mabi=32
21954 @opindex mabi=o64
21955 @opindex mabi=n32
21956 @opindex mabi=64
21957 @opindex mabi=eabi
21958 Generate code for the given ABI@.
21959
21960 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
21961 generates 64-bit code when you select a 64-bit architecture, but you
21962 can use @option{-mgp32} to get 32-bit code instead.
21963
21964 For information about the O64 ABI, see
21965 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21966
21967 GCC supports a variant of the o32 ABI in which floating-point registers
21968 are 64 rather than 32 bits wide. You can select this combination with
21969 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
21970 and @code{mfhc1} instructions and is therefore only supported for
21971 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21972
21973 The register assignments for arguments and return values remain the
21974 same, but each scalar value is passed in a single 64-bit register
21975 rather than a pair of 32-bit registers. For example, scalar
21976 floating-point values are returned in @samp{$f0} only, not a
21977 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
21978 remains the same in that the even-numbered double-precision registers
21979 are saved.
21980
21981 Two additional variants of the o32 ABI are supported to enable
21982 a transition from 32-bit to 64-bit registers. These are FPXX
21983 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21984 The FPXX extension mandates that all code must execute correctly
21985 when run using 32-bit or 64-bit registers. The code can be interlinked
21986 with either FP32 or FP64, but not both.
21987 The FP64A extension is similar to the FP64 extension but forbids the
21988 use of odd-numbered single-precision registers. This can be used
21989 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21990 processors and allows both FP32 and FP64A code to interlink and
21991 run in the same process without changing FPU modes.
21992
21993 @item -mabicalls
21994 @itemx -mno-abicalls
21995 @opindex mabicalls
21996 @opindex mno-abicalls
21997 Generate (do not generate) code that is suitable for SVR4-style
21998 dynamic objects. @option{-mabicalls} is the default for SVR4-based
21999 systems.
22000
22001 @item -mshared
22002 @itemx -mno-shared
22003 Generate (do not generate) code that is fully position-independent,
22004 and that can therefore be linked into shared libraries. This option
22005 only affects @option{-mabicalls}.
22006
22007 All @option{-mabicalls} code has traditionally been position-independent,
22008 regardless of options like @option{-fPIC} and @option{-fpic}. However,
22009 as an extension, the GNU toolchain allows executables to use absolute
22010 accesses for locally-binding symbols. It can also use shorter GP
22011 initialization sequences and generate direct calls to locally-defined
22012 functions. This mode is selected by @option{-mno-shared}.
22013
22014 @option{-mno-shared} depends on binutils 2.16 or higher and generates
22015 objects that can only be linked by the GNU linker. However, the option
22016 does not affect the ABI of the final executable; it only affects the ABI
22017 of relocatable objects. Using @option{-mno-shared} generally makes
22018 executables both smaller and quicker.
22019
22020 @option{-mshared} is the default.
22021
22022 @item -mplt
22023 @itemx -mno-plt
22024 @opindex mplt
22025 @opindex mno-plt
22026 Assume (do not assume) that the static and dynamic linkers
22027 support PLTs and copy relocations. This option only affects
22028 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
22029 has no effect without @option{-msym32}.
22030
22031 You can make @option{-mplt} the default by configuring
22032 GCC with @option{--with-mips-plt}. The default is
22033 @option{-mno-plt} otherwise.
22034
22035 @item -mxgot
22036 @itemx -mno-xgot
22037 @opindex mxgot
22038 @opindex mno-xgot
22039 Lift (do not lift) the usual restrictions on the size of the global
22040 offset table.
22041
22042 GCC normally uses a single instruction to load values from the GOT@.
22043 While this is relatively efficient, it only works if the GOT
22044 is smaller than about 64k. Anything larger causes the linker
22045 to report an error such as:
22046
22047 @cindex relocation truncated to fit (MIPS)
22048 @smallexample
22049 relocation truncated to fit: R_MIPS_GOT16 foobar
22050 @end smallexample
22051
22052 If this happens, you should recompile your code with @option{-mxgot}.
22053 This works with very large GOTs, although the code is also
22054 less efficient, since it takes three instructions to fetch the
22055 value of a global symbol.
22056
22057 Note that some linkers can create multiple GOTs. If you have such a
22058 linker, you should only need to use @option{-mxgot} when a single object
22059 file accesses more than 64k's worth of GOT entries. Very few do.
22060
22061 These options have no effect unless GCC is generating position
22062 independent code.
22063
22064 @item -mgp32
22065 @opindex mgp32
22066 Assume that general-purpose registers are 32 bits wide.
22067
22068 @item -mgp64
22069 @opindex mgp64
22070 Assume that general-purpose registers are 64 bits wide.
22071
22072 @item -mfp32
22073 @opindex mfp32
22074 Assume that floating-point registers are 32 bits wide.
22075
22076 @item -mfp64
22077 @opindex mfp64
22078 Assume that floating-point registers are 64 bits wide.
22079
22080 @item -mfpxx
22081 @opindex mfpxx
22082 Do not assume the width of floating-point registers.
22083
22084 @item -mhard-float
22085 @opindex mhard-float
22086 Use floating-point coprocessor instructions.
22087
22088 @item -msoft-float
22089 @opindex msoft-float
22090 Do not use floating-point coprocessor instructions. Implement
22091 floating-point calculations using library calls instead.
22092
22093 @item -mno-float
22094 @opindex mno-float
22095 Equivalent to @option{-msoft-float}, but additionally asserts that the
22096 program being compiled does not perform any floating-point operations.
22097 This option is presently supported only by some bare-metal MIPS
22098 configurations, where it may select a special set of libraries
22099 that lack all floating-point support (including, for example, the
22100 floating-point @code{printf} formats).
22101 If code compiled with @option{-mno-float} accidentally contains
22102 floating-point operations, it is likely to suffer a link-time
22103 or run-time failure.
22104
22105 @item -msingle-float
22106 @opindex msingle-float
22107 Assume that the floating-point coprocessor only supports single-precision
22108 operations.
22109
22110 @item -mdouble-float
22111 @opindex mdouble-float
22112 Assume that the floating-point coprocessor supports double-precision
22113 operations. This is the default.
22114
22115 @item -modd-spreg
22116 @itemx -mno-odd-spreg
22117 @opindex modd-spreg
22118 @opindex mno-odd-spreg
22119 Enable the use of odd-numbered single-precision floating-point registers
22120 for the o32 ABI. This is the default for processors that are known to
22121 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
22122 is set by default.
22123
22124 @item -mabs=2008
22125 @itemx -mabs=legacy
22126 @opindex mabs=2008
22127 @opindex mabs=legacy
22128 These options control the treatment of the special not-a-number (NaN)
22129 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
22130 @code{neg.@i{fmt}} machine instructions.
22131
22132 By default or when @option{-mabs=legacy} is used the legacy
22133 treatment is selected. In this case these instructions are considered
22134 arithmetic and avoided where correct operation is required and the
22135 input operand might be a NaN. A longer sequence of instructions that
22136 manipulate the sign bit of floating-point datum manually is used
22137 instead unless the @option{-ffinite-math-only} option has also been
22138 specified.
22139
22140 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
22141 this case these instructions are considered non-arithmetic and therefore
22142 operating correctly in all cases, including in particular where the
22143 input operand is a NaN. These instructions are therefore always used
22144 for the respective operations.
22145
22146 @item -mnan=2008
22147 @itemx -mnan=legacy
22148 @opindex mnan=2008
22149 @opindex mnan=legacy
22150 These options control the encoding of the special not-a-number (NaN)
22151 IEEE 754 floating-point data.
22152
22153 The @option{-mnan=legacy} option selects the legacy encoding. In this
22154 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
22155 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
22156 by the first bit of their trailing significand field being 1.
22157
22158 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
22159 this case qNaNs are denoted by the first bit of their trailing
22160 significand field being 1, whereas sNaNs are denoted by the first bit of
22161 their trailing significand field being 0.
22162
22163 The default is @option{-mnan=legacy} unless GCC has been configured with
22164 @option{--with-nan=2008}.
22165
22166 @item -mllsc
22167 @itemx -mno-llsc
22168 @opindex mllsc
22169 @opindex mno-llsc
22170 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22171 implement atomic memory built-in functions. When neither option is
22172 specified, GCC uses the instructions if the target architecture
22173 supports them.
22174
22175 @option{-mllsc} is useful if the runtime environment can emulate the
22176 instructions and @option{-mno-llsc} can be useful when compiling for
22177 nonstandard ISAs. You can make either option the default by
22178 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22179 respectively. @option{--with-llsc} is the default for some
22180 configurations; see the installation documentation for details.
22181
22182 @item -mdsp
22183 @itemx -mno-dsp
22184 @opindex mdsp
22185 @opindex mno-dsp
22186 Use (do not use) revision 1 of the MIPS DSP ASE@.
22187 @xref{MIPS DSP Built-in Functions}. This option defines the
22188 preprocessor macro @code{__mips_dsp}. It also defines
22189 @code{__mips_dsp_rev} to 1.
22190
22191 @item -mdspr2
22192 @itemx -mno-dspr2
22193 @opindex mdspr2
22194 @opindex mno-dspr2
22195 Use (do not use) revision 2 of the MIPS DSP ASE@.
22196 @xref{MIPS DSP Built-in Functions}. This option defines the
22197 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22198 It also defines @code{__mips_dsp_rev} to 2.
22199
22200 @item -msmartmips
22201 @itemx -mno-smartmips
22202 @opindex msmartmips
22203 @opindex mno-smartmips
22204 Use (do not use) the MIPS SmartMIPS ASE.
22205
22206 @item -mpaired-single
22207 @itemx -mno-paired-single
22208 @opindex mpaired-single
22209 @opindex mno-paired-single
22210 Use (do not use) paired-single floating-point instructions.
22211 @xref{MIPS Paired-Single Support}. This option requires
22212 hardware floating-point support to be enabled.
22213
22214 @item -mdmx
22215 @itemx -mno-mdmx
22216 @opindex mdmx
22217 @opindex mno-mdmx
22218 Use (do not use) MIPS Digital Media Extension instructions.
22219 This option can only be used when generating 64-bit code and requires
22220 hardware floating-point support to be enabled.
22221
22222 @item -mips3d
22223 @itemx -mno-mips3d
22224 @opindex mips3d
22225 @opindex mno-mips3d
22226 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
22227 The option @option{-mips3d} implies @option{-mpaired-single}.
22228
22229 @item -mmicromips
22230 @itemx -mno-micromips
22231 @opindex mmicromips
22232 @opindex mno-mmicromips
22233 Generate (do not generate) microMIPS code.
22234
22235 MicroMIPS code generation can also be controlled on a per-function basis
22236 by means of @code{micromips} and @code{nomicromips} attributes.
22237 @xref{Function Attributes}, for more information.
22238
22239 @item -mmt
22240 @itemx -mno-mt
22241 @opindex mmt
22242 @opindex mno-mt
22243 Use (do not use) MT Multithreading instructions.
22244
22245 @item -mmcu
22246 @itemx -mno-mcu
22247 @opindex mmcu
22248 @opindex mno-mcu
22249 Use (do not use) the MIPS MCU ASE instructions.
22250
22251 @item -meva
22252 @itemx -mno-eva
22253 @opindex meva
22254 @opindex mno-eva
22255 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22256
22257 @item -mvirt
22258 @itemx -mno-virt
22259 @opindex mvirt
22260 @opindex mno-virt
22261 Use (do not use) the MIPS Virtualization (VZ) instructions.
22262
22263 @item -mxpa
22264 @itemx -mno-xpa
22265 @opindex mxpa
22266 @opindex mno-xpa
22267 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22268
22269 @item -mcrc
22270 @itemx -mno-crc
22271 @opindex mcrc
22272 @opindex mno-crc
22273 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22274
22275 @item -mginv
22276 @itemx -mno-ginv
22277 @opindex mginv
22278 @opindex mno-ginv
22279 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22280
22281 @item -mloongson-mmi
22282 @itemx -mno-loongson-mmi
22283 @opindex mloongson-mmi
22284 @opindex mno-loongson-mmi
22285 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22286
22287 @item -mloongson-ext
22288 @itemx -mno-loongson-ext
22289 @opindex mloongson-ext
22290 @opindex mno-loongson-ext
22291 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22292
22293 @item -mloongson-ext2
22294 @itemx -mno-loongson-ext2
22295 @opindex mloongson-ext2
22296 @opindex mno-loongson-ext2
22297 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22298
22299 @item -mlong64
22300 @opindex mlong64
22301 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22302 an explanation of the default and the way that the pointer size is
22303 determined.
22304
22305 @item -mlong32
22306 @opindex mlong32
22307 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22308
22309 The default size of @code{int}s, @code{long}s and pointers depends on
22310 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22311 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22312 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22313 or the same size as integer registers, whichever is smaller.
22314
22315 @item -msym32
22316 @itemx -mno-sym32
22317 @opindex msym32
22318 @opindex mno-sym32
22319 Assume (do not assume) that all symbols have 32-bit values, regardless
22320 of the selected ABI@. This option is useful in combination with
22321 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22322 to generate shorter and faster references to symbolic addresses.
22323
22324 @item -G @var{num}
22325 @opindex G
22326 Put definitions of externally-visible data in a small data section
22327 if that data is no bigger than @var{num} bytes. GCC can then generate
22328 more efficient accesses to the data; see @option{-mgpopt} for details.
22329
22330 The default @option{-G} option depends on the configuration.
22331
22332 @item -mlocal-sdata
22333 @itemx -mno-local-sdata
22334 @opindex mlocal-sdata
22335 @opindex mno-local-sdata
22336 Extend (do not extend) the @option{-G} behavior to local data too,
22337 such as to static variables in C@. @option{-mlocal-sdata} is the
22338 default for all configurations.
22339
22340 If the linker complains that an application is using too much small data,
22341 you might want to try rebuilding the less performance-critical parts with
22342 @option{-mno-local-sdata}. You might also want to build large
22343 libraries with @option{-mno-local-sdata}, so that the libraries leave
22344 more room for the main program.
22345
22346 @item -mextern-sdata
22347 @itemx -mno-extern-sdata
22348 @opindex mextern-sdata
22349 @opindex mno-extern-sdata
22350 Assume (do not assume) that externally-defined data is in
22351 a small data section if the size of that data is within the @option{-G} limit.
22352 @option{-mextern-sdata} is the default for all configurations.
22353
22354 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22355 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22356 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22357 is placed in a small data section. If @var{Var} is defined by another
22358 module, you must either compile that module with a high-enough
22359 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22360 definition. If @var{Var} is common, you must link the application
22361 with a high-enough @option{-G} setting.
22362
22363 The easiest way of satisfying these restrictions is to compile
22364 and link every module with the same @option{-G} option. However,
22365 you may wish to build a library that supports several different
22366 small data limits. You can do this by compiling the library with
22367 the highest supported @option{-G} setting and additionally using
22368 @option{-mno-extern-sdata} to stop the library from making assumptions
22369 about externally-defined data.
22370
22371 @item -mgpopt
22372 @itemx -mno-gpopt
22373 @opindex mgpopt
22374 @opindex mno-gpopt
22375 Use (do not use) GP-relative accesses for symbols that are known to be
22376 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22377 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22378 configurations.
22379
22380 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22381 might not hold the value of @code{_gp}. For example, if the code is
22382 part of a library that might be used in a boot monitor, programs that
22383 call boot monitor routines pass an unknown value in @code{$gp}.
22384 (In such situations, the boot monitor itself is usually compiled
22385 with @option{-G0}.)
22386
22387 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22388 @option{-mno-extern-sdata}.
22389
22390 @item -membedded-data
22391 @itemx -mno-embedded-data
22392 @opindex membedded-data
22393 @opindex mno-embedded-data
22394 Allocate variables to the read-only data section first if possible, then
22395 next in the small data section if possible, otherwise in data. This gives
22396 slightly slower code than the default, but reduces the amount of RAM required
22397 when executing, and thus may be preferred for some embedded systems.
22398
22399 @item -muninit-const-in-rodata
22400 @itemx -mno-uninit-const-in-rodata
22401 @opindex muninit-const-in-rodata
22402 @opindex mno-uninit-const-in-rodata
22403 Put uninitialized @code{const} variables in the read-only data section.
22404 This option is only meaningful in conjunction with @option{-membedded-data}.
22405
22406 @item -mcode-readable=@var{setting}
22407 @opindex mcode-readable
22408 Specify whether GCC may generate code that reads from executable sections.
22409 There are three possible settings:
22410
22411 @table @gcctabopt
22412 @item -mcode-readable=yes
22413 Instructions may freely access executable sections. This is the
22414 default setting.
22415
22416 @item -mcode-readable=pcrel
22417 MIPS16 PC-relative load instructions can access executable sections,
22418 but other instructions must not do so. This option is useful on 4KSc
22419 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22420 It is also useful on processors that can be configured to have a dual
22421 instruction/data SRAM interface and that, like the M4K, automatically
22422 redirect PC-relative loads to the instruction RAM.
22423
22424 @item -mcode-readable=no
22425 Instructions must not access executable sections. This option can be
22426 useful on targets that are configured to have a dual instruction/data
22427 SRAM interface but that (unlike the M4K) do not automatically redirect
22428 PC-relative loads to the instruction RAM.
22429 @end table
22430
22431 @item -msplit-addresses
22432 @itemx -mno-split-addresses
22433 @opindex msplit-addresses
22434 @opindex mno-split-addresses
22435 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22436 relocation operators. This option has been superseded by
22437 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22438
22439 @item -mexplicit-relocs
22440 @itemx -mno-explicit-relocs
22441 @opindex mexplicit-relocs
22442 @opindex mno-explicit-relocs
22443 Use (do not use) assembler relocation operators when dealing with symbolic
22444 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22445 is to use assembler macros instead.
22446
22447 @option{-mexplicit-relocs} is the default if GCC was configured
22448 to use an assembler that supports relocation operators.
22449
22450 @item -mcheck-zero-division
22451 @itemx -mno-check-zero-division
22452 @opindex mcheck-zero-division
22453 @opindex mno-check-zero-division
22454 Trap (do not trap) on integer division by zero.
22455
22456 The default is @option{-mcheck-zero-division}.
22457
22458 @item -mdivide-traps
22459 @itemx -mdivide-breaks
22460 @opindex mdivide-traps
22461 @opindex mdivide-breaks
22462 MIPS systems check for division by zero by generating either a
22463 conditional trap or a break instruction. Using traps results in
22464 smaller code, but is only supported on MIPS II and later. Also, some
22465 versions of the Linux kernel have a bug that prevents trap from
22466 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22467 allow conditional traps on architectures that support them and
22468 @option{-mdivide-breaks} to force the use of breaks.
22469
22470 The default is usually @option{-mdivide-traps}, but this can be
22471 overridden at configure time using @option{--with-divide=breaks}.
22472 Divide-by-zero checks can be completely disabled using
22473 @option{-mno-check-zero-division}.
22474
22475 @item -mload-store-pairs
22476 @itemx -mno-load-store-pairs
22477 @opindex mload-store-pairs
22478 @opindex mno-load-store-pairs
22479 Enable (disable) an optimization that pairs consecutive load or store
22480 instructions to enable load/store bonding. This option is enabled by
22481 default but only takes effect when the selected architecture is known
22482 to support bonding.
22483
22484 @item -mmemcpy
22485 @itemx -mno-memcpy
22486 @opindex mmemcpy
22487 @opindex mno-memcpy
22488 Force (do not force) the use of @code{memcpy} for non-trivial block
22489 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22490 most constant-sized copies.
22491
22492 @item -mlong-calls
22493 @itemx -mno-long-calls
22494 @opindex mlong-calls
22495 @opindex mno-long-calls
22496 Disable (do not disable) use of the @code{jal} instruction. Calling
22497 functions using @code{jal} is more efficient but requires the caller
22498 and callee to be in the same 256 megabyte segment.
22499
22500 This option has no effect on abicalls code. The default is
22501 @option{-mno-long-calls}.
22502
22503 @item -mmad
22504 @itemx -mno-mad
22505 @opindex mmad
22506 @opindex mno-mad
22507 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22508 instructions, as provided by the R4650 ISA@.
22509
22510 @item -mimadd
22511 @itemx -mno-imadd
22512 @opindex mimadd
22513 @opindex mno-imadd
22514 Enable (disable) use of the @code{madd} and @code{msub} integer
22515 instructions. The default is @option{-mimadd} on architectures
22516 that support @code{madd} and @code{msub} except for the 74k
22517 architecture where it was found to generate slower code.
22518
22519 @item -mfused-madd
22520 @itemx -mno-fused-madd
22521 @opindex mfused-madd
22522 @opindex mno-fused-madd
22523 Enable (disable) use of the floating-point multiply-accumulate
22524 instructions, when they are available. The default is
22525 @option{-mfused-madd}.
22526
22527 On the R8000 CPU when multiply-accumulate instructions are used,
22528 the intermediate product is calculated to infinite precision
22529 and is not subject to the FCSR Flush to Zero bit. This may be
22530 undesirable in some circumstances. On other processors the result
22531 is numerically identical to the equivalent computation using
22532 separate multiply, add, subtract and negate instructions.
22533
22534 @item -nocpp
22535 @opindex nocpp
22536 Tell the MIPS assembler to not run its preprocessor over user
22537 assembler files (with a @samp{.s} suffix) when assembling them.
22538
22539 @item -mfix-24k
22540 @itemx -mno-fix-24k
22541 @opindex mfix-24k
22542 @opindex mno-fix-24k
22543 Work around the 24K E48 (lost data on stores during refill) errata.
22544 The workarounds are implemented by the assembler rather than by GCC@.
22545
22546 @item -mfix-r4000
22547 @itemx -mno-fix-r4000
22548 @opindex mfix-r4000
22549 @opindex mno-fix-r4000
22550 Work around certain R4000 CPU errata:
22551 @itemize @minus
22552 @item
22553 A double-word or a variable shift may give an incorrect result if executed
22554 immediately after starting an integer division.
22555 @item
22556 A double-word or a variable shift may give an incorrect result if executed
22557 while an integer multiplication is in progress.
22558 @item
22559 An integer division may give an incorrect result if started in a delay slot
22560 of a taken branch or a jump.
22561 @end itemize
22562
22563 @item -mfix-r4400
22564 @itemx -mno-fix-r4400
22565 @opindex mfix-r4400
22566 @opindex mno-fix-r4400
22567 Work around certain R4400 CPU errata:
22568 @itemize @minus
22569 @item
22570 A double-word or a variable shift may give an incorrect result if executed
22571 immediately after starting an integer division.
22572 @end itemize
22573
22574 @item -mfix-r10000
22575 @itemx -mno-fix-r10000
22576 @opindex mfix-r10000
22577 @opindex mno-fix-r10000
22578 Work around certain R10000 errata:
22579 @itemize @minus
22580 @item
22581 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22582 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22583 @end itemize
22584
22585 This option can only be used if the target architecture supports
22586 branch-likely instructions. @option{-mfix-r10000} is the default when
22587 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22588 otherwise.
22589
22590 @item -mfix-r5900
22591 @itemx -mno-fix-r5900
22592 @opindex mfix-r5900
22593 Do not attempt to schedule the preceding instruction into the delay slot
22594 of a branch instruction placed at the end of a short loop of six
22595 instructions or fewer and always schedule a @code{nop} instruction there
22596 instead. The short loop bug under certain conditions causes loops to
22597 execute only once or twice, due to a hardware bug in the R5900 chip. The
22598 workaround is implemented by the assembler rather than by GCC@.
22599
22600 @item -mfix-rm7000
22601 @itemx -mno-fix-rm7000
22602 @opindex mfix-rm7000
22603 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22604 workarounds are implemented by the assembler rather than by GCC@.
22605
22606 @item -mfix-vr4120
22607 @itemx -mno-fix-vr4120
22608 @opindex mfix-vr4120
22609 Work around certain VR4120 errata:
22610 @itemize @minus
22611 @item
22612 @code{dmultu} does not always produce the correct result.
22613 @item
22614 @code{div} and @code{ddiv} do not always produce the correct result if one
22615 of the operands is negative.
22616 @end itemize
22617 The workarounds for the division errata rely on special functions in
22618 @file{libgcc.a}. At present, these functions are only provided by
22619 the @code{mips64vr*-elf} configurations.
22620
22621 Other VR4120 errata require a NOP to be inserted between certain pairs of
22622 instructions. These errata are handled by the assembler, not by GCC itself.
22623
22624 @item -mfix-vr4130
22625 @opindex mfix-vr4130
22626 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22627 workarounds are implemented by the assembler rather than by GCC,
22628 although GCC avoids using @code{mflo} and @code{mfhi} if the
22629 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22630 instructions are available instead.
22631
22632 @item -mfix-sb1
22633 @itemx -mno-fix-sb1
22634 @opindex mfix-sb1
22635 Work around certain SB-1 CPU core errata.
22636 (This flag currently works around the SB-1 revision 2
22637 ``F1'' and ``F2'' floating-point errata.)
22638
22639 @item -mr10k-cache-barrier=@var{setting}
22640 @opindex mr10k-cache-barrier
22641 Specify whether GCC should insert cache barriers to avoid the
22642 side effects of speculation on R10K processors.
22643
22644 In common with many processors, the R10K tries to predict the outcome
22645 of a conditional branch and speculatively executes instructions from
22646 the ``taken'' branch. It later aborts these instructions if the
22647 predicted outcome is wrong. However, on the R10K, even aborted
22648 instructions can have side effects.
22649
22650 This problem only affects kernel stores and, depending on the system,
22651 kernel loads. As an example, a speculatively-executed store may load
22652 the target memory into cache and mark the cache line as dirty, even if
22653 the store itself is later aborted. If a DMA operation writes to the
22654 same area of memory before the ``dirty'' line is flushed, the cached
22655 data overwrites the DMA-ed data. See the R10K processor manual
22656 for a full description, including other potential problems.
22657
22658 One workaround is to insert cache barrier instructions before every memory
22659 access that might be speculatively executed and that might have side
22660 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22661 controls GCC's implementation of this workaround. It assumes that
22662 aborted accesses to any byte in the following regions does not have
22663 side effects:
22664
22665 @enumerate
22666 @item
22667 the memory occupied by the current function's stack frame;
22668
22669 @item
22670 the memory occupied by an incoming stack argument;
22671
22672 @item
22673 the memory occupied by an object with a link-time-constant address.
22674 @end enumerate
22675
22676 It is the kernel's responsibility to ensure that speculative
22677 accesses to these regions are indeed safe.
22678
22679 If the input program contains a function declaration such as:
22680
22681 @smallexample
22682 void foo (void);
22683 @end smallexample
22684
22685 then the implementation of @code{foo} must allow @code{j foo} and
22686 @code{jal foo} to be executed speculatively. GCC honors this
22687 restriction for functions it compiles itself. It expects non-GCC
22688 functions (such as hand-written assembly code) to do the same.
22689
22690 The option has three forms:
22691
22692 @table @gcctabopt
22693 @item -mr10k-cache-barrier=load-store
22694 Insert a cache barrier before a load or store that might be
22695 speculatively executed and that might have side effects even
22696 if aborted.
22697
22698 @item -mr10k-cache-barrier=store
22699 Insert a cache barrier before a store that might be speculatively
22700 executed and that might have side effects even if aborted.
22701
22702 @item -mr10k-cache-barrier=none
22703 Disable the insertion of cache barriers. This is the default setting.
22704 @end table
22705
22706 @item -mflush-func=@var{func}
22707 @itemx -mno-flush-func
22708 @opindex mflush-func
22709 Specifies the function to call to flush the I and D caches, or to not
22710 call any such function. If called, the function must take the same
22711 arguments as the common @code{_flush_func}, that is, the address of the
22712 memory range for which the cache is being flushed, the size of the
22713 memory range, and the number 3 (to flush both caches). The default
22714 depends on the target GCC was configured for, but commonly is either
22715 @code{_flush_func} or @code{__cpu_flush}.
22716
22717 @item mbranch-cost=@var{num}
22718 @opindex mbranch-cost
22719 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22720 This cost is only a heuristic and is not guaranteed to produce
22721 consistent results across releases. A zero cost redundantly selects
22722 the default, which is based on the @option{-mtune} setting.
22723
22724 @item -mbranch-likely
22725 @itemx -mno-branch-likely
22726 @opindex mbranch-likely
22727 @opindex mno-branch-likely
22728 Enable or disable use of Branch Likely instructions, regardless of the
22729 default for the selected architecture. By default, Branch Likely
22730 instructions may be generated if they are supported by the selected
22731 architecture. An exception is for the MIPS32 and MIPS64 architectures
22732 and processors that implement those architectures; for those, Branch
22733 Likely instructions are not be generated by default because the MIPS32
22734 and MIPS64 architectures specifically deprecate their use.
22735
22736 @item -mcompact-branches=never
22737 @itemx -mcompact-branches=optimal
22738 @itemx -mcompact-branches=always
22739 @opindex mcompact-branches=never
22740 @opindex mcompact-branches=optimal
22741 @opindex mcompact-branches=always
22742 These options control which form of branches will be generated. The
22743 default is @option{-mcompact-branches=optimal}.
22744
22745 The @option{-mcompact-branches=never} option ensures that compact branch
22746 instructions will never be generated.
22747
22748 The @option{-mcompact-branches=always} option ensures that a compact
22749 branch instruction will be generated if available. If a compact branch
22750 instruction is not available, a delay slot form of the branch will be
22751 used instead.
22752
22753 This option is supported from MIPS Release 6 onwards.
22754
22755 The @option{-mcompact-branches=optimal} option will cause a delay slot
22756 branch to be used if one is available in the current ISA and the delay
22757 slot is successfully filled. If the delay slot is not filled, a compact
22758 branch will be chosen if one is available.
22759
22760 @item -mfp-exceptions
22761 @itemx -mno-fp-exceptions
22762 @opindex mfp-exceptions
22763 Specifies whether FP exceptions are enabled. This affects how
22764 FP instructions are scheduled for some processors.
22765 The default is that FP exceptions are
22766 enabled.
22767
22768 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22769 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22770 FP pipe.
22771
22772 @item -mvr4130-align
22773 @itemx -mno-vr4130-align
22774 @opindex mvr4130-align
22775 The VR4130 pipeline is two-way superscalar, but can only issue two
22776 instructions together if the first one is 8-byte aligned. When this
22777 option is enabled, GCC aligns pairs of instructions that it
22778 thinks should execute in parallel.
22779
22780 This option only has an effect when optimizing for the VR4130.
22781 It normally makes code faster, but at the expense of making it bigger.
22782 It is enabled by default at optimization level @option{-O3}.
22783
22784 @item -msynci
22785 @itemx -mno-synci
22786 @opindex msynci
22787 Enable (disable) generation of @code{synci} instructions on
22788 architectures that support it. The @code{synci} instructions (if
22789 enabled) are generated when @code{__builtin___clear_cache} is
22790 compiled.
22791
22792 This option defaults to @option{-mno-synci}, but the default can be
22793 overridden by configuring GCC with @option{--with-synci}.
22794
22795 When compiling code for single processor systems, it is generally safe
22796 to use @code{synci}. However, on many multi-core (SMP) systems, it
22797 does not invalidate the instruction caches on all cores and may lead
22798 to undefined behavior.
22799
22800 @item -mrelax-pic-calls
22801 @itemx -mno-relax-pic-calls
22802 @opindex mrelax-pic-calls
22803 Try to turn PIC calls that are normally dispatched via register
22804 @code{$25} into direct calls. This is only possible if the linker can
22805 resolve the destination at link time and if the destination is within
22806 range for a direct call.
22807
22808 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22809 an assembler and a linker that support the @code{.reloc} assembly
22810 directive and @option{-mexplicit-relocs} is in effect. With
22811 @option{-mno-explicit-relocs}, this optimization can be performed by the
22812 assembler and the linker alone without help from the compiler.
22813
22814 @item -mmcount-ra-address
22815 @itemx -mno-mcount-ra-address
22816 @opindex mmcount-ra-address
22817 @opindex mno-mcount-ra-address
22818 Emit (do not emit) code that allows @code{_mcount} to modify the
22819 calling function's return address. When enabled, this option extends
22820 the usual @code{_mcount} interface with a new @var{ra-address}
22821 parameter, which has type @code{intptr_t *} and is passed in register
22822 @code{$12}. @code{_mcount} can then modify the return address by
22823 doing both of the following:
22824 @itemize
22825 @item
22826 Returning the new address in register @code{$31}.
22827 @item
22828 Storing the new address in @code{*@var{ra-address}},
22829 if @var{ra-address} is nonnull.
22830 @end itemize
22831
22832 The default is @option{-mno-mcount-ra-address}.
22833
22834 @item -mframe-header-opt
22835 @itemx -mno-frame-header-opt
22836 @opindex mframe-header-opt
22837 Enable (disable) frame header optimization in the o32 ABI. When using the
22838 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22839 function to write out register arguments. When enabled, this optimization
22840 will suppress the allocation of the frame header if it can be determined that
22841 it is unused.
22842
22843 This optimization is off by default at all optimization levels.
22844
22845 @item -mlxc1-sxc1
22846 @itemx -mno-lxc1-sxc1
22847 @opindex mlxc1-sxc1
22848 When applicable, enable (disable) the generation of @code{lwxc1},
22849 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22850
22851 @item -mmadd4
22852 @itemx -mno-madd4
22853 @opindex mmadd4
22854 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22855 @code{madd.d} and related instructions. Enabled by default.
22856
22857 @end table
22858
22859 @node MMIX Options
22860 @subsection MMIX Options
22861 @cindex MMIX Options
22862
22863 These options are defined for the MMIX:
22864
22865 @table @gcctabopt
22866 @item -mlibfuncs
22867 @itemx -mno-libfuncs
22868 @opindex mlibfuncs
22869 @opindex mno-libfuncs
22870 Specify that intrinsic library functions are being compiled, passing all
22871 values in registers, no matter the size.
22872
22873 @item -mepsilon
22874 @itemx -mno-epsilon
22875 @opindex mepsilon
22876 @opindex mno-epsilon
22877 Generate floating-point comparison instructions that compare with respect
22878 to the @code{rE} epsilon register.
22879
22880 @item -mabi=mmixware
22881 @itemx -mabi=gnu
22882 @opindex mabi=mmixware
22883 @opindex mabi=gnu
22884 Generate code that passes function parameters and return values that (in
22885 the called function) are seen as registers @code{$0} and up, as opposed to
22886 the GNU ABI which uses global registers @code{$231} and up.
22887
22888 @item -mzero-extend
22889 @itemx -mno-zero-extend
22890 @opindex mzero-extend
22891 @opindex mno-zero-extend
22892 When reading data from memory in sizes shorter than 64 bits, use (do not
22893 use) zero-extending load instructions by default, rather than
22894 sign-extending ones.
22895
22896 @item -mknuthdiv
22897 @itemx -mno-knuthdiv
22898 @opindex mknuthdiv
22899 @opindex mno-knuthdiv
22900 Make the result of a division yielding a remainder have the same sign as
22901 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22902 remainder follows the sign of the dividend. Both methods are
22903 arithmetically valid, the latter being almost exclusively used.
22904
22905 @item -mtoplevel-symbols
22906 @itemx -mno-toplevel-symbols
22907 @opindex mtoplevel-symbols
22908 @opindex mno-toplevel-symbols
22909 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22910 code can be used with the @code{PREFIX} assembly directive.
22911
22912 @item -melf
22913 @opindex melf
22914 Generate an executable in the ELF format, rather than the default
22915 @samp{mmo} format used by the @command{mmix} simulator.
22916
22917 @item -mbranch-predict
22918 @itemx -mno-branch-predict
22919 @opindex mbranch-predict
22920 @opindex mno-branch-predict
22921 Use (do not use) the probable-branch instructions, when static branch
22922 prediction indicates a probable branch.
22923
22924 @item -mbase-addresses
22925 @itemx -mno-base-addresses
22926 @opindex mbase-addresses
22927 @opindex mno-base-addresses
22928 Generate (do not generate) code that uses @emph{base addresses}. Using a
22929 base address automatically generates a request (handled by the assembler
22930 and the linker) for a constant to be set up in a global register. The
22931 register is used for one or more base address requests within the range 0
22932 to 255 from the value held in the register. The generally leads to short
22933 and fast code, but the number of different data items that can be
22934 addressed is limited. This means that a program that uses lots of static
22935 data may require @option{-mno-base-addresses}.
22936
22937 @item -msingle-exit
22938 @itemx -mno-single-exit
22939 @opindex msingle-exit
22940 @opindex mno-single-exit
22941 Force (do not force) generated code to have a single exit point in each
22942 function.
22943 @end table
22944
22945 @node MN10300 Options
22946 @subsection MN10300 Options
22947 @cindex MN10300 options
22948
22949 These @option{-m} options are defined for Matsushita MN10300 architectures:
22950
22951 @table @gcctabopt
22952 @item -mmult-bug
22953 @opindex mmult-bug
22954 Generate code to avoid bugs in the multiply instructions for the MN10300
22955 processors. This is the default.
22956
22957 @item -mno-mult-bug
22958 @opindex mno-mult-bug
22959 Do not generate code to avoid bugs in the multiply instructions for the
22960 MN10300 processors.
22961
22962 @item -mam33
22963 @opindex mam33
22964 Generate code using features specific to the AM33 processor.
22965
22966 @item -mno-am33
22967 @opindex mno-am33
22968 Do not generate code using features specific to the AM33 processor. This
22969 is the default.
22970
22971 @item -mam33-2
22972 @opindex mam33-2
22973 Generate code using features specific to the AM33/2.0 processor.
22974
22975 @item -mam34
22976 @opindex mam34
22977 Generate code using features specific to the AM34 processor.
22978
22979 @item -mtune=@var{cpu-type}
22980 @opindex mtune
22981 Use the timing characteristics of the indicated CPU type when
22982 scheduling instructions. This does not change the targeted processor
22983 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
22984 @samp{am33-2} or @samp{am34}.
22985
22986 @item -mreturn-pointer-on-d0
22987 @opindex mreturn-pointer-on-d0
22988 When generating a function that returns a pointer, return the pointer
22989 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
22990 only in @code{a0}, and attempts to call such functions without a prototype
22991 result in errors. Note that this option is on by default; use
22992 @option{-mno-return-pointer-on-d0} to disable it.
22993
22994 @item -mno-crt0
22995 @opindex mno-crt0
22996 Do not link in the C run-time initialization object file.
22997
22998 @item -mrelax
22999 @opindex mrelax
23000 Indicate to the linker that it should perform a relaxation optimization pass
23001 to shorten branches, calls and absolute memory addresses. This option only
23002 has an effect when used on the command line for the final link step.
23003
23004 This option makes symbolic debugging impossible.
23005
23006 @item -mliw
23007 @opindex mliw
23008 Allow the compiler to generate @emph{Long Instruction Word}
23009 instructions if the target is the @samp{AM33} or later. This is the
23010 default. This option defines the preprocessor macro @code{__LIW__}.
23011
23012 @item -mno-liw
23013 @opindex mno-liw
23014 Do not allow the compiler to generate @emph{Long Instruction Word}
23015 instructions. This option defines the preprocessor macro
23016 @code{__NO_LIW__}.
23017
23018 @item -msetlb
23019 @opindex msetlb
23020 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
23021 instructions if the target is the @samp{AM33} or later. This is the
23022 default. This option defines the preprocessor macro @code{__SETLB__}.
23023
23024 @item -mno-setlb
23025 @opindex mno-setlb
23026 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
23027 instructions. This option defines the preprocessor macro
23028 @code{__NO_SETLB__}.
23029
23030 @end table
23031
23032 @node Moxie Options
23033 @subsection Moxie Options
23034 @cindex Moxie Options
23035
23036 @table @gcctabopt
23037
23038 @item -meb
23039 @opindex meb
23040 Generate big-endian code. This is the default for @samp{moxie-*-*}
23041 configurations.
23042
23043 @item -mel
23044 @opindex mel
23045 Generate little-endian code.
23046
23047 @item -mmul.x
23048 @opindex mmul.x
23049 Generate mul.x and umul.x instructions. This is the default for
23050 @samp{moxiebox-*-*} configurations.
23051
23052 @item -mno-crt0
23053 @opindex mno-crt0
23054 Do not link in the C run-time initialization object file.
23055
23056 @end table
23057
23058 @node MSP430 Options
23059 @subsection MSP430 Options
23060 @cindex MSP430 Options
23061
23062 These options are defined for the MSP430:
23063
23064 @table @gcctabopt
23065
23066 @item -masm-hex
23067 @opindex masm-hex
23068 Force assembly output to always use hex constants. Normally such
23069 constants are signed decimals, but this option is available for
23070 testsuite and/or aesthetic purposes.
23071
23072 @item -mmcu=
23073 @opindex mmcu=
23074 Select the MCU to target. This is used to create a C preprocessor
23075 symbol based upon the MCU name, converted to upper case and pre- and
23076 post-fixed with @samp{__}. This in turn is used by the
23077 @file{msp430.h} header file to select an MCU-specific supplementary
23078 header file.
23079
23080 The option also sets the ISA to use. If the MCU name is one that is
23081 known to only support the 430 ISA then that is selected, otherwise the
23082 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
23083 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
23084 name selects the 430X ISA.
23085
23086 In addition an MCU-specific linker script is added to the linker
23087 command line. The script's name is the name of the MCU with
23088 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
23089 command line defines the C preprocessor symbol @code{__XXX__} and
23090 cause the linker to search for a script called @file{xxx.ld}.
23091
23092 The ISA and hardware multiply supported for the different MCUs is hard-coded
23093 into GCC. However, an external @samp{devices.csv} file can be used to
23094 extend device support beyond those that have been hard-coded.
23095
23096 GCC searches for the @samp{devices.csv} file on the paths specified
23097 with the @code{-I} and @code{-L} options.
23098
23099 @item -mwarn-mcu
23100 @itemx -mno-warn-mcu
23101 @opindex mwarn-mcu
23102 @opindex mno-warn-mcu
23103 This option enables or disables warnings about conflicts between the
23104 MCU name specified by the @option{-mmcu} option and the ISA set by the
23105 @option{-mcpu} option and/or the hardware multiply support set by the
23106 @option{-mhwmult} option. It also toggles warnings about unrecognized
23107 MCU names. This option is on by default.
23108
23109 @item -mcpu=
23110 @opindex mcpu=
23111 Specifies the ISA to use. Accepted values are @samp{msp430},
23112 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
23113 @option{-mmcu=} option should be used to select the ISA.
23114
23115 @item -msim
23116 @opindex msim
23117 Link to the simulator runtime libraries and linker script. Overrides
23118 any scripts that would be selected by the @option{-mmcu=} option.
23119
23120 @item -mlarge
23121 @opindex mlarge
23122 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
23123
23124 @item -msmall
23125 @opindex msmall
23126 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
23127
23128 @item -mrelax
23129 @opindex mrelax
23130 This option is passed to the assembler and linker, and allows the
23131 linker to perform certain optimizations that cannot be done until
23132 the final link.
23133
23134 @item mhwmult=
23135 @opindex mhwmult=
23136 Describes the type of hardware multiply supported by the target.
23137 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
23138 for the original 16-bit-only multiply supported by early MCUs.
23139 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
23140 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
23141 A value of @samp{auto} can also be given. This tells GCC to deduce
23142 the hardware multiply support based upon the MCU name provided by the
23143 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
23144 the MCU name is not recognized then no hardware multiply support is
23145 assumed. @code{auto} is the default setting.
23146
23147 Hardware multiplies are normally performed by calling a library
23148 routine. This saves space in the generated code. When compiling at
23149 @option{-O3} or higher however the hardware multiplier is invoked
23150 inline. This makes for bigger, but faster code.
23151
23152 The hardware multiply routines disable interrupts whilst running and
23153 restore the previous interrupt state when they finish. This makes
23154 them safe to use inside interrupt handlers as well as in normal code.
23155
23156 @item -minrt
23157 @opindex minrt
23158 Enable the use of a minimum runtime environment - no static
23159 initializers or constructors. This is intended for memory-constrained
23160 devices. The compiler includes special symbols in some objects
23161 that tell the linker and runtime which code fragments are required.
23162
23163 @item -mcode-region=
23164 @itemx -mdata-region=
23165 @opindex mcode-region
23166 @opindex mdata-region
23167 These options tell the compiler where to place functions and data that
23168 do not have one of the @code{lower}, @code{upper}, @code{either} or
23169 @code{section} attributes. Possible values are @code{lower},
23170 @code{upper}, @code{either} or @code{any}. The first three behave
23171 like the corresponding attribute. The fourth possible value -
23172 @code{any} - is the default. It leaves placement entirely up to the
23173 linker script and how it assigns the standard sections
23174 (@code{.text}, @code{.data}, etc) to the memory regions.
23175
23176 @item -msilicon-errata=
23177 @opindex msilicon-errata
23178 This option passes on a request to assembler to enable the fixes for
23179 the named silicon errata.
23180
23181 @item -msilicon-errata-warn=
23182 @opindex msilicon-errata-warn
23183 This option passes on a request to the assembler to enable warning
23184 messages when a silicon errata might need to be applied.
23185
23186 @item -mwarn-devices-csv
23187 @itemx -mno-warn-devices-csv
23188 @opindex mwarn-devices-csv
23189 @opindex mno-warn-devices-csv
23190 Warn if @samp{devices.csv} is not found or there are problem parsing it
23191 (default: on).
23192
23193 @end table
23194
23195 @node NDS32 Options
23196 @subsection NDS32 Options
23197 @cindex NDS32 Options
23198
23199 These options are defined for NDS32 implementations:
23200
23201 @table @gcctabopt
23202
23203 @item -mbig-endian
23204 @opindex mbig-endian
23205 Generate code in big-endian mode.
23206
23207 @item -mlittle-endian
23208 @opindex mlittle-endian
23209 Generate code in little-endian mode.
23210
23211 @item -mreduced-regs
23212 @opindex mreduced-regs
23213 Use reduced-set registers for register allocation.
23214
23215 @item -mfull-regs
23216 @opindex mfull-regs
23217 Use full-set registers for register allocation.
23218
23219 @item -mcmov
23220 @opindex mcmov
23221 Generate conditional move instructions.
23222
23223 @item -mno-cmov
23224 @opindex mno-cmov
23225 Do not generate conditional move instructions.
23226
23227 @item -mext-perf
23228 @opindex mext-perf
23229 Generate performance extension instructions.
23230
23231 @item -mno-ext-perf
23232 @opindex mno-ext-perf
23233 Do not generate performance extension instructions.
23234
23235 @item -mext-perf2
23236 @opindex mext-perf2
23237 Generate performance extension 2 instructions.
23238
23239 @item -mno-ext-perf2
23240 @opindex mno-ext-perf2
23241 Do not generate performance extension 2 instructions.
23242
23243 @item -mext-string
23244 @opindex mext-string
23245 Generate string extension instructions.
23246
23247 @item -mno-ext-string
23248 @opindex mno-ext-string
23249 Do not generate string extension instructions.
23250
23251 @item -mv3push
23252 @opindex mv3push
23253 Generate v3 push25/pop25 instructions.
23254
23255 @item -mno-v3push
23256 @opindex mno-v3push
23257 Do not generate v3 push25/pop25 instructions.
23258
23259 @item -m16-bit
23260 @opindex m16-bit
23261 Generate 16-bit instructions.
23262
23263 @item -mno-16-bit
23264 @opindex mno-16-bit
23265 Do not generate 16-bit instructions.
23266
23267 @item -misr-vector-size=@var{num}
23268 @opindex misr-vector-size
23269 Specify the size of each interrupt vector, which must be 4 or 16.
23270
23271 @item -mcache-block-size=@var{num}
23272 @opindex mcache-block-size
23273 Specify the size of each cache block,
23274 which must be a power of 2 between 4 and 512.
23275
23276 @item -march=@var{arch}
23277 @opindex march
23278 Specify the name of the target architecture.
23279
23280 @item -mcmodel=@var{code-model}
23281 @opindex mcmodel
23282 Set the code model to one of
23283 @table @asis
23284 @item @samp{small}
23285 All the data and read-only data segments must be within 512KB addressing space.
23286 The text segment must be within 16MB addressing space.
23287 @item @samp{medium}
23288 The data segment must be within 512KB while the read-only data segment can be
23289 within 4GB addressing space. The text segment should be still within 16MB
23290 addressing space.
23291 @item @samp{large}
23292 All the text and data segments can be within 4GB addressing space.
23293 @end table
23294
23295 @item -mctor-dtor
23296 @opindex mctor-dtor
23297 Enable constructor/destructor feature.
23298
23299 @item -mrelax
23300 @opindex mrelax
23301 Guide linker to relax instructions.
23302
23303 @end table
23304
23305 @node Nios II Options
23306 @subsection Nios II Options
23307 @cindex Nios II options
23308 @cindex Altera Nios II options
23309
23310 These are the options defined for the Altera Nios II processor.
23311
23312 @table @gcctabopt
23313
23314 @item -G @var{num}
23315 @opindex G
23316 @cindex smaller data references
23317 Put global and static objects less than or equal to @var{num} bytes
23318 into the small data or BSS sections instead of the normal data or BSS
23319 sections. The default value of @var{num} is 8.
23320
23321 @item -mgpopt=@var{option}
23322 @itemx -mgpopt
23323 @itemx -mno-gpopt
23324 @opindex mgpopt
23325 @opindex mno-gpopt
23326 Generate (do not generate) GP-relative accesses. The following
23327 @var{option} names are recognized:
23328
23329 @table @samp
23330
23331 @item none
23332 Do not generate GP-relative accesses.
23333
23334 @item local
23335 Generate GP-relative accesses for small data objects that are not
23336 external, weak, or uninitialized common symbols.
23337 Also use GP-relative addressing for objects that
23338 have been explicitly placed in a small data section via a @code{section}
23339 attribute.
23340
23341 @item global
23342 As for @samp{local}, but also generate GP-relative accesses for
23343 small data objects that are external, weak, or common. If you use this option,
23344 you must ensure that all parts of your program (including libraries) are
23345 compiled with the same @option{-G} setting.
23346
23347 @item data
23348 Generate GP-relative accesses for all data objects in the program. If you
23349 use this option, the entire data and BSS segments
23350 of your program must fit in 64K of memory and you must use an appropriate
23351 linker script to allocate them within the addressable range of the
23352 global pointer.
23353
23354 @item all
23355 Generate GP-relative addresses for function pointers as well as data
23356 pointers. If you use this option, the entire text, data, and BSS segments
23357 of your program must fit in 64K of memory and you must use an appropriate
23358 linker script to allocate them within the addressable range of the
23359 global pointer.
23360
23361 @end table
23362
23363 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23364 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23365
23366 The default is @option{-mgpopt} except when @option{-fpic} or
23367 @option{-fPIC} is specified to generate position-independent code.
23368 Note that the Nios II ABI does not permit GP-relative accesses from
23369 shared libraries.
23370
23371 You may need to specify @option{-mno-gpopt} explicitly when building
23372 programs that include large amounts of small data, including large
23373 GOT data sections. In this case, the 16-bit offset for GP-relative
23374 addressing may not be large enough to allow access to the entire
23375 small data section.
23376
23377 @item -mgprel-sec=@var{regexp}
23378 @opindex mgprel-sec
23379 This option specifies additional section names that can be accessed via
23380 GP-relative addressing. It is most useful in conjunction with
23381 @code{section} attributes on variable declarations
23382 (@pxref{Common Variable Attributes}) and a custom linker script.
23383 The @var{regexp} is a POSIX Extended Regular Expression.
23384
23385 This option does not affect the behavior of the @option{-G} option, and
23386 the specified sections are in addition to the standard @code{.sdata}
23387 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23388
23389 @item -mr0rel-sec=@var{regexp}
23390 @opindex mr0rel-sec
23391 This option specifies names of sections that can be accessed via a
23392 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23393 of the 32-bit address space. It is most useful in conjunction with
23394 @code{section} attributes on variable declarations
23395 (@pxref{Common Variable Attributes}) and a custom linker script.
23396 The @var{regexp} is a POSIX Extended Regular Expression.
23397
23398 In contrast to the use of GP-relative addressing for small data,
23399 zero-based addressing is never generated by default and there are no
23400 conventional section names used in standard linker scripts for sections
23401 in the low or high areas of memory.
23402
23403 @item -mel
23404 @itemx -meb
23405 @opindex mel
23406 @opindex meb
23407 Generate little-endian (default) or big-endian (experimental) code,
23408 respectively.
23409
23410 @item -march=@var{arch}
23411 @opindex march
23412 This specifies the name of the target Nios II architecture. GCC uses this
23413 name to determine what kind of instructions it can emit when generating
23414 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23415
23416 The preprocessor macro @code{__nios2_arch__} is available to programs,
23417 with value 1 or 2, indicating the targeted ISA level.
23418
23419 @item -mbypass-cache
23420 @itemx -mno-bypass-cache
23421 @opindex mno-bypass-cache
23422 @opindex mbypass-cache
23423 Force all load and store instructions to always bypass cache by
23424 using I/O variants of the instructions. The default is not to
23425 bypass the cache.
23426
23427 @item -mno-cache-volatile
23428 @itemx -mcache-volatile
23429 @opindex mcache-volatile
23430 @opindex mno-cache-volatile
23431 Volatile memory access bypass the cache using the I/O variants of
23432 the load and store instructions. The default is not to bypass the cache.
23433
23434 @item -mno-fast-sw-div
23435 @itemx -mfast-sw-div
23436 @opindex mno-fast-sw-div
23437 @opindex mfast-sw-div
23438 Do not use table-based fast divide for small numbers. The default
23439 is to use the fast divide at @option{-O3} and above.
23440
23441 @item -mno-hw-mul
23442 @itemx -mhw-mul
23443 @itemx -mno-hw-mulx
23444 @itemx -mhw-mulx
23445 @itemx -mno-hw-div
23446 @itemx -mhw-div
23447 @opindex mno-hw-mul
23448 @opindex mhw-mul
23449 @opindex mno-hw-mulx
23450 @opindex mhw-mulx
23451 @opindex mno-hw-div
23452 @opindex mhw-div
23453 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23454 instructions by the compiler. The default is to emit @code{mul}
23455 and not emit @code{div} and @code{mulx}.
23456
23457 @item -mbmx
23458 @itemx -mno-bmx
23459 @itemx -mcdx
23460 @itemx -mno-cdx
23461 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23462 CDX (code density) instructions. Enabling these instructions also
23463 requires @option{-march=r2}. Since these instructions are optional
23464 extensions to the R2 architecture, the default is not to emit them.
23465
23466 @item -mcustom-@var{insn}=@var{N}
23467 @itemx -mno-custom-@var{insn}
23468 @opindex mcustom-@var{insn}
23469 @opindex mno-custom-@var{insn}
23470 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23471 custom instruction with encoding @var{N} when generating code that uses
23472 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23473 instruction 253 for single-precision floating-point add operations instead
23474 of the default behavior of using a library call.
23475
23476 The following values of @var{insn} are supported. Except as otherwise
23477 noted, floating-point operations are expected to be implemented with
23478 normal IEEE 754 semantics and correspond directly to the C operators or the
23479 equivalent GCC built-in functions (@pxref{Other Builtins}).
23480
23481 Single-precision floating point:
23482 @table @asis
23483
23484 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23485 Binary arithmetic operations.
23486
23487 @item @samp{fnegs}
23488 Unary negation.
23489
23490 @item @samp{fabss}
23491 Unary absolute value.
23492
23493 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23494 Comparison operations.
23495
23496 @item @samp{fmins}, @samp{fmaxs}
23497 Floating-point minimum and maximum. These instructions are only
23498 generated if @option{-ffinite-math-only} is specified.
23499
23500 @item @samp{fsqrts}
23501 Unary square root operation.
23502
23503 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23504 Floating-point trigonometric and exponential functions. These instructions
23505 are only generated if @option{-funsafe-math-optimizations} is also specified.
23506
23507 @end table
23508
23509 Double-precision floating point:
23510 @table @asis
23511
23512 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23513 Binary arithmetic operations.
23514
23515 @item @samp{fnegd}
23516 Unary negation.
23517
23518 @item @samp{fabsd}
23519 Unary absolute value.
23520
23521 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23522 Comparison operations.
23523
23524 @item @samp{fmind}, @samp{fmaxd}
23525 Double-precision minimum and maximum. These instructions are only
23526 generated if @option{-ffinite-math-only} is specified.
23527
23528 @item @samp{fsqrtd}
23529 Unary square root operation.
23530
23531 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23532 Double-precision trigonometric and exponential functions. These instructions
23533 are only generated if @option{-funsafe-math-optimizations} is also specified.
23534
23535 @end table
23536
23537 Conversions:
23538 @table @asis
23539 @item @samp{fextsd}
23540 Conversion from single precision to double precision.
23541
23542 @item @samp{ftruncds}
23543 Conversion from double precision to single precision.
23544
23545 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23546 Conversion from floating point to signed or unsigned integer types, with
23547 truncation towards zero.
23548
23549 @item @samp{round}
23550 Conversion from single-precision floating point to signed integer,
23551 rounding to the nearest integer and ties away from zero.
23552 This corresponds to the @code{__builtin_lroundf} function when
23553 @option{-fno-math-errno} is used.
23554
23555 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23556 Conversion from signed or unsigned integer types to floating-point types.
23557
23558 @end table
23559
23560 In addition, all of the following transfer instructions for internal
23561 registers X and Y must be provided to use any of the double-precision
23562 floating-point instructions. Custom instructions taking two
23563 double-precision source operands expect the first operand in the
23564 64-bit register X. The other operand (or only operand of a unary
23565 operation) is given to the custom arithmetic instruction with the
23566 least significant half in source register @var{src1} and the most
23567 significant half in @var{src2}. A custom instruction that returns a
23568 double-precision result returns the most significant 32 bits in the
23569 destination register and the other half in 32-bit register Y.
23570 GCC automatically generates the necessary code sequences to write
23571 register X and/or read register Y when double-precision floating-point
23572 instructions are used.
23573
23574 @table @asis
23575
23576 @item @samp{fwrx}
23577 Write @var{src1} into the least significant half of X and @var{src2} into
23578 the most significant half of X.
23579
23580 @item @samp{fwry}
23581 Write @var{src1} into Y.
23582
23583 @item @samp{frdxhi}, @samp{frdxlo}
23584 Read the most or least (respectively) significant half of X and store it in
23585 @var{dest}.
23586
23587 @item @samp{frdy}
23588 Read the value of Y and store it into @var{dest}.
23589 @end table
23590
23591 Note that you can gain more local control over generation of Nios II custom
23592 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23593 and @code{target("no-custom-@var{insn}")} function attributes
23594 (@pxref{Function Attributes})
23595 or pragmas (@pxref{Function Specific Option Pragmas}).
23596
23597 @item -mcustom-fpu-cfg=@var{name}
23598 @opindex mcustom-fpu-cfg
23599
23600 This option enables a predefined, named set of custom instruction encodings
23601 (see @option{-mcustom-@var{insn}} above).
23602 Currently, the following sets are defined:
23603
23604 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23605 @gccoptlist{-mcustom-fmuls=252 @gol
23606 -mcustom-fadds=253 @gol
23607 -mcustom-fsubs=254 @gol
23608 -fsingle-precision-constant}
23609
23610 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23611 @gccoptlist{-mcustom-fmuls=252 @gol
23612 -mcustom-fadds=253 @gol
23613 -mcustom-fsubs=254 @gol
23614 -mcustom-fdivs=255 @gol
23615 -fsingle-precision-constant}
23616
23617 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23618 @gccoptlist{-mcustom-floatus=243 @gol
23619 -mcustom-fixsi=244 @gol
23620 -mcustom-floatis=245 @gol
23621 -mcustom-fcmpgts=246 @gol
23622 -mcustom-fcmples=249 @gol
23623 -mcustom-fcmpeqs=250 @gol
23624 -mcustom-fcmpnes=251 @gol
23625 -mcustom-fmuls=252 @gol
23626 -mcustom-fadds=253 @gol
23627 -mcustom-fsubs=254 @gol
23628 -mcustom-fdivs=255 @gol
23629 -fsingle-precision-constant}
23630
23631 Custom instruction assignments given by individual
23632 @option{-mcustom-@var{insn}=} options override those given by
23633 @option{-mcustom-fpu-cfg=}, regardless of the
23634 order of the options on the command line.
23635
23636 Note that you can gain more local control over selection of a FPU
23637 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23638 function attribute (@pxref{Function Attributes})
23639 or pragma (@pxref{Function Specific Option Pragmas}).
23640
23641 @end table
23642
23643 These additional @samp{-m} options are available for the Altera Nios II
23644 ELF (bare-metal) target:
23645
23646 @table @gcctabopt
23647
23648 @item -mhal
23649 @opindex mhal
23650 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23651 startup and termination code, and is typically used in conjunction with
23652 @option{-msys-crt0=} to specify the location of the alternate startup code
23653 provided by the HAL BSP.
23654
23655 @item -msmallc
23656 @opindex msmallc
23657 Link with a limited version of the C library, @option{-lsmallc}, rather than
23658 Newlib.
23659
23660 @item -msys-crt0=@var{startfile}
23661 @opindex msys-crt0
23662 @var{startfile} is the file name of the startfile (crt0) to use
23663 when linking. This option is only useful in conjunction with @option{-mhal}.
23664
23665 @item -msys-lib=@var{systemlib}
23666 @opindex msys-lib
23667 @var{systemlib} is the library name of the library that provides
23668 low-level system calls required by the C library,
23669 e.g.@: @code{read} and @code{write}.
23670 This option is typically used to link with a library provided by a HAL BSP.
23671
23672 @end table
23673
23674 @node Nvidia PTX Options
23675 @subsection Nvidia PTX Options
23676 @cindex Nvidia PTX options
23677 @cindex nvptx options
23678
23679 These options are defined for Nvidia PTX:
23680
23681 @table @gcctabopt
23682
23683 @item -m32
23684 @itemx -m64
23685 @opindex m32
23686 @opindex m64
23687 Generate code for 32-bit or 64-bit ABI.
23688
23689 @item -misa=@var{ISA-string}
23690 @opindex march
23691 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23692 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23693 @samp{sm_35}. The default ISA is sm_30.
23694
23695 @item -mmainkernel
23696 @opindex mmainkernel
23697 Link in code for a __main kernel. This is for stand-alone instead of
23698 offloading execution.
23699
23700 @item -moptimize
23701 @opindex moptimize
23702 Apply partitioned execution optimizations. This is the default when any
23703 level of optimization is selected.
23704
23705 @item -msoft-stack
23706 @opindex msoft-stack
23707 Generate code that does not use @code{.local} memory
23708 directly for stack storage. Instead, a per-warp stack pointer is
23709 maintained explicitly. This enables variable-length stack allocation (with
23710 variable-length arrays or @code{alloca}), and when global memory is used for
23711 underlying storage, makes it possible to access automatic variables from other
23712 threads, or with atomic instructions. This code generation variant is used
23713 for OpenMP offloading, but the option is exposed on its own for the purpose
23714 of testing the compiler; to generate code suitable for linking into programs
23715 using OpenMP offloading, use option @option{-mgomp}.
23716
23717 @item -muniform-simt
23718 @opindex muniform-simt
23719 Switch to code generation variant that allows to execute all threads in each
23720 warp, while maintaining memory state and side effects as if only one thread
23721 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23722 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23723 current lane index equals the master lane index), and the register being
23724 assigned is copied via a shuffle instruction from the master lane. Outside of
23725 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23726 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23727 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23728 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23729 with current lane index to compute the master lane index.
23730
23731 @item -mgomp
23732 @opindex mgomp
23733 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23734 @option{-muniform-simt} options, and selects corresponding multilib variant.
23735
23736 @end table
23737
23738 @node OpenRISC Options
23739 @subsection OpenRISC Options
23740 @cindex OpenRISC Options
23741
23742 These options are defined for OpenRISC:
23743
23744 @table @gcctabopt
23745
23746 @item -mboard=@var{name}
23747 @opindex mboard
23748 Configure a board specific runtime. This will be passed to the linker for
23749 newlib board library linking. The default is @code{or1ksim}.
23750
23751 @item -mnewlib
23752 @opindex mnewlib
23753 This option is ignored; it is for compatibility purposes only. This used to
23754 select linker and preprocessor options for use with newlib.
23755
23756 @item -msoft-div
23757 @itemx -mhard-div
23758 @opindex msoft-div
23759 @opindex mhard-div
23760 Select software or hardware divide (@code{l.div}, @code{l.divu}) instructions.
23761 This default is hardware divide.
23762
23763 @item -msoft-mul
23764 @itemx -mhard-mul
23765 @opindex msoft-mul
23766 @opindex mhard-mul
23767 Select software or hardware multiply (@code{l.mul}, @code{l.muli}) instructions.
23768 This default is hardware multiply.
23769
23770 @item -msoft-float
23771 @itemx -mhard-float
23772 @opindex msoft-float
23773 @opindex mhard-float
23774 Select software or hardware for floating point operations.
23775 The default is software.
23776
23777 @item -mdouble-float
23778 @opindex mdouble-float
23779 When @option{-mhard-float} is selected, enables generation of double-precision
23780 floating point instructions. By default functions from @file{libgcc} are used
23781 to perform double-precision floating point operations.
23782
23783 @item -munordered-float
23784 @opindex munordered-float
23785 When @option{-mhard-float} is selected, enables generation of unordered
23786 floating point compare and set flag (@code{lf.sfun*}) instructions. By default
23787 functions from @file{libgcc} are used to perform unordered floating point
23788 compare and set flag operations.
23789
23790 @item -mcmov
23791 @opindex mcmov
23792 Enable generation of conditional move (@code{l.cmov}) instructions. By
23793 default the equivalent will be generated using using set and branch.
23794
23795 @item -mror
23796 @opindex mror
23797 Enable generation of rotate right (@code{l.ror}) instructions. By default
23798 functions from @file{libgcc} are used to perform rotate right operations.
23799
23800 @item -mrori
23801 @opindex mrori
23802 Enable generation of rotate right with immediate (@code{l.rori}) instructions.
23803 By default functions from @file{libgcc} are used to perform rotate right with
23804 immediate operations.
23805
23806 @item -msext
23807 @opindex msext
23808 Enable generation of sign extension (@code{l.ext*}) instructions. By default
23809 memory loads are used to perform sign extension.
23810
23811 @item -msfimm
23812 @opindex msfimm
23813 Enable generation of compare and set flag with immediate (@code{l.sf*i})
23814 instructions. By default extra instructions will be generated to store the
23815 immediate to a register first.
23816
23817 @item -mshftimm
23818 @opindex mshftimm
23819 Enable generation of shift with immediate (@code{l.srai}, @code{l.srli},
23820 @code{l.slli}) instructions. By default extra instructions will be generated
23821 to store the immediate to a register first.
23822
23823
23824 @end table
23825
23826 @node PDP-11 Options
23827 @subsection PDP-11 Options
23828 @cindex PDP-11 Options
23829
23830 These options are defined for the PDP-11:
23831
23832 @table @gcctabopt
23833 @item -mfpu
23834 @opindex mfpu
23835 Use hardware FPP floating point. This is the default. (FIS floating
23836 point on the PDP-11/40 is not supported.) Implies -m45.
23837
23838 @item -msoft-float
23839 @opindex msoft-float
23840 Do not use hardware floating point.
23841
23842 @item -mac0
23843 @opindex mac0
23844 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23845
23846 @item -mno-ac0
23847 @opindex mno-ac0
23848 Return floating-point results in memory. This is the default.
23849
23850 @item -m40
23851 @opindex m40
23852 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23853
23854 @item -m45
23855 @opindex m45
23856 Generate code for a PDP-11/45. This is the default.
23857
23858 @item -m10
23859 @opindex m10
23860 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23861
23862 @item -mint16
23863 @itemx -mno-int32
23864 @opindex mint16
23865 @opindex mno-int32
23866 Use 16-bit @code{int}. This is the default.
23867
23868 @item -mint32
23869 @itemx -mno-int16
23870 @opindex mint32
23871 @opindex mno-int16
23872 Use 32-bit @code{int}.
23873
23874 @item -msplit
23875 @opindex msplit
23876 Target has split instruction and data space. Implies -m45.
23877
23878 @item -munix-asm
23879 @opindex munix-asm
23880 Use Unix assembler syntax.
23881
23882 @item -mdec-asm
23883 @opindex mdec-asm
23884 Use DEC assembler syntax.
23885
23886 @item -mgnu-asm
23887 @opindex mgnu-asm
23888 Use GNU assembler syntax. This is the default.
23889
23890 @item -mlra
23891 @opindex mlra
23892 Use the new LRA register allocator. By default, the old ``reload''
23893 allocator is used.
23894 @end table
23895
23896 @node picoChip Options
23897 @subsection picoChip Options
23898 @cindex picoChip options
23899
23900 These @samp{-m} options are defined for picoChip implementations:
23901
23902 @table @gcctabopt
23903
23904 @item -mae=@var{ae_type}
23905 @opindex mcpu
23906 Set the instruction set, register set, and instruction scheduling
23907 parameters for array element type @var{ae_type}. Supported values
23908 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23909
23910 @option{-mae=ANY} selects a completely generic AE type. Code
23911 generated with this option runs on any of the other AE types. The
23912 code is not as efficient as it would be if compiled for a specific
23913 AE type, and some types of operation (e.g., multiplication) do not
23914 work properly on all types of AE.
23915
23916 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23917 for compiled code, and is the default.
23918
23919 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23920 option may suffer from poor performance of byte (char) manipulation,
23921 since the DSP AE does not provide hardware support for byte load/stores.
23922
23923 @item -msymbol-as-address
23924 Enable the compiler to directly use a symbol name as an address in a
23925 load/store instruction, without first loading it into a
23926 register. Typically, the use of this option generates larger
23927 programs, which run faster than when the option isn't used. However, the
23928 results vary from program to program, so it is left as a user option,
23929 rather than being permanently enabled.
23930
23931 @item -mno-inefficient-warnings
23932 Disables warnings about the generation of inefficient code. These
23933 warnings can be generated, for example, when compiling code that
23934 performs byte-level memory operations on the MAC AE type. The MAC AE has
23935 no hardware support for byte-level memory operations, so all byte
23936 load/stores must be synthesized from word load/store operations. This is
23937 inefficient and a warning is generated to indicate
23938 that you should rewrite the code to avoid byte operations, or to target
23939 an AE type that has the necessary hardware support. This option disables
23940 these warnings.
23941
23942 @end table
23943
23944 @node PowerPC Options
23945 @subsection PowerPC Options
23946 @cindex PowerPC options
23947
23948 These are listed under @xref{RS/6000 and PowerPC Options}.
23949
23950 @node PRU Options
23951 @subsection PRU Options
23952 @cindex PRU Options
23953
23954 These command-line options are defined for PRU target:
23955
23956 @table @gcctabopt
23957 @item -minrt
23958 @opindex minrt
23959 Link with a minimum runtime environment, with no support for static
23960 initializers and constructors. Using this option can significantly reduce
23961 the size of the final ELF binary. Beware that the compiler could still
23962 generate code with static initializers and constructors. It is up to the
23963 programmer to ensure that the source program will not use those features.
23964
23965 @item -mmcu=@var{mcu}
23966 @opindex mmcu
23967 Specify the PRU MCU variant to use. Check Newlib for the exact list of
23968 supported MCUs.
23969
23970 @item -mno-relax
23971 @opindex mno-relax
23972 Make GCC pass the @option{--no-relax} command-line option to the linker
23973 instead of the @option{--relax} option.
23974
23975 @item -mloop
23976 @opindex mloop
23977 Allow (or do not allow) GCC to use the LOOP instruction.
23978
23979 @item -mabi=@var{variant}
23980 @opindex mabi
23981 Specify the ABI variant to output code for. @option{-mabi=ti} selects the
23982 unmodified TI ABI while @option{-mabi=gnu} selects a GNU variant that copes
23983 more naturally with certain GCC assumptions. These are the differences:
23984
23985 @table @samp
23986 @item Function Pointer Size
23987 TI ABI specifies that function (code) pointers are 16-bit, whereas GNU
23988 supports only 32-bit data and code pointers.
23989
23990 @item Optional Return Value Pointer
23991 Function return values larger than 64 bits are passed by using a hidden
23992 pointer as the first argument of the function. TI ABI, though, mandates that
23993 the pointer can be NULL in case the caller is not using the returned value.
23994 GNU always passes and expects a valid return value pointer.
23995
23996 @end table
23997
23998 The current @option{-mabi=ti} implementation simply raises a compile error
23999 when any of the above code constructs is detected. As a consequence
24000 the standard C library cannot be built and it is omitted when linking with
24001 @option{-mabi=ti}.
24002
24003 Relaxation is a GNU feature and for safety reasons is disabled when using
24004 @option{-mabi=ti}. The TI toolchain does not emit relocations for QBBx
24005 instructions, so the GNU linker cannot adjust them when shortening adjacent
24006 LDI32 pseudo instructions.
24007
24008 @end table
24009
24010 @node RISC-V Options
24011 @subsection RISC-V Options
24012 @cindex RISC-V Options
24013
24014 These command-line options are defined for RISC-V targets:
24015
24016 @table @gcctabopt
24017 @item -mbranch-cost=@var{n}
24018 @opindex mbranch-cost
24019 Set the cost of branches to roughly @var{n} instructions.
24020
24021 @item -mplt
24022 @itemx -mno-plt
24023 @opindex plt
24024 When generating PIC code, do or don't allow the use of PLTs. Ignored for
24025 non-PIC. The default is @option{-mplt}.
24026
24027 @item -mabi=@var{ABI-string}
24028 @opindex mabi
24029 Specify integer and floating-point calling convention. @var{ABI-string}
24030 contains two parts: the size of integer types and the registers used for
24031 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
24032 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
24033 32-bit), and that floating-point values up to 64 bits wide are passed in F
24034 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
24035 allows the compiler to generate code that uses the F and D extensions but only
24036 allows floating-point values up to 32 bits long to be passed in registers; or
24037 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
24038 passed in registers.
24039
24040 The default for this argument is system dependent, users who want a specific
24041 calling convention should specify one explicitly. The valid calling
24042 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
24043 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
24044 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
24045 invalid because the ABI requires 64-bit values be passed in F registers, but F
24046 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
24047 only be used with the @samp{rv32e} architecture. This ABI is not well
24048 specified at present, and is subject to change.
24049
24050 @item -mfdiv
24051 @itemx -mno-fdiv
24052 @opindex mfdiv
24053 Do or don't use hardware floating-point divide and square root instructions.
24054 This requires the F or D extensions for floating-point registers. The default
24055 is to use them if the specified architecture has these instructions.
24056
24057 @item -mdiv
24058 @itemx -mno-div
24059 @opindex mdiv
24060 Do or don't use hardware instructions for integer division. This requires the
24061 M extension. The default is to use them if the specified architecture has
24062 these instructions.
24063
24064 @item -march=@var{ISA-string}
24065 @opindex march
24066 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
24067 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
24068 @samp{rv32imaf}.
24069
24070 @item -mtune=@var{processor-string}
24071 @opindex mtune
24072 Optimize the output for the given processor, specified by microarchitecture
24073 name. Permissible values for this option are: @samp{rocket},
24074 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
24075 and @samp{size}.
24076
24077 When @option{-mtune=} is not specified, the default is @samp{rocket}.
24078
24079 The @samp{size} choice is not intended for use by end-users. This is used
24080 when @option{-Os} is specified. It overrides the instruction cost info
24081 provided by @option{-mtune=}, but does not override the pipeline info. This
24082 helps reduce code size while still giving good performance.
24083
24084 @item -mpreferred-stack-boundary=@var{num}
24085 @opindex mpreferred-stack-boundary
24086 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
24087 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
24088 the default is 4 (16 bytes or 128-bits).
24089
24090 @strong{Warning:} If you use this switch, then you must build all modules with
24091 the same value, including any libraries. This includes the system libraries
24092 and startup modules.
24093
24094 @item -msmall-data-limit=@var{n}
24095 @opindex msmall-data-limit
24096 Put global and static data smaller than @var{n} bytes into a special section
24097 (on some targets).
24098
24099 @item -msave-restore
24100 @itemx -mno-save-restore
24101 @opindex msave-restore
24102 Do or don't use smaller but slower prologue and epilogue code that uses
24103 library function calls. The default is to use fast inline prologues and
24104 epilogues.
24105
24106 @item -mstrict-align
24107 @itemx -mno-strict-align
24108 @opindex mstrict-align
24109 Do not or do generate unaligned memory accesses. The default is set depending
24110 on whether the processor we are optimizing for supports fast unaligned access
24111 or not.
24112
24113 @item -mcmodel=medlow
24114 @opindex mcmodel=medlow
24115 Generate code for the medium-low code model. The program and its statically
24116 defined symbols must lie within a single 2 GiB address range and must lie
24117 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
24118 statically or dynamically linked. This is the default code model.
24119
24120 @item -mcmodel=medany
24121 @opindex mcmodel=medany
24122 Generate code for the medium-any code model. The program and its statically
24123 defined symbols must be within any single 2 GiB address range. Programs can be
24124 statically or dynamically linked.
24125
24126 @item -mexplicit-relocs
24127 @itemx -mno-exlicit-relocs
24128 Use or do not use assembler relocation operators when dealing with symbolic
24129 addresses. The alternative is to use assembler macros instead, which may
24130 limit optimization.
24131
24132 @item -mrelax
24133 @itemx -mno-relax
24134 Take advantage of linker relaxations to reduce the number of instructions
24135 required to materialize symbol addresses. The default is to take advantage of
24136 linker relaxations.
24137
24138 @item -memit-attribute
24139 @itemx -mno-emit-attribute
24140 Emit (do not emit) RISC-V attribute to record extra information into ELF
24141 objects. This feature requires at least binutils 2.32.
24142
24143 @item -malign-data=@var{type}
24144 @opindex malign-data
24145 Control how GCC aligns variables and constants of array, structure, or union
24146 types. Supported values for @var{type} are @samp{xlen} which uses x register
24147 width as the alignment value, and @samp{natural} which uses natural alignment.
24148 @samp{xlen} is the default.
24149 @end table
24150
24151 @node RL78 Options
24152 @subsection RL78 Options
24153 @cindex RL78 Options
24154
24155 @table @gcctabopt
24156
24157 @item -msim
24158 @opindex msim
24159 Links in additional target libraries to support operation within a
24160 simulator.
24161
24162 @item -mmul=none
24163 @itemx -mmul=g10
24164 @itemx -mmul=g13
24165 @itemx -mmul=g14
24166 @itemx -mmul=rl78
24167 @opindex mmul
24168 Specifies the type of hardware multiplication and division support to
24169 be used. The simplest is @code{none}, which uses software for both
24170 multiplication and division. This is the default. The @code{g13}
24171 value is for the hardware multiply/divide peripheral found on the
24172 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
24173 the multiplication and division instructions supported by the RL78/G14
24174 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
24175 the value @code{mg10} is an alias for @code{none}.
24176
24177 In addition a C preprocessor macro is defined, based upon the setting
24178 of this option. Possible values are: @code{__RL78_MUL_NONE__},
24179 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
24180
24181 @item -mcpu=g10
24182 @itemx -mcpu=g13
24183 @itemx -mcpu=g14
24184 @itemx -mcpu=rl78
24185 @opindex mcpu
24186 Specifies the RL78 core to target. The default is the G14 core, also
24187 known as an S3 core or just RL78. The G13 or S2 core does not have
24188 multiply or divide instructions, instead it uses a hardware peripheral
24189 for these operations. The G10 or S1 core does not have register
24190 banks, so it uses a different calling convention.
24191
24192 If this option is set it also selects the type of hardware multiply
24193 support to use, unless this is overridden by an explicit
24194 @option{-mmul=none} option on the command line. Thus specifying
24195 @option{-mcpu=g13} enables the use of the G13 hardware multiply
24196 peripheral and specifying @option{-mcpu=g10} disables the use of
24197 hardware multiplications altogether.
24198
24199 Note, although the RL78/G14 core is the default target, specifying
24200 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
24201 change the behavior of the toolchain since it also enables G14
24202 hardware multiply support. If these options are not specified on the
24203 command line then software multiplication routines will be used even
24204 though the code targets the RL78 core. This is for backwards
24205 compatibility with older toolchains which did not have hardware
24206 multiply and divide support.
24207
24208 In addition a C preprocessor macro is defined, based upon the setting
24209 of this option. Possible values are: @code{__RL78_G10__},
24210 @code{__RL78_G13__} or @code{__RL78_G14__}.
24211
24212 @item -mg10
24213 @itemx -mg13
24214 @itemx -mg14
24215 @itemx -mrl78
24216 @opindex mg10
24217 @opindex mg13
24218 @opindex mg14
24219 @opindex mrl78
24220 These are aliases for the corresponding @option{-mcpu=} option. They
24221 are provided for backwards compatibility.
24222
24223 @item -mallregs
24224 @opindex mallregs
24225 Allow the compiler to use all of the available registers. By default
24226 registers @code{r24..r31} are reserved for use in interrupt handlers.
24227 With this option enabled these registers can be used in ordinary
24228 functions as well.
24229
24230 @item -m64bit-doubles
24231 @itemx -m32bit-doubles
24232 @opindex m64bit-doubles
24233 @opindex m32bit-doubles
24234 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
24235 or 32 bits (@option{-m32bit-doubles}) in size. The default is
24236 @option{-m32bit-doubles}.
24237
24238 @item -msave-mduc-in-interrupts
24239 @itemx -mno-save-mduc-in-interrupts
24240 @opindex msave-mduc-in-interrupts
24241 @opindex mno-save-mduc-in-interrupts
24242 Specifies that interrupt handler functions should preserve the
24243 MDUC registers. This is only necessary if normal code might use
24244 the MDUC registers, for example because it performs multiplication
24245 and division operations. The default is to ignore the MDUC registers
24246 as this makes the interrupt handlers faster. The target option -mg13
24247 needs to be passed for this to work as this feature is only available
24248 on the G13 target (S2 core). The MDUC registers will only be saved
24249 if the interrupt handler performs a multiplication or division
24250 operation or it calls another function.
24251
24252 @end table
24253
24254 @node RS/6000 and PowerPC Options
24255 @subsection IBM RS/6000 and PowerPC Options
24256 @cindex RS/6000 and PowerPC Options
24257 @cindex IBM RS/6000 and PowerPC Options
24258
24259 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
24260 @table @gcctabopt
24261 @item -mpowerpc-gpopt
24262 @itemx -mno-powerpc-gpopt
24263 @itemx -mpowerpc-gfxopt
24264 @itemx -mno-powerpc-gfxopt
24265 @need 800
24266 @itemx -mpowerpc64
24267 @itemx -mno-powerpc64
24268 @itemx -mmfcrf
24269 @itemx -mno-mfcrf
24270 @itemx -mpopcntb
24271 @itemx -mno-popcntb
24272 @itemx -mpopcntd
24273 @itemx -mno-popcntd
24274 @itemx -mfprnd
24275 @itemx -mno-fprnd
24276 @need 800
24277 @itemx -mcmpb
24278 @itemx -mno-cmpb
24279 @itemx -mhard-dfp
24280 @itemx -mno-hard-dfp
24281 @opindex mpowerpc-gpopt
24282 @opindex mno-powerpc-gpopt
24283 @opindex mpowerpc-gfxopt
24284 @opindex mno-powerpc-gfxopt
24285 @opindex mpowerpc64
24286 @opindex mno-powerpc64
24287 @opindex mmfcrf
24288 @opindex mno-mfcrf
24289 @opindex mpopcntb
24290 @opindex mno-popcntb
24291 @opindex mpopcntd
24292 @opindex mno-popcntd
24293 @opindex mfprnd
24294 @opindex mno-fprnd
24295 @opindex mcmpb
24296 @opindex mno-cmpb
24297 @opindex mhard-dfp
24298 @opindex mno-hard-dfp
24299 You use these options to specify which instructions are available on the
24300 processor you are using. The default value of these options is
24301 determined when configuring GCC@. Specifying the
24302 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24303 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
24304 rather than the options listed above.
24305
24306 Specifying @option{-mpowerpc-gpopt} allows
24307 GCC to use the optional PowerPC architecture instructions in the
24308 General Purpose group, including floating-point square root. Specifying
24309 @option{-mpowerpc-gfxopt} allows GCC to
24310 use the optional PowerPC architecture instructions in the Graphics
24311 group, including floating-point select.
24312
24313 The @option{-mmfcrf} option allows GCC to generate the move from
24314 condition register field instruction implemented on the POWER4
24315 processor and other processors that support the PowerPC V2.01
24316 architecture.
24317 The @option{-mpopcntb} option allows GCC to generate the popcount and
24318 double-precision FP reciprocal estimate instruction implemented on the
24319 POWER5 processor and other processors that support the PowerPC V2.02
24320 architecture.
24321 The @option{-mpopcntd} option allows GCC to generate the popcount
24322 instruction implemented on the POWER7 processor and other processors
24323 that support the PowerPC V2.06 architecture.
24324 The @option{-mfprnd} option allows GCC to generate the FP round to
24325 integer instructions implemented on the POWER5+ processor and other
24326 processors that support the PowerPC V2.03 architecture.
24327 The @option{-mcmpb} option allows GCC to generate the compare bytes
24328 instruction implemented on the POWER6 processor and other processors
24329 that support the PowerPC V2.05 architecture.
24330 The @option{-mhard-dfp} option allows GCC to generate the decimal
24331 floating-point instructions implemented on some POWER processors.
24332
24333 The @option{-mpowerpc64} option allows GCC to generate the additional
24334 64-bit instructions that are found in the full PowerPC64 architecture
24335 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
24336 @option{-mno-powerpc64}.
24337
24338 @item -mcpu=@var{cpu_type}
24339 @opindex mcpu
24340 Set architecture type, register usage, and
24341 instruction scheduling parameters for machine type @var{cpu_type}.
24342 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24343 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24344 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24345 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24346 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24347 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24348 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24349 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24350 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24351 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24352 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24353 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24354
24355 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24356 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24357 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24358 architecture machine types, with an appropriate, generic processor
24359 model assumed for scheduling purposes.
24360
24361 Specifying @samp{native} as cpu type detects and selects the
24362 architecture option that corresponds to the host processor of the
24363 system performing the compilation.
24364 @option{-mcpu=native} has no effect if GCC does not recognize the
24365 processor.
24366
24367 The other options specify a specific processor. Code generated under
24368 those options runs best on that processor, and may not run at all on
24369 others.
24370
24371 The @option{-mcpu} options automatically enable or disable the
24372 following options:
24373
24374 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24375 -mpopcntb -mpopcntd -mpowerpc64 @gol
24376 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24377 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24378 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24379 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24380
24381 The particular options set for any particular CPU varies between
24382 compiler versions, depending on what setting seems to produce optimal
24383 code for that CPU; it doesn't necessarily reflect the actual hardware's
24384 capabilities. If you wish to set an individual option to a particular
24385 value, you may specify it after the @option{-mcpu} option, like
24386 @option{-mcpu=970 -mno-altivec}.
24387
24388 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24389 not enabled or disabled by the @option{-mcpu} option at present because
24390 AIX does not have full support for these options. You may still
24391 enable or disable them individually if you're sure it'll work in your
24392 environment.
24393
24394 @item -mtune=@var{cpu_type}
24395 @opindex mtune
24396 Set the instruction scheduling parameters for machine type
24397 @var{cpu_type}, but do not set the architecture type or register usage,
24398 as @option{-mcpu=@var{cpu_type}} does. The same
24399 values for @var{cpu_type} are used for @option{-mtune} as for
24400 @option{-mcpu}. If both are specified, the code generated uses the
24401 architecture and registers set by @option{-mcpu}, but the
24402 scheduling parameters set by @option{-mtune}.
24403
24404 @item -mcmodel=small
24405 @opindex mcmodel=small
24406 Generate PowerPC64 code for the small model: The TOC is limited to
24407 64k.
24408
24409 @item -mcmodel=medium
24410 @opindex mcmodel=medium
24411 Generate PowerPC64 code for the medium model: The TOC and other static
24412 data may be up to a total of 4G in size. This is the default for 64-bit
24413 Linux.
24414
24415 @item -mcmodel=large
24416 @opindex mcmodel=large
24417 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24418 in size. Other data and code is only limited by the 64-bit address
24419 space.
24420
24421 @item -maltivec
24422 @itemx -mno-altivec
24423 @opindex maltivec
24424 @opindex mno-altivec
24425 Generate code that uses (does not use) AltiVec instructions, and also
24426 enable the use of built-in functions that allow more direct access to
24427 the AltiVec instruction set. You may also need to set
24428 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24429 enhancements.
24430
24431 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24432 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24433 match array element order corresponding to the endianness of the
24434 target. That is, element zero identifies the leftmost element in a
24435 vector register when targeting a big-endian platform, and identifies
24436 the rightmost element in a vector register when targeting a
24437 little-endian platform.
24438
24439 @item -mvrsave
24440 @itemx -mno-vrsave
24441 @opindex mvrsave
24442 @opindex mno-vrsave
24443 Generate VRSAVE instructions when generating AltiVec code.
24444
24445 @item -msecure-plt
24446 @opindex msecure-plt
24447 Generate code that allows @command{ld} and @command{ld.so}
24448 to build executables and shared
24449 libraries with non-executable @code{.plt} and @code{.got} sections.
24450 This is a PowerPC
24451 32-bit SYSV ABI option.
24452
24453 @item -mbss-plt
24454 @opindex mbss-plt
24455 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24456 fills in, and
24457 requires @code{.plt} and @code{.got}
24458 sections that are both writable and executable.
24459 This is a PowerPC 32-bit SYSV ABI option.
24460
24461 @item -misel
24462 @itemx -mno-isel
24463 @opindex misel
24464 @opindex mno-isel
24465 This switch enables or disables the generation of ISEL instructions.
24466
24467 @item -mvsx
24468 @itemx -mno-vsx
24469 @opindex mvsx
24470 @opindex mno-vsx
24471 Generate code that uses (does not use) vector/scalar (VSX)
24472 instructions, and also enable the use of built-in functions that allow
24473 more direct access to the VSX instruction set.
24474
24475 @item -mcrypto
24476 @itemx -mno-crypto
24477 @opindex mcrypto
24478 @opindex mno-crypto
24479 Enable the use (disable) of the built-in functions that allow direct
24480 access to the cryptographic instructions that were added in version
24481 2.07 of the PowerPC ISA.
24482
24483 @item -mhtm
24484 @itemx -mno-htm
24485 @opindex mhtm
24486 @opindex mno-htm
24487 Enable (disable) the use of the built-in functions that allow direct
24488 access to the Hardware Transactional Memory (HTM) instructions that
24489 were added in version 2.07 of the PowerPC ISA.
24490
24491 @item -mpower8-fusion
24492 @itemx -mno-power8-fusion
24493 @opindex mpower8-fusion
24494 @opindex mno-power8-fusion
24495 Generate code that keeps (does not keeps) some integer operations
24496 adjacent so that the instructions can be fused together on power8 and
24497 later processors.
24498
24499 @item -mpower8-vector
24500 @itemx -mno-power8-vector
24501 @opindex mpower8-vector
24502 @opindex mno-power8-vector
24503 Generate code that uses (does not use) the vector and scalar
24504 instructions that were added in version 2.07 of the PowerPC ISA. Also
24505 enable the use of built-in functions that allow more direct access to
24506 the vector instructions.
24507
24508 @item -mquad-memory
24509 @itemx -mno-quad-memory
24510 @opindex mquad-memory
24511 @opindex mno-quad-memory
24512 Generate code that uses (does not use) the non-atomic quad word memory
24513 instructions. The @option{-mquad-memory} option requires use of
24514 64-bit mode.
24515
24516 @item -mquad-memory-atomic
24517 @itemx -mno-quad-memory-atomic
24518 @opindex mquad-memory-atomic
24519 @opindex mno-quad-memory-atomic
24520 Generate code that uses (does not use) the atomic quad word memory
24521 instructions. The @option{-mquad-memory-atomic} option requires use of
24522 64-bit mode.
24523
24524 @item -mfloat128
24525 @itemx -mno-float128
24526 @opindex mfloat128
24527 @opindex mno-float128
24528 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24529 and use either software emulation for IEEE 128-bit floating point or
24530 hardware instructions.
24531
24532 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24533 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24534 use the IEEE 128-bit floating point support. The IEEE 128-bit
24535 floating point support only works on PowerPC Linux systems.
24536
24537 The default for @option{-mfloat128} is enabled on PowerPC Linux
24538 systems using the VSX instruction set, and disabled on other systems.
24539
24540 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24541 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24542 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24543 floating point instructions. Otherwise, if you do not specify to
24544 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24545 system, IEEE 128-bit floating point will be done with software
24546 emulation.
24547
24548 @item -mfloat128-hardware
24549 @itemx -mno-float128-hardware
24550 @opindex mfloat128-hardware
24551 @opindex mno-float128-hardware
24552 Enable/disable using ISA 3.0 hardware instructions to support the
24553 @var{__float128} data type.
24554
24555 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24556 Linux systems using the ISA 3.0 instruction set, and disabled on other
24557 systems.
24558
24559 @item -m32
24560 @itemx -m64
24561 @opindex m32
24562 @opindex m64
24563 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24564 targets (including GNU/Linux). The 32-bit environment sets int, long
24565 and pointer to 32 bits and generates code that runs on any PowerPC
24566 variant. The 64-bit environment sets int to 32 bits and long and
24567 pointer to 64 bits, and generates code for PowerPC64, as for
24568 @option{-mpowerpc64}.
24569
24570 @item -mfull-toc
24571 @itemx -mno-fp-in-toc
24572 @itemx -mno-sum-in-toc
24573 @itemx -mminimal-toc
24574 @opindex mfull-toc
24575 @opindex mno-fp-in-toc
24576 @opindex mno-sum-in-toc
24577 @opindex mminimal-toc
24578 Modify generation of the TOC (Table Of Contents), which is created for
24579 every executable file. The @option{-mfull-toc} option is selected by
24580 default. In that case, GCC allocates at least one TOC entry for
24581 each unique non-automatic variable reference in your program. GCC
24582 also places floating-point constants in the TOC@. However, only
24583 16,384 entries are available in the TOC@.
24584
24585 If you receive a linker error message that saying you have overflowed
24586 the available TOC space, you can reduce the amount of TOC space used
24587 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24588 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24589 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24590 generate code to calculate the sum of an address and a constant at
24591 run time instead of putting that sum into the TOC@. You may specify one
24592 or both of these options. Each causes GCC to produce very slightly
24593 slower and larger code at the expense of conserving TOC space.
24594
24595 If you still run out of space in the TOC even when you specify both of
24596 these options, specify @option{-mminimal-toc} instead. This option causes
24597 GCC to make only one TOC entry for every file. When you specify this
24598 option, GCC produces code that is slower and larger but which
24599 uses extremely little TOC space. You may wish to use this option
24600 only on files that contain less frequently-executed code.
24601
24602 @item -maix64
24603 @itemx -maix32
24604 @opindex maix64
24605 @opindex maix32
24606 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24607 @code{long} type, and the infrastructure needed to support them.
24608 Specifying @option{-maix64} implies @option{-mpowerpc64},
24609 while @option{-maix32} disables the 64-bit ABI and
24610 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24611
24612 @item -mxl-compat
24613 @itemx -mno-xl-compat
24614 @opindex mxl-compat
24615 @opindex mno-xl-compat
24616 Produce code that conforms more closely to IBM XL compiler semantics
24617 when using AIX-compatible ABI@. Pass floating-point arguments to
24618 prototyped functions beyond the register save area (RSA) on the stack
24619 in addition to argument FPRs. Do not assume that most significant
24620 double in 128-bit long double value is properly rounded when comparing
24621 values and converting to double. Use XL symbol names for long double
24622 support routines.
24623
24624 The AIX calling convention was extended but not initially documented to
24625 handle an obscure K&R C case of calling a function that takes the
24626 address of its arguments with fewer arguments than declared. IBM XL
24627 compilers access floating-point arguments that do not fit in the
24628 RSA from the stack when a subroutine is compiled without
24629 optimization. Because always storing floating-point arguments on the
24630 stack is inefficient and rarely needed, this option is not enabled by
24631 default and only is necessary when calling subroutines compiled by IBM
24632 XL compilers without optimization.
24633
24634 @item -mpe
24635 @opindex mpe
24636 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24637 application written to use message passing with special startup code to
24638 enable the application to run. The system must have PE installed in the
24639 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24640 must be overridden with the @option{-specs=} option to specify the
24641 appropriate directory location. The Parallel Environment does not
24642 support threads, so the @option{-mpe} option and the @option{-pthread}
24643 option are incompatible.
24644
24645 @item -malign-natural
24646 @itemx -malign-power
24647 @opindex malign-natural
24648 @opindex malign-power
24649 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24650 @option{-malign-natural} overrides the ABI-defined alignment of larger
24651 types, such as floating-point doubles, on their natural size-based boundary.
24652 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24653 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24654
24655 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24656 is not supported.
24657
24658 @item -msoft-float
24659 @itemx -mhard-float
24660 @opindex msoft-float
24661 @opindex mhard-float
24662 Generate code that does not use (uses) the floating-point register set.
24663 Software floating-point emulation is provided if you use the
24664 @option{-msoft-float} option, and pass the option to GCC when linking.
24665
24666 @item -mmultiple
24667 @itemx -mno-multiple
24668 @opindex mmultiple
24669 @opindex mno-multiple
24670 Generate code that uses (does not use) the load multiple word
24671 instructions and the store multiple word instructions. These
24672 instructions are generated by default on POWER systems, and not
24673 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24674 PowerPC systems, since those instructions do not work when the
24675 processor is in little-endian mode. The exceptions are PPC740 and
24676 PPC750 which permit these instructions in little-endian mode.
24677
24678 @item -mupdate
24679 @itemx -mno-update
24680 @opindex mupdate
24681 @opindex mno-update
24682 Generate code that uses (does not use) the load or store instructions
24683 that update the base register to the address of the calculated memory
24684 location. These instructions are generated by default. If you use
24685 @option{-mno-update}, there is a small window between the time that the
24686 stack pointer is updated and the address of the previous frame is
24687 stored, which means code that walks the stack frame across interrupts or
24688 signals may get corrupted data.
24689
24690 @item -mavoid-indexed-addresses
24691 @itemx -mno-avoid-indexed-addresses
24692 @opindex mavoid-indexed-addresses
24693 @opindex mno-avoid-indexed-addresses
24694 Generate code that tries to avoid (not avoid) the use of indexed load
24695 or store instructions. These instructions can incur a performance
24696 penalty on Power6 processors in certain situations, such as when
24697 stepping through large arrays that cross a 16M boundary. This option
24698 is enabled by default when targeting Power6 and disabled otherwise.
24699
24700 @item -mfused-madd
24701 @itemx -mno-fused-madd
24702 @opindex mfused-madd
24703 @opindex mno-fused-madd
24704 Generate code that uses (does not use) the floating-point multiply and
24705 accumulate instructions. These instructions are generated by default
24706 if hardware floating point is used. The machine-dependent
24707 @option{-mfused-madd} option is now mapped to the machine-independent
24708 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24709 mapped to @option{-ffp-contract=off}.
24710
24711 @item -mmulhw
24712 @itemx -mno-mulhw
24713 @opindex mmulhw
24714 @opindex mno-mulhw
24715 Generate code that uses (does not use) the half-word multiply and
24716 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24717 These instructions are generated by default when targeting those
24718 processors.
24719
24720 @item -mdlmzb
24721 @itemx -mno-dlmzb
24722 @opindex mdlmzb
24723 @opindex mno-dlmzb
24724 Generate code that uses (does not use) the string-search @samp{dlmzb}
24725 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24726 generated by default when targeting those processors.
24727
24728 @item -mno-bit-align
24729 @itemx -mbit-align
24730 @opindex mno-bit-align
24731 @opindex mbit-align
24732 On System V.4 and embedded PowerPC systems do not (do) force structures
24733 and unions that contain bit-fields to be aligned to the base type of the
24734 bit-field.
24735
24736 For example, by default a structure containing nothing but 8
24737 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24738 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24739 the structure is aligned to a 1-byte boundary and is 1 byte in
24740 size.
24741
24742 @item -mno-strict-align
24743 @itemx -mstrict-align
24744 @opindex mno-strict-align
24745 @opindex mstrict-align
24746 On System V.4 and embedded PowerPC systems do not (do) assume that
24747 unaligned memory references are handled by the system.
24748
24749 @item -mrelocatable
24750 @itemx -mno-relocatable
24751 @opindex mrelocatable
24752 @opindex mno-relocatable
24753 Generate code that allows (does not allow) a static executable to be
24754 relocated to a different address at run time. A simple embedded
24755 PowerPC system loader should relocate the entire contents of
24756 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24757 a table of 32-bit addresses generated by this option. For this to
24758 work, all objects linked together must be compiled with
24759 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24760 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24761
24762 @item -mrelocatable-lib
24763 @itemx -mno-relocatable-lib
24764 @opindex mrelocatable-lib
24765 @opindex mno-relocatable-lib
24766 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24767 @code{.fixup} section to allow static executables to be relocated at
24768 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24769 alignment of @option{-mrelocatable}. Objects compiled with
24770 @option{-mrelocatable-lib} may be linked with objects compiled with
24771 any combination of the @option{-mrelocatable} options.
24772
24773 @item -mno-toc
24774 @itemx -mtoc
24775 @opindex mno-toc
24776 @opindex mtoc
24777 On System V.4 and embedded PowerPC systems do not (do) assume that
24778 register 2 contains a pointer to a global area pointing to the addresses
24779 used in the program.
24780
24781 @item -mlittle
24782 @itemx -mlittle-endian
24783 @opindex mlittle
24784 @opindex mlittle-endian
24785 On System V.4 and embedded PowerPC systems compile code for the
24786 processor in little-endian mode. The @option{-mlittle-endian} option is
24787 the same as @option{-mlittle}.
24788
24789 @item -mbig
24790 @itemx -mbig-endian
24791 @opindex mbig
24792 @opindex mbig-endian
24793 On System V.4 and embedded PowerPC systems compile code for the
24794 processor in big-endian mode. The @option{-mbig-endian} option is
24795 the same as @option{-mbig}.
24796
24797 @item -mdynamic-no-pic
24798 @opindex mdynamic-no-pic
24799 On Darwin and Mac OS X systems, compile code so that it is not
24800 relocatable, but that its external references are relocatable. The
24801 resulting code is suitable for applications, but not shared
24802 libraries.
24803
24804 @item -msingle-pic-base
24805 @opindex msingle-pic-base
24806 Treat the register used for PIC addressing as read-only, rather than
24807 loading it in the prologue for each function. The runtime system is
24808 responsible for initializing this register with an appropriate value
24809 before execution begins.
24810
24811 @item -mprioritize-restricted-insns=@var{priority}
24812 @opindex mprioritize-restricted-insns
24813 This option controls the priority that is assigned to
24814 dispatch-slot restricted instructions during the second scheduling
24815 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24816 or @samp{2} to assign no, highest, or second-highest (respectively)
24817 priority to dispatch-slot restricted
24818 instructions.
24819
24820 @item -msched-costly-dep=@var{dependence_type}
24821 @opindex msched-costly-dep
24822 This option controls which dependences are considered costly
24823 by the target during instruction scheduling. The argument
24824 @var{dependence_type} takes one of the following values:
24825
24826 @table @asis
24827 @item @samp{no}
24828 No dependence is costly.
24829
24830 @item @samp{all}
24831 All dependences are costly.
24832
24833 @item @samp{true_store_to_load}
24834 A true dependence from store to load is costly.
24835
24836 @item @samp{store_to_load}
24837 Any dependence from store to load is costly.
24838
24839 @item @var{number}
24840 Any dependence for which the latency is greater than or equal to
24841 @var{number} is costly.
24842 @end table
24843
24844 @item -minsert-sched-nops=@var{scheme}
24845 @opindex minsert-sched-nops
24846 This option controls which NOP insertion scheme is used during
24847 the second scheduling pass. The argument @var{scheme} takes one of the
24848 following values:
24849
24850 @table @asis
24851 @item @samp{no}
24852 Don't insert NOPs.
24853
24854 @item @samp{pad}
24855 Pad with NOPs any dispatch group that has vacant issue slots,
24856 according to the scheduler's grouping.
24857
24858 @item @samp{regroup_exact}
24859 Insert NOPs to force costly dependent insns into
24860 separate groups. Insert exactly as many NOPs as needed to force an insn
24861 to a new group, according to the estimated processor grouping.
24862
24863 @item @var{number}
24864 Insert NOPs to force costly dependent insns into
24865 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24866 @end table
24867
24868 @item -mcall-sysv
24869 @opindex mcall-sysv
24870 On System V.4 and embedded PowerPC systems compile code using calling
24871 conventions that adhere to the March 1995 draft of the System V
24872 Application Binary Interface, PowerPC processor supplement. This is the
24873 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24874
24875 @item -mcall-sysv-eabi
24876 @itemx -mcall-eabi
24877 @opindex mcall-sysv-eabi
24878 @opindex mcall-eabi
24879 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24880
24881 @item -mcall-sysv-noeabi
24882 @opindex mcall-sysv-noeabi
24883 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24884
24885 @item -mcall-aixdesc
24886 @opindex m
24887 On System V.4 and embedded PowerPC systems compile code for the AIX
24888 operating system.
24889
24890 @item -mcall-linux
24891 @opindex mcall-linux
24892 On System V.4 and embedded PowerPC systems compile code for the
24893 Linux-based GNU system.
24894
24895 @item -mcall-freebsd
24896 @opindex mcall-freebsd
24897 On System V.4 and embedded PowerPC systems compile code for the
24898 FreeBSD operating system.
24899
24900 @item -mcall-netbsd
24901 @opindex mcall-netbsd
24902 On System V.4 and embedded PowerPC systems compile code for the
24903 NetBSD operating system.
24904
24905 @item -mcall-openbsd
24906 @opindex mcall-netbsd
24907 On System V.4 and embedded PowerPC systems compile code for the
24908 OpenBSD operating system.
24909
24910 @item -mtraceback=@var{traceback_type}
24911 @opindex mtraceback
24912 Select the type of traceback table. Valid values for @var{traceback_type}
24913 are @samp{full}, @samp{part}, and @samp{no}.
24914
24915 @item -maix-struct-return
24916 @opindex maix-struct-return
24917 Return all structures in memory (as specified by the AIX ABI)@.
24918
24919 @item -msvr4-struct-return
24920 @opindex msvr4-struct-return
24921 Return structures smaller than 8 bytes in registers (as specified by the
24922 SVR4 ABI)@.
24923
24924 @item -mabi=@var{abi-type}
24925 @opindex mabi
24926 Extend the current ABI with a particular extension, or remove such extension.
24927 Valid values are @samp{altivec}, @samp{no-altivec},
24928 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24929 @samp{elfv1}, @samp{elfv2}@.
24930
24931 @item -mabi=ibmlongdouble
24932 @opindex mabi=ibmlongdouble
24933 Change the current ABI to use IBM extended-precision long double.
24934 This is not likely to work if your system defaults to using IEEE
24935 extended-precision long double. If you change the long double type
24936 from IEEE extended-precision, the compiler will issue a warning unless
24937 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24938 to be enabled.
24939
24940 @item -mabi=ieeelongdouble
24941 @opindex mabi=ieeelongdouble
24942 Change the current ABI to use IEEE extended-precision long double.
24943 This is not likely to work if your system defaults to using IBM
24944 extended-precision long double. If you change the long double type
24945 from IBM extended-precision, the compiler will issue a warning unless
24946 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24947 to be enabled.
24948
24949 @item -mabi=elfv1
24950 @opindex mabi=elfv1
24951 Change the current ABI to use the ELFv1 ABI.
24952 This is the default ABI for big-endian PowerPC 64-bit Linux.
24953 Overriding the default ABI requires special system support and is
24954 likely to fail in spectacular ways.
24955
24956 @item -mabi=elfv2
24957 @opindex mabi=elfv2
24958 Change the current ABI to use the ELFv2 ABI.
24959 This is the default ABI for little-endian PowerPC 64-bit Linux.
24960 Overriding the default ABI requires special system support and is
24961 likely to fail in spectacular ways.
24962
24963 @item -mgnu-attribute
24964 @itemx -mno-gnu-attribute
24965 @opindex mgnu-attribute
24966 @opindex mno-gnu-attribute
24967 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24968 .gnu.attributes section that specify ABI variations in function
24969 parameters or return values.
24970
24971 @item -mprototype
24972 @itemx -mno-prototype
24973 @opindex mprototype
24974 @opindex mno-prototype
24975 On System V.4 and embedded PowerPC systems assume that all calls to
24976 variable argument functions are properly prototyped. Otherwise, the
24977 compiler must insert an instruction before every non-prototyped call to
24978 set or clear bit 6 of the condition code register (@code{CR}) to
24979 indicate whether floating-point values are passed in the floating-point
24980 registers in case the function takes variable arguments. With
24981 @option{-mprototype}, only calls to prototyped variable argument functions
24982 set or clear the bit.
24983
24984 @item -msim
24985 @opindex msim
24986 On embedded PowerPC systems, assume that the startup module is called
24987 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24988 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24989 configurations.
24990
24991 @item -mmvme
24992 @opindex mmvme
24993 On embedded PowerPC systems, assume that the startup module is called
24994 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24995 @file{libc.a}.
24996
24997 @item -mads
24998 @opindex mads
24999 On embedded PowerPC systems, assume that the startup module is called
25000 @file{crt0.o} and the standard C libraries are @file{libads.a} and
25001 @file{libc.a}.
25002
25003 @item -myellowknife
25004 @opindex myellowknife
25005 On embedded PowerPC systems, assume that the startup module is called
25006 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
25007 @file{libc.a}.
25008
25009 @item -mvxworks
25010 @opindex mvxworks
25011 On System V.4 and embedded PowerPC systems, specify that you are
25012 compiling for a VxWorks system.
25013
25014 @item -memb
25015 @opindex memb
25016 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
25017 header to indicate that @samp{eabi} extended relocations are used.
25018
25019 @item -meabi
25020 @itemx -mno-eabi
25021 @opindex meabi
25022 @opindex mno-eabi
25023 On System V.4 and embedded PowerPC systems do (do not) adhere to the
25024 Embedded Applications Binary Interface (EABI), which is a set of
25025 modifications to the System V.4 specifications. Selecting @option{-meabi}
25026 means that the stack is aligned to an 8-byte boundary, a function
25027 @code{__eabi} is called from @code{main} to set up the EABI
25028 environment, and the @option{-msdata} option can use both @code{r2} and
25029 @code{r13} to point to two separate small data areas. Selecting
25030 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
25031 no EABI initialization function is called from @code{main}, and the
25032 @option{-msdata} option only uses @code{r13} to point to a single
25033 small data area. The @option{-meabi} option is on by default if you
25034 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
25035
25036 @item -msdata=eabi
25037 @opindex msdata=eabi
25038 On System V.4 and embedded PowerPC systems, put small initialized
25039 @code{const} global and static data in the @code{.sdata2} section, which
25040 is pointed to by register @code{r2}. Put small initialized
25041 non-@code{const} global and static data in the @code{.sdata} section,
25042 which is pointed to by register @code{r13}. Put small uninitialized
25043 global and static data in the @code{.sbss} section, which is adjacent to
25044 the @code{.sdata} section. The @option{-msdata=eabi} option is
25045 incompatible with the @option{-mrelocatable} option. The
25046 @option{-msdata=eabi} option also sets the @option{-memb} option.
25047
25048 @item -msdata=sysv
25049 @opindex msdata=sysv
25050 On System V.4 and embedded PowerPC systems, put small global and static
25051 data in the @code{.sdata} section, which is pointed to by register
25052 @code{r13}. Put small uninitialized global and static data in the
25053 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
25054 The @option{-msdata=sysv} option is incompatible with the
25055 @option{-mrelocatable} option.
25056
25057 @item -msdata=default
25058 @itemx -msdata
25059 @opindex msdata=default
25060 @opindex msdata
25061 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
25062 compile code the same as @option{-msdata=eabi}, otherwise compile code the
25063 same as @option{-msdata=sysv}.
25064
25065 @item -msdata=data
25066 @opindex msdata=data
25067 On System V.4 and embedded PowerPC systems, put small global
25068 data in the @code{.sdata} section. Put small uninitialized global
25069 data in the @code{.sbss} section. Do not use register @code{r13}
25070 to address small data however. This is the default behavior unless
25071 other @option{-msdata} options are used.
25072
25073 @item -msdata=none
25074 @itemx -mno-sdata
25075 @opindex msdata=none
25076 @opindex mno-sdata
25077 On embedded PowerPC systems, put all initialized global and static data
25078 in the @code{.data} section, and all uninitialized data in the
25079 @code{.bss} section.
25080
25081 @item -mreadonly-in-sdata
25082 @opindex mreadonly-in-sdata
25083 @opindex mno-readonly-in-sdata
25084 Put read-only objects in the @code{.sdata} section as well. This is the
25085 default.
25086
25087 @item -mblock-move-inline-limit=@var{num}
25088 @opindex mblock-move-inline-limit
25089 Inline all block moves (such as calls to @code{memcpy} or structure
25090 copies) less than or equal to @var{num} bytes. The minimum value for
25091 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
25092 targets. The default value is target-specific.
25093
25094 @item -mblock-compare-inline-limit=@var{num}
25095 @opindex mblock-compare-inline-limit
25096 Generate non-looping inline code for all block compares (such as calls
25097 to @code{memcmp} or structure compares) less than or equal to @var{num}
25098 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
25099 block compare is disabled. The default value is target-specific.
25100
25101 @item -mblock-compare-inline-loop-limit=@var{num}
25102 @opindex mblock-compare-inline-loop-limit
25103 Generate an inline expansion using loop code for all block compares that
25104 are less than or equal to @var{num} bytes, but greater than the limit
25105 for non-loop inline block compare expansion. If the block length is not
25106 constant, at most @var{num} bytes will be compared before @code{memcmp}
25107 is called to compare the remainder of the block. The default value is
25108 target-specific.
25109
25110 @item -mstring-compare-inline-limit=@var{num}
25111 @opindex mstring-compare-inline-limit
25112 Compare at most @var{num} string bytes with inline code.
25113 If the difference or end of string is not found at the
25114 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
25115 take care of the rest of the comparison. The default is 64 bytes.
25116
25117 @item -G @var{num}
25118 @opindex G
25119 @cindex smaller data references (PowerPC)
25120 @cindex .sdata/.sdata2 references (PowerPC)
25121 On embedded PowerPC systems, put global and static items less than or
25122 equal to @var{num} bytes into the small data or BSS sections instead of
25123 the normal data or BSS section. By default, @var{num} is 8. The
25124 @option{-G @var{num}} switch is also passed to the linker.
25125 All modules should be compiled with the same @option{-G @var{num}} value.
25126
25127 @item -mregnames
25128 @itemx -mno-regnames
25129 @opindex mregnames
25130 @opindex mno-regnames
25131 On System V.4 and embedded PowerPC systems do (do not) emit register
25132 names in the assembly language output using symbolic forms.
25133
25134 @item -mlongcall
25135 @itemx -mno-longcall
25136 @opindex mlongcall
25137 @opindex mno-longcall
25138 By default assume that all calls are far away so that a longer and more
25139 expensive calling sequence is required. This is required for calls
25140 farther than 32 megabytes (33,554,432 bytes) from the current location.
25141 A short call is generated if the compiler knows
25142 the call cannot be that far away. This setting can be overridden by
25143 the @code{shortcall} function attribute, or by @code{#pragma
25144 longcall(0)}.
25145
25146 Some linkers are capable of detecting out-of-range calls and generating
25147 glue code on the fly. On these systems, long calls are unnecessary and
25148 generate slower code. As of this writing, the AIX linker can do this,
25149 as can the GNU linker for PowerPC/64. It is planned to add this feature
25150 to the GNU linker for 32-bit PowerPC systems as well.
25151
25152 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
25153 GCC can generate long calls using an inline PLT call sequence (see
25154 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
25155 ELFv1 (big-endian) do not support inline PLT calls.
25156
25157 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
25158 callee, L42}, plus a @dfn{branch island} (glue code). The two target
25159 addresses represent the callee and the branch island. The
25160 Darwin/PPC linker prefers the first address and generates a @code{bl
25161 callee} if the PPC @code{bl} instruction reaches the callee directly;
25162 otherwise, the linker generates @code{bl L42} to call the branch
25163 island. The branch island is appended to the body of the
25164 calling function; it computes the full 32-bit address of the callee
25165 and jumps to it.
25166
25167 On Mach-O (Darwin) systems, this option directs the compiler emit to
25168 the glue for every direct call, and the Darwin linker decides whether
25169 to use or discard it.
25170
25171 In the future, GCC may ignore all longcall specifications
25172 when the linker is known to generate glue.
25173
25174 @item -mpltseq
25175 @itemx -mno-pltseq
25176 @opindex mpltseq
25177 @opindex mno-pltseq
25178 Implement (do not implement) -fno-plt and long calls using an inline
25179 PLT call sequence that supports lazy linking and long calls to
25180 functions in dlopen'd shared libraries. Inline PLT calls are only
25181 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
25182 linkers, and are enabled by default if the support is detected when
25183 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
25184 configured with @option{--enable-secureplt}. @option{-mpltseq} code
25185 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
25186 linked together.
25187
25188 @item -mtls-markers
25189 @itemx -mno-tls-markers
25190 @opindex mtls-markers
25191 @opindex mno-tls-markers
25192 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
25193 specifying the function argument. The relocation allows the linker to
25194 reliably associate function call with argument setup instructions for
25195 TLS optimization, which in turn allows GCC to better schedule the
25196 sequence.
25197
25198 @item -mrecip
25199 @itemx -mno-recip
25200 @opindex mrecip
25201 This option enables use of the reciprocal estimate and
25202 reciprocal square root estimate instructions with additional
25203 Newton-Raphson steps to increase precision instead of doing a divide or
25204 square root and divide for floating-point arguments. You should use
25205 the @option{-ffast-math} option when using @option{-mrecip} (or at
25206 least @option{-funsafe-math-optimizations},
25207 @option{-ffinite-math-only}, @option{-freciprocal-math} and
25208 @option{-fno-trapping-math}). Note that while the throughput of the
25209 sequence is generally higher than the throughput of the non-reciprocal
25210 instruction, the precision of the sequence can be decreased by up to 2
25211 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
25212 roots.
25213
25214 @item -mrecip=@var{opt}
25215 @opindex mrecip=opt
25216 This option controls which reciprocal estimate instructions
25217 may be used. @var{opt} is a comma-separated list of options, which may
25218 be preceded by a @code{!} to invert the option:
25219
25220 @table @samp
25221
25222 @item all
25223 Enable all estimate instructions.
25224
25225 @item default
25226 Enable the default instructions, equivalent to @option{-mrecip}.
25227
25228 @item none
25229 Disable all estimate instructions, equivalent to @option{-mno-recip}.
25230
25231 @item div
25232 Enable the reciprocal approximation instructions for both
25233 single and double precision.
25234
25235 @item divf
25236 Enable the single-precision reciprocal approximation instructions.
25237
25238 @item divd
25239 Enable the double-precision reciprocal approximation instructions.
25240
25241 @item rsqrt
25242 Enable the reciprocal square root approximation instructions for both
25243 single and double precision.
25244
25245 @item rsqrtf
25246 Enable the single-precision reciprocal square root approximation instructions.
25247
25248 @item rsqrtd
25249 Enable the double-precision reciprocal square root approximation instructions.
25250
25251 @end table
25252
25253 So, for example, @option{-mrecip=all,!rsqrtd} enables
25254 all of the reciprocal estimate instructions, except for the
25255 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
25256 which handle the double-precision reciprocal square root calculations.
25257
25258 @item -mrecip-precision
25259 @itemx -mno-recip-precision
25260 @opindex mrecip-precision
25261 Assume (do not assume) that the reciprocal estimate instructions
25262 provide higher-precision estimates than is mandated by the PowerPC
25263 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
25264 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
25265 The double-precision square root estimate instructions are not generated by
25266 default on low-precision machines, since they do not provide an
25267 estimate that converges after three steps.
25268
25269 @item -mveclibabi=@var{type}
25270 @opindex mveclibabi
25271 Specifies the ABI type to use for vectorizing intrinsics using an
25272 external library. The only type supported at present is @samp{mass},
25273 which specifies to use IBM's Mathematical Acceleration Subsystem
25274 (MASS) libraries for vectorizing intrinsics using external libraries.
25275 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25276 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25277 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25278 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25279 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25280 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25281 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25282 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25283 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25284 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25285 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25286 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25287 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25288 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25289 for power7. Both @option{-ftree-vectorize} and
25290 @option{-funsafe-math-optimizations} must also be enabled. The MASS
25291 libraries must be specified at link time.
25292
25293 @item -mfriz
25294 @itemx -mno-friz
25295 @opindex mfriz
25296 Generate (do not generate) the @code{friz} instruction when the
25297 @option{-funsafe-math-optimizations} option is used to optimize
25298 rounding of floating-point values to 64-bit integer and back to floating
25299 point. The @code{friz} instruction does not return the same value if
25300 the floating-point number is too large to fit in an integer.
25301
25302 @item -mpointers-to-nested-functions
25303 @itemx -mno-pointers-to-nested-functions
25304 @opindex mpointers-to-nested-functions
25305 Generate (do not generate) code to load up the static chain register
25306 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25307 systems where a function pointer points to a 3-word descriptor giving
25308 the function address, TOC value to be loaded in register @code{r2}, and
25309 static chain value to be loaded in register @code{r11}. The
25310 @option{-mpointers-to-nested-functions} is on by default. You cannot
25311 call through pointers to nested functions or pointers
25312 to functions compiled in other languages that use the static chain if
25313 you use @option{-mno-pointers-to-nested-functions}.
25314
25315 @item -msave-toc-indirect
25316 @itemx -mno-save-toc-indirect
25317 @opindex msave-toc-indirect
25318 Generate (do not generate) code to save the TOC value in the reserved
25319 stack location in the function prologue if the function calls through
25320 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
25321 saved in the prologue, it is saved just before the call through the
25322 pointer. The @option{-mno-save-toc-indirect} option is the default.
25323
25324 @item -mcompat-align-parm
25325 @itemx -mno-compat-align-parm
25326 @opindex mcompat-align-parm
25327 Generate (do not generate) code to pass structure parameters with a
25328 maximum alignment of 64 bits, for compatibility with older versions
25329 of GCC.
25330
25331 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25332 structure parameter on a 128-bit boundary when that structure contained
25333 a member requiring 128-bit alignment. This is corrected in more
25334 recent versions of GCC. This option may be used to generate code
25335 that is compatible with functions compiled with older versions of
25336 GCC.
25337
25338 The @option{-mno-compat-align-parm} option is the default.
25339
25340 @item -mstack-protector-guard=@var{guard}
25341 @itemx -mstack-protector-guard-reg=@var{reg}
25342 @itemx -mstack-protector-guard-offset=@var{offset}
25343 @itemx -mstack-protector-guard-symbol=@var{symbol}
25344 @opindex mstack-protector-guard
25345 @opindex mstack-protector-guard-reg
25346 @opindex mstack-protector-guard-offset
25347 @opindex mstack-protector-guard-symbol
25348 Generate stack protection code using canary at @var{guard}. Supported
25349 locations are @samp{global} for global canary or @samp{tls} for per-thread
25350 canary in the TLS block (the default with GNU libc version 2.4 or later).
25351
25352 With the latter choice the options
25353 @option{-mstack-protector-guard-reg=@var{reg}} and
25354 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25355 which register to use as base register for reading the canary, and from what
25356 offset from that base register. The default for those is as specified in the
25357 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25358 the offset with a symbol reference to a canary in the TLS block.
25359
25360 @item -mpcrel
25361 @itemx -mno-pcrel
25362 @opindex mpcrel
25363 @opindex mno-pcrel
25364 Generate (do not generate) pc-relative addressing when the option
25365 @option{-mcpu=future} is used.
25366 @end table
25367
25368 @node RX Options
25369 @subsection RX Options
25370 @cindex RX Options
25371
25372 These command-line options are defined for RX targets:
25373
25374 @table @gcctabopt
25375 @item -m64bit-doubles
25376 @itemx -m32bit-doubles
25377 @opindex m64bit-doubles
25378 @opindex m32bit-doubles
25379 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25380 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25381 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25382 works on 32-bit values, which is why the default is
25383 @option{-m32bit-doubles}.
25384
25385 @item -fpu
25386 @itemx -nofpu
25387 @opindex fpu
25388 @opindex nofpu
25389 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25390 floating-point hardware. The default is enabled for the RX600
25391 series and disabled for the RX200 series.
25392
25393 Floating-point instructions are only generated for 32-bit floating-point
25394 values, however, so the FPU hardware is not used for doubles if the
25395 @option{-m64bit-doubles} option is used.
25396
25397 @emph{Note} If the @option{-fpu} option is enabled then
25398 @option{-funsafe-math-optimizations} is also enabled automatically.
25399 This is because the RX FPU instructions are themselves unsafe.
25400
25401 @item -mcpu=@var{name}
25402 @opindex mcpu
25403 Selects the type of RX CPU to be targeted. Currently three types are
25404 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25405 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25406
25407 The only difference between @samp{RX600} and @samp{RX610} is that the
25408 @samp{RX610} does not support the @code{MVTIPL} instruction.
25409
25410 The @samp{RX200} series does not have a hardware floating-point unit
25411 and so @option{-nofpu} is enabled by default when this type is
25412 selected.
25413
25414 @item -mbig-endian-data
25415 @itemx -mlittle-endian-data
25416 @opindex mbig-endian-data
25417 @opindex mlittle-endian-data
25418 Store data (but not code) in the big-endian format. The default is
25419 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25420 format.
25421
25422 @item -msmall-data-limit=@var{N}
25423 @opindex msmall-data-limit
25424 Specifies the maximum size in bytes of global and static variables
25425 which can be placed into the small data area. Using the small data
25426 area can lead to smaller and faster code, but the size of area is
25427 limited and it is up to the programmer to ensure that the area does
25428 not overflow. Also when the small data area is used one of the RX's
25429 registers (usually @code{r13}) is reserved for use pointing to this
25430 area, so it is no longer available for use by the compiler. This
25431 could result in slower and/or larger code if variables are pushed onto
25432 the stack instead of being held in this register.
25433
25434 Note, common variables (variables that have not been initialized) and
25435 constants are not placed into the small data area as they are assigned
25436 to other sections in the output executable.
25437
25438 The default value is zero, which disables this feature. Note, this
25439 feature is not enabled by default with higher optimization levels
25440 (@option{-O2} etc) because of the potentially detrimental effects of
25441 reserving a register. It is up to the programmer to experiment and
25442 discover whether this feature is of benefit to their program. See the
25443 description of the @option{-mpid} option for a description of how the
25444 actual register to hold the small data area pointer is chosen.
25445
25446 @item -msim
25447 @itemx -mno-sim
25448 @opindex msim
25449 @opindex mno-sim
25450 Use the simulator runtime. The default is to use the libgloss
25451 board-specific runtime.
25452
25453 @item -mas100-syntax
25454 @itemx -mno-as100-syntax
25455 @opindex mas100-syntax
25456 @opindex mno-as100-syntax
25457 When generating assembler output use a syntax that is compatible with
25458 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25459 assembler, but it has some restrictions so it is not generated by default.
25460
25461 @item -mmax-constant-size=@var{N}
25462 @opindex mmax-constant-size
25463 Specifies the maximum size, in bytes, of a constant that can be used as
25464 an operand in a RX instruction. Although the RX instruction set does
25465 allow constants of up to 4 bytes in length to be used in instructions,
25466 a longer value equates to a longer instruction. Thus in some
25467 circumstances it can be beneficial to restrict the size of constants
25468 that are used in instructions. Constants that are too big are instead
25469 placed into a constant pool and referenced via register indirection.
25470
25471 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25472 or 4 means that constants of any size are allowed.
25473
25474 @item -mrelax
25475 @opindex mrelax
25476 Enable linker relaxation. Linker relaxation is a process whereby the
25477 linker attempts to reduce the size of a program by finding shorter
25478 versions of various instructions. Disabled by default.
25479
25480 @item -mint-register=@var{N}
25481 @opindex mint-register
25482 Specify the number of registers to reserve for fast interrupt handler
25483 functions. The value @var{N} can be between 0 and 4. A value of 1
25484 means that register @code{r13} is reserved for the exclusive use
25485 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25486 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25487 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25488 A value of 0, the default, does not reserve any registers.
25489
25490 @item -msave-acc-in-interrupts
25491 @opindex msave-acc-in-interrupts
25492 Specifies that interrupt handler functions should preserve the
25493 accumulator register. This is only necessary if normal code might use
25494 the accumulator register, for example because it performs 64-bit
25495 multiplications. The default is to ignore the accumulator as this
25496 makes the interrupt handlers faster.
25497
25498 @item -mpid
25499 @itemx -mno-pid
25500 @opindex mpid
25501 @opindex mno-pid
25502 Enables the generation of position independent data. When enabled any
25503 access to constant data is done via an offset from a base address
25504 held in a register. This allows the location of constant data to be
25505 determined at run time without requiring the executable to be
25506 relocated, which is a benefit to embedded applications with tight
25507 memory constraints. Data that can be modified is not affected by this
25508 option.
25509
25510 Note, using this feature reserves a register, usually @code{r13}, for
25511 the constant data base address. This can result in slower and/or
25512 larger code, especially in complicated functions.
25513
25514 The actual register chosen to hold the constant data base address
25515 depends upon whether the @option{-msmall-data-limit} and/or the
25516 @option{-mint-register} command-line options are enabled. Starting
25517 with register @code{r13} and proceeding downwards, registers are
25518 allocated first to satisfy the requirements of @option{-mint-register},
25519 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25520 is possible for the small data area register to be @code{r8} if both
25521 @option{-mint-register=4} and @option{-mpid} are specified on the
25522 command line.
25523
25524 By default this feature is not enabled. The default can be restored
25525 via the @option{-mno-pid} command-line option.
25526
25527 @item -mno-warn-multiple-fast-interrupts
25528 @itemx -mwarn-multiple-fast-interrupts
25529 @opindex mno-warn-multiple-fast-interrupts
25530 @opindex mwarn-multiple-fast-interrupts
25531 Prevents GCC from issuing a warning message if it finds more than one
25532 fast interrupt handler when it is compiling a file. The default is to
25533 issue a warning for each extra fast interrupt handler found, as the RX
25534 only supports one such interrupt.
25535
25536 @item -mallow-string-insns
25537 @itemx -mno-allow-string-insns
25538 @opindex mallow-string-insns
25539 @opindex mno-allow-string-insns
25540 Enables or disables the use of the string manipulation instructions
25541 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25542 @code{SWHILE} and also the @code{RMPA} instruction. These
25543 instructions may prefetch data, which is not safe to do if accessing
25544 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25545 for more information).
25546
25547 The default is to allow these instructions, but it is not possible for
25548 GCC to reliably detect all circumstances where a string instruction
25549 might be used to access an I/O register, so their use cannot be
25550 disabled automatically. Instead it is reliant upon the programmer to
25551 use the @option{-mno-allow-string-insns} option if their program
25552 accesses I/O space.
25553
25554 When the instructions are enabled GCC defines the C preprocessor
25555 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25556 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25557
25558 @item -mjsr
25559 @itemx -mno-jsr
25560 @opindex mjsr
25561 @opindex mno-jsr
25562 Use only (or not only) @code{JSR} instructions to access functions.
25563 This option can be used when code size exceeds the range of @code{BSR}
25564 instructions. Note that @option{-mno-jsr} does not mean to not use
25565 @code{JSR} but instead means that any type of branch may be used.
25566 @end table
25567
25568 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25569 has special significance to the RX port when used with the
25570 @code{interrupt} function attribute. This attribute indicates a
25571 function intended to process fast interrupts. GCC ensures
25572 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25573 and/or @code{r13} and only provided that the normal use of the
25574 corresponding registers have been restricted via the
25575 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25576 options.
25577
25578 @node S/390 and zSeries Options
25579 @subsection S/390 and zSeries Options
25580 @cindex S/390 and zSeries Options
25581
25582 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25583
25584 @table @gcctabopt
25585 @item -mhard-float
25586 @itemx -msoft-float
25587 @opindex mhard-float
25588 @opindex msoft-float
25589 Use (do not use) the hardware floating-point instructions and registers
25590 for floating-point operations. When @option{-msoft-float} is specified,
25591 functions in @file{libgcc.a} are used to perform floating-point
25592 operations. When @option{-mhard-float} is specified, the compiler
25593 generates IEEE floating-point instructions. This is the default.
25594
25595 @item -mhard-dfp
25596 @itemx -mno-hard-dfp
25597 @opindex mhard-dfp
25598 @opindex mno-hard-dfp
25599 Use (do not use) the hardware decimal-floating-point instructions for
25600 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25601 specified, functions in @file{libgcc.a} are used to perform
25602 decimal-floating-point operations. When @option{-mhard-dfp} is
25603 specified, the compiler generates decimal-floating-point hardware
25604 instructions. This is the default for @option{-march=z9-ec} or higher.
25605
25606 @item -mlong-double-64
25607 @itemx -mlong-double-128
25608 @opindex mlong-double-64
25609 @opindex mlong-double-128
25610 These switches control the size of @code{long double} type. A size
25611 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25612 type. This is the default.
25613
25614 @item -mbackchain
25615 @itemx -mno-backchain
25616 @opindex mbackchain
25617 @opindex mno-backchain
25618 Store (do not store) the address of the caller's frame as backchain pointer
25619 into the callee's stack frame.
25620 A backchain may be needed to allow debugging using tools that do not understand
25621 DWARF call frame information.
25622 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25623 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25624 the backchain is placed into the topmost word of the 96/160 byte register
25625 save area.
25626
25627 In general, code compiled with @option{-mbackchain} is call-compatible with
25628 code compiled with @option{-mmo-backchain}; however, use of the backchain
25629 for debugging purposes usually requires that the whole binary is built with
25630 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25631 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25632 to build a linux kernel use @option{-msoft-float}.
25633
25634 The default is to not maintain the backchain.
25635
25636 @item -mpacked-stack
25637 @itemx -mno-packed-stack
25638 @opindex mpacked-stack
25639 @opindex mno-packed-stack
25640 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25641 specified, the compiler uses the all fields of the 96/160 byte register save
25642 area only for their default purpose; unused fields still take up stack space.
25643 When @option{-mpacked-stack} is specified, register save slots are densely
25644 packed at the top of the register save area; unused space is reused for other
25645 purposes, allowing for more efficient use of the available stack space.
25646 However, when @option{-mbackchain} is also in effect, the topmost word of
25647 the save area is always used to store the backchain, and the return address
25648 register is always saved two words below the backchain.
25649
25650 As long as the stack frame backchain is not used, code generated with
25651 @option{-mpacked-stack} is call-compatible with code generated with
25652 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25653 S/390 or zSeries generated code that uses the stack frame backchain at run
25654 time, not just for debugging purposes. Such code is not call-compatible
25655 with code compiled with @option{-mpacked-stack}. Also, note that the
25656 combination of @option{-mbackchain},
25657 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25658 to build a linux kernel use @option{-msoft-float}.
25659
25660 The default is to not use the packed stack layout.
25661
25662 @item -msmall-exec
25663 @itemx -mno-small-exec
25664 @opindex msmall-exec
25665 @opindex mno-small-exec
25666 Generate (or do not generate) code using the @code{bras} instruction
25667 to do subroutine calls.
25668 This only works reliably if the total executable size does not
25669 exceed 64k. The default is to use the @code{basr} instruction instead,
25670 which does not have this limitation.
25671
25672 @item -m64
25673 @itemx -m31
25674 @opindex m64
25675 @opindex m31
25676 When @option{-m31} is specified, generate code compliant to the
25677 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25678 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25679 particular to generate 64-bit instructions. For the @samp{s390}
25680 targets, the default is @option{-m31}, while the @samp{s390x}
25681 targets default to @option{-m64}.
25682
25683 @item -mzarch
25684 @itemx -mesa
25685 @opindex mzarch
25686 @opindex mesa
25687 When @option{-mzarch} is specified, generate code using the
25688 instructions available on z/Architecture.
25689 When @option{-mesa} is specified, generate code using the
25690 instructions available on ESA/390. Note that @option{-mesa} is
25691 not possible with @option{-m64}.
25692 When generating code compliant to the GNU/Linux for S/390 ABI,
25693 the default is @option{-mesa}. When generating code compliant
25694 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25695
25696 @item -mhtm
25697 @itemx -mno-htm
25698 @opindex mhtm
25699 @opindex mno-htm
25700 The @option{-mhtm} option enables a set of builtins making use of
25701 instructions available with the transactional execution facility
25702 introduced with the IBM zEnterprise EC12 machine generation
25703 @ref{S/390 System z Built-in Functions}.
25704 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25705
25706 @item -mvx
25707 @itemx -mno-vx
25708 @opindex mvx
25709 @opindex mno-vx
25710 When @option{-mvx} is specified, generate code using the instructions
25711 available with the vector extension facility introduced with the IBM
25712 z13 machine generation.
25713 This option changes the ABI for some vector type values with regard to
25714 alignment and calling conventions. In case vector type values are
25715 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25716 command will be added to mark the resulting binary with the ABI used.
25717 @option{-mvx} is enabled by default when using @option{-march=z13}.
25718
25719 @item -mzvector
25720 @itemx -mno-zvector
25721 @opindex mzvector
25722 @opindex mno-zvector
25723 The @option{-mzvector} option enables vector language extensions and
25724 builtins using instructions available with the vector extension
25725 facility introduced with the IBM z13 machine generation.
25726 This option adds support for @samp{vector} to be used as a keyword to
25727 define vector type variables and arguments. @samp{vector} is only
25728 available when GNU extensions are enabled. It will not be expanded
25729 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25730 In addition to the GCC low-level builtins @option{-mzvector} enables
25731 a set of builtins added for compatibility with AltiVec-style
25732 implementations like Power and Cell. In order to make use of these
25733 builtins the header file @file{vecintrin.h} needs to be included.
25734 @option{-mzvector} is disabled by default.
25735
25736 @item -mmvcle
25737 @itemx -mno-mvcle
25738 @opindex mmvcle
25739 @opindex mno-mvcle
25740 Generate (or do not generate) code using the @code{mvcle} instruction
25741 to perform block moves. When @option{-mno-mvcle} is specified,
25742 use a @code{mvc} loop instead. This is the default unless optimizing for
25743 size.
25744
25745 @item -mdebug
25746 @itemx -mno-debug
25747 @opindex mdebug
25748 @opindex mno-debug
25749 Print (or do not print) additional debug information when compiling.
25750 The default is to not print debug information.
25751
25752 @item -march=@var{cpu-type}
25753 @opindex march
25754 Generate code that runs on @var{cpu-type}, which is the name of a
25755 system representing a certain processor type. Possible values for
25756 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25757 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25758 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25759 @samp{z14}/@samp{arch12}, and @samp{native}.
25760
25761 The default is @option{-march=z900}.
25762
25763 Specifying @samp{native} as cpu type can be used to select the best
25764 architecture option for the host processor.
25765 @option{-march=native} has no effect if GCC does not recognize the
25766 processor.
25767
25768 @item -mtune=@var{cpu-type}
25769 @opindex mtune
25770 Tune to @var{cpu-type} everything applicable about the generated code,
25771 except for the ABI and the set of available instructions.
25772 The list of @var{cpu-type} values is the same as for @option{-march}.
25773 The default is the value used for @option{-march}.
25774
25775 @item -mtpf-trace
25776 @itemx -mno-tpf-trace
25777 @opindex mtpf-trace
25778 @opindex mno-tpf-trace
25779 Generate code that adds (does not add) in TPF OS specific branches to trace
25780 routines in the operating system. This option is off by default, even
25781 when compiling for the TPF OS@.
25782
25783 @item -mfused-madd
25784 @itemx -mno-fused-madd
25785 @opindex mfused-madd
25786 @opindex mno-fused-madd
25787 Generate code that uses (does not use) the floating-point multiply and
25788 accumulate instructions. These instructions are generated by default if
25789 hardware floating point is used.
25790
25791 @item -mwarn-framesize=@var{framesize}
25792 @opindex mwarn-framesize
25793 Emit a warning if the current function exceeds the given frame size. Because
25794 this is a compile-time check it doesn't need to be a real problem when the program
25795 runs. It is intended to identify functions that most probably cause
25796 a stack overflow. It is useful to be used in an environment with limited stack
25797 size e.g.@: the linux kernel.
25798
25799 @item -mwarn-dynamicstack
25800 @opindex mwarn-dynamicstack
25801 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25802 arrays. This is generally a bad idea with a limited stack size.
25803
25804 @item -mstack-guard=@var{stack-guard}
25805 @itemx -mstack-size=@var{stack-size}
25806 @opindex mstack-guard
25807 @opindex mstack-size
25808 If these options are provided the S/390 back end emits additional instructions in
25809 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25810 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25811 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25812 the frame size of the compiled function is chosen.
25813 These options are intended to be used to help debugging stack overflow problems.
25814 The additionally emitted code causes only little overhead and hence can also be
25815 used in production-like systems without greater performance degradation. The given
25816 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25817 @var{stack-guard} without exceeding 64k.
25818 In order to be efficient the extra code makes the assumption that the stack starts
25819 at an address aligned to the value given by @var{stack-size}.
25820 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25821
25822 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25823 @opindex mhotpatch
25824 If the hotpatch option is enabled, a ``hot-patching'' function
25825 prologue is generated for all functions in the compilation unit.
25826 The funtion label is prepended with the given number of two-byte
25827 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25828 the label, 2 * @var{post-halfwords} bytes are appended, using the
25829 largest NOP like instructions the architecture allows (maximum
25830 1000000).
25831
25832 If both arguments are zero, hotpatching is disabled.
25833
25834 This option can be overridden for individual functions with the
25835 @code{hotpatch} attribute.
25836 @end table
25837
25838 @node Score Options
25839 @subsection Score Options
25840 @cindex Score Options
25841
25842 These options are defined for Score implementations:
25843
25844 @table @gcctabopt
25845 @item -meb
25846 @opindex meb
25847 Compile code for big-endian mode. This is the default.
25848
25849 @item -mel
25850 @opindex mel
25851 Compile code for little-endian mode.
25852
25853 @item -mnhwloop
25854 @opindex mnhwloop
25855 Disable generation of @code{bcnz} instructions.
25856
25857 @item -muls
25858 @opindex muls
25859 Enable generation of unaligned load and store instructions.
25860
25861 @item -mmac
25862 @opindex mmac
25863 Enable the use of multiply-accumulate instructions. Disabled by default.
25864
25865 @item -mscore5
25866 @opindex mscore5
25867 Specify the SCORE5 as the target architecture.
25868
25869 @item -mscore5u
25870 @opindex mscore5u
25871 Specify the SCORE5U of the target architecture.
25872
25873 @item -mscore7
25874 @opindex mscore7
25875 Specify the SCORE7 as the target architecture. This is the default.
25876
25877 @item -mscore7d
25878 @opindex mscore7d
25879 Specify the SCORE7D as the target architecture.
25880 @end table
25881
25882 @node SH Options
25883 @subsection SH Options
25884
25885 These @samp{-m} options are defined for the SH implementations:
25886
25887 @table @gcctabopt
25888 @item -m1
25889 @opindex m1
25890 Generate code for the SH1.
25891
25892 @item -m2
25893 @opindex m2
25894 Generate code for the SH2.
25895
25896 @item -m2e
25897 Generate code for the SH2e.
25898
25899 @item -m2a-nofpu
25900 @opindex m2a-nofpu
25901 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25902 that the floating-point unit is not used.
25903
25904 @item -m2a-single-only
25905 @opindex m2a-single-only
25906 Generate code for the SH2a-FPU, in such a way that no double-precision
25907 floating-point operations are used.
25908
25909 @item -m2a-single
25910 @opindex m2a-single
25911 Generate code for the SH2a-FPU assuming the floating-point unit is in
25912 single-precision mode by default.
25913
25914 @item -m2a
25915 @opindex m2a
25916 Generate code for the SH2a-FPU assuming the floating-point unit is in
25917 double-precision mode by default.
25918
25919 @item -m3
25920 @opindex m3
25921 Generate code for the SH3.
25922
25923 @item -m3e
25924 @opindex m3e
25925 Generate code for the SH3e.
25926
25927 @item -m4-nofpu
25928 @opindex m4-nofpu
25929 Generate code for the SH4 without a floating-point unit.
25930
25931 @item -m4-single-only
25932 @opindex m4-single-only
25933 Generate code for the SH4 with a floating-point unit that only
25934 supports single-precision arithmetic.
25935
25936 @item -m4-single
25937 @opindex m4-single
25938 Generate code for the SH4 assuming the floating-point unit is in
25939 single-precision mode by default.
25940
25941 @item -m4
25942 @opindex m4
25943 Generate code for the SH4.
25944
25945 @item -m4-100
25946 @opindex m4-100
25947 Generate code for SH4-100.
25948
25949 @item -m4-100-nofpu
25950 @opindex m4-100-nofpu
25951 Generate code for SH4-100 in such a way that the
25952 floating-point unit is not used.
25953
25954 @item -m4-100-single
25955 @opindex m4-100-single
25956 Generate code for SH4-100 assuming the floating-point unit is in
25957 single-precision mode by default.
25958
25959 @item -m4-100-single-only
25960 @opindex m4-100-single-only
25961 Generate code for SH4-100 in such a way that no double-precision
25962 floating-point operations are used.
25963
25964 @item -m4-200
25965 @opindex m4-200
25966 Generate code for SH4-200.
25967
25968 @item -m4-200-nofpu
25969 @opindex m4-200-nofpu
25970 Generate code for SH4-200 without in such a way that the
25971 floating-point unit is not used.
25972
25973 @item -m4-200-single
25974 @opindex m4-200-single
25975 Generate code for SH4-200 assuming the floating-point unit is in
25976 single-precision mode by default.
25977
25978 @item -m4-200-single-only
25979 @opindex m4-200-single-only
25980 Generate code for SH4-200 in such a way that no double-precision
25981 floating-point operations are used.
25982
25983 @item -m4-300
25984 @opindex m4-300
25985 Generate code for SH4-300.
25986
25987 @item -m4-300-nofpu
25988 @opindex m4-300-nofpu
25989 Generate code for SH4-300 without in such a way that the
25990 floating-point unit is not used.
25991
25992 @item -m4-300-single
25993 @opindex m4-300-single
25994 Generate code for SH4-300 in such a way that no double-precision
25995 floating-point operations are used.
25996
25997 @item -m4-300-single-only
25998 @opindex m4-300-single-only
25999 Generate code for SH4-300 in such a way that no double-precision
26000 floating-point operations are used.
26001
26002 @item -m4-340
26003 @opindex m4-340
26004 Generate code for SH4-340 (no MMU, no FPU).
26005
26006 @item -m4-500
26007 @opindex m4-500
26008 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
26009 assembler.
26010
26011 @item -m4a-nofpu
26012 @opindex m4a-nofpu
26013 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
26014 floating-point unit is not used.
26015
26016 @item -m4a-single-only
26017 @opindex m4a-single-only
26018 Generate code for the SH4a, in such a way that no double-precision
26019 floating-point operations are used.
26020
26021 @item -m4a-single
26022 @opindex m4a-single
26023 Generate code for the SH4a assuming the floating-point unit is in
26024 single-precision mode by default.
26025
26026 @item -m4a
26027 @opindex m4a
26028 Generate code for the SH4a.
26029
26030 @item -m4al
26031 @opindex m4al
26032 Same as @option{-m4a-nofpu}, except that it implicitly passes
26033 @option{-dsp} to the assembler. GCC doesn't generate any DSP
26034 instructions at the moment.
26035
26036 @item -mb
26037 @opindex mb
26038 Compile code for the processor in big-endian mode.
26039
26040 @item -ml
26041 @opindex ml
26042 Compile code for the processor in little-endian mode.
26043
26044 @item -mdalign
26045 @opindex mdalign
26046 Align doubles at 64-bit boundaries. Note that this changes the calling
26047 conventions, and thus some functions from the standard C library do
26048 not work unless you recompile it first with @option{-mdalign}.
26049
26050 @item -mrelax
26051 @opindex mrelax
26052 Shorten some address references at link time, when possible; uses the
26053 linker option @option{-relax}.
26054
26055 @item -mbigtable
26056 @opindex mbigtable
26057 Use 32-bit offsets in @code{switch} tables. The default is to use
26058 16-bit offsets.
26059
26060 @item -mbitops
26061 @opindex mbitops
26062 Enable the use of bit manipulation instructions on SH2A.
26063
26064 @item -mfmovd
26065 @opindex mfmovd
26066 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
26067 alignment constraints.
26068
26069 @item -mrenesas
26070 @opindex mrenesas
26071 Comply with the calling conventions defined by Renesas.
26072
26073 @item -mno-renesas
26074 @opindex mno-renesas
26075 Comply with the calling conventions defined for GCC before the Renesas
26076 conventions were available. This option is the default for all
26077 targets of the SH toolchain.
26078
26079 @item -mnomacsave
26080 @opindex mnomacsave
26081 Mark the @code{MAC} register as call-clobbered, even if
26082 @option{-mrenesas} is given.
26083
26084 @item -mieee
26085 @itemx -mno-ieee
26086 @opindex mieee
26087 @opindex mno-ieee
26088 Control the IEEE compliance of floating-point comparisons, which affects the
26089 handling of cases where the result of a comparison is unordered. By default
26090 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
26091 enabled @option{-mno-ieee} is implicitly set, which results in faster
26092 floating-point greater-equal and less-equal comparisons. The implicit settings
26093 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
26094
26095 @item -minline-ic_invalidate
26096 @opindex minline-ic_invalidate
26097 Inline code to invalidate instruction cache entries after setting up
26098 nested function trampolines.
26099 This option has no effect if @option{-musermode} is in effect and the selected
26100 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
26101 instruction.
26102 If the selected code generation option does not allow the use of the @code{icbi}
26103 instruction, and @option{-musermode} is not in effect, the inlined code
26104 manipulates the instruction cache address array directly with an associative
26105 write. This not only requires privileged mode at run time, but it also
26106 fails if the cache line had been mapped via the TLB and has become unmapped.
26107
26108 @item -misize
26109 @opindex misize
26110 Dump instruction size and location in the assembly code.
26111
26112 @item -mpadstruct
26113 @opindex mpadstruct
26114 This option is deprecated. It pads structures to multiple of 4 bytes,
26115 which is incompatible with the SH ABI@.
26116
26117 @item -matomic-model=@var{model}
26118 @opindex matomic-model=@var{model}
26119 Sets the model of atomic operations and additional parameters as a comma
26120 separated list. For details on the atomic built-in functions see
26121 @ref{__atomic Builtins}. The following models and parameters are supported:
26122
26123 @table @samp
26124
26125 @item none
26126 Disable compiler generated atomic sequences and emit library calls for atomic
26127 operations. This is the default if the target is not @code{sh*-*-linux*}.
26128
26129 @item soft-gusa
26130 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
26131 built-in functions. The generated atomic sequences require additional support
26132 from the interrupt/exception handling code of the system and are only suitable
26133 for SH3* and SH4* single-core systems. This option is enabled by default when
26134 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
26135 this option also partially utilizes the hardware atomic instructions
26136 @code{movli.l} and @code{movco.l} to create more efficient code, unless
26137 @samp{strict} is specified.
26138
26139 @item soft-tcb
26140 Generate software atomic sequences that use a variable in the thread control
26141 block. This is a variation of the gUSA sequences which can also be used on
26142 SH1* and SH2* targets. The generated atomic sequences require additional
26143 support from the interrupt/exception handling code of the system and are only
26144 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
26145 parameter has to be specified as well.
26146
26147 @item soft-imask
26148 Generate software atomic sequences that temporarily disable interrupts by
26149 setting @code{SR.IMASK = 1111}. This model works only when the program runs
26150 in privileged mode and is only suitable for single-core systems. Additional
26151 support from the interrupt/exception handling code of the system is not
26152 required. This model is enabled by default when the target is
26153 @code{sh*-*-linux*} and SH1* or SH2*.
26154
26155 @item hard-llcs
26156 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
26157 instructions only. This is only available on SH4A and is suitable for
26158 multi-core systems. Since the hardware instructions support only 32 bit atomic
26159 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
26160 Code compiled with this option is also compatible with other software
26161 atomic model interrupt/exception handling systems if executed on an SH4A
26162 system. Additional support from the interrupt/exception handling code of the
26163 system is not required for this model.
26164
26165 @item gbr-offset=
26166 This parameter specifies the offset in bytes of the variable in the thread
26167 control block structure that should be used by the generated atomic sequences
26168 when the @samp{soft-tcb} model has been selected. For other models this
26169 parameter is ignored. The specified value must be an integer multiple of four
26170 and in the range 0-1020.
26171
26172 @item strict
26173 This parameter prevents mixed usage of multiple atomic models, even if they
26174 are compatible, and makes the compiler generate atomic sequences of the
26175 specified model only.
26176
26177 @end table
26178
26179 @item -mtas
26180 @opindex mtas
26181 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
26182 Notice that depending on the particular hardware and software configuration
26183 this can degrade overall performance due to the operand cache line flushes
26184 that are implied by the @code{tas.b} instruction. On multi-core SH4A
26185 processors the @code{tas.b} instruction must be used with caution since it
26186 can result in data corruption for certain cache configurations.
26187
26188 @item -mprefergot
26189 @opindex mprefergot
26190 When generating position-independent code, emit function calls using
26191 the Global Offset Table instead of the Procedure Linkage Table.
26192
26193 @item -musermode
26194 @itemx -mno-usermode
26195 @opindex musermode
26196 @opindex mno-usermode
26197 Don't allow (allow) the compiler generating privileged mode code. Specifying
26198 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
26199 inlined code would not work in user mode. @option{-musermode} is the default
26200 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
26201 @option{-musermode} has no effect, since there is no user mode.
26202
26203 @item -multcost=@var{number}
26204 @opindex multcost=@var{number}
26205 Set the cost to assume for a multiply insn.
26206
26207 @item -mdiv=@var{strategy}
26208 @opindex mdiv=@var{strategy}
26209 Set the division strategy to be used for integer division operations.
26210 @var{strategy} can be one of:
26211
26212 @table @samp
26213
26214 @item call-div1
26215 Calls a library function that uses the single-step division instruction
26216 @code{div1} to perform the operation. Division by zero calculates an
26217 unspecified result and does not trap. This is the default except for SH4,
26218 SH2A and SHcompact.
26219
26220 @item call-fp
26221 Calls a library function that performs the operation in double precision
26222 floating point. Division by zero causes a floating-point exception. This is
26223 the default for SHcompact with FPU. Specifying this for targets that do not
26224 have a double precision FPU defaults to @code{call-div1}.
26225
26226 @item call-table
26227 Calls a library function that uses a lookup table for small divisors and
26228 the @code{div1} instruction with case distinction for larger divisors. Division
26229 by zero calculates an unspecified result and does not trap. This is the default
26230 for SH4. Specifying this for targets that do not have dynamic shift
26231 instructions defaults to @code{call-div1}.
26232
26233 @end table
26234
26235 When a division strategy has not been specified the default strategy is
26236 selected based on the current target. For SH2A the default strategy is to
26237 use the @code{divs} and @code{divu} instructions instead of library function
26238 calls.
26239
26240 @item -maccumulate-outgoing-args
26241 @opindex maccumulate-outgoing-args
26242 Reserve space once for outgoing arguments in the function prologue rather
26243 than around each call. Generally beneficial for performance and size. Also
26244 needed for unwinding to avoid changing the stack frame around conditional code.
26245
26246 @item -mdivsi3_libfunc=@var{name}
26247 @opindex mdivsi3_libfunc=@var{name}
26248 Set the name of the library function used for 32-bit signed division to
26249 @var{name}.
26250 This only affects the name used in the @samp{call} division strategies, and
26251 the compiler still expects the same sets of input/output/clobbered registers as
26252 if this option were not present.
26253
26254 @item -mfixed-range=@var{register-range}
26255 @opindex mfixed-range
26256 Generate code treating the given register range as fixed registers.
26257 A fixed register is one that the register allocator cannot use. This is
26258 useful when compiling kernel code. A register range is specified as
26259 two registers separated by a dash. Multiple register ranges can be
26260 specified separated by a comma.
26261
26262 @item -mbranch-cost=@var{num}
26263 @opindex mbranch-cost=@var{num}
26264 Assume @var{num} to be the cost for a branch instruction. Higher numbers
26265 make the compiler try to generate more branch-free code if possible.
26266 If not specified the value is selected depending on the processor type that
26267 is being compiled for.
26268
26269 @item -mzdcbranch
26270 @itemx -mno-zdcbranch
26271 @opindex mzdcbranch
26272 @opindex mno-zdcbranch
26273 Assume (do not assume) that zero displacement conditional branch instructions
26274 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
26275 compiler prefers zero displacement branch code sequences. This is
26276 enabled by default when generating code for SH4 and SH4A. It can be explicitly
26277 disabled by specifying @option{-mno-zdcbranch}.
26278
26279 @item -mcbranch-force-delay-slot
26280 @opindex mcbranch-force-delay-slot
26281 Force the usage of delay slots for conditional branches, which stuffs the delay
26282 slot with a @code{nop} if a suitable instruction cannot be found. By default
26283 this option is disabled. It can be enabled to work around hardware bugs as
26284 found in the original SH7055.
26285
26286 @item -mfused-madd
26287 @itemx -mno-fused-madd
26288 @opindex mfused-madd
26289 @opindex mno-fused-madd
26290 Generate code that uses (does not use) the floating-point multiply and
26291 accumulate instructions. These instructions are generated by default
26292 if hardware floating point is used. The machine-dependent
26293 @option{-mfused-madd} option is now mapped to the machine-independent
26294 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26295 mapped to @option{-ffp-contract=off}.
26296
26297 @item -mfsca
26298 @itemx -mno-fsca
26299 @opindex mfsca
26300 @opindex mno-fsca
26301 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26302 and cosine approximations. The option @option{-mfsca} must be used in
26303 combination with @option{-funsafe-math-optimizations}. It is enabled by default
26304 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
26305 approximations even if @option{-funsafe-math-optimizations} is in effect.
26306
26307 @item -mfsrra
26308 @itemx -mno-fsrra
26309 @opindex mfsrra
26310 @opindex mno-fsrra
26311 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26312 reciprocal square root approximations. The option @option{-mfsrra} must be used
26313 in combination with @option{-funsafe-math-optimizations} and
26314 @option{-ffinite-math-only}. It is enabled by default when generating code for
26315 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
26316 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26317 in effect.
26318
26319 @item -mpretend-cmove
26320 @opindex mpretend-cmove
26321 Prefer zero-displacement conditional branches for conditional move instruction
26322 patterns. This can result in faster code on the SH4 processor.
26323
26324 @item -mfdpic
26325 @opindex fdpic
26326 Generate code using the FDPIC ABI.
26327
26328 @end table
26329
26330 @node Solaris 2 Options
26331 @subsection Solaris 2 Options
26332 @cindex Solaris 2 options
26333
26334 These @samp{-m} options are supported on Solaris 2:
26335
26336 @table @gcctabopt
26337 @item -mclear-hwcap
26338 @opindex mclear-hwcap
26339 @option{-mclear-hwcap} tells the compiler to remove the hardware
26340 capabilities generated by the Solaris assembler. This is only necessary
26341 when object files use ISA extensions not supported by the current
26342 machine, but check at runtime whether or not to use them.
26343
26344 @item -mimpure-text
26345 @opindex mimpure-text
26346 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26347 the compiler to not pass @option{-z text} to the linker when linking a
26348 shared object. Using this option, you can link position-dependent
26349 code into a shared object.
26350
26351 @option{-mimpure-text} suppresses the ``relocations remain against
26352 allocatable but non-writable sections'' linker error message.
26353 However, the necessary relocations trigger copy-on-write, and the
26354 shared object is not actually shared across processes. Instead of
26355 using @option{-mimpure-text}, you should compile all source code with
26356 @option{-fpic} or @option{-fPIC}.
26357
26358 @end table
26359
26360 These switches are supported in addition to the above on Solaris 2:
26361
26362 @table @gcctabopt
26363 @item -pthreads
26364 @opindex pthreads
26365 This is a synonym for @option{-pthread}.
26366 @end table
26367
26368 @node SPARC Options
26369 @subsection SPARC Options
26370 @cindex SPARC options
26371
26372 These @samp{-m} options are supported on the SPARC:
26373
26374 @table @gcctabopt
26375 @item -mno-app-regs
26376 @itemx -mapp-regs
26377 @opindex mno-app-regs
26378 @opindex mapp-regs
26379 Specify @option{-mapp-regs} to generate output using the global registers
26380 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26381 global register 1, each global register 2 through 4 is then treated as an
26382 allocable register that is clobbered by function calls. This is the default.
26383
26384 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26385 specify @option{-mno-app-regs}. You should compile libraries and system
26386 software with this option.
26387
26388 @item -mflat
26389 @itemx -mno-flat
26390 @opindex mflat
26391 @opindex mno-flat
26392 With @option{-mflat}, the compiler does not generate save/restore instructions
26393 and uses a ``flat'' or single register window model. This model is compatible
26394 with the regular register window model. The local registers and the input
26395 registers (0--5) are still treated as ``call-saved'' registers and are
26396 saved on the stack as needed.
26397
26398 With @option{-mno-flat} (the default), the compiler generates save/restore
26399 instructions (except for leaf functions). This is the normal operating mode.
26400
26401 @item -mfpu
26402 @itemx -mhard-float
26403 @opindex mfpu
26404 @opindex mhard-float
26405 Generate output containing floating-point instructions. This is the
26406 default.
26407
26408 @item -mno-fpu
26409 @itemx -msoft-float
26410 @opindex mno-fpu
26411 @opindex msoft-float
26412 Generate output containing library calls for floating point.
26413 @strong{Warning:} the requisite libraries are not available for all SPARC
26414 targets. Normally the facilities of the machine's usual C compiler are
26415 used, but this cannot be done directly in cross-compilation. You must make
26416 your own arrangements to provide suitable library functions for
26417 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26418 @samp{sparclite-*-*} do provide software floating-point support.
26419
26420 @option{-msoft-float} changes the calling convention in the output file;
26421 therefore, it is only useful if you compile @emph{all} of a program with
26422 this option. In particular, you need to compile @file{libgcc.a}, the
26423 library that comes with GCC, with @option{-msoft-float} in order for
26424 this to work.
26425
26426 @item -mhard-quad-float
26427 @opindex mhard-quad-float
26428 Generate output containing quad-word (long double) floating-point
26429 instructions.
26430
26431 @item -msoft-quad-float
26432 @opindex msoft-quad-float
26433 Generate output containing library calls for quad-word (long double)
26434 floating-point instructions. The functions called are those specified
26435 in the SPARC ABI@. This is the default.
26436
26437 As of this writing, there are no SPARC implementations that have hardware
26438 support for the quad-word floating-point instructions. They all invoke
26439 a trap handler for one of these instructions, and then the trap handler
26440 emulates the effect of the instruction. Because of the trap handler overhead,
26441 this is much slower than calling the ABI library routines. Thus the
26442 @option{-msoft-quad-float} option is the default.
26443
26444 @item -mno-unaligned-doubles
26445 @itemx -munaligned-doubles
26446 @opindex mno-unaligned-doubles
26447 @opindex munaligned-doubles
26448 Assume that doubles have 8-byte alignment. This is the default.
26449
26450 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26451 alignment only if they are contained in another type, or if they have an
26452 absolute address. Otherwise, it assumes they have 4-byte alignment.
26453 Specifying this option avoids some rare compatibility problems with code
26454 generated by other compilers. It is not the default because it results
26455 in a performance loss, especially for floating-point code.
26456
26457 @item -muser-mode
26458 @itemx -mno-user-mode
26459 @opindex muser-mode
26460 @opindex mno-user-mode
26461 Do not generate code that can only run in supervisor mode. This is relevant
26462 only for the @code{casa} instruction emitted for the LEON3 processor. This
26463 is the default.
26464
26465 @item -mfaster-structs
26466 @itemx -mno-faster-structs
26467 @opindex mfaster-structs
26468 @opindex mno-faster-structs
26469 With @option{-mfaster-structs}, the compiler assumes that structures
26470 should have 8-byte alignment. This enables the use of pairs of
26471 @code{ldd} and @code{std} instructions for copies in structure
26472 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26473 However, the use of this changed alignment directly violates the SPARC
26474 ABI@. Thus, it's intended only for use on targets where the developer
26475 acknowledges that their resulting code is not directly in line with
26476 the rules of the ABI@.
26477
26478 @item -mstd-struct-return
26479 @itemx -mno-std-struct-return
26480 @opindex mstd-struct-return
26481 @opindex mno-std-struct-return
26482 With @option{-mstd-struct-return}, the compiler generates checking code
26483 in functions returning structures or unions to detect size mismatches
26484 between the two sides of function calls, as per the 32-bit ABI@.
26485
26486 The default is @option{-mno-std-struct-return}. This option has no effect
26487 in 64-bit mode.
26488
26489 @item -mlra
26490 @itemx -mno-lra
26491 @opindex mlra
26492 @opindex mno-lra
26493 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26494 so @option{-mno-lra} needs to be passed to get old Reload.
26495
26496 @item -mcpu=@var{cpu_type}
26497 @opindex mcpu
26498 Set the instruction set, register set, and instruction scheduling parameters
26499 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26500 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26501 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26502 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26503 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26504 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26505
26506 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26507 which selects the best architecture option for the host processor.
26508 @option{-mcpu=native} has no effect if GCC does not recognize
26509 the processor.
26510
26511 Default instruction scheduling parameters are used for values that select
26512 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26513 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26514
26515 Here is a list of each supported architecture and their supported
26516 implementations.
26517
26518 @table @asis
26519 @item v7
26520 cypress, leon3v7
26521
26522 @item v8
26523 supersparc, hypersparc, leon, leon3
26524
26525 @item sparclite
26526 f930, f934, sparclite86x
26527
26528 @item sparclet
26529 tsc701
26530
26531 @item v9
26532 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26533 niagara7, m8
26534 @end table
26535
26536 By default (unless configured otherwise), GCC generates code for the V7
26537 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26538 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26539 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26540 SPARCStation 1, 2, IPX etc.
26541
26542 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26543 architecture. The only difference from V7 code is that the compiler emits
26544 the integer multiply and integer divide instructions which exist in SPARC-V8
26545 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26546 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26547 2000 series.
26548
26549 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26550 the SPARC architecture. This adds the integer multiply, integer divide step
26551 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26552 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26553 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26554 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26555 MB86934 chip, which is the more recent SPARClite with FPU@.
26556
26557 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26558 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26559 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26560 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26561 optimizes it for the TEMIC SPARClet chip.
26562
26563 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26564 architecture. This adds 64-bit integer and floating-point move instructions,
26565 3 additional floating-point condition code registers and conditional move
26566 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26567 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26568 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26569 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26570 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26571 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26572 additionally optimizes it for Sun UltraSPARC T2 chips. With
26573 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26574 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26575 additionally optimizes it for Sun UltraSPARC T4 chips. With
26576 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26577 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26578 additionally optimizes it for Oracle M8 chips.
26579
26580 @item -mtune=@var{cpu_type}
26581 @opindex mtune
26582 Set the instruction scheduling parameters for machine type
26583 @var{cpu_type}, but do not set the instruction set or register set that the
26584 option @option{-mcpu=@var{cpu_type}} does.
26585
26586 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26587 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26588 that select a particular CPU implementation. Those are
26589 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26590 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26591 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26592 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26593 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26594 and GNU/Linux toolchains, @samp{native} can also be used.
26595
26596 @item -mv8plus
26597 @itemx -mno-v8plus
26598 @opindex mv8plus
26599 @opindex mno-v8plus
26600 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26601 difference from the V8 ABI is that the global and out registers are
26602 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26603 mode for all SPARC-V9 processors.
26604
26605 @item -mvis
26606 @itemx -mno-vis
26607 @opindex mvis
26608 @opindex mno-vis
26609 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26610 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26611
26612 @item -mvis2
26613 @itemx -mno-vis2
26614 @opindex mvis2
26615 @opindex mno-vis2
26616 With @option{-mvis2}, GCC generates code that takes advantage of
26617 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26618 default is @option{-mvis2} when targeting a cpu that supports such
26619 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26620 also sets @option{-mvis}.
26621
26622 @item -mvis3
26623 @itemx -mno-vis3
26624 @opindex mvis3
26625 @opindex mno-vis3
26626 With @option{-mvis3}, GCC generates code that takes advantage of
26627 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26628 default is @option{-mvis3} when targeting a cpu that supports such
26629 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26630 also sets @option{-mvis2} and @option{-mvis}.
26631
26632 @item -mvis4
26633 @itemx -mno-vis4
26634 @opindex mvis4
26635 @opindex mno-vis4
26636 With @option{-mvis4}, GCC generates code that takes advantage of
26637 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26638 default is @option{-mvis4} when targeting a cpu that supports such
26639 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26640 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26641
26642 @item -mvis4b
26643 @itemx -mno-vis4b
26644 @opindex mvis4b
26645 @opindex mno-vis4b
26646 With @option{-mvis4b}, GCC generates code that takes advantage of
26647 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26648 the additional VIS instructions introduced in the Oracle SPARC
26649 Architecture 2017. The default is @option{-mvis4b} when targeting a
26650 cpu that supports such instructions, such as m8 and later. Setting
26651 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26652 @option{-mvis2} and @option{-mvis}.
26653
26654 @item -mcbcond
26655 @itemx -mno-cbcond
26656 @opindex mcbcond
26657 @opindex mno-cbcond
26658 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26659 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26660 when targeting a CPU that supports such instructions, such as Niagara-4 and
26661 later.
26662
26663 @item -mfmaf
26664 @itemx -mno-fmaf
26665 @opindex mfmaf
26666 @opindex mno-fmaf
26667 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26668 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26669 when targeting a CPU that supports such instructions, such as Niagara-3 and
26670 later.
26671
26672 @item -mfsmuld
26673 @itemx -mno-fsmuld
26674 @opindex mfsmuld
26675 @opindex mno-fsmuld
26676 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26677 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26678 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26679 or V9 with FPU except @option{-mcpu=leon}.
26680
26681 @item -mpopc
26682 @itemx -mno-popc
26683 @opindex mpopc
26684 @opindex mno-popc
26685 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26686 Population Count instruction. The default is @option{-mpopc}
26687 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26688 later.
26689
26690 @item -msubxc
26691 @itemx -mno-subxc
26692 @opindex msubxc
26693 @opindex mno-subxc
26694 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26695 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26696 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26697 later.
26698
26699 @item -mfix-at697f
26700 @opindex mfix-at697f
26701 Enable the documented workaround for the single erratum of the Atmel AT697F
26702 processor (which corresponds to erratum #13 of the AT697E processor).
26703
26704 @item -mfix-ut699
26705 @opindex mfix-ut699
26706 Enable the documented workarounds for the floating-point errata and the data
26707 cache nullify errata of the UT699 processor.
26708
26709 @item -mfix-ut700
26710 @opindex mfix-ut700
26711 Enable the documented workaround for the back-to-back store errata of
26712 the UT699E/UT700 processor.
26713
26714 @item -mfix-gr712rc
26715 @opindex mfix-gr712rc
26716 Enable the documented workaround for the back-to-back store errata of
26717 the GR712RC processor.
26718 @end table
26719
26720 These @samp{-m} options are supported in addition to the above
26721 on SPARC-V9 processors in 64-bit environments:
26722
26723 @table @gcctabopt
26724 @item -m32
26725 @itemx -m64
26726 @opindex m32
26727 @opindex m64
26728 Generate code for a 32-bit or 64-bit environment.
26729 The 32-bit environment sets int, long and pointer to 32 bits.
26730 The 64-bit environment sets int to 32 bits and long and pointer
26731 to 64 bits.
26732
26733 @item -mcmodel=@var{which}
26734 @opindex mcmodel
26735 Set the code model to one of
26736
26737 @table @samp
26738 @item medlow
26739 The Medium/Low code model: 64-bit addresses, programs
26740 must be linked in the low 32 bits of memory. Programs can be statically
26741 or dynamically linked.
26742
26743 @item medmid
26744 The Medium/Middle code model: 64-bit addresses, programs
26745 must be linked in the low 44 bits of memory, the text and data segments must
26746 be less than 2GB in size and the data segment must be located within 2GB of
26747 the text segment.
26748
26749 @item medany
26750 The Medium/Anywhere code model: 64-bit addresses, programs
26751 may be linked anywhere in memory, the text and data segments must be less
26752 than 2GB in size and the data segment must be located within 2GB of the
26753 text segment.
26754
26755 @item embmedany
26756 The Medium/Anywhere code model for embedded systems:
26757 64-bit addresses, the text and data segments must be less than 2GB in
26758 size, both starting anywhere in memory (determined at link time). The
26759 global register %g4 points to the base of the data segment. Programs
26760 are statically linked and PIC is not supported.
26761 @end table
26762
26763 @item -mmemory-model=@var{mem-model}
26764 @opindex mmemory-model
26765 Set the memory model in force on the processor to one of
26766
26767 @table @samp
26768 @item default
26769 The default memory model for the processor and operating system.
26770
26771 @item rmo
26772 Relaxed Memory Order
26773
26774 @item pso
26775 Partial Store Order
26776
26777 @item tso
26778 Total Store Order
26779
26780 @item sc
26781 Sequential Consistency
26782 @end table
26783
26784 These memory models are formally defined in Appendix D of the SPARC-V9
26785 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26786
26787 @item -mstack-bias
26788 @itemx -mno-stack-bias
26789 @opindex mstack-bias
26790 @opindex mno-stack-bias
26791 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26792 frame pointer if present, are offset by @minus{}2047 which must be added back
26793 when making stack frame references. This is the default in 64-bit mode.
26794 Otherwise, assume no such offset is present.
26795 @end table
26796
26797 @node System V Options
26798 @subsection Options for System V
26799
26800 These additional options are available on System V Release 4 for
26801 compatibility with other compilers on those systems:
26802
26803 @table @gcctabopt
26804 @item -G
26805 @opindex G
26806 Create a shared object.
26807 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26808
26809 @item -Qy
26810 @opindex Qy
26811 Identify the versions of each tool used by the compiler, in a
26812 @code{.ident} assembler directive in the output.
26813
26814 @item -Qn
26815 @opindex Qn
26816 Refrain from adding @code{.ident} directives to the output file (this is
26817 the default).
26818
26819 @item -YP,@var{dirs}
26820 @opindex YP
26821 Search the directories @var{dirs}, and no others, for libraries
26822 specified with @option{-l}.
26823
26824 @item -Ym,@var{dir}
26825 @opindex Ym
26826 Look in the directory @var{dir} to find the M4 preprocessor.
26827 The assembler uses this option.
26828 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26829 @c the generic assembler that comes with Solaris takes just -Ym.
26830 @end table
26831
26832 @node TILE-Gx Options
26833 @subsection TILE-Gx Options
26834 @cindex TILE-Gx options
26835
26836 These @samp{-m} options are supported on the TILE-Gx:
26837
26838 @table @gcctabopt
26839 @item -mcmodel=small
26840 @opindex mcmodel=small
26841 Generate code for the small model. The distance for direct calls is
26842 limited to 500M in either direction. PC-relative addresses are 32
26843 bits. Absolute addresses support the full address range.
26844
26845 @item -mcmodel=large
26846 @opindex mcmodel=large
26847 Generate code for the large model. There is no limitation on call
26848 distance, pc-relative addresses, or absolute addresses.
26849
26850 @item -mcpu=@var{name}
26851 @opindex mcpu
26852 Selects the type of CPU to be targeted. Currently the only supported
26853 type is @samp{tilegx}.
26854
26855 @item -m32
26856 @itemx -m64
26857 @opindex m32
26858 @opindex m64
26859 Generate code for a 32-bit or 64-bit environment. The 32-bit
26860 environment sets int, long, and pointer to 32 bits. The 64-bit
26861 environment sets int to 32 bits and long and pointer to 64 bits.
26862
26863 @item -mbig-endian
26864 @itemx -mlittle-endian
26865 @opindex mbig-endian
26866 @opindex mlittle-endian
26867 Generate code in big/little endian mode, respectively.
26868 @end table
26869
26870 @node TILEPro Options
26871 @subsection TILEPro Options
26872 @cindex TILEPro options
26873
26874 These @samp{-m} options are supported on the TILEPro:
26875
26876 @table @gcctabopt
26877 @item -mcpu=@var{name}
26878 @opindex mcpu
26879 Selects the type of CPU to be targeted. Currently the only supported
26880 type is @samp{tilepro}.
26881
26882 @item -m32
26883 @opindex m32
26884 Generate code for a 32-bit environment, which sets int, long, and
26885 pointer to 32 bits. This is the only supported behavior so the flag
26886 is essentially ignored.
26887 @end table
26888
26889 @node V850 Options
26890 @subsection V850 Options
26891 @cindex V850 Options
26892
26893 These @samp{-m} options are defined for V850 implementations:
26894
26895 @table @gcctabopt
26896 @item -mlong-calls
26897 @itemx -mno-long-calls
26898 @opindex mlong-calls
26899 @opindex mno-long-calls
26900 Treat all calls as being far away (near). If calls are assumed to be
26901 far away, the compiler always loads the function's address into a
26902 register, and calls indirect through the pointer.
26903
26904 @item -mno-ep
26905 @itemx -mep
26906 @opindex mno-ep
26907 @opindex mep
26908 Do not optimize (do optimize) basic blocks that use the same index
26909 pointer 4 or more times to copy pointer into the @code{ep} register, and
26910 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26911 option is on by default if you optimize.
26912
26913 @item -mno-prolog-function
26914 @itemx -mprolog-function
26915 @opindex mno-prolog-function
26916 @opindex mprolog-function
26917 Do not use (do use) external functions to save and restore registers
26918 at the prologue and epilogue of a function. The external functions
26919 are slower, but use less code space if more than one function saves
26920 the same number of registers. The @option{-mprolog-function} option
26921 is on by default if you optimize.
26922
26923 @item -mspace
26924 @opindex mspace
26925 Try to make the code as small as possible. At present, this just turns
26926 on the @option{-mep} and @option{-mprolog-function} options.
26927
26928 @item -mtda=@var{n}
26929 @opindex mtda
26930 Put static or global variables whose size is @var{n} bytes or less into
26931 the tiny data area that register @code{ep} points to. The tiny data
26932 area can hold up to 256 bytes in total (128 bytes for byte references).
26933
26934 @item -msda=@var{n}
26935 @opindex msda
26936 Put static or global variables whose size is @var{n} bytes or less into
26937 the small data area that register @code{gp} points to. The small data
26938 area can hold up to 64 kilobytes.
26939
26940 @item -mzda=@var{n}
26941 @opindex mzda
26942 Put static or global variables whose size is @var{n} bytes or less into
26943 the first 32 kilobytes of memory.
26944
26945 @item -mv850
26946 @opindex mv850
26947 Specify that the target processor is the V850.
26948
26949 @item -mv850e3v5
26950 @opindex mv850e3v5
26951 Specify that the target processor is the V850E3V5. The preprocessor
26952 constant @code{__v850e3v5__} is defined if this option is used.
26953
26954 @item -mv850e2v4
26955 @opindex mv850e2v4
26956 Specify that the target processor is the V850E3V5. This is an alias for
26957 the @option{-mv850e3v5} option.
26958
26959 @item -mv850e2v3
26960 @opindex mv850e2v3
26961 Specify that the target processor is the V850E2V3. The preprocessor
26962 constant @code{__v850e2v3__} is defined if this option is used.
26963
26964 @item -mv850e2
26965 @opindex mv850e2
26966 Specify that the target processor is the V850E2. The preprocessor
26967 constant @code{__v850e2__} is defined if this option is used.
26968
26969 @item -mv850e1
26970 @opindex mv850e1
26971 Specify that the target processor is the V850E1. The preprocessor
26972 constants @code{__v850e1__} and @code{__v850e__} are defined if
26973 this option is used.
26974
26975 @item -mv850es
26976 @opindex mv850es
26977 Specify that the target processor is the V850ES. This is an alias for
26978 the @option{-mv850e1} option.
26979
26980 @item -mv850e
26981 @opindex mv850e
26982 Specify that the target processor is the V850E@. The preprocessor
26983 constant @code{__v850e__} is defined if this option is used.
26984
26985 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26986 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26987 are defined then a default target processor is chosen and the
26988 relevant @samp{__v850*__} preprocessor constant is defined.
26989
26990 The preprocessor constants @code{__v850} and @code{__v851__} are always
26991 defined, regardless of which processor variant is the target.
26992
26993 @item -mdisable-callt
26994 @itemx -mno-disable-callt
26995 @opindex mdisable-callt
26996 @opindex mno-disable-callt
26997 This option suppresses generation of the @code{CALLT} instruction for the
26998 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26999 architecture.
27000
27001 This option is enabled by default when the RH850 ABI is
27002 in use (see @option{-mrh850-abi}), and disabled by default when the
27003 GCC ABI is in use. If @code{CALLT} instructions are being generated
27004 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
27005
27006 @item -mrelax
27007 @itemx -mno-relax
27008 @opindex mrelax
27009 @opindex mno-relax
27010 Pass on (or do not pass on) the @option{-mrelax} command-line option
27011 to the assembler.
27012
27013 @item -mlong-jumps
27014 @itemx -mno-long-jumps
27015 @opindex mlong-jumps
27016 @opindex mno-long-jumps
27017 Disable (or re-enable) the generation of PC-relative jump instructions.
27018
27019 @item -msoft-float
27020 @itemx -mhard-float
27021 @opindex msoft-float
27022 @opindex mhard-float
27023 Disable (or re-enable) the generation of hardware floating point
27024 instructions. This option is only significant when the target
27025 architecture is @samp{V850E2V3} or higher. If hardware floating point
27026 instructions are being generated then the C preprocessor symbol
27027 @code{__FPU_OK__} is defined, otherwise the symbol
27028 @code{__NO_FPU__} is defined.
27029
27030 @item -mloop
27031 @opindex mloop
27032 Enables the use of the e3v5 LOOP instruction. The use of this
27033 instruction is not enabled by default when the e3v5 architecture is
27034 selected because its use is still experimental.
27035
27036 @item -mrh850-abi
27037 @itemx -mghs
27038 @opindex mrh850-abi
27039 @opindex mghs
27040 Enables support for the RH850 version of the V850 ABI. This is the
27041 default. With this version of the ABI the following rules apply:
27042
27043 @itemize
27044 @item
27045 Integer sized structures and unions are returned via a memory pointer
27046 rather than a register.
27047
27048 @item
27049 Large structures and unions (more than 8 bytes in size) are passed by
27050 value.
27051
27052 @item
27053 Functions are aligned to 16-bit boundaries.
27054
27055 @item
27056 The @option{-m8byte-align} command-line option is supported.
27057
27058 @item
27059 The @option{-mdisable-callt} command-line option is enabled by
27060 default. The @option{-mno-disable-callt} command-line option is not
27061 supported.
27062 @end itemize
27063
27064 When this version of the ABI is enabled the C preprocessor symbol
27065 @code{__V850_RH850_ABI__} is defined.
27066
27067 @item -mgcc-abi
27068 @opindex mgcc-abi
27069 Enables support for the old GCC version of the V850 ABI. With this
27070 version of the ABI the following rules apply:
27071
27072 @itemize
27073 @item
27074 Integer sized structures and unions are returned in register @code{r10}.
27075
27076 @item
27077 Large structures and unions (more than 8 bytes in size) are passed by
27078 reference.
27079
27080 @item
27081 Functions are aligned to 32-bit boundaries, unless optimizing for
27082 size.
27083
27084 @item
27085 The @option{-m8byte-align} command-line option is not supported.
27086
27087 @item
27088 The @option{-mdisable-callt} command-line option is supported but not
27089 enabled by default.
27090 @end itemize
27091
27092 When this version of the ABI is enabled the C preprocessor symbol
27093 @code{__V850_GCC_ABI__} is defined.
27094
27095 @item -m8byte-align
27096 @itemx -mno-8byte-align
27097 @opindex m8byte-align
27098 @opindex mno-8byte-align
27099 Enables support for @code{double} and @code{long long} types to be
27100 aligned on 8-byte boundaries. The default is to restrict the
27101 alignment of all objects to at most 4-bytes. When
27102 @option{-m8byte-align} is in effect the C preprocessor symbol
27103 @code{__V850_8BYTE_ALIGN__} is defined.
27104
27105 @item -mbig-switch
27106 @opindex mbig-switch
27107 Generate code suitable for big switch tables. Use this option only if
27108 the assembler/linker complain about out of range branches within a switch
27109 table.
27110
27111 @item -mapp-regs
27112 @opindex mapp-regs
27113 This option causes r2 and r5 to be used in the code generated by
27114 the compiler. This setting is the default.
27115
27116 @item -mno-app-regs
27117 @opindex mno-app-regs
27118 This option causes r2 and r5 to be treated as fixed registers.
27119
27120 @end table
27121
27122 @node VAX Options
27123 @subsection VAX Options
27124 @cindex VAX options
27125
27126 These @samp{-m} options are defined for the VAX:
27127
27128 @table @gcctabopt
27129 @item -munix
27130 @opindex munix
27131 Do not output certain jump instructions (@code{aobleq} and so on)
27132 that the Unix assembler for the VAX cannot handle across long
27133 ranges.
27134
27135 @item -mgnu
27136 @opindex mgnu
27137 Do output those jump instructions, on the assumption that the
27138 GNU assembler is being used.
27139
27140 @item -mg
27141 @opindex mg
27142 Output code for G-format floating-point numbers instead of D-format.
27143 @end table
27144
27145 @node Visium Options
27146 @subsection Visium Options
27147 @cindex Visium options
27148
27149 @table @gcctabopt
27150
27151 @item -mdebug
27152 @opindex mdebug
27153 A program which performs file I/O and is destined to run on an MCM target
27154 should be linked with this option. It causes the libraries libc.a and
27155 libdebug.a to be linked. The program should be run on the target under
27156 the control of the GDB remote debugging stub.
27157
27158 @item -msim
27159 @opindex msim
27160 A program which performs file I/O and is destined to run on the simulator
27161 should be linked with option. This causes libraries libc.a and libsim.a to
27162 be linked.
27163
27164 @item -mfpu
27165 @itemx -mhard-float
27166 @opindex mfpu
27167 @opindex mhard-float
27168 Generate code containing floating-point instructions. This is the
27169 default.
27170
27171 @item -mno-fpu
27172 @itemx -msoft-float
27173 @opindex mno-fpu
27174 @opindex msoft-float
27175 Generate code containing library calls for floating-point.
27176
27177 @option{-msoft-float} changes the calling convention in the output file;
27178 therefore, it is only useful if you compile @emph{all} of a program with
27179 this option. In particular, you need to compile @file{libgcc.a}, the
27180 library that comes with GCC, with @option{-msoft-float} in order for
27181 this to work.
27182
27183 @item -mcpu=@var{cpu_type}
27184 @opindex mcpu
27185 Set the instruction set, register set, and instruction scheduling parameters
27186 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
27187 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27188
27189 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27190
27191 By default (unless configured otherwise), GCC generates code for the GR5
27192 variant of the Visium architecture.
27193
27194 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27195 architecture. The only difference from GR5 code is that the compiler will
27196 generate block move instructions.
27197
27198 @item -mtune=@var{cpu_type}
27199 @opindex mtune
27200 Set the instruction scheduling parameters for machine type @var{cpu_type},
27201 but do not set the instruction set or register set that the option
27202 @option{-mcpu=@var{cpu_type}} would.
27203
27204 @item -msv-mode
27205 @opindex msv-mode
27206 Generate code for the supervisor mode, where there are no restrictions on
27207 the access to general registers. This is the default.
27208
27209 @item -muser-mode
27210 @opindex muser-mode
27211 Generate code for the user mode, where the access to some general registers
27212 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27213 mode; on the GR6, only registers r29 to r31 are affected.
27214 @end table
27215
27216 @node VMS Options
27217 @subsection VMS Options
27218
27219 These @samp{-m} options are defined for the VMS implementations:
27220
27221 @table @gcctabopt
27222 @item -mvms-return-codes
27223 @opindex mvms-return-codes
27224 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27225 condition (e.g.@: error) codes.
27226
27227 @item -mdebug-main=@var{prefix}
27228 @opindex mdebug-main=@var{prefix}
27229 Flag the first routine whose name starts with @var{prefix} as the main
27230 routine for the debugger.
27231
27232 @item -mmalloc64
27233 @opindex mmalloc64
27234 Default to 64-bit memory allocation routines.
27235
27236 @item -mpointer-size=@var{size}
27237 @opindex mpointer-size=@var{size}
27238 Set the default size of pointers. Possible options for @var{size} are
27239 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27240 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27241 The later option disables @code{pragma pointer_size}.
27242 @end table
27243
27244 @node VxWorks Options
27245 @subsection VxWorks Options
27246 @cindex VxWorks Options
27247
27248 The options in this section are defined for all VxWorks targets.
27249 Options specific to the target hardware are listed with the other
27250 options for that target.
27251
27252 @table @gcctabopt
27253 @item -mrtp
27254 @opindex mrtp
27255 GCC can generate code for both VxWorks kernels and real time processes
27256 (RTPs). This option switches from the former to the latter. It also
27257 defines the preprocessor macro @code{__RTP__}.
27258
27259 @item -non-static
27260 @opindex non-static
27261 Link an RTP executable against shared libraries rather than static
27262 libraries. The options @option{-static} and @option{-shared} can
27263 also be used for RTPs (@pxref{Link Options}); @option{-static}
27264 is the default.
27265
27266 @item -Bstatic
27267 @itemx -Bdynamic
27268 @opindex Bstatic
27269 @opindex Bdynamic
27270 These options are passed down to the linker. They are defined for
27271 compatibility with Diab.
27272
27273 @item -Xbind-lazy
27274 @opindex Xbind-lazy
27275 Enable lazy binding of function calls. This option is equivalent to
27276 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27277
27278 @item -Xbind-now
27279 @opindex Xbind-now
27280 Disable lazy binding of function calls. This option is the default and
27281 is defined for compatibility with Diab.
27282 @end table
27283
27284 @node x86 Options
27285 @subsection x86 Options
27286 @cindex x86 Options
27287
27288 These @samp{-m} options are defined for the x86 family of computers.
27289
27290 @table @gcctabopt
27291
27292 @item -march=@var{cpu-type}
27293 @opindex march
27294 Generate instructions for the machine type @var{cpu-type}. In contrast to
27295 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27296 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27297 to generate code that may not run at all on processors other than the one
27298 indicated. Specifying @option{-march=@var{cpu-type}} implies
27299 @option{-mtune=@var{cpu-type}}.
27300
27301 The choices for @var{cpu-type} are:
27302
27303 @table @samp
27304 @item native
27305 This selects the CPU to generate code for at compilation time by determining
27306 the processor type of the compiling machine. Using @option{-march=native}
27307 enables all instruction subsets supported by the local machine (hence
27308 the result might not run on different machines). Using @option{-mtune=native}
27309 produces code optimized for the local machine under the constraints
27310 of the selected instruction set.
27311
27312 @item x86-64
27313 A generic CPU with 64-bit extensions.
27314
27315 @item i386
27316 Original Intel i386 CPU@.
27317
27318 @item i486
27319 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27320
27321 @item i586
27322 @itemx pentium
27323 Intel Pentium CPU with no MMX support.
27324
27325 @item lakemont
27326 Intel Lakemont MCU, based on Intel Pentium CPU.
27327
27328 @item pentium-mmx
27329 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27330
27331 @item pentiumpro
27332 Intel Pentium Pro CPU@.
27333
27334 @item i686
27335 When used with @option{-march}, the Pentium Pro
27336 instruction set is used, so the code runs on all i686 family chips.
27337 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27338
27339 @item pentium2
27340 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27341 support.
27342
27343 @item pentium3
27344 @itemx pentium3m
27345 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27346 set support.
27347
27348 @item pentium-m
27349 Intel Pentium M; low-power version of Intel Pentium III CPU
27350 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27351
27352 @item pentium4
27353 @itemx pentium4m
27354 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27355
27356 @item prescott
27357 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27358 set support.
27359
27360 @item nocona
27361 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27362 SSE2 and SSE3 instruction set support.
27363
27364 @item core2
27365 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27366 instruction set support.
27367
27368 @item nehalem
27369 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27370 SSE4.1, SSE4.2 and POPCNT instruction set support.
27371
27372 @item westmere
27373 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27374 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27375
27376 @item sandybridge
27377 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27378 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27379
27380 @item ivybridge
27381 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27382 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27383 instruction set support.
27384
27385 @item haswell
27386 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27387 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27388 BMI, BMI2 and F16C instruction set support.
27389
27390 @item broadwell
27391 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27392 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27393 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27394
27395 @item skylake
27396 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27397 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27398 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27399 XSAVES instruction set support.
27400
27401 @item bonnell
27402 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27403 instruction set support.
27404
27405 @item silvermont
27406 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27407 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27408
27409 @item goldmont
27410 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27411 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27412 instruction set support.
27413
27414 @item goldmont-plus
27415 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27416 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27417 PTWRITE, RDPID, SGX and UMIP instruction set support.
27418
27419 @item tremont
27420 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27421 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27422 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27423
27424 @item knl
27425 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27426 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27427 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27428 AVX512CD instruction set support.
27429
27430 @item knm
27431 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27432 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27433 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27434 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27435
27436 @item skylake-avx512
27437 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27438 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27439 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27440 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27441
27442 @item cannonlake
27443 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27444 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27445 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27446 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27447 AVX512IFMA, SHA and UMIP instruction set support.
27448
27449 @item icelake-client
27450 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27451 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27452 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27453 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27454 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27455 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27456
27457 @item icelake-server
27458 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27459 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27460 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27461 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27462 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27463 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27464 set support.
27465
27466 @item cascadelake
27467 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27468 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27469 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27470 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27471
27472 @item cooperlake
27473 Intel cooperlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27474 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27475 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27476 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VNNI and AVX512BF16 instruction
27477 set support.
27478
27479 @item tigerlake
27480 Intel Tigerlake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27481 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27482 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27483 AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI, AVX512IFMA, SHA, CLWB, UMIP,
27484 RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ, AVX512BITALG, AVX512VNNI, VPCLMULQDQ,
27485 VAES, PCONFIG, WBNOINVD, MOVDIRI, MOVDIR64B and AVX512VP2INTERSECT instruction
27486 set support.
27487
27488 @item k6
27489 AMD K6 CPU with MMX instruction set support.
27490
27491 @item k6-2
27492 @itemx k6-3
27493 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27494
27495 @item athlon
27496 @itemx athlon-tbird
27497 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27498 support.
27499
27500 @item athlon-4
27501 @itemx athlon-xp
27502 @itemx athlon-mp
27503 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27504 instruction set support.
27505
27506 @item k8
27507 @itemx opteron
27508 @itemx athlon64
27509 @itemx athlon-fx
27510 Processors based on the AMD K8 core with x86-64 instruction set support,
27511 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27512 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27513 instruction set extensions.)
27514
27515 @item k8-sse3
27516 @itemx opteron-sse3
27517 @itemx athlon64-sse3
27518 Improved versions of AMD K8 cores with SSE3 instruction set support.
27519
27520 @item amdfam10
27521 @itemx barcelona
27522 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27523 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27524 instruction set extensions.)
27525
27526 @item bdver1
27527 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27528 supersets FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27529 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27530 @item bdver2
27531 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27532 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCLMUL, CX16, MMX,
27533 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27534 extensions.)
27535 @item bdver3
27536 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27537 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27538 PCLMUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27539 64-bit instruction set extensions.
27540 @item bdver4
27541 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27542 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27543 AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27544 SSE4.2, ABM and 64-bit instruction set extensions.
27545
27546 @item znver1
27547 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27548 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27549 SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27550 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27551 instruction set extensions.
27552 @item znver2
27553 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27554 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27555 MWAITX, SHA, CLZERO, AES, PCLMUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27556 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27557 instruction set extensions.)
27558
27559
27560 @item btver1
27561 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27562 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27563 instruction set extensions.)
27564
27565 @item btver2
27566 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27567 includes MOVBE, F16C, BMI, AVX, PCLMUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27568 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27569
27570 @item winchip-c6
27571 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27572 set support.
27573
27574 @item winchip2
27575 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27576 instruction set support.
27577
27578 @item c3
27579 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27580 (No scheduling is implemented for this chip.)
27581
27582 @item c3-2
27583 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27584 (No scheduling is implemented for this chip.)
27585
27586 @item c7
27587 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27588 (No scheduling is implemented for this chip.)
27589
27590 @item samuel-2
27591 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27592 (No scheduling is implemented for this chip.)
27593
27594 @item nehemiah
27595 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27596 (No scheduling is implemented for this chip.)
27597
27598 @item esther
27599 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27600 (No scheduling is implemented for this chip.)
27601
27602 @item eden-x2
27603 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27604 (No scheduling is implemented for this chip.)
27605
27606 @item eden-x4
27607 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27608 AVX and AVX2 instruction set support.
27609 (No scheduling is implemented for this chip.)
27610
27611 @item nano
27612 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27613 instruction set support.
27614 (No scheduling is implemented for this chip.)
27615
27616 @item nano-1000
27617 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27618 instruction set support.
27619 (No scheduling is implemented for this chip.)
27620
27621 @item nano-2000
27622 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27623 instruction set support.
27624 (No scheduling is implemented for this chip.)
27625
27626 @item nano-3000
27627 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27628 instruction set support.
27629 (No scheduling is implemented for this chip.)
27630
27631 @item nano-x2
27632 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27633 instruction set support.
27634 (No scheduling is implemented for this chip.)
27635
27636 @item nano-x4
27637 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27638 instruction set support.
27639 (No scheduling is implemented for this chip.)
27640
27641 @item geode
27642 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27643 @end table
27644
27645 @item -mtune=@var{cpu-type}
27646 @opindex mtune
27647 Tune to @var{cpu-type} everything applicable about the generated code, except
27648 for the ABI and the set of available instructions.
27649 While picking a specific @var{cpu-type} schedules things appropriately
27650 for that particular chip, the compiler does not generate any code that
27651 cannot run on the default machine type unless you use a
27652 @option{-march=@var{cpu-type}} option.
27653 For example, if GCC is configured for i686-pc-linux-gnu
27654 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27655 but still runs on i686 machines.
27656
27657 The choices for @var{cpu-type} are the same as for @option{-march}.
27658 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27659
27660 @table @samp
27661 @item generic
27662 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27663 If you know the CPU on which your code will run, then you should use
27664 the corresponding @option{-mtune} or @option{-march} option instead of
27665 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27666 of your application will have, then you should use this option.
27667
27668 As new processors are deployed in the marketplace, the behavior of this
27669 option will change. Therefore, if you upgrade to a newer version of
27670 GCC, code generation controlled by this option will change to reflect
27671 the processors
27672 that are most common at the time that version of GCC is released.
27673
27674 There is no @option{-march=generic} option because @option{-march}
27675 indicates the instruction set the compiler can use, and there is no
27676 generic instruction set applicable to all processors. In contrast,
27677 @option{-mtune} indicates the processor (or, in this case, collection of
27678 processors) for which the code is optimized.
27679
27680 @item intel
27681 Produce code optimized for the most current Intel processors, which are
27682 Haswell and Silvermont for this version of GCC. If you know the CPU
27683 on which your code will run, then you should use the corresponding
27684 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27685 But, if you want your application performs better on both Haswell and
27686 Silvermont, then you should use this option.
27687
27688 As new Intel processors are deployed in the marketplace, the behavior of
27689 this option will change. Therefore, if you upgrade to a newer version of
27690 GCC, code generation controlled by this option will change to reflect
27691 the most current Intel processors at the time that version of GCC is
27692 released.
27693
27694 There is no @option{-march=intel} option because @option{-march} indicates
27695 the instruction set the compiler can use, and there is no common
27696 instruction set applicable to all processors. In contrast,
27697 @option{-mtune} indicates the processor (or, in this case, collection of
27698 processors) for which the code is optimized.
27699 @end table
27700
27701 @item -mcpu=@var{cpu-type}
27702 @opindex mcpu
27703 A deprecated synonym for @option{-mtune}.
27704
27705 @item -mfpmath=@var{unit}
27706 @opindex mfpmath
27707 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27708 for @var{unit} are:
27709
27710 @table @samp
27711 @item 387
27712 Use the standard 387 floating-point coprocessor present on the majority of chips and
27713 emulated otherwise. Code compiled with this option runs almost everywhere.
27714 The temporary results are computed in 80-bit precision instead of the precision
27715 specified by the type, resulting in slightly different results compared to most
27716 of other chips. See @option{-ffloat-store} for more detailed description.
27717
27718 This is the default choice for non-Darwin x86-32 targets.
27719
27720 @item sse
27721 Use scalar floating-point instructions present in the SSE instruction set.
27722 This instruction set is supported by Pentium III and newer chips,
27723 and in the AMD line
27724 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27725 instruction set supports only single-precision arithmetic, thus the double and
27726 extended-precision arithmetic are still done using 387. A later version, present
27727 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27728 arithmetic too.
27729
27730 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27731 or @option{-msse2} switches to enable SSE extensions and make this option
27732 effective. For the x86-64 compiler, these extensions are enabled by default.
27733
27734 The resulting code should be considerably faster in the majority of cases and avoid
27735 the numerical instability problems of 387 code, but may break some existing
27736 code that expects temporaries to be 80 bits.
27737
27738 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27739 and the default choice for x86-32 targets with the SSE2 instruction set
27740 when @option{-ffast-math} is enabled.
27741
27742 @item sse,387
27743 @itemx sse+387
27744 @itemx both
27745 Attempt to utilize both instruction sets at once. This effectively doubles the
27746 amount of available registers, and on chips with separate execution units for
27747 387 and SSE the execution resources too. Use this option with care, as it is
27748 still experimental, because the GCC register allocator does not model separate
27749 functional units well, resulting in unstable performance.
27750 @end table
27751
27752 @item -masm=@var{dialect}
27753 @opindex masm=@var{dialect}
27754 Output assembly instructions using selected @var{dialect}. Also affects
27755 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27756 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27757 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27758 not support @samp{intel}.
27759
27760 @item -mieee-fp
27761 @itemx -mno-ieee-fp
27762 @opindex mieee-fp
27763 @opindex mno-ieee-fp
27764 Control whether or not the compiler uses IEEE floating-point
27765 comparisons. These correctly handle the case where the result of a
27766 comparison is unordered.
27767
27768 @item -m80387
27769 @itemx -mhard-float
27770 @opindex 80387
27771 @opindex mhard-float
27772 Generate output containing 80387 instructions for floating point.
27773
27774 @item -mno-80387
27775 @itemx -msoft-float
27776 @opindex no-80387
27777 @opindex msoft-float
27778 Generate output containing library calls for floating point.
27779
27780 @strong{Warning:} the requisite libraries are not part of GCC@.
27781 Normally the facilities of the machine's usual C compiler are used, but
27782 this cannot be done directly in cross-compilation. You must make your
27783 own arrangements to provide suitable library functions for
27784 cross-compilation.
27785
27786 On machines where a function returns floating-point results in the 80387
27787 register stack, some floating-point opcodes may be emitted even if
27788 @option{-msoft-float} is used.
27789
27790 @item -mno-fp-ret-in-387
27791 @opindex mno-fp-ret-in-387
27792 @opindex mfp-ret-in-387
27793 Do not use the FPU registers for return values of functions.
27794
27795 The usual calling convention has functions return values of types
27796 @code{float} and @code{double} in an FPU register, even if there
27797 is no FPU@. The idea is that the operating system should emulate
27798 an FPU@.
27799
27800 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27801 in ordinary CPU registers instead.
27802
27803 @item -mno-fancy-math-387
27804 @opindex mno-fancy-math-387
27805 @opindex mfancy-math-387
27806 Some 387 emulators do not support the @code{sin}, @code{cos} and
27807 @code{sqrt} instructions for the 387. Specify this option to avoid
27808 generating those instructions.
27809 This option is overridden when @option{-march}
27810 indicates that the target CPU always has an FPU and so the
27811 instruction does not need emulation. These
27812 instructions are not generated unless you also use the
27813 @option{-funsafe-math-optimizations} switch.
27814
27815 @item -malign-double
27816 @itemx -mno-align-double
27817 @opindex malign-double
27818 @opindex mno-align-double
27819 Control whether GCC aligns @code{double}, @code{long double}, and
27820 @code{long long} variables on a two-word boundary or a one-word
27821 boundary. Aligning @code{double} variables on a two-word boundary
27822 produces code that runs somewhat faster on a Pentium at the
27823 expense of more memory.
27824
27825 On x86-64, @option{-malign-double} is enabled by default.
27826
27827 @strong{Warning:} if you use the @option{-malign-double} switch,
27828 structures containing the above types are aligned differently than
27829 the published application binary interface specifications for the x86-32
27830 and are not binary compatible with structures in code compiled
27831 without that switch.
27832
27833 @item -m96bit-long-double
27834 @itemx -m128bit-long-double
27835 @opindex m96bit-long-double
27836 @opindex m128bit-long-double
27837 These switches control the size of @code{long double} type. The x86-32
27838 application binary interface specifies the size to be 96 bits,
27839 so @option{-m96bit-long-double} is the default in 32-bit mode.
27840
27841 Modern architectures (Pentium and newer) prefer @code{long double}
27842 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27843 conforming to the ABI, this is not possible. So specifying
27844 @option{-m128bit-long-double} aligns @code{long double}
27845 to a 16-byte boundary by padding the @code{long double} with an additional
27846 32-bit zero.
27847
27848 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27849 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27850
27851 Notice that neither of these options enable any extra precision over the x87
27852 standard of 80 bits for a @code{long double}.
27853
27854 @strong{Warning:} if you override the default value for your target ABI, this
27855 changes the size of
27856 structures and arrays containing @code{long double} variables,
27857 as well as modifying the function calling convention for functions taking
27858 @code{long double}. Hence they are not binary-compatible
27859 with code compiled without that switch.
27860
27861 @item -mlong-double-64
27862 @itemx -mlong-double-80
27863 @itemx -mlong-double-128
27864 @opindex mlong-double-64
27865 @opindex mlong-double-80
27866 @opindex mlong-double-128
27867 These switches control the size of @code{long double} type. A size
27868 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27869 type. This is the default for 32-bit Bionic C library. A size
27870 of 128 bits makes the @code{long double} type equivalent to the
27871 @code{__float128} type. This is the default for 64-bit Bionic C library.
27872
27873 @strong{Warning:} if you override the default value for your target ABI, this
27874 changes the size of
27875 structures and arrays containing @code{long double} variables,
27876 as well as modifying the function calling convention for functions taking
27877 @code{long double}. Hence they are not binary-compatible
27878 with code compiled without that switch.
27879
27880 @item -malign-data=@var{type}
27881 @opindex malign-data
27882 Control how GCC aligns variables. Supported values for @var{type} are
27883 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27884 and earlier, @samp{abi} uses alignment value as specified by the
27885 psABI, and @samp{cacheline} uses increased alignment value to match
27886 the cache line size. @samp{compat} is the default.
27887
27888 @item -mlarge-data-threshold=@var{threshold}
27889 @opindex mlarge-data-threshold
27890 When @option{-mcmodel=medium} is specified, data objects larger than
27891 @var{threshold} are placed in the large data section. This value must be the
27892 same across all objects linked into the binary, and defaults to 65535.
27893
27894 @item -mrtd
27895 @opindex mrtd
27896 Use a different function-calling convention, in which functions that
27897 take a fixed number of arguments return with the @code{ret @var{num}}
27898 instruction, which pops their arguments while returning. This saves one
27899 instruction in the caller since there is no need to pop the arguments
27900 there.
27901
27902 You can specify that an individual function is called with this calling
27903 sequence with the function attribute @code{stdcall}. You can also
27904 override the @option{-mrtd} option by using the function attribute
27905 @code{cdecl}. @xref{Function Attributes}.
27906
27907 @strong{Warning:} this calling convention is incompatible with the one
27908 normally used on Unix, so you cannot use it if you need to call
27909 libraries compiled with the Unix compiler.
27910
27911 Also, you must provide function prototypes for all functions that
27912 take variable numbers of arguments (including @code{printf});
27913 otherwise incorrect code is generated for calls to those
27914 functions.
27915
27916 In addition, seriously incorrect code results if you call a
27917 function with too many arguments. (Normally, extra arguments are
27918 harmlessly ignored.)
27919
27920 @item -mregparm=@var{num}
27921 @opindex mregparm
27922 Control how many registers are used to pass integer arguments. By
27923 default, no registers are used to pass arguments, and at most 3
27924 registers can be used. You can control this behavior for a specific
27925 function by using the function attribute @code{regparm}.
27926 @xref{Function Attributes}.
27927
27928 @strong{Warning:} if you use this switch, and
27929 @var{num} is nonzero, then you must build all modules with the same
27930 value, including any libraries. This includes the system libraries and
27931 startup modules.
27932
27933 @item -msseregparm
27934 @opindex msseregparm
27935 Use SSE register passing conventions for float and double arguments
27936 and return values. You can control this behavior for a specific
27937 function by using the function attribute @code{sseregparm}.
27938 @xref{Function Attributes}.
27939
27940 @strong{Warning:} if you use this switch then you must build all
27941 modules with the same value, including any libraries. This includes
27942 the system libraries and startup modules.
27943
27944 @item -mvect8-ret-in-mem
27945 @opindex mvect8-ret-in-mem
27946 Return 8-byte vectors in memory instead of MMX registers. This is the
27947 default on VxWorks to match the ABI of the Sun Studio compilers until
27948 version 12. @emph{Only} use this option if you need to remain
27949 compatible with existing code produced by those previous compiler
27950 versions or older versions of GCC@.
27951
27952 @item -mpc32
27953 @itemx -mpc64
27954 @itemx -mpc80
27955 @opindex mpc32
27956 @opindex mpc64
27957 @opindex mpc80
27958
27959 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27960 is specified, the significands of results of floating-point operations are
27961 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27962 significands of results of floating-point operations to 53 bits (double
27963 precision) and @option{-mpc80} rounds the significands of results of
27964 floating-point operations to 64 bits (extended double precision), which is
27965 the default. When this option is used, floating-point operations in higher
27966 precisions are not available to the programmer without setting the FPU
27967 control word explicitly.
27968
27969 Setting the rounding of floating-point operations to less than the default
27970 80 bits can speed some programs by 2% or more. Note that some mathematical
27971 libraries assume that extended-precision (80-bit) floating-point operations
27972 are enabled by default; routines in such libraries could suffer significant
27973 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27974 when this option is used to set the precision to less than extended precision.
27975
27976 @item -mstackrealign
27977 @opindex mstackrealign
27978 Realign the stack at entry. On the x86, the @option{-mstackrealign}
27979 option generates an alternate prologue and epilogue that realigns the
27980 run-time stack if necessary. This supports mixing legacy codes that keep
27981 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27982 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
27983 applicable to individual functions.
27984
27985 @item -mpreferred-stack-boundary=@var{num}
27986 @opindex mpreferred-stack-boundary
27987 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27988 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
27989 the default is 4 (16 bytes or 128 bits).
27990
27991 @strong{Warning:} When generating code for the x86-64 architecture with
27992 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27993 used to keep the stack boundary aligned to 8 byte boundary. Since
27994 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27995 intended to be used in controlled environment where stack space is
27996 important limitation. This option leads to wrong code when functions
27997 compiled with 16 byte stack alignment (such as functions from a standard
27998 library) are called with misaligned stack. In this case, SSE
27999 instructions may lead to misaligned memory access traps. In addition,
28000 variable arguments are handled incorrectly for 16 byte aligned
28001 objects (including x87 long double and __int128), leading to wrong
28002 results. You must build all modules with
28003 @option{-mpreferred-stack-boundary=3}, including any libraries. This
28004 includes the system libraries and startup modules.
28005
28006 @item -mincoming-stack-boundary=@var{num}
28007 @opindex mincoming-stack-boundary
28008 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
28009 boundary. If @option{-mincoming-stack-boundary} is not specified,
28010 the one specified by @option{-mpreferred-stack-boundary} is used.
28011
28012 On Pentium and Pentium Pro, @code{double} and @code{long double} values
28013 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
28014 suffer significant run time performance penalties. On Pentium III, the
28015 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
28016 properly if it is not 16-byte aligned.
28017
28018 To ensure proper alignment of this values on the stack, the stack boundary
28019 must be as aligned as that required by any value stored on the stack.
28020 Further, every function must be generated such that it keeps the stack
28021 aligned. Thus calling a function compiled with a higher preferred
28022 stack boundary from a function compiled with a lower preferred stack
28023 boundary most likely misaligns the stack. It is recommended that
28024 libraries that use callbacks always use the default setting.
28025
28026 This extra alignment does consume extra stack space, and generally
28027 increases code size. Code that is sensitive to stack space usage, such
28028 as embedded systems and operating system kernels, may want to reduce the
28029 preferred alignment to @option{-mpreferred-stack-boundary=2}.
28030
28031 @need 200
28032 @item -mmmx
28033 @opindex mmmx
28034 @need 200
28035 @itemx -msse
28036 @opindex msse
28037 @need 200
28038 @itemx -msse2
28039 @opindex msse2
28040 @need 200
28041 @itemx -msse3
28042 @opindex msse3
28043 @need 200
28044 @itemx -mssse3
28045 @opindex mssse3
28046 @need 200
28047 @itemx -msse4
28048 @opindex msse4
28049 @need 200
28050 @itemx -msse4a
28051 @opindex msse4a
28052 @need 200
28053 @itemx -msse4.1
28054 @opindex msse4.1
28055 @need 200
28056 @itemx -msse4.2
28057 @opindex msse4.2
28058 @need 200
28059 @itemx -mavx
28060 @opindex mavx
28061 @need 200
28062 @itemx -mavx2
28063 @opindex mavx2
28064 @need 200
28065 @itemx -mavx512f
28066 @opindex mavx512f
28067 @need 200
28068 @itemx -mavx512pf
28069 @opindex mavx512pf
28070 @need 200
28071 @itemx -mavx512er
28072 @opindex mavx512er
28073 @need 200
28074 @itemx -mavx512cd
28075 @opindex mavx512cd
28076 @need 200
28077 @itemx -mavx512vl
28078 @opindex mavx512vl
28079 @need 200
28080 @itemx -mavx512bw
28081 @opindex mavx512bw
28082 @need 200
28083 @itemx -mavx512dq
28084 @opindex mavx512dq
28085 @need 200
28086 @itemx -mavx512ifma
28087 @opindex mavx512ifma
28088 @need 200
28089 @itemx -mavx512vbmi
28090 @opindex mavx512vbmi
28091 @need 200
28092 @itemx -msha
28093 @opindex msha
28094 @need 200
28095 @itemx -maes
28096 @opindex maes
28097 @need 200
28098 @itemx -mpclmul
28099 @opindex mpclmul
28100 @need 200
28101 @itemx -mclflushopt
28102 @opindex mclflushopt
28103 @need 200
28104 @itemx -mclwb
28105 @opindex mclwb
28106 @need 200
28107 @itemx -mfsgsbase
28108 @opindex mfsgsbase
28109 @need 200
28110 @itemx -mptwrite
28111 @opindex mptwrite
28112 @need 200
28113 @itemx -mrdrnd
28114 @opindex mrdrnd
28115 @need 200
28116 @itemx -mf16c
28117 @opindex mf16c
28118 @need 200
28119 @itemx -mfma
28120 @opindex mfma
28121 @need 200
28122 @itemx -mpconfig
28123 @opindex mpconfig
28124 @need 200
28125 @itemx -mwbnoinvd
28126 @opindex mwbnoinvd
28127 @need 200
28128 @itemx -mfma4
28129 @opindex mfma4
28130 @need 200
28131 @itemx -mprfchw
28132 @opindex mprfchw
28133 @need 200
28134 @itemx -mrdpid
28135 @opindex mrdpid
28136 @need 200
28137 @itemx -mprefetchwt1
28138 @opindex mprefetchwt1
28139 @need 200
28140 @itemx -mrdseed
28141 @opindex mrdseed
28142 @need 200
28143 @itemx -msgx
28144 @opindex msgx
28145 @need 200
28146 @itemx -mxop
28147 @opindex mxop
28148 @need 200
28149 @itemx -mlwp
28150 @opindex mlwp
28151 @need 200
28152 @itemx -m3dnow
28153 @opindex m3dnow
28154 @need 200
28155 @itemx -m3dnowa
28156 @opindex m3dnowa
28157 @need 200
28158 @itemx -mpopcnt
28159 @opindex mpopcnt
28160 @need 200
28161 @itemx -mabm
28162 @opindex mabm
28163 @need 200
28164 @itemx -madx
28165 @opindex madx
28166 @need 200
28167 @itemx -mbmi
28168 @opindex mbmi
28169 @need 200
28170 @itemx -mbmi2
28171 @opindex mbmi2
28172 @need 200
28173 @itemx -mlzcnt
28174 @opindex mlzcnt
28175 @need 200
28176 @itemx -mfxsr
28177 @opindex mfxsr
28178 @need 200
28179 @itemx -mxsave
28180 @opindex mxsave
28181 @need 200
28182 @itemx -mxsaveopt
28183 @opindex mxsaveopt
28184 @need 200
28185 @itemx -mxsavec
28186 @opindex mxsavec
28187 @need 200
28188 @itemx -mxsaves
28189 @opindex mxsaves
28190 @need 200
28191 @itemx -mrtm
28192 @opindex mrtm
28193 @need 200
28194 @itemx -mhle
28195 @opindex mhle
28196 @need 200
28197 @itemx -mtbm
28198 @opindex mtbm
28199 @need 200
28200 @itemx -mmwaitx
28201 @opindex mmwaitx
28202 @need 200
28203 @itemx -mclzero
28204 @opindex mclzero
28205 @need 200
28206 @itemx -mpku
28207 @opindex mpku
28208 @need 200
28209 @itemx -mavx512vbmi2
28210 @opindex mavx512vbmi2
28211 @need 200
28212 @itemx -mavx512bf16
28213 @opindex mavx512bf16
28214 @need 200
28215 @itemx -mgfni
28216 @opindex mgfni
28217 @need 200
28218 @itemx -mvaes
28219 @opindex mvaes
28220 @need 200
28221 @itemx -mwaitpkg
28222 @opindex mwaitpkg
28223 @need 200
28224 @itemx -mvpclmulqdq
28225 @opindex mvpclmulqdq
28226 @need 200
28227 @itemx -mavx512bitalg
28228 @opindex mavx512bitalg
28229 @need 200
28230 @itemx -mmovdiri
28231 @opindex mmovdiri
28232 @need 200
28233 @itemx -mmovdir64b
28234 @opindex mmovdir64b
28235 @need 200
28236 @itemx -menqcmd
28237 @opindex menqcmd
28238 @need 200
28239 @itemx -mavx512vpopcntdq
28240 @opindex mavx512vpopcntdq
28241 @need 200
28242 @itemx -mavx512vp2intersect
28243 @opindex mavx512vp2intersect
28244 @need 200
28245 @itemx -mavx5124fmaps
28246 @opindex mavx5124fmaps
28247 @need 200
28248 @itemx -mavx512vnni
28249 @opindex mavx512vnni
28250 @need 200
28251 @itemx -mavx5124vnniw
28252 @opindex mavx5124vnniw
28253 @need 200
28254 @itemx -mcldemote
28255 @opindex mcldemote
28256 These switches enable the use of instructions in the MMX, SSE,
28257 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28258 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28259 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28260 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28261 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28262 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28263 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28264 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28265 extended instruction sets. Each has a corresponding @option{-mno-} option to
28266 disable use of these instructions.
28267
28268 These extensions are also available as built-in functions: see
28269 @ref{x86 Built-in Functions}, for details of the functions enabled and
28270 disabled by these switches.
28271
28272 To generate SSE/SSE2 instructions automatically from floating-point
28273 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28274
28275 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28276 generates new AVX instructions or AVX equivalence for all SSEx instructions
28277 when needed.
28278
28279 These options enable GCC to use these extended instructions in
28280 generated code, even without @option{-mfpmath=sse}. Applications that
28281 perform run-time CPU detection must compile separate files for each
28282 supported architecture, using the appropriate flags. In particular,
28283 the file containing the CPU detection code should be compiled without
28284 these options.
28285
28286 @item -mdump-tune-features
28287 @opindex mdump-tune-features
28288 This option instructs GCC to dump the names of the x86 performance
28289 tuning features and default settings. The names can be used in
28290 @option{-mtune-ctrl=@var{feature-list}}.
28291
28292 @item -mtune-ctrl=@var{feature-list}
28293 @opindex mtune-ctrl=@var{feature-list}
28294 This option is used to do fine grain control of x86 code generation features.
28295 @var{feature-list} is a comma separated list of @var{feature} names. See also
28296 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28297 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28298 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28299 developers. Using it may lead to code paths not covered by testing and can
28300 potentially result in compiler ICEs or runtime errors.
28301
28302 @item -mno-default
28303 @opindex mno-default
28304 This option instructs GCC to turn off all tunable features. See also
28305 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28306
28307 @item -mcld
28308 @opindex mcld
28309 This option instructs GCC to emit a @code{cld} instruction in the prologue
28310 of functions that use string instructions. String instructions depend on
28311 the DF flag to select between autoincrement or autodecrement mode. While the
28312 ABI specifies the DF flag to be cleared on function entry, some operating
28313 systems violate this specification by not clearing the DF flag in their
28314 exception dispatchers. The exception handler can be invoked with the DF flag
28315 set, which leads to wrong direction mode when string instructions are used.
28316 This option can be enabled by default on 32-bit x86 targets by configuring
28317 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28318 instructions can be suppressed with the @option{-mno-cld} compiler option
28319 in this case.
28320
28321 @item -mvzeroupper
28322 @opindex mvzeroupper
28323 This option instructs GCC to emit a @code{vzeroupper} instruction
28324 before a transfer of control flow out of the function to minimize
28325 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28326 intrinsics.
28327
28328 @item -mprefer-avx128
28329 @opindex mprefer-avx128
28330 This option instructs GCC to use 128-bit AVX instructions instead of
28331 256-bit AVX instructions in the auto-vectorizer.
28332
28333 @item -mprefer-vector-width=@var{opt}
28334 @opindex mprefer-vector-width
28335 This option instructs GCC to use @var{opt}-bit vector width in instructions
28336 instead of default on the selected platform.
28337
28338 @table @samp
28339 @item none
28340 No extra limitations applied to GCC other than defined by the selected platform.
28341
28342 @item 128
28343 Prefer 128-bit vector width for instructions.
28344
28345 @item 256
28346 Prefer 256-bit vector width for instructions.
28347
28348 @item 512
28349 Prefer 512-bit vector width for instructions.
28350 @end table
28351
28352 @item -mcx16
28353 @opindex mcx16
28354 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28355 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28356 objects. This is useful for atomic updates of data structures exceeding one
28357 machine word in size. The compiler uses this instruction to implement
28358 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28359 128-bit integers, a library call is always used.
28360
28361 @item -msahf
28362 @opindex msahf
28363 This option enables generation of @code{SAHF} instructions in 64-bit code.
28364 Early Intel Pentium 4 CPUs with Intel 64 support,
28365 prior to the introduction of Pentium 4 G1 step in December 2005,
28366 lacked the @code{LAHF} and @code{SAHF} instructions
28367 which are supported by AMD64.
28368 These are load and store instructions, respectively, for certain status flags.
28369 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28370 @code{drem}, and @code{remainder} built-in functions;
28371 see @ref{Other Builtins} for details.
28372
28373 @item -mmovbe
28374 @opindex mmovbe
28375 This option enables use of the @code{movbe} instruction to implement
28376 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28377
28378 @item -mshstk
28379 @opindex mshstk
28380 The @option{-mshstk} option enables shadow stack built-in functions
28381 from x86 Control-flow Enforcement Technology (CET).
28382
28383 @item -mcrc32
28384 @opindex mcrc32
28385 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28386 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28387 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28388
28389 @item -mrecip
28390 @opindex mrecip
28391 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28392 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28393 with an additional Newton-Raphson step
28394 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28395 (and their vectorized
28396 variants) for single-precision floating-point arguments. These instructions
28397 are generated only when @option{-funsafe-math-optimizations} is enabled
28398 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28399 Note that while the throughput of the sequence is higher than the throughput
28400 of the non-reciprocal instruction, the precision of the sequence can be
28401 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28402
28403 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28404 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28405 combination), and doesn't need @option{-mrecip}.
28406
28407 Also note that GCC emits the above sequence with additional Newton-Raphson step
28408 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28409 already with @option{-ffast-math} (or the above option combination), and
28410 doesn't need @option{-mrecip}.
28411
28412 @item -mrecip=@var{opt}
28413 @opindex mrecip=opt
28414 This option controls which reciprocal estimate instructions
28415 may be used. @var{opt} is a comma-separated list of options, which may
28416 be preceded by a @samp{!} to invert the option:
28417
28418 @table @samp
28419 @item all
28420 Enable all estimate instructions.
28421
28422 @item default
28423 Enable the default instructions, equivalent to @option{-mrecip}.
28424
28425 @item none
28426 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28427
28428 @item div
28429 Enable the approximation for scalar division.
28430
28431 @item vec-div
28432 Enable the approximation for vectorized division.
28433
28434 @item sqrt
28435 Enable the approximation for scalar square root.
28436
28437 @item vec-sqrt
28438 Enable the approximation for vectorized square root.
28439 @end table
28440
28441 So, for example, @option{-mrecip=all,!sqrt} enables
28442 all of the reciprocal approximations, except for square root.
28443
28444 @item -mveclibabi=@var{type}
28445 @opindex mveclibabi
28446 Specifies the ABI type to use for vectorizing intrinsics using an
28447 external library. Supported values for @var{type} are @samp{svml}
28448 for the Intel short
28449 vector math library and @samp{acml} for the AMD math core library.
28450 To use this option, both @option{-ftree-vectorize} and
28451 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28452 ABI-compatible library must be specified at link time.
28453
28454 GCC currently emits calls to @code{vmldExp2},
28455 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28456 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28457 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28458 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28459 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28460 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28461 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28462 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28463 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28464 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28465 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28466 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28467 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28468 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28469 when @option{-mveclibabi=acml} is used.
28470
28471 @item -mabi=@var{name}
28472 @opindex mabi
28473 Generate code for the specified calling convention. Permissible values
28474 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28475 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28476 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28477 You can control this behavior for specific functions by
28478 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28479 @xref{Function Attributes}.
28480
28481 @item -mforce-indirect-call
28482 @opindex mforce-indirect-call
28483 Force all calls to functions to be indirect. This is useful
28484 when using Intel Processor Trace where it generates more precise timing
28485 information for function calls.
28486
28487 @item -mmanual-endbr
28488 @opindex mmanual-endbr
28489 Insert ENDBR instruction at function entry only via the @code{cf_check}
28490 function attribute. This is useful when used with the option
28491 @option{-fcf-protection=branch} to control ENDBR insertion at the
28492 function entry.
28493
28494 @item -mcall-ms2sysv-xlogues
28495 @opindex mcall-ms2sysv-xlogues
28496 @opindex mno-call-ms2sysv-xlogues
28497 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28498 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28499 default, the code for saving and restoring these registers is emitted inline,
28500 resulting in fairly lengthy prologues and epilogues. Using
28501 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28502 use stubs in the static portion of libgcc to perform these saves and restores,
28503 thus reducing function size at the cost of a few extra instructions.
28504
28505 @item -mtls-dialect=@var{type}
28506 @opindex mtls-dialect
28507 Generate code to access thread-local storage using the @samp{gnu} or
28508 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28509 @samp{gnu2} is more efficient, but it may add compile- and run-time
28510 requirements that cannot be satisfied on all systems.
28511
28512 @item -mpush-args
28513 @itemx -mno-push-args
28514 @opindex mpush-args
28515 @opindex mno-push-args
28516 Use PUSH operations to store outgoing parameters. This method is shorter
28517 and usually equally fast as method using SUB/MOV operations and is enabled
28518 by default. In some cases disabling it may improve performance because of
28519 improved scheduling and reduced dependencies.
28520
28521 @item -maccumulate-outgoing-args
28522 @opindex maccumulate-outgoing-args
28523 If enabled, the maximum amount of space required for outgoing arguments is
28524 computed in the function prologue. This is faster on most modern CPUs
28525 because of reduced dependencies, improved scheduling and reduced stack usage
28526 when the preferred stack boundary is not equal to 2. The drawback is a notable
28527 increase in code size. This switch implies @option{-mno-push-args}.
28528
28529 @item -mthreads
28530 @opindex mthreads
28531 Support thread-safe exception handling on MinGW. Programs that rely
28532 on thread-safe exception handling must compile and link all code with the
28533 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28534 @option{-D_MT}; when linking, it links in a special thread helper library
28535 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28536
28537 @item -mms-bitfields
28538 @itemx -mno-ms-bitfields
28539 @opindex mms-bitfields
28540 @opindex mno-ms-bitfields
28541
28542 Enable/disable bit-field layout compatible with the native Microsoft
28543 Windows compiler.
28544
28545 If @code{packed} is used on a structure, or if bit-fields are used,
28546 it may be that the Microsoft ABI lays out the structure differently
28547 than the way GCC normally does. Particularly when moving packed
28548 data between functions compiled with GCC and the native Microsoft compiler
28549 (either via function call or as data in a file), it may be necessary to access
28550 either format.
28551
28552 This option is enabled by default for Microsoft Windows
28553 targets. This behavior can also be controlled locally by use of variable
28554 or type attributes. For more information, see @ref{x86 Variable Attributes}
28555 and @ref{x86 Type Attributes}.
28556
28557 The Microsoft structure layout algorithm is fairly simple with the exception
28558 of the bit-field packing.
28559 The padding and alignment of members of structures and whether a bit-field
28560 can straddle a storage-unit boundary are determine by these rules:
28561
28562 @enumerate
28563 @item Structure members are stored sequentially in the order in which they are
28564 declared: the first member has the lowest memory address and the last member
28565 the highest.
28566
28567 @item Every data object has an alignment requirement. The alignment requirement
28568 for all data except structures, unions, and arrays is either the size of the
28569 object or the current packing size (specified with either the
28570 @code{aligned} attribute or the @code{pack} pragma),
28571 whichever is less. For structures, unions, and arrays,
28572 the alignment requirement is the largest alignment requirement of its members.
28573 Every object is allocated an offset so that:
28574
28575 @smallexample
28576 offset % alignment_requirement == 0
28577 @end smallexample
28578
28579 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28580 unit if the integral types are the same size and if the next bit-field fits
28581 into the current allocation unit without crossing the boundary imposed by the
28582 common alignment requirements of the bit-fields.
28583 @end enumerate
28584
28585 MSVC interprets zero-length bit-fields in the following ways:
28586
28587 @enumerate
28588 @item If a zero-length bit-field is inserted between two bit-fields that
28589 are normally coalesced, the bit-fields are not coalesced.
28590
28591 For example:
28592
28593 @smallexample
28594 struct
28595 @{
28596 unsigned long bf_1 : 12;
28597 unsigned long : 0;
28598 unsigned long bf_2 : 12;
28599 @} t1;
28600 @end smallexample
28601
28602 @noindent
28603 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28604 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28605
28606 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28607 alignment of the zero-length bit-field is greater than the member that follows it,
28608 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28609
28610 For example:
28611
28612 @smallexample
28613 struct
28614 @{
28615 char foo : 4;
28616 short : 0;
28617 char bar;
28618 @} t2;
28619
28620 struct
28621 @{
28622 char foo : 4;
28623 short : 0;
28624 double bar;
28625 @} t3;
28626 @end smallexample
28627
28628 @noindent
28629 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28630 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28631 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28632 of the structure.
28633
28634 Taking this into account, it is important to note the following:
28635
28636 @enumerate
28637 @item If a zero-length bit-field follows a normal bit-field, the type of the
28638 zero-length bit-field may affect the alignment of the structure as whole. For
28639 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28640 normal bit-field, and is of type short.
28641
28642 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28643 still affect the alignment of the structure:
28644
28645 @smallexample
28646 struct
28647 @{
28648 char foo : 6;
28649 long : 0;
28650 @} t4;
28651 @end smallexample
28652
28653 @noindent
28654 Here, @code{t4} takes up 4 bytes.
28655 @end enumerate
28656
28657 @item Zero-length bit-fields following non-bit-field members are ignored:
28658
28659 @smallexample
28660 struct
28661 @{
28662 char foo;
28663 long : 0;
28664 char bar;
28665 @} t5;
28666 @end smallexample
28667
28668 @noindent
28669 Here, @code{t5} takes up 2 bytes.
28670 @end enumerate
28671
28672
28673 @item -mno-align-stringops
28674 @opindex mno-align-stringops
28675 @opindex malign-stringops
28676 Do not align the destination of inlined string operations. This switch reduces
28677 code size and improves performance in case the destination is already aligned,
28678 but GCC doesn't know about it.
28679
28680 @item -minline-all-stringops
28681 @opindex minline-all-stringops
28682 By default GCC inlines string operations only when the destination is
28683 known to be aligned to least a 4-byte boundary.
28684 This enables more inlining and increases code
28685 size, but may improve performance of code that depends on fast
28686 @code{memcpy} and @code{memset} for short lengths.
28687 The option enables inline expansion of @code{strlen} for all
28688 pointer alignments.
28689
28690 @item -minline-stringops-dynamically
28691 @opindex minline-stringops-dynamically
28692 For string operations of unknown size, use run-time checks with
28693 inline code for small blocks and a library call for large blocks.
28694
28695 @item -mstringop-strategy=@var{alg}
28696 @opindex mstringop-strategy=@var{alg}
28697 Override the internal decision heuristic for the particular algorithm to use
28698 for inlining string operations. The allowed values for @var{alg} are:
28699
28700 @table @samp
28701 @item rep_byte
28702 @itemx rep_4byte
28703 @itemx rep_8byte
28704 Expand using i386 @code{rep} prefix of the specified size.
28705
28706 @item byte_loop
28707 @itemx loop
28708 @itemx unrolled_loop
28709 Expand into an inline loop.
28710
28711 @item libcall
28712 Always use a library call.
28713 @end table
28714
28715 @item -mmemcpy-strategy=@var{strategy}
28716 @opindex mmemcpy-strategy=@var{strategy}
28717 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28718 should be inlined and what inline algorithm to use when the expected size
28719 of the copy operation is known. @var{strategy}
28720 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28721 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28722 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28723 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28724 in the list must be specified in increasing order. The minimal byte size for
28725 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28726 preceding range.
28727
28728 @item -mmemset-strategy=@var{strategy}
28729 @opindex mmemset-strategy=@var{strategy}
28730 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28731 @code{__builtin_memset} expansion.
28732
28733 @item -momit-leaf-frame-pointer
28734 @opindex momit-leaf-frame-pointer
28735 Don't keep the frame pointer in a register for leaf functions. This
28736 avoids the instructions to save, set up, and restore frame pointers and
28737 makes an extra register available in leaf functions. The option
28738 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28739 which might make debugging harder.
28740
28741 @item -mtls-direct-seg-refs
28742 @itemx -mno-tls-direct-seg-refs
28743 @opindex mtls-direct-seg-refs
28744 Controls whether TLS variables may be accessed with offsets from the
28745 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28746 or whether the thread base pointer must be added. Whether or not this
28747 is valid depends on the operating system, and whether it maps the
28748 segment to cover the entire TLS area.
28749
28750 For systems that use the GNU C Library, the default is on.
28751
28752 @item -msse2avx
28753 @itemx -mno-sse2avx
28754 @opindex msse2avx
28755 Specify that the assembler should encode SSE instructions with VEX
28756 prefix. The option @option{-mavx} turns this on by default.
28757
28758 @item -mfentry
28759 @itemx -mno-fentry
28760 @opindex mfentry
28761 If profiling is active (@option{-pg}), put the profiling
28762 counter call before the prologue.
28763 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28764 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28765
28766 @item -mrecord-mcount
28767 @itemx -mno-record-mcount
28768 @opindex mrecord-mcount
28769 If profiling is active (@option{-pg}), generate a __mcount_loc section
28770 that contains pointers to each profiling call. This is useful for
28771 automatically patching and out calls.
28772
28773 @item -mnop-mcount
28774 @itemx -mno-nop-mcount
28775 @opindex mnop-mcount
28776 If profiling is active (@option{-pg}), generate the calls to
28777 the profiling functions as NOPs. This is useful when they
28778 should be patched in later dynamically. This is likely only
28779 useful together with @option{-mrecord-mcount}.
28780
28781 @item -minstrument-return=@var{type}
28782 @opindex minstrument-return
28783 Instrument function exit in -pg -mfentry instrumented functions with
28784 call to specified function. This only instruments true returns ending
28785 with ret, but not sibling calls ending with jump. Valid types
28786 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28787 or @var{nop5} to generate a 5 byte nop.
28788
28789 @item -mrecord-return
28790 @itemx -mno-record-return
28791 @opindex mrecord-return
28792 Generate a __return_loc section pointing to all return instrumentation code.
28793
28794 @item -mfentry-name=@var{name}
28795 @opindex mfentry-name
28796 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28797
28798 @item -mfentry-section=@var{name}
28799 @opindex mfentry-section
28800 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28801
28802 @item -mskip-rax-setup
28803 @itemx -mno-skip-rax-setup
28804 @opindex mskip-rax-setup
28805 When generating code for the x86-64 architecture with SSE extensions
28806 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28807 register when there are no variable arguments passed in vector registers.
28808
28809 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28810 saving vector registers on stack when passing variable arguments, the
28811 impacts of this option are callees may waste some stack space,
28812 misbehave or jump to a random location. GCC 4.4 or newer don't have
28813 those issues, regardless the RAX register value.
28814
28815 @item -m8bit-idiv
28816 @itemx -mno-8bit-idiv
28817 @opindex m8bit-idiv
28818 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28819 much faster than 32-bit/64-bit integer divide. This option generates a
28820 run-time check. If both dividend and divisor are within range of 0
28821 to 255, 8-bit unsigned integer divide is used instead of
28822 32-bit/64-bit integer divide.
28823
28824 @item -mavx256-split-unaligned-load
28825 @itemx -mavx256-split-unaligned-store
28826 @opindex mavx256-split-unaligned-load
28827 @opindex mavx256-split-unaligned-store
28828 Split 32-byte AVX unaligned load and store.
28829
28830 @item -mstack-protector-guard=@var{guard}
28831 @itemx -mstack-protector-guard-reg=@var{reg}
28832 @itemx -mstack-protector-guard-offset=@var{offset}
28833 @opindex mstack-protector-guard
28834 @opindex mstack-protector-guard-reg
28835 @opindex mstack-protector-guard-offset
28836 Generate stack protection code using canary at @var{guard}. Supported
28837 locations are @samp{global} for global canary or @samp{tls} for per-thread
28838 canary in the TLS block (the default). This option has effect only when
28839 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28840
28841 With the latter choice the options
28842 @option{-mstack-protector-guard-reg=@var{reg}} and
28843 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28844 which segment register (@code{%fs} or @code{%gs}) to use as base register
28845 for reading the canary, and from what offset from that base register.
28846 The default for those is as specified in the relevant ABI.
28847
28848 @item -mgeneral-regs-only
28849 @opindex mgeneral-regs-only
28850 Generate code that uses only the general-purpose registers. This
28851 prevents the compiler from using floating-point, vector, mask and bound
28852 registers.
28853
28854 @item -mindirect-branch=@var{choice}
28855 @opindex mindirect-branch
28856 Convert indirect call and jump with @var{choice}. The default is
28857 @samp{keep}, which keeps indirect call and jump unmodified.
28858 @samp{thunk} converts indirect call and jump to call and return thunk.
28859 @samp{thunk-inline} converts indirect call and jump to inlined call
28860 and return thunk. @samp{thunk-extern} converts indirect call and jump
28861 to external call and return thunk provided in a separate object file.
28862 You can control this behavior for a specific function by using the
28863 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28864
28865 Note that @option{-mcmodel=large} is incompatible with
28866 @option{-mindirect-branch=thunk} and
28867 @option{-mindirect-branch=thunk-extern} since the thunk function may
28868 not be reachable in the large code model.
28869
28870 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28871 @option{-fcf-protection=branch} since the external thunk cannot be modified
28872 to disable control-flow check.
28873
28874 @item -mfunction-return=@var{choice}
28875 @opindex mfunction-return
28876 Convert function return with @var{choice}. The default is @samp{keep},
28877 which keeps function return unmodified. @samp{thunk} converts function
28878 return to call and return thunk. @samp{thunk-inline} converts function
28879 return to inlined call and return thunk. @samp{thunk-extern} converts
28880 function return to external call and return thunk provided in a separate
28881 object file. You can control this behavior for a specific function by
28882 using the function attribute @code{function_return}.
28883 @xref{Function Attributes}.
28884
28885 Note that @option{-mcmodel=large} is incompatible with
28886 @option{-mfunction-return=thunk} and
28887 @option{-mfunction-return=thunk-extern} since the thunk function may
28888 not be reachable in the large code model.
28889
28890
28891 @item -mindirect-branch-register
28892 @opindex mindirect-branch-register
28893 Force indirect call and jump via register.
28894
28895 @end table
28896
28897 These @samp{-m} switches are supported in addition to the above
28898 on x86-64 processors in 64-bit environments.
28899
28900 @table @gcctabopt
28901 @item -m32
28902 @itemx -m64
28903 @itemx -mx32
28904 @itemx -m16
28905 @itemx -miamcu
28906 @opindex m32
28907 @opindex m64
28908 @opindex mx32
28909 @opindex m16
28910 @opindex miamcu
28911 Generate code for a 16-bit, 32-bit or 64-bit environment.
28912 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28913 to 32 bits, and
28914 generates code that runs on any i386 system.
28915
28916 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28917 types to 64 bits, and generates code for the x86-64 architecture.
28918 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28919 and @option{-mdynamic-no-pic} options.
28920
28921 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28922 to 32 bits, and
28923 generates code for the x86-64 architecture.
28924
28925 The @option{-m16} option is the same as @option{-m32}, except for that
28926 it outputs the @code{.code16gcc} assembly directive at the beginning of
28927 the assembly output so that the binary can run in 16-bit mode.
28928
28929 The @option{-miamcu} option generates code which conforms to Intel MCU
28930 psABI. It requires the @option{-m32} option to be turned on.
28931
28932 @item -mno-red-zone
28933 @opindex mno-red-zone
28934 @opindex mred-zone
28935 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28936 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28937 stack pointer that is not modified by signal or interrupt handlers
28938 and therefore can be used for temporary data without adjusting the stack
28939 pointer. The flag @option{-mno-red-zone} disables this red zone.
28940
28941 @item -mcmodel=small
28942 @opindex mcmodel=small
28943 Generate code for the small code model: the program and its symbols must
28944 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28945 Programs can be statically or dynamically linked. This is the default
28946 code model.
28947
28948 @item -mcmodel=kernel
28949 @opindex mcmodel=kernel
28950 Generate code for the kernel code model. The kernel runs in the
28951 negative 2 GB of the address space.
28952 This model has to be used for Linux kernel code.
28953
28954 @item -mcmodel=medium
28955 @opindex mcmodel=medium
28956 Generate code for the medium model: the program is linked in the lower 2
28957 GB of the address space. Small symbols are also placed there. Symbols
28958 with sizes larger than @option{-mlarge-data-threshold} are put into
28959 large data or BSS sections and can be located above 2GB. Programs can
28960 be statically or dynamically linked.
28961
28962 @item -mcmodel=large
28963 @opindex mcmodel=large
28964 Generate code for the large model. This model makes no assumptions
28965 about addresses and sizes of sections.
28966
28967 @item -maddress-mode=long
28968 @opindex maddress-mode=long
28969 Generate code for long address mode. This is only supported for 64-bit
28970 and x32 environments. It is the default address mode for 64-bit
28971 environments.
28972
28973 @item -maddress-mode=short
28974 @opindex maddress-mode=short
28975 Generate code for short address mode. This is only supported for 32-bit
28976 and x32 environments. It is the default address mode for 32-bit and
28977 x32 environments.
28978 @end table
28979
28980 @node x86 Windows Options
28981 @subsection x86 Windows Options
28982 @cindex x86 Windows Options
28983 @cindex Windows Options for x86
28984
28985 These additional options are available for Microsoft Windows targets:
28986
28987 @table @gcctabopt
28988 @item -mconsole
28989 @opindex mconsole
28990 This option
28991 specifies that a console application is to be generated, by
28992 instructing the linker to set the PE header subsystem type
28993 required for console applications.
28994 This option is available for Cygwin and MinGW targets and is
28995 enabled by default on those targets.
28996
28997 @item -mdll
28998 @opindex mdll
28999 This option is available for Cygwin and MinGW targets. It
29000 specifies that a DLL---a dynamic link library---is to be
29001 generated, enabling the selection of the required runtime
29002 startup object and entry point.
29003
29004 @item -mnop-fun-dllimport
29005 @opindex mnop-fun-dllimport
29006 This option is available for Cygwin and MinGW targets. It
29007 specifies that the @code{dllimport} attribute should be ignored.
29008
29009 @item -mthread
29010 @opindex mthread
29011 This option is available for MinGW targets. It specifies
29012 that MinGW-specific thread support is to be used.
29013
29014 @item -municode
29015 @opindex municode
29016 This option is available for MinGW-w64 targets. It causes
29017 the @code{UNICODE} preprocessor macro to be predefined, and
29018 chooses Unicode-capable runtime startup code.
29019
29020 @item -mwin32
29021 @opindex mwin32
29022 This option is available for Cygwin and MinGW targets. It
29023 specifies that the typical Microsoft Windows predefined macros are to
29024 be set in the pre-processor, but does not influence the choice
29025 of runtime library/startup code.
29026
29027 @item -mwindows
29028 @opindex mwindows
29029 This option is available for Cygwin and MinGW targets. It
29030 specifies that a GUI application is to be generated by
29031 instructing the linker to set the PE header subsystem type
29032 appropriately.
29033
29034 @item -fno-set-stack-executable
29035 @opindex fno-set-stack-executable
29036 @opindex fset-stack-executable
29037 This option is available for MinGW targets. It specifies that
29038 the executable flag for the stack used by nested functions isn't
29039 set. This is necessary for binaries running in kernel mode of
29040 Microsoft Windows, as there the User32 API, which is used to set executable
29041 privileges, isn't available.
29042
29043 @item -fwritable-relocated-rdata
29044 @opindex fno-writable-relocated-rdata
29045 @opindex fwritable-relocated-rdata
29046 This option is available for MinGW and Cygwin targets. It specifies
29047 that relocated-data in read-only section is put into the @code{.data}
29048 section. This is a necessary for older runtimes not supporting
29049 modification of @code{.rdata} sections for pseudo-relocation.
29050
29051 @item -mpe-aligned-commons
29052 @opindex mpe-aligned-commons
29053 This option is available for Cygwin and MinGW targets. It
29054 specifies that the GNU extension to the PE file format that
29055 permits the correct alignment of COMMON variables should be
29056 used when generating code. It is enabled by default if
29057 GCC detects that the target assembler found during configuration
29058 supports the feature.
29059 @end table
29060
29061 See also under @ref{x86 Options} for standard options.
29062
29063 @node Xstormy16 Options
29064 @subsection Xstormy16 Options
29065 @cindex Xstormy16 Options
29066
29067 These options are defined for Xstormy16:
29068
29069 @table @gcctabopt
29070 @item -msim
29071 @opindex msim
29072 Choose startup files and linker script suitable for the simulator.
29073 @end table
29074
29075 @node Xtensa Options
29076 @subsection Xtensa Options
29077 @cindex Xtensa Options
29078
29079 These options are supported for Xtensa targets:
29080
29081 @table @gcctabopt
29082 @item -mconst16
29083 @itemx -mno-const16
29084 @opindex mconst16
29085 @opindex mno-const16
29086 Enable or disable use of @code{CONST16} instructions for loading
29087 constant values. The @code{CONST16} instruction is currently not a
29088 standard option from Tensilica. When enabled, @code{CONST16}
29089 instructions are always used in place of the standard @code{L32R}
29090 instructions. The use of @code{CONST16} is enabled by default only if
29091 the @code{L32R} instruction is not available.
29092
29093 @item -mfused-madd
29094 @itemx -mno-fused-madd
29095 @opindex mfused-madd
29096 @opindex mno-fused-madd
29097 Enable or disable use of fused multiply/add and multiply/subtract
29098 instructions in the floating-point option. This has no effect if the
29099 floating-point option is not also enabled. Disabling fused multiply/add
29100 and multiply/subtract instructions forces the compiler to use separate
29101 instructions for the multiply and add/subtract operations. This may be
29102 desirable in some cases where strict IEEE 754-compliant results are
29103 required: the fused multiply add/subtract instructions do not round the
29104 intermediate result, thereby producing results with @emph{more} bits of
29105 precision than specified by the IEEE standard. Disabling fused multiply
29106 add/subtract instructions also ensures that the program output is not
29107 sensitive to the compiler's ability to combine multiply and add/subtract
29108 operations.
29109
29110 @item -mserialize-volatile
29111 @itemx -mno-serialize-volatile
29112 @opindex mserialize-volatile
29113 @opindex mno-serialize-volatile
29114 When this option is enabled, GCC inserts @code{MEMW} instructions before
29115 @code{volatile} memory references to guarantee sequential consistency.
29116 The default is @option{-mserialize-volatile}. Use
29117 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
29118
29119 @item -mforce-no-pic
29120 @opindex mforce-no-pic
29121 For targets, like GNU/Linux, where all user-mode Xtensa code must be
29122 position-independent code (PIC), this option disables PIC for compiling
29123 kernel code.
29124
29125 @item -mtext-section-literals
29126 @itemx -mno-text-section-literals
29127 @opindex mtext-section-literals
29128 @opindex mno-text-section-literals
29129 These options control the treatment of literal pools. The default is
29130 @option{-mno-text-section-literals}, which places literals in a separate
29131 section in the output file. This allows the literal pool to be placed
29132 in a data RAM/ROM, and it also allows the linker to combine literal
29133 pools from separate object files to remove redundant literals and
29134 improve code size. With @option{-mtext-section-literals}, the literals
29135 are interspersed in the text section in order to keep them as close as
29136 possible to their references. This may be necessary for large assembly
29137 files. Literals for each function are placed right before that function.
29138
29139 @item -mauto-litpools
29140 @itemx -mno-auto-litpools
29141 @opindex mauto-litpools
29142 @opindex mno-auto-litpools
29143 These options control the treatment of literal pools. The default is
29144 @option{-mno-auto-litpools}, which places literals in a separate
29145 section in the output file unless @option{-mtext-section-literals} is
29146 used. With @option{-mauto-litpools} the literals are interspersed in
29147 the text section by the assembler. Compiler does not produce explicit
29148 @code{.literal} directives and loads literals into registers with
29149 @code{MOVI} instructions instead of @code{L32R} to let the assembler
29150 do relaxation and place literals as necessary. This option allows
29151 assembler to create several literal pools per function and assemble
29152 very big functions, which may not be possible with
29153 @option{-mtext-section-literals}.
29154
29155 @item -mtarget-align
29156 @itemx -mno-target-align
29157 @opindex mtarget-align
29158 @opindex mno-target-align
29159 When this option is enabled, GCC instructs the assembler to
29160 automatically align instructions to reduce branch penalties at the
29161 expense of some code density. The assembler attempts to widen density
29162 instructions to align branch targets and the instructions following call
29163 instructions. If there are not enough preceding safe density
29164 instructions to align a target, no widening is performed. The
29165 default is @option{-mtarget-align}. These options do not affect the
29166 treatment of auto-aligned instructions like @code{LOOP}, which the
29167 assembler always aligns, either by widening density instructions or
29168 by inserting NOP instructions.
29169
29170 @item -mlongcalls
29171 @itemx -mno-longcalls
29172 @opindex mlongcalls
29173 @opindex mno-longcalls
29174 When this option is enabled, GCC instructs the assembler to translate
29175 direct calls to indirect calls unless it can determine that the target
29176 of a direct call is in the range allowed by the call instruction. This
29177 translation typically occurs for calls to functions in other source
29178 files. Specifically, the assembler translates a direct @code{CALL}
29179 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29180 The default is @option{-mno-longcalls}. This option should be used in
29181 programs where the call target can potentially be out of range. This
29182 option is implemented in the assembler, not the compiler, so the
29183 assembly code generated by GCC still shows direct call
29184 instructions---look at the disassembled object code to see the actual
29185 instructions. Note that the assembler uses an indirect call for
29186 every cross-file call, not just those that really are out of range.
29187 @end table
29188
29189 @node zSeries Options
29190 @subsection zSeries Options
29191 @cindex zSeries options
29192
29193 These are listed under @xref{S/390 and zSeries Options}.
29194
29195
29196 @c man end
29197
29198 @node Spec Files
29199 @section Specifying Subprocesses and the Switches to Pass to Them
29200 @cindex Spec Files
29201
29202 @command{gcc} is a driver program. It performs its job by invoking a
29203 sequence of other programs to do the work of compiling, assembling and
29204 linking. GCC interprets its command-line parameters and uses these to
29205 deduce which programs it should invoke, and which command-line options
29206 it ought to place on their command lines. This behavior is controlled
29207 by @dfn{spec strings}. In most cases there is one spec string for each
29208 program that GCC can invoke, but a few programs have multiple spec
29209 strings to control their behavior. The spec strings built into GCC can
29210 be overridden by using the @option{-specs=} command-line switch to specify
29211 a spec file.
29212
29213 @dfn{Spec files} are plain-text files that are used to construct spec
29214 strings. They consist of a sequence of directives separated by blank
29215 lines. The type of directive is determined by the first non-whitespace
29216 character on the line, which can be one of the following:
29217
29218 @table @code
29219 @item %@var{command}
29220 Issues a @var{command} to the spec file processor. The commands that can
29221 appear here are:
29222
29223 @table @code
29224 @item %include <@var{file}>
29225 @cindex @code{%include}
29226 Search for @var{file} and insert its text at the current point in the
29227 specs file.
29228
29229 @item %include_noerr <@var{file}>
29230 @cindex @code{%include_noerr}
29231 Just like @samp{%include}, but do not generate an error message if the include
29232 file cannot be found.
29233
29234 @item %rename @var{old_name} @var{new_name}
29235 @cindex @code{%rename}
29236 Rename the spec string @var{old_name} to @var{new_name}.
29237
29238 @end table
29239
29240 @item *[@var{spec_name}]:
29241 This tells the compiler to create, override or delete the named spec
29242 string. All lines after this directive up to the next directive or
29243 blank line are considered to be the text for the spec string. If this
29244 results in an empty string then the spec is deleted. (Or, if the
29245 spec did not exist, then nothing happens.) Otherwise, if the spec
29246 does not currently exist a new spec is created. If the spec does
29247 exist then its contents are overridden by the text of this
29248 directive, unless the first character of that text is the @samp{+}
29249 character, in which case the text is appended to the spec.
29250
29251 @item [@var{suffix}]:
29252 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29253 and up to the next directive or blank line are considered to make up the
29254 spec string for the indicated suffix. When the compiler encounters an
29255 input file with the named suffix, it processes the spec string in
29256 order to work out how to compile that file. For example:
29257
29258 @smallexample
29259 .ZZ:
29260 z-compile -input %i
29261 @end smallexample
29262
29263 This says that any input file whose name ends in @samp{.ZZ} should be
29264 passed to the program @samp{z-compile}, which should be invoked with the
29265 command-line switch @option{-input} and with the result of performing the
29266 @samp{%i} substitution. (See below.)
29267
29268 As an alternative to providing a spec string, the text following a
29269 suffix directive can be one of the following:
29270
29271 @table @code
29272 @item @@@var{language}
29273 This says that the suffix is an alias for a known @var{language}. This is
29274 similar to using the @option{-x} command-line switch to GCC to specify a
29275 language explicitly. For example:
29276
29277 @smallexample
29278 .ZZ:
29279 @@c++
29280 @end smallexample
29281
29282 Says that .ZZ files are, in fact, C++ source files.
29283
29284 @item #@var{name}
29285 This causes an error messages saying:
29286
29287 @smallexample
29288 @var{name} compiler not installed on this system.
29289 @end smallexample
29290 @end table
29291
29292 GCC already has an extensive list of suffixes built into it.
29293 This directive adds an entry to the end of the list of suffixes, but
29294 since the list is searched from the end backwards, it is effectively
29295 possible to override earlier entries using this technique.
29296
29297 @end table
29298
29299 GCC has the following spec strings built into it. Spec files can
29300 override these strings or create their own. Note that individual
29301 targets can also add their own spec strings to this list.
29302
29303 @smallexample
29304 asm Options to pass to the assembler
29305 asm_final Options to pass to the assembler post-processor
29306 cpp Options to pass to the C preprocessor
29307 cc1 Options to pass to the C compiler
29308 cc1plus Options to pass to the C++ compiler
29309 endfile Object files to include at the end of the link
29310 link Options to pass to the linker
29311 lib Libraries to include on the command line to the linker
29312 libgcc Decides which GCC support library to pass to the linker
29313 linker Sets the name of the linker
29314 predefines Defines to be passed to the C preprocessor
29315 signed_char Defines to pass to CPP to say whether @code{char} is signed
29316 by default
29317 startfile Object files to include at the start of the link
29318 @end smallexample
29319
29320 Here is a small example of a spec file:
29321
29322 @smallexample
29323 %rename lib old_lib
29324
29325 *lib:
29326 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29327 @end smallexample
29328
29329 This example renames the spec called @samp{lib} to @samp{old_lib} and
29330 then overrides the previous definition of @samp{lib} with a new one.
29331 The new definition adds in some extra command-line options before
29332 including the text of the old definition.
29333
29334 @dfn{Spec strings} are a list of command-line options to be passed to their
29335 corresponding program. In addition, the spec strings can contain
29336 @samp{%}-prefixed sequences to substitute variable text or to
29337 conditionally insert text into the command line. Using these constructs
29338 it is possible to generate quite complex command lines.
29339
29340 Here is a table of all defined @samp{%}-sequences for spec
29341 strings. Note that spaces are not generated automatically around the
29342 results of expanding these sequences. Therefore you can concatenate them
29343 together or combine them with constant text in a single argument.
29344
29345 @table @code
29346 @item %%
29347 Substitute one @samp{%} into the program name or argument.
29348
29349 @item %i
29350 Substitute the name of the input file being processed.
29351
29352 @item %b
29353 Substitute the basename of the input file being processed.
29354 This is the substring up to (and not including) the last period
29355 and not including the directory.
29356
29357 @item %B
29358 This is the same as @samp{%b}, but include the file suffix (text after
29359 the last period).
29360
29361 @item %d
29362 Marks the argument containing or following the @samp{%d} as a
29363 temporary file name, so that that file is deleted if GCC exits
29364 successfully. Unlike @samp{%g}, this contributes no text to the
29365 argument.
29366
29367 @item %g@var{suffix}
29368 Substitute a file name that has suffix @var{suffix} and is chosen
29369 once per compilation, and mark the argument in the same way as
29370 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29371 name is now chosen in a way that is hard to predict even when previously
29372 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29373 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29374 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29375 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29376 was simply substituted with a file name chosen once per compilation,
29377 without regard to any appended suffix (which was therefore treated
29378 just like ordinary text), making such attacks more likely to succeed.
29379
29380 @item %u@var{suffix}
29381 Like @samp{%g}, but generates a new temporary file name
29382 each time it appears instead of once per compilation.
29383
29384 @item %U@var{suffix}
29385 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29386 new one if there is no such last file name. In the absence of any
29387 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29388 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29389 involves the generation of two distinct file names, one
29390 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29391 simply substituted with a file name chosen for the previous @samp{%u},
29392 without regard to any appended suffix.
29393
29394 @item %j@var{suffix}
29395 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29396 writable, and if @option{-save-temps} is not used;
29397 otherwise, substitute the name
29398 of a temporary file, just like @samp{%u}. This temporary file is not
29399 meant for communication between processes, but rather as a junk
29400 disposal mechanism.
29401
29402 @item %|@var{suffix}
29403 @itemx %m@var{suffix}
29404 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29405 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29406 all. These are the two most common ways to instruct a program that it
29407 should read from standard input or write to standard output. If you
29408 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29409 construct: see for example @file{gcc/fortran/lang-specs.h}.
29410
29411 @item %.@var{SUFFIX}
29412 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29413 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29414 terminated by the next space or %.
29415
29416 @item %w
29417 Marks the argument containing or following the @samp{%w} as the
29418 designated output file of this compilation. This puts the argument
29419 into the sequence of arguments that @samp{%o} substitutes.
29420
29421 @item %o
29422 Substitutes the names of all the output files, with spaces
29423 automatically placed around them. You should write spaces
29424 around the @samp{%o} as well or the results are undefined.
29425 @samp{%o} is for use in the specs for running the linker.
29426 Input files whose names have no recognized suffix are not compiled
29427 at all, but they are included among the output files, so they are
29428 linked.
29429
29430 @item %O
29431 Substitutes the suffix for object files. Note that this is
29432 handled specially when it immediately follows @samp{%g, %u, or %U},
29433 because of the need for those to form complete file names. The
29434 handling is such that @samp{%O} is treated exactly as if it had already
29435 been substituted, except that @samp{%g, %u, and %U} do not currently
29436 support additional @var{suffix} characters following @samp{%O} as they do
29437 following, for example, @samp{.o}.
29438
29439 @item %p
29440 Substitutes the standard macro predefinitions for the
29441 current target machine. Use this when running @command{cpp}.
29442
29443 @item %P
29444 Like @samp{%p}, but puts @samp{__} before and after the name of each
29445 predefined macro, except for macros that start with @samp{__} or with
29446 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29447 C@.
29448
29449 @item %I
29450 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29451 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29452 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29453 and @option{-imultilib} as necessary.
29454
29455 @item %s
29456 Current argument is the name of a library or startup file of some sort.
29457 Search for that file in a standard list of directories and substitute
29458 the full name found. The current working directory is included in the
29459 list of directories scanned.
29460
29461 @item %T
29462 Current argument is the name of a linker script. Search for that file
29463 in the current list of directories to scan for libraries. If the file
29464 is located insert a @option{--script} option into the command line
29465 followed by the full path name found. If the file is not found then
29466 generate an error message. Note: the current working directory is not
29467 searched.
29468
29469 @item %e@var{str}
29470 Print @var{str} as an error message. @var{str} is terminated by a newline.
29471 Use this when inconsistent options are detected.
29472
29473 @item %(@var{name})
29474 Substitute the contents of spec string @var{name} at this point.
29475
29476 @item %x@{@var{option}@}
29477 Accumulate an option for @samp{%X}.
29478
29479 @item %X
29480 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29481 spec string.
29482
29483 @item %Y
29484 Output the accumulated assembler options specified by @option{-Wa}.
29485
29486 @item %Z
29487 Output the accumulated preprocessor options specified by @option{-Wp}.
29488
29489 @item %a
29490 Process the @code{asm} spec. This is used to compute the
29491 switches to be passed to the assembler.
29492
29493 @item %A
29494 Process the @code{asm_final} spec. This is a spec string for
29495 passing switches to an assembler post-processor, if such a program is
29496 needed.
29497
29498 @item %l
29499 Process the @code{link} spec. This is the spec for computing the
29500 command line passed to the linker. Typically it makes use of the
29501 @samp{%L %G %S %D and %E} sequences.
29502
29503 @item %D
29504 Dump out a @option{-L} option for each directory that GCC believes might
29505 contain startup files. If the target supports multilibs then the
29506 current multilib directory is prepended to each of these paths.
29507
29508 @item %L
29509 Process the @code{lib} spec. This is a spec string for deciding which
29510 libraries are included on the command line to the linker.
29511
29512 @item %G
29513 Process the @code{libgcc} spec. This is a spec string for deciding
29514 which GCC support library is included on the command line to the linker.
29515
29516 @item %S
29517 Process the @code{startfile} spec. This is a spec for deciding which
29518 object files are the first ones passed to the linker. Typically
29519 this might be a file named @file{crt0.o}.
29520
29521 @item %E
29522 Process the @code{endfile} spec. This is a spec string that specifies
29523 the last object files that are passed to the linker.
29524
29525 @item %C
29526 Process the @code{cpp} spec. This is used to construct the arguments
29527 to be passed to the C preprocessor.
29528
29529 @item %1
29530 Process the @code{cc1} spec. This is used to construct the options to be
29531 passed to the actual C compiler (@command{cc1}).
29532
29533 @item %2
29534 Process the @code{cc1plus} spec. This is used to construct the options to be
29535 passed to the actual C++ compiler (@command{cc1plus}).
29536
29537 @item %*
29538 Substitute the variable part of a matched option. See below.
29539 Note that each comma in the substituted string is replaced by
29540 a single space.
29541
29542 @item %<S
29543 Remove all occurrences of @code{-S} from the command line. Note---this
29544 command is position dependent. @samp{%} commands in the spec string
29545 before this one see @code{-S}, @samp{%} commands in the spec string
29546 after this one do not.
29547
29548 @item %:@var{function}(@var{args})
29549 Call the named function @var{function}, passing it @var{args}.
29550 @var{args} is first processed as a nested spec string, then split
29551 into an argument vector in the usual fashion. The function returns
29552 a string which is processed as if it had appeared literally as part
29553 of the current spec.
29554
29555 The following built-in spec functions are provided:
29556
29557 @table @code
29558 @item @code{getenv}
29559 The @code{getenv} spec function takes two arguments: an environment
29560 variable name and a string. If the environment variable is not
29561 defined, a fatal error is issued. Otherwise, the return value is the
29562 value of the environment variable concatenated with the string. For
29563 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29564
29565 @smallexample
29566 %:getenv(TOPDIR /include)
29567 @end smallexample
29568
29569 expands to @file{/path/to/top/include}.
29570
29571 @item @code{if-exists}
29572 The @code{if-exists} spec function takes one argument, an absolute
29573 pathname to a file. If the file exists, @code{if-exists} returns the
29574 pathname. Here is a small example of its usage:
29575
29576 @smallexample
29577 *startfile:
29578 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29579 @end smallexample
29580
29581 @item @code{if-exists-else}
29582 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29583 spec function, except that it takes two arguments. The first argument is
29584 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29585 returns the pathname. If it does not exist, it returns the second argument.
29586 This way, @code{if-exists-else} can be used to select one file or another,
29587 based on the existence of the first. Here is a small example of its usage:
29588
29589 @smallexample
29590 *startfile:
29591 crt0%O%s %:if-exists(crti%O%s) \
29592 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29593 @end smallexample
29594
29595 @item @code{replace-outfile}
29596 The @code{replace-outfile} spec function takes two arguments. It looks for the
29597 first argument in the outfiles array and replaces it with the second argument. Here
29598 is a small example of its usage:
29599
29600 @smallexample
29601 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29602 @end smallexample
29603
29604 @item @code{remove-outfile}
29605 The @code{remove-outfile} spec function takes one argument. It looks for the
29606 first argument in the outfiles array and removes it. Here is a small example
29607 its usage:
29608
29609 @smallexample
29610 %:remove-outfile(-lm)
29611 @end smallexample
29612
29613 @item @code{pass-through-libs}
29614 The @code{pass-through-libs} spec function takes any number of arguments. It
29615 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29616 assumes are the names of linker input library archive files) and returns a
29617 result containing all the found arguments each prepended by
29618 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29619 intended to be passed to the LTO linker plugin.
29620
29621 @smallexample
29622 %:pass-through-libs(%G %L %G)
29623 @end smallexample
29624
29625 @item @code{print-asm-header}
29626 The @code{print-asm-header} function takes no arguments and simply
29627 prints a banner like:
29628
29629 @smallexample
29630 Assembler options
29631 =================
29632
29633 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29634 @end smallexample
29635
29636 It is used to separate compiler options from assembler options
29637 in the @option{--target-help} output.
29638 @end table
29639
29640 @item %@{S@}
29641 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29642 If that switch is not specified, this substitutes nothing. Note that
29643 the leading dash is omitted when specifying this option, and it is
29644 automatically inserted if the substitution is performed. Thus the spec
29645 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29646 and outputs the command-line option @option{-foo}.
29647
29648 @item %W@{S@}
29649 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29650 deleted on failure.
29651
29652 @item %@{S*@}
29653 Substitutes all the switches specified to GCC whose names start
29654 with @code{-S}, but which also take an argument. This is used for
29655 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29656 GCC considers @option{-o foo} as being
29657 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29658 text, including the space. Thus two arguments are generated.
29659
29660 @item %@{S*&T*@}
29661 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29662 (the order of @code{S} and @code{T} in the spec is not significant).
29663 There can be any number of ampersand-separated variables; for each the
29664 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29665
29666 @item %@{S:X@}
29667 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29668
29669 @item %@{!S:X@}
29670 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29671
29672 @item %@{S*:X@}
29673 Substitutes @code{X} if one or more switches whose names start with
29674 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29675 once, no matter how many such switches appeared. However, if @code{%*}
29676 appears somewhere in @code{X}, then @code{X} is substituted once
29677 for each matching switch, with the @code{%*} replaced by the part of
29678 that switch matching the @code{*}.
29679
29680 If @code{%*} appears as the last part of a spec sequence then a space
29681 is added after the end of the last substitution. If there is more
29682 text in the sequence, however, then a space is not generated. This
29683 allows the @code{%*} substitution to be used as part of a larger
29684 string. For example, a spec string like this:
29685
29686 @smallexample
29687 %@{mcu=*:--script=%*/memory.ld@}
29688 @end smallexample
29689
29690 @noindent
29691 when matching an option like @option{-mcu=newchip} produces:
29692
29693 @smallexample
29694 --script=newchip/memory.ld
29695 @end smallexample
29696
29697 @item %@{.S:X@}
29698 Substitutes @code{X}, if processing a file with suffix @code{S}.
29699
29700 @item %@{!.S:X@}
29701 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29702
29703 @item %@{,S:X@}
29704 Substitutes @code{X}, if processing a file for language @code{S}.
29705
29706 @item %@{!,S:X@}
29707 Substitutes @code{X}, if not processing a file for language @code{S}.
29708
29709 @item %@{S|P:X@}
29710 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29711 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29712 @code{*} sequences as well, although they have a stronger binding than
29713 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29714 alternatives must be starred, and only the first matching alternative
29715 is substituted.
29716
29717 For example, a spec string like this:
29718
29719 @smallexample
29720 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29721 @end smallexample
29722
29723 @noindent
29724 outputs the following command-line options from the following input
29725 command-line options:
29726
29727 @smallexample
29728 fred.c -foo -baz
29729 jim.d -bar -boggle
29730 -d fred.c -foo -baz -boggle
29731 -d jim.d -bar -baz -boggle
29732 @end smallexample
29733
29734 @item %@{S:X; T:Y; :D@}
29735
29736 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29737 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29738 be as many clauses as you need. This may be combined with @code{.},
29739 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29740
29741
29742 @end table
29743
29744 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29745 or similar construct can use a backslash to ignore the special meaning
29746 of the character following it, thus allowing literal matching of a
29747 character that is otherwise specially treated. For example,
29748 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29749 @option{-std=iso9899:1999} option is given.
29750
29751 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29752 construct may contain other nested @samp{%} constructs or spaces, or
29753 even newlines. They are processed as usual, as described above.
29754 Trailing white space in @code{X} is ignored. White space may also
29755 appear anywhere on the left side of the colon in these constructs,
29756 except between @code{.} or @code{*} and the corresponding word.
29757
29758 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29759 handled specifically in these constructs. If another value of
29760 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29761 @option{-W} switch is found later in the command line, the earlier
29762 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29763 just one letter, which passes all matching options.
29764
29765 The character @samp{|} at the beginning of the predicate text is used to
29766 indicate that a command should be piped to the following command, but
29767 only if @option{-pipe} is specified.
29768
29769 It is built into GCC which switches take arguments and which do not.
29770 (You might think it would be useful to generalize this to allow each
29771 compiler's spec to say which switches take arguments. But this cannot
29772 be done in a consistent fashion. GCC cannot even decide which input
29773 files have been specified without knowing which switches take arguments,
29774 and it must know which input files to compile in order to tell which
29775 compilers to run).
29776
29777 GCC also knows implicitly that arguments starting in @option{-l} are to be
29778 treated as compiler output files, and passed to the linker in their
29779 proper position among the other output files.
29780
29781 @node Environment Variables
29782 @section Environment Variables Affecting GCC
29783 @cindex environment variables
29784
29785 @c man begin ENVIRONMENT
29786 This section describes several environment variables that affect how GCC
29787 operates. Some of them work by specifying directories or prefixes to use
29788 when searching for various kinds of files. Some are used to specify other
29789 aspects of the compilation environment.
29790
29791 Note that you can also specify places to search using options such as
29792 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29793 take precedence over places specified using environment variables, which
29794 in turn take precedence over those specified by the configuration of GCC@.
29795 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29796 GNU Compiler Collection (GCC) Internals}.
29797
29798 @table @env
29799 @item LANG
29800 @itemx LC_CTYPE
29801 @c @itemx LC_COLLATE
29802 @itemx LC_MESSAGES
29803 @c @itemx LC_MONETARY
29804 @c @itemx LC_NUMERIC
29805 @c @itemx LC_TIME
29806 @itemx LC_ALL
29807 @findex LANG
29808 @findex LC_CTYPE
29809 @c @findex LC_COLLATE
29810 @findex LC_MESSAGES
29811 @c @findex LC_MONETARY
29812 @c @findex LC_NUMERIC
29813 @c @findex LC_TIME
29814 @findex LC_ALL
29815 @cindex locale
29816 These environment variables control the way that GCC uses
29817 localization information which allows GCC to work with different
29818 national conventions. GCC inspects the locale categories
29819 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29820 so. These locale categories can be set to any value supported by your
29821 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29822 Kingdom encoded in UTF-8.
29823
29824 The @env{LC_CTYPE} environment variable specifies character
29825 classification. GCC uses it to determine the character boundaries in
29826 a string; this is needed for some multibyte encodings that contain quote
29827 and escape characters that are otherwise interpreted as a string
29828 end or escape.
29829
29830 The @env{LC_MESSAGES} environment variable specifies the language to
29831 use in diagnostic messages.
29832
29833 If the @env{LC_ALL} environment variable is set, it overrides the value
29834 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29835 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29836 environment variable. If none of these variables are set, GCC
29837 defaults to traditional C English behavior.
29838
29839 @item TMPDIR
29840 @findex TMPDIR
29841 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29842 files. GCC uses temporary files to hold the output of one stage of
29843 compilation which is to be used as input to the next stage: for example,
29844 the output of the preprocessor, which is the input to the compiler
29845 proper.
29846
29847 @item GCC_COMPARE_DEBUG
29848 @findex GCC_COMPARE_DEBUG
29849 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29850 @option{-fcompare-debug} to the compiler driver. See the documentation
29851 of this option for more details.
29852
29853 @item GCC_EXEC_PREFIX
29854 @findex GCC_EXEC_PREFIX
29855 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29856 names of the subprograms executed by the compiler. No slash is added
29857 when this prefix is combined with the name of a subprogram, but you can
29858 specify a prefix that ends with a slash if you wish.
29859
29860 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29861 an appropriate prefix to use based on the pathname it is invoked with.
29862
29863 If GCC cannot find the subprogram using the specified prefix, it
29864 tries looking in the usual places for the subprogram.
29865
29866 The default value of @env{GCC_EXEC_PREFIX} is
29867 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29868 the installed compiler. In many cases @var{prefix} is the value
29869 of @code{prefix} when you ran the @file{configure} script.
29870
29871 Other prefixes specified with @option{-B} take precedence over this prefix.
29872
29873 This prefix is also used for finding files such as @file{crt0.o} that are
29874 used for linking.
29875
29876 In addition, the prefix is used in an unusual way in finding the
29877 directories to search for header files. For each of the standard
29878 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29879 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29880 replacing that beginning with the specified prefix to produce an
29881 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29882 @file{foo/bar} just before it searches the standard directory
29883 @file{/usr/local/lib/bar}.
29884 If a standard directory begins with the configured
29885 @var{prefix} then the value of @var{prefix} is replaced by
29886 @env{GCC_EXEC_PREFIX} when looking for header files.
29887
29888 @item COMPILER_PATH
29889 @findex COMPILER_PATH
29890 The value of @env{COMPILER_PATH} is a colon-separated list of
29891 directories, much like @env{PATH}. GCC tries the directories thus
29892 specified when searching for subprograms, if it cannot find the
29893 subprograms using @env{GCC_EXEC_PREFIX}.
29894
29895 @item LIBRARY_PATH
29896 @findex LIBRARY_PATH
29897 The value of @env{LIBRARY_PATH} is a colon-separated list of
29898 directories, much like @env{PATH}. When configured as a native compiler,
29899 GCC tries the directories thus specified when searching for special
29900 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29901 using GCC also uses these directories when searching for ordinary
29902 libraries for the @option{-l} option (but directories specified with
29903 @option{-L} come first).
29904
29905 @item LANG
29906 @findex LANG
29907 @cindex locale definition
29908 This variable is used to pass locale information to the compiler. One way in
29909 which this information is used is to determine the character set to be used
29910 when character literals, string literals and comments are parsed in C and C++.
29911 When the compiler is configured to allow multibyte characters,
29912 the following values for @env{LANG} are recognized:
29913
29914 @table @samp
29915 @item C-JIS
29916 Recognize JIS characters.
29917 @item C-SJIS
29918 Recognize SJIS characters.
29919 @item C-EUCJP
29920 Recognize EUCJP characters.
29921 @end table
29922
29923 If @env{LANG} is not defined, or if it has some other value, then the
29924 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29925 recognize and translate multibyte characters.
29926 @end table
29927
29928 @noindent
29929 Some additional environment variables affect the behavior of the
29930 preprocessor.
29931
29932 @include cppenv.texi
29933
29934 @c man end
29935
29936 @node Precompiled Headers
29937 @section Using Precompiled Headers
29938 @cindex precompiled headers
29939 @cindex speed of compilation
29940
29941 Often large projects have many header files that are included in every
29942 source file. The time the compiler takes to process these header files
29943 over and over again can account for nearly all of the time required to
29944 build the project. To make builds faster, GCC allows you to
29945 @dfn{precompile} a header file.
29946
29947 To create a precompiled header file, simply compile it as you would any
29948 other file, if necessary using the @option{-x} option to make the driver
29949 treat it as a C or C++ header file. You may want to use a
29950 tool like @command{make} to keep the precompiled header up-to-date when
29951 the headers it contains change.
29952
29953 A precompiled header file is searched for when @code{#include} is
29954 seen in the compilation. As it searches for the included file
29955 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29956 compiler looks for a precompiled header in each directory just before it
29957 looks for the include file in that directory. The name searched for is
29958 the name specified in the @code{#include} with @samp{.gch} appended. If
29959 the precompiled header file cannot be used, it is ignored.
29960
29961 For instance, if you have @code{#include "all.h"}, and you have
29962 @file{all.h.gch} in the same directory as @file{all.h}, then the
29963 precompiled header file is used if possible, and the original
29964 header is used otherwise.
29965
29966 Alternatively, you might decide to put the precompiled header file in a
29967 directory and use @option{-I} to ensure that directory is searched
29968 before (or instead of) the directory containing the original header.
29969 Then, if you want to check that the precompiled header file is always
29970 used, you can put a file of the same name as the original header in this
29971 directory containing an @code{#error} command.
29972
29973 This also works with @option{-include}. So yet another way to use
29974 precompiled headers, good for projects not designed with precompiled
29975 header files in mind, is to simply take most of the header files used by
29976 a project, include them from another header file, precompile that header
29977 file, and @option{-include} the precompiled header. If the header files
29978 have guards against multiple inclusion, they are skipped because
29979 they've already been included (in the precompiled header).
29980
29981 If you need to precompile the same header file for different
29982 languages, targets, or compiler options, you can instead make a
29983 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29984 header in the directory, perhaps using @option{-o}. It doesn't matter
29985 what you call the files in the directory; every precompiled header in
29986 the directory is considered. The first precompiled header
29987 encountered in the directory that is valid for this compilation is
29988 used; they're searched in no particular order.
29989
29990 There are many other possibilities, limited only by your imagination,
29991 good sense, and the constraints of your build system.
29992
29993 A precompiled header file can be used only when these conditions apply:
29994
29995 @itemize
29996 @item
29997 Only one precompiled header can be used in a particular compilation.
29998
29999 @item
30000 A precompiled header cannot be used once the first C token is seen. You
30001 can have preprocessor directives before a precompiled header; you cannot
30002 include a precompiled header from inside another header.
30003
30004 @item
30005 The precompiled header file must be produced for the same language as
30006 the current compilation. You cannot use a C precompiled header for a C++
30007 compilation.
30008
30009 @item
30010 The precompiled header file must have been produced by the same compiler
30011 binary as the current compilation is using.
30012
30013 @item
30014 Any macros defined before the precompiled header is included must
30015 either be defined in the same way as when the precompiled header was
30016 generated, or must not affect the precompiled header, which usually
30017 means that they don't appear in the precompiled header at all.
30018
30019 The @option{-D} option is one way to define a macro before a
30020 precompiled header is included; using a @code{#define} can also do it.
30021 There are also some options that define macros implicitly, like
30022 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
30023 defined this way.
30024
30025 @item If debugging information is output when using the precompiled
30026 header, using @option{-g} or similar, the same kind of debugging information
30027 must have been output when building the precompiled header. However,
30028 a precompiled header built using @option{-g} can be used in a compilation
30029 when no debugging information is being output.
30030
30031 @item The same @option{-m} options must generally be used when building
30032 and using the precompiled header. @xref{Submodel Options},
30033 for any cases where this rule is relaxed.
30034
30035 @item Each of the following options must be the same when building and using
30036 the precompiled header:
30037
30038 @gccoptlist{-fexceptions}
30039
30040 @item
30041 Some other command-line options starting with @option{-f},
30042 @option{-p}, or @option{-O} must be defined in the same way as when
30043 the precompiled header was generated. At present, it's not clear
30044 which options are safe to change and which are not; the safest choice
30045 is to use exactly the same options when generating and using the
30046 precompiled header. The following are known to be safe:
30047
30048 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
30049 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
30050 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
30051 -pedantic-errors}
30052
30053 @end itemize
30054
30055 For all of these except the last, the compiler automatically
30056 ignores the precompiled header if the conditions aren't met. If you
30057 find an option combination that doesn't work and doesn't cause the
30058 precompiled header to be ignored, please consider filing a bug report,
30059 see @ref{Bugs}.
30060
30061 If you do use differing options when generating and using the
30062 precompiled header, the actual behavior is a mixture of the
30063 behavior for the options. For instance, if you use @option{-g} to
30064 generate the precompiled header but not when using it, you may or may
30065 not get debugging information for routines in the precompiled header.