]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/doc/invoke.texi
Document -march=gfx906 option.
[thirdparty/gcc.git] / gcc / doc / invoke.texi
1 @c Copyright (C) 1988-2019 Free Software Foundation, Inc.
2 @c This is part of the GCC manual.
3 @c For copying conditions, see the file gcc.texi.
4
5 @ignore
6 @c man begin INCLUDE
7 @include gcc-vers.texi
8 @c man end
9
10 @c man begin COPYRIGHT
11 Copyright @copyright{} 1988-2019 Free Software Foundation, Inc.
12
13 Permission is granted to copy, distribute and/or modify this document
14 under the terms of the GNU Free Documentation License, Version 1.3 or
15 any later version published by the Free Software Foundation; with the
16 Invariant Sections being ``GNU General Public License'' and ``Funding
17 Free Software'', the Front-Cover texts being (a) (see below), and with
18 the Back-Cover Texts being (b) (see below). A copy of the license is
19 included in the gfdl(7) man page.
20
21 (a) The FSF's Front-Cover Text is:
22
23 A GNU Manual
24
25 (b) The FSF's Back-Cover Text is:
26
27 You have freedom to copy and modify this GNU Manual, like GNU
28 software. Copies published by the Free Software Foundation raise
29 funds for GNU development.
30 @c man end
31 @c Set file name and title for the man page.
32 @setfilename gcc
33 @settitle GNU project C and C++ compiler
34 @c man begin SYNOPSIS
35 gcc [@option{-c}|@option{-S}|@option{-E}] [@option{-std=}@var{standard}]
36 [@option{-g}] [@option{-pg}] [@option{-O}@var{level}]
37 [@option{-W}@var{warn}@dots{}] [@option{-Wpedantic}]
38 [@option{-I}@var{dir}@dots{}] [@option{-L}@var{dir}@dots{}]
39 [@option{-D}@var{macro}[=@var{defn}]@dots{}] [@option{-U}@var{macro}]
40 [@option{-f}@var{option}@dots{}] [@option{-m}@var{machine-option}@dots{}]
41 [@option{-o} @var{outfile}] [@@@var{file}] @var{infile}@dots{}
42
43 Only the most useful options are listed here; see below for the
44 remainder. @command{g++} accepts mostly the same options as @command{gcc}.
45 @c man end
46 @c man begin SEEALSO
47 gpl(7), gfdl(7), fsf-funding(7),
48 cpp(1), gcov(1), as(1), ld(1), gdb(1), dbx(1)
49 and the Info entries for @file{gcc}, @file{cpp}, @file{as},
50 @file{ld}, @file{binutils} and @file{gdb}.
51 @c man end
52 @c man begin BUGS
53 For instructions on reporting bugs, see
54 @w{@value{BUGURL}}.
55 @c man end
56 @c man begin AUTHOR
57 See the Info entry for @command{gcc}, or
58 @w{@uref{http://gcc.gnu.org/onlinedocs/gcc/Contributors.html}},
59 for contributors to GCC@.
60 @c man end
61 @end ignore
62
63 @node Invoking GCC
64 @chapter GCC Command Options
65 @cindex GCC command options
66 @cindex command options
67 @cindex options, GCC command
68
69 @c man begin DESCRIPTION
70 When you invoke GCC, it normally does preprocessing, compilation,
71 assembly and linking. The ``overall options'' allow you to stop this
72 process at an intermediate stage. For example, the @option{-c} option
73 says not to run the linker. Then the output consists of object files
74 output by the assembler.
75 @xref{Overall Options,,Options Controlling the Kind of Output}.
76
77 Other options are passed on to one or more stages of processing. Some options
78 control the preprocessor and others the compiler itself. Yet other
79 options control the assembler and linker; most of these are not
80 documented here, since you rarely need to use any of them.
81
82 @cindex C compilation options
83 Most of the command-line options that you can use with GCC are useful
84 for C programs; when an option is only useful with another language
85 (usually C++), the explanation says so explicitly. If the description
86 for a particular option does not mention a source language, you can use
87 that option with all supported languages.
88
89 @cindex cross compiling
90 @cindex specifying machine version
91 @cindex specifying compiler version and target machine
92 @cindex compiler version, specifying
93 @cindex target machine, specifying
94 The usual way to run GCC is to run the executable called @command{gcc}, or
95 @command{@var{machine}-gcc} when cross-compiling, or
96 @command{@var{machine}-gcc-@var{version}} to run a specific version of GCC.
97 When you compile C++ programs, you should invoke GCC as @command{g++}
98 instead. @xref{Invoking G++,,Compiling C++ Programs},
99 for information about the differences in behavior between @command{gcc}
100 and @code{g++} when compiling C++ programs.
101
102 @cindex grouping options
103 @cindex options, grouping
104 The @command{gcc} program accepts options and file names as operands. Many
105 options have multi-letter names; therefore multiple single-letter options
106 may @emph{not} be grouped: @option{-dv} is very different from @w{@samp{-d
107 -v}}.
108
109 @cindex order of options
110 @cindex options, order
111 You can mix options and other arguments. For the most part, the order
112 you use doesn't matter. Order does matter when you use several
113 options of the same kind; for example, if you specify @option{-L} more
114 than once, the directories are searched in the order specified. Also,
115 the placement of the @option{-l} option is significant.
116
117 Many options have long names starting with @samp{-f} or with
118 @samp{-W}---for example,
119 @option{-fmove-loop-invariants}, @option{-Wformat} and so on. Most of
120 these have both positive and negative forms; the negative form of
121 @option{-ffoo} is @option{-fno-foo}. This manual documents
122 only one of these two forms, whichever one is not the default.
123
124 Some options take one or more arguments typically separated either
125 by a space or by the equals sign (@samp{=}) from the option name.
126 Unless documented otherwise, an argument can be either numeric or
127 a string. Numeric arguments must typically be small unsigned decimal
128 or hexadecimal integers. Hexadecimal arguments must begin with
129 the @samp{0x} prefix. Arguments to options that specify a size
130 threshold of some sort may be arbitrarily large decimal or hexadecimal
131 integers followed by a byte size suffix designating a multiple of bytes
132 such as @code{kB} and @code{KiB} for kilobyte and kibibyte, respectively,
133 @code{MB} and @code{MiB} for megabyte and mebibyte, @code{GB} and
134 @code{GiB} for gigabyte and gigibyte, and so on. Such arguments are
135 designated by @var{byte-size} in the following text. Refer to the NIST,
136 IEC, and other relevant national and international standards for the full
137 listing and explanation of the binary and decimal byte size prefixes.
138
139 @c man end
140
141 @xref{Option Index}, for an index to GCC's options.
142
143 @menu
144 * Option Summary:: Brief list of all options, without explanations.
145 * Overall Options:: Controlling the kind of output:
146 an executable, object files, assembler files,
147 or preprocessed source.
148 * Invoking G++:: Compiling C++ programs.
149 * C Dialect Options:: Controlling the variant of C language compiled.
150 * C++ Dialect Options:: Variations on C++.
151 * Objective-C and Objective-C++ Dialect Options:: Variations on Objective-C
152 and Objective-C++.
153 * Diagnostic Message Formatting Options:: Controlling how diagnostics should
154 be formatted.
155 * Warning Options:: How picky should the compiler be?
156 * Debugging Options:: Producing debuggable code.
157 * Optimize Options:: How much optimization?
158 * Instrumentation Options:: Enabling profiling and extra run-time error checking.
159 * Preprocessor Options:: Controlling header files and macro definitions.
160 Also, getting dependency information for Make.
161 * Assembler Options:: Passing options to the assembler.
162 * Link Options:: Specifying libraries and so on.
163 * Directory Options:: Where to find header files and libraries.
164 Where to find the compiler executable files.
165 * Code Gen Options:: Specifying conventions for function calls, data layout
166 and register usage.
167 * Developer Options:: Printing GCC configuration info, statistics, and
168 debugging dumps.
169 * Submodel Options:: Target-specific options, such as compiling for a
170 specific processor variant.
171 * Spec Files:: How to pass switches to sub-processes.
172 * Environment Variables:: Env vars that affect GCC.
173 * Precompiled Headers:: Compiling a header once, and using it many times.
174 @end menu
175
176 @c man begin OPTIONS
177
178 @node Option Summary
179 @section Option Summary
180
181 Here is a summary of all the options, grouped by type. Explanations are
182 in the following sections.
183
184 @table @emph
185 @item Overall Options
186 @xref{Overall Options,,Options Controlling the Kind of Output}.
187 @gccoptlist{-c -S -E -o @var{file} -x @var{language} @gol
188 -v -### --help@r{[}=@var{class}@r{[},@dots{}@r{]]} --target-help --version @gol
189 -pass-exit-codes -pipe -specs=@var{file} -wrapper @gol
190 @@@var{file} -ffile-prefix-map=@var{old}=@var{new} @gol
191 -fplugin=@var{file} -fplugin-arg-@var{name}=@var{arg} @gol
192 -fdump-ada-spec@r{[}-slim@r{]} -fada-spec-parent=@var{unit} -fdump-go-spec=@var{file}}
193
194 @item C Language Options
195 @xref{C Dialect Options,,Options Controlling C Dialect}.
196 @gccoptlist{-ansi -std=@var{standard} -fgnu89-inline @gol
197 -fpermitted-flt-eval-methods=@var{standard} @gol
198 -aux-info @var{filename} -fallow-parameterless-variadic-functions @gol
199 -fno-asm -fno-builtin -fno-builtin-@var{function} -fgimple@gol
200 -fhosted -ffreestanding @gol
201 -fopenacc -fopenacc-dim=@var{geom} @gol
202 -fopenmp -fopenmp-simd @gol
203 -fms-extensions -fplan9-extensions -fsso-struct=@var{endianness} @gol
204 -fallow-single-precision -fcond-mismatch -flax-vector-conversions @gol
205 -fsigned-bitfields -fsigned-char @gol
206 -funsigned-bitfields -funsigned-char}
207
208 @item C++ Language Options
209 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}.
210 @gccoptlist{-fabi-version=@var{n} -fno-access-control @gol
211 -faligned-new=@var{n} -fargs-in-order=@var{n} -fchar8_t -fcheck-new @gol
212 -fconstexpr-depth=@var{n} -fconstexpr-loop-limit=@var{n} @gol
213 -fconstexpr-ops-limit=@var{n} -fno-elide-constructors @gol
214 -fno-enforce-eh-specs @gol
215 -fno-gnu-keywords @gol
216 -fno-implicit-templates @gol
217 -fno-implicit-inline-templates @gol
218 -fno-implement-inlines -fms-extensions @gol
219 -fnew-inheriting-ctors @gol
220 -fnew-ttp-matching @gol
221 -fno-nonansi-builtins -fnothrow-opt -fno-operator-names @gol
222 -fno-optional-diags -fpermissive @gol
223 -fno-pretty-templates @gol
224 -frepo -fno-rtti -fsized-deallocation @gol
225 -ftemplate-backtrace-limit=@var{n} @gol
226 -ftemplate-depth=@var{n} @gol
227 -fno-threadsafe-statics -fuse-cxa-atexit @gol
228 -fno-weak -nostdinc++ @gol
229 -fvisibility-inlines-hidden @gol
230 -fvisibility-ms-compat @gol
231 -fext-numeric-literals @gol
232 -Wabi=@var{n} -Wabi-tag -Wconversion-null -Wctor-dtor-privacy @gol
233 -Wdelete-non-virtual-dtor -Wdeprecated-copy -Wdeprecated-copy-dtor @gol
234 -Wliteral-suffix @gol
235 -Wmultiple-inheritance -Wno-init-list-lifetime @gol
236 -Wnamespaces -Wnarrowing @gol
237 -Wpessimizing-move -Wredundant-move @gol
238 -Wnoexcept -Wnoexcept-type -Wclass-memaccess @gol
239 -Wnon-virtual-dtor -Wreorder -Wregister @gol
240 -Weffc++ -Wstrict-null-sentinel -Wtemplates @gol
241 -Wno-non-template-friend -Wold-style-cast @gol
242 -Woverloaded-virtual -Wno-pmf-conversions @gol
243 -Wno-class-conversion -Wno-terminate @gol
244 -Wsign-promo -Wvirtual-inheritance}
245
246 @item Objective-C and Objective-C++ Language Options
247 @xref{Objective-C and Objective-C++ Dialect Options,,Options Controlling
248 Objective-C and Objective-C++ Dialects}.
249 @gccoptlist{-fconstant-string-class=@var{class-name} @gol
250 -fgnu-runtime -fnext-runtime @gol
251 -fno-nil-receivers @gol
252 -fobjc-abi-version=@var{n} @gol
253 -fobjc-call-cxx-cdtors @gol
254 -fobjc-direct-dispatch @gol
255 -fobjc-exceptions @gol
256 -fobjc-gc @gol
257 -fobjc-nilcheck @gol
258 -fobjc-std=objc1 @gol
259 -fno-local-ivars @gol
260 -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]} @gol
261 -freplace-objc-classes @gol
262 -fzero-link @gol
263 -gen-decls @gol
264 -Wassign-intercept @gol
265 -Wno-protocol -Wselector @gol
266 -Wstrict-selector-match @gol
267 -Wundeclared-selector}
268
269 @item Diagnostic Message Formatting Options
270 @xref{Diagnostic Message Formatting Options,,Options to Control Diagnostic Messages Formatting}.
271 @gccoptlist{-fmessage-length=@var{n} @gol
272 -fdiagnostics-show-location=@r{[}once@r{|}every-line@r{]} @gol
273 -fdiagnostics-color=@r{[}auto@r{|}never@r{|}always@r{]} @gol
274 -fdiagnostics-format=@r{[}text@r{|}json@r{]} @gol
275 -fno-diagnostics-show-option -fno-diagnostics-show-caret @gol
276 -fno-diagnostics-show-labels -fno-diagnostics-show-line-numbers @gol
277 -fdiagnostics-minimum-margin-width=@var{width} @gol
278 -fdiagnostics-parseable-fixits -fdiagnostics-generate-patch @gol
279 -fdiagnostics-show-template-tree -fno-elide-type @gol
280 -fno-show-column}
281
282 @item Warning Options
283 @xref{Warning Options,,Options to Request or Suppress Warnings}.
284 @gccoptlist{-fsyntax-only -fmax-errors=@var{n} -Wpedantic @gol
285 -pedantic-errors @gol
286 -w -Wextra -Wall -Waddress -Waddress-of-packed-member @gol
287 -Waggregate-return -Waligned-new @gol
288 -Walloc-zero -Walloc-size-larger-than=@var{byte-size} @gol
289 -Walloca -Walloca-larger-than=@var{byte-size} @gol
290 -Wno-aggressive-loop-optimizations -Warray-bounds -Warray-bounds=@var{n} @gol
291 -Wno-attributes -Wattribute-alias=@var{n} @gol
292 -Wbool-compare -Wbool-operation @gol
293 -Wno-builtin-declaration-mismatch @gol
294 -Wno-builtin-macro-redefined -Wc90-c99-compat -Wc99-c11-compat @gol
295 -Wc++-compat -Wc++11-compat -Wc++14-compat -Wc++17-compat @gol
296 -Wcast-align -Wcast-align=strict -Wcast-function-type -Wcast-qual @gol
297 -Wchar-subscripts -Wcatch-value -Wcatch-value=@var{n} @gol
298 -Wclobbered -Wcomment -Wconditionally-supported @gol
299 -Wconversion -Wcoverage-mismatch -Wno-cpp -Wdangling-else -Wdate-time @gol
300 -Wdelete-incomplete @gol
301 -Wno-attribute-warning @gol
302 -Wno-deprecated -Wno-deprecated-declarations -Wno-designated-init @gol
303 -Wdisabled-optimization @gol
304 -Wno-discarded-qualifiers -Wno-discarded-array-qualifiers @gol
305 -Wno-div-by-zero -Wdouble-promotion @gol
306 -Wduplicated-branches -Wduplicated-cond @gol
307 -Wempty-body -Wenum-compare -Wno-endif-labels -Wexpansion-to-defined @gol
308 -Werror -Werror=* -Wextra-semi -Wfatal-errors @gol
309 -Wfloat-equal -Wformat -Wformat=2 @gol
310 -Wno-format-contains-nul -Wno-format-extra-args @gol
311 -Wformat-nonliteral -Wformat-overflow=@var{n} @gol
312 -Wformat-security -Wformat-signedness -Wformat-truncation=@var{n} @gol
313 -Wformat-y2k -Wframe-address @gol
314 -Wframe-larger-than=@var{byte-size} -Wno-free-nonheap-object @gol
315 -Wjump-misses-init @gol
316 -Whsa -Wif-not-aligned @gol
317 -Wignored-qualifiers -Wignored-attributes -Wincompatible-pointer-types @gol
318 -Wimplicit -Wimplicit-fallthrough -Wimplicit-fallthrough=@var{n} @gol
319 -Wimplicit-function-declaration -Wimplicit-int @gol
320 -Winit-self -Winline -Wno-int-conversion -Wint-in-bool-context @gol
321 -Wno-int-to-pointer-cast -Winvalid-memory-model -Wno-invalid-offsetof @gol
322 -Winvalid-pch -Wlarger-than=@var{byte-size} @gol
323 -Wlogical-op -Wlogical-not-parentheses -Wlong-long @gol
324 -Wmain -Wmaybe-uninitialized -Wmemset-elt-size -Wmemset-transposed-args @gol
325 -Wmisleading-indentation -Wmissing-attributes -Wmissing-braces @gol
326 -Wmissing-field-initializers -Wmissing-format-attribute @gol
327 -Wmissing-include-dirs -Wmissing-noreturn -Wmissing-profile @gol
328 -Wno-multichar -Wmultistatement-macros -Wnonnull -Wnonnull-compare @gol
329 -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]} @gol
330 -Wnull-dereference -Wodr -Wno-overflow -Wopenmp-simd @gol
331 -Woverride-init-side-effects -Woverlength-strings @gol
332 -Wpacked -Wpacked-bitfield-compat -Wpacked-not-aligned -Wpadded @gol
333 -Wparentheses -Wno-pedantic-ms-format @gol
334 -Wplacement-new -Wplacement-new=@var{n} @gol
335 -Wpointer-arith -Wpointer-compare -Wno-pointer-to-int-cast @gol
336 -Wno-pragmas -Wno-prio-ctor-dtor -Wredundant-decls @gol
337 -Wrestrict -Wno-return-local-addr @gol
338 -Wreturn-type -Wsequence-point -Wshadow -Wno-shadow-ivar @gol
339 -Wshadow=global, -Wshadow=local, -Wshadow=compatible-local @gol
340 -Wshift-overflow -Wshift-overflow=@var{n} @gol
341 -Wshift-count-negative -Wshift-count-overflow -Wshift-negative-value @gol
342 -Wsign-compare -Wsign-conversion -Wfloat-conversion @gol
343 -Wno-scalar-storage-order -Wsizeof-pointer-div @gol
344 -Wsizeof-pointer-memaccess -Wsizeof-array-argument @gol
345 -Wstack-protector -Wstack-usage=@var{byte-size} -Wstrict-aliasing @gol
346 -Wstrict-aliasing=n -Wstrict-overflow -Wstrict-overflow=@var{n} @gol
347 -Wstringop-overflow=@var{n} -Wstringop-truncation -Wsubobject-linkage @gol
348 -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}malloc@r{]} @gol
349 -Wsuggest-final-types @gol -Wsuggest-final-methods -Wsuggest-override @gol
350 -Wswitch -Wswitch-bool -Wswitch-default -Wswitch-enum @gol
351 -Wswitch-unreachable -Wsync-nand @gol
352 -Wsystem-headers -Wtautological-compare -Wtrampolines -Wtrigraphs @gol
353 -Wtype-limits -Wundef @gol
354 -Wuninitialized -Wunknown-pragmas @gol
355 -Wunsuffixed-float-constants -Wunused -Wunused-function @gol
356 -Wunused-label -Wunused-local-typedefs -Wunused-macros @gol
357 -Wunused-parameter -Wno-unused-result @gol
358 -Wunused-value -Wunused-variable @gol
359 -Wunused-const-variable -Wunused-const-variable=@var{n} @gol
360 -Wunused-but-set-parameter -Wunused-but-set-variable @gol
361 -Wuseless-cast -Wvariadic-macros -Wvector-operation-performance @gol
362 -Wvla -Wvla-larger-than=@var{byte-size} -Wvolatile-register-var @gol
363 -Wwrite-strings @gol
364 -Wzero-as-null-pointer-constant}
365
366 @item C and Objective-C-only Warning Options
367 @gccoptlist{-Wbad-function-cast -Wmissing-declarations @gol
368 -Wmissing-parameter-type -Wmissing-prototypes -Wnested-externs @gol
369 -Wold-style-declaration -Wold-style-definition @gol
370 -Wstrict-prototypes -Wtraditional -Wtraditional-conversion @gol
371 -Wdeclaration-after-statement -Wpointer-sign}
372
373 @item Debugging Options
374 @xref{Debugging Options,,Options for Debugging Your Program}.
375 @gccoptlist{-g -g@var{level} -gdwarf -gdwarf-@var{version} @gol
376 -ggdb -grecord-gcc-switches -gno-record-gcc-switches @gol
377 -gstabs -gstabs+ -gstrict-dwarf -gno-strict-dwarf @gol
378 -gas-loc-support -gno-as-loc-support @gol
379 -gas-locview-support -gno-as-locview-support @gol
380 -gcolumn-info -gno-column-info @gol
381 -gstatement-frontiers -gno-statement-frontiers @gol
382 -gvariable-location-views -gno-variable-location-views @gol
383 -ginternal-reset-location-views -gno-internal-reset-location-views @gol
384 -ginline-points -gno-inline-points @gol
385 -gvms -gxcoff -gxcoff+ -gz@r{[}=@var{type}@r{]} @gol
386 -gsplit-dwarf -gdescribe-dies -gno-describe-dies @gol
387 -fdebug-prefix-map=@var{old}=@var{new} -fdebug-types-section @gol
388 -fno-eliminate-unused-debug-types @gol
389 -femit-struct-debug-baseonly -femit-struct-debug-reduced @gol
390 -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]} @gol
391 -fno-eliminate-unused-debug-symbols -femit-class-debug-always @gol
392 -fno-merge-debug-strings -fno-dwarf2-cfi-asm @gol
393 -fvar-tracking -fvar-tracking-assignments}
394
395 @item Optimization Options
396 @xref{Optimize Options,,Options that Control Optimization}.
397 @gccoptlist{-faggressive-loop-optimizations @gol
398 -falign-functions[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
399 -falign-jumps[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
400 -falign-labels[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
401 -falign-loops[=@var{n}[:@var{m}:[@var{n2}[:@var{m2}]]]] @gol
402 -fassociative-math -fauto-profile -fauto-profile[=@var{path}] @gol
403 -fauto-inc-dec -fbranch-probabilities @gol
404 -fbranch-target-load-optimize -fbranch-target-load-optimize2 @gol
405 -fbtr-bb-exclusive -fcaller-saves @gol
406 -fcombine-stack-adjustments -fconserve-stack @gol
407 -fcompare-elim -fcprop-registers -fcrossjumping @gol
408 -fcse-follow-jumps -fcse-skip-blocks -fcx-fortran-rules @gol
409 -fcx-limited-range @gol
410 -fdata-sections -fdce -fdelayed-branch @gol
411 -fdelete-null-pointer-checks -fdevirtualize -fdevirtualize-speculatively @gol
412 -fdevirtualize-at-ltrans -fdse @gol
413 -fearly-inlining -fipa-sra -fexpensive-optimizations -ffat-lto-objects @gol
414 -ffast-math -ffinite-math-only -ffloat-store -fexcess-precision=@var{style} @gol
415 -fforward-propagate -ffp-contract=@var{style} -ffunction-sections @gol
416 -fgcse -fgcse-after-reload -fgcse-las -fgcse-lm -fgraphite-identity @gol
417 -fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
418 -fif-conversion2 -findirect-inlining @gol
419 -finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
420 -finline-small-functions -fipa-cp -fipa-cp-clone @gol
421 -fipa-bit-cp -fipa-vrp -fipa-pta -fipa-profile -fipa-pure-const @gol
422 -fipa-reference -fipa-reference-addressable @gol
423 -fipa-stack-alignment -fipa-icf -fira-algorithm=@var{algorithm} @gol
424 -flive-patching=@var{level} @gol
425 -fira-region=@var{region} -fira-hoist-pressure @gol
426 -fira-loop-pressure -fno-ira-share-save-slots @gol
427 -fno-ira-share-spill-slots @gol
428 -fisolate-erroneous-paths-dereference -fisolate-erroneous-paths-attribute @gol
429 -fivopts -fkeep-inline-functions -fkeep-static-functions @gol
430 -fkeep-static-consts -flimit-function-alignment -flive-range-shrinkage @gol
431 -floop-block -floop-interchange -floop-strip-mine @gol
432 -floop-unroll-and-jam -floop-nest-optimize @gol
433 -floop-parallelize-all -flra-remat -flto -flto-compression-level @gol
434 -flto-partition=@var{alg} -fmerge-all-constants @gol
435 -fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
436 -fmove-loop-invariants -fno-branch-count-reg @gol
437 -fno-defer-pop -fno-fp-int-builtin-inexact -fno-function-cse @gol
438 -fno-guess-branch-probability -fno-inline -fno-math-errno -fno-peephole @gol
439 -fno-peephole2 -fno-printf-return-value -fno-sched-interblock @gol
440 -fno-sched-spec -fno-signed-zeros @gol
441 -fno-toplevel-reorder -fno-trapping-math -fno-zero-initialized-in-bss @gol
442 -fomit-frame-pointer -foptimize-sibling-calls @gol
443 -fpartial-inlining -fpeel-loops -fpredictive-commoning @gol
444 -fprefetch-loop-arrays @gol
445 -fprofile-correction @gol
446 -fprofile-use -fprofile-use=@var{path} -fprofile-values @gol
447 -fprofile-reorder-functions @gol
448 -freciprocal-math -free -frename-registers -freorder-blocks @gol
449 -freorder-blocks-algorithm=@var{algorithm} @gol
450 -freorder-blocks-and-partition -freorder-functions @gol
451 -frerun-cse-after-loop -freschedule-modulo-scheduled-loops @gol
452 -frounding-math -fsave-optimization-record @gol
453 -fsched2-use-superblocks -fsched-pressure @gol
454 -fsched-spec-load -fsched-spec-load-dangerous @gol
455 -fsched-stalled-insns-dep[=@var{n}] -fsched-stalled-insns[=@var{n}] @gol
456 -fsched-group-heuristic -fsched-critical-path-heuristic @gol
457 -fsched-spec-insn-heuristic -fsched-rank-heuristic @gol
458 -fsched-last-insn-heuristic -fsched-dep-count-heuristic @gol
459 -fschedule-fusion @gol
460 -fschedule-insns -fschedule-insns2 -fsection-anchors @gol
461 -fselective-scheduling -fselective-scheduling2 @gol
462 -fsel-sched-pipelining -fsel-sched-pipelining-outer-loops @gol
463 -fsemantic-interposition -fshrink-wrap -fshrink-wrap-separate @gol
464 -fsignaling-nans @gol
465 -fsingle-precision-constant -fsplit-ivs-in-unroller -fsplit-loops@gol
466 -fsplit-paths @gol
467 -fsplit-wide-types -fssa-backprop -fssa-phiopt @gol
468 -fstdarg-opt -fstore-merging -fstrict-aliasing @gol
469 -fthread-jumps -ftracer -ftree-bit-ccp @gol
470 -ftree-builtin-call-dce -ftree-ccp -ftree-ch @gol
471 -ftree-coalesce-vars -ftree-copy-prop -ftree-dce -ftree-dominator-opts @gol
472 -ftree-dse -ftree-forwprop -ftree-fre -fcode-hoisting @gol
473 -ftree-loop-if-convert -ftree-loop-im @gol
474 -ftree-phiprop -ftree-loop-distribution -ftree-loop-distribute-patterns @gol
475 -ftree-loop-ivcanon -ftree-loop-linear -ftree-loop-optimize @gol
476 -ftree-loop-vectorize @gol
477 -ftree-parallelize-loops=@var{n} -ftree-pre -ftree-partial-pre -ftree-pta @gol
478 -ftree-reassoc -ftree-scev-cprop -ftree-sink -ftree-slsr -ftree-sra @gol
479 -ftree-switch-conversion -ftree-tail-merge @gol
480 -ftree-ter -ftree-vectorize -ftree-vrp -funconstrained-commons @gol
481 -funit-at-a-time -funroll-all-loops -funroll-loops @gol
482 -funsafe-math-optimizations -funswitch-loops @gol
483 -fipa-ra -fvariable-expansion-in-unroller -fvect-cost-model -fvpt @gol
484 -fweb -fwhole-program -fwpa -fuse-linker-plugin @gol
485 --param @var{name}=@var{value}
486 -O -O0 -O1 -O2 -O3 -Os -Ofast -Og}
487
488 @item Program Instrumentation Options
489 @xref{Instrumentation Options,,Program Instrumentation Options}.
490 @gccoptlist{-p -pg -fprofile-arcs --coverage -ftest-coverage @gol
491 -fprofile-abs-path @gol
492 -fprofile-dir=@var{path} -fprofile-generate -fprofile-generate=@var{path} @gol
493 -fprofile-update=@var{method} -fprofile-filter-files=@var{regex} @gol
494 -fprofile-exclude-files=@var{regex} @gol
495 -fsanitize=@var{style} -fsanitize-recover -fsanitize-recover=@var{style} @gol
496 -fasan-shadow-offset=@var{number} -fsanitize-sections=@var{s1},@var{s2},... @gol
497 -fsanitize-undefined-trap-on-error -fbounds-check @gol
498 -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]} @gol
499 -fstack-protector -fstack-protector-all -fstack-protector-strong @gol
500 -fstack-protector-explicit -fstack-check @gol
501 -fstack-limit-register=@var{reg} -fstack-limit-symbol=@var{sym} @gol
502 -fno-stack-limit -fsplit-stack @gol
503 -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]} @gol
504 -fvtv-counts -fvtv-debug @gol
505 -finstrument-functions @gol
506 -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{} @gol
507 -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}}
508
509 @item Preprocessor Options
510 @xref{Preprocessor Options,,Options Controlling the Preprocessor}.
511 @gccoptlist{-A@var{question}=@var{answer} @gol
512 -A-@var{question}@r{[}=@var{answer}@r{]} @gol
513 -C -CC -D@var{macro}@r{[}=@var{defn}@r{]} @gol
514 -dD -dI -dM -dN -dU @gol
515 -fdebug-cpp -fdirectives-only -fdollars-in-identifiers @gol
516 -fexec-charset=@var{charset} -fextended-identifiers @gol
517 -finput-charset=@var{charset} -fmacro-prefix-map=@var{old}=@var{new} @gol
518 -fno-canonical-system-headers -fpch-deps -fpch-preprocess @gol
519 -fpreprocessed -ftabstop=@var{width} -ftrack-macro-expansion @gol
520 -fwide-exec-charset=@var{charset} -fworking-directory @gol
521 -H -imacros @var{file} -include @var{file} @gol
522 -M -MD -MF -MG -MM -MMD -MP -MQ -MT @gol
523 -no-integrated-cpp -P -pthread -remap @gol
524 -traditional -traditional-cpp -trigraphs @gol
525 -U@var{macro} -undef @gol
526 -Wp,@var{option} -Xpreprocessor @var{option}}
527
528 @item Assembler Options
529 @xref{Assembler Options,,Passing Options to the Assembler}.
530 @gccoptlist{-Wa,@var{option} -Xassembler @var{option}}
531
532 @item Linker Options
533 @xref{Link Options,,Options for Linking}.
534 @gccoptlist{@var{object-file-name} -fuse-ld=@var{linker} -l@var{library} @gol
535 -nostartfiles -nodefaultlibs -nolibc -nostdlib @gol
536 -e @var{entry} --entry=@var{entry} @gol
537 -pie -pthread -r -rdynamic @gol
538 -s -static -static-pie -static-libgcc -static-libstdc++ @gol
539 -static-libasan -static-libtsan -static-liblsan -static-libubsan @gol
540 -shared -shared-libgcc -symbolic @gol
541 -T @var{script} -Wl,@var{option} -Xlinker @var{option} @gol
542 -u @var{symbol} -z @var{keyword}}
543
544 @item Directory Options
545 @xref{Directory Options,,Options for Directory Search}.
546 @gccoptlist{-B@var{prefix} -I@var{dir} -I- @gol
547 -idirafter @var{dir} @gol
548 -imacros @var{file} -imultilib @var{dir} @gol
549 -iplugindir=@var{dir} -iprefix @var{file} @gol
550 -iquote @var{dir} -isysroot @var{dir} -isystem @var{dir} @gol
551 -iwithprefix @var{dir} -iwithprefixbefore @var{dir} @gol
552 -L@var{dir} -no-canonical-prefixes --no-sysroot-suffix @gol
553 -nostdinc -nostdinc++ --sysroot=@var{dir}}
554
555 @item Code Generation Options
556 @xref{Code Gen Options,,Options for Code Generation Conventions}.
557 @gccoptlist{-fcall-saved-@var{reg} -fcall-used-@var{reg} @gol
558 -ffixed-@var{reg} -fexceptions @gol
559 -fnon-call-exceptions -fdelete-dead-exceptions -funwind-tables @gol
560 -fasynchronous-unwind-tables @gol
561 -fno-gnu-unique @gol
562 -finhibit-size-directive -fno-common -fno-ident @gol
563 -fpcc-struct-return -fpic -fPIC -fpie -fPIE -fno-plt @gol
564 -fno-jump-tables @gol
565 -frecord-gcc-switches @gol
566 -freg-struct-return -fshort-enums -fshort-wchar @gol
567 -fverbose-asm -fpack-struct[=@var{n}] @gol
568 -fleading-underscore -ftls-model=@var{model} @gol
569 -fstack-reuse=@var{reuse_level} @gol
570 -ftrampolines -ftrapv -fwrapv @gol
571 -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]} @gol
572 -fstrict-volatile-bitfields -fsync-libcalls}
573
574 @item Developer Options
575 @xref{Developer Options,,GCC Developer Options}.
576 @gccoptlist{-d@var{letters} -dumpspecs -dumpmachine -dumpversion @gol
577 -dumpfullversion -fchecking -fchecking=@var{n} -fdbg-cnt-list @gol
578 -fdbg-cnt=@var{counter-value-list} @gol
579 -fdisable-ipa-@var{pass_name} @gol
580 -fdisable-rtl-@var{pass_name} @gol
581 -fdisable-rtl-@var{pass-name}=@var{range-list} @gol
582 -fdisable-tree-@var{pass_name} @gol
583 -fdisable-tree-@var{pass-name}=@var{range-list} @gol
584 -fdump-debug -fdump-earlydebug @gol
585 -fdump-noaddr -fdump-unnumbered -fdump-unnumbered-links @gol
586 -fdump-final-insns@r{[}=@var{file}@r{]} @gol
587 -fdump-ipa-all -fdump-ipa-cgraph -fdump-ipa-inline @gol
588 -fdump-lang-all @gol
589 -fdump-lang-@var{switch} @gol
590 -fdump-lang-@var{switch}-@var{options} @gol
591 -fdump-lang-@var{switch}-@var{options}=@var{filename} @gol
592 -fdump-passes @gol
593 -fdump-rtl-@var{pass} -fdump-rtl-@var{pass}=@var{filename} @gol
594 -fdump-statistics @gol
595 -fdump-tree-all @gol
596 -fdump-tree-@var{switch} @gol
597 -fdump-tree-@var{switch}-@var{options} @gol
598 -fdump-tree-@var{switch}-@var{options}=@var{filename} @gol
599 -fcompare-debug@r{[}=@var{opts}@r{]} -fcompare-debug-second @gol
600 -fenable-@var{kind}-@var{pass} @gol
601 -fenable-@var{kind}-@var{pass}=@var{range-list} @gol
602 -fira-verbose=@var{n} @gol
603 -flto-report -flto-report-wpa -fmem-report-wpa @gol
604 -fmem-report -fpre-ipa-mem-report -fpost-ipa-mem-report @gol
605 -fopt-info -fopt-info-@var{options}@r{[}=@var{file}@r{]} @gol
606 -fprofile-report @gol
607 -frandom-seed=@var{string} -fsched-verbose=@var{n} @gol
608 -fsel-sched-verbose -fsel-sched-dump-cfg -fsel-sched-pipelining-verbose @gol
609 -fstats -fstack-usage -ftime-report -ftime-report-details @gol
610 -fvar-tracking-assignments-toggle -gtoggle @gol
611 -print-file-name=@var{library} -print-libgcc-file-name @gol
612 -print-multi-directory -print-multi-lib -print-multi-os-directory @gol
613 -print-prog-name=@var{program} -print-search-dirs -Q @gol
614 -print-sysroot -print-sysroot-headers-suffix @gol
615 -save-temps -save-temps=cwd -save-temps=obj -time@r{[}=@var{file}@r{]}}
616
617 @item Machine-Dependent Options
618 @xref{Submodel Options,,Machine-Dependent Options}.
619 @c This list is ordered alphanumerically by subsection name.
620 @c Try and put the significant identifier (CPU or system) first,
621 @c so users have a clue at guessing where the ones they want will be.
622
623 @emph{AArch64 Options}
624 @gccoptlist{-mabi=@var{name} -mbig-endian -mlittle-endian @gol
625 -mgeneral-regs-only @gol
626 -mcmodel=tiny -mcmodel=small -mcmodel=large @gol
627 -mstrict-align -mno-strict-align @gol
628 -momit-leaf-frame-pointer @gol
629 -mtls-dialect=desc -mtls-dialect=traditional @gol
630 -mtls-size=@var{size} @gol
631 -mfix-cortex-a53-835769 -mfix-cortex-a53-843419 @gol
632 -mlow-precision-recip-sqrt -mlow-precision-sqrt -mlow-precision-div @gol
633 -mpc-relative-literal-loads @gol
634 -msign-return-address=@var{scope} @gol
635 -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}
636 +@var{b-key}]|@var{bti} @gol
637 -march=@var{name} -mcpu=@var{name} -mtune=@var{name} @gol
638 -moverride=@var{string} -mverbose-cost-dump @gol
639 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{sysreg} @gol
640 -mstack-protector-guard-offset=@var{offset} -mtrack-speculation }
641
642 @emph{Adapteva Epiphany Options}
643 @gccoptlist{-mhalf-reg-file -mprefer-short-insn-regs @gol
644 -mbranch-cost=@var{num} -mcmove -mnops=@var{num} -msoft-cmpsf @gol
645 -msplit-lohi -mpost-inc -mpost-modify -mstack-offset=@var{num} @gol
646 -mround-nearest -mlong-calls -mshort-calls -msmall16 @gol
647 -mfp-mode=@var{mode} -mvect-double -max-vect-align=@var{num} @gol
648 -msplit-vecmove-early -m1reg-@var{reg}}
649
650 @emph{AMD GCN Options}
651 @gccoptlist{-march=@var{gpu} -mtune=@var{gpu} -mstack-size=@var{bytes}}
652
653 @emph{ARC Options}
654 @gccoptlist{-mbarrel-shifter -mjli-always @gol
655 -mcpu=@var{cpu} -mA6 -mARC600 -mA7 -mARC700 @gol
656 -mdpfp -mdpfp-compact -mdpfp-fast -mno-dpfp-lrsr @gol
657 -mea -mno-mpy -mmul32x16 -mmul64 -matomic @gol
658 -mnorm -mspfp -mspfp-compact -mspfp-fast -msimd -msoft-float -mswap @gol
659 -mcrc -mdsp-packa -mdvbf -mlock -mmac-d16 -mmac-24 -mrtsc -mswape @gol
660 -mtelephony -mxy -misize -mannotate-align -marclinux -marclinux_prof @gol
661 -mlong-calls -mmedium-calls -msdata -mirq-ctrl-saved @gol
662 -mrgf-banked-regs -mlpc-width=@var{width} -G @var{num} @gol
663 -mvolatile-cache -mtp-regno=@var{regno} @gol
664 -malign-call -mauto-modify-reg -mbbit-peephole -mno-brcc @gol
665 -mcase-vector-pcrel -mcompact-casesi -mno-cond-exec -mearly-cbranchsi @gol
666 -mexpand-adddi -mindexed-loads -mlra -mlra-priority-none @gol
667 -mlra-priority-compact mlra-priority-noncompact -mmillicode @gol
668 -mmixed-code -mq-class -mRcq -mRcw -msize-level=@var{level} @gol
669 -mtune=@var{cpu} -mmultcost=@var{num} -mcode-density-frame @gol
670 -munalign-prob-threshold=@var{probability} -mmpy-option=@var{multo} @gol
671 -mdiv-rem -mcode-density -mll64 -mfpu=@var{fpu} -mrf16 -mbranch-index}
672
673 @emph{ARM Options}
674 @gccoptlist{-mapcs-frame -mno-apcs-frame @gol
675 -mabi=@var{name} @gol
676 -mapcs-stack-check -mno-apcs-stack-check @gol
677 -mapcs-reentrant -mno-apcs-reentrant @gol
678 -mgeneral-regs-only @gol
679 -msched-prolog -mno-sched-prolog @gol
680 -mlittle-endian -mbig-endian @gol
681 -mbe8 -mbe32 @gol
682 -mfloat-abi=@var{name} @gol
683 -mfp16-format=@var{name}
684 -mthumb-interwork -mno-thumb-interwork @gol
685 -mcpu=@var{name} -march=@var{name} -mfpu=@var{name} @gol
686 -mtune=@var{name} -mprint-tune-info @gol
687 -mstructure-size-boundary=@var{n} @gol
688 -mabort-on-noreturn @gol
689 -mlong-calls -mno-long-calls @gol
690 -msingle-pic-base -mno-single-pic-base @gol
691 -mpic-register=@var{reg} @gol
692 -mnop-fun-dllimport @gol
693 -mpoke-function-name @gol
694 -mthumb -marm -mflip-thumb @gol
695 -mtpcs-frame -mtpcs-leaf-frame @gol
696 -mcaller-super-interworking -mcallee-super-interworking @gol
697 -mtp=@var{name} -mtls-dialect=@var{dialect} @gol
698 -mword-relocations @gol
699 -mfix-cortex-m3-ldrd @gol
700 -munaligned-access @gol
701 -mneon-for-64bits @gol
702 -mslow-flash-data @gol
703 -masm-syntax-unified @gol
704 -mrestrict-it @gol
705 -mverbose-cost-dump @gol
706 -mpure-code @gol
707 -mcmse}
708
709 @emph{AVR Options}
710 @gccoptlist{-mmcu=@var{mcu} -mabsdata -maccumulate-args @gol
711 -mbranch-cost=@var{cost} @gol
712 -mcall-prologues -mgas-isr-prologues -mint8 @gol
713 -mn_flash=@var{size} -mno-interrupts @gol
714 -mmain-is-OS_task -mrelax -mrmw -mstrict-X -mtiny-stack @gol
715 -mfract-convert-truncate @gol
716 -mshort-calls -nodevicelib @gol
717 -Waddr-space-convert -Wmisspelled-isr}
718
719 @emph{Blackfin Options}
720 @gccoptlist{-mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]} @gol
721 -msim -momit-leaf-frame-pointer -mno-omit-leaf-frame-pointer @gol
722 -mspecld-anomaly -mno-specld-anomaly -mcsync-anomaly -mno-csync-anomaly @gol
723 -mlow-64k -mno-low64k -mstack-check-l1 -mid-shared-library @gol
724 -mno-id-shared-library -mshared-library-id=@var{n} @gol
725 -mleaf-id-shared-library -mno-leaf-id-shared-library @gol
726 -msep-data -mno-sep-data -mlong-calls -mno-long-calls @gol
727 -mfast-fp -minline-plt -mmulticore -mcorea -mcoreb -msdram @gol
728 -micplb}
729
730 @emph{C6X Options}
731 @gccoptlist{-mbig-endian -mlittle-endian -march=@var{cpu} @gol
732 -msim -msdata=@var{sdata-type}}
733
734 @emph{CRIS Options}
735 @gccoptlist{-mcpu=@var{cpu} -march=@var{cpu} -mtune=@var{cpu} @gol
736 -mmax-stack-frame=@var{n} -melinux-stacksize=@var{n} @gol
737 -metrax4 -metrax100 -mpdebug -mcc-init -mno-side-effects @gol
738 -mstack-align -mdata-align -mconst-align @gol
739 -m32-bit -m16-bit -m8-bit -mno-prologue-epilogue -mno-gotplt @gol
740 -melf -maout -melinux -mlinux -sim -sim2 @gol
741 -mmul-bug-workaround -mno-mul-bug-workaround}
742
743 @emph{CR16 Options}
744 @gccoptlist{-mmac @gol
745 -mcr16cplus -mcr16c @gol
746 -msim -mint32 -mbit-ops
747 -mdata-model=@var{model}}
748
749 @emph{C-SKY Options}
750 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} @gol
751 -mbig-endian -EB -mlittle-endian -EL @gol
752 -mhard-float -msoft-float -mfpu=@var{fpu} -mdouble-float -mfdivdu @gol
753 -melrw -mistack -mmp -mcp -mcache -msecurity -mtrust @gol
754 -mdsp -medsp -mvdsp @gol
755 -mdiv -msmart -mhigh-registers -manchor @gol
756 -mpushpop -mmultiple-stld -mconstpool -mstack-size -mccrt @gol
757 -mbranch-cost=@var{n} -mcse-cc -msched-prolog}
758
759 @emph{Darwin Options}
760 @gccoptlist{-all_load -allowable_client -arch -arch_errors_fatal @gol
761 -arch_only -bind_at_load -bundle -bundle_loader @gol
762 -client_name -compatibility_version -current_version @gol
763 -dead_strip @gol
764 -dependency-file -dylib_file -dylinker_install_name @gol
765 -dynamic -dynamiclib -exported_symbols_list @gol
766 -filelist -flat_namespace -force_cpusubtype_ALL @gol
767 -force_flat_namespace -headerpad_max_install_names @gol
768 -iframework @gol
769 -image_base -init -install_name -keep_private_externs @gol
770 -multi_module -multiply_defined -multiply_defined_unused @gol
771 -noall_load -no_dead_strip_inits_and_terms @gol
772 -nofixprebinding -nomultidefs -noprebind -noseglinkedit @gol
773 -pagezero_size -prebind -prebind_all_twolevel_modules @gol
774 -private_bundle -read_only_relocs -sectalign @gol
775 -sectobjectsymbols -whyload -seg1addr @gol
776 -sectcreate -sectobjectsymbols -sectorder @gol
777 -segaddr -segs_read_only_addr -segs_read_write_addr @gol
778 -seg_addr_table -seg_addr_table_filename -seglinkedit @gol
779 -segprot -segs_read_only_addr -segs_read_write_addr @gol
780 -single_module -static -sub_library -sub_umbrella @gol
781 -twolevel_namespace -umbrella -undefined @gol
782 -unexported_symbols_list -weak_reference_mismatches @gol
783 -whatsloaded -F -gused -gfull -mmacosx-version-min=@var{version} @gol
784 -mkernel -mone-byte-bool}
785
786 @emph{DEC Alpha Options}
787 @gccoptlist{-mno-fp-regs -msoft-float @gol
788 -mieee -mieee-with-inexact -mieee-conformant @gol
789 -mfp-trap-mode=@var{mode} -mfp-rounding-mode=@var{mode} @gol
790 -mtrap-precision=@var{mode} -mbuild-constants @gol
791 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} @gol
792 -mbwx -mmax -mfix -mcix @gol
793 -mfloat-vax -mfloat-ieee @gol
794 -mexplicit-relocs -msmall-data -mlarge-data @gol
795 -msmall-text -mlarge-text @gol
796 -mmemory-latency=@var{time}}
797
798 @emph{FR30 Options}
799 @gccoptlist{-msmall-model -mno-lsim}
800
801 @emph{FT32 Options}
802 @gccoptlist{-msim -mlra -mnodiv -mft32b -mcompress -mnopm}
803
804 @emph{FRV Options}
805 @gccoptlist{-mgpr-32 -mgpr-64 -mfpr-32 -mfpr-64 @gol
806 -mhard-float -msoft-float @gol
807 -malloc-cc -mfixed-cc -mdword -mno-dword @gol
808 -mdouble -mno-double @gol
809 -mmedia -mno-media -mmuladd -mno-muladd @gol
810 -mfdpic -minline-plt -mgprel-ro -multilib-library-pic @gol
811 -mlinked-fp -mlong-calls -malign-labels @gol
812 -mlibrary-pic -macc-4 -macc-8 @gol
813 -mpack -mno-pack -mno-eflags -mcond-move -mno-cond-move @gol
814 -moptimize-membar -mno-optimize-membar @gol
815 -mscc -mno-scc -mcond-exec -mno-cond-exec @gol
816 -mvliw-branch -mno-vliw-branch @gol
817 -mmulti-cond-exec -mno-multi-cond-exec -mnested-cond-exec @gol
818 -mno-nested-cond-exec -mtomcat-stats @gol
819 -mTLS -mtls @gol
820 -mcpu=@var{cpu}}
821
822 @emph{GNU/Linux Options}
823 @gccoptlist{-mglibc -muclibc -mmusl -mbionic -mandroid @gol
824 -tno-android-cc -tno-android-ld}
825
826 @emph{H8/300 Options}
827 @gccoptlist{-mrelax -mh -ms -mn -mexr -mno-exr -mint32 -malign-300}
828
829 @emph{HPPA Options}
830 @gccoptlist{-march=@var{architecture-type} @gol
831 -mcaller-copies -mdisable-fpregs -mdisable-indexing @gol
832 -mfast-indirect-calls -mgas -mgnu-ld -mhp-ld @gol
833 -mfixed-range=@var{register-range} @gol
834 -mjump-in-delay -mlinker-opt -mlong-calls @gol
835 -mlong-load-store -mno-disable-fpregs @gol
836 -mno-disable-indexing -mno-fast-indirect-calls -mno-gas @gol
837 -mno-jump-in-delay -mno-long-load-store @gol
838 -mno-portable-runtime -mno-soft-float @gol
839 -mno-space-regs -msoft-float -mpa-risc-1-0 @gol
840 -mpa-risc-1-1 -mpa-risc-2-0 -mportable-runtime @gol
841 -mschedule=@var{cpu-type} -mspace-regs -msio -mwsio @gol
842 -munix=@var{unix-std} -nolibdld -static -threads}
843
844 @emph{IA-64 Options}
845 @gccoptlist{-mbig-endian -mlittle-endian -mgnu-as -mgnu-ld -mno-pic @gol
846 -mvolatile-asm-stop -mregister-names -msdata -mno-sdata @gol
847 -mconstant-gp -mauto-pic -mfused-madd @gol
848 -minline-float-divide-min-latency @gol
849 -minline-float-divide-max-throughput @gol
850 -mno-inline-float-divide @gol
851 -minline-int-divide-min-latency @gol
852 -minline-int-divide-max-throughput @gol
853 -mno-inline-int-divide @gol
854 -minline-sqrt-min-latency -minline-sqrt-max-throughput @gol
855 -mno-inline-sqrt @gol
856 -mdwarf2-asm -mearly-stop-bits @gol
857 -mfixed-range=@var{register-range} -mtls-size=@var{tls-size} @gol
858 -mtune=@var{cpu-type} -milp32 -mlp64 @gol
859 -msched-br-data-spec -msched-ar-data-spec -msched-control-spec @gol
860 -msched-br-in-data-spec -msched-ar-in-data-spec -msched-in-control-spec @gol
861 -msched-spec-ldc -msched-spec-control-ldc @gol
862 -msched-prefer-non-data-spec-insns -msched-prefer-non-control-spec-insns @gol
863 -msched-stop-bits-after-every-cycle -msched-count-spec-in-critical-path @gol
864 -msel-sched-dont-check-control-spec -msched-fp-mem-deps-zero-cost @gol
865 -msched-max-memory-insns-hard-limit -msched-max-memory-insns=@var{max-insns}}
866
867 @emph{LM32 Options}
868 @gccoptlist{-mbarrel-shift-enabled -mdivide-enabled -mmultiply-enabled @gol
869 -msign-extend-enabled -muser-enabled}
870
871 @emph{M32R/D Options}
872 @gccoptlist{-m32r2 -m32rx -m32r @gol
873 -mdebug @gol
874 -malign-loops -mno-align-loops @gol
875 -missue-rate=@var{number} @gol
876 -mbranch-cost=@var{number} @gol
877 -mmodel=@var{code-size-model-type} @gol
878 -msdata=@var{sdata-type} @gol
879 -mno-flush-func -mflush-func=@var{name} @gol
880 -mno-flush-trap -mflush-trap=@var{number} @gol
881 -G @var{num}}
882
883 @emph{M32C Options}
884 @gccoptlist{-mcpu=@var{cpu} -msim -memregs=@var{number}}
885
886 @emph{M680x0 Options}
887 @gccoptlist{-march=@var{arch} -mcpu=@var{cpu} -mtune=@var{tune} @gol
888 -m68000 -m68020 -m68020-40 -m68020-60 -m68030 -m68040 @gol
889 -m68060 -mcpu32 -m5200 -m5206e -m528x -m5307 -m5407 @gol
890 -mcfv4e -mbitfield -mno-bitfield -mc68000 -mc68020 @gol
891 -mnobitfield -mrtd -mno-rtd -mdiv -mno-div -mshort @gol
892 -mno-short -mhard-float -m68881 -msoft-float -mpcrel @gol
893 -malign-int -mstrict-align -msep-data -mno-sep-data @gol
894 -mshared-library-id=n -mid-shared-library -mno-id-shared-library @gol
895 -mxgot -mno-xgot -mlong-jump-table-offsets}
896
897 @emph{MCore Options}
898 @gccoptlist{-mhardlit -mno-hardlit -mdiv -mno-div -mrelax-immediates @gol
899 -mno-relax-immediates -mwide-bitfields -mno-wide-bitfields @gol
900 -m4byte-functions -mno-4byte-functions -mcallgraph-data @gol
901 -mno-callgraph-data -mslow-bytes -mno-slow-bytes -mno-lsim @gol
902 -mlittle-endian -mbig-endian -m210 -m340 -mstack-increment}
903
904 @emph{MeP Options}
905 @gccoptlist{-mabsdiff -mall-opts -maverage -mbased=@var{n} -mbitops @gol
906 -mc=@var{n} -mclip -mconfig=@var{name} -mcop -mcop32 -mcop64 -mivc2 @gol
907 -mdc -mdiv -meb -mel -mio-volatile -ml -mleadz -mm -mminmax @gol
908 -mmult -mno-opts -mrepeat -ms -msatur -msdram -msim -msimnovec -mtf @gol
909 -mtiny=@var{n}}
910
911 @emph{MicroBlaze Options}
912 @gccoptlist{-msoft-float -mhard-float -msmall-divides -mcpu=@var{cpu} @gol
913 -mmemcpy -mxl-soft-mul -mxl-soft-div -mxl-barrel-shift @gol
914 -mxl-pattern-compare -mxl-stack-check -mxl-gp-opt -mno-clearbss @gol
915 -mxl-multiply-high -mxl-float-convert -mxl-float-sqrt @gol
916 -mbig-endian -mlittle-endian -mxl-reorder -mxl-mode-@var{app-model} @gol
917 -mpic-data-is-text-relative}
918
919 @emph{MIPS Options}
920 @gccoptlist{-EL -EB -march=@var{arch} -mtune=@var{arch} @gol
921 -mips1 -mips2 -mips3 -mips4 -mips32 -mips32r2 -mips32r3 -mips32r5 @gol
922 -mips32r6 -mips64 -mips64r2 -mips64r3 -mips64r5 -mips64r6 @gol
923 -mips16 -mno-mips16 -mflip-mips16 @gol
924 -minterlink-compressed -mno-interlink-compressed @gol
925 -minterlink-mips16 -mno-interlink-mips16 @gol
926 -mabi=@var{abi} -mabicalls -mno-abicalls @gol
927 -mshared -mno-shared -mplt -mno-plt -mxgot -mno-xgot @gol
928 -mgp32 -mgp64 -mfp32 -mfpxx -mfp64 -mhard-float -msoft-float @gol
929 -mno-float -msingle-float -mdouble-float @gol
930 -modd-spreg -mno-odd-spreg @gol
931 -mabs=@var{mode} -mnan=@var{encoding} @gol
932 -mdsp -mno-dsp -mdspr2 -mno-dspr2 @gol
933 -mmcu -mmno-mcu @gol
934 -meva -mno-eva @gol
935 -mvirt -mno-virt @gol
936 -mxpa -mno-xpa @gol
937 -mcrc -mno-crc @gol
938 -mginv -mno-ginv @gol
939 -mmicromips -mno-micromips @gol
940 -mmsa -mno-msa @gol
941 -mloongson-mmi -mno-loongson-mmi @gol
942 -mloongson-ext -mno-loongson-ext @gol
943 -mloongson-ext2 -mno-loongson-ext2 @gol
944 -mfpu=@var{fpu-type} @gol
945 -msmartmips -mno-smartmips @gol
946 -mpaired-single -mno-paired-single -mdmx -mno-mdmx @gol
947 -mips3d -mno-mips3d -mmt -mno-mt -mllsc -mno-llsc @gol
948 -mlong64 -mlong32 -msym32 -mno-sym32 @gol
949 -G@var{num} -mlocal-sdata -mno-local-sdata @gol
950 -mextern-sdata -mno-extern-sdata -mgpopt -mno-gopt @gol
951 -membedded-data -mno-embedded-data @gol
952 -muninit-const-in-rodata -mno-uninit-const-in-rodata @gol
953 -mcode-readable=@var{setting} @gol
954 -msplit-addresses -mno-split-addresses @gol
955 -mexplicit-relocs -mno-explicit-relocs @gol
956 -mcheck-zero-division -mno-check-zero-division @gol
957 -mdivide-traps -mdivide-breaks @gol
958 -mload-store-pairs -mno-load-store-pairs @gol
959 -mmemcpy -mno-memcpy -mlong-calls -mno-long-calls @gol
960 -mmad -mno-mad -mimadd -mno-imadd -mfused-madd -mno-fused-madd -nocpp @gol
961 -mfix-24k -mno-fix-24k @gol
962 -mfix-r4000 -mno-fix-r4000 -mfix-r4400 -mno-fix-r4400 @gol
963 -mfix-r5900 -mno-fix-r5900 @gol
964 -mfix-r10000 -mno-fix-r10000 -mfix-rm7000 -mno-fix-rm7000 @gol
965 -mfix-vr4120 -mno-fix-vr4120 @gol
966 -mfix-vr4130 -mno-fix-vr4130 -mfix-sb1 -mno-fix-sb1 @gol
967 -mflush-func=@var{func} -mno-flush-func @gol
968 -mbranch-cost=@var{num} -mbranch-likely -mno-branch-likely @gol
969 -mcompact-branches=@var{policy} @gol
970 -mfp-exceptions -mno-fp-exceptions @gol
971 -mvr4130-align -mno-vr4130-align -msynci -mno-synci @gol
972 -mlxc1-sxc1 -mno-lxc1-sxc1 -mmadd4 -mno-madd4 @gol
973 -mrelax-pic-calls -mno-relax-pic-calls -mmcount-ra-address @gol
974 -mframe-header-opt -mno-frame-header-opt}
975
976 @emph{MMIX Options}
977 @gccoptlist{-mlibfuncs -mno-libfuncs -mepsilon -mno-epsilon -mabi=gnu @gol
978 -mabi=mmixware -mzero-extend -mknuthdiv -mtoplevel-symbols @gol
979 -melf -mbranch-predict -mno-branch-predict -mbase-addresses @gol
980 -mno-base-addresses -msingle-exit -mno-single-exit}
981
982 @emph{MN10300 Options}
983 @gccoptlist{-mmult-bug -mno-mult-bug @gol
984 -mno-am33 -mam33 -mam33-2 -mam34 @gol
985 -mtune=@var{cpu-type} @gol
986 -mreturn-pointer-on-d0 @gol
987 -mno-crt0 -mrelax -mliw -msetlb}
988
989 @emph{Moxie Options}
990 @gccoptlist{-meb -mel -mmul.x -mno-crt0}
991
992 @emph{MSP430 Options}
993 @gccoptlist{-msim -masm-hex -mmcu= -mcpu= -mlarge -msmall -mrelax @gol
994 -mwarn-mcu @gol
995 -mcode-region= -mdata-region= @gol
996 -msilicon-errata= -msilicon-errata-warn= @gol
997 -mhwmult= -minrt}
998
999 @emph{NDS32 Options}
1000 @gccoptlist{-mbig-endian -mlittle-endian @gol
1001 -mreduced-regs -mfull-regs @gol
1002 -mcmov -mno-cmov @gol
1003 -mext-perf -mno-ext-perf @gol
1004 -mext-perf2 -mno-ext-perf2 @gol
1005 -mext-string -mno-ext-string @gol
1006 -mv3push -mno-v3push @gol
1007 -m16bit -mno-16bit @gol
1008 -misr-vector-size=@var{num} @gol
1009 -mcache-block-size=@var{num} @gol
1010 -march=@var{arch} @gol
1011 -mcmodel=@var{code-model} @gol
1012 -mctor-dtor -mrelax}
1013
1014 @emph{Nios II Options}
1015 @gccoptlist{-G @var{num} -mgpopt=@var{option} -mgpopt -mno-gpopt @gol
1016 -mgprel-sec=@var{regexp} -mr0rel-sec=@var{regexp} @gol
1017 -mel -meb @gol
1018 -mno-bypass-cache -mbypass-cache @gol
1019 -mno-cache-volatile -mcache-volatile @gol
1020 -mno-fast-sw-div -mfast-sw-div @gol
1021 -mhw-mul -mno-hw-mul -mhw-mulx -mno-hw-mulx -mno-hw-div -mhw-div @gol
1022 -mcustom-@var{insn}=@var{N} -mno-custom-@var{insn} @gol
1023 -mcustom-fpu-cfg=@var{name} @gol
1024 -mhal -msmallc -msys-crt0=@var{name} -msys-lib=@var{name} @gol
1025 -march=@var{arch} -mbmx -mno-bmx -mcdx -mno-cdx}
1026
1027 @emph{Nvidia PTX Options}
1028 @gccoptlist{-m32 -m64 -mmainkernel -moptimize}
1029
1030 @emph{OpenRISC Options}
1031 @gccoptlist{-mboard=@var{name} -mnewlib -mhard-mul -mhard-div @gol
1032 -msoft-mul -msoft-div @gol
1033 -mcmov -mror -msext -msfimm -mshftimm}
1034
1035 @emph{PDP-11 Options}
1036 @gccoptlist{-mfpu -msoft-float -mac0 -mno-ac0 -m40 -m45 -m10 @gol
1037 -mint32 -mno-int16 -mint16 -mno-int32 @gol
1038 -msplit -munix-asm -mdec-asm -mgnu-asm -mlra}
1039
1040 @emph{picoChip Options}
1041 @gccoptlist{-mae=@var{ae_type} -mvliw-lookahead=@var{N} @gol
1042 -msymbol-as-address -mno-inefficient-warnings}
1043
1044 @emph{PowerPC Options}
1045 See RS/6000 and PowerPC Options.
1046
1047 @emph{RISC-V Options}
1048 @gccoptlist{-mbranch-cost=@var{N-instruction} @gol
1049 -mplt -mno-plt @gol
1050 -mabi=@var{ABI-string} @gol
1051 -mfdiv -mno-fdiv @gol
1052 -mdiv -mno-div @gol
1053 -march=@var{ISA-string} @gol
1054 -mtune=@var{processor-string} @gol
1055 -mpreferred-stack-boundary=@var{num} @gol
1056 -msmall-data-limit=@var{N-bytes} @gol
1057 -msave-restore -mno-save-restore @gol
1058 -mstrict-align -mno-strict-align @gol
1059 -mcmodel=medlow -mcmodel=medany @gol
1060 -mexplicit-relocs -mno-explicit-relocs @gol
1061 -mrelax -mno-relax @gol
1062 -mriscv-attribute -mmo-riscv-attribute}
1063
1064 @emph{RL78 Options}
1065 @gccoptlist{-msim -mmul=none -mmul=g13 -mmul=g14 -mallregs @gol
1066 -mcpu=g10 -mcpu=g13 -mcpu=g14 -mg10 -mg13 -mg14 @gol
1067 -m64bit-doubles -m32bit-doubles -msave-mduc-in-interrupts}
1068
1069 @emph{RS/6000 and PowerPC Options}
1070 @gccoptlist{-mcpu=@var{cpu-type} @gol
1071 -mtune=@var{cpu-type} @gol
1072 -mcmodel=@var{code-model} @gol
1073 -mpowerpc64 @gol
1074 -maltivec -mno-altivec @gol
1075 -mpowerpc-gpopt -mno-powerpc-gpopt @gol
1076 -mpowerpc-gfxopt -mno-powerpc-gfxopt @gol
1077 -mmfcrf -mno-mfcrf -mpopcntb -mno-popcntb -mpopcntd -mno-popcntd @gol
1078 -mfprnd -mno-fprnd @gol
1079 -mcmpb -mno-cmpb -mhard-dfp -mno-hard-dfp @gol
1080 -mfull-toc -mminimal-toc -mno-fp-in-toc -mno-sum-in-toc @gol
1081 -m64 -m32 -mxl-compat -mno-xl-compat -mpe @gol
1082 -malign-power -malign-natural @gol
1083 -msoft-float -mhard-float -mmultiple -mno-multiple @gol
1084 -mupdate -mno-update @gol
1085 -mavoid-indexed-addresses -mno-avoid-indexed-addresses @gol
1086 -mfused-madd -mno-fused-madd -mbit-align -mno-bit-align @gol
1087 -mstrict-align -mno-strict-align -mrelocatable @gol
1088 -mno-relocatable -mrelocatable-lib -mno-relocatable-lib @gol
1089 -mtoc -mno-toc -mlittle -mlittle-endian -mbig -mbig-endian @gol
1090 -mdynamic-no-pic -mswdiv -msingle-pic-base @gol
1091 -mprioritize-restricted-insns=@var{priority} @gol
1092 -msched-costly-dep=@var{dependence_type} @gol
1093 -minsert-sched-nops=@var{scheme} @gol
1094 -mcall-aixdesc -mcall-eabi -mcall-freebsd @gol
1095 -mcall-linux -mcall-netbsd -mcall-openbsd @gol
1096 -mcall-sysv -mcall-sysv-eabi -mcall-sysv-noeabi @gol
1097 -mtraceback=@var{traceback_type} @gol
1098 -maix-struct-return -msvr4-struct-return @gol
1099 -mabi=@var{abi-type} -msecure-plt -mbss-plt @gol
1100 -mlongcall -mno-longcall -mpltseq -mno-pltseq @gol
1101 -mblock-move-inline-limit=@var{num} @gol
1102 -mblock-compare-inline-limit=@var{num} @gol
1103 -mblock-compare-inline-loop-limit=@var{num} @gol
1104 -mstring-compare-inline-limit=@var{num} @gol
1105 -misel -mno-isel @gol
1106 -mvrsave -mno-vrsave @gol
1107 -mmulhw -mno-mulhw @gol
1108 -mdlmzb -mno-dlmzb @gol
1109 -mprototype -mno-prototype @gol
1110 -msim -mmvme -mads -myellowknife -memb -msdata @gol
1111 -msdata=@var{opt} -mreadonly-in-sdata -mvxworks -G @var{num} @gol
1112 -mrecip -mrecip=@var{opt} -mno-recip -mrecip-precision @gol
1113 -mno-recip-precision @gol
1114 -mveclibabi=@var{type} -mfriz -mno-friz @gol
1115 -mpointers-to-nested-functions -mno-pointers-to-nested-functions @gol
1116 -msave-toc-indirect -mno-save-toc-indirect @gol
1117 -mpower8-fusion -mno-mpower8-fusion -mpower8-vector -mno-power8-vector @gol
1118 -mcrypto -mno-crypto -mhtm -mno-htm @gol
1119 -mquad-memory -mno-quad-memory @gol
1120 -mquad-memory-atomic -mno-quad-memory-atomic @gol
1121 -mcompat-align-parm -mno-compat-align-parm @gol
1122 -mfloat128 -mno-float128 -mfloat128-hardware -mno-float128-hardware @gol
1123 -mgnu-attribute -mno-gnu-attribute @gol
1124 -mstack-protector-guard=@var{guard} -mstack-protector-guard-reg=@var{reg} @gol
1125 -mstack-protector-guard-offset=@var{offset} -mpcrel -mno-pcrel}
1126
1127 @emph{RX Options}
1128 @gccoptlist{-m64bit-doubles -m32bit-doubles -fpu -nofpu@gol
1129 -mcpu=@gol
1130 -mbig-endian-data -mlittle-endian-data @gol
1131 -msmall-data @gol
1132 -msim -mno-sim@gol
1133 -mas100-syntax -mno-as100-syntax@gol
1134 -mrelax@gol
1135 -mmax-constant-size=@gol
1136 -mint-register=@gol
1137 -mpid@gol
1138 -mallow-string-insns -mno-allow-string-insns@gol
1139 -mjsr@gol
1140 -mno-warn-multiple-fast-interrupts@gol
1141 -msave-acc-in-interrupts}
1142
1143 @emph{S/390 and zSeries Options}
1144 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1145 -mhard-float -msoft-float -mhard-dfp -mno-hard-dfp @gol
1146 -mlong-double-64 -mlong-double-128 @gol
1147 -mbackchain -mno-backchain -mpacked-stack -mno-packed-stack @gol
1148 -msmall-exec -mno-small-exec -mmvcle -mno-mvcle @gol
1149 -m64 -m31 -mdebug -mno-debug -mesa -mzarch @gol
1150 -mhtm -mvx -mzvector @gol
1151 -mtpf-trace -mno-tpf-trace -mfused-madd -mno-fused-madd @gol
1152 -mwarn-framesize -mwarn-dynamicstack -mstack-size -mstack-guard @gol
1153 -mhotpatch=@var{halfwords},@var{halfwords}}
1154
1155 @emph{Score Options}
1156 @gccoptlist{-meb -mel @gol
1157 -mnhwloop @gol
1158 -muls @gol
1159 -mmac @gol
1160 -mscore5 -mscore5u -mscore7 -mscore7d}
1161
1162 @emph{SH Options}
1163 @gccoptlist{-m1 -m2 -m2e @gol
1164 -m2a-nofpu -m2a-single-only -m2a-single -m2a @gol
1165 -m3 -m3e @gol
1166 -m4-nofpu -m4-single-only -m4-single -m4 @gol
1167 -m4a-nofpu -m4a-single-only -m4a-single -m4a -m4al @gol
1168 -mb -ml -mdalign -mrelax @gol
1169 -mbigtable -mfmovd -mrenesas -mno-renesas -mnomacsave @gol
1170 -mieee -mno-ieee -mbitops -misize -minline-ic_invalidate -mpadstruct @gol
1171 -mprefergot -musermode -multcost=@var{number} -mdiv=@var{strategy} @gol
1172 -mdivsi3_libfunc=@var{name} -mfixed-range=@var{register-range} @gol
1173 -maccumulate-outgoing-args @gol
1174 -matomic-model=@var{atomic-model} @gol
1175 -mbranch-cost=@var{num} -mzdcbranch -mno-zdcbranch @gol
1176 -mcbranch-force-delay-slot @gol
1177 -mfused-madd -mno-fused-madd -mfsca -mno-fsca -mfsrra -mno-fsrra @gol
1178 -mpretend-cmove -mtas}
1179
1180 @emph{Solaris 2 Options}
1181 @gccoptlist{-mclear-hwcap -mno-clear-hwcap -mimpure-text -mno-impure-text @gol
1182 -pthreads}
1183
1184 @emph{SPARC Options}
1185 @gccoptlist{-mcpu=@var{cpu-type} @gol
1186 -mtune=@var{cpu-type} @gol
1187 -mcmodel=@var{code-model} @gol
1188 -mmemory-model=@var{mem-model} @gol
1189 -m32 -m64 -mapp-regs -mno-app-regs @gol
1190 -mfaster-structs -mno-faster-structs -mflat -mno-flat @gol
1191 -mfpu -mno-fpu -mhard-float -msoft-float @gol
1192 -mhard-quad-float -msoft-quad-float @gol
1193 -mstack-bias -mno-stack-bias @gol
1194 -mstd-struct-return -mno-std-struct-return @gol
1195 -munaligned-doubles -mno-unaligned-doubles @gol
1196 -muser-mode -mno-user-mode @gol
1197 -mv8plus -mno-v8plus -mvis -mno-vis @gol
1198 -mvis2 -mno-vis2 -mvis3 -mno-vis3 @gol
1199 -mvis4 -mno-vis4 -mvis4b -mno-vis4b @gol
1200 -mcbcond -mno-cbcond -mfmaf -mno-fmaf -mfsmuld -mno-fsmuld @gol
1201 -mpopc -mno-popc -msubxc -mno-subxc @gol
1202 -mfix-at697f -mfix-ut699 -mfix-ut700 -mfix-gr712rc @gol
1203 -mlra -mno-lra}
1204
1205 @emph{SPU Options}
1206 @gccoptlist{-mwarn-reloc -merror-reloc @gol
1207 -msafe-dma -munsafe-dma @gol
1208 -mbranch-hints @gol
1209 -msmall-mem -mlarge-mem -mstdmain @gol
1210 -mfixed-range=@var{register-range} @gol
1211 -mea32 -mea64 @gol
1212 -maddress-space-conversion -mno-address-space-conversion @gol
1213 -mcache-size=@var{cache-size} @gol
1214 -matomic-updates -mno-atomic-updates}
1215
1216 @emph{System V Options}
1217 @gccoptlist{-Qy -Qn -YP,@var{paths} -Ym,@var{dir}}
1218
1219 @emph{TILE-Gx Options}
1220 @gccoptlist{-mcpu=CPU -m32 -m64 -mbig-endian -mlittle-endian @gol
1221 -mcmodel=@var{code-model}}
1222
1223 @emph{TILEPro Options}
1224 @gccoptlist{-mcpu=@var{cpu} -m32}
1225
1226 @emph{V850 Options}
1227 @gccoptlist{-mlong-calls -mno-long-calls -mep -mno-ep @gol
1228 -mprolog-function -mno-prolog-function -mspace @gol
1229 -mtda=@var{n} -msda=@var{n} -mzda=@var{n} @gol
1230 -mapp-regs -mno-app-regs @gol
1231 -mdisable-callt -mno-disable-callt @gol
1232 -mv850e2v3 -mv850e2 -mv850e1 -mv850es @gol
1233 -mv850e -mv850 -mv850e3v5 @gol
1234 -mloop @gol
1235 -mrelax @gol
1236 -mlong-jumps @gol
1237 -msoft-float @gol
1238 -mhard-float @gol
1239 -mgcc-abi @gol
1240 -mrh850-abi @gol
1241 -mbig-switch}
1242
1243 @emph{VAX Options}
1244 @gccoptlist{-mg -mgnu -munix}
1245
1246 @emph{Visium Options}
1247 @gccoptlist{-mdebug -msim -mfpu -mno-fpu -mhard-float -msoft-float @gol
1248 -mcpu=@var{cpu-type} -mtune=@var{cpu-type} -msv-mode -muser-mode}
1249
1250 @emph{VMS Options}
1251 @gccoptlist{-mvms-return-codes -mdebug-main=@var{prefix} -mmalloc64 @gol
1252 -mpointer-size=@var{size}}
1253
1254 @emph{VxWorks Options}
1255 @gccoptlist{-mrtp -non-static -Bstatic -Bdynamic @gol
1256 -Xbind-lazy -Xbind-now}
1257
1258 @emph{x86 Options}
1259 @gccoptlist{-mtune=@var{cpu-type} -march=@var{cpu-type} @gol
1260 -mtune-ctrl=@var{feature-list} -mdump-tune-features -mno-default @gol
1261 -mfpmath=@var{unit} @gol
1262 -masm=@var{dialect} -mno-fancy-math-387 @gol
1263 -mno-fp-ret-in-387 -m80387 -mhard-float -msoft-float @gol
1264 -mno-wide-multiply -mrtd -malign-double @gol
1265 -mpreferred-stack-boundary=@var{num} @gol
1266 -mincoming-stack-boundary=@var{num} @gol
1267 -mcld -mcx16 -msahf -mmovbe -mcrc32 @gol
1268 -mrecip -mrecip=@var{opt} @gol
1269 -mvzeroupper -mprefer-avx128 -mprefer-vector-width=@var{opt} @gol
1270 -mmmx -msse -msse2 -msse3 -mssse3 -msse4.1 -msse4.2 -msse4 -mavx @gol
1271 -mavx2 -mavx512f -mavx512pf -mavx512er -mavx512cd -mavx512vl @gol
1272 -mavx512bw -mavx512dq -mavx512ifma -mavx512vbmi -msha -maes @gol
1273 -mpclmul -mfsgsbase -mrdrnd -mf16c -mfma -mpconfig -mwbnoinvd @gol
1274 -mptwrite -mprefetchwt1 -mclflushopt -mclwb -mxsavec -mxsaves @gol
1275 -msse4a -m3dnow -m3dnowa -mpopcnt -mabm -mbmi -mtbm -mfma4 -mxop @gol
1276 -madx -mlzcnt -mbmi2 -mfxsr -mxsave -mxsaveopt -mrtm -mhle -mlwp @gol
1277 -mmwaitx -mclzero -mpku -mthreads -mgfni -mvaes -mwaitpkg @gol
1278 -mshstk -mmanual-endbr -mforce-indirect-call -mavx512vbmi2 -mavx512bf16 -menqcmd @gol
1279 -mvpclmulqdq -mavx512bitalg -mmovdiri -mmovdir64b -mavx512vpopcntdq @gol
1280 -mavx5124fmaps -mavx512vnni -mavx5124vnniw -mprfchw -mrdpid @gol
1281 -mrdseed -msgx @gol
1282 -mcldemote -mms-bitfields -mno-align-stringops -minline-all-stringops @gol
1283 -minline-stringops-dynamically -mstringop-strategy=@var{alg} @gol
1284 -mmemcpy-strategy=@var{strategy} -mmemset-strategy=@var{strategy} @gol
1285 -mpush-args -maccumulate-outgoing-args -m128bit-long-double @gol
1286 -m96bit-long-double -mlong-double-64 -mlong-double-80 -mlong-double-128 @gol
1287 -mregparm=@var{num} -msseregparm @gol
1288 -mveclibabi=@var{type} -mvect8-ret-in-mem @gol
1289 -mpc32 -mpc64 -mpc80 -mstackrealign @gol
1290 -momit-leaf-frame-pointer -mno-red-zone -mno-tls-direct-seg-refs @gol
1291 -mcmodel=@var{code-model} -mabi=@var{name} -maddress-mode=@var{mode} @gol
1292 -m32 -m64 -mx32 -m16 -miamcu -mlarge-data-threshold=@var{num} @gol
1293 -msse2avx -mfentry -mrecord-mcount -mnop-mcount -m8bit-idiv @gol
1294 -minstrument-return=@var{type} -mfentry-name=@var{name} -mfentry-section=@var{name} @gol
1295 -mavx256-split-unaligned-load -mavx256-split-unaligned-store @gol
1296 -malign-data=@var{type} -mstack-protector-guard=@var{guard} @gol
1297 -mstack-protector-guard-reg=@var{reg} @gol
1298 -mstack-protector-guard-offset=@var{offset} @gol
1299 -mstack-protector-guard-symbol=@var{symbol} @gol
1300 -mgeneral-regs-only -mcall-ms2sysv-xlogues @gol
1301 -mindirect-branch=@var{choice} -mfunction-return=@var{choice} @gol
1302 -mindirect-branch-register}
1303
1304 @emph{x86 Windows Options}
1305 @gccoptlist{-mconsole -mcygwin -mno-cygwin -mdll @gol
1306 -mnop-fun-dllimport -mthread @gol
1307 -municode -mwin32 -mwindows -fno-set-stack-executable}
1308
1309 @emph{Xstormy16 Options}
1310 @gccoptlist{-msim}
1311
1312 @emph{Xtensa Options}
1313 @gccoptlist{-mconst16 -mno-const16 @gol
1314 -mfused-madd -mno-fused-madd @gol
1315 -mforce-no-pic @gol
1316 -mserialize-volatile -mno-serialize-volatile @gol
1317 -mtext-section-literals -mno-text-section-literals @gol
1318 -mauto-litpools -mno-auto-litpools @gol
1319 -mtarget-align -mno-target-align @gol
1320 -mlongcalls -mno-longcalls}
1321
1322 @emph{zSeries Options}
1323 See S/390 and zSeries Options.
1324 @end table
1325
1326
1327 @node Overall Options
1328 @section Options Controlling the Kind of Output
1329
1330 Compilation can involve up to four stages: preprocessing, compilation
1331 proper, assembly and linking, always in that order. GCC is capable of
1332 preprocessing and compiling several files either into several
1333 assembler input files, or into one assembler input file; then each
1334 assembler input file produces an object file, and linking combines all
1335 the object files (those newly compiled, and those specified as input)
1336 into an executable file.
1337
1338 @cindex file name suffix
1339 For any given input file, the file name suffix determines what kind of
1340 compilation is done:
1341
1342 @table @gcctabopt
1343 @item @var{file}.c
1344 C source code that must be preprocessed.
1345
1346 @item @var{file}.i
1347 C source code that should not be preprocessed.
1348
1349 @item @var{file}.ii
1350 C++ source code that should not be preprocessed.
1351
1352 @item @var{file}.m
1353 Objective-C source code. Note that you must link with the @file{libobjc}
1354 library to make an Objective-C program work.
1355
1356 @item @var{file}.mi
1357 Objective-C source code that should not be preprocessed.
1358
1359 @item @var{file}.mm
1360 @itemx @var{file}.M
1361 Objective-C++ source code. Note that you must link with the @file{libobjc}
1362 library to make an Objective-C++ program work. Note that @samp{.M} refers
1363 to a literal capital M@.
1364
1365 @item @var{file}.mii
1366 Objective-C++ source code that should not be preprocessed.
1367
1368 @item @var{file}.h
1369 C, C++, Objective-C or Objective-C++ header file to be turned into a
1370 precompiled header (default), or C, C++ header file to be turned into an
1371 Ada spec (via the @option{-fdump-ada-spec} switch).
1372
1373 @item @var{file}.cc
1374 @itemx @var{file}.cp
1375 @itemx @var{file}.cxx
1376 @itemx @var{file}.cpp
1377 @itemx @var{file}.CPP
1378 @itemx @var{file}.c++
1379 @itemx @var{file}.C
1380 C++ source code that must be preprocessed. Note that in @samp{.cxx},
1381 the last two letters must both be literally @samp{x}. Likewise,
1382 @samp{.C} refers to a literal capital C@.
1383
1384 @item @var{file}.mm
1385 @itemx @var{file}.M
1386 Objective-C++ source code that must be preprocessed.
1387
1388 @item @var{file}.mii
1389 Objective-C++ source code that should not be preprocessed.
1390
1391 @item @var{file}.hh
1392 @itemx @var{file}.H
1393 @itemx @var{file}.hp
1394 @itemx @var{file}.hxx
1395 @itemx @var{file}.hpp
1396 @itemx @var{file}.HPP
1397 @itemx @var{file}.h++
1398 @itemx @var{file}.tcc
1399 C++ header file to be turned into a precompiled header or Ada spec.
1400
1401 @item @var{file}.f
1402 @itemx @var{file}.for
1403 @itemx @var{file}.ftn
1404 Fixed form Fortran source code that should not be preprocessed.
1405
1406 @item @var{file}.F
1407 @itemx @var{file}.FOR
1408 @itemx @var{file}.fpp
1409 @itemx @var{file}.FPP
1410 @itemx @var{file}.FTN
1411 Fixed form Fortran source code that must be preprocessed (with the traditional
1412 preprocessor).
1413
1414 @item @var{file}.f90
1415 @itemx @var{file}.f95
1416 @itemx @var{file}.f03
1417 @itemx @var{file}.f08
1418 Free form Fortran source code that should not be preprocessed.
1419
1420 @item @var{file}.F90
1421 @itemx @var{file}.F95
1422 @itemx @var{file}.F03
1423 @itemx @var{file}.F08
1424 Free form Fortran source code that must be preprocessed (with the
1425 traditional preprocessor).
1426
1427 @item @var{file}.go
1428 Go source code.
1429
1430 @item @var{file}.brig
1431 BRIG files (binary representation of HSAIL).
1432
1433 @item @var{file}.d
1434 D source code.
1435
1436 @item @var{file}.di
1437 D interface file.
1438
1439 @item @var{file}.dd
1440 D documentation code (Ddoc).
1441
1442 @item @var{file}.ads
1443 Ada source code file that contains a library unit declaration (a
1444 declaration of a package, subprogram, or generic, or a generic
1445 instantiation), or a library unit renaming declaration (a package,
1446 generic, or subprogram renaming declaration). Such files are also
1447 called @dfn{specs}.
1448
1449 @item @var{file}.adb
1450 Ada source code file containing a library unit body (a subprogram or
1451 package body). Such files are also called @dfn{bodies}.
1452
1453 @c GCC also knows about some suffixes for languages not yet included:
1454 @c Ratfor:
1455 @c @var{file}.r
1456
1457 @item @var{file}.s
1458 Assembler code.
1459
1460 @item @var{file}.S
1461 @itemx @var{file}.sx
1462 Assembler code that must be preprocessed.
1463
1464 @item @var{other}
1465 An object file to be fed straight into linking.
1466 Any file name with no recognized suffix is treated this way.
1467 @end table
1468
1469 @opindex x
1470 You can specify the input language explicitly with the @option{-x} option:
1471
1472 @table @gcctabopt
1473 @item -x @var{language}
1474 Specify explicitly the @var{language} for the following input files
1475 (rather than letting the compiler choose a default based on the file
1476 name suffix). This option applies to all following input files until
1477 the next @option{-x} option. Possible values for @var{language} are:
1478 @smallexample
1479 c c-header cpp-output
1480 c++ c++-header c++-cpp-output
1481 objective-c objective-c-header objective-c-cpp-output
1482 objective-c++ objective-c++-header objective-c++-cpp-output
1483 assembler assembler-with-cpp
1484 ada
1485 d
1486 f77 f77-cpp-input f95 f95-cpp-input
1487 go
1488 brig
1489 @end smallexample
1490
1491 @item -x none
1492 Turn off any specification of a language, so that subsequent files are
1493 handled according to their file name suffixes (as they are if @option{-x}
1494 has not been used at all).
1495 @end table
1496
1497 If you only want some of the stages of compilation, you can use
1498 @option{-x} (or filename suffixes) to tell @command{gcc} where to start, and
1499 one of the options @option{-c}, @option{-S}, or @option{-E} to say where
1500 @command{gcc} is to stop. Note that some combinations (for example,
1501 @samp{-x cpp-output -E}) instruct @command{gcc} to do nothing at all.
1502
1503 @table @gcctabopt
1504 @item -c
1505 @opindex c
1506 Compile or assemble the source files, but do not link. The linking
1507 stage simply is not done. The ultimate output is in the form of an
1508 object file for each source file.
1509
1510 By default, the object file name for a source file is made by replacing
1511 the suffix @samp{.c}, @samp{.i}, @samp{.s}, etc., with @samp{.o}.
1512
1513 Unrecognized input files, not requiring compilation or assembly, are
1514 ignored.
1515
1516 @item -S
1517 @opindex S
1518 Stop after the stage of compilation proper; do not assemble. The output
1519 is in the form of an assembler code file for each non-assembler input
1520 file specified.
1521
1522 By default, the assembler file name for a source file is made by
1523 replacing the suffix @samp{.c}, @samp{.i}, etc., with @samp{.s}.
1524
1525 Input files that don't require compilation are ignored.
1526
1527 @item -E
1528 @opindex E
1529 Stop after the preprocessing stage; do not run the compiler proper. The
1530 output is in the form of preprocessed source code, which is sent to the
1531 standard output.
1532
1533 Input files that don't require preprocessing are ignored.
1534
1535 @cindex output file option
1536 @item -o @var{file}
1537 @opindex o
1538 Place output in file @var{file}. This applies to whatever
1539 sort of output is being produced, whether it be an executable file,
1540 an object file, an assembler file or preprocessed C code.
1541
1542 If @option{-o} is not specified, the default is to put an executable
1543 file in @file{a.out}, the object file for
1544 @file{@var{source}.@var{suffix}} in @file{@var{source}.o}, its
1545 assembler file in @file{@var{source}.s}, a precompiled header file in
1546 @file{@var{source}.@var{suffix}.gch}, and all preprocessed C source on
1547 standard output.
1548
1549 @item -v
1550 @opindex v
1551 Print (on standard error output) the commands executed to run the stages
1552 of compilation. Also print the version number of the compiler driver
1553 program and of the preprocessor and the compiler proper.
1554
1555 @item -###
1556 @opindex ###
1557 Like @option{-v} except the commands are not executed and arguments
1558 are quoted unless they contain only alphanumeric characters or @code{./-_}.
1559 This is useful for shell scripts to capture the driver-generated command lines.
1560
1561 @item --help
1562 @opindex help
1563 Print (on the standard output) a description of the command-line options
1564 understood by @command{gcc}. If the @option{-v} option is also specified
1565 then @option{--help} is also passed on to the various processes
1566 invoked by @command{gcc}, so that they can display the command-line options
1567 they accept. If the @option{-Wextra} option has also been specified
1568 (prior to the @option{--help} option), then command-line options that
1569 have no documentation associated with them are also displayed.
1570
1571 @item --target-help
1572 @opindex target-help
1573 Print (on the standard output) a description of target-specific command-line
1574 options for each tool. For some targets extra target-specific
1575 information may also be printed.
1576
1577 @item --help=@{@var{class}@r{|[}^@r{]}@var{qualifier}@}@r{[},@dots{}@r{]}
1578 Print (on the standard output) a description of the command-line
1579 options understood by the compiler that fit into all specified classes
1580 and qualifiers. These are the supported classes:
1581
1582 @table @asis
1583 @item @samp{optimizers}
1584 Display all of the optimization options supported by the
1585 compiler.
1586
1587 @item @samp{warnings}
1588 Display all of the options controlling warning messages
1589 produced by the compiler.
1590
1591 @item @samp{target}
1592 Display target-specific options. Unlike the
1593 @option{--target-help} option however, target-specific options of the
1594 linker and assembler are not displayed. This is because those
1595 tools do not currently support the extended @option{--help=} syntax.
1596
1597 @item @samp{params}
1598 Display the values recognized by the @option{--param}
1599 option.
1600
1601 @item @var{language}
1602 Display the options supported for @var{language}, where
1603 @var{language} is the name of one of the languages supported in this
1604 version of GCC@.
1605
1606 @item @samp{common}
1607 Display the options that are common to all languages.
1608 @end table
1609
1610 These are the supported qualifiers:
1611
1612 @table @asis
1613 @item @samp{undocumented}
1614 Display only those options that are undocumented.
1615
1616 @item @samp{joined}
1617 Display options taking an argument that appears after an equal
1618 sign in the same continuous piece of text, such as:
1619 @samp{--help=target}.
1620
1621 @item @samp{separate}
1622 Display options taking an argument that appears as a separate word
1623 following the original option, such as: @samp{-o output-file}.
1624 @end table
1625
1626 Thus for example to display all the undocumented target-specific
1627 switches supported by the compiler, use:
1628
1629 @smallexample
1630 --help=target,undocumented
1631 @end smallexample
1632
1633 The sense of a qualifier can be inverted by prefixing it with the
1634 @samp{^} character, so for example to display all binary warning
1635 options (i.e., ones that are either on or off and that do not take an
1636 argument) that have a description, use:
1637
1638 @smallexample
1639 --help=warnings,^joined,^undocumented
1640 @end smallexample
1641
1642 The argument to @option{--help=} should not consist solely of inverted
1643 qualifiers.
1644
1645 Combining several classes is possible, although this usually
1646 restricts the output so much that there is nothing to display. One
1647 case where it does work, however, is when one of the classes is
1648 @var{target}. For example, to display all the target-specific
1649 optimization options, use:
1650
1651 @smallexample
1652 --help=target,optimizers
1653 @end smallexample
1654
1655 The @option{--help=} option can be repeated on the command line. Each
1656 successive use displays its requested class of options, skipping
1657 those that have already been displayed. If @option{--help} is also
1658 specified anywhere on the command line then this takes precedence
1659 over any @option{--help=} option.
1660
1661 If the @option{-Q} option appears on the command line before the
1662 @option{--help=} option, then the descriptive text displayed by
1663 @option{--help=} is changed. Instead of describing the displayed
1664 options, an indication is given as to whether the option is enabled,
1665 disabled or set to a specific value (assuming that the compiler
1666 knows this at the point where the @option{--help=} option is used).
1667
1668 Here is a truncated example from the ARM port of @command{gcc}:
1669
1670 @smallexample
1671 % gcc -Q -mabi=2 --help=target -c
1672 The following options are target specific:
1673 -mabi= 2
1674 -mabort-on-noreturn [disabled]
1675 -mapcs [disabled]
1676 @end smallexample
1677
1678 The output is sensitive to the effects of previous command-line
1679 options, so for example it is possible to find out which optimizations
1680 are enabled at @option{-O2} by using:
1681
1682 @smallexample
1683 -Q -O2 --help=optimizers
1684 @end smallexample
1685
1686 Alternatively you can discover which binary optimizations are enabled
1687 by @option{-O3} by using:
1688
1689 @smallexample
1690 gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
1691 gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
1692 diff /tmp/O2-opts /tmp/O3-opts | grep enabled
1693 @end smallexample
1694
1695 @item --version
1696 @opindex version
1697 Display the version number and copyrights of the invoked GCC@.
1698
1699 @item -pass-exit-codes
1700 @opindex pass-exit-codes
1701 Normally the @command{gcc} program exits with the code of 1 if any
1702 phase of the compiler returns a non-success return code. If you specify
1703 @option{-pass-exit-codes}, the @command{gcc} program instead returns with
1704 the numerically highest error produced by any phase returning an error
1705 indication. The C, C++, and Fortran front ends return 4 if an internal
1706 compiler error is encountered.
1707
1708 @item -pipe
1709 @opindex pipe
1710 Use pipes rather than temporary files for communication between the
1711 various stages of compilation. This fails to work on some systems where
1712 the assembler is unable to read from a pipe; but the GNU assembler has
1713 no trouble.
1714
1715 @item -specs=@var{file}
1716 @opindex specs
1717 Process @var{file} after the compiler reads in the standard @file{specs}
1718 file, in order to override the defaults which the @command{gcc} driver
1719 program uses when determining what switches to pass to @command{cc1},
1720 @command{cc1plus}, @command{as}, @command{ld}, etc. More than one
1721 @option{-specs=@var{file}} can be specified on the command line, and they
1722 are processed in order, from left to right. @xref{Spec Files}, for
1723 information about the format of the @var{file}.
1724
1725 @item -wrapper
1726 @opindex wrapper
1727 Invoke all subcommands under a wrapper program. The name of the
1728 wrapper program and its parameters are passed as a comma separated
1729 list.
1730
1731 @smallexample
1732 gcc -c t.c -wrapper gdb,--args
1733 @end smallexample
1734
1735 @noindent
1736 This invokes all subprograms of @command{gcc} under
1737 @samp{gdb --args}, thus the invocation of @command{cc1} is
1738 @samp{gdb --args cc1 @dots{}}.
1739
1740 @item -ffile-prefix-map=@var{old}=@var{new}
1741 @opindex ffile-prefix-map
1742 When compiling files residing in directory @file{@var{old}}, record
1743 any references to them in the result of the compilation as if the
1744 files resided in directory @file{@var{new}} instead. Specifying this
1745 option is equivalent to specifying all the individual
1746 @option{-f*-prefix-map} options. This can be used to make reproducible
1747 builds that are location independent. See also
1748 @option{-fmacro-prefix-map} and @option{-fdebug-prefix-map}.
1749
1750 @item -fplugin=@var{name}.so
1751 @opindex fplugin
1752 Load the plugin code in file @var{name}.so, assumed to be a
1753 shared object to be dlopen'd by the compiler. The base name of
1754 the shared object file is used to identify the plugin for the
1755 purposes of argument parsing (See
1756 @option{-fplugin-arg-@var{name}-@var{key}=@var{value}} below).
1757 Each plugin should define the callback functions specified in the
1758 Plugins API.
1759
1760 @item -fplugin-arg-@var{name}-@var{key}=@var{value}
1761 @opindex fplugin-arg
1762 Define an argument called @var{key} with a value of @var{value}
1763 for the plugin called @var{name}.
1764
1765 @item -fdump-ada-spec@r{[}-slim@r{]}
1766 @opindex fdump-ada-spec
1767 For C and C++ source and include files, generate corresponding Ada specs.
1768 @xref{Generating Ada Bindings for C and C++ headers,,, gnat_ugn,
1769 GNAT User's Guide}, which provides detailed documentation on this feature.
1770
1771 @item -fada-spec-parent=@var{unit}
1772 @opindex fada-spec-parent
1773 In conjunction with @option{-fdump-ada-spec@r{[}-slim@r{]}} above, generate
1774 Ada specs as child units of parent @var{unit}.
1775
1776 @item -fdump-go-spec=@var{file}
1777 @opindex fdump-go-spec
1778 For input files in any language, generate corresponding Go
1779 declarations in @var{file}. This generates Go @code{const},
1780 @code{type}, @code{var}, and @code{func} declarations which may be a
1781 useful way to start writing a Go interface to code written in some
1782 other language.
1783
1784 @include @value{srcdir}/../libiberty/at-file.texi
1785 @end table
1786
1787 @node Invoking G++
1788 @section Compiling C++ Programs
1789
1790 @cindex suffixes for C++ source
1791 @cindex C++ source file suffixes
1792 C++ source files conventionally use one of the suffixes @samp{.C},
1793 @samp{.cc}, @samp{.cpp}, @samp{.CPP}, @samp{.c++}, @samp{.cp}, or
1794 @samp{.cxx}; C++ header files often use @samp{.hh}, @samp{.hpp},
1795 @samp{.H}, or (for shared template code) @samp{.tcc}; and
1796 preprocessed C++ files use the suffix @samp{.ii}. GCC recognizes
1797 files with these names and compiles them as C++ programs even if you
1798 call the compiler the same way as for compiling C programs (usually
1799 with the name @command{gcc}).
1800
1801 @findex g++
1802 @findex c++
1803 However, the use of @command{gcc} does not add the C++ library.
1804 @command{g++} is a program that calls GCC and automatically specifies linking
1805 against the C++ library. It treats @samp{.c},
1806 @samp{.h} and @samp{.i} files as C++ source files instead of C source
1807 files unless @option{-x} is used. This program is also useful when
1808 precompiling a C header file with a @samp{.h} extension for use in C++
1809 compilations. On many systems, @command{g++} is also installed with
1810 the name @command{c++}.
1811
1812 @cindex invoking @command{g++}
1813 When you compile C++ programs, you may specify many of the same
1814 command-line options that you use for compiling programs in any
1815 language; or command-line options meaningful for C and related
1816 languages; or options that are meaningful only for C++ programs.
1817 @xref{C Dialect Options,,Options Controlling C Dialect}, for
1818 explanations of options for languages related to C@.
1819 @xref{C++ Dialect Options,,Options Controlling C++ Dialect}, for
1820 explanations of options that are meaningful only for C++ programs.
1821
1822 @node C Dialect Options
1823 @section Options Controlling C Dialect
1824 @cindex dialect options
1825 @cindex language dialect options
1826 @cindex options, dialect
1827
1828 The following options control the dialect of C (or languages derived
1829 from C, such as C++, Objective-C and Objective-C++) that the compiler
1830 accepts:
1831
1832 @table @gcctabopt
1833 @cindex ANSI support
1834 @cindex ISO support
1835 @item -ansi
1836 @opindex ansi
1837 In C mode, this is equivalent to @option{-std=c90}. In C++ mode, it is
1838 equivalent to @option{-std=c++98}.
1839
1840 This turns off certain features of GCC that are incompatible with ISO
1841 C90 (when compiling C code), or of standard C++ (when compiling C++ code),
1842 such as the @code{asm} and @code{typeof} keywords, and
1843 predefined macros such as @code{unix} and @code{vax} that identify the
1844 type of system you are using. It also enables the undesirable and
1845 rarely used ISO trigraph feature. For the C compiler,
1846 it disables recognition of C++ style @samp{//} comments as well as
1847 the @code{inline} keyword.
1848
1849 The alternate keywords @code{__asm__}, @code{__extension__},
1850 @code{__inline__} and @code{__typeof__} continue to work despite
1851 @option{-ansi}. You would not want to use them in an ISO C program, of
1852 course, but it is useful to put them in header files that might be included
1853 in compilations done with @option{-ansi}. Alternate predefined macros
1854 such as @code{__unix__} and @code{__vax__} are also available, with or
1855 without @option{-ansi}.
1856
1857 The @option{-ansi} option does not cause non-ISO programs to be
1858 rejected gratuitously. For that, @option{-Wpedantic} is required in
1859 addition to @option{-ansi}. @xref{Warning Options}.
1860
1861 The macro @code{__STRICT_ANSI__} is predefined when the @option{-ansi}
1862 option is used. Some header files may notice this macro and refrain
1863 from declaring certain functions or defining certain macros that the
1864 ISO standard doesn't call for; this is to avoid interfering with any
1865 programs that might use these names for other things.
1866
1867 Functions that are normally built in but do not have semantics
1868 defined by ISO C (such as @code{alloca} and @code{ffs}) are not built-in
1869 functions when @option{-ansi} is used. @xref{Other Builtins,,Other
1870 built-in functions provided by GCC}, for details of the functions
1871 affected.
1872
1873 @item -std=
1874 @opindex std
1875 Determine the language standard. @xref{Standards,,Language Standards
1876 Supported by GCC}, for details of these standard versions. This option
1877 is currently only supported when compiling C or C++.
1878
1879 The compiler can accept several base standards, such as @samp{c90} or
1880 @samp{c++98}, and GNU dialects of those standards, such as
1881 @samp{gnu90} or @samp{gnu++98}. When a base standard is specified, the
1882 compiler accepts all programs following that standard plus those
1883 using GNU extensions that do not contradict it. For example,
1884 @option{-std=c90} turns off certain features of GCC that are
1885 incompatible with ISO C90, such as the @code{asm} and @code{typeof}
1886 keywords, but not other GNU extensions that do not have a meaning in
1887 ISO C90, such as omitting the middle term of a @code{?:}
1888 expression. On the other hand, when a GNU dialect of a standard is
1889 specified, all features supported by the compiler are enabled, even when
1890 those features change the meaning of the base standard. As a result, some
1891 strict-conforming programs may be rejected. The particular standard
1892 is used by @option{-Wpedantic} to identify which features are GNU
1893 extensions given that version of the standard. For example
1894 @option{-std=gnu90 -Wpedantic} warns about C++ style @samp{//}
1895 comments, while @option{-std=gnu99 -Wpedantic} does not.
1896
1897 A value for this option must be provided; possible values are
1898
1899 @table @samp
1900 @item c90
1901 @itemx c89
1902 @itemx iso9899:1990
1903 Support all ISO C90 programs (certain GNU extensions that conflict
1904 with ISO C90 are disabled). Same as @option{-ansi} for C code.
1905
1906 @item iso9899:199409
1907 ISO C90 as modified in amendment 1.
1908
1909 @item c99
1910 @itemx c9x
1911 @itemx iso9899:1999
1912 @itemx iso9899:199x
1913 ISO C99. This standard is substantially completely supported, modulo
1914 bugs and floating-point issues
1915 (mainly but not entirely relating to optional C99 features from
1916 Annexes F and G). See
1917 @w{@uref{http://gcc.gnu.org/c99status.html}} for more information. The
1918 names @samp{c9x} and @samp{iso9899:199x} are deprecated.
1919
1920 @item c11
1921 @itemx c1x
1922 @itemx iso9899:2011
1923 ISO C11, the 2011 revision of the ISO C standard. This standard is
1924 substantially completely supported, modulo bugs, floating-point issues
1925 (mainly but not entirely relating to optional C11 features from
1926 Annexes F and G) and the optional Annexes K (Bounds-checking
1927 interfaces) and L (Analyzability). The name @samp{c1x} is deprecated.
1928
1929 @item c17
1930 @itemx c18
1931 @itemx iso9899:2017
1932 @itemx iso9899:2018
1933 ISO C17, the 2017 revision of the ISO C standard
1934 (published in 2018). This standard is
1935 same as C11 except for corrections of defects (all of which are also
1936 applied with @option{-std=c11}) and a new value of
1937 @code{__STDC_VERSION__}, and so is supported to the same extent as C11.
1938
1939 @item c2x
1940 The next version of the ISO C standard, still under development. The
1941 support for this version is experimental and incomplete.
1942
1943 @item gnu90
1944 @itemx gnu89
1945 GNU dialect of ISO C90 (including some C99 features).
1946
1947 @item gnu99
1948 @itemx gnu9x
1949 GNU dialect of ISO C99. The name @samp{gnu9x} is deprecated.
1950
1951 @item gnu11
1952 @itemx gnu1x
1953 GNU dialect of ISO C11.
1954 The name @samp{gnu1x} is deprecated.
1955
1956 @item gnu17
1957 @itemx gnu18
1958 GNU dialect of ISO C17. This is the default for C code.
1959
1960 @item gnu2x
1961 The next version of the ISO C standard, still under development, plus
1962 GNU extensions. The support for this version is experimental and
1963 incomplete.
1964
1965 @item c++98
1966 @itemx c++03
1967 The 1998 ISO C++ standard plus the 2003 technical corrigendum and some
1968 additional defect reports. Same as @option{-ansi} for C++ code.
1969
1970 @item gnu++98
1971 @itemx gnu++03
1972 GNU dialect of @option{-std=c++98}.
1973
1974 @item c++11
1975 @itemx c++0x
1976 The 2011 ISO C++ standard plus amendments.
1977 The name @samp{c++0x} is deprecated.
1978
1979 @item gnu++11
1980 @itemx gnu++0x
1981 GNU dialect of @option{-std=c++11}.
1982 The name @samp{gnu++0x} is deprecated.
1983
1984 @item c++14
1985 @itemx c++1y
1986 The 2014 ISO C++ standard plus amendments.
1987 The name @samp{c++1y} is deprecated.
1988
1989 @item gnu++14
1990 @itemx gnu++1y
1991 GNU dialect of @option{-std=c++14}.
1992 This is the default for C++ code.
1993 The name @samp{gnu++1y} is deprecated.
1994
1995 @item c++17
1996 @itemx c++1z
1997 The 2017 ISO C++ standard plus amendments.
1998 The name @samp{c++1z} is deprecated.
1999
2000 @item gnu++17
2001 @itemx gnu++1z
2002 GNU dialect of @option{-std=c++17}.
2003 The name @samp{gnu++1z} is deprecated.
2004
2005 @item c++2a
2006 The next revision of the ISO C++ standard, tentatively planned for
2007 2020. Support is highly experimental, and will almost certainly
2008 change in incompatible ways in future releases.
2009
2010 @item gnu++2a
2011 GNU dialect of @option{-std=c++2a}. Support is highly experimental,
2012 and will almost certainly change in incompatible ways in future
2013 releases.
2014 @end table
2015
2016 @item -fgnu89-inline
2017 @opindex fgnu89-inline
2018 The option @option{-fgnu89-inline} tells GCC to use the traditional
2019 GNU semantics for @code{inline} functions when in C99 mode.
2020 @xref{Inline,,An Inline Function is As Fast As a Macro}.
2021 Using this option is roughly equivalent to adding the
2022 @code{gnu_inline} function attribute to all inline functions
2023 (@pxref{Function Attributes}).
2024
2025 The option @option{-fno-gnu89-inline} explicitly tells GCC to use the
2026 C99 semantics for @code{inline} when in C99 or gnu99 mode (i.e., it
2027 specifies the default behavior).
2028 This option is not supported in @option{-std=c90} or
2029 @option{-std=gnu90} mode.
2030
2031 The preprocessor macros @code{__GNUC_GNU_INLINE__} and
2032 @code{__GNUC_STDC_INLINE__} may be used to check which semantics are
2033 in effect for @code{inline} functions. @xref{Common Predefined
2034 Macros,,,cpp,The C Preprocessor}.
2035
2036 @item -fpermitted-flt-eval-methods=@var{style}
2037 @opindex fpermitted-flt-eval-methods
2038 @opindex fpermitted-flt-eval-methods=c11
2039 @opindex fpermitted-flt-eval-methods=ts-18661-3
2040 ISO/IEC TS 18661-3 defines new permissible values for
2041 @code{FLT_EVAL_METHOD} that indicate that operations and constants with
2042 a semantic type that is an interchange or extended format should be
2043 evaluated to the precision and range of that type. These new values are
2044 a superset of those permitted under C99/C11, which does not specify the
2045 meaning of other positive values of @code{FLT_EVAL_METHOD}. As such, code
2046 conforming to C11 may not have been written expecting the possibility of
2047 the new values.
2048
2049 @option{-fpermitted-flt-eval-methods} specifies whether the compiler
2050 should allow only the values of @code{FLT_EVAL_METHOD} specified in C99/C11,
2051 or the extended set of values specified in ISO/IEC TS 18661-3.
2052
2053 @var{style} is either @code{c11} or @code{ts-18661-3} as appropriate.
2054
2055 The default when in a standards compliant mode (@option{-std=c11} or similar)
2056 is @option{-fpermitted-flt-eval-methods=c11}. The default when in a GNU
2057 dialect (@option{-std=gnu11} or similar) is
2058 @option{-fpermitted-flt-eval-methods=ts-18661-3}.
2059
2060 @item -aux-info @var{filename}
2061 @opindex aux-info
2062 Output to the given filename prototyped declarations for all functions
2063 declared and/or defined in a translation unit, including those in header
2064 files. This option is silently ignored in any language other than C@.
2065
2066 Besides declarations, the file indicates, in comments, the origin of
2067 each declaration (source file and line), whether the declaration was
2068 implicit, prototyped or unprototyped (@samp{I}, @samp{N} for new or
2069 @samp{O} for old, respectively, in the first character after the line
2070 number and the colon), and whether it came from a declaration or a
2071 definition (@samp{C} or @samp{F}, respectively, in the following
2072 character). In the case of function definitions, a K&R-style list of
2073 arguments followed by their declarations is also provided, inside
2074 comments, after the declaration.
2075
2076 @item -fallow-parameterless-variadic-functions
2077 @opindex fallow-parameterless-variadic-functions
2078 Accept variadic functions without named parameters.
2079
2080 Although it is possible to define such a function, this is not very
2081 useful as it is not possible to read the arguments. This is only
2082 supported for C as this construct is allowed by C++.
2083
2084 @item -fno-asm
2085 @opindex fno-asm
2086 @opindex fasm
2087 Do not recognize @code{asm}, @code{inline} or @code{typeof} as a
2088 keyword, so that code can use these words as identifiers. You can use
2089 the keywords @code{__asm__}, @code{__inline__} and @code{__typeof__}
2090 instead. @option{-ansi} implies @option{-fno-asm}.
2091
2092 In C++, this switch only affects the @code{typeof} keyword, since
2093 @code{asm} and @code{inline} are standard keywords. You may want to
2094 use the @option{-fno-gnu-keywords} flag instead, which has the same
2095 effect. In C99 mode (@option{-std=c99} or @option{-std=gnu99}), this
2096 switch only affects the @code{asm} and @code{typeof} keywords, since
2097 @code{inline} is a standard keyword in ISO C99.
2098
2099 @item -fno-builtin
2100 @itemx -fno-builtin-@var{function}
2101 @opindex fno-builtin
2102 @opindex fbuiltin
2103 @cindex built-in functions
2104 Don't recognize built-in functions that do not begin with
2105 @samp{__builtin_} as prefix. @xref{Other Builtins,,Other built-in
2106 functions provided by GCC}, for details of the functions affected,
2107 including those which are not built-in functions when @option{-ansi} or
2108 @option{-std} options for strict ISO C conformance are used because they
2109 do not have an ISO standard meaning.
2110
2111 GCC normally generates special code to handle certain built-in functions
2112 more efficiently; for instance, calls to @code{alloca} may become single
2113 instructions which adjust the stack directly, and calls to @code{memcpy}
2114 may become inline copy loops. The resulting code is often both smaller
2115 and faster, but since the function calls no longer appear as such, you
2116 cannot set a breakpoint on those calls, nor can you change the behavior
2117 of the functions by linking with a different library. In addition,
2118 when a function is recognized as a built-in function, GCC may use
2119 information about that function to warn about problems with calls to
2120 that function, or to generate more efficient code, even if the
2121 resulting code still contains calls to that function. For example,
2122 warnings are given with @option{-Wformat} for bad calls to
2123 @code{printf} when @code{printf} is built in and @code{strlen} is
2124 known not to modify global memory.
2125
2126 With the @option{-fno-builtin-@var{function}} option
2127 only the built-in function @var{function} is
2128 disabled. @var{function} must not begin with @samp{__builtin_}. If a
2129 function is named that is not built-in in this version of GCC, this
2130 option is ignored. There is no corresponding
2131 @option{-fbuiltin-@var{function}} option; if you wish to enable
2132 built-in functions selectively when using @option{-fno-builtin} or
2133 @option{-ffreestanding}, you may define macros such as:
2134
2135 @smallexample
2136 #define abs(n) __builtin_abs ((n))
2137 #define strcpy(d, s) __builtin_strcpy ((d), (s))
2138 @end smallexample
2139
2140 @item -fgimple
2141 @opindex fgimple
2142
2143 Enable parsing of function definitions marked with @code{__GIMPLE}.
2144 This is an experimental feature that allows unit testing of GIMPLE
2145 passes.
2146
2147 @item -fhosted
2148 @opindex fhosted
2149 @cindex hosted environment
2150
2151 Assert that compilation targets a hosted environment. This implies
2152 @option{-fbuiltin}. A hosted environment is one in which the
2153 entire standard library is available, and in which @code{main} has a return
2154 type of @code{int}. Examples are nearly everything except a kernel.
2155 This is equivalent to @option{-fno-freestanding}.
2156
2157 @item -ffreestanding
2158 @opindex ffreestanding
2159 @cindex hosted environment
2160
2161 Assert that compilation targets a freestanding environment. This
2162 implies @option{-fno-builtin}. A freestanding environment
2163 is one in which the standard library may not exist, and program startup may
2164 not necessarily be at @code{main}. The most obvious example is an OS kernel.
2165 This is equivalent to @option{-fno-hosted}.
2166
2167 @xref{Standards,,Language Standards Supported by GCC}, for details of
2168 freestanding and hosted environments.
2169
2170 @item -fopenacc
2171 @opindex fopenacc
2172 @cindex OpenACC accelerator programming
2173 Enable handling of OpenACC directives @code{#pragma acc} in C/C++ and
2174 @code{!$acc} in Fortran. When @option{-fopenacc} is specified, the
2175 compiler generates accelerated code according to the OpenACC Application
2176 Programming Interface v2.0 @w{@uref{https://www.openacc.org}}. This option
2177 implies @option{-pthread}, and thus is only supported on targets that
2178 have support for @option{-pthread}.
2179
2180 @item -fopenacc-dim=@var{geom}
2181 @opindex fopenacc-dim
2182 @cindex OpenACC accelerator programming
2183 Specify default compute dimensions for parallel offload regions that do
2184 not explicitly specify. The @var{geom} value is a triple of
2185 ':'-separated sizes, in order 'gang', 'worker' and, 'vector'. A size
2186 can be omitted, to use a target-specific default value.
2187
2188 @item -fopenmp
2189 @opindex fopenmp
2190 @cindex OpenMP parallel
2191 Enable handling of OpenMP directives @code{#pragma omp} in C/C++ and
2192 @code{!$omp} in Fortran. When @option{-fopenmp} is specified, the
2193 compiler generates parallel code according to the OpenMP Application
2194 Program Interface v4.5 @w{@uref{https://www.openmp.org}}. This option
2195 implies @option{-pthread}, and thus is only supported on targets that
2196 have support for @option{-pthread}. @option{-fopenmp} implies
2197 @option{-fopenmp-simd}.
2198
2199 @item -fopenmp-simd
2200 @opindex fopenmp-simd
2201 @cindex OpenMP SIMD
2202 @cindex SIMD
2203 Enable handling of OpenMP's SIMD directives with @code{#pragma omp}
2204 in C/C++ and @code{!$omp} in Fortran. Other OpenMP directives
2205 are ignored.
2206
2207 @item -fgnu-tm
2208 @opindex fgnu-tm
2209 When the option @option{-fgnu-tm} is specified, the compiler
2210 generates code for the Linux variant of Intel's current Transactional
2211 Memory ABI specification document (Revision 1.1, May 6 2009). This is
2212 an experimental feature whose interface may change in future versions
2213 of GCC, as the official specification changes. Please note that not
2214 all architectures are supported for this feature.
2215
2216 For more information on GCC's support for transactional memory,
2217 @xref{Enabling libitm,,The GNU Transactional Memory Library,libitm,GNU
2218 Transactional Memory Library}.
2219
2220 Note that the transactional memory feature is not supported with
2221 non-call exceptions (@option{-fnon-call-exceptions}).
2222
2223 @item -fms-extensions
2224 @opindex fms-extensions
2225 Accept some non-standard constructs used in Microsoft header files.
2226
2227 In C++ code, this allows member names in structures to be similar
2228 to previous types declarations.
2229
2230 @smallexample
2231 typedef int UOW;
2232 struct ABC @{
2233 UOW UOW;
2234 @};
2235 @end smallexample
2236
2237 Some cases of unnamed fields in structures and unions are only
2238 accepted with this option. @xref{Unnamed Fields,,Unnamed struct/union
2239 fields within structs/unions}, for details.
2240
2241 Note that this option is off for all targets but x86
2242 targets using ms-abi.
2243
2244 @item -fplan9-extensions
2245 @opindex fplan9-extensions
2246 Accept some non-standard constructs used in Plan 9 code.
2247
2248 This enables @option{-fms-extensions}, permits passing pointers to
2249 structures with anonymous fields to functions that expect pointers to
2250 elements of the type of the field, and permits referring to anonymous
2251 fields declared using a typedef. @xref{Unnamed Fields,,Unnamed
2252 struct/union fields within structs/unions}, for details. This is only
2253 supported for C, not C++.
2254
2255 @item -fcond-mismatch
2256 @opindex fcond-mismatch
2257 Allow conditional expressions with mismatched types in the second and
2258 third arguments. The value of such an expression is void. This option
2259 is not supported for C++.
2260
2261 @item -flax-vector-conversions
2262 @opindex flax-vector-conversions
2263 Allow implicit conversions between vectors with differing numbers of
2264 elements and/or incompatible element types. This option should not be
2265 used for new code.
2266
2267 @item -funsigned-char
2268 @opindex funsigned-char
2269 Let the type @code{char} be unsigned, like @code{unsigned char}.
2270
2271 Each kind of machine has a default for what @code{char} should
2272 be. It is either like @code{unsigned char} by default or like
2273 @code{signed char} by default.
2274
2275 Ideally, a portable program should always use @code{signed char} or
2276 @code{unsigned char} when it depends on the signedness of an object.
2277 But many programs have been written to use plain @code{char} and
2278 expect it to be signed, or expect it to be unsigned, depending on the
2279 machines they were written for. This option, and its inverse, let you
2280 make such a program work with the opposite default.
2281
2282 The type @code{char} is always a distinct type from each of
2283 @code{signed char} or @code{unsigned char}, even though its behavior
2284 is always just like one of those two.
2285
2286 @item -fsigned-char
2287 @opindex fsigned-char
2288 Let the type @code{char} be signed, like @code{signed char}.
2289
2290 Note that this is equivalent to @option{-fno-unsigned-char}, which is
2291 the negative form of @option{-funsigned-char}. Likewise, the option
2292 @option{-fno-signed-char} is equivalent to @option{-funsigned-char}.
2293
2294 @item -fsigned-bitfields
2295 @itemx -funsigned-bitfields
2296 @itemx -fno-signed-bitfields
2297 @itemx -fno-unsigned-bitfields
2298 @opindex fsigned-bitfields
2299 @opindex funsigned-bitfields
2300 @opindex fno-signed-bitfields
2301 @opindex fno-unsigned-bitfields
2302 These options control whether a bit-field is signed or unsigned, when the
2303 declaration does not use either @code{signed} or @code{unsigned}. By
2304 default, such a bit-field is signed, because this is consistent: the
2305 basic integer types such as @code{int} are signed types.
2306
2307 @item -fsso-struct=@var{endianness}
2308 @opindex fsso-struct
2309 Set the default scalar storage order of structures and unions to the
2310 specified endianness. The accepted values are @samp{big-endian},
2311 @samp{little-endian} and @samp{native} for the native endianness of
2312 the target (the default). This option is not supported for C++.
2313
2314 @strong{Warning:} the @option{-fsso-struct} switch causes GCC to generate
2315 code that is not binary compatible with code generated without it if the
2316 specified endianness is not the native endianness of the target.
2317 @end table
2318
2319 @node C++ Dialect Options
2320 @section Options Controlling C++ Dialect
2321
2322 @cindex compiler options, C++
2323 @cindex C++ options, command-line
2324 @cindex options, C++
2325 This section describes the command-line options that are only meaningful
2326 for C++ programs. You can also use most of the GNU compiler options
2327 regardless of what language your program is in. For example, you
2328 might compile a file @file{firstClass.C} like this:
2329
2330 @smallexample
2331 g++ -g -fstrict-enums -O -c firstClass.C
2332 @end smallexample
2333
2334 @noindent
2335 In this example, only @option{-fstrict-enums} is an option meant
2336 only for C++ programs; you can use the other options with any
2337 language supported by GCC@.
2338
2339 Some options for compiling C programs, such as @option{-std}, are also
2340 relevant for C++ programs.
2341 @xref{C Dialect Options,,Options Controlling C Dialect}.
2342
2343 Here is a list of options that are @emph{only} for compiling C++ programs:
2344
2345 @table @gcctabopt
2346
2347 @item -fabi-version=@var{n}
2348 @opindex fabi-version
2349 Use version @var{n} of the C++ ABI@. The default is version 0.
2350
2351 Version 0 refers to the version conforming most closely to
2352 the C++ ABI specification. Therefore, the ABI obtained using version 0
2353 will change in different versions of G++ as ABI bugs are fixed.
2354
2355 Version 1 is the version of the C++ ABI that first appeared in G++ 3.2.
2356
2357 Version 2 is the version of the C++ ABI that first appeared in G++
2358 3.4, and was the default through G++ 4.9.
2359
2360 Version 3 corrects an error in mangling a constant address as a
2361 template argument.
2362
2363 Version 4, which first appeared in G++ 4.5, implements a standard
2364 mangling for vector types.
2365
2366 Version 5, which first appeared in G++ 4.6, corrects the mangling of
2367 attribute const/volatile on function pointer types, decltype of a
2368 plain decl, and use of a function parameter in the declaration of
2369 another parameter.
2370
2371 Version 6, which first appeared in G++ 4.7, corrects the promotion
2372 behavior of C++11 scoped enums and the mangling of template argument
2373 packs, const/static_cast, prefix ++ and --, and a class scope function
2374 used as a template argument.
2375
2376 Version 7, which first appeared in G++ 4.8, that treats nullptr_t as a
2377 builtin type and corrects the mangling of lambdas in default argument
2378 scope.
2379
2380 Version 8, which first appeared in G++ 4.9, corrects the substitution
2381 behavior of function types with function-cv-qualifiers.
2382
2383 Version 9, which first appeared in G++ 5.2, corrects the alignment of
2384 @code{nullptr_t}.
2385
2386 Version 10, which first appeared in G++ 6.1, adds mangling of
2387 attributes that affect type identity, such as ia32 calling convention
2388 attributes (e.g.@: @samp{stdcall}).
2389
2390 Version 11, which first appeared in G++ 7, corrects the mangling of
2391 sizeof... expressions and operator names. For multiple entities with
2392 the same name within a function, that are declared in different scopes,
2393 the mangling now changes starting with the twelfth occurrence. It also
2394 implies @option{-fnew-inheriting-ctors}.
2395
2396 Version 12, which first appeared in G++ 8, corrects the calling
2397 conventions for empty classes on the x86_64 target and for classes
2398 with only deleted copy/move constructors. It accidentally changes the
2399 calling convention for classes with a deleted copy constructor and a
2400 trivial move constructor.
2401
2402 Version 13, which first appeared in G++ 8.2, fixes the accidental
2403 change in version 12.
2404
2405 See also @option{-Wabi}.
2406
2407 @item -fabi-compat-version=@var{n}
2408 @opindex fabi-compat-version
2409 On targets that support strong aliases, G++
2410 works around mangling changes by creating an alias with the correct
2411 mangled name when defining a symbol with an incorrect mangled name.
2412 This switch specifies which ABI version to use for the alias.
2413
2414 With @option{-fabi-version=0} (the default), this defaults to 11 (GCC 7
2415 compatibility). If another ABI version is explicitly selected, this
2416 defaults to 0. For compatibility with GCC versions 3.2 through 4.9,
2417 use @option{-fabi-compat-version=2}.
2418
2419 If this option is not provided but @option{-Wabi=@var{n}} is, that
2420 version is used for compatibility aliases. If this option is provided
2421 along with @option{-Wabi} (without the version), the version from this
2422 option is used for the warning.
2423
2424 @item -fno-access-control
2425 @opindex fno-access-control
2426 @opindex faccess-control
2427 Turn off all access checking. This switch is mainly useful for working
2428 around bugs in the access control code.
2429
2430 @item -faligned-new
2431 @opindex faligned-new
2432 Enable support for C++17 @code{new} of types that require more
2433 alignment than @code{void* ::operator new(std::size_t)} provides. A
2434 numeric argument such as @code{-faligned-new=32} can be used to
2435 specify how much alignment (in bytes) is provided by that function,
2436 but few users will need to override the default of
2437 @code{alignof(std::max_align_t)}.
2438
2439 This flag is enabled by default for @option{-std=c++17}.
2440
2441 @item -fchar8_t
2442 @itemx -fno-char8_t
2443 @opindex fchar8_t
2444 @opindex fno-char8_t
2445 Enable support for @code{char8_t} as adopted for C++2a. This includes
2446 the addition of a new @code{char8_t} fundamental type, changes to the
2447 types of UTF-8 string and character literals, new signatures for
2448 user-defined literals, associated standard library updates, and new
2449 @code{__cpp_char8_t} and @code{__cpp_lib_char8_t} feature test macros.
2450
2451 This option enables functions to be overloaded for ordinary and UTF-8
2452 strings:
2453
2454 @smallexample
2455 int f(const char *); // #1
2456 int f(const char8_t *); // #2
2457 int v1 = f("text"); // Calls #1
2458 int v2 = f(u8"text"); // Calls #2
2459 @end smallexample
2460
2461 @noindent
2462 and introduces new signatures for user-defined literals:
2463
2464 @smallexample
2465 int operator""_udl1(char8_t);
2466 int v3 = u8'x'_udl1;
2467 int operator""_udl2(const char8_t*, std::size_t);
2468 int v4 = u8"text"_udl2;
2469 template<typename T, T...> int operator""_udl3();
2470 int v5 = u8"text"_udl3;
2471 @end smallexample
2472
2473 @noindent
2474 The change to the types of UTF-8 string and character literals introduces
2475 incompatibilities with ISO C++11 and later standards. For example, the
2476 following code is well-formed under ISO C++11, but is ill-formed when
2477 @option{-fchar8_t} is specified.
2478
2479 @smallexample
2480 char ca[] = u8"xx"; // error: char-array initialized from wide
2481 // string
2482 const char *cp = u8"xx";// error: invalid conversion from
2483 // `const char8_t*' to `const char*'
2484 int f(const char*);
2485 auto v = f(u8"xx"); // error: invalid conversion from
2486 // `const char8_t*' to `const char*'
2487 std::string s@{u8"xx"@}; // error: no matching function for call to
2488 // `std::basic_string<char>::basic_string()'
2489 using namespace std::literals;
2490 s = u8"xx"s; // error: conversion from
2491 // `basic_string<char8_t>' to non-scalar
2492 // type `basic_string<char>' requested
2493 @end smallexample
2494
2495 @item -fcheck-new
2496 @opindex fcheck-new
2497 Check that the pointer returned by @code{operator new} is non-null
2498 before attempting to modify the storage allocated. This check is
2499 normally unnecessary because the C++ standard specifies that
2500 @code{operator new} only returns @code{0} if it is declared
2501 @code{throw()}, in which case the compiler always checks the
2502 return value even without this option. In all other cases, when
2503 @code{operator new} has a non-empty exception specification, memory
2504 exhaustion is signalled by throwing @code{std::bad_alloc}. See also
2505 @samp{new (nothrow)}.
2506
2507 @item -fconcepts
2508 @opindex fconcepts
2509 Enable support for the C++ Extensions for Concepts Technical
2510 Specification, ISO 19217 (2015), which allows code like
2511
2512 @smallexample
2513 template <class T> concept bool Addable = requires (T t) @{ t + t; @};
2514 template <Addable T> T add (T a, T b) @{ return a + b; @}
2515 @end smallexample
2516
2517 @item -fconstexpr-depth=@var{n}
2518 @opindex fconstexpr-depth
2519 Set the maximum nested evaluation depth for C++11 constexpr functions
2520 to @var{n}. A limit is needed to detect endless recursion during
2521 constant expression evaluation. The minimum specified by the standard
2522 is 512.
2523
2524 @item -fconstexpr-loop-limit=@var{n}
2525 @opindex fconstexpr-loop-limit
2526 Set the maximum number of iterations for a loop in C++14 constexpr functions
2527 to @var{n}. A limit is needed to detect infinite loops during
2528 constant expression evaluation. The default is 262144 (1<<18).
2529
2530 @item -fconstexpr-ops-limit=@var{n}
2531 @opindex fconstexpr-ops-limit
2532 Set the maximum number of operations during a single constexpr evaluation.
2533 Even when number of iterations of a single loop is limited with the above limit,
2534 if there are several nested loops and each of them has many iterations but still
2535 smaller than the above limit, or if in a body of some loop or even outside
2536 of a loop too many expressions need to be evaluated, the resulting constexpr
2537 evaluation might take too long.
2538 The default is 33554432 (1<<25).
2539
2540 @item -fdeduce-init-list
2541 @opindex fdeduce-init-list
2542 Enable deduction of a template type parameter as
2543 @code{std::initializer_list} from a brace-enclosed initializer list, i.e.@:
2544
2545 @smallexample
2546 template <class T> auto forward(T t) -> decltype (realfn (t))
2547 @{
2548 return realfn (t);
2549 @}
2550
2551 void f()
2552 @{
2553 forward(@{1,2@}); // call forward<std::initializer_list<int>>
2554 @}
2555 @end smallexample
2556
2557 This deduction was implemented as a possible extension to the
2558 originally proposed semantics for the C++11 standard, but was not part
2559 of the final standard, so it is disabled by default. This option is
2560 deprecated, and may be removed in a future version of G++.
2561
2562 @item -fno-elide-constructors
2563 @opindex fno-elide-constructors
2564 @opindex felide-constructors
2565 The C++ standard allows an implementation to omit creating a temporary
2566 that is only used to initialize another object of the same type.
2567 Specifying this option disables that optimization, and forces G++ to
2568 call the copy constructor in all cases. This option also causes G++
2569 to call trivial member functions which otherwise would be expanded inline.
2570
2571 In C++17, the compiler is required to omit these temporaries, but this
2572 option still affects trivial member functions.
2573
2574 @item -fno-enforce-eh-specs
2575 @opindex fno-enforce-eh-specs
2576 @opindex fenforce-eh-specs
2577 Don't generate code to check for violation of exception specifications
2578 at run time. This option violates the C++ standard, but may be useful
2579 for reducing code size in production builds, much like defining
2580 @code{NDEBUG}. This does not give user code permission to throw
2581 exceptions in violation of the exception specifications; the compiler
2582 still optimizes based on the specifications, so throwing an
2583 unexpected exception results in undefined behavior at run time.
2584
2585 @item -fextern-tls-init
2586 @itemx -fno-extern-tls-init
2587 @opindex fextern-tls-init
2588 @opindex fno-extern-tls-init
2589 The C++11 and OpenMP standards allow @code{thread_local} and
2590 @code{threadprivate} variables to have dynamic (runtime)
2591 initialization. To support this, any use of such a variable goes
2592 through a wrapper function that performs any necessary initialization.
2593 When the use and definition of the variable are in the same
2594 translation unit, this overhead can be optimized away, but when the
2595 use is in a different translation unit there is significant overhead
2596 even if the variable doesn't actually need dynamic initialization. If
2597 the programmer can be sure that no use of the variable in a
2598 non-defining TU needs to trigger dynamic initialization (either
2599 because the variable is statically initialized, or a use of the
2600 variable in the defining TU will be executed before any uses in
2601 another TU), they can avoid this overhead with the
2602 @option{-fno-extern-tls-init} option.
2603
2604 On targets that support symbol aliases, the default is
2605 @option{-fextern-tls-init}. On targets that do not support symbol
2606 aliases, the default is @option{-fno-extern-tls-init}.
2607
2608 @item -fno-gnu-keywords
2609 @opindex fno-gnu-keywords
2610 @opindex fgnu-keywords
2611 Do not recognize @code{typeof} as a keyword, so that code can use this
2612 word as an identifier. You can use the keyword @code{__typeof__} instead.
2613 This option is implied by the strict ISO C++ dialects: @option{-ansi},
2614 @option{-std=c++98}, @option{-std=c++11}, etc.
2615
2616 @item -fno-implicit-templates
2617 @opindex fno-implicit-templates
2618 @opindex fimplicit-templates
2619 Never emit code for non-inline templates that are instantiated
2620 implicitly (i.e.@: by use); only emit code for explicit instantiations.
2621 If you use this option, you must take care to structure your code to
2622 include all the necessary explicit instantiations to avoid getting
2623 undefined symbols at link time.
2624 @xref{Template Instantiation}, for more information.
2625
2626 @item -fno-implicit-inline-templates
2627 @opindex fno-implicit-inline-templates
2628 @opindex fimplicit-inline-templates
2629 Don't emit code for implicit instantiations of inline templates, either.
2630 The default is to handle inlines differently so that compiles with and
2631 without optimization need the same set of explicit instantiations.
2632
2633 @item -fno-implement-inlines
2634 @opindex fno-implement-inlines
2635 @opindex fimplement-inlines
2636 To save space, do not emit out-of-line copies of inline functions
2637 controlled by @code{#pragma implementation}. This causes linker
2638 errors if these functions are not inlined everywhere they are called.
2639
2640 @item -fms-extensions
2641 @opindex fms-extensions
2642 Disable Wpedantic warnings about constructs used in MFC, such as implicit
2643 int and getting a pointer to member function via non-standard syntax.
2644
2645 @item -fnew-inheriting-ctors
2646 @opindex fnew-inheriting-ctors
2647 Enable the P0136 adjustment to the semantics of C++11 constructor
2648 inheritance. This is part of C++17 but also considered to be a Defect
2649 Report against C++11 and C++14. This flag is enabled by default
2650 unless @option{-fabi-version=10} or lower is specified.
2651
2652 @item -fnew-ttp-matching
2653 @opindex fnew-ttp-matching
2654 Enable the P0522 resolution to Core issue 150, template template
2655 parameters and default arguments: this allows a template with default
2656 template arguments as an argument for a template template parameter
2657 with fewer template parameters. This flag is enabled by default for
2658 @option{-std=c++17}.
2659
2660 @item -fno-nonansi-builtins
2661 @opindex fno-nonansi-builtins
2662 @opindex fnonansi-builtins
2663 Disable built-in declarations of functions that are not mandated by
2664 ANSI/ISO C@. These include @code{ffs}, @code{alloca}, @code{_exit},
2665 @code{index}, @code{bzero}, @code{conjf}, and other related functions.
2666
2667 @item -fnothrow-opt
2668 @opindex fnothrow-opt
2669 Treat a @code{throw()} exception specification as if it were a
2670 @code{noexcept} specification to reduce or eliminate the text size
2671 overhead relative to a function with no exception specification. If
2672 the function has local variables of types with non-trivial
2673 destructors, the exception specification actually makes the
2674 function smaller because the EH cleanups for those variables can be
2675 optimized away. The semantic effect is that an exception thrown out of
2676 a function with such an exception specification results in a call
2677 to @code{terminate} rather than @code{unexpected}.
2678
2679 @item -fno-operator-names
2680 @opindex fno-operator-names
2681 @opindex foperator-names
2682 Do not treat the operator name keywords @code{and}, @code{bitand},
2683 @code{bitor}, @code{compl}, @code{not}, @code{or} and @code{xor} as
2684 synonyms as keywords.
2685
2686 @item -fno-optional-diags
2687 @opindex fno-optional-diags
2688 @opindex foptional-diags
2689 Disable diagnostics that the standard says a compiler does not need to
2690 issue. Currently, the only such diagnostic issued by G++ is the one for
2691 a name having multiple meanings within a class.
2692
2693 @item -fpermissive
2694 @opindex fpermissive
2695 Downgrade some diagnostics about nonconformant code from errors to
2696 warnings. Thus, using @option{-fpermissive} allows some
2697 nonconforming code to compile.
2698
2699 @item -fno-pretty-templates
2700 @opindex fno-pretty-templates
2701 @opindex fpretty-templates
2702 When an error message refers to a specialization of a function
2703 template, the compiler normally prints the signature of the
2704 template followed by the template arguments and any typedefs or
2705 typenames in the signature (e.g.@: @code{void f(T) [with T = int]}
2706 rather than @code{void f(int)}) so that it's clear which template is
2707 involved. When an error message refers to a specialization of a class
2708 template, the compiler omits any template arguments that match
2709 the default template arguments for that template. If either of these
2710 behaviors make it harder to understand the error message rather than
2711 easier, you can use @option{-fno-pretty-templates} to disable them.
2712
2713 @item -frepo
2714 @opindex frepo
2715 Enable automatic template instantiation at link time. This option also
2716 implies @option{-fno-implicit-templates}. @xref{Template
2717 Instantiation}, for more information.
2718
2719 @item -fno-rtti
2720 @opindex fno-rtti
2721 @opindex frtti
2722 Disable generation of information about every class with virtual
2723 functions for use by the C++ run-time type identification features
2724 (@code{dynamic_cast} and @code{typeid}). If you don't use those parts
2725 of the language, you can save some space by using this flag. Note that
2726 exception handling uses the same information, but G++ generates it as
2727 needed. The @code{dynamic_cast} operator can still be used for casts that
2728 do not require run-time type information, i.e.@: casts to @code{void *} or to
2729 unambiguous base classes.
2730
2731 Mixing code compiled with @option{-frtti} with that compiled with
2732 @option{-fno-rtti} may not work. For example, programs may
2733 fail to link if a class compiled with @option{-fno-rtti} is used as a base
2734 for a class compiled with @option{-frtti}.
2735
2736 @item -fsized-deallocation
2737 @opindex fsized-deallocation
2738 Enable the built-in global declarations
2739 @smallexample
2740 void operator delete (void *, std::size_t) noexcept;
2741 void operator delete[] (void *, std::size_t) noexcept;
2742 @end smallexample
2743 as introduced in C++14. This is useful for user-defined replacement
2744 deallocation functions that, for example, use the size of the object
2745 to make deallocation faster. Enabled by default under
2746 @option{-std=c++14} and above. The flag @option{-Wsized-deallocation}
2747 warns about places that might want to add a definition.
2748
2749 @item -fstrict-enums
2750 @opindex fstrict-enums
2751 Allow the compiler to optimize using the assumption that a value of
2752 enumerated type can only be one of the values of the enumeration (as
2753 defined in the C++ standard; basically, a value that can be
2754 represented in the minimum number of bits needed to represent all the
2755 enumerators). This assumption may not be valid if the program uses a
2756 cast to convert an arbitrary integer value to the enumerated type.
2757
2758 @item -fstrong-eval-order
2759 @opindex fstrong-eval-order
2760 Evaluate member access, array subscripting, and shift expressions in
2761 left-to-right order, and evaluate assignment in right-to-left order,
2762 as adopted for C++17. Enabled by default with @option{-std=c++17}.
2763 @option{-fstrong-eval-order=some} enables just the ordering of member
2764 access and shift expressions, and is the default without
2765 @option{-std=c++17}.
2766
2767 @item -ftemplate-backtrace-limit=@var{n}
2768 @opindex ftemplate-backtrace-limit
2769 Set the maximum number of template instantiation notes for a single
2770 warning or error to @var{n}. The default value is 10.
2771
2772 @item -ftemplate-depth=@var{n}
2773 @opindex ftemplate-depth
2774 Set the maximum instantiation depth for template classes to @var{n}.
2775 A limit on the template instantiation depth is needed to detect
2776 endless recursions during template class instantiation. ANSI/ISO C++
2777 conforming programs must not rely on a maximum depth greater than 17
2778 (changed to 1024 in C++11). The default value is 900, as the compiler
2779 can run out of stack space before hitting 1024 in some situations.
2780
2781 @item -fno-threadsafe-statics
2782 @opindex fno-threadsafe-statics
2783 @opindex fthreadsafe-statics
2784 Do not emit the extra code to use the routines specified in the C++
2785 ABI for thread-safe initialization of local statics. You can use this
2786 option to reduce code size slightly in code that doesn't need to be
2787 thread-safe.
2788
2789 @item -fuse-cxa-atexit
2790 @opindex fuse-cxa-atexit
2791 Register destructors for objects with static storage duration with the
2792 @code{__cxa_atexit} function rather than the @code{atexit} function.
2793 This option is required for fully standards-compliant handling of static
2794 destructors, but only works if your C library supports
2795 @code{__cxa_atexit}.
2796
2797 @item -fno-use-cxa-get-exception-ptr
2798 @opindex fno-use-cxa-get-exception-ptr
2799 @opindex fuse-cxa-get-exception-ptr
2800 Don't use the @code{__cxa_get_exception_ptr} runtime routine. This
2801 causes @code{std::uncaught_exception} to be incorrect, but is necessary
2802 if the runtime routine is not available.
2803
2804 @item -fvisibility-inlines-hidden
2805 @opindex fvisibility-inlines-hidden
2806 This switch declares that the user does not attempt to compare
2807 pointers to inline functions or methods where the addresses of the two functions
2808 are taken in different shared objects.
2809
2810 The effect of this is that GCC may, effectively, mark inline methods with
2811 @code{__attribute__ ((visibility ("hidden")))} so that they do not
2812 appear in the export table of a DSO and do not require a PLT indirection
2813 when used within the DSO@. Enabling this option can have a dramatic effect
2814 on load and link times of a DSO as it massively reduces the size of the
2815 dynamic export table when the library makes heavy use of templates.
2816
2817 The behavior of this switch is not quite the same as marking the
2818 methods as hidden directly, because it does not affect static variables
2819 local to the function or cause the compiler to deduce that
2820 the function is defined in only one shared object.
2821
2822 You may mark a method as having a visibility explicitly to negate the
2823 effect of the switch for that method. For example, if you do want to
2824 compare pointers to a particular inline method, you might mark it as
2825 having default visibility. Marking the enclosing class with explicit
2826 visibility has no effect.
2827
2828 Explicitly instantiated inline methods are unaffected by this option
2829 as their linkage might otherwise cross a shared library boundary.
2830 @xref{Template Instantiation}.
2831
2832 @item -fvisibility-ms-compat
2833 @opindex fvisibility-ms-compat
2834 This flag attempts to use visibility settings to make GCC's C++
2835 linkage model compatible with that of Microsoft Visual Studio.
2836
2837 The flag makes these changes to GCC's linkage model:
2838
2839 @enumerate
2840 @item
2841 It sets the default visibility to @code{hidden}, like
2842 @option{-fvisibility=hidden}.
2843
2844 @item
2845 Types, but not their members, are not hidden by default.
2846
2847 @item
2848 The One Definition Rule is relaxed for types without explicit
2849 visibility specifications that are defined in more than one
2850 shared object: those declarations are permitted if they are
2851 permitted when this option is not used.
2852 @end enumerate
2853
2854 In new code it is better to use @option{-fvisibility=hidden} and
2855 export those classes that are intended to be externally visible.
2856 Unfortunately it is possible for code to rely, perhaps accidentally,
2857 on the Visual Studio behavior.
2858
2859 Among the consequences of these changes are that static data members
2860 of the same type with the same name but defined in different shared
2861 objects are different, so changing one does not change the other;
2862 and that pointers to function members defined in different shared
2863 objects may not compare equal. When this flag is given, it is a
2864 violation of the ODR to define types with the same name differently.
2865
2866 @item -fno-weak
2867 @opindex fno-weak
2868 @opindex fweak
2869 Do not use weak symbol support, even if it is provided by the linker.
2870 By default, G++ uses weak symbols if they are available. This
2871 option exists only for testing, and should not be used by end-users;
2872 it results in inferior code and has no benefits. This option may
2873 be removed in a future release of G++.
2874
2875 @item -nostdinc++
2876 @opindex nostdinc++
2877 Do not search for header files in the standard directories specific to
2878 C++, but do still search the other standard directories. (This option
2879 is used when building the C++ library.)
2880 @end table
2881
2882 In addition, these optimization, warning, and code generation options
2883 have meanings only for C++ programs:
2884
2885 @table @gcctabopt
2886 @item -Wabi @r{(C, Objective-C, C++ and Objective-C++ only)}
2887 @opindex Wabi
2888 @opindex Wno-abi
2889 Warn when G++ it generates code that is probably not compatible with
2890 the vendor-neutral C++ ABI@. Since G++ now defaults to updating the
2891 ABI with each major release, normally @option{-Wabi} will warn only if
2892 there is a check added later in a release series for an ABI issue
2893 discovered since the initial release. @option{-Wabi} will warn about
2894 more things if an older ABI version is selected (with
2895 @option{-fabi-version=@var{n}}).
2896
2897 @option{-Wabi} can also be used with an explicit version number to
2898 warn about compatibility with a particular @option{-fabi-version}
2899 level, e.g.@: @option{-Wabi=2} to warn about changes relative to
2900 @option{-fabi-version=2}.
2901
2902 If an explicit version number is provided and
2903 @option{-fabi-compat-version} is not specified, the version number
2904 from this option is used for compatibility aliases. If no explicit
2905 version number is provided with this option, but
2906 @option{-fabi-compat-version} is specified, that version number is
2907 used for ABI warnings.
2908
2909 Although an effort has been made to warn about
2910 all such cases, there are probably some cases that are not warned about,
2911 even though G++ is generating incompatible code. There may also be
2912 cases where warnings are emitted even though the code that is generated
2913 is compatible.
2914
2915 You should rewrite your code to avoid these warnings if you are
2916 concerned about the fact that code generated by G++ may not be binary
2917 compatible with code generated by other compilers.
2918
2919 Known incompatibilities in @option{-fabi-version=2} (which was the
2920 default from GCC 3.4 to 4.9) include:
2921
2922 @itemize @bullet
2923
2924 @item
2925 A template with a non-type template parameter of reference type was
2926 mangled incorrectly:
2927 @smallexample
2928 extern int N;
2929 template <int &> struct S @{@};
2930 void n (S<N>) @{2@}
2931 @end smallexample
2932
2933 This was fixed in @option{-fabi-version=3}.
2934
2935 @item
2936 SIMD vector types declared using @code{__attribute ((vector_size))} were
2937 mangled in a non-standard way that does not allow for overloading of
2938 functions taking vectors of different sizes.
2939
2940 The mangling was changed in @option{-fabi-version=4}.
2941
2942 @item
2943 @code{__attribute ((const))} and @code{noreturn} were mangled as type
2944 qualifiers, and @code{decltype} of a plain declaration was folded away.
2945
2946 These mangling issues were fixed in @option{-fabi-version=5}.
2947
2948 @item
2949 Scoped enumerators passed as arguments to a variadic function are
2950 promoted like unscoped enumerators, causing @code{va_arg} to complain.
2951 On most targets this does not actually affect the parameter passing
2952 ABI, as there is no way to pass an argument smaller than @code{int}.
2953
2954 Also, the ABI changed the mangling of template argument packs,
2955 @code{const_cast}, @code{static_cast}, prefix increment/decrement, and
2956 a class scope function used as a template argument.
2957
2958 These issues were corrected in @option{-fabi-version=6}.
2959
2960 @item
2961 Lambdas in default argument scope were mangled incorrectly, and the
2962 ABI changed the mangling of @code{nullptr_t}.
2963
2964 These issues were corrected in @option{-fabi-version=7}.
2965
2966 @item
2967 When mangling a function type with function-cv-qualifiers, the
2968 un-qualified function type was incorrectly treated as a substitution
2969 candidate.
2970
2971 This was fixed in @option{-fabi-version=8}, the default for GCC 5.1.
2972
2973 @item
2974 @code{decltype(nullptr)} incorrectly had an alignment of 1, leading to
2975 unaligned accesses. Note that this did not affect the ABI of a
2976 function with a @code{nullptr_t} parameter, as parameters have a
2977 minimum alignment.
2978
2979 This was fixed in @option{-fabi-version=9}, the default for GCC 5.2.
2980
2981 @item
2982 Target-specific attributes that affect the identity of a type, such as
2983 ia32 calling conventions on a function type (stdcall, regparm, etc.),
2984 did not affect the mangled name, leading to name collisions when
2985 function pointers were used as template arguments.
2986
2987 This was fixed in @option{-fabi-version=10}, the default for GCC 6.1.
2988
2989 @end itemize
2990
2991 It also warns about psABI-related changes. The known psABI changes at this
2992 point include:
2993
2994 @itemize @bullet
2995
2996 @item
2997 For SysV/x86-64, unions with @code{long double} members are
2998 passed in memory as specified in psABI. For example:
2999
3000 @smallexample
3001 union U @{
3002 long double ld;
3003 int i;
3004 @};
3005 @end smallexample
3006
3007 @noindent
3008 @code{union U} is always passed in memory.
3009
3010 @end itemize
3011
3012 @item -Wabi-tag @r{(C++ and Objective-C++ only)}
3013 @opindex Wabi-tag
3014 @opindex Wabi-tag
3015 Warn when a type with an ABI tag is used in a context that does not
3016 have that ABI tag. See @ref{C++ Attributes} for more information
3017 about ABI tags.
3018
3019 @item -Wctor-dtor-privacy @r{(C++ and Objective-C++ only)}
3020 @opindex Wctor-dtor-privacy
3021 @opindex Wno-ctor-dtor-privacy
3022 Warn when a class seems unusable because all the constructors or
3023 destructors in that class are private, and it has neither friends nor
3024 public static member functions. Also warn if there are no non-private
3025 methods, and there's at least one private member function that isn't
3026 a constructor or destructor.
3027
3028 @item -Wdelete-non-virtual-dtor @r{(C++ and Objective-C++ only)}
3029 @opindex Wdelete-non-virtual-dtor
3030 @opindex Wno-delete-non-virtual-dtor
3031 Warn when @code{delete} is used to destroy an instance of a class that
3032 has virtual functions and non-virtual destructor. It is unsafe to delete
3033 an instance of a derived class through a pointer to a base class if the
3034 base class does not have a virtual destructor. This warning is enabled
3035 by @option{-Wall}.
3036
3037 @item -Wdeprecated-copy @r{(C++ and Objective-C++ only)}
3038 @opindex Wdeprecated-copy
3039 @opindex Wno-deprecated-copy
3040 Warn that the implicit declaration of a copy constructor or copy
3041 assignment operator is deprecated if the class has a user-provided
3042 copy constructor or copy assignment operator, in C++11 and up. This
3043 warning is enabled by @option{-Wextra}. With
3044 @option{-Wdeprecated-copy-dtor}, also deprecate if the class has a
3045 user-provided destructor.
3046
3047 @item -Wno-init-list-lifetime @r{(C++ and Objective-C++ only)}
3048 @opindex Winit-list-lifetime
3049 @opindex Wno-init-list-lifetime
3050 Do not warn about uses of @code{std::initializer_list} that are likely
3051 to result in dangling pointers. Since the underlying array for an
3052 @code{initializer_list} is handled like a normal C++ temporary object,
3053 it is easy to inadvertently keep a pointer to the array past the end
3054 of the array's lifetime. For example:
3055
3056 @itemize @bullet
3057 @item
3058 If a function returns a temporary @code{initializer_list}, or a local
3059 @code{initializer_list} variable, the array's lifetime ends at the end
3060 of the return statement, so the value returned has a dangling pointer.
3061
3062 @item
3063 If a new-expression creates an @code{initializer_list}, the array only
3064 lives until the end of the enclosing full-expression, so the
3065 @code{initializer_list} in the heap has a dangling pointer.
3066
3067 @item
3068 When an @code{initializer_list} variable is assigned from a
3069 brace-enclosed initializer list, the temporary array created for the
3070 right side of the assignment only lives until the end of the
3071 full-expression, so at the next statement the @code{initializer_list}
3072 variable has a dangling pointer.
3073
3074 @smallexample
3075 // li's initial underlying array lives as long as li
3076 std::initializer_list<int> li = @{ 1,2,3 @};
3077 // assignment changes li to point to a temporary array
3078 li = @{ 4, 5 @};
3079 // now the temporary is gone and li has a dangling pointer
3080 int i = li.begin()[0] // undefined behavior
3081 @end smallexample
3082
3083 @item
3084 When a list constructor stores the @code{begin} pointer from the
3085 @code{initializer_list} argument, this doesn't extend the lifetime of
3086 the array, so if a class variable is constructed from a temporary
3087 @code{initializer_list}, the pointer is left dangling by the end of
3088 the variable declaration statement.
3089
3090 @end itemize
3091
3092 @item -Wliteral-suffix @r{(C++ and Objective-C++ only)}
3093 @opindex Wliteral-suffix
3094 @opindex Wno-literal-suffix
3095 Warn when a string or character literal is followed by a ud-suffix which does
3096 not begin with an underscore. As a conforming extension, GCC treats such
3097 suffixes as separate preprocessing tokens in order to maintain backwards
3098 compatibility with code that uses formatting macros from @code{<inttypes.h>}.
3099 For example:
3100
3101 @smallexample
3102 #define __STDC_FORMAT_MACROS
3103 #include <inttypes.h>
3104 #include <stdio.h>
3105
3106 int main() @{
3107 int64_t i64 = 123;
3108 printf("My int64: %" PRId64"\n", i64);
3109 @}
3110 @end smallexample
3111
3112 In this case, @code{PRId64} is treated as a separate preprocessing token.
3113
3114 Additionally, warn when a user-defined literal operator is declared with
3115 a literal suffix identifier that doesn't begin with an underscore. Literal
3116 suffix identifiers that don't begin with an underscore are reserved for
3117 future standardization.
3118
3119 This warning is enabled by default.
3120
3121 @item -Wlto-type-mismatch
3122 @opindex Wlto-type-mismatch
3123 @opindex Wno-lto-type-mismatch
3124
3125 During the link-time optimization warn about type mismatches in
3126 global declarations from different compilation units.
3127 Requires @option{-flto} to be enabled. Enabled by default.
3128
3129 @item -Wno-narrowing @r{(C++ and Objective-C++ only)}
3130 @opindex Wnarrowing
3131 @opindex Wno-narrowing
3132 For C++11 and later standards, narrowing conversions are diagnosed by default,
3133 as required by the standard. A narrowing conversion from a constant produces
3134 an error, and a narrowing conversion from a non-constant produces a warning,
3135 but @option{-Wno-narrowing} suppresses the diagnostic.
3136 Note that this does not affect the meaning of well-formed code;
3137 narrowing conversions are still considered ill-formed in SFINAE contexts.
3138
3139 With @option{-Wnarrowing} in C++98, warn when a narrowing
3140 conversion prohibited by C++11 occurs within
3141 @samp{@{ @}}, e.g.
3142
3143 @smallexample
3144 int i = @{ 2.2 @}; // error: narrowing from double to int
3145 @end smallexample
3146
3147 This flag is included in @option{-Wall} and @option{-Wc++11-compat}.
3148
3149 @item -Wnoexcept @r{(C++ and Objective-C++ only)}
3150 @opindex Wnoexcept
3151 @opindex Wno-noexcept
3152 Warn when a noexcept-expression evaluates to false because of a call
3153 to a function that does not have a non-throwing exception
3154 specification (i.e. @code{throw()} or @code{noexcept}) but is known by
3155 the compiler to never throw an exception.
3156
3157 @item -Wnoexcept-type @r{(C++ and Objective-C++ only)}
3158 @opindex Wnoexcept-type
3159 @opindex Wno-noexcept-type
3160 Warn if the C++17 feature making @code{noexcept} part of a function
3161 type changes the mangled name of a symbol relative to C++14. Enabled
3162 by @option{-Wabi} and @option{-Wc++17-compat}.
3163
3164 As an example:
3165
3166 @smallexample
3167 template <class T> void f(T t) @{ t(); @};
3168 void g() noexcept;
3169 void h() @{ f(g); @}
3170 @end smallexample
3171
3172 @noindent
3173 In C++14, @code{f} calls @code{f<void(*)()>}, but in
3174 C++17 it calls @code{f<void(*)()noexcept>}.
3175
3176 @item -Wclass-memaccess @r{(C++ and Objective-C++ only)}
3177 @opindex Wclass-memaccess
3178 @opindex Wno-class-memaccess
3179 Warn when the destination of a call to a raw memory function such as
3180 @code{memset} or @code{memcpy} is an object of class type, and when writing
3181 into such an object might bypass the class non-trivial or deleted constructor
3182 or copy assignment, violate const-correctness or encapsulation, or corrupt
3183 virtual table pointers. Modifying the representation of such objects may
3184 violate invariants maintained by member functions of the class. For example,
3185 the call to @code{memset} below is undefined because it modifies a non-trivial
3186 class object and is, therefore, diagnosed. The safe way to either initialize
3187 or clear the storage of objects of such types is by using the appropriate
3188 constructor or assignment operator, if one is available.
3189 @smallexample
3190 std::string str = "abc";
3191 memset (&str, 0, sizeof str);
3192 @end smallexample
3193 The @option{-Wclass-memaccess} option is enabled by @option{-Wall}.
3194 Explicitly casting the pointer to the class object to @code{void *} or
3195 to a type that can be safely accessed by the raw memory function suppresses
3196 the warning.
3197
3198 @item -Wnon-virtual-dtor @r{(C++ and Objective-C++ only)}
3199 @opindex Wnon-virtual-dtor
3200 @opindex Wno-non-virtual-dtor
3201 Warn when a class has virtual functions and an accessible non-virtual
3202 destructor itself or in an accessible polymorphic base class, in which
3203 case it is possible but unsafe to delete an instance of a derived
3204 class through a pointer to the class itself or base class. This
3205 warning is automatically enabled if @option{-Weffc++} is specified.
3206
3207 @item -Wregister @r{(C++ and Objective-C++ only)}
3208 @opindex Wregister
3209 @opindex Wno-register
3210 Warn on uses of the @code{register} storage class specifier, except
3211 when it is part of the GNU @ref{Explicit Register Variables} extension.
3212 The use of the @code{register} keyword as storage class specifier has
3213 been deprecated in C++11 and removed in C++17.
3214 Enabled by default with @option{-std=c++17}.
3215
3216 @item -Wreorder @r{(C++ and Objective-C++ only)}
3217 @opindex Wreorder
3218 @opindex Wno-reorder
3219 @cindex reordering, warning
3220 @cindex warning for reordering of member initializers
3221 Warn when the order of member initializers given in the code does not
3222 match the order in which they must be executed. For instance:
3223
3224 @smallexample
3225 struct A @{
3226 int i;
3227 int j;
3228 A(): j (0), i (1) @{ @}
3229 @};
3230 @end smallexample
3231
3232 @noindent
3233 The compiler rearranges the member initializers for @code{i}
3234 and @code{j} to match the declaration order of the members, emitting
3235 a warning to that effect. This warning is enabled by @option{-Wall}.
3236
3237 @item -Wno-pessimizing-move @r{(C++ and Objective-C++ only)}
3238 @opindex Wpessimizing-move
3239 @opindex Wno-pessimizing-move
3240 This warning warns when a call to @code{std::move} prevents copy
3241 elision. A typical scenario when copy elision can occur is when returning in
3242 a function with a class return type, when the expression being returned is the
3243 name of a non-volatile automatic object, and is not a function parameter, and
3244 has the same type as the function return type.
3245
3246 @smallexample
3247 struct T @{
3248 @dots{}
3249 @};
3250 T fn()
3251 @{
3252 T t;
3253 @dots{}
3254 return std::move (t);
3255 @}
3256 @end smallexample
3257
3258 But in this example, the @code{std::move} call prevents copy elision.
3259
3260 This warning is enabled by @option{-Wall}.
3261
3262 @item -Wno-redundant-move @r{(C++ and Objective-C++ only)}
3263 @opindex Wredundant-move
3264 @opindex Wno-redundant-move
3265 This warning warns about redundant calls to @code{std::move}; that is, when
3266 a move operation would have been performed even without the @code{std::move}
3267 call. This happens because the compiler is forced to treat the object as if
3268 it were an rvalue in certain situations such as returning a local variable,
3269 where copy elision isn't applicable. Consider:
3270
3271 @smallexample
3272 struct T @{
3273 @dots{}
3274 @};
3275 T fn(T t)
3276 @{
3277 @dots{}
3278 return std::move (t);
3279 @}
3280 @end smallexample
3281
3282 Here, the @code{std::move} call is redundant. Because G++ implements Core
3283 Issue 1579, another example is:
3284
3285 @smallexample
3286 struct T @{ // convertible to U
3287 @dots{}
3288 @};
3289 struct U @{
3290 @dots{}
3291 @};
3292 U fn()
3293 @{
3294 T t;
3295 @dots{}
3296 return std::move (t);
3297 @}
3298 @end smallexample
3299 In this example, copy elision isn't applicable because the type of the
3300 expression being returned and the function return type differ, yet G++
3301 treats the return value as if it were designated by an rvalue.
3302
3303 This warning is enabled by @option{-Wextra}.
3304
3305 @item -fext-numeric-literals @r{(C++ and Objective-C++ only)}
3306 @opindex fext-numeric-literals
3307 @opindex fno-ext-numeric-literals
3308 Accept imaginary, fixed-point, or machine-defined
3309 literal number suffixes as GNU extensions.
3310 When this option is turned off these suffixes are treated
3311 as C++11 user-defined literal numeric suffixes.
3312 This is on by default for all pre-C++11 dialects and all GNU dialects:
3313 @option{-std=c++98}, @option{-std=gnu++98}, @option{-std=gnu++11},
3314 @option{-std=gnu++14}.
3315 This option is off by default
3316 for ISO C++11 onwards (@option{-std=c++11}, ...).
3317 @end table
3318
3319 The following @option{-W@dots{}} options are not affected by @option{-Wall}.
3320
3321 @table @gcctabopt
3322 @item -Weffc++ @r{(C++ and Objective-C++ only)}
3323 @opindex Weffc++
3324 @opindex Wno-effc++
3325 Warn about violations of the following style guidelines from Scott Meyers'
3326 @cite{Effective C++} series of books:
3327
3328 @itemize @bullet
3329 @item
3330 Define a copy constructor and an assignment operator for classes
3331 with dynamically-allocated memory.
3332
3333 @item
3334 Prefer initialization to assignment in constructors.
3335
3336 @item
3337 Have @code{operator=} return a reference to @code{*this}.
3338
3339 @item
3340 Don't try to return a reference when you must return an object.
3341
3342 @item
3343 Distinguish between prefix and postfix forms of increment and
3344 decrement operators.
3345
3346 @item
3347 Never overload @code{&&}, @code{||}, or @code{,}.
3348
3349 @end itemize
3350
3351 This option also enables @option{-Wnon-virtual-dtor}, which is also
3352 one of the effective C++ recommendations. However, the check is
3353 extended to warn about the lack of virtual destructor in accessible
3354 non-polymorphic bases classes too.
3355
3356 When selecting this option, be aware that the standard library
3357 headers do not obey all of these guidelines; use @samp{grep -v}
3358 to filter out those warnings.
3359
3360 @item -Wstrict-null-sentinel @r{(C++ and Objective-C++ only)}
3361 @opindex Wstrict-null-sentinel
3362 @opindex Wno-strict-null-sentinel
3363 Warn about the use of an uncasted @code{NULL} as sentinel. When
3364 compiling only with GCC this is a valid sentinel, as @code{NULL} is defined
3365 to @code{__null}. Although it is a null pointer constant rather than a
3366 null pointer, it is guaranteed to be of the same size as a pointer.
3367 But this use is not portable across different compilers.
3368
3369 @item -Wno-non-template-friend @r{(C++ and Objective-C++ only)}
3370 @opindex Wno-non-template-friend
3371 @opindex Wnon-template-friend
3372 Disable warnings when non-template friend functions are declared
3373 within a template. In very old versions of GCC that predate implementation
3374 of the ISO standard, declarations such as
3375 @samp{friend int foo(int)}, where the name of the friend is an unqualified-id,
3376 could be interpreted as a particular specialization of a template
3377 function; the warning exists to diagnose compatibility problems,
3378 and is enabled by default.
3379
3380 @item -Wold-style-cast @r{(C++ and Objective-C++ only)}
3381 @opindex Wold-style-cast
3382 @opindex Wno-old-style-cast
3383 Warn if an old-style (C-style) cast to a non-void type is used within
3384 a C++ program. The new-style casts (@code{dynamic_cast},
3385 @code{static_cast}, @code{reinterpret_cast}, and @code{const_cast}) are
3386 less vulnerable to unintended effects and much easier to search for.
3387
3388 @item -Woverloaded-virtual @r{(C++ and Objective-C++ only)}
3389 @opindex Woverloaded-virtual
3390 @opindex Wno-overloaded-virtual
3391 @cindex overloaded virtual function, warning
3392 @cindex warning for overloaded virtual function
3393 Warn when a function declaration hides virtual functions from a
3394 base class. For example, in:
3395
3396 @smallexample
3397 struct A @{
3398 virtual void f();
3399 @};
3400
3401 struct B: public A @{
3402 void f(int);
3403 @};
3404 @end smallexample
3405
3406 the @code{A} class version of @code{f} is hidden in @code{B}, and code
3407 like:
3408
3409 @smallexample
3410 B* b;
3411 b->f();
3412 @end smallexample
3413
3414 @noindent
3415 fails to compile.
3416
3417 @item -Wno-pmf-conversions @r{(C++ and Objective-C++ only)}
3418 @opindex Wno-pmf-conversions
3419 @opindex Wpmf-conversions
3420 Disable the diagnostic for converting a bound pointer to member function
3421 to a plain pointer.
3422
3423 @item -Wsign-promo @r{(C++ and Objective-C++ only)}
3424 @opindex Wsign-promo
3425 @opindex Wno-sign-promo
3426 Warn when overload resolution chooses a promotion from unsigned or
3427 enumerated type to a signed type, over a conversion to an unsigned type of
3428 the same size. Previous versions of G++ tried to preserve
3429 unsignedness, but the standard mandates the current behavior.
3430
3431 @item -Wtemplates @r{(C++ and Objective-C++ only)}
3432 @opindex Wtemplates
3433 @opindex Wno-templates
3434 Warn when a primary template declaration is encountered. Some coding
3435 rules disallow templates, and this may be used to enforce that rule.
3436 The warning is inactive inside a system header file, such as the STL, so
3437 one can still use the STL. One may also instantiate or specialize
3438 templates.
3439
3440 @item -Wmultiple-inheritance @r{(C++ and Objective-C++ only)}
3441 @opindex Wmultiple-inheritance
3442 @opindex Wno-multiple-inheritance
3443 Warn when a class is defined with multiple direct base classes. Some
3444 coding rules disallow multiple inheritance, and this may be used to
3445 enforce that rule. The warning is inactive inside a system header file,
3446 such as the STL, so one can still use the STL. One may also define
3447 classes that indirectly use multiple inheritance.
3448
3449 @item -Wvirtual-inheritance
3450 @opindex Wvirtual-inheritance
3451 @opindex Wno-virtual-inheritance
3452 Warn when a class is defined with a virtual direct base class. Some
3453 coding rules disallow multiple inheritance, and this may be used to
3454 enforce that rule. The warning is inactive inside a system header file,
3455 such as the STL, so one can still use the STL. One may also define
3456 classes that indirectly use virtual inheritance.
3457
3458 @item -Wnamespaces
3459 @opindex Wnamespaces
3460 @opindex Wno-namespaces
3461 Warn when a namespace definition is opened. Some coding rules disallow
3462 namespaces, and this may be used to enforce that rule. The warning is
3463 inactive inside a system header file, such as the STL, so one can still
3464 use the STL. One may also use using directives and qualified names.
3465
3466 @item -Wno-terminate @r{(C++ and Objective-C++ only)}
3467 @opindex Wterminate
3468 @opindex Wno-terminate
3469 Disable the warning about a throw-expression that will immediately
3470 result in a call to @code{terminate}.
3471
3472 @item -Wno-class-conversion @r{(C++ and Objective-C++ only)}
3473 @opindex Wno-class-conversion
3474 @opindex Wclass-conversion
3475 Disable the warning about the case when a conversion function converts an
3476 object to the same type, to a base class of that type, or to void; such
3477 a conversion function will never be called.
3478 @end table
3479
3480 @node Objective-C and Objective-C++ Dialect Options
3481 @section Options Controlling Objective-C and Objective-C++ Dialects
3482
3483 @cindex compiler options, Objective-C and Objective-C++
3484 @cindex Objective-C and Objective-C++ options, command-line
3485 @cindex options, Objective-C and Objective-C++
3486 (NOTE: This manual does not describe the Objective-C and Objective-C++
3487 languages themselves. @xref{Standards,,Language Standards
3488 Supported by GCC}, for references.)
3489
3490 This section describes the command-line options that are only meaningful
3491 for Objective-C and Objective-C++ programs. You can also use most of
3492 the language-independent GNU compiler options.
3493 For example, you might compile a file @file{some_class.m} like this:
3494
3495 @smallexample
3496 gcc -g -fgnu-runtime -O -c some_class.m
3497 @end smallexample
3498
3499 @noindent
3500 In this example, @option{-fgnu-runtime} is an option meant only for
3501 Objective-C and Objective-C++ programs; you can use the other options with
3502 any language supported by GCC@.
3503
3504 Note that since Objective-C is an extension of the C language, Objective-C
3505 compilations may also use options specific to the C front-end (e.g.,
3506 @option{-Wtraditional}). Similarly, Objective-C++ compilations may use
3507 C++-specific options (e.g., @option{-Wabi}).
3508
3509 Here is a list of options that are @emph{only} for compiling Objective-C
3510 and Objective-C++ programs:
3511
3512 @table @gcctabopt
3513 @item -fconstant-string-class=@var{class-name}
3514 @opindex fconstant-string-class
3515 Use @var{class-name} as the name of the class to instantiate for each
3516 literal string specified with the syntax @code{@@"@dots{}"}. The default
3517 class name is @code{NXConstantString} if the GNU runtime is being used, and
3518 @code{NSConstantString} if the NeXT runtime is being used (see below). The
3519 @option{-fconstant-cfstrings} option, if also present, overrides the
3520 @option{-fconstant-string-class} setting and cause @code{@@"@dots{}"} literals
3521 to be laid out as constant CoreFoundation strings.
3522
3523 @item -fgnu-runtime
3524 @opindex fgnu-runtime
3525 Generate object code compatible with the standard GNU Objective-C
3526 runtime. This is the default for most types of systems.
3527
3528 @item -fnext-runtime
3529 @opindex fnext-runtime
3530 Generate output compatible with the NeXT runtime. This is the default
3531 for NeXT-based systems, including Darwin and Mac OS X@. The macro
3532 @code{__NEXT_RUNTIME__} is predefined if (and only if) this option is
3533 used.
3534
3535 @item -fno-nil-receivers
3536 @opindex fno-nil-receivers
3537 @opindex fnil-receivers
3538 Assume that all Objective-C message dispatches (@code{[receiver
3539 message:arg]}) in this translation unit ensure that the receiver is
3540 not @code{nil}. This allows for more efficient entry points in the
3541 runtime to be used. This option is only available in conjunction with
3542 the NeXT runtime and ABI version 0 or 1.
3543
3544 @item -fobjc-abi-version=@var{n}
3545 @opindex fobjc-abi-version
3546 Use version @var{n} of the Objective-C ABI for the selected runtime.
3547 This option is currently supported only for the NeXT runtime. In that
3548 case, Version 0 is the traditional (32-bit) ABI without support for
3549 properties and other Objective-C 2.0 additions. Version 1 is the
3550 traditional (32-bit) ABI with support for properties and other
3551 Objective-C 2.0 additions. Version 2 is the modern (64-bit) ABI. If
3552 nothing is specified, the default is Version 0 on 32-bit target
3553 machines, and Version 2 on 64-bit target machines.
3554
3555 @item -fobjc-call-cxx-cdtors
3556 @opindex fobjc-call-cxx-cdtors
3557 For each Objective-C class, check if any of its instance variables is a
3558 C++ object with a non-trivial default constructor. If so, synthesize a
3559 special @code{- (id) .cxx_construct} instance method which runs
3560 non-trivial default constructors on any such instance variables, in order,
3561 and then return @code{self}. Similarly, check if any instance variable
3562 is a C++ object with a non-trivial destructor, and if so, synthesize a
3563 special @code{- (void) .cxx_destruct} method which runs
3564 all such default destructors, in reverse order.
3565
3566 The @code{- (id) .cxx_construct} and @code{- (void) .cxx_destruct}
3567 methods thusly generated only operate on instance variables
3568 declared in the current Objective-C class, and not those inherited
3569 from superclasses. It is the responsibility of the Objective-C
3570 runtime to invoke all such methods in an object's inheritance
3571 hierarchy. The @code{- (id) .cxx_construct} methods are invoked
3572 by the runtime immediately after a new object instance is allocated;
3573 the @code{- (void) .cxx_destruct} methods are invoked immediately
3574 before the runtime deallocates an object instance.
3575
3576 As of this writing, only the NeXT runtime on Mac OS X 10.4 and later has
3577 support for invoking the @code{- (id) .cxx_construct} and
3578 @code{- (void) .cxx_destruct} methods.
3579
3580 @item -fobjc-direct-dispatch
3581 @opindex fobjc-direct-dispatch
3582 Allow fast jumps to the message dispatcher. On Darwin this is
3583 accomplished via the comm page.
3584
3585 @item -fobjc-exceptions
3586 @opindex fobjc-exceptions
3587 Enable syntactic support for structured exception handling in
3588 Objective-C, similar to what is offered by C++. This option
3589 is required to use the Objective-C keywords @code{@@try},
3590 @code{@@throw}, @code{@@catch}, @code{@@finally} and
3591 @code{@@synchronized}. This option is available with both the GNU
3592 runtime and the NeXT runtime (but not available in conjunction with
3593 the NeXT runtime on Mac OS X 10.2 and earlier).
3594
3595 @item -fobjc-gc
3596 @opindex fobjc-gc
3597 Enable garbage collection (GC) in Objective-C and Objective-C++
3598 programs. This option is only available with the NeXT runtime; the
3599 GNU runtime has a different garbage collection implementation that
3600 does not require special compiler flags.
3601
3602 @item -fobjc-nilcheck
3603 @opindex fobjc-nilcheck
3604 For the NeXT runtime with version 2 of the ABI, check for a nil
3605 receiver in method invocations before doing the actual method call.
3606 This is the default and can be disabled using
3607 @option{-fno-objc-nilcheck}. Class methods and super calls are never
3608 checked for nil in this way no matter what this flag is set to.
3609 Currently this flag does nothing when the GNU runtime, or an older
3610 version of the NeXT runtime ABI, is used.
3611
3612 @item -fobjc-std=objc1
3613 @opindex fobjc-std
3614 Conform to the language syntax of Objective-C 1.0, the language
3615 recognized by GCC 4.0. This only affects the Objective-C additions to
3616 the C/C++ language; it does not affect conformance to C/C++ standards,
3617 which is controlled by the separate C/C++ dialect option flags. When
3618 this option is used with the Objective-C or Objective-C++ compiler,
3619 any Objective-C syntax that is not recognized by GCC 4.0 is rejected.
3620 This is useful if you need to make sure that your Objective-C code can
3621 be compiled with older versions of GCC@.
3622
3623 @item -freplace-objc-classes
3624 @opindex freplace-objc-classes
3625 Emit a special marker instructing @command{ld(1)} not to statically link in
3626 the resulting object file, and allow @command{dyld(1)} to load it in at
3627 run time instead. This is used in conjunction with the Fix-and-Continue
3628 debugging mode, where the object file in question may be recompiled and
3629 dynamically reloaded in the course of program execution, without the need
3630 to restart the program itself. Currently, Fix-and-Continue functionality
3631 is only available in conjunction with the NeXT runtime on Mac OS X 10.3
3632 and later.
3633
3634 @item -fzero-link
3635 @opindex fzero-link
3636 When compiling for the NeXT runtime, the compiler ordinarily replaces calls
3637 to @code{objc_getClass("@dots{}")} (when the name of the class is known at
3638 compile time) with static class references that get initialized at load time,
3639 which improves run-time performance. Specifying the @option{-fzero-link} flag
3640 suppresses this behavior and causes calls to @code{objc_getClass("@dots{}")}
3641 to be retained. This is useful in Zero-Link debugging mode, since it allows
3642 for individual class implementations to be modified during program execution.
3643 The GNU runtime currently always retains calls to @code{objc_get_class("@dots{}")}
3644 regardless of command-line options.
3645
3646 @item -fno-local-ivars
3647 @opindex fno-local-ivars
3648 @opindex flocal-ivars
3649 By default instance variables in Objective-C can be accessed as if
3650 they were local variables from within the methods of the class they're
3651 declared in. This can lead to shadowing between instance variables
3652 and other variables declared either locally inside a class method or
3653 globally with the same name. Specifying the @option{-fno-local-ivars}
3654 flag disables this behavior thus avoiding variable shadowing issues.
3655
3656 @item -fivar-visibility=@r{[}public@r{|}protected@r{|}private@r{|}package@r{]}
3657 @opindex fivar-visibility
3658 Set the default instance variable visibility to the specified option
3659 so that instance variables declared outside the scope of any access
3660 modifier directives default to the specified visibility.
3661
3662 @item -gen-decls
3663 @opindex gen-decls
3664 Dump interface declarations for all classes seen in the source file to a
3665 file named @file{@var{sourcename}.decl}.
3666
3667 @item -Wassign-intercept @r{(Objective-C and Objective-C++ only)}
3668 @opindex Wassign-intercept
3669 @opindex Wno-assign-intercept
3670 Warn whenever an Objective-C assignment is being intercepted by the
3671 garbage collector.
3672
3673 @item -Wno-protocol @r{(Objective-C and Objective-C++ only)}
3674 @opindex Wno-protocol
3675 @opindex Wprotocol
3676 If a class is declared to implement a protocol, a warning is issued for
3677 every method in the protocol that is not implemented by the class. The
3678 default behavior is to issue a warning for every method not explicitly
3679 implemented in the class, even if a method implementation is inherited
3680 from the superclass. If you use the @option{-Wno-protocol} option, then
3681 methods inherited from the superclass are considered to be implemented,
3682 and no warning is issued for them.
3683
3684 @item -Wselector @r{(Objective-C and Objective-C++ only)}
3685 @opindex Wselector
3686 @opindex Wno-selector
3687 Warn if multiple methods of different types for the same selector are
3688 found during compilation. The check is performed on the list of methods
3689 in the final stage of compilation. Additionally, a check is performed
3690 for each selector appearing in a @code{@@selector(@dots{})}
3691 expression, and a corresponding method for that selector has been found
3692 during compilation. Because these checks scan the method table only at
3693 the end of compilation, these warnings are not produced if the final
3694 stage of compilation is not reached, for example because an error is
3695 found during compilation, or because the @option{-fsyntax-only} option is
3696 being used.
3697
3698 @item -Wstrict-selector-match @r{(Objective-C and Objective-C++ only)}
3699 @opindex Wstrict-selector-match
3700 @opindex Wno-strict-selector-match
3701 Warn if multiple methods with differing argument and/or return types are
3702 found for a given selector when attempting to send a message using this
3703 selector to a receiver of type @code{id} or @code{Class}. When this flag
3704 is off (which is the default behavior), the compiler omits such warnings
3705 if any differences found are confined to types that share the same size
3706 and alignment.
3707
3708 @item -Wundeclared-selector @r{(Objective-C and Objective-C++ only)}
3709 @opindex Wundeclared-selector
3710 @opindex Wno-undeclared-selector
3711 Warn if a @code{@@selector(@dots{})} expression referring to an
3712 undeclared selector is found. A selector is considered undeclared if no
3713 method with that name has been declared before the
3714 @code{@@selector(@dots{})} expression, either explicitly in an
3715 @code{@@interface} or @code{@@protocol} declaration, or implicitly in
3716 an @code{@@implementation} section. This option always performs its
3717 checks as soon as a @code{@@selector(@dots{})} expression is found,
3718 while @option{-Wselector} only performs its checks in the final stage of
3719 compilation. This also enforces the coding style convention
3720 that methods and selectors must be declared before being used.
3721
3722 @item -print-objc-runtime-info
3723 @opindex print-objc-runtime-info
3724 Generate C header describing the largest structure that is passed by
3725 value, if any.
3726
3727 @end table
3728
3729 @node Diagnostic Message Formatting Options
3730 @section Options to Control Diagnostic Messages Formatting
3731 @cindex options to control diagnostics formatting
3732 @cindex diagnostic messages
3733 @cindex message formatting
3734
3735 Traditionally, diagnostic messages have been formatted irrespective of
3736 the output device's aspect (e.g.@: its width, @dots{}). You can use the
3737 options described below
3738 to control the formatting algorithm for diagnostic messages,
3739 e.g.@: how many characters per line, how often source location
3740 information should be reported. Note that some language front ends may not
3741 honor these options.
3742
3743 @table @gcctabopt
3744 @item -fmessage-length=@var{n}
3745 @opindex fmessage-length
3746 Try to format error messages so that they fit on lines of about
3747 @var{n} characters. If @var{n} is zero, then no line-wrapping is
3748 done; each error message appears on a single line. This is the
3749 default for all front ends.
3750
3751 Note - this option also affects the display of the @samp{#error} and
3752 @samp{#warning} pre-processor directives, and the @samp{deprecated}
3753 function/type/variable attribute. It does not however affect the
3754 @samp{pragma GCC warning} and @samp{pragma GCC error} pragmas.
3755
3756 @item -fdiagnostics-show-location=once
3757 @opindex fdiagnostics-show-location
3758 Only meaningful in line-wrapping mode. Instructs the diagnostic messages
3759 reporter to emit source location information @emph{once}; that is, in
3760 case the message is too long to fit on a single physical line and has to
3761 be wrapped, the source location won't be emitted (as prefix) again,
3762 over and over, in subsequent continuation lines. This is the default
3763 behavior.
3764
3765 @item -fdiagnostics-show-location=every-line
3766 Only meaningful in line-wrapping mode. Instructs the diagnostic
3767 messages reporter to emit the same source location information (as
3768 prefix) for physical lines that result from the process of breaking
3769 a message which is too long to fit on a single line.
3770
3771 @item -fdiagnostics-color[=@var{WHEN}]
3772 @itemx -fno-diagnostics-color
3773 @opindex fdiagnostics-color
3774 @cindex highlight, color
3775 @vindex GCC_COLORS @r{environment variable}
3776 Use color in diagnostics. @var{WHEN} is @samp{never}, @samp{always},
3777 or @samp{auto}. The default depends on how the compiler has been configured,
3778 it can be any of the above @var{WHEN} options or also @samp{never}
3779 if @env{GCC_COLORS} environment variable isn't present in the environment,
3780 and @samp{auto} otherwise.
3781 @samp{auto} means to use color only when the standard error is a terminal.
3782 The forms @option{-fdiagnostics-color} and @option{-fno-diagnostics-color} are
3783 aliases for @option{-fdiagnostics-color=always} and
3784 @option{-fdiagnostics-color=never}, respectively.
3785
3786 The colors are defined by the environment variable @env{GCC_COLORS}.
3787 Its value is a colon-separated list of capabilities and Select Graphic
3788 Rendition (SGR) substrings. SGR commands are interpreted by the
3789 terminal or terminal emulator. (See the section in the documentation
3790 of your text terminal for permitted values and their meanings as
3791 character attributes.) These substring values are integers in decimal
3792 representation and can be concatenated with semicolons.
3793 Common values to concatenate include
3794 @samp{1} for bold,
3795 @samp{4} for underline,
3796 @samp{5} for blink,
3797 @samp{7} for inverse,
3798 @samp{39} for default foreground color,
3799 @samp{30} to @samp{37} for foreground colors,
3800 @samp{90} to @samp{97} for 16-color mode foreground colors,
3801 @samp{38;5;0} to @samp{38;5;255}
3802 for 88-color and 256-color modes foreground colors,
3803 @samp{49} for default background color,
3804 @samp{40} to @samp{47} for background colors,
3805 @samp{100} to @samp{107} for 16-color mode background colors,
3806 and @samp{48;5;0} to @samp{48;5;255}
3807 for 88-color and 256-color modes background colors.
3808
3809 The default @env{GCC_COLORS} is
3810 @smallexample
3811 error=01;31:warning=01;35:note=01;36:range1=32:range2=34:locus=01:\
3812 quote=01:fixit-insert=32:fixit-delete=31:\
3813 diff-filename=01:diff-hunk=32:diff-delete=31:diff-insert=32:\
3814 type-diff=01;32
3815 @end smallexample
3816 @noindent
3817 where @samp{01;31} is bold red, @samp{01;35} is bold magenta,
3818 @samp{01;36} is bold cyan, @samp{32} is green, @samp{34} is blue,
3819 @samp{01} is bold, and @samp{31} is red.
3820 Setting @env{GCC_COLORS} to the empty string disables colors.
3821 Supported capabilities are as follows.
3822
3823 @table @code
3824 @item error=
3825 @vindex error GCC_COLORS @r{capability}
3826 SGR substring for error: markers.
3827
3828 @item warning=
3829 @vindex warning GCC_COLORS @r{capability}
3830 SGR substring for warning: markers.
3831
3832 @item note=
3833 @vindex note GCC_COLORS @r{capability}
3834 SGR substring for note: markers.
3835
3836 @item range1=
3837 @vindex range1 GCC_COLORS @r{capability}
3838 SGR substring for first additional range.
3839
3840 @item range2=
3841 @vindex range2 GCC_COLORS @r{capability}
3842 SGR substring for second additional range.
3843
3844 @item locus=
3845 @vindex locus GCC_COLORS @r{capability}
3846 SGR substring for location information, @samp{file:line} or
3847 @samp{file:line:column} etc.
3848
3849 @item quote=
3850 @vindex quote GCC_COLORS @r{capability}
3851 SGR substring for information printed within quotes.
3852
3853 @item fixit-insert=
3854 @vindex fixit-insert GCC_COLORS @r{capability}
3855 SGR substring for fix-it hints suggesting text to
3856 be inserted or replaced.
3857
3858 @item fixit-delete=
3859 @vindex fixit-delete GCC_COLORS @r{capability}
3860 SGR substring for fix-it hints suggesting text to
3861 be deleted.
3862
3863 @item diff-filename=
3864 @vindex diff-filename GCC_COLORS @r{capability}
3865 SGR substring for filename headers within generated patches.
3866
3867 @item diff-hunk=
3868 @vindex diff-hunk GCC_COLORS @r{capability}
3869 SGR substring for the starts of hunks within generated patches.
3870
3871 @item diff-delete=
3872 @vindex diff-delete GCC_COLORS @r{capability}
3873 SGR substring for deleted lines within generated patches.
3874
3875 @item diff-insert=
3876 @vindex diff-insert GCC_COLORS @r{capability}
3877 SGR substring for inserted lines within generated patches.
3878
3879 @item type-diff=
3880 @vindex type-diff GCC_COLORS @r{capability}
3881 SGR substring for highlighting mismatching types within template
3882 arguments in the C++ frontend.
3883 @end table
3884
3885 @item -fno-diagnostics-show-option
3886 @opindex fno-diagnostics-show-option
3887 @opindex fdiagnostics-show-option
3888 By default, each diagnostic emitted includes text indicating the
3889 command-line option that directly controls the diagnostic (if such an
3890 option is known to the diagnostic machinery). Specifying the
3891 @option{-fno-diagnostics-show-option} flag suppresses that behavior.
3892
3893 @item -fno-diagnostics-show-caret
3894 @opindex fno-diagnostics-show-caret
3895 @opindex fdiagnostics-show-caret
3896 By default, each diagnostic emitted includes the original source line
3897 and a caret @samp{^} indicating the column. This option suppresses this
3898 information. The source line is truncated to @var{n} characters, if
3899 the @option{-fmessage-length=n} option is given. When the output is done
3900 to the terminal, the width is limited to the width given by the
3901 @env{COLUMNS} environment variable or, if not set, to the terminal width.
3902
3903 @item -fno-diagnostics-show-labels
3904 @opindex fno-diagnostics-show-labels
3905 @opindex fdiagnostics-show-labels
3906 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3907 diagnostics can label ranges of source code with pertinent information, such
3908 as the types of expressions:
3909
3910 @smallexample
3911 printf ("foo %s bar", long_i + long_j);
3912 ~^ ~~~~~~~~~~~~~~~
3913 | |
3914 char * long int
3915 @end smallexample
3916
3917 This option suppresses the printing of these labels (in the example above,
3918 the vertical bars and the ``char *'' and ``long int'' text).
3919
3920 @item -fno-diagnostics-show-line-numbers
3921 @opindex fno-diagnostics-show-line-numbers
3922 @opindex fdiagnostics-show-line-numbers
3923 By default, when printing source code (via @option{-fdiagnostics-show-caret}),
3924 a left margin is printed, showing line numbers. This option suppresses this
3925 left margin.
3926
3927 @item -fdiagnostics-minimum-margin-width=@var{width}
3928 @opindex fdiagnostics-minimum-margin-width
3929 This option controls the minimum width of the left margin printed by
3930 @option{-fdiagnostics-show-line-numbers}. It defaults to 6.
3931
3932 @item -fdiagnostics-parseable-fixits
3933 @opindex fdiagnostics-parseable-fixits
3934 Emit fix-it hints in a machine-parseable format, suitable for consumption
3935 by IDEs. For each fix-it, a line will be printed after the relevant
3936 diagnostic, starting with the string ``fix-it:''. For example:
3937
3938 @smallexample
3939 fix-it:"test.c":@{45:3-45:21@}:"gtk_widget_show_all"
3940 @end smallexample
3941
3942 The location is expressed as a half-open range, expressed as a count of
3943 bytes, starting at byte 1 for the initial column. In the above example,
3944 bytes 3 through 20 of line 45 of ``test.c'' are to be replaced with the
3945 given string:
3946
3947 @smallexample
3948 00000000011111111112222222222
3949 12345678901234567890123456789
3950 gtk_widget_showall (dlg);
3951 ^^^^^^^^^^^^^^^^^^
3952 gtk_widget_show_all
3953 @end smallexample
3954
3955 The filename and replacement string escape backslash as ``\\", tab as ``\t'',
3956 newline as ``\n'', double quotes as ``\"'', non-printable characters as octal
3957 (e.g. vertical tab as ``\013'').
3958
3959 An empty replacement string indicates that the given range is to be removed.
3960 An empty range (e.g. ``45:3-45:3'') indicates that the string is to
3961 be inserted at the given position.
3962
3963 @item -fdiagnostics-generate-patch
3964 @opindex fdiagnostics-generate-patch
3965 Print fix-it hints to stderr in unified diff format, after any diagnostics
3966 are printed. For example:
3967
3968 @smallexample
3969 --- test.c
3970 +++ test.c
3971 @@ -42,5 +42,5 @@
3972
3973 void show_cb(GtkDialog *dlg)
3974 @{
3975 - gtk_widget_showall(dlg);
3976 + gtk_widget_show_all(dlg);
3977 @}
3978
3979 @end smallexample
3980
3981 The diff may or may not be colorized, following the same rules
3982 as for diagnostics (see @option{-fdiagnostics-color}).
3983
3984 @item -fdiagnostics-show-template-tree
3985 @opindex fdiagnostics-show-template-tree
3986
3987 In the C++ frontend, when printing diagnostics showing mismatching
3988 template types, such as:
3989
3990 @smallexample
3991 could not convert 'std::map<int, std::vector<double> >()'
3992 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
3993 @end smallexample
3994
3995 the @option{-fdiagnostics-show-template-tree} flag enables printing a
3996 tree-like structure showing the common and differing parts of the types,
3997 such as:
3998
3999 @smallexample
4000 map<
4001 [...],
4002 vector<
4003 [double != float]>>
4004 @end smallexample
4005
4006 The parts that differ are highlighted with color (``double'' and
4007 ``float'' in this case).
4008
4009 @item -fno-elide-type
4010 @opindex fno-elide-type
4011 @opindex felide-type
4012 By default when the C++ frontend prints diagnostics showing mismatching
4013 template types, common parts of the types are printed as ``[...]'' to
4014 simplify the error message. For example:
4015
4016 @smallexample
4017 could not convert 'std::map<int, std::vector<double> >()'
4018 from 'map<[...],vector<double>>' to 'map<[...],vector<float>>
4019 @end smallexample
4020
4021 Specifying the @option{-fno-elide-type} flag suppresses that behavior.
4022 This flag also affects the output of the
4023 @option{-fdiagnostics-show-template-tree} flag.
4024
4025 @item -fno-show-column
4026 @opindex fno-show-column
4027 @opindex fshow-column
4028 Do not print column numbers in diagnostics. This may be necessary if
4029 diagnostics are being scanned by a program that does not understand the
4030 column numbers, such as @command{dejagnu}.
4031
4032 @item -fdiagnostics-format=@var{FORMAT}
4033 @opindex fdiagnostics-format
4034 Select a different format for printing diagnostics.
4035 @var{FORMAT} is @samp{text} or @samp{json}.
4036 The default is @samp{text}.
4037
4038 The @samp{json} format consists of a top-level JSON array containing JSON
4039 objects representing the diagnostics.
4040
4041 The JSON is emitted as one line, without formatting; the examples below
4042 have been formatted for clarity.
4043
4044 Diagnostics can have child diagnostics. For example, this error and note:
4045
4046 @smallexample
4047 misleading-indentation.c:15:3: warning: this 'if' clause does not
4048 guard... [-Wmisleading-indentation]
4049 15 | if (flag)
4050 | ^~
4051 misleading-indentation.c:17:5: note: ...this statement, but the latter
4052 is misleadingly indented as if it were guarded by the 'if'
4053 17 | y = 2;
4054 | ^
4055 @end smallexample
4056
4057 @noindent
4058 might be printed in JSON form (after formatting) like this:
4059
4060 @smallexample
4061 [
4062 @{
4063 "kind": "warning",
4064 "locations": [
4065 @{
4066 "caret": @{
4067 "column": 3,
4068 "file": "misleading-indentation.c",
4069 "line": 15
4070 @},
4071 "finish": @{
4072 "column": 4,
4073 "file": "misleading-indentation.c",
4074 "line": 15
4075 @}
4076 @}
4077 ],
4078 "message": "this \u2018if\u2019 clause does not guard...",
4079 "option": "-Wmisleading-indentation",
4080 "children": [
4081 @{
4082 "kind": "note",
4083 "locations": [
4084 @{
4085 "caret": @{
4086 "column": 5,
4087 "file": "misleading-indentation.c",
4088 "line": 17
4089 @}
4090 @}
4091 ],
4092 "message": "...this statement, but the latter is @dots{}"
4093 @}
4094 ]
4095 @},
4096 @dots{}
4097 ]
4098 @end smallexample
4099
4100 @noindent
4101 where the @code{note} is a child of the @code{warning}.
4102
4103 A diagnostic has a @code{kind}. If this is @code{warning}, then there is
4104 an @code{option} key describing the command-line option controlling the
4105 warning.
4106
4107 A diagnostic can contain zero or more locations. Each location has up
4108 to three positions within it: a @code{caret} position and optional
4109 @code{start} and @code{finish} positions. A location can also have
4110 an optional @code{label} string. For example, this error:
4111
4112 @smallexample
4113 bad-binary-ops.c:64:23: error: invalid operands to binary + (have 'S' @{aka
4114 'struct s'@} and 'T' @{aka 'struct t'@})
4115 64 | return callee_4a () + callee_4b ();
4116 | ~~~~~~~~~~~~ ^ ~~~~~~~~~~~~
4117 | | |
4118 | | T @{aka struct t@}
4119 | S @{aka struct s@}
4120 @end smallexample
4121
4122 @noindent
4123 has three locations. Its primary location is at the ``+'' token at column
4124 23. It has two secondary locations, describing the left and right-hand sides
4125 of the expression, which have labels. It might be printed in JSON form as:
4126
4127 @smallexample
4128 @{
4129 "children": [],
4130 "kind": "error",
4131 "locations": [
4132 @{
4133 "caret": @{
4134 "column": 23, "file": "bad-binary-ops.c", "line": 64
4135 @}
4136 @},
4137 @{
4138 "caret": @{
4139 "column": 10, "file": "bad-binary-ops.c", "line": 64
4140 @},
4141 "finish": @{
4142 "column": 21, "file": "bad-binary-ops.c", "line": 64
4143 @},
4144 "label": "S @{aka struct s@}"
4145 @},
4146 @{
4147 "caret": @{
4148 "column": 25, "file": "bad-binary-ops.c", "line": 64
4149 @},
4150 "finish": @{
4151 "column": 36, "file": "bad-binary-ops.c", "line": 64
4152 @},
4153 "label": "T @{aka struct t@}"
4154 @}
4155 ],
4156 "message": "invalid operands to binary + @dots{}"
4157 @}
4158 @end smallexample
4159
4160 If a diagnostic contains fix-it hints, it has a @code{fixits} array,
4161 consisting of half-open intervals, similar to the output of
4162 @option{-fdiagnostics-parseable-fixits}. For example, this diagnostic
4163 with a replacement fix-it hint:
4164
4165 @smallexample
4166 demo.c:8:15: error: 'struct s' has no member named 'colour'; did you
4167 mean 'color'?
4168 8 | return ptr->colour;
4169 | ^~~~~~
4170 | color
4171 @end smallexample
4172
4173 @noindent
4174 might be printed in JSON form as:
4175
4176 @smallexample
4177 @{
4178 "children": [],
4179 "fixits": [
4180 @{
4181 "next": @{
4182 "column": 21,
4183 "file": "demo.c",
4184 "line": 8
4185 @},
4186 "start": @{
4187 "column": 15,
4188 "file": "demo.c",
4189 "line": 8
4190 @},
4191 "string": "color"
4192 @}
4193 ],
4194 "kind": "error",
4195 "locations": [
4196 @{
4197 "caret": @{
4198 "column": 15,
4199 "file": "demo.c",
4200 "line": 8
4201 @},
4202 "finish": @{
4203 "column": 20,
4204 "file": "demo.c",
4205 "line": 8
4206 @}
4207 @}
4208 ],
4209 "message": "\u2018struct s\u2019 has no member named @dots{}"
4210 @}
4211 @end smallexample
4212
4213 @noindent
4214 where the fix-it hint suggests replacing the text from @code{start} up
4215 to but not including @code{next} with @code{string}'s value. Deletions
4216 are expressed via an empty value for @code{string}, insertions by
4217 having @code{start} equal @code{next}.
4218
4219 @end table
4220
4221 @node Warning Options
4222 @section Options to Request or Suppress Warnings
4223 @cindex options to control warnings
4224 @cindex warning messages
4225 @cindex messages, warning
4226 @cindex suppressing warnings
4227
4228 Warnings are diagnostic messages that report constructions that
4229 are not inherently erroneous but that are risky or suggest there
4230 may have been an error.
4231
4232 The following language-independent options do not enable specific
4233 warnings but control the kinds of diagnostics produced by GCC@.
4234
4235 @table @gcctabopt
4236 @cindex syntax checking
4237 @item -fsyntax-only
4238 @opindex fsyntax-only
4239 Check the code for syntax errors, but don't do anything beyond that.
4240
4241 @item -fmax-errors=@var{n}
4242 @opindex fmax-errors
4243 Limits the maximum number of error messages to @var{n}, at which point
4244 GCC bails out rather than attempting to continue processing the source
4245 code. If @var{n} is 0 (the default), there is no limit on the number
4246 of error messages produced. If @option{-Wfatal-errors} is also
4247 specified, then @option{-Wfatal-errors} takes precedence over this
4248 option.
4249
4250 @item -w
4251 @opindex w
4252 Inhibit all warning messages.
4253
4254 @item -Werror
4255 @opindex Werror
4256 @opindex Wno-error
4257 Make all warnings into errors.
4258
4259 @item -Werror=
4260 @opindex Werror=
4261 @opindex Wno-error=
4262 Make the specified warning into an error. The specifier for a warning
4263 is appended; for example @option{-Werror=switch} turns the warnings
4264 controlled by @option{-Wswitch} into errors. This switch takes a
4265 negative form, to be used to negate @option{-Werror} for specific
4266 warnings; for example @option{-Wno-error=switch} makes
4267 @option{-Wswitch} warnings not be errors, even when @option{-Werror}
4268 is in effect.
4269
4270 The warning message for each controllable warning includes the
4271 option that controls the warning. That option can then be used with
4272 @option{-Werror=} and @option{-Wno-error=} as described above.
4273 (Printing of the option in the warning message can be disabled using the
4274 @option{-fno-diagnostics-show-option} flag.)
4275
4276 Note that specifying @option{-Werror=}@var{foo} automatically implies
4277 @option{-W}@var{foo}. However, @option{-Wno-error=}@var{foo} does not
4278 imply anything.
4279
4280 @item -Wfatal-errors
4281 @opindex Wfatal-errors
4282 @opindex Wno-fatal-errors
4283 This option causes the compiler to abort compilation on the first error
4284 occurred rather than trying to keep going and printing further error
4285 messages.
4286
4287 @end table
4288
4289 You can request many specific warnings with options beginning with
4290 @samp{-W}, for example @option{-Wimplicit} to request warnings on
4291 implicit declarations. Each of these specific warning options also
4292 has a negative form beginning @samp{-Wno-} to turn off warnings; for
4293 example, @option{-Wno-implicit}. This manual lists only one of the
4294 two forms, whichever is not the default. For further
4295 language-specific options also refer to @ref{C++ Dialect Options} and
4296 @ref{Objective-C and Objective-C++ Dialect Options}.
4297
4298 Some options, such as @option{-Wall} and @option{-Wextra}, turn on other
4299 options, such as @option{-Wunused}, which may turn on further options,
4300 such as @option{-Wunused-value}. The combined effect of positive and
4301 negative forms is that more specific options have priority over less
4302 specific ones, independently of their position in the command-line. For
4303 options of the same specificity, the last one takes effect. Options
4304 enabled or disabled via pragmas (@pxref{Diagnostic Pragmas}) take effect
4305 as if they appeared at the end of the command-line.
4306
4307 When an unrecognized warning option is requested (e.g.,
4308 @option{-Wunknown-warning}), GCC emits a diagnostic stating
4309 that the option is not recognized. However, if the @option{-Wno-} form
4310 is used, the behavior is slightly different: no diagnostic is
4311 produced for @option{-Wno-unknown-warning} unless other diagnostics
4312 are being produced. This allows the use of new @option{-Wno-} options
4313 with old compilers, but if something goes wrong, the compiler
4314 warns that an unrecognized option is present.
4315
4316 @table @gcctabopt
4317 @item -Wpedantic
4318 @itemx -pedantic
4319 @opindex pedantic
4320 @opindex Wpedantic
4321 @opindex Wno-pedantic
4322 Issue all the warnings demanded by strict ISO C and ISO C++;
4323 reject all programs that use forbidden extensions, and some other
4324 programs that do not follow ISO C and ISO C++. For ISO C, follows the
4325 version of the ISO C standard specified by any @option{-std} option used.
4326
4327 Valid ISO C and ISO C++ programs should compile properly with or without
4328 this option (though a rare few require @option{-ansi} or a
4329 @option{-std} option specifying the required version of ISO C)@. However,
4330 without this option, certain GNU extensions and traditional C and C++
4331 features are supported as well. With this option, they are rejected.
4332
4333 @option{-Wpedantic} does not cause warning messages for use of the
4334 alternate keywords whose names begin and end with @samp{__}. Pedantic
4335 warnings are also disabled in the expression that follows
4336 @code{__extension__}. However, only system header files should use
4337 these escape routes; application programs should avoid them.
4338 @xref{Alternate Keywords}.
4339
4340 Some users try to use @option{-Wpedantic} to check programs for strict ISO
4341 C conformance. They soon find that it does not do quite what they want:
4342 it finds some non-ISO practices, but not all---only those for which
4343 ISO C @emph{requires} a diagnostic, and some others for which
4344 diagnostics have been added.
4345
4346 A feature to report any failure to conform to ISO C might be useful in
4347 some instances, but would require considerable additional work and would
4348 be quite different from @option{-Wpedantic}. We don't have plans to
4349 support such a feature in the near future.
4350
4351 Where the standard specified with @option{-std} represents a GNU
4352 extended dialect of C, such as @samp{gnu90} or @samp{gnu99}, there is a
4353 corresponding @dfn{base standard}, the version of ISO C on which the GNU
4354 extended dialect is based. Warnings from @option{-Wpedantic} are given
4355 where they are required by the base standard. (It does not make sense
4356 for such warnings to be given only for features not in the specified GNU
4357 C dialect, since by definition the GNU dialects of C include all
4358 features the compiler supports with the given option, and there would be
4359 nothing to warn about.)
4360
4361 @item -pedantic-errors
4362 @opindex pedantic-errors
4363 Give an error whenever the @dfn{base standard} (see @option{-Wpedantic})
4364 requires a diagnostic, in some cases where there is undefined behavior
4365 at compile-time and in some other cases that do not prevent compilation
4366 of programs that are valid according to the standard. This is not
4367 equivalent to @option{-Werror=pedantic}, since there are errors enabled
4368 by this option and not enabled by the latter and vice versa.
4369
4370 @item -Wall
4371 @opindex Wall
4372 @opindex Wno-all
4373 This enables all the warnings about constructions that some users
4374 consider questionable, and that are easy to avoid (or modify to
4375 prevent the warning), even in conjunction with macros. This also
4376 enables some language-specific warnings described in @ref{C++ Dialect
4377 Options} and @ref{Objective-C and Objective-C++ Dialect Options}.
4378
4379 @option{-Wall} turns on the following warning flags:
4380
4381 @gccoptlist{-Waddress @gol
4382 -Warray-bounds=1 @r{(only with} @option{-O2}@r{)} @gol
4383 -Wbool-compare @gol
4384 -Wbool-operation @gol
4385 -Wc++11-compat -Wc++14-compat @gol
4386 -Wcatch-value @r{(C++ and Objective-C++ only)} @gol
4387 -Wchar-subscripts @gol
4388 -Wcomment @gol
4389 -Wduplicate-decl-specifier @r{(C and Objective-C only)} @gol
4390 -Wenum-compare @r{(in C/ObjC; this is on by default in C++)} @gol
4391 -Wformat @gol
4392 -Wint-in-bool-context @gol
4393 -Wimplicit @r{(C and Objective-C only)} @gol
4394 -Wimplicit-int @r{(C and Objective-C only)} @gol
4395 -Wimplicit-function-declaration @r{(C and Objective-C only)} @gol
4396 -Winit-self @r{(only for C++)} @gol
4397 -Wlogical-not-parentheses @gol
4398 -Wmain @r{(only for C/ObjC and unless} @option{-ffreestanding}@r{)} @gol
4399 -Wmaybe-uninitialized @gol
4400 -Wmemset-elt-size @gol
4401 -Wmemset-transposed-args @gol
4402 -Wmisleading-indentation @r{(only for C/C++)} @gol
4403 -Wmissing-attributes @gol
4404 -Wmissing-braces @r{(only for C/ObjC)} @gol
4405 -Wmultistatement-macros @gol
4406 -Wnarrowing @r{(only for C++)} @gol
4407 -Wnonnull @gol
4408 -Wnonnull-compare @gol
4409 -Wopenmp-simd @gol
4410 -Wparentheses @gol
4411 -Wpessimizing-move @r{(only for C++)} @gol
4412 -Wpointer-sign @gol
4413 -Wreorder @gol
4414 -Wrestrict @gol
4415 -Wreturn-type @gol
4416 -Wsequence-point @gol
4417 -Wsign-compare @r{(only in C++)} @gol
4418 -Wsizeof-pointer-div @gol
4419 -Wsizeof-pointer-memaccess @gol
4420 -Wstrict-aliasing @gol
4421 -Wstrict-overflow=1 @gol
4422 -Wswitch @gol
4423 -Wtautological-compare @gol
4424 -Wtrigraphs @gol
4425 -Wuninitialized @gol
4426 -Wunknown-pragmas @gol
4427 -Wunused-function @gol
4428 -Wunused-label @gol
4429 -Wunused-value @gol
4430 -Wunused-variable @gol
4431 -Wvolatile-register-var}
4432
4433 Note that some warning flags are not implied by @option{-Wall}. Some of
4434 them warn about constructions that users generally do not consider
4435 questionable, but which occasionally you might wish to check for;
4436 others warn about constructions that are necessary or hard to avoid in
4437 some cases, and there is no simple way to modify the code to suppress
4438 the warning. Some of them are enabled by @option{-Wextra} but many of
4439 them must be enabled individually.
4440
4441 @item -Wextra
4442 @opindex W
4443 @opindex Wextra
4444 @opindex Wno-extra
4445 This enables some extra warning flags that are not enabled by
4446 @option{-Wall}. (This option used to be called @option{-W}. The older
4447 name is still supported, but the newer name is more descriptive.)
4448
4449 @gccoptlist{-Wclobbered @gol
4450 -Wcast-function-type @gol
4451 -Wdeprecated-copy @r{(C++ only)} @gol
4452 -Wempty-body @gol
4453 -Wignored-qualifiers @gol
4454 -Wimplicit-fallthrough=3 @gol
4455 -Wmissing-field-initializers @gol
4456 -Wmissing-parameter-type @r{(C only)} @gol
4457 -Wold-style-declaration @r{(C only)} @gol
4458 -Woverride-init @gol
4459 -Wsign-compare @r{(C only)} @gol
4460 -Wredundant-move @r{(only for C++)} @gol
4461 -Wtype-limits @gol
4462 -Wuninitialized @gol
4463 -Wshift-negative-value @r{(in C++03 and in C99 and newer)} @gol
4464 -Wunused-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)} @gol
4465 -Wunused-but-set-parameter @r{(only with} @option{-Wunused} @r{or} @option{-Wall}@r{)}}
4466
4467
4468 The option @option{-Wextra} also prints warning messages for the
4469 following cases:
4470
4471 @itemize @bullet
4472
4473 @item
4474 A pointer is compared against integer zero with @code{<}, @code{<=},
4475 @code{>}, or @code{>=}.
4476
4477 @item
4478 (C++ only) An enumerator and a non-enumerator both appear in a
4479 conditional expression.
4480
4481 @item
4482 (C++ only) Ambiguous virtual bases.
4483
4484 @item
4485 (C++ only) Subscripting an array that has been declared @code{register}.
4486
4487 @item
4488 (C++ only) Taking the address of a variable that has been declared
4489 @code{register}.
4490
4491 @item
4492 (C++ only) A base class is not initialized in the copy constructor
4493 of a derived class.
4494
4495 @end itemize
4496
4497 @item -Wchar-subscripts
4498 @opindex Wchar-subscripts
4499 @opindex Wno-char-subscripts
4500 Warn if an array subscript has type @code{char}. This is a common cause
4501 of error, as programmers often forget that this type is signed on some
4502 machines.
4503 This warning is enabled by @option{-Wall}.
4504
4505 @item -Wno-coverage-mismatch
4506 @opindex Wno-coverage-mismatch
4507 @opindex Wcoverage-mismatch
4508 Warn if feedback profiles do not match when using the
4509 @option{-fprofile-use} option.
4510 If a source file is changed between compiling with @option{-fprofile-generate}
4511 and with @option{-fprofile-use}, the files with the profile feedback can fail
4512 to match the source file and GCC cannot use the profile feedback
4513 information. By default, this warning is enabled and is treated as an
4514 error. @option{-Wno-coverage-mismatch} can be used to disable the
4515 warning or @option{-Wno-error=coverage-mismatch} can be used to
4516 disable the error. Disabling the error for this warning can result in
4517 poorly optimized code and is useful only in the
4518 case of very minor changes such as bug fixes to an existing code-base.
4519 Completely disabling the warning is not recommended.
4520
4521 @item -Wno-cpp
4522 @r{(C, Objective-C, C++, Objective-C++ and Fortran only)}
4523
4524 Suppress warning messages emitted by @code{#warning} directives.
4525
4526 @item -Wdouble-promotion @r{(C, C++, Objective-C and Objective-C++ only)}
4527 @opindex Wdouble-promotion
4528 @opindex Wno-double-promotion
4529 Give a warning when a value of type @code{float} is implicitly
4530 promoted to @code{double}. CPUs with a 32-bit ``single-precision''
4531 floating-point unit implement @code{float} in hardware, but emulate
4532 @code{double} in software. On such a machine, doing computations
4533 using @code{double} values is much more expensive because of the
4534 overhead required for software emulation.
4535
4536 It is easy to accidentally do computations with @code{double} because
4537 floating-point literals are implicitly of type @code{double}. For
4538 example, in:
4539 @smallexample
4540 @group
4541 float area(float radius)
4542 @{
4543 return 3.14159 * radius * radius;
4544 @}
4545 @end group
4546 @end smallexample
4547 the compiler performs the entire computation with @code{double}
4548 because the floating-point literal is a @code{double}.
4549
4550 @item -Wduplicate-decl-specifier @r{(C and Objective-C only)}
4551 @opindex Wduplicate-decl-specifier
4552 @opindex Wno-duplicate-decl-specifier
4553 Warn if a declaration has duplicate @code{const}, @code{volatile},
4554 @code{restrict} or @code{_Atomic} specifier. This warning is enabled by
4555 @option{-Wall}.
4556
4557 @item -Wformat
4558 @itemx -Wformat=@var{n}
4559 @opindex Wformat
4560 @opindex Wno-format
4561 @opindex ffreestanding
4562 @opindex fno-builtin
4563 @opindex Wformat=
4564 Check calls to @code{printf} and @code{scanf}, etc., to make sure that
4565 the arguments supplied have types appropriate to the format string
4566 specified, and that the conversions specified in the format string make
4567 sense. This includes standard functions, and others specified by format
4568 attributes (@pxref{Function Attributes}), in the @code{printf},
4569 @code{scanf}, @code{strftime} and @code{strfmon} (an X/Open extension,
4570 not in the C standard) families (or other target-specific families).
4571 Which functions are checked without format attributes having been
4572 specified depends on the standard version selected, and such checks of
4573 functions without the attribute specified are disabled by
4574 @option{-ffreestanding} or @option{-fno-builtin}.
4575
4576 The formats are checked against the format features supported by GNU
4577 libc version 2.2. These include all ISO C90 and C99 features, as well
4578 as features from the Single Unix Specification and some BSD and GNU
4579 extensions. Other library implementations may not support all these
4580 features; GCC does not support warning about features that go beyond a
4581 particular library's limitations. However, if @option{-Wpedantic} is used
4582 with @option{-Wformat}, warnings are given about format features not
4583 in the selected standard version (but not for @code{strfmon} formats,
4584 since those are not in any version of the C standard). @xref{C Dialect
4585 Options,,Options Controlling C Dialect}.
4586
4587 @table @gcctabopt
4588 @item -Wformat=1
4589 @itemx -Wformat
4590 @opindex Wformat
4591 @opindex Wformat=1
4592 Option @option{-Wformat} is equivalent to @option{-Wformat=1}, and
4593 @option{-Wno-format} is equivalent to @option{-Wformat=0}. Since
4594 @option{-Wformat} also checks for null format arguments for several
4595 functions, @option{-Wformat} also implies @option{-Wnonnull}. Some
4596 aspects of this level of format checking can be disabled by the
4597 options: @option{-Wno-format-contains-nul},
4598 @option{-Wno-format-extra-args}, and @option{-Wno-format-zero-length}.
4599 @option{-Wformat} is enabled by @option{-Wall}.
4600
4601 @item -Wno-format-contains-nul
4602 @opindex Wno-format-contains-nul
4603 @opindex Wformat-contains-nul
4604 If @option{-Wformat} is specified, do not warn about format strings that
4605 contain NUL bytes.
4606
4607 @item -Wno-format-extra-args
4608 @opindex Wno-format-extra-args
4609 @opindex Wformat-extra-args
4610 If @option{-Wformat} is specified, do not warn about excess arguments to a
4611 @code{printf} or @code{scanf} format function. The C standard specifies
4612 that such arguments are ignored.
4613
4614 Where the unused arguments lie between used arguments that are
4615 specified with @samp{$} operand number specifications, normally
4616 warnings are still given, since the implementation could not know what
4617 type to pass to @code{va_arg} to skip the unused arguments. However,
4618 in the case of @code{scanf} formats, this option suppresses the
4619 warning if the unused arguments are all pointers, since the Single
4620 Unix Specification says that such unused arguments are allowed.
4621
4622 @item -Wformat-overflow
4623 @itemx -Wformat-overflow=@var{level}
4624 @opindex Wformat-overflow
4625 @opindex Wno-format-overflow
4626 Warn about calls to formatted input/output functions such as @code{sprintf}
4627 and @code{vsprintf} that might overflow the destination buffer. When the
4628 exact number of bytes written by a format directive cannot be determined
4629 at compile-time it is estimated based on heuristics that depend on the
4630 @var{level} argument and on optimization. While enabling optimization
4631 will in most cases improve the accuracy of the warning, it may also
4632 result in false positives.
4633
4634 @table @gcctabopt
4635 @item -Wformat-overflow
4636 @itemx -Wformat-overflow=1
4637 @opindex Wformat-overflow
4638 @opindex Wno-format-overflow
4639 Level @var{1} of @option{-Wformat-overflow} enabled by @option{-Wformat}
4640 employs a conservative approach that warns only about calls that most
4641 likely overflow the buffer. At this level, numeric arguments to format
4642 directives with unknown values are assumed to have the value of one, and
4643 strings of unknown length to be empty. Numeric arguments that are known
4644 to be bounded to a subrange of their type, or string arguments whose output
4645 is bounded either by their directive's precision or by a finite set of
4646 string literals, are assumed to take on the value within the range that
4647 results in the most bytes on output. For example, the call to @code{sprintf}
4648 below is diagnosed because even with both @var{a} and @var{b} equal to zero,
4649 the terminating NUL character (@code{'\0'}) appended by the function
4650 to the destination buffer will be written past its end. Increasing
4651 the size of the buffer by a single byte is sufficient to avoid the
4652 warning, though it may not be sufficient to avoid the overflow.
4653
4654 @smallexample
4655 void f (int a, int b)
4656 @{
4657 char buf [13];
4658 sprintf (buf, "a = %i, b = %i\n", a, b);
4659 @}
4660 @end smallexample
4661
4662 @item -Wformat-overflow=2
4663 Level @var{2} warns also about calls that might overflow the destination
4664 buffer given an argument of sufficient length or magnitude. At level
4665 @var{2}, unknown numeric arguments are assumed to have the minimum
4666 representable value for signed types with a precision greater than 1, and
4667 the maximum representable value otherwise. Unknown string arguments whose
4668 length cannot be assumed to be bounded either by the directive's precision,
4669 or by a finite set of string literals they may evaluate to, or the character
4670 array they may point to, are assumed to be 1 character long.
4671
4672 At level @var{2}, the call in the example above is again diagnosed, but
4673 this time because with @var{a} equal to a 32-bit @code{INT_MIN} the first
4674 @code{%i} directive will write some of its digits beyond the end of
4675 the destination buffer. To make the call safe regardless of the values
4676 of the two variables, the size of the destination buffer must be increased
4677 to at least 34 bytes. GCC includes the minimum size of the buffer in
4678 an informational note following the warning.
4679
4680 An alternative to increasing the size of the destination buffer is to
4681 constrain the range of formatted values. The maximum length of string
4682 arguments can be bounded by specifying the precision in the format
4683 directive. When numeric arguments of format directives can be assumed
4684 to be bounded by less than the precision of their type, choosing
4685 an appropriate length modifier to the format specifier will reduce
4686 the required buffer size. For example, if @var{a} and @var{b} in the
4687 example above can be assumed to be within the precision of
4688 the @code{short int} type then using either the @code{%hi} format
4689 directive or casting the argument to @code{short} reduces the maximum
4690 required size of the buffer to 24 bytes.
4691
4692 @smallexample
4693 void f (int a, int b)
4694 @{
4695 char buf [23];
4696 sprintf (buf, "a = %hi, b = %i\n", a, (short)b);
4697 @}
4698 @end smallexample
4699 @end table
4700
4701 @item -Wno-format-zero-length
4702 @opindex Wno-format-zero-length
4703 @opindex Wformat-zero-length
4704 If @option{-Wformat} is specified, do not warn about zero-length formats.
4705 The C standard specifies that zero-length formats are allowed.
4706
4707
4708 @item -Wformat=2
4709 @opindex Wformat=2
4710 Enable @option{-Wformat} plus additional format checks. Currently
4711 equivalent to @option{-Wformat -Wformat-nonliteral -Wformat-security
4712 -Wformat-y2k}.
4713
4714 @item -Wformat-nonliteral
4715 @opindex Wformat-nonliteral
4716 @opindex Wno-format-nonliteral
4717 If @option{-Wformat} is specified, also warn if the format string is not a
4718 string literal and so cannot be checked, unless the format function
4719 takes its format arguments as a @code{va_list}.
4720
4721 @item -Wformat-security
4722 @opindex Wformat-security
4723 @opindex Wno-format-security
4724 If @option{-Wformat} is specified, also warn about uses of format
4725 functions that represent possible security problems. At present, this
4726 warns about calls to @code{printf} and @code{scanf} functions where the
4727 format string is not a string literal and there are no format arguments,
4728 as in @code{printf (foo);}. This may be a security hole if the format
4729 string came from untrusted input and contains @samp{%n}. (This is
4730 currently a subset of what @option{-Wformat-nonliteral} warns about, but
4731 in future warnings may be added to @option{-Wformat-security} that are not
4732 included in @option{-Wformat-nonliteral}.)
4733
4734 @item -Wformat-signedness
4735 @opindex Wformat-signedness
4736 @opindex Wno-format-signedness
4737 If @option{-Wformat} is specified, also warn if the format string
4738 requires an unsigned argument and the argument is signed and vice versa.
4739
4740 @item -Wformat-truncation
4741 @itemx -Wformat-truncation=@var{level}
4742 @opindex Wformat-truncation
4743 @opindex Wno-format-truncation
4744 Warn about calls to formatted input/output functions such as @code{snprintf}
4745 and @code{vsnprintf} that might result in output truncation. When the exact
4746 number of bytes written by a format directive cannot be determined at
4747 compile-time it is estimated based on heuristics that depend on
4748 the @var{level} argument and on optimization. While enabling optimization
4749 will in most cases improve the accuracy of the warning, it may also result
4750 in false positives. Except as noted otherwise, the option uses the same
4751 logic @option{-Wformat-overflow}.
4752
4753 @table @gcctabopt
4754 @item -Wformat-truncation
4755 @itemx -Wformat-truncation=1
4756 @opindex Wformat-truncation
4757 @opindex Wno-format-truncation
4758 Level @var{1} of @option{-Wformat-truncation} enabled by @option{-Wformat}
4759 employs a conservative approach that warns only about calls to bounded
4760 functions whose return value is unused and that will most likely result
4761 in output truncation.
4762
4763 @item -Wformat-truncation=2
4764 Level @var{2} warns also about calls to bounded functions whose return
4765 value is used and that might result in truncation given an argument of
4766 sufficient length or magnitude.
4767 @end table
4768
4769 @item -Wformat-y2k
4770 @opindex Wformat-y2k
4771 @opindex Wno-format-y2k
4772 If @option{-Wformat} is specified, also warn about @code{strftime}
4773 formats that may yield only a two-digit year.
4774 @end table
4775
4776 @item -Wnonnull
4777 @opindex Wnonnull
4778 @opindex Wno-nonnull
4779 Warn about passing a null pointer for arguments marked as
4780 requiring a non-null value by the @code{nonnull} function attribute.
4781
4782 @option{-Wnonnull} is included in @option{-Wall} and @option{-Wformat}. It
4783 can be disabled with the @option{-Wno-nonnull} option.
4784
4785 @item -Wnonnull-compare
4786 @opindex Wnonnull-compare
4787 @opindex Wno-nonnull-compare
4788 Warn when comparing an argument marked with the @code{nonnull}
4789 function attribute against null inside the function.
4790
4791 @option{-Wnonnull-compare} is included in @option{-Wall}. It
4792 can be disabled with the @option{-Wno-nonnull-compare} option.
4793
4794 @item -Wnull-dereference
4795 @opindex Wnull-dereference
4796 @opindex Wno-null-dereference
4797 Warn if the compiler detects paths that trigger erroneous or
4798 undefined behavior due to dereferencing a null pointer. This option
4799 is only active when @option{-fdelete-null-pointer-checks} is active,
4800 which is enabled by optimizations in most targets. The precision of
4801 the warnings depends on the optimization options used.
4802
4803 @item -Winit-self @r{(C, C++, Objective-C and Objective-C++ only)}
4804 @opindex Winit-self
4805 @opindex Wno-init-self
4806 Warn about uninitialized variables that are initialized with themselves.
4807 Note this option can only be used with the @option{-Wuninitialized} option.
4808
4809 For example, GCC warns about @code{i} being uninitialized in the
4810 following snippet only when @option{-Winit-self} has been specified:
4811 @smallexample
4812 @group
4813 int f()
4814 @{
4815 int i = i;
4816 return i;
4817 @}
4818 @end group
4819 @end smallexample
4820
4821 This warning is enabled by @option{-Wall} in C++.
4822
4823 @item -Wimplicit-int @r{(C and Objective-C only)}
4824 @opindex Wimplicit-int
4825 @opindex Wno-implicit-int
4826 Warn when a declaration does not specify a type.
4827 This warning is enabled by @option{-Wall}.
4828
4829 @item -Wimplicit-function-declaration @r{(C and Objective-C only)}
4830 @opindex Wimplicit-function-declaration
4831 @opindex Wno-implicit-function-declaration
4832 Give a warning whenever a function is used before being declared. In
4833 C99 mode (@option{-std=c99} or @option{-std=gnu99}), this warning is
4834 enabled by default and it is made into an error by
4835 @option{-pedantic-errors}. This warning is also enabled by
4836 @option{-Wall}.
4837
4838 @item -Wimplicit @r{(C and Objective-C only)}
4839 @opindex Wimplicit
4840 @opindex Wno-implicit
4841 Same as @option{-Wimplicit-int} and @option{-Wimplicit-function-declaration}.
4842 This warning is enabled by @option{-Wall}.
4843
4844 @item -Wimplicit-fallthrough
4845 @opindex Wimplicit-fallthrough
4846 @opindex Wno-implicit-fallthrough
4847 @option{-Wimplicit-fallthrough} is the same as @option{-Wimplicit-fallthrough=3}
4848 and @option{-Wno-implicit-fallthrough} is the same as
4849 @option{-Wimplicit-fallthrough=0}.
4850
4851 @item -Wimplicit-fallthrough=@var{n}
4852 @opindex Wimplicit-fallthrough=
4853 Warn when a switch case falls through. For example:
4854
4855 @smallexample
4856 @group
4857 switch (cond)
4858 @{
4859 case 1:
4860 a = 1;
4861 break;
4862 case 2:
4863 a = 2;
4864 case 3:
4865 a = 3;
4866 break;
4867 @}
4868 @end group
4869 @end smallexample
4870
4871 This warning does not warn when the last statement of a case cannot
4872 fall through, e.g. when there is a return statement or a call to function
4873 declared with the noreturn attribute. @option{-Wimplicit-fallthrough=}
4874 also takes into account control flow statements, such as ifs, and only
4875 warns when appropriate. E.g.@:
4876
4877 @smallexample
4878 @group
4879 switch (cond)
4880 @{
4881 case 1:
4882 if (i > 3) @{
4883 bar (5);
4884 break;
4885 @} else if (i < 1) @{
4886 bar (0);
4887 @} else
4888 return;
4889 default:
4890 @dots{}
4891 @}
4892 @end group
4893 @end smallexample
4894
4895 Since there are occasions where a switch case fall through is desirable,
4896 GCC provides an attribute, @code{__attribute__ ((fallthrough))}, that is
4897 to be used along with a null statement to suppress this warning that
4898 would normally occur:
4899
4900 @smallexample
4901 @group
4902 switch (cond)
4903 @{
4904 case 1:
4905 bar (0);
4906 __attribute__ ((fallthrough));
4907 default:
4908 @dots{}
4909 @}
4910 @end group
4911 @end smallexample
4912
4913 C++17 provides a standard way to suppress the @option{-Wimplicit-fallthrough}
4914 warning using @code{[[fallthrough]];} instead of the GNU attribute. In C++11
4915 or C++14 users can use @code{[[gnu::fallthrough]];}, which is a GNU extension.
4916 Instead of these attributes, it is also possible to add a fallthrough comment
4917 to silence the warning. The whole body of the C or C++ style comment should
4918 match the given regular expressions listed below. The option argument @var{n}
4919 specifies what kind of comments are accepted:
4920
4921 @itemize @bullet
4922
4923 @item @option{-Wimplicit-fallthrough=0} disables the warning altogether.
4924
4925 @item @option{-Wimplicit-fallthrough=1} matches @code{.*} regular
4926 expression, any comment is used as fallthrough comment.
4927
4928 @item @option{-Wimplicit-fallthrough=2} case insensitively matches
4929 @code{.*falls?[ \t-]*thr(ough|u).*} regular expression.
4930
4931 @item @option{-Wimplicit-fallthrough=3} case sensitively matches one of the
4932 following regular expressions:
4933
4934 @itemize @bullet
4935
4936 @item @code{-fallthrough}
4937
4938 @item @code{@@fallthrough@@}
4939
4940 @item @code{lint -fallthrough[ \t]*}
4941
4942 @item @code{[ \t.!]*(ELSE,? |INTENTIONAL(LY)? )?@*FALL(S | |-)?THR(OUGH|U)[ \t.!]*(-[^\n\r]*)?}
4943
4944 @item @code{[ \t.!]*(Else,? |Intentional(ly)? )?@*Fall((s | |-)[Tt]|t)hr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4945
4946 @item @code{[ \t.!]*([Ee]lse,? |[Ii]ntentional(ly)? )?@*fall(s | |-)?thr(ough|u)[ \t.!]*(-[^\n\r]*)?}
4947
4948 @end itemize
4949
4950 @item @option{-Wimplicit-fallthrough=4} case sensitively matches one of the
4951 following regular expressions:
4952
4953 @itemize @bullet
4954
4955 @item @code{-fallthrough}
4956
4957 @item @code{@@fallthrough@@}
4958
4959 @item @code{lint -fallthrough[ \t]*}
4960
4961 @item @code{[ \t]*FALLTHR(OUGH|U)[ \t]*}
4962
4963 @end itemize
4964
4965 @item @option{-Wimplicit-fallthrough=5} doesn't recognize any comments as
4966 fallthrough comments, only attributes disable the warning.
4967
4968 @end itemize
4969
4970 The comment needs to be followed after optional whitespace and other comments
4971 by @code{case} or @code{default} keywords or by a user label that precedes some
4972 @code{case} or @code{default} label.
4973
4974 @smallexample
4975 @group
4976 switch (cond)
4977 @{
4978 case 1:
4979 bar (0);
4980 /* FALLTHRU */
4981 default:
4982 @dots{}
4983 @}
4984 @end group
4985 @end smallexample
4986
4987 The @option{-Wimplicit-fallthrough=3} warning is enabled by @option{-Wextra}.
4988
4989 @item -Wif-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
4990 @opindex Wif-not-aligned
4991 @opindex Wno-if-not-aligned
4992 Control if warning triggered by the @code{warn_if_not_aligned} attribute
4993 should be issued. This is enabled by default.
4994 Use @option{-Wno-if-not-aligned} to disable it.
4995
4996 @item -Wignored-qualifiers @r{(C and C++ only)}
4997 @opindex Wignored-qualifiers
4998 @opindex Wno-ignored-qualifiers
4999 Warn if the return type of a function has a type qualifier
5000 such as @code{const}. For ISO C such a type qualifier has no effect,
5001 since the value returned by a function is not an lvalue.
5002 For C++, the warning is only emitted for scalar types or @code{void}.
5003 ISO C prohibits qualified @code{void} return types on function
5004 definitions, so such return types always receive a warning
5005 even without this option.
5006
5007 This warning is also enabled by @option{-Wextra}.
5008
5009 @item -Wignored-attributes @r{(C and C++ only)}
5010 @opindex Wignored-attributes
5011 @opindex Wno-ignored-attributes
5012 Warn when an attribute is ignored. This is different from the
5013 @option{-Wattributes} option in that it warns whenever the compiler decides
5014 to drop an attribute, not that the attribute is either unknown, used in a
5015 wrong place, etc. This warning is enabled by default.
5016
5017 @item -Wmain
5018 @opindex Wmain
5019 @opindex Wno-main
5020 Warn if the type of @code{main} is suspicious. @code{main} should be
5021 a function with external linkage, returning int, taking either zero
5022 arguments, two, or three arguments of appropriate types. This warning
5023 is enabled by default in C++ and is enabled by either @option{-Wall}
5024 or @option{-Wpedantic}.
5025
5026 @item -Wmisleading-indentation @r{(C and C++ only)}
5027 @opindex Wmisleading-indentation
5028 @opindex Wno-misleading-indentation
5029 Warn when the indentation of the code does not reflect the block structure.
5030 Specifically, a warning is issued for @code{if}, @code{else}, @code{while}, and
5031 @code{for} clauses with a guarded statement that does not use braces,
5032 followed by an unguarded statement with the same indentation.
5033
5034 In the following example, the call to ``bar'' is misleadingly indented as
5035 if it were guarded by the ``if'' conditional.
5036
5037 @smallexample
5038 if (some_condition ())
5039 foo ();
5040 bar (); /* Gotcha: this is not guarded by the "if". */
5041 @end smallexample
5042
5043 In the case of mixed tabs and spaces, the warning uses the
5044 @option{-ftabstop=} option to determine if the statements line up
5045 (defaulting to 8).
5046
5047 The warning is not issued for code involving multiline preprocessor logic
5048 such as the following example.
5049
5050 @smallexample
5051 if (flagA)
5052 foo (0);
5053 #if SOME_CONDITION_THAT_DOES_NOT_HOLD
5054 if (flagB)
5055 #endif
5056 foo (1);
5057 @end smallexample
5058
5059 The warning is not issued after a @code{#line} directive, since this
5060 typically indicates autogenerated code, and no assumptions can be made
5061 about the layout of the file that the directive references.
5062
5063 This warning is enabled by @option{-Wall} in C and C++.
5064
5065 @item -Wmissing-attributes
5066 @opindex Wmissing-attributes
5067 @opindex Wno-missing-attributes
5068 Warn when a declaration of a function is missing one or more attributes
5069 that a related function is declared with and whose absence may adversely
5070 affect the correctness or efficiency of generated code. For example,
5071 the warning is issued for declarations of aliases that use attributes
5072 to specify less restrictive requirements than those of their targets.
5073 This typically represents a potential optimization opportunity.
5074 By contrast, the @option{-Wattribute-alias=2} option controls warnings
5075 issued when the alias is more restrictive than the target, which could
5076 lead to incorrect code generation.
5077 Attributes considered include @code{alloc_align}, @code{alloc_size},
5078 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
5079 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
5080 @code{returns_nonnull}, and @code{returns_twice}.
5081
5082 In C++, the warning is issued when an explicit specialization of a primary
5083 template declared with attribute @code{alloc_align}, @code{alloc_size},
5084 @code{assume_aligned}, @code{format}, @code{format_arg}, @code{malloc},
5085 or @code{nonnull} is declared without it. Attributes @code{deprecated},
5086 @code{error}, and @code{warning} suppress the warning.
5087 (@pxref{Function Attributes}).
5088
5089 You can use the @code{copy} attribute to apply the same
5090 set of attributes to a declaration as that on another declaration without
5091 explicitly enumerating the attributes. This attribute can be applied
5092 to declarations of functions (@pxref{Common Function Attributes}),
5093 variables (@pxref{Common Variable Attributes}), or types
5094 (@pxref{Common Type Attributes}).
5095
5096 @option{-Wmissing-attributes} is enabled by @option{-Wall}.
5097
5098 For example, since the declaration of the primary function template
5099 below makes use of both attribute @code{malloc} and @code{alloc_size}
5100 the declaration of the explicit specialization of the template is
5101 diagnosed because it is missing one of the attributes.
5102
5103 @smallexample
5104 template <class T>
5105 T* __attribute__ ((malloc, alloc_size (1)))
5106 allocate (size_t);
5107
5108 template <>
5109 void* __attribute__ ((malloc)) // missing alloc_size
5110 allocate<void> (size_t);
5111 @end smallexample
5112
5113 @item -Wmissing-braces
5114 @opindex Wmissing-braces
5115 @opindex Wno-missing-braces
5116 Warn if an aggregate or union initializer is not fully bracketed. In
5117 the following example, the initializer for @code{a} is not fully
5118 bracketed, but that for @code{b} is fully bracketed. This warning is
5119 enabled by @option{-Wall} in C.
5120
5121 @smallexample
5122 int a[2][2] = @{ 0, 1, 2, 3 @};
5123 int b[2][2] = @{ @{ 0, 1 @}, @{ 2, 3 @} @};
5124 @end smallexample
5125
5126 This warning is enabled by @option{-Wall}.
5127
5128 @item -Wmissing-include-dirs @r{(C, C++, Objective-C and Objective-C++ only)}
5129 @opindex Wmissing-include-dirs
5130 @opindex Wno-missing-include-dirs
5131 Warn if a user-supplied include directory does not exist.
5132
5133 @item -Wmissing-profile
5134 @opindex Wmissing-profile
5135 @opindex Wno-missing-profile
5136 Warn if feedback profiles are missing when using the
5137 @option{-fprofile-use} option.
5138 This option diagnoses those cases where a new function or a new file is added
5139 to the user code between compiling with @option{-fprofile-generate} and with
5140 @option{-fprofile-use}, without regenerating the profiles. In these cases, the
5141 profile feedback data files do not contain any profile feedback information for
5142 the newly added function or file respectively. Also, in the case when profile
5143 count data (.gcda) files are removed, GCC cannot use any profile feedback
5144 information. In all these cases, warnings are issued to inform the user that a
5145 profile generation step is due. @option{-Wno-missing-profile} can be used to
5146 disable the warning. Ignoring the warning can result in poorly optimized code.
5147 Completely disabling the warning is not recommended and should be done only
5148 when non-existent profile data is justified.
5149
5150 @item -Wmultistatement-macros
5151 @opindex Wmultistatement-macros
5152 @opindex Wno-multistatement-macros
5153 Warn about unsafe multiple statement macros that appear to be guarded
5154 by a clause such as @code{if}, @code{else}, @code{for}, @code{switch}, or
5155 @code{while}, in which only the first statement is actually guarded after
5156 the macro is expanded.
5157
5158 For example:
5159
5160 @smallexample
5161 #define DOIT x++; y++
5162 if (c)
5163 DOIT;
5164 @end smallexample
5165
5166 will increment @code{y} unconditionally, not just when @code{c} holds.
5167 The can usually be fixed by wrapping the macro in a do-while loop:
5168 @smallexample
5169 #define DOIT do @{ x++; y++; @} while (0)
5170 if (c)
5171 DOIT;
5172 @end smallexample
5173
5174 This warning is enabled by @option{-Wall} in C and C++.
5175
5176 @item -Wparentheses
5177 @opindex Wparentheses
5178 @opindex Wno-parentheses
5179 Warn if parentheses are omitted in certain contexts, such
5180 as when there is an assignment in a context where a truth value
5181 is expected, or when operators are nested whose precedence people
5182 often get confused about.
5183
5184 Also warn if a comparison like @code{x<=y<=z} appears; this is
5185 equivalent to @code{(x<=y ? 1 : 0) <= z}, which is a different
5186 interpretation from that of ordinary mathematical notation.
5187
5188 Also warn for dangerous uses of the GNU extension to
5189 @code{?:} with omitted middle operand. When the condition
5190 in the @code{?}: operator is a boolean expression, the omitted value is
5191 always 1. Often programmers expect it to be a value computed
5192 inside the conditional expression instead.
5193
5194 For C++ this also warns for some cases of unnecessary parentheses in
5195 declarations, which can indicate an attempt at a function call instead
5196 of a declaration:
5197 @smallexample
5198 @{
5199 // Declares a local variable called mymutex.
5200 std::unique_lock<std::mutex> (mymutex);
5201 // User meant std::unique_lock<std::mutex> lock (mymutex);
5202 @}
5203 @end smallexample
5204
5205 This warning is enabled by @option{-Wall}.
5206
5207 @item -Wsequence-point
5208 @opindex Wsequence-point
5209 @opindex Wno-sequence-point
5210 Warn about code that may have undefined semantics because of violations
5211 of sequence point rules in the C and C++ standards.
5212
5213 The C and C++ standards define the order in which expressions in a C/C++
5214 program are evaluated in terms of @dfn{sequence points}, which represent
5215 a partial ordering between the execution of parts of the program: those
5216 executed before the sequence point, and those executed after it. These
5217 occur after the evaluation of a full expression (one which is not part
5218 of a larger expression), after the evaluation of the first operand of a
5219 @code{&&}, @code{||}, @code{? :} or @code{,} (comma) operator, before a
5220 function is called (but after the evaluation of its arguments and the
5221 expression denoting the called function), and in certain other places.
5222 Other than as expressed by the sequence point rules, the order of
5223 evaluation of subexpressions of an expression is not specified. All
5224 these rules describe only a partial order rather than a total order,
5225 since, for example, if two functions are called within one expression
5226 with no sequence point between them, the order in which the functions
5227 are called is not specified. However, the standards committee have
5228 ruled that function calls do not overlap.
5229
5230 It is not specified when between sequence points modifications to the
5231 values of objects take effect. Programs whose behavior depends on this
5232 have undefined behavior; the C and C++ standards specify that ``Between
5233 the previous and next sequence point an object shall have its stored
5234 value modified at most once by the evaluation of an expression.
5235 Furthermore, the prior value shall be read only to determine the value
5236 to be stored.''. If a program breaks these rules, the results on any
5237 particular implementation are entirely unpredictable.
5238
5239 Examples of code with undefined behavior are @code{a = a++;}, @code{a[n]
5240 = b[n++]} and @code{a[i++] = i;}. Some more complicated cases are not
5241 diagnosed by this option, and it may give an occasional false positive
5242 result, but in general it has been found fairly effective at detecting
5243 this sort of problem in programs.
5244
5245 The C++17 standard will define the order of evaluation of operands in
5246 more cases: in particular it requires that the right-hand side of an
5247 assignment be evaluated before the left-hand side, so the above
5248 examples are no longer undefined. But this warning will still warn
5249 about them, to help people avoid writing code that is undefined in C
5250 and earlier revisions of C++.
5251
5252 The standard is worded confusingly, therefore there is some debate
5253 over the precise meaning of the sequence point rules in subtle cases.
5254 Links to discussions of the problem, including proposed formal
5255 definitions, may be found on the GCC readings page, at
5256 @uref{http://gcc.gnu.org/@/readings.html}.
5257
5258 This warning is enabled by @option{-Wall} for C and C++.
5259
5260 @item -Wno-return-local-addr
5261 @opindex Wno-return-local-addr
5262 @opindex Wreturn-local-addr
5263 Do not warn about returning a pointer (or in C++, a reference) to a
5264 variable that goes out of scope after the function returns.
5265
5266 @item -Wreturn-type
5267 @opindex Wreturn-type
5268 @opindex Wno-return-type
5269 Warn whenever a function is defined with a return type that defaults
5270 to @code{int}. Also warn about any @code{return} statement with no
5271 return value in a function whose return type is not @code{void}
5272 (falling off the end of the function body is considered returning
5273 without a value).
5274
5275 For C only, warn about a @code{return} statement with an expression in a
5276 function whose return type is @code{void}, unless the expression type is
5277 also @code{void}. As a GNU extension, the latter case is accepted
5278 without a warning unless @option{-Wpedantic} is used. Attempting
5279 to use the return value of a non-@code{void} function other than @code{main}
5280 that flows off the end by reaching the closing curly brace that terminates
5281 the function is undefined.
5282
5283 Unlike in C, in C++, flowing off the end of a non-@code{void} function other
5284 than @code{main} results in undefined behavior even when the value of
5285 the function is not used.
5286
5287 This warning is enabled by default in C++ and by @option{-Wall} otherwise.
5288
5289 @item -Wshift-count-negative
5290 @opindex Wshift-count-negative
5291 @opindex Wno-shift-count-negative
5292 Warn if shift count is negative. This warning is enabled by default.
5293
5294 @item -Wshift-count-overflow
5295 @opindex Wshift-count-overflow
5296 @opindex Wno-shift-count-overflow
5297 Warn if shift count >= width of type. This warning is enabled by default.
5298
5299 @item -Wshift-negative-value
5300 @opindex Wshift-negative-value
5301 @opindex Wno-shift-negative-value
5302 Warn if left shifting a negative value. This warning is enabled by
5303 @option{-Wextra} in C99 and C++11 modes (and newer).
5304
5305 @item -Wshift-overflow
5306 @itemx -Wshift-overflow=@var{n}
5307 @opindex Wshift-overflow
5308 @opindex Wno-shift-overflow
5309 Warn about left shift overflows. This warning is enabled by
5310 default in C99 and C++11 modes (and newer).
5311
5312 @table @gcctabopt
5313 @item -Wshift-overflow=1
5314 This is the warning level of @option{-Wshift-overflow} and is enabled
5315 by default in C99 and C++11 modes (and newer). This warning level does
5316 not warn about left-shifting 1 into the sign bit. (However, in C, such
5317 an overflow is still rejected in contexts where an integer constant expression
5318 is required.) No warning is emitted in C++2A mode (and newer), as signed left
5319 shifts always wrap.
5320
5321 @item -Wshift-overflow=2
5322 This warning level also warns about left-shifting 1 into the sign bit,
5323 unless C++14 mode (or newer) is active.
5324 @end table
5325
5326 @item -Wswitch
5327 @opindex Wswitch
5328 @opindex Wno-switch
5329 Warn whenever a @code{switch} statement has an index of enumerated type
5330 and lacks a @code{case} for one or more of the named codes of that
5331 enumeration. (The presence of a @code{default} label prevents this
5332 warning.) @code{case} labels outside the enumeration range also
5333 provoke warnings when this option is used (even if there is a
5334 @code{default} label).
5335 This warning is enabled by @option{-Wall}.
5336
5337 @item -Wswitch-default
5338 @opindex Wswitch-default
5339 @opindex Wno-switch-default
5340 Warn whenever a @code{switch} statement does not have a @code{default}
5341 case.
5342
5343 @item -Wswitch-enum
5344 @opindex Wswitch-enum
5345 @opindex Wno-switch-enum
5346 Warn whenever a @code{switch} statement has an index of enumerated type
5347 and lacks a @code{case} for one or more of the named codes of that
5348 enumeration. @code{case} labels outside the enumeration range also
5349 provoke warnings when this option is used. The only difference
5350 between @option{-Wswitch} and this option is that this option gives a
5351 warning about an omitted enumeration code even if there is a
5352 @code{default} label.
5353
5354 @item -Wswitch-bool
5355 @opindex Wswitch-bool
5356 @opindex Wno-switch-bool
5357 Warn whenever a @code{switch} statement has an index of boolean type
5358 and the case values are outside the range of a boolean type.
5359 It is possible to suppress this warning by casting the controlling
5360 expression to a type other than @code{bool}. For example:
5361 @smallexample
5362 @group
5363 switch ((int) (a == 4))
5364 @{
5365 @dots{}
5366 @}
5367 @end group
5368 @end smallexample
5369 This warning is enabled by default for C and C++ programs.
5370
5371 @item -Wswitch-unreachable
5372 @opindex Wswitch-unreachable
5373 @opindex Wno-switch-unreachable
5374 Warn whenever a @code{switch} statement contains statements between the
5375 controlling expression and the first case label, which will never be
5376 executed. For example:
5377 @smallexample
5378 @group
5379 switch (cond)
5380 @{
5381 i = 15;
5382 @dots{}
5383 case 5:
5384 @dots{}
5385 @}
5386 @end group
5387 @end smallexample
5388 @option{-Wswitch-unreachable} does not warn if the statement between the
5389 controlling expression and the first case label is just a declaration:
5390 @smallexample
5391 @group
5392 switch (cond)
5393 @{
5394 int i;
5395 @dots{}
5396 case 5:
5397 i = 5;
5398 @dots{}
5399 @}
5400 @end group
5401 @end smallexample
5402 This warning is enabled by default for C and C++ programs.
5403
5404 @item -Wsync-nand @r{(C and C++ only)}
5405 @opindex Wsync-nand
5406 @opindex Wno-sync-nand
5407 Warn when @code{__sync_fetch_and_nand} and @code{__sync_nand_and_fetch}
5408 built-in functions are used. These functions changed semantics in GCC 4.4.
5409
5410 @item -Wunused-but-set-parameter
5411 @opindex Wunused-but-set-parameter
5412 @opindex Wno-unused-but-set-parameter
5413 Warn whenever a function parameter is assigned to, but otherwise unused
5414 (aside from its declaration).
5415
5416 To suppress this warning use the @code{unused} attribute
5417 (@pxref{Variable Attributes}).
5418
5419 This warning is also enabled by @option{-Wunused} together with
5420 @option{-Wextra}.
5421
5422 @item -Wunused-but-set-variable
5423 @opindex Wunused-but-set-variable
5424 @opindex Wno-unused-but-set-variable
5425 Warn whenever a local variable is assigned to, but otherwise unused
5426 (aside from its declaration).
5427 This warning is enabled by @option{-Wall}.
5428
5429 To suppress this warning use the @code{unused} attribute
5430 (@pxref{Variable Attributes}).
5431
5432 This warning is also enabled by @option{-Wunused}, which is enabled
5433 by @option{-Wall}.
5434
5435 @item -Wunused-function
5436 @opindex Wunused-function
5437 @opindex Wno-unused-function
5438 Warn whenever a static function is declared but not defined or a
5439 non-inline static function is unused.
5440 This warning is enabled by @option{-Wall}.
5441
5442 @item -Wunused-label
5443 @opindex Wunused-label
5444 @opindex Wno-unused-label
5445 Warn whenever a label is declared but not used.
5446 This warning is enabled by @option{-Wall}.
5447
5448 To suppress this warning use the @code{unused} attribute
5449 (@pxref{Variable Attributes}).
5450
5451 @item -Wunused-local-typedefs @r{(C, Objective-C, C++ and Objective-C++ only)}
5452 @opindex Wunused-local-typedefs
5453 @opindex Wno-unused-local-typedefs
5454 Warn when a typedef locally defined in a function is not used.
5455 This warning is enabled by @option{-Wall}.
5456
5457 @item -Wunused-parameter
5458 @opindex Wunused-parameter
5459 @opindex Wno-unused-parameter
5460 Warn whenever a function parameter is unused aside from its declaration.
5461
5462 To suppress this warning use the @code{unused} attribute
5463 (@pxref{Variable Attributes}).
5464
5465 @item -Wno-unused-result
5466 @opindex Wunused-result
5467 @opindex Wno-unused-result
5468 Do not warn if a caller of a function marked with attribute
5469 @code{warn_unused_result} (@pxref{Function Attributes}) does not use
5470 its return value. The default is @option{-Wunused-result}.
5471
5472 @item -Wunused-variable
5473 @opindex Wunused-variable
5474 @opindex Wno-unused-variable
5475 Warn whenever a local or static variable is unused aside from its
5476 declaration. This option implies @option{-Wunused-const-variable=1} for C,
5477 but not for C++. This warning is enabled by @option{-Wall}.
5478
5479 To suppress this warning use the @code{unused} attribute
5480 (@pxref{Variable Attributes}).
5481
5482 @item -Wunused-const-variable
5483 @itemx -Wunused-const-variable=@var{n}
5484 @opindex Wunused-const-variable
5485 @opindex Wno-unused-const-variable
5486 Warn whenever a constant static variable is unused aside from its declaration.
5487 @option{-Wunused-const-variable=1} is enabled by @option{-Wunused-variable}
5488 for C, but not for C++. In C this declares variable storage, but in C++ this
5489 is not an error since const variables take the place of @code{#define}s.
5490
5491 To suppress this warning use the @code{unused} attribute
5492 (@pxref{Variable Attributes}).
5493
5494 @table @gcctabopt
5495 @item -Wunused-const-variable=1
5496 This is the warning level that is enabled by @option{-Wunused-variable} for
5497 C. It warns only about unused static const variables defined in the main
5498 compilation unit, but not about static const variables declared in any
5499 header included.
5500
5501 @item -Wunused-const-variable=2
5502 This warning level also warns for unused constant static variables in
5503 headers (excluding system headers). This is the warning level of
5504 @option{-Wunused-const-variable} and must be explicitly requested since
5505 in C++ this isn't an error and in C it might be harder to clean up all
5506 headers included.
5507 @end table
5508
5509 @item -Wunused-value
5510 @opindex Wunused-value
5511 @opindex Wno-unused-value
5512 Warn whenever a statement computes a result that is explicitly not
5513 used. To suppress this warning cast the unused expression to
5514 @code{void}. This includes an expression-statement or the left-hand
5515 side of a comma expression that contains no side effects. For example,
5516 an expression such as @code{x[i,j]} causes a warning, while
5517 @code{x[(void)i,j]} does not.
5518
5519 This warning is enabled by @option{-Wall}.
5520
5521 @item -Wunused
5522 @opindex Wunused
5523 @opindex Wno-unused
5524 All the above @option{-Wunused} options combined.
5525
5526 In order to get a warning about an unused function parameter, you must
5527 either specify @option{-Wextra -Wunused} (note that @option{-Wall} implies
5528 @option{-Wunused}), or separately specify @option{-Wunused-parameter}.
5529
5530 @item -Wuninitialized
5531 @opindex Wuninitialized
5532 @opindex Wno-uninitialized
5533 Warn if an automatic variable is used without first being initialized
5534 or if a variable may be clobbered by a @code{setjmp} call. In C++,
5535 warn if a non-static reference or non-static @code{const} member
5536 appears in a class without constructors.
5537
5538 If you want to warn about code that uses the uninitialized value of the
5539 variable in its own initializer, use the @option{-Winit-self} option.
5540
5541 These warnings occur for individual uninitialized or clobbered
5542 elements of structure, union or array variables as well as for
5543 variables that are uninitialized or clobbered as a whole. They do
5544 not occur for variables or elements declared @code{volatile}. Because
5545 these warnings depend on optimization, the exact variables or elements
5546 for which there are warnings depends on the precise optimization
5547 options and version of GCC used.
5548
5549 Note that there may be no warning about a variable that is used only
5550 to compute a value that itself is never used, because such
5551 computations may be deleted by data flow analysis before the warnings
5552 are printed.
5553
5554 @item -Winvalid-memory-model
5555 @opindex Winvalid-memory-model
5556 @opindex Wno-invalid-memory-model
5557 Warn for invocations of @ref{__atomic Builtins}, @ref{__sync Builtins},
5558 and the C11 atomic generic functions with a memory consistency argument
5559 that is either invalid for the operation or outside the range of values
5560 of the @code{memory_order} enumeration. For example, since the
5561 @code{__atomic_store} and @code{__atomic_store_n} built-ins are only
5562 defined for the relaxed, release, and sequentially consistent memory
5563 orders the following code is diagnosed:
5564
5565 @smallexample
5566 void store (int *i)
5567 @{
5568 __atomic_store_n (i, 0, memory_order_consume);
5569 @}
5570 @end smallexample
5571
5572 @option{-Winvalid-memory-model} is enabled by default.
5573
5574 @item -Wmaybe-uninitialized
5575 @opindex Wmaybe-uninitialized
5576 @opindex Wno-maybe-uninitialized
5577 For an automatic (i.e.@: local) variable, if there exists a path from the
5578 function entry to a use of the variable that is initialized, but there exist
5579 some other paths for which the variable is not initialized, the compiler
5580 emits a warning if it cannot prove the uninitialized paths are not
5581 executed at run time.
5582
5583 These warnings are only possible in optimizing compilation, because otherwise
5584 GCC does not keep track of the state of variables.
5585
5586 These warnings are made optional because GCC may not be able to determine when
5587 the code is correct in spite of appearing to have an error. Here is one
5588 example of how this can happen:
5589
5590 @smallexample
5591 @group
5592 @{
5593 int x;
5594 switch (y)
5595 @{
5596 case 1: x = 1;
5597 break;
5598 case 2: x = 4;
5599 break;
5600 case 3: x = 5;
5601 @}
5602 foo (x);
5603 @}
5604 @end group
5605 @end smallexample
5606
5607 @noindent
5608 If the value of @code{y} is always 1, 2 or 3, then @code{x} is
5609 always initialized, but GCC doesn't know this. To suppress the
5610 warning, you need to provide a default case with assert(0) or
5611 similar code.
5612
5613 @cindex @code{longjmp} warnings
5614 This option also warns when a non-volatile automatic variable might be
5615 changed by a call to @code{longjmp}.
5616 The compiler sees only the calls to @code{setjmp}. It cannot know
5617 where @code{longjmp} will be called; in fact, a signal handler could
5618 call it at any point in the code. As a result, you may get a warning
5619 even when there is in fact no problem because @code{longjmp} cannot
5620 in fact be called at the place that would cause a problem.
5621
5622 Some spurious warnings can be avoided if you declare all the functions
5623 you use that never return as @code{noreturn}. @xref{Function
5624 Attributes}.
5625
5626 This warning is enabled by @option{-Wall} or @option{-Wextra}.
5627
5628 @item -Wunknown-pragmas
5629 @opindex Wunknown-pragmas
5630 @opindex Wno-unknown-pragmas
5631 @cindex warning for unknown pragmas
5632 @cindex unknown pragmas, warning
5633 @cindex pragmas, warning of unknown
5634 Warn when a @code{#pragma} directive is encountered that is not understood by
5635 GCC@. If this command-line option is used, warnings are even issued
5636 for unknown pragmas in system header files. This is not the case if
5637 the warnings are only enabled by the @option{-Wall} command-line option.
5638
5639 @item -Wno-pragmas
5640 @opindex Wno-pragmas
5641 @opindex Wpragmas
5642 Do not warn about misuses of pragmas, such as incorrect parameters,
5643 invalid syntax, or conflicts between pragmas. See also
5644 @option{-Wunknown-pragmas}.
5645
5646 @item -Wno-prio-ctor-dtor
5647 @opindex Wno-prio-ctor-dtor
5648 @opindex Wprio-ctor-dtor
5649 Do not warn if a priority from 0 to 100 is used for constructor or destructor.
5650 The use of constructor and destructor attributes allow you to assign a
5651 priority to the constructor/destructor to control its order of execution
5652 before @code{main} is called or after it returns. The priority values must be
5653 greater than 100 as the compiler reserves priority values between 0--100 for
5654 the implementation.
5655
5656 @item -Wstrict-aliasing
5657 @opindex Wstrict-aliasing
5658 @opindex Wno-strict-aliasing
5659 This option is only active when @option{-fstrict-aliasing} is active.
5660 It warns about code that might break the strict aliasing rules that the
5661 compiler is using for optimization. The warning does not catch all
5662 cases, but does attempt to catch the more common pitfalls. It is
5663 included in @option{-Wall}.
5664 It is equivalent to @option{-Wstrict-aliasing=3}
5665
5666 @item -Wstrict-aliasing=n
5667 @opindex Wstrict-aliasing=n
5668 This option is only active when @option{-fstrict-aliasing} is active.
5669 It warns about code that might break the strict aliasing rules that the
5670 compiler is using for optimization.
5671 Higher levels correspond to higher accuracy (fewer false positives).
5672 Higher levels also correspond to more effort, similar to the way @option{-O}
5673 works.
5674 @option{-Wstrict-aliasing} is equivalent to @option{-Wstrict-aliasing=3}.
5675
5676 Level 1: Most aggressive, quick, least accurate.
5677 Possibly useful when higher levels
5678 do not warn but @option{-fstrict-aliasing} still breaks the code, as it has very few
5679 false negatives. However, it has many false positives.
5680 Warns for all pointer conversions between possibly incompatible types,
5681 even if never dereferenced. Runs in the front end only.
5682
5683 Level 2: Aggressive, quick, not too precise.
5684 May still have many false positives (not as many as level 1 though),
5685 and few false negatives (but possibly more than level 1).
5686 Unlike level 1, it only warns when an address is taken. Warns about
5687 incomplete types. Runs in the front end only.
5688
5689 Level 3 (default for @option{-Wstrict-aliasing}):
5690 Should have very few false positives and few false
5691 negatives. Slightly slower than levels 1 or 2 when optimization is enabled.
5692 Takes care of the common pun+dereference pattern in the front end:
5693 @code{*(int*)&some_float}.
5694 If optimization is enabled, it also runs in the back end, where it deals
5695 with multiple statement cases using flow-sensitive points-to information.
5696 Only warns when the converted pointer is dereferenced.
5697 Does not warn about incomplete types.
5698
5699 @item -Wstrict-overflow
5700 @itemx -Wstrict-overflow=@var{n}
5701 @opindex Wstrict-overflow
5702 @opindex Wno-strict-overflow
5703 This option is only active when signed overflow is undefined.
5704 It warns about cases where the compiler optimizes based on the
5705 assumption that signed overflow does not occur. Note that it does not
5706 warn about all cases where the code might overflow: it only warns
5707 about cases where the compiler implements some optimization. Thus
5708 this warning depends on the optimization level.
5709
5710 An optimization that assumes that signed overflow does not occur is
5711 perfectly safe if the values of the variables involved are such that
5712 overflow never does, in fact, occur. Therefore this warning can
5713 easily give a false positive: a warning about code that is not
5714 actually a problem. To help focus on important issues, several
5715 warning levels are defined. No warnings are issued for the use of
5716 undefined signed overflow when estimating how many iterations a loop
5717 requires, in particular when determining whether a loop will be
5718 executed at all.
5719
5720 @table @gcctabopt
5721 @item -Wstrict-overflow=1
5722 Warn about cases that are both questionable and easy to avoid. For
5723 example the compiler simplifies
5724 @code{x + 1 > x} to @code{1}. This level of
5725 @option{-Wstrict-overflow} is enabled by @option{-Wall}; higher levels
5726 are not, and must be explicitly requested.
5727
5728 @item -Wstrict-overflow=2
5729 Also warn about other cases where a comparison is simplified to a
5730 constant. For example: @code{abs (x) >= 0}. This can only be
5731 simplified when signed integer overflow is undefined, because
5732 @code{abs (INT_MIN)} overflows to @code{INT_MIN}, which is less than
5733 zero. @option{-Wstrict-overflow} (with no level) is the same as
5734 @option{-Wstrict-overflow=2}.
5735
5736 @item -Wstrict-overflow=3
5737 Also warn about other cases where a comparison is simplified. For
5738 example: @code{x + 1 > 1} is simplified to @code{x > 0}.
5739
5740 @item -Wstrict-overflow=4
5741 Also warn about other simplifications not covered by the above cases.
5742 For example: @code{(x * 10) / 5} is simplified to @code{x * 2}.
5743
5744 @item -Wstrict-overflow=5
5745 Also warn about cases where the compiler reduces the magnitude of a
5746 constant involved in a comparison. For example: @code{x + 2 > y} is
5747 simplified to @code{x + 1 >= y}. This is reported only at the
5748 highest warning level because this simplification applies to many
5749 comparisons, so this warning level gives a very large number of
5750 false positives.
5751 @end table
5752
5753 @item -Wstringop-overflow
5754 @itemx -Wstringop-overflow=@var{type}
5755 @opindex Wstringop-overflow
5756 @opindex Wno-stringop-overflow
5757 Warn for calls to string manipulation functions such as @code{memcpy} and
5758 @code{strcpy} that are determined to overflow the destination buffer. The
5759 optional argument is one greater than the type of Object Size Checking to
5760 perform to determine the size of the destination. @xref{Object Size Checking}.
5761 The argument is meaningful only for functions that operate on character arrays
5762 but not for raw memory functions like @code{memcpy} which always make use
5763 of Object Size type-0. The option also warns for calls that specify a size
5764 in excess of the largest possible object or at most @code{SIZE_MAX / 2} bytes.
5765 The option produces the best results with optimization enabled but can detect
5766 a small subset of simple buffer overflows even without optimization in
5767 calls to the GCC built-in functions like @code{__builtin_memcpy} that
5768 correspond to the standard functions. In any case, the option warns about
5769 just a subset of buffer overflows detected by the corresponding overflow
5770 checking built-ins. For example, the option will issue a warning for
5771 the @code{strcpy} call below because it copies at least 5 characters
5772 (the string @code{"blue"} including the terminating NUL) into the buffer
5773 of size 4.
5774
5775 @smallexample
5776 enum Color @{ blue, purple, yellow @};
5777 const char* f (enum Color clr)
5778 @{
5779 static char buf [4];
5780 const char *str;
5781 switch (clr)
5782 @{
5783 case blue: str = "blue"; break;
5784 case purple: str = "purple"; break;
5785 case yellow: str = "yellow"; break;
5786 @}
5787
5788 return strcpy (buf, str); // warning here
5789 @}
5790 @end smallexample
5791
5792 Option @option{-Wstringop-overflow=2} is enabled by default.
5793
5794 @table @gcctabopt
5795 @item -Wstringop-overflow
5796 @itemx -Wstringop-overflow=1
5797 @opindex Wstringop-overflow
5798 @opindex Wno-stringop-overflow
5799 The @option{-Wstringop-overflow=1} option uses type-zero Object Size Checking
5800 to determine the sizes of destination objects. This is the default setting
5801 of the option. At this setting the option will not warn for writes past
5802 the end of subobjects of larger objects accessed by pointers unless the
5803 size of the largest surrounding object is known. When the destination may
5804 be one of several objects it is assumed to be the largest one of them. On
5805 Linux systems, when optimization is enabled at this setting the option warns
5806 for the same code as when the @code{_FORTIFY_SOURCE} macro is defined to
5807 a non-zero value.
5808
5809 @item -Wstringop-overflow=2
5810 The @option{-Wstringop-overflow=2} option uses type-one Object Size Checking
5811 to determine the sizes of destination objects. At this setting the option
5812 will warn about overflows when writing to members of the largest complete
5813 objects whose exact size is known. It will, however, not warn for excessive
5814 writes to the same members of unknown objects referenced by pointers since
5815 they may point to arrays containing unknown numbers of elements.
5816
5817 @item -Wstringop-overflow=3
5818 The @option{-Wstringop-overflow=3} option uses type-two Object Size Checking
5819 to determine the sizes of destination objects. At this setting the option
5820 warns about overflowing the smallest object or data member. This is the
5821 most restrictive setting of the option that may result in warnings for safe
5822 code.
5823
5824 @item -Wstringop-overflow=4
5825 The @option{-Wstringop-overflow=4} option uses type-three Object Size Checking
5826 to determine the sizes of destination objects. At this setting the option
5827 will warn about overflowing any data members, and when the destination is
5828 one of several objects it uses the size of the largest of them to decide
5829 whether to issue a warning. Similarly to @option{-Wstringop-overflow=3} this
5830 setting of the option may result in warnings for benign code.
5831 @end table
5832
5833 @item -Wstringop-truncation
5834 @opindex Wstringop-truncation
5835 @opindex Wno-stringop-truncation
5836 Warn for calls to bounded string manipulation functions such as @code{strncat},
5837 @code{strncpy}, and @code{stpncpy} that may either truncate the copied string
5838 or leave the destination unchanged.
5839
5840 In the following example, the call to @code{strncat} specifies a bound that
5841 is less than the length of the source string. As a result, the copy of
5842 the source will be truncated and so the call is diagnosed. To avoid the
5843 warning use @code{bufsize - strlen (buf) - 1)} as the bound.
5844
5845 @smallexample
5846 void append (char *buf, size_t bufsize)
5847 @{
5848 strncat (buf, ".txt", 3);
5849 @}
5850 @end smallexample
5851
5852 As another example, the following call to @code{strncpy} results in copying
5853 to @code{d} just the characters preceding the terminating NUL, without
5854 appending the NUL to the end. Assuming the result of @code{strncpy} is
5855 necessarily a NUL-terminated string is a common mistake, and so the call
5856 is diagnosed. To avoid the warning when the result is not expected to be
5857 NUL-terminated, call @code{memcpy} instead.
5858
5859 @smallexample
5860 void copy (char *d, const char *s)
5861 @{
5862 strncpy (d, s, strlen (s));
5863 @}
5864 @end smallexample
5865
5866 In the following example, the call to @code{strncpy} specifies the size
5867 of the destination buffer as the bound. If the length of the source
5868 string is equal to or greater than this size the result of the copy will
5869 not be NUL-terminated. Therefore, the call is also diagnosed. To avoid
5870 the warning, specify @code{sizeof buf - 1} as the bound and set the last
5871 element of the buffer to @code{NUL}.
5872
5873 @smallexample
5874 void copy (const char *s)
5875 @{
5876 char buf[80];
5877 strncpy (buf, s, sizeof buf);
5878 @dots{}
5879 @}
5880 @end smallexample
5881
5882 In situations where a character array is intended to store a sequence
5883 of bytes with no terminating @code{NUL} such an array may be annotated
5884 with attribute @code{nonstring} to avoid this warning. Such arrays,
5885 however, are not suitable arguments to functions that expect
5886 @code{NUL}-terminated strings. To help detect accidental misuses of
5887 such arrays GCC issues warnings unless it can prove that the use is
5888 safe. @xref{Common Variable Attributes}.
5889
5890 @item -Wsuggest-attribute=@r{[}pure@r{|}const@r{|}noreturn@r{|}format@r{|}cold@r{|}malloc@r{]}
5891 @opindex Wsuggest-attribute=
5892 @opindex Wno-suggest-attribute=
5893 Warn for cases where adding an attribute may be beneficial. The
5894 attributes currently supported are listed below.
5895
5896 @table @gcctabopt
5897 @item -Wsuggest-attribute=pure
5898 @itemx -Wsuggest-attribute=const
5899 @itemx -Wsuggest-attribute=noreturn
5900 @itemx -Wmissing-noreturn
5901 @itemx -Wsuggest-attribute=malloc
5902 @opindex Wsuggest-attribute=pure
5903 @opindex Wno-suggest-attribute=pure
5904 @opindex Wsuggest-attribute=const
5905 @opindex Wno-suggest-attribute=const
5906 @opindex Wsuggest-attribute=noreturn
5907 @opindex Wno-suggest-attribute=noreturn
5908 @opindex Wmissing-noreturn
5909 @opindex Wno-missing-noreturn
5910 @opindex Wsuggest-attribute=malloc
5911 @opindex Wno-suggest-attribute=malloc
5912
5913 Warn about functions that might be candidates for attributes
5914 @code{pure}, @code{const} or @code{noreturn} or @code{malloc}. The compiler
5915 only warns for functions visible in other compilation units or (in the case of
5916 @code{pure} and @code{const}) if it cannot prove that the function returns
5917 normally. A function returns normally if it doesn't contain an infinite loop or
5918 return abnormally by throwing, calling @code{abort} or trapping. This analysis
5919 requires option @option{-fipa-pure-const}, which is enabled by default at
5920 @option{-O} and higher. Higher optimization levels improve the accuracy
5921 of the analysis.
5922
5923 @item -Wsuggest-attribute=format
5924 @itemx -Wmissing-format-attribute
5925 @opindex Wsuggest-attribute=format
5926 @opindex Wmissing-format-attribute
5927 @opindex Wno-suggest-attribute=format
5928 @opindex Wno-missing-format-attribute
5929 @opindex Wformat
5930 @opindex Wno-format
5931
5932 Warn about function pointers that might be candidates for @code{format}
5933 attributes. Note these are only possible candidates, not absolute ones.
5934 GCC guesses that function pointers with @code{format} attributes that
5935 are used in assignment, initialization, parameter passing or return
5936 statements should have a corresponding @code{format} attribute in the
5937 resulting type. I.e.@: the left-hand side of the assignment or
5938 initialization, the type of the parameter variable, or the return type
5939 of the containing function respectively should also have a @code{format}
5940 attribute to avoid the warning.
5941
5942 GCC also warns about function definitions that might be
5943 candidates for @code{format} attributes. Again, these are only
5944 possible candidates. GCC guesses that @code{format} attributes
5945 might be appropriate for any function that calls a function like
5946 @code{vprintf} or @code{vscanf}, but this might not always be the
5947 case, and some functions for which @code{format} attributes are
5948 appropriate may not be detected.
5949
5950 @item -Wsuggest-attribute=cold
5951 @opindex Wsuggest-attribute=cold
5952 @opindex Wno-suggest-attribute=cold
5953
5954 Warn about functions that might be candidates for @code{cold} attribute. This
5955 is based on static detection and generally will only warn about functions which
5956 always leads to a call to another @code{cold} function such as wrappers of
5957 C++ @code{throw} or fatal error reporting functions leading to @code{abort}.
5958 @end table
5959
5960 @item -Wsuggest-final-types
5961 @opindex Wno-suggest-final-types
5962 @opindex Wsuggest-final-types
5963 Warn about types with virtual methods where code quality would be improved
5964 if the type were declared with the C++11 @code{final} specifier,
5965 or, if possible,
5966 declared in an anonymous namespace. This allows GCC to more aggressively
5967 devirtualize the polymorphic calls. This warning is more effective with link
5968 time optimization, where the information about the class hierarchy graph is
5969 more complete.
5970
5971 @item -Wsuggest-final-methods
5972 @opindex Wno-suggest-final-methods
5973 @opindex Wsuggest-final-methods
5974 Warn about virtual methods where code quality would be improved if the method
5975 were declared with the C++11 @code{final} specifier,
5976 or, if possible, its type were
5977 declared in an anonymous namespace or with the @code{final} specifier.
5978 This warning is
5979 more effective with link-time optimization, where the information about the
5980 class hierarchy graph is more complete. It is recommended to first consider
5981 suggestions of @option{-Wsuggest-final-types} and then rebuild with new
5982 annotations.
5983
5984 @item -Wsuggest-override
5985 Warn about overriding virtual functions that are not marked with the override
5986 keyword.
5987
5988 @item -Walloc-zero
5989 @opindex Wno-alloc-zero
5990 @opindex Walloc-zero
5991 Warn about calls to allocation functions decorated with attribute
5992 @code{alloc_size} that specify zero bytes, including those to the built-in
5993 forms of the functions @code{aligned_alloc}, @code{alloca}, @code{calloc},
5994 @code{malloc}, and @code{realloc}. Because the behavior of these functions
5995 when called with a zero size differs among implementations (and in the case
5996 of @code{realloc} has been deprecated) relying on it may result in subtle
5997 portability bugs and should be avoided.
5998
5999 @item -Walloc-size-larger-than=@var{byte-size}
6000 @opindex Walloc-size-larger-than=
6001 @opindex Wno-alloc-size-larger-than
6002 Warn about calls to functions decorated with attribute @code{alloc_size}
6003 that attempt to allocate objects larger than the specified number of bytes,
6004 or where the result of the size computation in an integer type with infinite
6005 precision would exceed the value of @samp{PTRDIFF_MAX} on the target.
6006 @option{-Walloc-size-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6007 Warnings controlled by the option can be disabled either by specifying
6008 @var{byte-size} of @samp{SIZE_MAX} or more or by
6009 @option{-Wno-alloc-size-larger-than}.
6010 @xref{Function Attributes}.
6011
6012 @item -Wno-alloc-size-larger-than
6013 @opindex Wno-alloc-size-larger-than
6014 Disable @option{-Walloc-size-larger-than=} warnings. The option is
6015 equivalent to @option{-Walloc-size-larger-than=}@samp{SIZE_MAX} or
6016 larger.
6017
6018 @item -Walloca
6019 @opindex Wno-alloca
6020 @opindex Walloca
6021 This option warns on all uses of @code{alloca} in the source.
6022
6023 @item -Walloca-larger-than=@var{byte-size}
6024 @opindex Walloca-larger-than=
6025 @opindex Wno-alloca-larger-than
6026 This option warns on calls to @code{alloca} with an integer argument whose
6027 value is either zero, or that is not bounded by a controlling predicate
6028 that limits its value to at most @var{byte-size}. It also warns for calls
6029 to @code{alloca} where the bound value is unknown. Arguments of non-integer
6030 types are considered unbounded even if they appear to be constrained to
6031 the expected range.
6032
6033 For example, a bounded case of @code{alloca} could be:
6034
6035 @smallexample
6036 void func (size_t n)
6037 @{
6038 void *p;
6039 if (n <= 1000)
6040 p = alloca (n);
6041 else
6042 p = malloc (n);
6043 f (p);
6044 @}
6045 @end smallexample
6046
6047 In the above example, passing @code{-Walloca-larger-than=1000} would not
6048 issue a warning because the call to @code{alloca} is known to be at most
6049 1000 bytes. However, if @code{-Walloca-larger-than=500} were passed,
6050 the compiler would emit a warning.
6051
6052 Unbounded uses, on the other hand, are uses of @code{alloca} with no
6053 controlling predicate constraining its integer argument. For example:
6054
6055 @smallexample
6056 void func ()
6057 @{
6058 void *p = alloca (n);
6059 f (p);
6060 @}
6061 @end smallexample
6062
6063 If @code{-Walloca-larger-than=500} were passed, the above would trigger
6064 a warning, but this time because of the lack of bounds checking.
6065
6066 Note, that even seemingly correct code involving signed integers could
6067 cause a warning:
6068
6069 @smallexample
6070 void func (signed int n)
6071 @{
6072 if (n < 500)
6073 @{
6074 p = alloca (n);
6075 f (p);
6076 @}
6077 @}
6078 @end smallexample
6079
6080 In the above example, @var{n} could be negative, causing a larger than
6081 expected argument to be implicitly cast into the @code{alloca} call.
6082
6083 This option also warns when @code{alloca} is used in a loop.
6084
6085 @option{-Walloca-larger-than=}@samp{PTRDIFF_MAX} is enabled by default
6086 but is usually only effective when @option{-ftree-vrp} is active (default
6087 for @option{-O2} and above).
6088
6089 See also @option{-Wvla-larger-than=}@samp{byte-size}.
6090
6091 @item -Wno-alloca-larger-than
6092 @opindex Wno-alloca-larger-than
6093 Disable @option{-Walloca-larger-than=} warnings. The option is
6094 equivalent to @option{-Walloca-larger-than=}@samp{SIZE_MAX} or larger.
6095
6096 @item -Warray-bounds
6097 @itemx -Warray-bounds=@var{n}
6098 @opindex Wno-array-bounds
6099 @opindex Warray-bounds
6100 This option is only active when @option{-ftree-vrp} is active
6101 (default for @option{-O2} and above). It warns about subscripts to arrays
6102 that are always out of bounds. This warning is enabled by @option{-Wall}.
6103
6104 @table @gcctabopt
6105 @item -Warray-bounds=1
6106 This is the warning level of @option{-Warray-bounds} and is enabled
6107 by @option{-Wall}; higher levels are not, and must be explicitly requested.
6108
6109 @item -Warray-bounds=2
6110 This warning level also warns about out of bounds access for
6111 arrays at the end of a struct and for arrays accessed through
6112 pointers. This warning level may give a larger number of
6113 false positives and is deactivated by default.
6114 @end table
6115
6116 @item -Wattribute-alias=@var{n}
6117 @itemx -Wno-attribute-alias
6118 @opindex -Wattribute-alias
6119 @opindex -Wno-attribute-alias
6120 Warn about declarations using the @code{alias} and similar attributes whose
6121 target is incompatible with the type of the alias.
6122 @xref{Function Attributes,,Declaring Attributes of Functions}.
6123
6124 @table @gcctabopt
6125 @item -Wattribute-alias=1
6126 The default warning level of the @option{-Wattribute-alias} option diagnoses
6127 incompatibilities between the type of the alias declaration and that of its
6128 target. Such incompatibilities are typically indicative of bugs.
6129
6130 @item -Wattribute-alias=2
6131
6132 At this level @option{-Wattribute-alias} also diagnoses cases where
6133 the attributes of the alias declaration are more restrictive than the
6134 attributes applied to its target. These mismatches can potentially
6135 result in incorrect code generation. In other cases they may be
6136 benign and could be resolved simply by adding the missing attribute to
6137 the target. For comparison, see the @option{-Wmissing-attributes}
6138 option, which controls diagnostics when the alias declaration is less
6139 restrictive than the target, rather than more restrictive.
6140
6141 Attributes considered include @code{alloc_align}, @code{alloc_size},
6142 @code{cold}, @code{const}, @code{hot}, @code{leaf}, @code{malloc},
6143 @code{nonnull}, @code{noreturn}, @code{nothrow}, @code{pure},
6144 @code{returns_nonnull}, and @code{returns_twice}.
6145 @end table
6146
6147 @option{-Wattribute-alias} is equivalent to @option{-Wattribute-alias=1}.
6148 This is the default. You can disable these warnings with either
6149 @option{-Wno-attribute-alias} or @option{-Wattribute-alias=0}.
6150
6151 @item -Wbool-compare
6152 @opindex Wno-bool-compare
6153 @opindex Wbool-compare
6154 Warn about boolean expression compared with an integer value different from
6155 @code{true}/@code{false}. For instance, the following comparison is
6156 always false:
6157 @smallexample
6158 int n = 5;
6159 @dots{}
6160 if ((n > 1) == 2) @{ @dots{} @}
6161 @end smallexample
6162 This warning is enabled by @option{-Wall}.
6163
6164 @item -Wbool-operation
6165 @opindex Wno-bool-operation
6166 @opindex Wbool-operation
6167 Warn about suspicious operations on expressions of a boolean type. For
6168 instance, bitwise negation of a boolean is very likely a bug in the program.
6169 For C, this warning also warns about incrementing or decrementing a boolean,
6170 which rarely makes sense. (In C++, decrementing a boolean is always invalid.
6171 Incrementing a boolean is invalid in C++17, and deprecated otherwise.)
6172
6173 This warning is enabled by @option{-Wall}.
6174
6175 @item -Wduplicated-branches
6176 @opindex Wno-duplicated-branches
6177 @opindex Wduplicated-branches
6178 Warn when an if-else has identical branches. This warning detects cases like
6179 @smallexample
6180 if (p != NULL)
6181 return 0;
6182 else
6183 return 0;
6184 @end smallexample
6185 It doesn't warn when both branches contain just a null statement. This warning
6186 also warn for conditional operators:
6187 @smallexample
6188 int i = x ? *p : *p;
6189 @end smallexample
6190
6191 @item -Wduplicated-cond
6192 @opindex Wno-duplicated-cond
6193 @opindex Wduplicated-cond
6194 Warn about duplicated conditions in an if-else-if chain. For instance,
6195 warn for the following code:
6196 @smallexample
6197 if (p->q != NULL) @{ @dots{} @}
6198 else if (p->q != NULL) @{ @dots{} @}
6199 @end smallexample
6200
6201 @item -Wframe-address
6202 @opindex Wno-frame-address
6203 @opindex Wframe-address
6204 Warn when the @samp{__builtin_frame_address} or @samp{__builtin_return_address}
6205 is called with an argument greater than 0. Such calls may return indeterminate
6206 values or crash the program. The warning is included in @option{-Wall}.
6207
6208 @item -Wno-discarded-qualifiers @r{(C and Objective-C only)}
6209 @opindex Wno-discarded-qualifiers
6210 @opindex Wdiscarded-qualifiers
6211 Do not warn if type qualifiers on pointers are being discarded.
6212 Typically, the compiler warns if a @code{const char *} variable is
6213 passed to a function that takes a @code{char *} parameter. This option
6214 can be used to suppress such a warning.
6215
6216 @item -Wno-discarded-array-qualifiers @r{(C and Objective-C only)}
6217 @opindex Wno-discarded-array-qualifiers
6218 @opindex Wdiscarded-array-qualifiers
6219 Do not warn if type qualifiers on arrays which are pointer targets
6220 are being discarded. Typically, the compiler warns if a
6221 @code{const int (*)[]} variable is passed to a function that
6222 takes a @code{int (*)[]} parameter. This option can be used to
6223 suppress such a warning.
6224
6225 @item -Wno-incompatible-pointer-types @r{(C and Objective-C only)}
6226 @opindex Wno-incompatible-pointer-types
6227 @opindex Wincompatible-pointer-types
6228 Do not warn when there is a conversion between pointers that have incompatible
6229 types. This warning is for cases not covered by @option{-Wno-pointer-sign},
6230 which warns for pointer argument passing or assignment with different
6231 signedness.
6232
6233 @item -Wno-int-conversion @r{(C and Objective-C only)}
6234 @opindex Wno-int-conversion
6235 @opindex Wint-conversion
6236 Do not warn about incompatible integer to pointer and pointer to integer
6237 conversions. This warning is about implicit conversions; for explicit
6238 conversions the warnings @option{-Wno-int-to-pointer-cast} and
6239 @option{-Wno-pointer-to-int-cast} may be used.
6240
6241 @item -Wno-div-by-zero
6242 @opindex Wno-div-by-zero
6243 @opindex Wdiv-by-zero
6244 Do not warn about compile-time integer division by zero. Floating-point
6245 division by zero is not warned about, as it can be a legitimate way of
6246 obtaining infinities and NaNs.
6247
6248 @item -Wsystem-headers
6249 @opindex Wsystem-headers
6250 @opindex Wno-system-headers
6251 @cindex warnings from system headers
6252 @cindex system headers, warnings from
6253 Print warning messages for constructs found in system header files.
6254 Warnings from system headers are normally suppressed, on the assumption
6255 that they usually do not indicate real problems and would only make the
6256 compiler output harder to read. Using this command-line option tells
6257 GCC to emit warnings from system headers as if they occurred in user
6258 code. However, note that using @option{-Wall} in conjunction with this
6259 option does @emph{not} warn about unknown pragmas in system
6260 headers---for that, @option{-Wunknown-pragmas} must also be used.
6261
6262 @item -Wtautological-compare
6263 @opindex Wtautological-compare
6264 @opindex Wno-tautological-compare
6265 Warn if a self-comparison always evaluates to true or false. This
6266 warning detects various mistakes such as:
6267 @smallexample
6268 int i = 1;
6269 @dots{}
6270 if (i > i) @{ @dots{} @}
6271 @end smallexample
6272
6273 This warning also warns about bitwise comparisons that always evaluate
6274 to true or false, for instance:
6275 @smallexample
6276 if ((a & 16) == 10) @{ @dots{} @}
6277 @end smallexample
6278 will always be false.
6279
6280 This warning is enabled by @option{-Wall}.
6281
6282 @item -Wtrampolines
6283 @opindex Wtrampolines
6284 @opindex Wno-trampolines
6285 Warn about trampolines generated for pointers to nested functions.
6286 A trampoline is a small piece of data or code that is created at run
6287 time on the stack when the address of a nested function is taken, and is
6288 used to call the nested function indirectly. For some targets, it is
6289 made up of data only and thus requires no special treatment. But, for
6290 most targets, it is made up of code and thus requires the stack to be
6291 made executable in order for the program to work properly.
6292
6293 @item -Wfloat-equal
6294 @opindex Wfloat-equal
6295 @opindex Wno-float-equal
6296 Warn if floating-point values are used in equality comparisons.
6297
6298 The idea behind this is that sometimes it is convenient (for the
6299 programmer) to consider floating-point values as approximations to
6300 infinitely precise real numbers. If you are doing this, then you need
6301 to compute (by analyzing the code, or in some other way) the maximum or
6302 likely maximum error that the computation introduces, and allow for it
6303 when performing comparisons (and when producing output, but that's a
6304 different problem). In particular, instead of testing for equality, you
6305 should check to see whether the two values have ranges that overlap; and
6306 this is done with the relational operators, so equality comparisons are
6307 probably mistaken.
6308
6309 @item -Wtraditional @r{(C and Objective-C only)}
6310 @opindex Wtraditional
6311 @opindex Wno-traditional
6312 Warn about certain constructs that behave differently in traditional and
6313 ISO C@. Also warn about ISO C constructs that have no traditional C
6314 equivalent, and/or problematic constructs that should be avoided.
6315
6316 @itemize @bullet
6317 @item
6318 Macro parameters that appear within string literals in the macro body.
6319 In traditional C macro replacement takes place within string literals,
6320 but in ISO C it does not.
6321
6322 @item
6323 In traditional C, some preprocessor directives did not exist.
6324 Traditional preprocessors only considered a line to be a directive
6325 if the @samp{#} appeared in column 1 on the line. Therefore
6326 @option{-Wtraditional} warns about directives that traditional C
6327 understands but ignores because the @samp{#} does not appear as the
6328 first character on the line. It also suggests you hide directives like
6329 @code{#pragma} not understood by traditional C by indenting them. Some
6330 traditional implementations do not recognize @code{#elif}, so this option
6331 suggests avoiding it altogether.
6332
6333 @item
6334 A function-like macro that appears without arguments.
6335
6336 @item
6337 The unary plus operator.
6338
6339 @item
6340 The @samp{U} integer constant suffix, or the @samp{F} or @samp{L} floating-point
6341 constant suffixes. (Traditional C does support the @samp{L} suffix on integer
6342 constants.) Note, these suffixes appear in macros defined in the system
6343 headers of most modern systems, e.g.@: the @samp{_MIN}/@samp{_MAX} macros in @code{<limits.h>}.
6344 Use of these macros in user code might normally lead to spurious
6345 warnings, however GCC's integrated preprocessor has enough context to
6346 avoid warning in these cases.
6347
6348 @item
6349 A function declared external in one block and then used after the end of
6350 the block.
6351
6352 @item
6353 A @code{switch} statement has an operand of type @code{long}.
6354
6355 @item
6356 A non-@code{static} function declaration follows a @code{static} one.
6357 This construct is not accepted by some traditional C compilers.
6358
6359 @item
6360 The ISO type of an integer constant has a different width or
6361 signedness from its traditional type. This warning is only issued if
6362 the base of the constant is ten. I.e.@: hexadecimal or octal values, which
6363 typically represent bit patterns, are not warned about.
6364
6365 @item
6366 Usage of ISO string concatenation is detected.
6367
6368 @item
6369 Initialization of automatic aggregates.
6370
6371 @item
6372 Identifier conflicts with labels. Traditional C lacks a separate
6373 namespace for labels.
6374
6375 @item
6376 Initialization of unions. If the initializer is zero, the warning is
6377 omitted. This is done under the assumption that the zero initializer in
6378 user code appears conditioned on e.g.@: @code{__STDC__} to avoid missing
6379 initializer warnings and relies on default initialization to zero in the
6380 traditional C case.
6381
6382 @item
6383 Conversions by prototypes between fixed/floating-point values and vice
6384 versa. The absence of these prototypes when compiling with traditional
6385 C causes serious problems. This is a subset of the possible
6386 conversion warnings; for the full set use @option{-Wtraditional-conversion}.
6387
6388 @item
6389 Use of ISO C style function definitions. This warning intentionally is
6390 @emph{not} issued for prototype declarations or variadic functions
6391 because these ISO C features appear in your code when using
6392 libiberty's traditional C compatibility macros, @code{PARAMS} and
6393 @code{VPARAMS}. This warning is also bypassed for nested functions
6394 because that feature is already a GCC extension and thus not relevant to
6395 traditional C compatibility.
6396 @end itemize
6397
6398 @item -Wtraditional-conversion @r{(C and Objective-C only)}
6399 @opindex Wtraditional-conversion
6400 @opindex Wno-traditional-conversion
6401 Warn if a prototype causes a type conversion that is different from what
6402 would happen to the same argument in the absence of a prototype. This
6403 includes conversions of fixed point to floating and vice versa, and
6404 conversions changing the width or signedness of a fixed-point argument
6405 except when the same as the default promotion.
6406
6407 @item -Wdeclaration-after-statement @r{(C and Objective-C only)}
6408 @opindex Wdeclaration-after-statement
6409 @opindex Wno-declaration-after-statement
6410 Warn when a declaration is found after a statement in a block. This
6411 construct, known from C++, was introduced with ISO C99 and is by default
6412 allowed in GCC@. It is not supported by ISO C90. @xref{Mixed Declarations}.
6413
6414 @item -Wshadow
6415 @opindex Wshadow
6416 @opindex Wno-shadow
6417 Warn whenever a local variable or type declaration shadows another
6418 variable, parameter, type, class member (in C++), or instance variable
6419 (in Objective-C) or whenever a built-in function is shadowed. Note
6420 that in C++, the compiler warns if a local variable shadows an
6421 explicit typedef, but not if it shadows a struct/class/enum.
6422 Same as @option{-Wshadow=global}.
6423
6424 @item -Wno-shadow-ivar @r{(Objective-C only)}
6425 @opindex Wno-shadow-ivar
6426 @opindex Wshadow-ivar
6427 Do not warn whenever a local variable shadows an instance variable in an
6428 Objective-C method.
6429
6430 @item -Wshadow=global
6431 @opindex Wshadow=local
6432 The default for @option{-Wshadow}. Warns for any (global) shadowing.
6433
6434 @item -Wshadow=local
6435 @opindex Wshadow=local
6436 Warn when a local variable shadows another local variable or parameter.
6437 This warning is enabled by @option{-Wshadow=global}.
6438
6439 @item -Wshadow=compatible-local
6440 @opindex Wshadow=compatible-local
6441 Warn when a local variable shadows another local variable or parameter
6442 whose type is compatible with that of the shadowing variable. In C++,
6443 type compatibility here means the type of the shadowing variable can be
6444 converted to that of the shadowed variable. The creation of this flag
6445 (in addition to @option{-Wshadow=local}) is based on the idea that when
6446 a local variable shadows another one of incompatible type, it is most
6447 likely intentional, not a bug or typo, as shown in the following example:
6448
6449 @smallexample
6450 @group
6451 for (SomeIterator i = SomeObj.begin(); i != SomeObj.end(); ++i)
6452 @{
6453 for (int i = 0; i < N; ++i)
6454 @{
6455 ...
6456 @}
6457 ...
6458 @}
6459 @end group
6460 @end smallexample
6461
6462 Since the two variable @code{i} in the example above have incompatible types,
6463 enabling only @option{-Wshadow=compatible-local} will not emit a warning.
6464 Because their types are incompatible, if a programmer accidentally uses one
6465 in place of the other, type checking will catch that and emit an error or
6466 warning. So not warning (about shadowing) in this case will not lead to
6467 undetected bugs. Use of this flag instead of @option{-Wshadow=local} can
6468 possibly reduce the number of warnings triggered by intentional shadowing.
6469
6470 This warning is enabled by @option{-Wshadow=local}.
6471
6472 @item -Wlarger-than=@var{byte-size}
6473 @opindex Wlarger-than=
6474 @opindex Wlarger-than-@var{byte-size}
6475 Warn whenever an object is defined whose size exceeds @var{byte-size}.
6476 @option{-Wlarger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6477 Warnings controlled by the option can be disabled either by specifying
6478 @var{byte-size} of @samp{SIZE_MAX} or more or by
6479 @option{-Wno-larger-than}.
6480
6481 @item -Wno-larger-than
6482 @opindex Wno-larger-than
6483 Disable @option{-Wlarger-than=} warnings. The option is equivalent
6484 to @option{-Wlarger-than=}@samp{SIZE_MAX} or larger.
6485
6486 @item -Wframe-larger-than=@var{byte-size}
6487 @opindex Wframe-larger-than=
6488 @opindex Wno-frame-larger-than
6489 Warn if the size of a function frame exceeds @var{byte-size}.
6490 The computation done to determine the stack frame size is approximate
6491 and not conservative.
6492 The actual requirements may be somewhat greater than @var{byte-size}
6493 even if you do not get a warning. In addition, any space allocated
6494 via @code{alloca}, variable-length arrays, or related constructs
6495 is not included by the compiler when determining
6496 whether or not to issue a warning.
6497 @option{-Wframe-larger-than=}@samp{PTRDIFF_MAX} is enabled by default.
6498 Warnings controlled by the option can be disabled either by specifying
6499 @var{byte-size} of @samp{SIZE_MAX} or more or by
6500 @option{-Wno-frame-larger-than}.
6501
6502 @item -Wno-frame-larger-than
6503 @opindex Wno-frame-larger-than
6504 Disable @option{-Wframe-larger-than=} warnings. The option is equivalent
6505 to @option{-Wframe-larger-than=}@samp{SIZE_MAX} or larger.
6506
6507 @item -Wno-free-nonheap-object
6508 @opindex Wno-free-nonheap-object
6509 @opindex Wfree-nonheap-object
6510 Do not warn when attempting to free an object that was not allocated
6511 on the heap.
6512
6513 @item -Wstack-usage=@var{byte-size}
6514 @opindex Wstack-usage
6515 @opindex Wno-stack-usage
6516 Warn if the stack usage of a function might exceed @var{byte-size}.
6517 The computation done to determine the stack usage is conservative.
6518 Any space allocated via @code{alloca}, variable-length arrays, or related
6519 constructs is included by the compiler when determining whether or not to
6520 issue a warning.
6521
6522 The message is in keeping with the output of @option{-fstack-usage}.
6523
6524 @itemize
6525 @item
6526 If the stack usage is fully static but exceeds the specified amount, it's:
6527
6528 @smallexample
6529 warning: stack usage is 1120 bytes
6530 @end smallexample
6531 @item
6532 If the stack usage is (partly) dynamic but bounded, it's:
6533
6534 @smallexample
6535 warning: stack usage might be 1648 bytes
6536 @end smallexample
6537 @item
6538 If the stack usage is (partly) dynamic and not bounded, it's:
6539
6540 @smallexample
6541 warning: stack usage might be unbounded
6542 @end smallexample
6543 @end itemize
6544
6545 @option{-Wstack-usage=}@samp{PTRDIFF_MAX} is enabled by default.
6546 Warnings controlled by the option can be disabled either by specifying
6547 @var{byte-size} of @samp{SIZE_MAX} or more or by
6548 @option{-Wno-stack-usage}.
6549
6550 @item -Wno-stack-usage
6551 @opindex Wno-stack-usage
6552 Disable @option{-Wstack-usage=} warnings. The option is equivalent
6553 to @option{-Wstack-usage=}@samp{SIZE_MAX} or larger.
6554
6555 @item -Wunsafe-loop-optimizations
6556 @opindex Wunsafe-loop-optimizations
6557 @opindex Wno-unsafe-loop-optimizations
6558 Warn if the loop cannot be optimized because the compiler cannot
6559 assume anything on the bounds of the loop indices. With
6560 @option{-funsafe-loop-optimizations} warn if the compiler makes
6561 such assumptions.
6562
6563 @item -Wno-pedantic-ms-format @r{(MinGW targets only)}
6564 @opindex Wno-pedantic-ms-format
6565 @opindex Wpedantic-ms-format
6566 When used in combination with @option{-Wformat}
6567 and @option{-pedantic} without GNU extensions, this option
6568 disables the warnings about non-ISO @code{printf} / @code{scanf} format
6569 width specifiers @code{I32}, @code{I64}, and @code{I} used on Windows targets,
6570 which depend on the MS runtime.
6571
6572 @item -Waligned-new
6573 @opindex Waligned-new
6574 @opindex Wno-aligned-new
6575 Warn about a new-expression of a type that requires greater alignment
6576 than the @code{alignof(std::max_align_t)} but uses an allocation
6577 function without an explicit alignment parameter. This option is
6578 enabled by @option{-Wall}.
6579
6580 Normally this only warns about global allocation functions, but
6581 @option{-Waligned-new=all} also warns about class member allocation
6582 functions.
6583
6584 @item -Wplacement-new
6585 @itemx -Wplacement-new=@var{n}
6586 @opindex Wplacement-new
6587 @opindex Wno-placement-new
6588 Warn about placement new expressions with undefined behavior, such as
6589 constructing an object in a buffer that is smaller than the type of
6590 the object. For example, the placement new expression below is diagnosed
6591 because it attempts to construct an array of 64 integers in a buffer only
6592 64 bytes large.
6593 @smallexample
6594 char buf [64];
6595 new (buf) int[64];
6596 @end smallexample
6597 This warning is enabled by default.
6598
6599 @table @gcctabopt
6600 @item -Wplacement-new=1
6601 This is the default warning level of @option{-Wplacement-new}. At this
6602 level the warning is not issued for some strictly undefined constructs that
6603 GCC allows as extensions for compatibility with legacy code. For example,
6604 the following @code{new} expression is not diagnosed at this level even
6605 though it has undefined behavior according to the C++ standard because
6606 it writes past the end of the one-element array.
6607 @smallexample
6608 struct S @{ int n, a[1]; @};
6609 S *s = (S *)malloc (sizeof *s + 31 * sizeof s->a[0]);
6610 new (s->a)int [32]();
6611 @end smallexample
6612
6613 @item -Wplacement-new=2
6614 At this level, in addition to diagnosing all the same constructs as at level
6615 1, a diagnostic is also issued for placement new expressions that construct
6616 an object in the last member of structure whose type is an array of a single
6617 element and whose size is less than the size of the object being constructed.
6618 While the previous example would be diagnosed, the following construct makes
6619 use of the flexible member array extension to avoid the warning at level 2.
6620 @smallexample
6621 struct S @{ int n, a[]; @};
6622 S *s = (S *)malloc (sizeof *s + 32 * sizeof s->a[0]);
6623 new (s->a)int [32]();
6624 @end smallexample
6625
6626 @end table
6627
6628 @item -Wpointer-arith
6629 @opindex Wpointer-arith
6630 @opindex Wno-pointer-arith
6631 Warn about anything that depends on the ``size of'' a function type or
6632 of @code{void}. GNU C assigns these types a size of 1, for
6633 convenience in calculations with @code{void *} pointers and pointers
6634 to functions. In C++, warn also when an arithmetic operation involves
6635 @code{NULL}. This warning is also enabled by @option{-Wpedantic}.
6636
6637 @item -Wpointer-compare
6638 @opindex Wpointer-compare
6639 @opindex Wno-pointer-compare
6640 Warn if a pointer is compared with a zero character constant. This usually
6641 means that the pointer was meant to be dereferenced. For example:
6642
6643 @smallexample
6644 const char *p = foo ();
6645 if (p == '\0')
6646 return 42;
6647 @end smallexample
6648
6649 Note that the code above is invalid in C++11.
6650
6651 This warning is enabled by default.
6652
6653 @item -Wtype-limits
6654 @opindex Wtype-limits
6655 @opindex Wno-type-limits
6656 Warn if a comparison is always true or always false due to the limited
6657 range of the data type, but do not warn for constant expressions. For
6658 example, warn if an unsigned variable is compared against zero with
6659 @code{<} or @code{>=}. This warning is also enabled by
6660 @option{-Wextra}.
6661
6662 @item -Wabsolute-value @r{(C and Objective-C only)}
6663 @opindex Wabsolute-value
6664 @opindex Wno-absolute-value
6665 Warn for calls to standard functions that compute the absolute value
6666 of an argument when a more appropriate standard function is available.
6667 For example, calling @code{abs(3.14)} triggers the warning because the
6668 appropriate function to call to compute the absolute value of a double
6669 argument is @code{fabs}. The option also triggers warnings when the
6670 argument in a call to such a function has an unsigned type. This
6671 warning can be suppressed with an explicit type cast and it is also
6672 enabled by @option{-Wextra}.
6673
6674 @include cppwarnopts.texi
6675
6676 @item -Wbad-function-cast @r{(C and Objective-C only)}
6677 @opindex Wbad-function-cast
6678 @opindex Wno-bad-function-cast
6679 Warn when a function call is cast to a non-matching type.
6680 For example, warn if a call to a function returning an integer type
6681 is cast to a pointer type.
6682
6683 @item -Wc90-c99-compat @r{(C and Objective-C only)}
6684 @opindex Wc90-c99-compat
6685 @opindex Wno-c90-c99-compat
6686 Warn about features not present in ISO C90, but present in ISO C99.
6687 For instance, warn about use of variable length arrays, @code{long long}
6688 type, @code{bool} type, compound literals, designated initializers, and so
6689 on. This option is independent of the standards mode. Warnings are disabled
6690 in the expression that follows @code{__extension__}.
6691
6692 @item -Wc99-c11-compat @r{(C and Objective-C only)}
6693 @opindex Wc99-c11-compat
6694 @opindex Wno-c99-c11-compat
6695 Warn about features not present in ISO C99, but present in ISO C11.
6696 For instance, warn about use of anonymous structures and unions,
6697 @code{_Atomic} type qualifier, @code{_Thread_local} storage-class specifier,
6698 @code{_Alignas} specifier, @code{Alignof} operator, @code{_Generic} keyword,
6699 and so on. This option is independent of the standards mode. Warnings are
6700 disabled in the expression that follows @code{__extension__}.
6701
6702 @item -Wc++-compat @r{(C and Objective-C only)}
6703 @opindex Wc++-compat
6704 @opindex Wno-c++-compat
6705 Warn about ISO C constructs that are outside of the common subset of
6706 ISO C and ISO C++, e.g.@: request for implicit conversion from
6707 @code{void *} to a pointer to non-@code{void} type.
6708
6709 @item -Wc++11-compat @r{(C++ and Objective-C++ only)}
6710 @opindex Wc++11-compat
6711 @opindex Wno-c++11-compat
6712 Warn about C++ constructs whose meaning differs between ISO C++ 1998
6713 and ISO C++ 2011, e.g., identifiers in ISO C++ 1998 that are keywords
6714 in ISO C++ 2011. This warning turns on @option{-Wnarrowing} and is
6715 enabled by @option{-Wall}.
6716
6717 @item -Wc++14-compat @r{(C++ and Objective-C++ only)}
6718 @opindex Wc++14-compat
6719 @opindex Wno-c++14-compat
6720 Warn about C++ constructs whose meaning differs between ISO C++ 2011
6721 and ISO C++ 2014. This warning is enabled by @option{-Wall}.
6722
6723 @item -Wc++17-compat @r{(C++ and Objective-C++ only)}
6724 @opindex Wc++17-compat
6725 @opindex Wno-c++17-compat
6726 Warn about C++ constructs whose meaning differs between ISO C++ 2014
6727 and ISO C++ 2017. This warning is enabled by @option{-Wall}.
6728
6729 @item -Wcast-qual
6730 @opindex Wcast-qual
6731 @opindex Wno-cast-qual
6732 Warn whenever a pointer is cast so as to remove a type qualifier from
6733 the target type. For example, warn if a @code{const char *} is cast
6734 to an ordinary @code{char *}.
6735
6736 Also warn when making a cast that introduces a type qualifier in an
6737 unsafe way. For example, casting @code{char **} to @code{const char **}
6738 is unsafe, as in this example:
6739
6740 @smallexample
6741 /* p is char ** value. */
6742 const char **q = (const char **) p;
6743 /* Assignment of readonly string to const char * is OK. */
6744 *q = "string";
6745 /* Now char** pointer points to read-only memory. */
6746 **p = 'b';
6747 @end smallexample
6748
6749 @item -Wcast-align
6750 @opindex Wcast-align
6751 @opindex Wno-cast-align
6752 Warn whenever a pointer is cast such that the required alignment of the
6753 target is increased. For example, warn if a @code{char *} is cast to
6754 an @code{int *} on machines where integers can only be accessed at
6755 two- or four-byte boundaries.
6756
6757 @item -Wcast-align=strict
6758 @opindex Wcast-align=strict
6759 Warn whenever a pointer is cast such that the required alignment of the
6760 target is increased. For example, warn if a @code{char *} is cast to
6761 an @code{int *} regardless of the target machine.
6762
6763 @item -Wcast-function-type
6764 @opindex Wcast-function-type
6765 @opindex Wno-cast-function-type
6766 Warn when a function pointer is cast to an incompatible function pointer.
6767 In a cast involving function types with a variable argument list only
6768 the types of initial arguments that are provided are considered.
6769 Any parameter of pointer-type matches any other pointer-type. Any benign
6770 differences in integral types are ignored, like @code{int} vs.@: @code{long}
6771 on ILP32 targets. Likewise type qualifiers are ignored. The function
6772 type @code{void (*) (void)} is special and matches everything, which can
6773 be used to suppress this warning.
6774 In a cast involving pointer to member types this warning warns whenever
6775 the type cast is changing the pointer to member type.
6776 This warning is enabled by @option{-Wextra}.
6777
6778 @item -Wwrite-strings
6779 @opindex Wwrite-strings
6780 @opindex Wno-write-strings
6781 When compiling C, give string constants the type @code{const
6782 char[@var{length}]} so that copying the address of one into a
6783 non-@code{const} @code{char *} pointer produces a warning. These
6784 warnings help you find at compile time code that can try to write
6785 into a string constant, but only if you have been very careful about
6786 using @code{const} in declarations and prototypes. Otherwise, it is
6787 just a nuisance. This is why we did not make @option{-Wall} request
6788 these warnings.
6789
6790 When compiling C++, warn about the deprecated conversion from string
6791 literals to @code{char *}. This warning is enabled by default for C++
6792 programs.
6793
6794 @item -Wcatch-value
6795 @itemx -Wcatch-value=@var{n} @r{(C++ and Objective-C++ only)}
6796 @opindex Wcatch-value
6797 @opindex Wno-catch-value
6798 Warn about catch handlers that do not catch via reference.
6799 With @option{-Wcatch-value=1} (or @option{-Wcatch-value} for short)
6800 warn about polymorphic class types that are caught by value.
6801 With @option{-Wcatch-value=2} warn about all class types that are caught
6802 by value. With @option{-Wcatch-value=3} warn about all types that are
6803 not caught by reference. @option{-Wcatch-value} is enabled by @option{-Wall}.
6804
6805 @item -Wclobbered
6806 @opindex Wclobbered
6807 @opindex Wno-clobbered
6808 Warn for variables that might be changed by @code{longjmp} or
6809 @code{vfork}. This warning is also enabled by @option{-Wextra}.
6810
6811 @item -Wconditionally-supported @r{(C++ and Objective-C++ only)}
6812 @opindex Wconditionally-supported
6813 @opindex Wno-conditionally-supported
6814 Warn for conditionally-supported (C++11 [intro.defs]) constructs.
6815
6816 @item -Wconversion
6817 @opindex Wconversion
6818 @opindex Wno-conversion
6819 Warn for implicit conversions that may alter a value. This includes
6820 conversions between real and integer, like @code{abs (x)} when
6821 @code{x} is @code{double}; conversions between signed and unsigned,
6822 like @code{unsigned ui = -1}; and conversions to smaller types, like
6823 @code{sqrtf (M_PI)}. Do not warn for explicit casts like @code{abs
6824 ((int) x)} and @code{ui = (unsigned) -1}, or if the value is not
6825 changed by the conversion like in @code{abs (2.0)}. Warnings about
6826 conversions between signed and unsigned integers can be disabled by
6827 using @option{-Wno-sign-conversion}.
6828
6829 For C++, also warn for confusing overload resolution for user-defined
6830 conversions; and conversions that never use a type conversion
6831 operator: conversions to @code{void}, the same type, a base class or a
6832 reference to them. Warnings about conversions between signed and
6833 unsigned integers are disabled by default in C++ unless
6834 @option{-Wsign-conversion} is explicitly enabled.
6835
6836 @item -Wno-conversion-null @r{(C++ and Objective-C++ only)}
6837 @opindex Wconversion-null
6838 @opindex Wno-conversion-null
6839 Do not warn for conversions between @code{NULL} and non-pointer
6840 types. @option{-Wconversion-null} is enabled by default.
6841
6842 @item -Wzero-as-null-pointer-constant @r{(C++ and Objective-C++ only)}
6843 @opindex Wzero-as-null-pointer-constant
6844 @opindex Wno-zero-as-null-pointer-constant
6845 Warn when a literal @samp{0} is used as null pointer constant. This can
6846 be useful to facilitate the conversion to @code{nullptr} in C++11.
6847
6848 @item -Wsubobject-linkage @r{(C++ and Objective-C++ only)}
6849 @opindex Wsubobject-linkage
6850 @opindex Wno-subobject-linkage
6851 Warn if a class type has a base or a field whose type uses the anonymous
6852 namespace or depends on a type with no linkage. If a type A depends on
6853 a type B with no or internal linkage, defining it in multiple
6854 translation units would be an ODR violation because the meaning of B
6855 is different in each translation unit. If A only appears in a single
6856 translation unit, the best way to silence the warning is to give it
6857 internal linkage by putting it in an anonymous namespace as well. The
6858 compiler doesn't give this warning for types defined in the main .C
6859 file, as those are unlikely to have multiple definitions.
6860 @option{-Wsubobject-linkage} is enabled by default.
6861
6862 @item -Wdangling-else
6863 @opindex Wdangling-else
6864 @opindex Wno-dangling-else
6865 Warn about constructions where there may be confusion to which
6866 @code{if} statement an @code{else} branch belongs. Here is an example of
6867 such a case:
6868
6869 @smallexample
6870 @group
6871 @{
6872 if (a)
6873 if (b)
6874 foo ();
6875 else
6876 bar ();
6877 @}
6878 @end group
6879 @end smallexample
6880
6881 In C/C++, every @code{else} branch belongs to the innermost possible
6882 @code{if} statement, which in this example is @code{if (b)}. This is
6883 often not what the programmer expected, as illustrated in the above
6884 example by indentation the programmer chose. When there is the
6885 potential for this confusion, GCC issues a warning when this flag
6886 is specified. To eliminate the warning, add explicit braces around
6887 the innermost @code{if} statement so there is no way the @code{else}
6888 can belong to the enclosing @code{if}. The resulting code
6889 looks like this:
6890
6891 @smallexample
6892 @group
6893 @{
6894 if (a)
6895 @{
6896 if (b)
6897 foo ();
6898 else
6899 bar ();
6900 @}
6901 @}
6902 @end group
6903 @end smallexample
6904
6905 This warning is enabled by @option{-Wparentheses}.
6906
6907 @item -Wdate-time
6908 @opindex Wdate-time
6909 @opindex Wno-date-time
6910 Warn when macros @code{__TIME__}, @code{__DATE__} or @code{__TIMESTAMP__}
6911 are encountered as they might prevent bit-wise-identical reproducible
6912 compilations.
6913
6914 @item -Wdelete-incomplete @r{(C++ and Objective-C++ only)}
6915 @opindex Wdelete-incomplete
6916 @opindex Wno-delete-incomplete
6917 Warn when deleting a pointer to incomplete type, which may cause
6918 undefined behavior at runtime. This warning is enabled by default.
6919
6920 @item -Wuseless-cast @r{(C++ and Objective-C++ only)}
6921 @opindex Wuseless-cast
6922 @opindex Wno-useless-cast
6923 Warn when an expression is casted to its own type.
6924
6925 @item -Wempty-body
6926 @opindex Wempty-body
6927 @opindex Wno-empty-body
6928 Warn if an empty body occurs in an @code{if}, @code{else} or @code{do
6929 while} statement. This warning is also enabled by @option{-Wextra}.
6930
6931 @item -Wenum-compare
6932 @opindex Wenum-compare
6933 @opindex Wno-enum-compare
6934 Warn about a comparison between values of different enumerated types.
6935 In C++ enumerated type mismatches in conditional expressions are also
6936 diagnosed and the warning is enabled by default. In C this warning is
6937 enabled by @option{-Wall}.
6938
6939 @item -Wextra-semi @r{(C++, Objective-C++ only)}
6940 @opindex Wextra-semi
6941 @opindex Wno-extra-semi
6942 Warn about redundant semicolon after in-class function definition.
6943
6944 @item -Wjump-misses-init @r{(C, Objective-C only)}
6945 @opindex Wjump-misses-init
6946 @opindex Wno-jump-misses-init
6947 Warn if a @code{goto} statement or a @code{switch} statement jumps
6948 forward across the initialization of a variable, or jumps backward to a
6949 label after the variable has been initialized. This only warns about
6950 variables that are initialized when they are declared. This warning is
6951 only supported for C and Objective-C; in C++ this sort of branch is an
6952 error in any case.
6953
6954 @option{-Wjump-misses-init} is included in @option{-Wc++-compat}. It
6955 can be disabled with the @option{-Wno-jump-misses-init} option.
6956
6957 @item -Wsign-compare
6958 @opindex Wsign-compare
6959 @opindex Wno-sign-compare
6960 @cindex warning for comparison of signed and unsigned values
6961 @cindex comparison of signed and unsigned values, warning
6962 @cindex signed and unsigned values, comparison warning
6963 Warn when a comparison between signed and unsigned values could produce
6964 an incorrect result when the signed value is converted to unsigned.
6965 In C++, this warning is also enabled by @option{-Wall}. In C, it is
6966 also enabled by @option{-Wextra}.
6967
6968 @item -Wsign-conversion
6969 @opindex Wsign-conversion
6970 @opindex Wno-sign-conversion
6971 Warn for implicit conversions that may change the sign of an integer
6972 value, like assigning a signed integer expression to an unsigned
6973 integer variable. An explicit cast silences the warning. In C, this
6974 option is enabled also by @option{-Wconversion}.
6975
6976 @item -Wfloat-conversion
6977 @opindex Wfloat-conversion
6978 @opindex Wno-float-conversion
6979 Warn for implicit conversions that reduce the precision of a real value.
6980 This includes conversions from real to integer, and from higher precision
6981 real to lower precision real values. This option is also enabled by
6982 @option{-Wconversion}.
6983
6984 @item -Wno-scalar-storage-order
6985 @opindex Wno-scalar-storage-order
6986 @opindex Wscalar-storage-order
6987 Do not warn on suspicious constructs involving reverse scalar storage order.
6988
6989 @item -Wsized-deallocation @r{(C++ and Objective-C++ only)}
6990 @opindex Wsized-deallocation
6991 @opindex Wno-sized-deallocation
6992 Warn about a definition of an unsized deallocation function
6993 @smallexample
6994 void operator delete (void *) noexcept;
6995 void operator delete[] (void *) noexcept;
6996 @end smallexample
6997 without a definition of the corresponding sized deallocation function
6998 @smallexample
6999 void operator delete (void *, std::size_t) noexcept;
7000 void operator delete[] (void *, std::size_t) noexcept;
7001 @end smallexample
7002 or vice versa. Enabled by @option{-Wextra} along with
7003 @option{-fsized-deallocation}.
7004
7005 @item -Wsizeof-pointer-div
7006 @opindex Wsizeof-pointer-div
7007 @opindex Wno-sizeof-pointer-div
7008 Warn for suspicious divisions of two sizeof expressions that divide
7009 the pointer size by the element size, which is the usual way to compute
7010 the array size but won't work out correctly with pointers. This warning
7011 warns e.g.@: about @code{sizeof (ptr) / sizeof (ptr[0])} if @code{ptr} is
7012 not an array, but a pointer. This warning is enabled by @option{-Wall}.
7013
7014 @item -Wsizeof-pointer-memaccess
7015 @opindex Wsizeof-pointer-memaccess
7016 @opindex Wno-sizeof-pointer-memaccess
7017 Warn for suspicious length parameters to certain string and memory built-in
7018 functions if the argument uses @code{sizeof}. This warning triggers for
7019 example for @code{memset (ptr, 0, sizeof (ptr));} if @code{ptr} is not
7020 an array, but a pointer, and suggests a possible fix, or about
7021 @code{memcpy (&foo, ptr, sizeof (&foo));}. @option{-Wsizeof-pointer-memaccess}
7022 also warns about calls to bounded string copy functions like @code{strncat}
7023 or @code{strncpy} that specify as the bound a @code{sizeof} expression of
7024 the source array. For example, in the following function the call to
7025 @code{strncat} specifies the size of the source string as the bound. That
7026 is almost certainly a mistake and so the call is diagnosed.
7027 @smallexample
7028 void make_file (const char *name)
7029 @{
7030 char path[PATH_MAX];
7031 strncpy (path, name, sizeof path - 1);
7032 strncat (path, ".text", sizeof ".text");
7033 @dots{}
7034 @}
7035 @end smallexample
7036
7037 The @option{-Wsizeof-pointer-memaccess} option is enabled by @option{-Wall}.
7038
7039 @item -Wsizeof-array-argument
7040 @opindex Wsizeof-array-argument
7041 @opindex Wno-sizeof-array-argument
7042 Warn when the @code{sizeof} operator is applied to a parameter that is
7043 declared as an array in a function definition. This warning is enabled by
7044 default for C and C++ programs.
7045
7046 @item -Wmemset-elt-size
7047 @opindex Wmemset-elt-size
7048 @opindex Wno-memset-elt-size
7049 Warn for suspicious calls to the @code{memset} built-in function, if the
7050 first argument references an array, and the third argument is a number
7051 equal to the number of elements, but not equal to the size of the array
7052 in memory. This indicates that the user has omitted a multiplication by
7053 the element size. This warning is enabled by @option{-Wall}.
7054
7055 @item -Wmemset-transposed-args
7056 @opindex Wmemset-transposed-args
7057 @opindex Wno-memset-transposed-args
7058 Warn for suspicious calls to the @code{memset} built-in function where
7059 the second argument is not zero and the third argument is zero. For
7060 example, the call @code{memset (buf, sizeof buf, 0)} is diagnosed because
7061 @code{memset (buf, 0, sizeof buf)} was meant instead. The diagnostic
7062 is only emitted if the third argument is a literal zero. Otherwise, if
7063 it is an expression that is folded to zero, or a cast of zero to some
7064 type, it is far less likely that the arguments have been mistakenly
7065 transposed and no warning is emitted. This warning is enabled
7066 by @option{-Wall}.
7067
7068 @item -Waddress
7069 @opindex Waddress
7070 @opindex Wno-address
7071 Warn about suspicious uses of memory addresses. These include using
7072 the address of a function in a conditional expression, such as
7073 @code{void func(void); if (func)}, and comparisons against the memory
7074 address of a string literal, such as @code{if (x == "abc")}. Such
7075 uses typically indicate a programmer error: the address of a function
7076 always evaluates to true, so their use in a conditional usually
7077 indicate that the programmer forgot the parentheses in a function
7078 call; and comparisons against string literals result in unspecified
7079 behavior and are not portable in C, so they usually indicate that the
7080 programmer intended to use @code{strcmp}. This warning is enabled by
7081 @option{-Wall}.
7082
7083 @item -Waddress-of-packed-member
7084 @opindex Waddress-of-packed-member
7085 @opindex Wno-address-of-packed-member
7086 Warn when the address of packed member of struct or union is taken,
7087 which usually results in an unaligned pointer value. This is
7088 enabled by default.
7089
7090 @item -Wlogical-op
7091 @opindex Wlogical-op
7092 @opindex Wno-logical-op
7093 Warn about suspicious uses of logical operators in expressions.
7094 This includes using logical operators in contexts where a
7095 bit-wise operator is likely to be expected. Also warns when
7096 the operands of a logical operator are the same:
7097 @smallexample
7098 extern int a;
7099 if (a < 0 && a < 0) @{ @dots{} @}
7100 @end smallexample
7101
7102 @item -Wlogical-not-parentheses
7103 @opindex Wlogical-not-parentheses
7104 @opindex Wno-logical-not-parentheses
7105 Warn about logical not used on the left hand side operand of a comparison.
7106 This option does not warn if the right operand is considered to be a boolean
7107 expression. Its purpose is to detect suspicious code like the following:
7108 @smallexample
7109 int a;
7110 @dots{}
7111 if (!a > 1) @{ @dots{} @}
7112 @end smallexample
7113
7114 It is possible to suppress the warning by wrapping the LHS into
7115 parentheses:
7116 @smallexample
7117 if ((!a) > 1) @{ @dots{} @}
7118 @end smallexample
7119
7120 This warning is enabled by @option{-Wall}.
7121
7122 @item -Waggregate-return
7123 @opindex Waggregate-return
7124 @opindex Wno-aggregate-return
7125 Warn if any functions that return structures or unions are defined or
7126 called. (In languages where you can return an array, this also elicits
7127 a warning.)
7128
7129 @item -Wno-aggressive-loop-optimizations
7130 @opindex Wno-aggressive-loop-optimizations
7131 @opindex Waggressive-loop-optimizations
7132 Warn if in a loop with constant number of iterations the compiler detects
7133 undefined behavior in some statement during one or more of the iterations.
7134
7135 @item -Wno-attributes
7136 @opindex Wno-attributes
7137 @opindex Wattributes
7138 Do not warn if an unexpected @code{__attribute__} is used, such as
7139 unrecognized attributes, function attributes applied to variables,
7140 etc. This does not stop errors for incorrect use of supported
7141 attributes.
7142
7143 @item -Wno-builtin-declaration-mismatch
7144 @opindex Wno-builtin-declaration-mismatch
7145 @opindex Wbuiltin-declaration-mismatch
7146 Warn if a built-in function is declared with an incompatible signature
7147 or as a non-function, or when a built-in function declared with a type
7148 that does not include a prototype is called with arguments whose promoted
7149 types do not match those expected by the function. When @option{-Wextra}
7150 is specified, also warn when a built-in function that takes arguments is
7151 declared without a prototype. The @option{-Wno-builtin-declaration-mismatch}
7152 warning is enabled by default. To avoid the warning include the appropriate
7153 header to bring the prototypes of built-in functions into scope.
7154
7155 For example, the call to @code{memset} below is diagnosed by the warning
7156 because the function expects a value of type @code{size_t} as its argument
7157 but the type of @code{32} is @code{int}. With @option{-Wextra},
7158 the declaration of the function is diagnosed as well.
7159 @smallexample
7160 extern void* memset ();
7161 void f (void *d)
7162 @{
7163 memset (d, '\0', 32);
7164 @}
7165 @end smallexample
7166
7167 @item -Wno-builtin-macro-redefined
7168 @opindex Wno-builtin-macro-redefined
7169 @opindex Wbuiltin-macro-redefined
7170 Do not warn if certain built-in macros are redefined. This suppresses
7171 warnings for redefinition of @code{__TIMESTAMP__}, @code{__TIME__},
7172 @code{__DATE__}, @code{__FILE__}, and @code{__BASE_FILE__}.
7173
7174 @item -Wstrict-prototypes @r{(C and Objective-C only)}
7175 @opindex Wstrict-prototypes
7176 @opindex Wno-strict-prototypes
7177 Warn if a function is declared or defined without specifying the
7178 argument types. (An old-style function definition is permitted without
7179 a warning if preceded by a declaration that specifies the argument
7180 types.)
7181
7182 @item -Wold-style-declaration @r{(C and Objective-C only)}
7183 @opindex Wold-style-declaration
7184 @opindex Wno-old-style-declaration
7185 Warn for obsolescent usages, according to the C Standard, in a
7186 declaration. For example, warn if storage-class specifiers like
7187 @code{static} are not the first things in a declaration. This warning
7188 is also enabled by @option{-Wextra}.
7189
7190 @item -Wold-style-definition @r{(C and Objective-C only)}
7191 @opindex Wold-style-definition
7192 @opindex Wno-old-style-definition
7193 Warn if an old-style function definition is used. A warning is given
7194 even if there is a previous prototype.
7195
7196 @item -Wmissing-parameter-type @r{(C and Objective-C only)}
7197 @opindex Wmissing-parameter-type
7198 @opindex Wno-missing-parameter-type
7199 A function parameter is declared without a type specifier in K&R-style
7200 functions:
7201
7202 @smallexample
7203 void foo(bar) @{ @}
7204 @end smallexample
7205
7206 This warning is also enabled by @option{-Wextra}.
7207
7208 @item -Wmissing-prototypes @r{(C and Objective-C only)}
7209 @opindex Wmissing-prototypes
7210 @opindex Wno-missing-prototypes
7211 Warn if a global function is defined without a previous prototype
7212 declaration. This warning is issued even if the definition itself
7213 provides a prototype. Use this option to detect global functions
7214 that do not have a matching prototype declaration in a header file.
7215 This option is not valid for C++ because all function declarations
7216 provide prototypes and a non-matching declaration declares an
7217 overload rather than conflict with an earlier declaration.
7218 Use @option{-Wmissing-declarations} to detect missing declarations in C++.
7219
7220 @item -Wmissing-declarations
7221 @opindex Wmissing-declarations
7222 @opindex Wno-missing-declarations
7223 Warn if a global function is defined without a previous declaration.
7224 Do so even if the definition itself provides a prototype.
7225 Use this option to detect global functions that are not declared in
7226 header files. In C, no warnings are issued for functions with previous
7227 non-prototype declarations; use @option{-Wmissing-prototypes} to detect
7228 missing prototypes. In C++, no warnings are issued for function templates,
7229 or for inline functions, or for functions in anonymous namespaces.
7230
7231 @item -Wmissing-field-initializers
7232 @opindex Wmissing-field-initializers
7233 @opindex Wno-missing-field-initializers
7234 @opindex W
7235 @opindex Wextra
7236 @opindex Wno-extra
7237 Warn if a structure's initializer has some fields missing. For
7238 example, the following code causes such a warning, because
7239 @code{x.h} is implicitly zero:
7240
7241 @smallexample
7242 struct s @{ int f, g, h; @};
7243 struct s x = @{ 3, 4 @};
7244 @end smallexample
7245
7246 This option does not warn about designated initializers, so the following
7247 modification does not trigger a warning:
7248
7249 @smallexample
7250 struct s @{ int f, g, h; @};
7251 struct s x = @{ .f = 3, .g = 4 @};
7252 @end smallexample
7253
7254 In C this option does not warn about the universal zero initializer
7255 @samp{@{ 0 @}}:
7256
7257 @smallexample
7258 struct s @{ int f, g, h; @};
7259 struct s x = @{ 0 @};
7260 @end smallexample
7261
7262 Likewise, in C++ this option does not warn about the empty @{ @}
7263 initializer, for example:
7264
7265 @smallexample
7266 struct s @{ int f, g, h; @};
7267 s x = @{ @};
7268 @end smallexample
7269
7270 This warning is included in @option{-Wextra}. To get other @option{-Wextra}
7271 warnings without this one, use @option{-Wextra -Wno-missing-field-initializers}.
7272
7273 @item -Wno-multichar
7274 @opindex Wno-multichar
7275 @opindex Wmultichar
7276 Do not warn if a multicharacter constant (@samp{'FOOF'}) is used.
7277 Usually they indicate a typo in the user's code, as they have
7278 implementation-defined values, and should not be used in portable code.
7279
7280 @item -Wnormalized=@r{[}none@r{|}id@r{|}nfc@r{|}nfkc@r{]}
7281 @opindex Wnormalized=
7282 @opindex Wnormalized
7283 @opindex Wno-normalized
7284 @cindex NFC
7285 @cindex NFKC
7286 @cindex character set, input normalization
7287 In ISO C and ISO C++, two identifiers are different if they are
7288 different sequences of characters. However, sometimes when characters
7289 outside the basic ASCII character set are used, you can have two
7290 different character sequences that look the same. To avoid confusion,
7291 the ISO 10646 standard sets out some @dfn{normalization rules} which
7292 when applied ensure that two sequences that look the same are turned into
7293 the same sequence. GCC can warn you if you are using identifiers that
7294 have not been normalized; this option controls that warning.
7295
7296 There are four levels of warning supported by GCC@. The default is
7297 @option{-Wnormalized=nfc}, which warns about any identifier that is
7298 not in the ISO 10646 ``C'' normalized form, @dfn{NFC}. NFC is the
7299 recommended form for most uses. It is equivalent to
7300 @option{-Wnormalized}.
7301
7302 Unfortunately, there are some characters allowed in identifiers by
7303 ISO C and ISO C++ that, when turned into NFC, are not allowed in
7304 identifiers. That is, there's no way to use these symbols in portable
7305 ISO C or C++ and have all your identifiers in NFC@.
7306 @option{-Wnormalized=id} suppresses the warning for these characters.
7307 It is hoped that future versions of the standards involved will correct
7308 this, which is why this option is not the default.
7309
7310 You can switch the warning off for all characters by writing
7311 @option{-Wnormalized=none} or @option{-Wno-normalized}. You should
7312 only do this if you are using some other normalization scheme (like
7313 ``D''), because otherwise you can easily create bugs that are
7314 literally impossible to see.
7315
7316 Some characters in ISO 10646 have distinct meanings but look identical
7317 in some fonts or display methodologies, especially once formatting has
7318 been applied. For instance @code{\u207F}, ``SUPERSCRIPT LATIN SMALL
7319 LETTER N'', displays just like a regular @code{n} that has been
7320 placed in a superscript. ISO 10646 defines the @dfn{NFKC}
7321 normalization scheme to convert all these into a standard form as
7322 well, and GCC warns if your code is not in NFKC if you use
7323 @option{-Wnormalized=nfkc}. This warning is comparable to warning
7324 about every identifier that contains the letter O because it might be
7325 confused with the digit 0, and so is not the default, but may be
7326 useful as a local coding convention if the programming environment
7327 cannot be fixed to display these characters distinctly.
7328
7329 @item -Wno-attribute-warning
7330 @opindex Wno-attribute-warning
7331 @opindex Wattribute-warning
7332 Do not warn about usage of functions (@pxref{Function Attributes})
7333 declared with @code{warning} attribute. By default, this warning is
7334 enabled. @option{-Wno-attribute-warning} can be used to disable the
7335 warning or @option{-Wno-error=attribute-warning} can be used to
7336 disable the error when compiled with @option{-Werror} flag.
7337
7338 @item -Wno-deprecated
7339 @opindex Wno-deprecated
7340 @opindex Wdeprecated
7341 Do not warn about usage of deprecated features. @xref{Deprecated Features}.
7342
7343 @item -Wno-deprecated-declarations
7344 @opindex Wno-deprecated-declarations
7345 @opindex Wdeprecated-declarations
7346 Do not warn about uses of functions (@pxref{Function Attributes}),
7347 variables (@pxref{Variable Attributes}), and types (@pxref{Type
7348 Attributes}) marked as deprecated by using the @code{deprecated}
7349 attribute.
7350
7351 @item -Wno-overflow
7352 @opindex Wno-overflow
7353 @opindex Woverflow
7354 Do not warn about compile-time overflow in constant expressions.
7355
7356 @item -Wno-odr
7357 @opindex Wno-odr
7358 @opindex Wodr
7359 Warn about One Definition Rule violations during link-time optimization.
7360 Enabled by default.
7361
7362 @item -Wopenmp-simd
7363 @opindex Wopenmp-simd
7364 @opindex Wno-openmp-simd
7365 Warn if the vectorizer cost model overrides the OpenMP
7366 simd directive set by user. The @option{-fsimd-cost-model=unlimited}
7367 option can be used to relax the cost model.
7368
7369 @item -Woverride-init @r{(C and Objective-C only)}
7370 @opindex Woverride-init
7371 @opindex Wno-override-init
7372 @opindex W
7373 @opindex Wextra
7374 @opindex Wno-extra
7375 Warn if an initialized field without side effects is overridden when
7376 using designated initializers (@pxref{Designated Inits, , Designated
7377 Initializers}).
7378
7379 This warning is included in @option{-Wextra}. To get other
7380 @option{-Wextra} warnings without this one, use @option{-Wextra
7381 -Wno-override-init}.
7382
7383 @item -Woverride-init-side-effects @r{(C and Objective-C only)}
7384 @opindex Woverride-init-side-effects
7385 @opindex Wno-override-init-side-effects
7386 Warn if an initialized field with side effects is overridden when
7387 using designated initializers (@pxref{Designated Inits, , Designated
7388 Initializers}). This warning is enabled by default.
7389
7390 @item -Wpacked
7391 @opindex Wpacked
7392 @opindex Wno-packed
7393 Warn if a structure is given the packed attribute, but the packed
7394 attribute has no effect on the layout or size of the structure.
7395 Such structures may be mis-aligned for little benefit. For
7396 instance, in this code, the variable @code{f.x} in @code{struct bar}
7397 is misaligned even though @code{struct bar} does not itself
7398 have the packed attribute:
7399
7400 @smallexample
7401 @group
7402 struct foo @{
7403 int x;
7404 char a, b, c, d;
7405 @} __attribute__((packed));
7406 struct bar @{
7407 char z;
7408 struct foo f;
7409 @};
7410 @end group
7411 @end smallexample
7412
7413 @item -Wpacked-bitfield-compat
7414 @opindex Wpacked-bitfield-compat
7415 @opindex Wno-packed-bitfield-compat
7416 The 4.1, 4.2 and 4.3 series of GCC ignore the @code{packed} attribute
7417 on bit-fields of type @code{char}. This has been fixed in GCC 4.4 but
7418 the change can lead to differences in the structure layout. GCC
7419 informs you when the offset of such a field has changed in GCC 4.4.
7420 For example there is no longer a 4-bit padding between field @code{a}
7421 and @code{b} in this structure:
7422
7423 @smallexample
7424 struct foo
7425 @{
7426 char a:4;
7427 char b:8;
7428 @} __attribute__ ((packed));
7429 @end smallexample
7430
7431 This warning is enabled by default. Use
7432 @option{-Wno-packed-bitfield-compat} to disable this warning.
7433
7434 @item -Wpacked-not-aligned @r{(C, C++, Objective-C and Objective-C++ only)}
7435 @opindex Wpacked-not-aligned
7436 @opindex Wno-packed-not-aligned
7437 Warn if a structure field with explicitly specified alignment in a
7438 packed struct or union is misaligned. For example, a warning will
7439 be issued on @code{struct S}, like, @code{warning: alignment 1 of
7440 'struct S' is less than 8}, in this code:
7441
7442 @smallexample
7443 @group
7444 struct __attribute__ ((aligned (8))) S8 @{ char a[8]; @};
7445 struct __attribute__ ((packed)) S @{
7446 struct S8 s8;
7447 @};
7448 @end group
7449 @end smallexample
7450
7451 This warning is enabled by @option{-Wall}.
7452
7453 @item -Wpadded
7454 @opindex Wpadded
7455 @opindex Wno-padded
7456 Warn if padding is included in a structure, either to align an element
7457 of the structure or to align the whole structure. Sometimes when this
7458 happens it is possible to rearrange the fields of the structure to
7459 reduce the padding and so make the structure smaller.
7460
7461 @item -Wredundant-decls
7462 @opindex Wredundant-decls
7463 @opindex Wno-redundant-decls
7464 Warn if anything is declared more than once in the same scope, even in
7465 cases where multiple declaration is valid and changes nothing.
7466
7467 @item -Wno-restrict
7468 @opindex Wrestrict
7469 @opindex Wno-restrict
7470 Warn when an object referenced by a @code{restrict}-qualified parameter
7471 (or, in C++, a @code{__restrict}-qualified parameter) is aliased by another
7472 argument, or when copies between such objects overlap. For example,
7473 the call to the @code{strcpy} function below attempts to truncate the string
7474 by replacing its initial characters with the last four. However, because
7475 the call writes the terminating NUL into @code{a[4]}, the copies overlap and
7476 the call is diagnosed.
7477
7478 @smallexample
7479 void foo (void)
7480 @{
7481 char a[] = "abcd1234";
7482 strcpy (a, a + 4);
7483 @dots{}
7484 @}
7485 @end smallexample
7486 The @option{-Wrestrict} option detects some instances of simple overlap
7487 even without optimization but works best at @option{-O2} and above. It
7488 is included in @option{-Wall}.
7489
7490 @item -Wnested-externs @r{(C and Objective-C only)}
7491 @opindex Wnested-externs
7492 @opindex Wno-nested-externs
7493 Warn if an @code{extern} declaration is encountered within a function.
7494
7495 @item -Wno-inherited-variadic-ctor
7496 @opindex Winherited-variadic-ctor
7497 @opindex Wno-inherited-variadic-ctor
7498 Suppress warnings about use of C++11 inheriting constructors when the
7499 base class inherited from has a C variadic constructor; the warning is
7500 on by default because the ellipsis is not inherited.
7501
7502 @item -Winline
7503 @opindex Winline
7504 @opindex Wno-inline
7505 Warn if a function that is declared as inline cannot be inlined.
7506 Even with this option, the compiler does not warn about failures to
7507 inline functions declared in system headers.
7508
7509 The compiler uses a variety of heuristics to determine whether or not
7510 to inline a function. For example, the compiler takes into account
7511 the size of the function being inlined and the amount of inlining
7512 that has already been done in the current function. Therefore,
7513 seemingly insignificant changes in the source program can cause the
7514 warnings produced by @option{-Winline} to appear or disappear.
7515
7516 @item -Wno-invalid-offsetof @r{(C++ and Objective-C++ only)}
7517 @opindex Wno-invalid-offsetof
7518 @opindex Winvalid-offsetof
7519 Suppress warnings from applying the @code{offsetof} macro to a non-POD
7520 type. According to the 2014 ISO C++ standard, applying @code{offsetof}
7521 to a non-standard-layout type is undefined. In existing C++ implementations,
7522 however, @code{offsetof} typically gives meaningful results.
7523 This flag is for users who are aware that they are
7524 writing nonportable code and who have deliberately chosen to ignore the
7525 warning about it.
7526
7527 The restrictions on @code{offsetof} may be relaxed in a future version
7528 of the C++ standard.
7529
7530 @item -Wint-in-bool-context
7531 @opindex Wint-in-bool-context
7532 @opindex Wno-int-in-bool-context
7533 Warn for suspicious use of integer values where boolean values are expected,
7534 such as conditional expressions (?:) using non-boolean integer constants in
7535 boolean context, like @code{if (a <= b ? 2 : 3)}. Or left shifting of signed
7536 integers in boolean context, like @code{for (a = 0; 1 << a; a++);}. Likewise
7537 for all kinds of multiplications regardless of the data type.
7538 This warning is enabled by @option{-Wall}.
7539
7540 @item -Wno-int-to-pointer-cast
7541 @opindex Wno-int-to-pointer-cast
7542 @opindex Wint-to-pointer-cast
7543 Suppress warnings from casts to pointer type of an integer of a
7544 different size. In C++, casting to a pointer type of smaller size is
7545 an error. @option{Wint-to-pointer-cast} is enabled by default.
7546
7547
7548 @item -Wno-pointer-to-int-cast @r{(C and Objective-C only)}
7549 @opindex Wno-pointer-to-int-cast
7550 @opindex Wpointer-to-int-cast
7551 Suppress warnings from casts from a pointer to an integer type of a
7552 different size.
7553
7554 @item -Winvalid-pch
7555 @opindex Winvalid-pch
7556 @opindex Wno-invalid-pch
7557 Warn if a precompiled header (@pxref{Precompiled Headers}) is found in
7558 the search path but cannot be used.
7559
7560 @item -Wlong-long
7561 @opindex Wlong-long
7562 @opindex Wno-long-long
7563 Warn if @code{long long} type is used. This is enabled by either
7564 @option{-Wpedantic} or @option{-Wtraditional} in ISO C90 and C++98
7565 modes. To inhibit the warning messages, use @option{-Wno-long-long}.
7566
7567 @item -Wvariadic-macros
7568 @opindex Wvariadic-macros
7569 @opindex Wno-variadic-macros
7570 Warn if variadic macros are used in ISO C90 mode, or if the GNU
7571 alternate syntax is used in ISO C99 mode. This is enabled by either
7572 @option{-Wpedantic} or @option{-Wtraditional}. To inhibit the warning
7573 messages, use @option{-Wno-variadic-macros}.
7574
7575 @item -Wvarargs
7576 @opindex Wvarargs
7577 @opindex Wno-varargs
7578 Warn upon questionable usage of the macros used to handle variable
7579 arguments like @code{va_start}. This is default. To inhibit the
7580 warning messages, use @option{-Wno-varargs}.
7581
7582 @item -Wvector-operation-performance
7583 @opindex Wvector-operation-performance
7584 @opindex Wno-vector-operation-performance
7585 Warn if vector operation is not implemented via SIMD capabilities of the
7586 architecture. Mainly useful for the performance tuning.
7587 Vector operation can be implemented @code{piecewise}, which means that the
7588 scalar operation is performed on every vector element;
7589 @code{in parallel}, which means that the vector operation is implemented
7590 using scalars of wider type, which normally is more performance efficient;
7591 and @code{as a single scalar}, which means that vector fits into a
7592 scalar type.
7593
7594 @item -Wno-virtual-move-assign
7595 @opindex Wvirtual-move-assign
7596 @opindex Wno-virtual-move-assign
7597 Suppress warnings about inheriting from a virtual base with a
7598 non-trivial C++11 move assignment operator. This is dangerous because
7599 if the virtual base is reachable along more than one path, it is
7600 moved multiple times, which can mean both objects end up in the
7601 moved-from state. If the move assignment operator is written to avoid
7602 moving from a moved-from object, this warning can be disabled.
7603
7604 @item -Wvla
7605 @opindex Wvla
7606 @opindex Wno-vla
7607 Warn if a variable-length array is used in the code.
7608 @option{-Wno-vla} prevents the @option{-Wpedantic} warning of
7609 the variable-length array.
7610
7611 @item -Wvla-larger-than=@var{byte-size}
7612 @opindex Wvla-larger-than=
7613 @opindex Wno-vla-larger-than
7614 If this option is used, the compiler will warn for declarations of
7615 variable-length arrays whose size is either unbounded, or bounded
7616 by an argument that allows the array size to exceed @var{byte-size}
7617 bytes. This is similar to how @option{-Walloca-larger-than=}@var{byte-size}
7618 works, but with variable-length arrays.
7619
7620 Note that GCC may optimize small variable-length arrays of a known
7621 value into plain arrays, so this warning may not get triggered for
7622 such arrays.
7623
7624 @option{-Wvla-larger-than=}@samp{PTRDIFF_MAX} is enabled by default but
7625 is typically only effective when @option{-ftree-vrp} is active (default
7626 for @option{-O2} and above).
7627
7628 See also @option{-Walloca-larger-than=@var{byte-size}}.
7629
7630 @item -Wno-vla-larger-than
7631 @opindex Wno-vla-larger-than
7632 Disable @option{-Wvla-larger-than=} warnings. The option is equivalent
7633 to @option{-Wvla-larger-than=}@samp{SIZE_MAX} or larger.
7634
7635 @item -Wvolatile-register-var
7636 @opindex Wvolatile-register-var
7637 @opindex Wno-volatile-register-var
7638 Warn if a register variable is declared volatile. The volatile
7639 modifier does not inhibit all optimizations that may eliminate reads
7640 and/or writes to register variables. This warning is enabled by
7641 @option{-Wall}.
7642
7643 @item -Wdisabled-optimization
7644 @opindex Wdisabled-optimization
7645 @opindex Wno-disabled-optimization
7646 Warn if a requested optimization pass is disabled. This warning does
7647 not generally indicate that there is anything wrong with your code; it
7648 merely indicates that GCC's optimizers are unable to handle the code
7649 effectively. Often, the problem is that your code is too big or too
7650 complex; GCC refuses to optimize programs when the optimization
7651 itself is likely to take inordinate amounts of time.
7652
7653 @item -Wpointer-sign @r{(C and Objective-C only)}
7654 @opindex Wpointer-sign
7655 @opindex Wno-pointer-sign
7656 Warn for pointer argument passing or assignment with different signedness.
7657 This option is only supported for C and Objective-C@. It is implied by
7658 @option{-Wall} and by @option{-Wpedantic}, which can be disabled with
7659 @option{-Wno-pointer-sign}.
7660
7661 @item -Wstack-protector
7662 @opindex Wstack-protector
7663 @opindex Wno-stack-protector
7664 This option is only active when @option{-fstack-protector} is active. It
7665 warns about functions that are not protected against stack smashing.
7666
7667 @item -Woverlength-strings
7668 @opindex Woverlength-strings
7669 @opindex Wno-overlength-strings
7670 Warn about string constants that are longer than the ``minimum
7671 maximum'' length specified in the C standard. Modern compilers
7672 generally allow string constants that are much longer than the
7673 standard's minimum limit, but very portable programs should avoid
7674 using longer strings.
7675
7676 The limit applies @emph{after} string constant concatenation, and does
7677 not count the trailing NUL@. In C90, the limit was 509 characters; in
7678 C99, it was raised to 4095. C++98 does not specify a normative
7679 minimum maximum, so we do not diagnose overlength strings in C++@.
7680
7681 This option is implied by @option{-Wpedantic}, and can be disabled with
7682 @option{-Wno-overlength-strings}.
7683
7684 @item -Wunsuffixed-float-constants @r{(C and Objective-C only)}
7685 @opindex Wunsuffixed-float-constants
7686 @opindex Wno-unsuffixed-float-constants
7687
7688 Issue a warning for any floating constant that does not have
7689 a suffix. When used together with @option{-Wsystem-headers} it
7690 warns about such constants in system header files. This can be useful
7691 when preparing code to use with the @code{FLOAT_CONST_DECIMAL64} pragma
7692 from the decimal floating-point extension to C99.
7693
7694 @item -Wno-designated-init @r{(C and Objective-C only)}
7695 Suppress warnings when a positional initializer is used to initialize
7696 a structure that has been marked with the @code{designated_init}
7697 attribute.
7698
7699 @item -Whsa
7700 Issue a warning when HSAIL cannot be emitted for the compiled function or
7701 OpenMP construct.
7702
7703 @end table
7704
7705 @node Debugging Options
7706 @section Options for Debugging Your Program
7707 @cindex options, debugging
7708 @cindex debugging information options
7709
7710 To tell GCC to emit extra information for use by a debugger, in almost
7711 all cases you need only to add @option{-g} to your other options.
7712
7713 GCC allows you to use @option{-g} with
7714 @option{-O}. The shortcuts taken by optimized code may occasionally
7715 be surprising: some variables you declared may not exist
7716 at all; flow of control may briefly move where you did not expect it;
7717 some statements may not be executed because they compute constant
7718 results or their values are already at hand; some statements may
7719 execute in different places because they have been moved out of loops.
7720 Nevertheless it is possible to debug optimized output. This makes
7721 it reasonable to use the optimizer for programs that might have bugs.
7722
7723 If you are not using some other optimization option, consider
7724 using @option{-Og} (@pxref{Optimize Options}) with @option{-g}.
7725 With no @option{-O} option at all, some compiler passes that collect
7726 information useful for debugging do not run at all, so that
7727 @option{-Og} may result in a better debugging experience.
7728
7729 @table @gcctabopt
7730 @item -g
7731 @opindex g
7732 Produce debugging information in the operating system's native format
7733 (stabs, COFF, XCOFF, or DWARF)@. GDB can work with this debugging
7734 information.
7735
7736 On most systems that use stabs format, @option{-g} enables use of extra
7737 debugging information that only GDB can use; this extra information
7738 makes debugging work better in GDB but probably makes other debuggers
7739 crash or
7740 refuse to read the program. If you want to control for certain whether
7741 to generate the extra information, use @option{-gstabs+}, @option{-gstabs},
7742 @option{-gxcoff+}, @option{-gxcoff}, or @option{-gvms} (see below).
7743
7744 @item -ggdb
7745 @opindex ggdb
7746 Produce debugging information for use by GDB@. This means to use the
7747 most expressive format available (DWARF, stabs, or the native format
7748 if neither of those are supported), including GDB extensions if at all
7749 possible.
7750
7751 @item -gdwarf
7752 @itemx -gdwarf-@var{version}
7753 @opindex gdwarf
7754 Produce debugging information in DWARF format (if that is supported).
7755 The value of @var{version} may be either 2, 3, 4 or 5; the default version
7756 for most targets is 4. DWARF Version 5 is only experimental.
7757
7758 Note that with DWARF Version 2, some ports require and always
7759 use some non-conflicting DWARF 3 extensions in the unwind tables.
7760
7761 Version 4 may require GDB 7.0 and @option{-fvar-tracking-assignments}
7762 for maximum benefit.
7763
7764 GCC no longer supports DWARF Version 1, which is substantially
7765 different than Version 2 and later. For historical reasons, some
7766 other DWARF-related options such as
7767 @option{-fno-dwarf2-cfi-asm}) retain a reference to DWARF Version 2
7768 in their names, but apply to all currently-supported versions of DWARF.
7769
7770 @item -gstabs
7771 @opindex gstabs
7772 Produce debugging information in stabs format (if that is supported),
7773 without GDB extensions. This is the format used by DBX on most BSD
7774 systems. On MIPS, Alpha and System V Release 4 systems this option
7775 produces stabs debugging output that is not understood by DBX@.
7776 On System V Release 4 systems this option requires the GNU assembler.
7777
7778 @item -gstabs+
7779 @opindex gstabs+
7780 Produce debugging information in stabs format (if that is supported),
7781 using GNU extensions understood only by the GNU debugger (GDB)@. The
7782 use of these extensions is likely to make other debuggers crash or
7783 refuse to read the program.
7784
7785 @item -gxcoff
7786 @opindex gxcoff
7787 Produce debugging information in XCOFF format (if that is supported).
7788 This is the format used by the DBX debugger on IBM RS/6000 systems.
7789
7790 @item -gxcoff+
7791 @opindex gxcoff+
7792 Produce debugging information in XCOFF format (if that is supported),
7793 using GNU extensions understood only by the GNU debugger (GDB)@. The
7794 use of these extensions is likely to make other debuggers crash or
7795 refuse to read the program, and may cause assemblers other than the GNU
7796 assembler (GAS) to fail with an error.
7797
7798 @item -gvms
7799 @opindex gvms
7800 Produce debugging information in Alpha/VMS debug format (if that is
7801 supported). This is the format used by DEBUG on Alpha/VMS systems.
7802
7803 @item -g@var{level}
7804 @itemx -ggdb@var{level}
7805 @itemx -gstabs@var{level}
7806 @itemx -gxcoff@var{level}
7807 @itemx -gvms@var{level}
7808 Request debugging information and also use @var{level} to specify how
7809 much information. The default level is 2.
7810
7811 Level 0 produces no debug information at all. Thus, @option{-g0} negates
7812 @option{-g}.
7813
7814 Level 1 produces minimal information, enough for making backtraces in
7815 parts of the program that you don't plan to debug. This includes
7816 descriptions of functions and external variables, and line number
7817 tables, but no information about local variables.
7818
7819 Level 3 includes extra information, such as all the macro definitions
7820 present in the program. Some debuggers support macro expansion when
7821 you use @option{-g3}.
7822
7823 If you use multiple @option{-g} options, with or without level numbers,
7824 the last such option is the one that is effective.
7825
7826 @option{-gdwarf} does not accept a concatenated debug level, to avoid
7827 confusion with @option{-gdwarf-@var{level}}.
7828 Instead use an additional @option{-g@var{level}} option to change the
7829 debug level for DWARF.
7830
7831 @item -fno-eliminate-unused-debug-symbols
7832 @opindex feliminate-unused-debug-symbols
7833 @opindex fno-eliminate-unused-debug-symbols
7834 By default, no debug information is produced for symbols that are not actually
7835 used. Use this option if you want debug information for all symbols.
7836
7837 @item -femit-class-debug-always
7838 @opindex femit-class-debug-always
7839 Instead of emitting debugging information for a C++ class in only one
7840 object file, emit it in all object files using the class. This option
7841 should be used only with debuggers that are unable to handle the way GCC
7842 normally emits debugging information for classes because using this
7843 option increases the size of debugging information by as much as a
7844 factor of two.
7845
7846 @item -fno-merge-debug-strings
7847 @opindex fmerge-debug-strings
7848 @opindex fno-merge-debug-strings
7849 Direct the linker to not merge together strings in the debugging
7850 information that are identical in different object files. Merging is
7851 not supported by all assemblers or linkers. Merging decreases the size
7852 of the debug information in the output file at the cost of increasing
7853 link processing time. Merging is enabled by default.
7854
7855 @item -fdebug-prefix-map=@var{old}=@var{new}
7856 @opindex fdebug-prefix-map
7857 When compiling files residing in directory @file{@var{old}}, record
7858 debugging information describing them as if the files resided in
7859 directory @file{@var{new}} instead. This can be used to replace a
7860 build-time path with an install-time path in the debug info. It can
7861 also be used to change an absolute path to a relative path by using
7862 @file{.} for @var{new}. This can give more reproducible builds, which
7863 are location independent, but may require an extra command to tell GDB
7864 where to find the source files. See also @option{-ffile-prefix-map}.
7865
7866 @item -fvar-tracking
7867 @opindex fvar-tracking
7868 Run variable tracking pass. It computes where variables are stored at each
7869 position in code. Better debugging information is then generated
7870 (if the debugging information format supports this information).
7871
7872 It is enabled by default when compiling with optimization (@option{-Os},
7873 @option{-O}, @option{-O2}, @dots{}), debugging information (@option{-g}) and
7874 the debug info format supports it.
7875
7876 @item -fvar-tracking-assignments
7877 @opindex fvar-tracking-assignments
7878 @opindex fno-var-tracking-assignments
7879 Annotate assignments to user variables early in the compilation and
7880 attempt to carry the annotations over throughout the compilation all the
7881 way to the end, in an attempt to improve debug information while
7882 optimizing. Use of @option{-gdwarf-4} is recommended along with it.
7883
7884 It can be enabled even if var-tracking is disabled, in which case
7885 annotations are created and maintained, but discarded at the end.
7886 By default, this flag is enabled together with @option{-fvar-tracking},
7887 except when selective scheduling is enabled.
7888
7889 @item -gsplit-dwarf
7890 @opindex gsplit-dwarf
7891 Separate as much DWARF debugging information as possible into a
7892 separate output file with the extension @file{.dwo}. This option allows
7893 the build system to avoid linking files with debug information. To
7894 be useful, this option requires a debugger capable of reading @file{.dwo}
7895 files.
7896
7897 @item -gdescribe-dies
7898 @opindex gdescribe-dies
7899 Add description attributes to some DWARF DIEs that have no name attribute,
7900 such as artificial variables, external references and call site
7901 parameter DIEs.
7902
7903 @item -gpubnames
7904 @opindex gpubnames
7905 Generate DWARF @code{.debug_pubnames} and @code{.debug_pubtypes} sections.
7906
7907 @item -ggnu-pubnames
7908 @opindex ggnu-pubnames
7909 Generate @code{.debug_pubnames} and @code{.debug_pubtypes} sections in a format
7910 suitable for conversion into a GDB@ index. This option is only useful
7911 with a linker that can produce GDB@ index version 7.
7912
7913 @item -fdebug-types-section
7914 @opindex fdebug-types-section
7915 @opindex fno-debug-types-section
7916 When using DWARF Version 4 or higher, type DIEs can be put into
7917 their own @code{.debug_types} section instead of making them part of the
7918 @code{.debug_info} section. It is more efficient to put them in a separate
7919 comdat section since the linker can then remove duplicates.
7920 But not all DWARF consumers support @code{.debug_types} sections yet
7921 and on some objects @code{.debug_types} produces larger instead of smaller
7922 debugging information.
7923
7924 @item -grecord-gcc-switches
7925 @itemx -gno-record-gcc-switches
7926 @opindex grecord-gcc-switches
7927 @opindex gno-record-gcc-switches
7928 This switch causes the command-line options used to invoke the
7929 compiler that may affect code generation to be appended to the
7930 DW_AT_producer attribute in DWARF debugging information. The options
7931 are concatenated with spaces separating them from each other and from
7932 the compiler version.
7933 It is enabled by default.
7934 See also @option{-frecord-gcc-switches} for another
7935 way of storing compiler options into the object file.
7936
7937 @item -gstrict-dwarf
7938 @opindex gstrict-dwarf
7939 Disallow using extensions of later DWARF standard version than selected
7940 with @option{-gdwarf-@var{version}}. On most targets using non-conflicting
7941 DWARF extensions from later standard versions is allowed.
7942
7943 @item -gno-strict-dwarf
7944 @opindex gno-strict-dwarf
7945 Allow using extensions of later DWARF standard version than selected with
7946 @option{-gdwarf-@var{version}}.
7947
7948 @item -gas-loc-support
7949 @opindex gas-loc-support
7950 Inform the compiler that the assembler supports @code{.loc} directives.
7951 It may then use them for the assembler to generate DWARF2+ line number
7952 tables.
7953
7954 This is generally desirable, because assembler-generated line-number
7955 tables are a lot more compact than those the compiler can generate
7956 itself.
7957
7958 This option will be enabled by default if, at GCC configure time, the
7959 assembler was found to support such directives.
7960
7961 @item -gno-as-loc-support
7962 @opindex gno-as-loc-support
7963 Force GCC to generate DWARF2+ line number tables internally, if DWARF2+
7964 line number tables are to be generated.
7965
7966 @item -gas-locview-support
7967 @opindex gas-locview-support
7968 Inform the compiler that the assembler supports @code{view} assignment
7969 and reset assertion checking in @code{.loc} directives.
7970
7971 This option will be enabled by default if, at GCC configure time, the
7972 assembler was found to support them.
7973
7974 @item -gno-as-locview-support
7975 Force GCC to assign view numbers internally, if
7976 @option{-gvariable-location-views} are explicitly requested.
7977
7978 @item -gcolumn-info
7979 @itemx -gno-column-info
7980 @opindex gcolumn-info
7981 @opindex gno-column-info
7982 Emit location column information into DWARF debugging information, rather
7983 than just file and line.
7984 This option is enabled by default.
7985
7986 @item -gstatement-frontiers
7987 @itemx -gno-statement-frontiers
7988 @opindex gstatement-frontiers
7989 @opindex gno-statement-frontiers
7990 This option causes GCC to create markers in the internal representation
7991 at the beginning of statements, and to keep them roughly in place
7992 throughout compilation, using them to guide the output of @code{is_stmt}
7993 markers in the line number table. This is enabled by default when
7994 compiling with optimization (@option{-Os}, @option{-O}, @option{-O2},
7995 @dots{}), and outputting DWARF 2 debug information at the normal level.
7996
7997 @item -gvariable-location-views
7998 @itemx -gvariable-location-views=incompat5
7999 @itemx -gno-variable-location-views
8000 @opindex gvariable-location-views
8001 @opindex gvariable-location-views=incompat5
8002 @opindex gno-variable-location-views
8003 Augment variable location lists with progressive view numbers implied
8004 from the line number table. This enables debug information consumers to
8005 inspect state at certain points of the program, even if no instructions
8006 associated with the corresponding source locations are present at that
8007 point. If the assembler lacks support for view numbers in line number
8008 tables, this will cause the compiler to emit the line number table,
8009 which generally makes them somewhat less compact. The augmented line
8010 number tables and location lists are fully backward-compatible, so they
8011 can be consumed by debug information consumers that are not aware of
8012 these augmentations, but they won't derive any benefit from them either.
8013
8014 This is enabled by default when outputting DWARF 2 debug information at
8015 the normal level, as long as there is assembler support,
8016 @option{-fvar-tracking-assignments} is enabled and
8017 @option{-gstrict-dwarf} is not. When assembler support is not
8018 available, this may still be enabled, but it will force GCC to output
8019 internal line number tables, and if
8020 @option{-ginternal-reset-location-views} is not enabled, that will most
8021 certainly lead to silently mismatching location views.
8022
8023 There is a proposed representation for view numbers that is not backward
8024 compatible with the location list format introduced in DWARF 5, that can
8025 be enabled with @option{-gvariable-location-views=incompat5}. This
8026 option may be removed in the future, is only provided as a reference
8027 implementation of the proposed representation. Debug information
8028 consumers are not expected to support this extended format, and they
8029 would be rendered unable to decode location lists using it.
8030
8031 @item -ginternal-reset-location-views
8032 @itemx -gnointernal-reset-location-views
8033 @opindex ginternal-reset-location-views
8034 @opindex gno-internal-reset-location-views
8035 Attempt to determine location views that can be omitted from location
8036 view lists. This requires the compiler to have very accurate insn
8037 length estimates, which isn't always the case, and it may cause
8038 incorrect view lists to be generated silently when using an assembler
8039 that does not support location view lists. The GNU assembler will flag
8040 any such error as a @code{view number mismatch}. This is only enabled
8041 on ports that define a reliable estimation function.
8042
8043 @item -ginline-points
8044 @itemx -gno-inline-points
8045 @opindex ginline-points
8046 @opindex gno-inline-points
8047 Generate extended debug information for inlined functions. Location
8048 view tracking markers are inserted at inlined entry points, so that
8049 address and view numbers can be computed and output in debug
8050 information. This can be enabled independently of location views, in
8051 which case the view numbers won't be output, but it can only be enabled
8052 along with statement frontiers, and it is only enabled by default if
8053 location views are enabled.
8054
8055 @item -gz@r{[}=@var{type}@r{]}
8056 @opindex gz
8057 Produce compressed debug sections in DWARF format, if that is supported.
8058 If @var{type} is not given, the default type depends on the capabilities
8059 of the assembler and linker used. @var{type} may be one of
8060 @samp{none} (don't compress debug sections), @samp{zlib} (use zlib
8061 compression in ELF gABI format), or @samp{zlib-gnu} (use zlib
8062 compression in traditional GNU format). If the linker doesn't support
8063 writing compressed debug sections, the option is rejected. Otherwise,
8064 if the assembler does not support them, @option{-gz} is silently ignored
8065 when producing object files.
8066
8067 @item -femit-struct-debug-baseonly
8068 @opindex femit-struct-debug-baseonly
8069 Emit debug information for struct-like types
8070 only when the base name of the compilation source file
8071 matches the base name of file in which the struct is defined.
8072
8073 This option substantially reduces the size of debugging information,
8074 but at significant potential loss in type information to the debugger.
8075 See @option{-femit-struct-debug-reduced} for a less aggressive option.
8076 See @option{-femit-struct-debug-detailed} for more detailed control.
8077
8078 This option works only with DWARF debug output.
8079
8080 @item -femit-struct-debug-reduced
8081 @opindex femit-struct-debug-reduced
8082 Emit debug information for struct-like types
8083 only when the base name of the compilation source file
8084 matches the base name of file in which the type is defined,
8085 unless the struct is a template or defined in a system header.
8086
8087 This option significantly reduces the size of debugging information,
8088 with some potential loss in type information to the debugger.
8089 See @option{-femit-struct-debug-baseonly} for a more aggressive option.
8090 See @option{-femit-struct-debug-detailed} for more detailed control.
8091
8092 This option works only with DWARF debug output.
8093
8094 @item -femit-struct-debug-detailed@r{[}=@var{spec-list}@r{]}
8095 @opindex femit-struct-debug-detailed
8096 Specify the struct-like types
8097 for which the compiler generates debug information.
8098 The intent is to reduce duplicate struct debug information
8099 between different object files within the same program.
8100
8101 This option is a detailed version of
8102 @option{-femit-struct-debug-reduced} and @option{-femit-struct-debug-baseonly},
8103 which serves for most needs.
8104
8105 A specification has the syntax@*
8106 [@samp{dir:}|@samp{ind:}][@samp{ord:}|@samp{gen:}](@samp{any}|@samp{sys}|@samp{base}|@samp{none})
8107
8108 The optional first word limits the specification to
8109 structs that are used directly (@samp{dir:}) or used indirectly (@samp{ind:}).
8110 A struct type is used directly when it is the type of a variable, member.
8111 Indirect uses arise through pointers to structs.
8112 That is, when use of an incomplete struct is valid, the use is indirect.
8113 An example is
8114 @samp{struct one direct; struct two * indirect;}.
8115
8116 The optional second word limits the specification to
8117 ordinary structs (@samp{ord:}) or generic structs (@samp{gen:}).
8118 Generic structs are a bit complicated to explain.
8119 For C++, these are non-explicit specializations of template classes,
8120 or non-template classes within the above.
8121 Other programming languages have generics,
8122 but @option{-femit-struct-debug-detailed} does not yet implement them.
8123
8124 The third word specifies the source files for those
8125 structs for which the compiler should emit debug information.
8126 The values @samp{none} and @samp{any} have the normal meaning.
8127 The value @samp{base} means that
8128 the base of name of the file in which the type declaration appears
8129 must match the base of the name of the main compilation file.
8130 In practice, this means that when compiling @file{foo.c}, debug information
8131 is generated for types declared in that file and @file{foo.h},
8132 but not other header files.
8133 The value @samp{sys} means those types satisfying @samp{base}
8134 or declared in system or compiler headers.
8135
8136 You may need to experiment to determine the best settings for your application.
8137
8138 The default is @option{-femit-struct-debug-detailed=all}.
8139
8140 This option works only with DWARF debug output.
8141
8142 @item -fno-dwarf2-cfi-asm
8143 @opindex fdwarf2-cfi-asm
8144 @opindex fno-dwarf2-cfi-asm
8145 Emit DWARF unwind info as compiler generated @code{.eh_frame} section
8146 instead of using GAS @code{.cfi_*} directives.
8147
8148 @item -fno-eliminate-unused-debug-types
8149 @opindex feliminate-unused-debug-types
8150 @opindex fno-eliminate-unused-debug-types
8151 Normally, when producing DWARF output, GCC avoids producing debug symbol
8152 output for types that are nowhere used in the source file being compiled.
8153 Sometimes it is useful to have GCC emit debugging
8154 information for all types declared in a compilation
8155 unit, regardless of whether or not they are actually used
8156 in that compilation unit, for example
8157 if, in the debugger, you want to cast a value to a type that is
8158 not actually used in your program (but is declared). More often,
8159 however, this results in a significant amount of wasted space.
8160 @end table
8161
8162 @node Optimize Options
8163 @section Options That Control Optimization
8164 @cindex optimize options
8165 @cindex options, optimization
8166
8167 These options control various sorts of optimizations.
8168
8169 Without any optimization option, the compiler's goal is to reduce the
8170 cost of compilation and to make debugging produce the expected
8171 results. Statements are independent: if you stop the program with a
8172 breakpoint between statements, you can then assign a new value to any
8173 variable or change the program counter to any other statement in the
8174 function and get exactly the results you expect from the source
8175 code.
8176
8177 Turning on optimization flags makes the compiler attempt to improve
8178 the performance and/or code size at the expense of compilation time
8179 and possibly the ability to debug the program.
8180
8181 The compiler performs optimization based on the knowledge it has of the
8182 program. Compiling multiple files at once to a single output file mode allows
8183 the compiler to use information gained from all of the files when compiling
8184 each of them.
8185
8186 Not all optimizations are controlled directly by a flag. Only
8187 optimizations that have a flag are listed in this section.
8188
8189 Most optimizations are completely disabled at @option{-O0} or if an
8190 @option{-O} level is not set on the command line, even if individual
8191 optimization flags are specified. Similarly, @option{-Og} suppresses
8192 many optimization passes.
8193
8194 Depending on the target and how GCC was configured, a slightly different
8195 set of optimizations may be enabled at each @option{-O} level than
8196 those listed here. You can invoke GCC with @option{-Q --help=optimizers}
8197 to find out the exact set of optimizations that are enabled at each level.
8198 @xref{Overall Options}, for examples.
8199
8200 @table @gcctabopt
8201 @item -O
8202 @itemx -O1
8203 @opindex O
8204 @opindex O1
8205 Optimize. Optimizing compilation takes somewhat more time, and a lot
8206 more memory for a large function.
8207
8208 With @option{-O}, the compiler tries to reduce code size and execution
8209 time, without performing any optimizations that take a great deal of
8210 compilation time.
8211
8212 @c Note that in addition to the default_options_table list in opts.c,
8213 @c several optimization flags default to true but control optimization
8214 @c passes that are explicitly disabled at -O0.
8215
8216 @option{-O} turns on the following optimization flags:
8217
8218 @c Please keep the following list alphabetized.
8219 @gccoptlist{-fauto-inc-dec @gol
8220 -fbranch-count-reg @gol
8221 -fcombine-stack-adjustments @gol
8222 -fcompare-elim @gol
8223 -fcprop-registers @gol
8224 -fdce @gol
8225 -fdefer-pop @gol
8226 -fdelayed-branch @gol
8227 -fdse @gol
8228 -fforward-propagate @gol
8229 -fguess-branch-probability @gol
8230 -fif-conversion @gol
8231 -fif-conversion2 @gol
8232 -finline-functions-called-once @gol
8233 -fipa-profile @gol
8234 -fipa-pure-const @gol
8235 -fipa-reference @gol
8236 -fipa-reference-addressable @gol
8237 -fmerge-constants @gol
8238 -fmove-loop-invariants @gol
8239 -fomit-frame-pointer @gol
8240 -freorder-blocks @gol
8241 -fshrink-wrap @gol
8242 -fshrink-wrap-separate @gol
8243 -fsplit-wide-types @gol
8244 -fssa-backprop @gol
8245 -fssa-phiopt @gol
8246 -ftree-bit-ccp @gol
8247 -ftree-ccp @gol
8248 -ftree-ch @gol
8249 -ftree-coalesce-vars @gol
8250 -ftree-copy-prop @gol
8251 -ftree-dce @gol
8252 -ftree-dominator-opts @gol
8253 -ftree-dse @gol
8254 -ftree-forwprop @gol
8255 -ftree-fre @gol
8256 -ftree-phiprop @gol
8257 -ftree-pta @gol
8258 -ftree-scev-cprop @gol
8259 -ftree-sink @gol
8260 -ftree-slsr @gol
8261 -ftree-sra @gol
8262 -ftree-ter @gol
8263 -funit-at-a-time}
8264
8265 @item -O2
8266 @opindex O2
8267 Optimize even more. GCC performs nearly all supported optimizations
8268 that do not involve a space-speed tradeoff.
8269 As compared to @option{-O}, this option increases both compilation time
8270 and the performance of the generated code.
8271
8272 @option{-O2} turns on all optimization flags specified by @option{-O}. It
8273 also turns on the following optimization flags:
8274
8275 @c Please keep the following list alphabetized!
8276 @gccoptlist{-falign-functions -falign-jumps @gol
8277 -falign-labels -falign-loops @gol
8278 -fcaller-saves @gol
8279 -fcode-hoisting @gol
8280 -fcrossjumping @gol
8281 -fcse-follow-jumps -fcse-skip-blocks @gol
8282 -fdelete-null-pointer-checks @gol
8283 -fdevirtualize -fdevirtualize-speculatively @gol
8284 -fexpensive-optimizations @gol
8285 -fgcse -fgcse-lm @gol
8286 -fhoist-adjacent-loads @gol
8287 -finline-small-functions @gol
8288 -findirect-inlining @gol
8289 -fipa-bit-cp -fipa-cp -fipa-icf @gol
8290 -fipa-ra -fipa-sra -fipa-vrp @gol
8291 -fisolate-erroneous-paths-dereference @gol
8292 -flra-remat @gol
8293 -foptimize-sibling-calls @gol
8294 -foptimize-strlen @gol
8295 -fpartial-inlining @gol
8296 -fpeephole2 @gol
8297 -freorder-blocks-algorithm=stc @gol
8298 -freorder-blocks-and-partition -freorder-functions @gol
8299 -frerun-cse-after-loop @gol
8300 -fschedule-insns -fschedule-insns2 @gol
8301 -fsched-interblock -fsched-spec @gol
8302 -fstore-merging @gol
8303 -fstrict-aliasing @gol
8304 -fthread-jumps @gol
8305 -ftree-builtin-call-dce @gol
8306 -ftree-pre @gol
8307 -ftree-switch-conversion -ftree-tail-merge @gol
8308 -ftree-vrp}
8309
8310 Please note the warning under @option{-fgcse} about
8311 invoking @option{-O2} on programs that use computed gotos.
8312
8313 @item -O3
8314 @opindex O3
8315 Optimize yet more. @option{-O3} turns on all optimizations specified
8316 by @option{-O2} and also turns on the following optimization flags:
8317
8318 @c Please keep the following list alphabetized!
8319 @gccoptlist{-fgcse-after-reload @gol
8320 -finline-functions @gol
8321 -fipa-cp-clone
8322 -floop-interchange @gol
8323 -floop-unroll-and-jam @gol
8324 -fpeel-loops @gol
8325 -fpredictive-commoning @gol
8326 -fsplit-paths @gol
8327 -ftree-loop-distribute-patterns @gol
8328 -ftree-loop-distribution @gol
8329 -ftree-loop-vectorize @gol
8330 -ftree-partial-pre @gol
8331 -ftree-slp-vectorize @gol
8332 -funswitch-loops @gol
8333 -fvect-cost-model @gol
8334 -fversion-loops-for-strides}
8335
8336 @item -O0
8337 @opindex O0
8338 Reduce compilation time and make debugging produce the expected
8339 results. This is the default.
8340
8341 @item -Os
8342 @opindex Os
8343 Optimize for size. @option{-Os} enables all @option{-O2} optimizations
8344 except those that often increase code size:
8345
8346 @gccoptlist{-falign-functions -falign-jumps @gol
8347 -falign-labels -falign-loops @gol
8348 -fprefetch-loop-arrays -freorder-blocks-algorithm=stc}
8349
8350 It also enables @option{-finline-functions}, causes the compiler to tune for
8351 code size rather than execution speed, and performs further optimizations
8352 designed to reduce code size.
8353
8354 @item -Ofast
8355 @opindex Ofast
8356 Disregard strict standards compliance. @option{-Ofast} enables all
8357 @option{-O3} optimizations. It also enables optimizations that are not
8358 valid for all standard-compliant programs.
8359 It turns on @option{-ffast-math} and the Fortran-specific
8360 @option{-fstack-arrays}, unless @option{-fmax-stack-var-size} is
8361 specified, and @option{-fno-protect-parens}.
8362
8363 @item -Og
8364 @opindex Og
8365 Optimize debugging experience. @option{-Og} should be the optimization
8366 level of choice for the standard edit-compile-debug cycle, offering
8367 a reasonable level of optimization while maintaining fast compilation
8368 and a good debugging experience. It is a better choice than @option{-O0}
8369 for producing debuggable code because some compiler passes
8370 that collect debug information are disabled at @option{-O0}.
8371
8372 Like @option{-O0}, @option{-Og} completely disables a number of
8373 optimization passes so that individual options controlling them have
8374 no effect. Otherwise @option{-Og} enables all @option{-O1}
8375 optimization flags except for those that may interfere with debugging:
8376
8377 @gccoptlist{-fbranch-count-reg -fdelayed-branch @gol
8378 -fif-conversion -fif-conversion2 @gol
8379 -finline-functions-called-once @gol
8380 -fmove-loop-invariants -fssa-phiopt @gol
8381 -ftree-bit-ccp -ftree-pta -ftree-sra}
8382
8383 @end table
8384
8385 If you use multiple @option{-O} options, with or without level numbers,
8386 the last such option is the one that is effective.
8387
8388 Options of the form @option{-f@var{flag}} specify machine-independent
8389 flags. Most flags have both positive and negative forms; the negative
8390 form of @option{-ffoo} is @option{-fno-foo}. In the table
8391 below, only one of the forms is listed---the one you typically
8392 use. You can figure out the other form by either removing @samp{no-}
8393 or adding it.
8394
8395 The following options control specific optimizations. They are either
8396 activated by @option{-O} options or are related to ones that are. You
8397 can use the following flags in the rare cases when ``fine-tuning'' of
8398 optimizations to be performed is desired.
8399
8400 @table @gcctabopt
8401 @item -fno-defer-pop
8402 @opindex fno-defer-pop
8403 @opindex fdefer-pop
8404 For machines that must pop arguments after a function call, always pop
8405 the arguments as soon as each function returns.
8406 At levels @option{-O1} and higher, @option{-fdefer-pop} is the default;
8407 this allows the compiler to let arguments accumulate on the stack for several
8408 function calls and pop them all at once.
8409
8410 @item -fforward-propagate
8411 @opindex fforward-propagate
8412 Perform a forward propagation pass on RTL@. The pass tries to combine two
8413 instructions and checks if the result can be simplified. If loop unrolling
8414 is active, two passes are performed and the second is scheduled after
8415 loop unrolling.
8416
8417 This option is enabled by default at optimization levels @option{-O},
8418 @option{-O2}, @option{-O3}, @option{-Os}.
8419
8420 @item -ffp-contract=@var{style}
8421 @opindex ffp-contract
8422 @option{-ffp-contract=off} disables floating-point expression contraction.
8423 @option{-ffp-contract=fast} enables floating-point expression contraction
8424 such as forming of fused multiply-add operations if the target has
8425 native support for them.
8426 @option{-ffp-contract=on} enables floating-point expression contraction
8427 if allowed by the language standard. This is currently not implemented
8428 and treated equal to @option{-ffp-contract=off}.
8429
8430 The default is @option{-ffp-contract=fast}.
8431
8432 @item -fomit-frame-pointer
8433 @opindex fomit-frame-pointer
8434 Omit the frame pointer in functions that don't need one. This avoids the
8435 instructions to save, set up and restore the frame pointer; on many targets
8436 it also makes an extra register available.
8437
8438 On some targets this flag has no effect because the standard calling sequence
8439 always uses a frame pointer, so it cannot be omitted.
8440
8441 Note that @option{-fno-omit-frame-pointer} doesn't guarantee the frame pointer
8442 is used in all functions. Several targets always omit the frame pointer in
8443 leaf functions.
8444
8445 Enabled by default at @option{-O} and higher.
8446
8447 @item -foptimize-sibling-calls
8448 @opindex foptimize-sibling-calls
8449 Optimize sibling and tail recursive calls.
8450
8451 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8452
8453 @item -foptimize-strlen
8454 @opindex foptimize-strlen
8455 Optimize various standard C string functions (e.g.@: @code{strlen},
8456 @code{strchr} or @code{strcpy}) and
8457 their @code{_FORTIFY_SOURCE} counterparts into faster alternatives.
8458
8459 Enabled at levels @option{-O2}, @option{-O3}.
8460
8461 @item -fno-inline
8462 @opindex fno-inline
8463 @opindex finline
8464 Do not expand any functions inline apart from those marked with
8465 the @code{always_inline} attribute. This is the default when not
8466 optimizing.
8467
8468 Single functions can be exempted from inlining by marking them
8469 with the @code{noinline} attribute.
8470
8471 @item -finline-small-functions
8472 @opindex finline-small-functions
8473 Integrate functions into their callers when their body is smaller than expected
8474 function call code (so overall size of program gets smaller). The compiler
8475 heuristically decides which functions are simple enough to be worth integrating
8476 in this way. This inlining applies to all functions, even those not declared
8477 inline.
8478
8479 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8480
8481 @item -findirect-inlining
8482 @opindex findirect-inlining
8483 Inline also indirect calls that are discovered to be known at compile
8484 time thanks to previous inlining. This option has any effect only
8485 when inlining itself is turned on by the @option{-finline-functions}
8486 or @option{-finline-small-functions} options.
8487
8488 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8489
8490 @item -finline-functions
8491 @opindex finline-functions
8492 Consider all functions for inlining, even if they are not declared inline.
8493 The compiler heuristically decides which functions are worth integrating
8494 in this way.
8495
8496 If all calls to a given function are integrated, and the function is
8497 declared @code{static}, then the function is normally not output as
8498 assembler code in its own right.
8499
8500 Enabled at levels @option{-O3}, @option{-Os}. Also enabled
8501 by @option{-fprofile-use} and @option{-fauto-profile}.
8502
8503 @item -finline-functions-called-once
8504 @opindex finline-functions-called-once
8505 Consider all @code{static} functions called once for inlining into their
8506 caller even if they are not marked @code{inline}. If a call to a given
8507 function is integrated, then the function is not output as assembler code
8508 in its own right.
8509
8510 Enabled at levels @option{-O1}, @option{-O2}, @option{-O3} and @option{-Os},
8511 but not @option{-Og}.
8512
8513 @item -fearly-inlining
8514 @opindex fearly-inlining
8515 Inline functions marked by @code{always_inline} and functions whose body seems
8516 smaller than the function call overhead early before doing
8517 @option{-fprofile-generate} instrumentation and real inlining pass. Doing so
8518 makes profiling significantly cheaper and usually inlining faster on programs
8519 having large chains of nested wrapper functions.
8520
8521 Enabled by default.
8522
8523 @item -fipa-sra
8524 @opindex fipa-sra
8525 Perform interprocedural scalar replacement of aggregates, removal of
8526 unused parameters and replacement of parameters passed by reference
8527 by parameters passed by value.
8528
8529 Enabled at levels @option{-O2}, @option{-O3} and @option{-Os}.
8530
8531 @item -finline-limit=@var{n}
8532 @opindex finline-limit
8533 By default, GCC limits the size of functions that can be inlined. This flag
8534 allows coarse control of this limit. @var{n} is the size of functions that
8535 can be inlined in number of pseudo instructions.
8536
8537 Inlining is actually controlled by a number of parameters, which may be
8538 specified individually by using @option{--param @var{name}=@var{value}}.
8539 The @option{-finline-limit=@var{n}} option sets some of these parameters
8540 as follows:
8541
8542 @table @gcctabopt
8543 @item max-inline-insns-single
8544 is set to @var{n}/2.
8545 @item max-inline-insns-auto
8546 is set to @var{n}/2.
8547 @end table
8548
8549 See below for a documentation of the individual
8550 parameters controlling inlining and for the defaults of these parameters.
8551
8552 @emph{Note:} there may be no value to @option{-finline-limit} that results
8553 in default behavior.
8554
8555 @emph{Note:} pseudo instruction represents, in this particular context, an
8556 abstract measurement of function's size. In no way does it represent a count
8557 of assembly instructions and as such its exact meaning might change from one
8558 release to an another.
8559
8560 @item -fno-keep-inline-dllexport
8561 @opindex fno-keep-inline-dllexport
8562 @opindex fkeep-inline-dllexport
8563 This is a more fine-grained version of @option{-fkeep-inline-functions},
8564 which applies only to functions that are declared using the @code{dllexport}
8565 attribute or declspec. @xref{Function Attributes,,Declaring Attributes of
8566 Functions}.
8567
8568 @item -fkeep-inline-functions
8569 @opindex fkeep-inline-functions
8570 In C, emit @code{static} functions that are declared @code{inline}
8571 into the object file, even if the function has been inlined into all
8572 of its callers. This switch does not affect functions using the
8573 @code{extern inline} extension in GNU C90@. In C++, emit any and all
8574 inline functions into the object file.
8575
8576 @item -fkeep-static-functions
8577 @opindex fkeep-static-functions
8578 Emit @code{static} functions into the object file, even if the function
8579 is never used.
8580
8581 @item -fkeep-static-consts
8582 @opindex fkeep-static-consts
8583 Emit variables declared @code{static const} when optimization isn't turned
8584 on, even if the variables aren't referenced.
8585
8586 GCC enables this option by default. If you want to force the compiler to
8587 check if a variable is referenced, regardless of whether or not
8588 optimization is turned on, use the @option{-fno-keep-static-consts} option.
8589
8590 @item -fmerge-constants
8591 @opindex fmerge-constants
8592 Attempt to merge identical constants (string constants and floating-point
8593 constants) across compilation units.
8594
8595 This option is the default for optimized compilation if the assembler and
8596 linker support it. Use @option{-fno-merge-constants} to inhibit this
8597 behavior.
8598
8599 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
8600
8601 @item -fmerge-all-constants
8602 @opindex fmerge-all-constants
8603 Attempt to merge identical constants and identical variables.
8604
8605 This option implies @option{-fmerge-constants}. In addition to
8606 @option{-fmerge-constants} this considers e.g.@: even constant initialized
8607 arrays or initialized constant variables with integral or floating-point
8608 types. Languages like C or C++ require each variable, including multiple
8609 instances of the same variable in recursive calls, to have distinct locations,
8610 so using this option results in non-conforming
8611 behavior.
8612
8613 @item -fmodulo-sched
8614 @opindex fmodulo-sched
8615 Perform swing modulo scheduling immediately before the first scheduling
8616 pass. This pass looks at innermost loops and reorders their
8617 instructions by overlapping different iterations.
8618
8619 @item -fmodulo-sched-allow-regmoves
8620 @opindex fmodulo-sched-allow-regmoves
8621 Perform more aggressive SMS-based modulo scheduling with register moves
8622 allowed. By setting this flag certain anti-dependences edges are
8623 deleted, which triggers the generation of reg-moves based on the
8624 life-range analysis. This option is effective only with
8625 @option{-fmodulo-sched} enabled.
8626
8627 @item -fno-branch-count-reg
8628 @opindex fno-branch-count-reg
8629 @opindex fbranch-count-reg
8630 Disable the optimization pass that scans for opportunities to use
8631 ``decrement and branch'' instructions on a count register instead of
8632 instruction sequences that decrement a register, compare it against zero, and
8633 then branch based upon the result. This option is only meaningful on
8634 architectures that support such instructions, which include x86, PowerPC,
8635 IA-64 and S/390. Note that the @option{-fno-branch-count-reg} option
8636 doesn't remove the decrement and branch instructions from the generated
8637 instruction stream introduced by other optimization passes.
8638
8639 The default is @option{-fbranch-count-reg} at @option{-O1} and higher,
8640 except for @option{-Og}.
8641
8642 @item -fno-function-cse
8643 @opindex fno-function-cse
8644 @opindex ffunction-cse
8645 Do not put function addresses in registers; make each instruction that
8646 calls a constant function contain the function's address explicitly.
8647
8648 This option results in less efficient code, but some strange hacks
8649 that alter the assembler output may be confused by the optimizations
8650 performed when this option is not used.
8651
8652 The default is @option{-ffunction-cse}
8653
8654 @item -fno-zero-initialized-in-bss
8655 @opindex fno-zero-initialized-in-bss
8656 @opindex fzero-initialized-in-bss
8657 If the target supports a BSS section, GCC by default puts variables that
8658 are initialized to zero into BSS@. This can save space in the resulting
8659 code.
8660
8661 This option turns off this behavior because some programs explicitly
8662 rely on variables going to the data section---e.g., so that the
8663 resulting executable can find the beginning of that section and/or make
8664 assumptions based on that.
8665
8666 The default is @option{-fzero-initialized-in-bss}.
8667
8668 @item -fthread-jumps
8669 @opindex fthread-jumps
8670 Perform optimizations that check to see if a jump branches to a
8671 location where another comparison subsumed by the first is found. If
8672 so, the first branch is redirected to either the destination of the
8673 second branch or a point immediately following it, depending on whether
8674 the condition is known to be true or false.
8675
8676 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8677
8678 @item -fsplit-wide-types
8679 @opindex fsplit-wide-types
8680 When using a type that occupies multiple registers, such as @code{long
8681 long} on a 32-bit system, split the registers apart and allocate them
8682 independently. This normally generates better code for those types,
8683 but may make debugging more difficult.
8684
8685 Enabled at levels @option{-O}, @option{-O2}, @option{-O3},
8686 @option{-Os}.
8687
8688 @item -fcse-follow-jumps
8689 @opindex fcse-follow-jumps
8690 In common subexpression elimination (CSE), scan through jump instructions
8691 when the target of the jump is not reached by any other path. For
8692 example, when CSE encounters an @code{if} statement with an
8693 @code{else} clause, CSE follows the jump when the condition
8694 tested is false.
8695
8696 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8697
8698 @item -fcse-skip-blocks
8699 @opindex fcse-skip-blocks
8700 This is similar to @option{-fcse-follow-jumps}, but causes CSE to
8701 follow jumps that conditionally skip over blocks. When CSE
8702 encounters a simple @code{if} statement with no else clause,
8703 @option{-fcse-skip-blocks} causes CSE to follow the jump around the
8704 body of the @code{if}.
8705
8706 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8707
8708 @item -frerun-cse-after-loop
8709 @opindex frerun-cse-after-loop
8710 Re-run common subexpression elimination after loop optimizations are
8711 performed.
8712
8713 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8714
8715 @item -fgcse
8716 @opindex fgcse
8717 Perform a global common subexpression elimination pass.
8718 This pass also performs global constant and copy propagation.
8719
8720 @emph{Note:} When compiling a program using computed gotos, a GCC
8721 extension, you may get better run-time performance if you disable
8722 the global common subexpression elimination pass by adding
8723 @option{-fno-gcse} to the command line.
8724
8725 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8726
8727 @item -fgcse-lm
8728 @opindex fgcse-lm
8729 When @option{-fgcse-lm} is enabled, global common subexpression elimination
8730 attempts to move loads that are only killed by stores into themselves. This
8731 allows a loop containing a load/store sequence to be changed to a load outside
8732 the loop, and a copy/store within the loop.
8733
8734 Enabled by default when @option{-fgcse} is enabled.
8735
8736 @item -fgcse-sm
8737 @opindex fgcse-sm
8738 When @option{-fgcse-sm} is enabled, a store motion pass is run after
8739 global common subexpression elimination. This pass attempts to move
8740 stores out of loops. When used in conjunction with @option{-fgcse-lm},
8741 loops containing a load/store sequence can be changed to a load before
8742 the loop and a store after the loop.
8743
8744 Not enabled at any optimization level.
8745
8746 @item -fgcse-las
8747 @opindex fgcse-las
8748 When @option{-fgcse-las} is enabled, the global common subexpression
8749 elimination pass eliminates redundant loads that come after stores to the
8750 same memory location (both partial and full redundancies).
8751
8752 Not enabled at any optimization level.
8753
8754 @item -fgcse-after-reload
8755 @opindex fgcse-after-reload
8756 When @option{-fgcse-after-reload} is enabled, a redundant load elimination
8757 pass is performed after reload. The purpose of this pass is to clean up
8758 redundant spilling.
8759
8760 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
8761
8762 @item -faggressive-loop-optimizations
8763 @opindex faggressive-loop-optimizations
8764 This option tells the loop optimizer to use language constraints to
8765 derive bounds for the number of iterations of a loop. This assumes that
8766 loop code does not invoke undefined behavior by for example causing signed
8767 integer overflows or out-of-bound array accesses. The bounds for the
8768 number of iterations of a loop are used to guide loop unrolling and peeling
8769 and loop exit test optimizations.
8770 This option is enabled by default.
8771
8772 @item -funconstrained-commons
8773 @opindex funconstrained-commons
8774 This option tells the compiler that variables declared in common blocks
8775 (e.g.@: Fortran) may later be overridden with longer trailing arrays. This
8776 prevents certain optimizations that depend on knowing the array bounds.
8777
8778 @item -fcrossjumping
8779 @opindex fcrossjumping
8780 Perform cross-jumping transformation.
8781 This transformation unifies equivalent code and saves code size. The
8782 resulting code may or may not perform better than without cross-jumping.
8783
8784 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8785
8786 @item -fauto-inc-dec
8787 @opindex fauto-inc-dec
8788 Combine increments or decrements of addresses with memory accesses.
8789 This pass is always skipped on architectures that do not have
8790 instructions to support this. Enabled by default at @option{-O} and
8791 higher on architectures that support this.
8792
8793 @item -fdce
8794 @opindex fdce
8795 Perform dead code elimination (DCE) on RTL@.
8796 Enabled by default at @option{-O} and higher.
8797
8798 @item -fdse
8799 @opindex fdse
8800 Perform dead store elimination (DSE) on RTL@.
8801 Enabled by default at @option{-O} and higher.
8802
8803 @item -fif-conversion
8804 @opindex fif-conversion
8805 Attempt to transform conditional jumps into branch-less equivalents. This
8806 includes use of conditional moves, min, max, set flags and abs instructions, and
8807 some tricks doable by standard arithmetics. The use of conditional execution
8808 on chips where it is available is controlled by @option{-fif-conversion2}.
8809
8810 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8811 not with @option{-Og}.
8812
8813 @item -fif-conversion2
8814 @opindex fif-conversion2
8815 Use conditional execution (where available) to transform conditional jumps into
8816 branch-less equivalents.
8817
8818 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}, but
8819 not with @option{-Og}.
8820
8821 @item -fdeclone-ctor-dtor
8822 @opindex fdeclone-ctor-dtor
8823 The C++ ABI requires multiple entry points for constructors and
8824 destructors: one for a base subobject, one for a complete object, and
8825 one for a virtual destructor that calls operator delete afterwards.
8826 For a hierarchy with virtual bases, the base and complete variants are
8827 clones, which means two copies of the function. With this option, the
8828 base and complete variants are changed to be thunks that call a common
8829 implementation.
8830
8831 Enabled by @option{-Os}.
8832
8833 @item -fdelete-null-pointer-checks
8834 @opindex fdelete-null-pointer-checks
8835 Assume that programs cannot safely dereference null pointers, and that
8836 no code or data element resides at address zero.
8837 This option enables simple constant
8838 folding optimizations at all optimization levels. In addition, other
8839 optimization passes in GCC use this flag to control global dataflow
8840 analyses that eliminate useless checks for null pointers; these assume
8841 that a memory access to address zero always results in a trap, so
8842 that if a pointer is checked after it has already been dereferenced,
8843 it cannot be null.
8844
8845 Note however that in some environments this assumption is not true.
8846 Use @option{-fno-delete-null-pointer-checks} to disable this optimization
8847 for programs that depend on that behavior.
8848
8849 This option is enabled by default on most targets. On Nios II ELF, it
8850 defaults to off. On AVR, CR16, and MSP430, this option is completely disabled.
8851
8852 Passes that use the dataflow information
8853 are enabled independently at different optimization levels.
8854
8855 @item -fdevirtualize
8856 @opindex fdevirtualize
8857 Attempt to convert calls to virtual functions to direct calls. This
8858 is done both within a procedure and interprocedurally as part of
8859 indirect inlining (@option{-findirect-inlining}) and interprocedural constant
8860 propagation (@option{-fipa-cp}).
8861 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8862
8863 @item -fdevirtualize-speculatively
8864 @opindex fdevirtualize-speculatively
8865 Attempt to convert calls to virtual functions to speculative direct calls.
8866 Based on the analysis of the type inheritance graph, determine for a given call
8867 the set of likely targets. If the set is small, preferably of size 1, change
8868 the call into a conditional deciding between direct and indirect calls. The
8869 speculative calls enable more optimizations, such as inlining. When they seem
8870 useless after further optimization, they are converted back into original form.
8871
8872 @item -fdevirtualize-at-ltrans
8873 @opindex fdevirtualize-at-ltrans
8874 Stream extra information needed for aggressive devirtualization when running
8875 the link-time optimizer in local transformation mode.
8876 This option enables more devirtualization but
8877 significantly increases the size of streamed data. For this reason it is
8878 disabled by default.
8879
8880 @item -fexpensive-optimizations
8881 @opindex fexpensive-optimizations
8882 Perform a number of minor optimizations that are relatively expensive.
8883
8884 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8885
8886 @item -free
8887 @opindex free
8888 Attempt to remove redundant extension instructions. This is especially
8889 helpful for the x86-64 architecture, which implicitly zero-extends in 64-bit
8890 registers after writing to their lower 32-bit half.
8891
8892 Enabled for Alpha, AArch64 and x86 at levels @option{-O2},
8893 @option{-O3}, @option{-Os}.
8894
8895 @item -fno-lifetime-dse
8896 @opindex fno-lifetime-dse
8897 @opindex flifetime-dse
8898 In C++ the value of an object is only affected by changes within its
8899 lifetime: when the constructor begins, the object has an indeterminate
8900 value, and any changes during the lifetime of the object are dead when
8901 the object is destroyed. Normally dead store elimination will take
8902 advantage of this; if your code relies on the value of the object
8903 storage persisting beyond the lifetime of the object, you can use this
8904 flag to disable this optimization. To preserve stores before the
8905 constructor starts (e.g.@: because your operator new clears the object
8906 storage) but still treat the object as dead after the destructor you,
8907 can use @option{-flifetime-dse=1}. The default behavior can be
8908 explicitly selected with @option{-flifetime-dse=2}.
8909 @option{-flifetime-dse=0} is equivalent to @option{-fno-lifetime-dse}.
8910
8911 @item -flive-range-shrinkage
8912 @opindex flive-range-shrinkage
8913 Attempt to decrease register pressure through register live range
8914 shrinkage. This is helpful for fast processors with small or moderate
8915 size register sets.
8916
8917 @item -fira-algorithm=@var{algorithm}
8918 @opindex fira-algorithm
8919 Use the specified coloring algorithm for the integrated register
8920 allocator. The @var{algorithm} argument can be @samp{priority}, which
8921 specifies Chow's priority coloring, or @samp{CB}, which specifies
8922 Chaitin-Briggs coloring. Chaitin-Briggs coloring is not implemented
8923 for all architectures, but for those targets that do support it, it is
8924 the default because it generates better code.
8925
8926 @item -fira-region=@var{region}
8927 @opindex fira-region
8928 Use specified regions for the integrated register allocator. The
8929 @var{region} argument should be one of the following:
8930
8931 @table @samp
8932
8933 @item all
8934 Use all loops as register allocation regions.
8935 This can give the best results for machines with a small and/or
8936 irregular register set.
8937
8938 @item mixed
8939 Use all loops except for loops with small register pressure
8940 as the regions. This value usually gives
8941 the best results in most cases and for most architectures,
8942 and is enabled by default when compiling with optimization for speed
8943 (@option{-O}, @option{-O2}, @dots{}).
8944
8945 @item one
8946 Use all functions as a single region.
8947 This typically results in the smallest code size, and is enabled by default for
8948 @option{-Os} or @option{-O0}.
8949
8950 @end table
8951
8952 @item -fira-hoist-pressure
8953 @opindex fira-hoist-pressure
8954 Use IRA to evaluate register pressure in the code hoisting pass for
8955 decisions to hoist expressions. This option usually results in smaller
8956 code, but it can slow the compiler down.
8957
8958 This option is enabled at level @option{-Os} for all targets.
8959
8960 @item -fira-loop-pressure
8961 @opindex fira-loop-pressure
8962 Use IRA to evaluate register pressure in loops for decisions to move
8963 loop invariants. This option usually results in generation
8964 of faster and smaller code on machines with large register files (>= 32
8965 registers), but it can slow the compiler down.
8966
8967 This option is enabled at level @option{-O3} for some targets.
8968
8969 @item -fno-ira-share-save-slots
8970 @opindex fno-ira-share-save-slots
8971 @opindex fira-share-save-slots
8972 Disable sharing of stack slots used for saving call-used hard
8973 registers living through a call. Each hard register gets a
8974 separate stack slot, and as a result function stack frames are
8975 larger.
8976
8977 @item -fno-ira-share-spill-slots
8978 @opindex fno-ira-share-spill-slots
8979 @opindex fira-share-spill-slots
8980 Disable sharing of stack slots allocated for pseudo-registers. Each
8981 pseudo-register that does not get a hard register gets a separate
8982 stack slot, and as a result function stack frames are larger.
8983
8984 @item -flra-remat
8985 @opindex flra-remat
8986 Enable CFG-sensitive rematerialization in LRA. Instead of loading
8987 values of spilled pseudos, LRA tries to rematerialize (recalculate)
8988 values if it is profitable.
8989
8990 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
8991
8992 @item -fdelayed-branch
8993 @opindex fdelayed-branch
8994 If supported for the target machine, attempt to reorder instructions
8995 to exploit instruction slots available after delayed branch
8996 instructions.
8997
8998 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os},
8999 but not at @option{-Og}.
9000
9001 @item -fschedule-insns
9002 @opindex fschedule-insns
9003 If supported for the target machine, attempt to reorder instructions to
9004 eliminate execution stalls due to required data being unavailable. This
9005 helps machines that have slow floating point or memory load instructions
9006 by allowing other instructions to be issued until the result of the load
9007 or floating-point instruction is required.
9008
9009 Enabled at levels @option{-O2}, @option{-O3}.
9010
9011 @item -fschedule-insns2
9012 @opindex fschedule-insns2
9013 Similar to @option{-fschedule-insns}, but requests an additional pass of
9014 instruction scheduling after register allocation has been done. This is
9015 especially useful on machines with a relatively small number of
9016 registers and where memory load instructions take more than one cycle.
9017
9018 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9019
9020 @item -fno-sched-interblock
9021 @opindex fno-sched-interblock
9022 @opindex fsched-interblock
9023 Disable instruction scheduling across basic blocks, which
9024 is normally enabled when scheduling before register allocation, i.e.@:
9025 with @option{-fschedule-insns} or at @option{-O2} or higher.
9026
9027 @item -fno-sched-spec
9028 @opindex fno-sched-spec
9029 @opindex fsched-spec
9030 Disable speculative motion of non-load instructions, which
9031 is normally enabled when scheduling before register allocation, i.e.@:
9032 with @option{-fschedule-insns} or at @option{-O2} or higher.
9033
9034 @item -fsched-pressure
9035 @opindex fsched-pressure
9036 Enable register pressure sensitive insn scheduling before register
9037 allocation. This only makes sense when scheduling before register
9038 allocation is enabled, i.e.@: with @option{-fschedule-insns} or at
9039 @option{-O2} or higher. Usage of this option can improve the
9040 generated code and decrease its size by preventing register pressure
9041 increase above the number of available hard registers and subsequent
9042 spills in register allocation.
9043
9044 @item -fsched-spec-load
9045 @opindex fsched-spec-load
9046 Allow speculative motion of some load instructions. This only makes
9047 sense when scheduling before register allocation, i.e.@: with
9048 @option{-fschedule-insns} or at @option{-O2} or higher.
9049
9050 @item -fsched-spec-load-dangerous
9051 @opindex fsched-spec-load-dangerous
9052 Allow speculative motion of more load instructions. This only makes
9053 sense when scheduling before register allocation, i.e.@: with
9054 @option{-fschedule-insns} or at @option{-O2} or higher.
9055
9056 @item -fsched-stalled-insns
9057 @itemx -fsched-stalled-insns=@var{n}
9058 @opindex fsched-stalled-insns
9059 Define how many insns (if any) can be moved prematurely from the queue
9060 of stalled insns into the ready list during the second scheduling pass.
9061 @option{-fno-sched-stalled-insns} means that no insns are moved
9062 prematurely, @option{-fsched-stalled-insns=0} means there is no limit
9063 on how many queued insns can be moved prematurely.
9064 @option{-fsched-stalled-insns} without a value is equivalent to
9065 @option{-fsched-stalled-insns=1}.
9066
9067 @item -fsched-stalled-insns-dep
9068 @itemx -fsched-stalled-insns-dep=@var{n}
9069 @opindex fsched-stalled-insns-dep
9070 Define how many insn groups (cycles) are examined for a dependency
9071 on a stalled insn that is a candidate for premature removal from the queue
9072 of stalled insns. This has an effect only during the second scheduling pass,
9073 and only if @option{-fsched-stalled-insns} is used.
9074 @option{-fno-sched-stalled-insns-dep} is equivalent to
9075 @option{-fsched-stalled-insns-dep=0}.
9076 @option{-fsched-stalled-insns-dep} without a value is equivalent to
9077 @option{-fsched-stalled-insns-dep=1}.
9078
9079 @item -fsched2-use-superblocks
9080 @opindex fsched2-use-superblocks
9081 When scheduling after register allocation, use superblock scheduling.
9082 This allows motion across basic block boundaries,
9083 resulting in faster schedules. This option is experimental, as not all machine
9084 descriptions used by GCC model the CPU closely enough to avoid unreliable
9085 results from the algorithm.
9086
9087 This only makes sense when scheduling after register allocation, i.e.@: with
9088 @option{-fschedule-insns2} or at @option{-O2} or higher.
9089
9090 @item -fsched-group-heuristic
9091 @opindex fsched-group-heuristic
9092 Enable the group heuristic in the scheduler. This heuristic favors
9093 the instruction that belongs to a schedule group. This is enabled
9094 by default when scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9095 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9096
9097 @item -fsched-critical-path-heuristic
9098 @opindex fsched-critical-path-heuristic
9099 Enable the critical-path heuristic in the scheduler. This heuristic favors
9100 instructions on the critical path. This is enabled by default when
9101 scheduling is enabled, i.e.@: with @option{-fschedule-insns}
9102 or @option{-fschedule-insns2} or at @option{-O2} or higher.
9103
9104 @item -fsched-spec-insn-heuristic
9105 @opindex fsched-spec-insn-heuristic
9106 Enable the speculative instruction heuristic in the scheduler. This
9107 heuristic favors speculative instructions with greater dependency weakness.
9108 This is enabled by default when scheduling is enabled, i.e.@:
9109 with @option{-fschedule-insns} or @option{-fschedule-insns2}
9110 or at @option{-O2} or higher.
9111
9112 @item -fsched-rank-heuristic
9113 @opindex fsched-rank-heuristic
9114 Enable the rank heuristic in the scheduler. This heuristic favors
9115 the instruction belonging to a basic block with greater size or frequency.
9116 This is enabled by default when scheduling is enabled, i.e.@:
9117 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9118 at @option{-O2} or higher.
9119
9120 @item -fsched-last-insn-heuristic
9121 @opindex fsched-last-insn-heuristic
9122 Enable the last-instruction heuristic in the scheduler. This heuristic
9123 favors the instruction that is less dependent on the last instruction
9124 scheduled. This is enabled by default when scheduling is enabled,
9125 i.e.@: with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9126 at @option{-O2} or higher.
9127
9128 @item -fsched-dep-count-heuristic
9129 @opindex fsched-dep-count-heuristic
9130 Enable the dependent-count heuristic in the scheduler. This heuristic
9131 favors the instruction that has more instructions depending on it.
9132 This is enabled by default when scheduling is enabled, i.e.@:
9133 with @option{-fschedule-insns} or @option{-fschedule-insns2} or
9134 at @option{-O2} or higher.
9135
9136 @item -freschedule-modulo-scheduled-loops
9137 @opindex freschedule-modulo-scheduled-loops
9138 Modulo scheduling is performed before traditional scheduling. If a loop
9139 is modulo scheduled, later scheduling passes may change its schedule.
9140 Use this option to control that behavior.
9141
9142 @item -fselective-scheduling
9143 @opindex fselective-scheduling
9144 Schedule instructions using selective scheduling algorithm. Selective
9145 scheduling runs instead of the first scheduler pass.
9146
9147 @item -fselective-scheduling2
9148 @opindex fselective-scheduling2
9149 Schedule instructions using selective scheduling algorithm. Selective
9150 scheduling runs instead of the second scheduler pass.
9151
9152 @item -fsel-sched-pipelining
9153 @opindex fsel-sched-pipelining
9154 Enable software pipelining of innermost loops during selective scheduling.
9155 This option has no effect unless one of @option{-fselective-scheduling} or
9156 @option{-fselective-scheduling2} is turned on.
9157
9158 @item -fsel-sched-pipelining-outer-loops
9159 @opindex fsel-sched-pipelining-outer-loops
9160 When pipelining loops during selective scheduling, also pipeline outer loops.
9161 This option has no effect unless @option{-fsel-sched-pipelining} is turned on.
9162
9163 @item -fsemantic-interposition
9164 @opindex fsemantic-interposition
9165 Some object formats, like ELF, allow interposing of symbols by the
9166 dynamic linker.
9167 This means that for symbols exported from the DSO, the compiler cannot perform
9168 interprocedural propagation, inlining and other optimizations in anticipation
9169 that the function or variable in question may change. While this feature is
9170 useful, for example, to rewrite memory allocation functions by a debugging
9171 implementation, it is expensive in the terms of code quality.
9172 With @option{-fno-semantic-interposition} the compiler assumes that
9173 if interposition happens for functions the overwriting function will have
9174 precisely the same semantics (and side effects).
9175 Similarly if interposition happens
9176 for variables, the constructor of the variable will be the same. The flag
9177 has no effect for functions explicitly declared inline
9178 (where it is never allowed for interposition to change semantics)
9179 and for symbols explicitly declared weak.
9180
9181 @item -fshrink-wrap
9182 @opindex fshrink-wrap
9183 Emit function prologues only before parts of the function that need it,
9184 rather than at the top of the function. This flag is enabled by default at
9185 @option{-O} and higher.
9186
9187 @item -fshrink-wrap-separate
9188 @opindex fshrink-wrap-separate
9189 Shrink-wrap separate parts of the prologue and epilogue separately, so that
9190 those parts are only executed when needed.
9191 This option is on by default, but has no effect unless @option{-fshrink-wrap}
9192 is also turned on and the target supports this.
9193
9194 @item -fcaller-saves
9195 @opindex fcaller-saves
9196 Enable allocation of values to registers that are clobbered by
9197 function calls, by emitting extra instructions to save and restore the
9198 registers around such calls. Such allocation is done only when it
9199 seems to result in better code.
9200
9201 This option is always enabled by default on certain machines, usually
9202 those which have no call-preserved registers to use instead.
9203
9204 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9205
9206 @item -fcombine-stack-adjustments
9207 @opindex fcombine-stack-adjustments
9208 Tracks stack adjustments (pushes and pops) and stack memory references
9209 and then tries to find ways to combine them.
9210
9211 Enabled by default at @option{-O1} and higher.
9212
9213 @item -fipa-ra
9214 @opindex fipa-ra
9215 Use caller save registers for allocation if those registers are not used by
9216 any called function. In that case it is not necessary to save and restore
9217 them around calls. This is only possible if called functions are part of
9218 same compilation unit as current function and they are compiled before it.
9219
9220 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}, however the option
9221 is disabled if generated code will be instrumented for profiling
9222 (@option{-p}, or @option{-pg}) or if callee's register usage cannot be known
9223 exactly (this happens on targets that do not expose prologues
9224 and epilogues in RTL).
9225
9226 @item -fconserve-stack
9227 @opindex fconserve-stack
9228 Attempt to minimize stack usage. The compiler attempts to use less
9229 stack space, even if that makes the program slower. This option
9230 implies setting the @option{large-stack-frame} parameter to 100
9231 and the @option{large-stack-frame-growth} parameter to 400.
9232
9233 @item -ftree-reassoc
9234 @opindex ftree-reassoc
9235 Perform reassociation on trees. This flag is enabled by default
9236 at @option{-O} and higher.
9237
9238 @item -fcode-hoisting
9239 @opindex fcode-hoisting
9240 Perform code hoisting. Code hoisting tries to move the
9241 evaluation of expressions executed on all paths to the function exit
9242 as early as possible. This is especially useful as a code size
9243 optimization, but it often helps for code speed as well.
9244 This flag is enabled by default at @option{-O2} and higher.
9245
9246 @item -ftree-pre
9247 @opindex ftree-pre
9248 Perform partial redundancy elimination (PRE) on trees. This flag is
9249 enabled by default at @option{-O2} and @option{-O3}.
9250
9251 @item -ftree-partial-pre
9252 @opindex ftree-partial-pre
9253 Make partial redundancy elimination (PRE) more aggressive. This flag is
9254 enabled by default at @option{-O3}.
9255
9256 @item -ftree-forwprop
9257 @opindex ftree-forwprop
9258 Perform forward propagation on trees. This flag is enabled by default
9259 at @option{-O} and higher.
9260
9261 @item -ftree-fre
9262 @opindex ftree-fre
9263 Perform full redundancy elimination (FRE) on trees. The difference
9264 between FRE and PRE is that FRE only considers expressions
9265 that are computed on all paths leading to the redundant computation.
9266 This analysis is faster than PRE, though it exposes fewer redundancies.
9267 This flag is enabled by default at @option{-O} and higher.
9268
9269 @item -ftree-phiprop
9270 @opindex ftree-phiprop
9271 Perform hoisting of loads from conditional pointers on trees. This
9272 pass is enabled by default at @option{-O} and higher.
9273
9274 @item -fhoist-adjacent-loads
9275 @opindex fhoist-adjacent-loads
9276 Speculatively hoist loads from both branches of an if-then-else if the
9277 loads are from adjacent locations in the same structure and the target
9278 architecture has a conditional move instruction. This flag is enabled
9279 by default at @option{-O2} and higher.
9280
9281 @item -ftree-copy-prop
9282 @opindex ftree-copy-prop
9283 Perform copy propagation on trees. This pass eliminates unnecessary
9284 copy operations. This flag is enabled by default at @option{-O} and
9285 higher.
9286
9287 @item -fipa-pure-const
9288 @opindex fipa-pure-const
9289 Discover which functions are pure or constant.
9290 Enabled by default at @option{-O} and higher.
9291
9292 @item -fipa-reference
9293 @opindex fipa-reference
9294 Discover which static variables do not escape the
9295 compilation unit.
9296 Enabled by default at @option{-O} and higher.
9297
9298 @item -fipa-reference-addressable
9299 @opindex fipa-reference-addressable
9300 Discover read-only, write-only and non-addressable static variables.
9301 Enabled by default at @option{-O} and higher.
9302
9303 @item -fipa-stack-alignment
9304 @opindex fipa-stack-alignment
9305 Reduce stack alignment on call sites if possible.
9306 Enabled by default.
9307
9308 @item -fipa-pta
9309 @opindex fipa-pta
9310 Perform interprocedural pointer analysis and interprocedural modification
9311 and reference analysis. This option can cause excessive memory and
9312 compile-time usage on large compilation units. It is not enabled by
9313 default at any optimization level.
9314
9315 @item -fipa-profile
9316 @opindex fipa-profile
9317 Perform interprocedural profile propagation. The functions called only from
9318 cold functions are marked as cold. Also functions executed once (such as
9319 @code{cold}, @code{noreturn}, static constructors or destructors) are identified. Cold
9320 functions and loop less parts of functions executed once are then optimized for
9321 size.
9322 Enabled by default at @option{-O} and higher.
9323
9324 @item -fipa-cp
9325 @opindex fipa-cp
9326 Perform interprocedural constant propagation.
9327 This optimization analyzes the program to determine when values passed
9328 to functions are constants and then optimizes accordingly.
9329 This optimization can substantially increase performance
9330 if the application has constants passed to functions.
9331 This flag is enabled by default at @option{-O2}, @option{-Os} and @option{-O3}.
9332 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9333
9334 @item -fipa-cp-clone
9335 @opindex fipa-cp-clone
9336 Perform function cloning to make interprocedural constant propagation stronger.
9337 When enabled, interprocedural constant propagation performs function cloning
9338 when externally visible function can be called with constant arguments.
9339 Because this optimization can create multiple copies of functions,
9340 it may significantly increase code size
9341 (see @option{--param ipcp-unit-growth=@var{value}}).
9342 This flag is enabled by default at @option{-O3}.
9343 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9344
9345 @item -fipa-bit-cp
9346 @opindex fipa-bit-cp
9347 When enabled, perform interprocedural bitwise constant
9348 propagation. This flag is enabled by default at @option{-O2} and
9349 by @option{-fprofile-use} and @option{-fauto-profile}.
9350 It requires that @option{-fipa-cp} is enabled.
9351
9352 @item -fipa-vrp
9353 @opindex fipa-vrp
9354 When enabled, perform interprocedural propagation of value
9355 ranges. This flag is enabled by default at @option{-O2}. It requires
9356 that @option{-fipa-cp} is enabled.
9357
9358 @item -fipa-icf
9359 @opindex fipa-icf
9360 Perform Identical Code Folding for functions and read-only variables.
9361 The optimization reduces code size and may disturb unwind stacks by replacing
9362 a function by equivalent one with a different name. The optimization works
9363 more effectively with link-time optimization enabled.
9364
9365 Although the behavior is similar to the Gold Linker's ICF optimization, GCC ICF
9366 works on different levels and thus the optimizations are not same - there are
9367 equivalences that are found only by GCC and equivalences found only by Gold.
9368
9369 This flag is enabled by default at @option{-O2} and @option{-Os}.
9370
9371 @item -flive-patching=@var{level}
9372 @opindex flive-patching
9373 Control GCC's optimizations to produce output suitable for live-patching.
9374
9375 If the compiler's optimization uses a function's body or information extracted
9376 from its body to optimize/change another function, the latter is called an
9377 impacted function of the former. If a function is patched, its impacted
9378 functions should be patched too.
9379
9380 The impacted functions are determined by the compiler's interprocedural
9381 optimizations. For example, a caller is impacted when inlining a function
9382 into its caller,
9383 cloning a function and changing its caller to call this new clone,
9384 or extracting a function's pureness/constness information to optimize
9385 its direct or indirect callers, etc.
9386
9387 Usually, the more IPA optimizations enabled, the larger the number of
9388 impacted functions for each function. In order to control the number of
9389 impacted functions and more easily compute the list of impacted function,
9390 IPA optimizations can be partially enabled at two different levels.
9391
9392 The @var{level} argument should be one of the following:
9393
9394 @table @samp
9395
9396 @item inline-clone
9397
9398 Only enable inlining and cloning optimizations, which includes inlining,
9399 cloning, interprocedural scalar replacement of aggregates and partial inlining.
9400 As a result, when patching a function, all its callers and its clones'
9401 callers are impacted, therefore need to be patched as well.
9402
9403 @option{-flive-patching=inline-clone} disables the following optimization flags:
9404 @gccoptlist{-fwhole-program -fipa-pta -fipa-reference -fipa-ra @gol
9405 -fipa-icf -fipa-icf-functions -fipa-icf-variables @gol
9406 -fipa-bit-cp -fipa-vrp -fipa-pure-const -fipa-reference-addressable @gol
9407 -fipa-stack-alignment}
9408
9409 @item inline-only-static
9410
9411 Only enable inlining of static functions.
9412 As a result, when patching a static function, all its callers are impacted
9413 and so need to be patched as well.
9414
9415 In addition to all the flags that @option{-flive-patching=inline-clone}
9416 disables,
9417 @option{-flive-patching=inline-only-static} disables the following additional
9418 optimization flags:
9419 @gccoptlist{-fipa-cp-clone -fipa-sra -fpartial-inlining -fipa-cp}
9420
9421 @end table
9422
9423 When @option{-flive-patching} is specified without any value, the default value
9424 is @var{inline-clone}.
9425
9426 This flag is disabled by default.
9427
9428 Note that @option{-flive-patching} is not supported with link-time optimization
9429 (@option{-flto}).
9430
9431 @item -fisolate-erroneous-paths-dereference
9432 @opindex fisolate-erroneous-paths-dereference
9433 Detect paths that trigger erroneous or undefined behavior due to
9434 dereferencing a null pointer. Isolate those paths from the main control
9435 flow and turn the statement with erroneous or undefined behavior into a trap.
9436 This flag is enabled by default at @option{-O2} and higher and depends on
9437 @option{-fdelete-null-pointer-checks} also being enabled.
9438
9439 @item -fisolate-erroneous-paths-attribute
9440 @opindex fisolate-erroneous-paths-attribute
9441 Detect paths that trigger erroneous or undefined behavior due to a null value
9442 being used in a way forbidden by a @code{returns_nonnull} or @code{nonnull}
9443 attribute. Isolate those paths from the main control flow and turn the
9444 statement with erroneous or undefined behavior into a trap. This is not
9445 currently enabled, but may be enabled by @option{-O2} in the future.
9446
9447 @item -ftree-sink
9448 @opindex ftree-sink
9449 Perform forward store motion on trees. This flag is
9450 enabled by default at @option{-O} and higher.
9451
9452 @item -ftree-bit-ccp
9453 @opindex ftree-bit-ccp
9454 Perform sparse conditional bit constant propagation on trees and propagate
9455 pointer alignment information.
9456 This pass only operates on local scalar variables and is enabled by default
9457 at @option{-O1} and higher, except for @option{-Og}.
9458 It requires that @option{-ftree-ccp} is enabled.
9459
9460 @item -ftree-ccp
9461 @opindex ftree-ccp
9462 Perform sparse conditional constant propagation (CCP) on trees. This
9463 pass only operates on local scalar variables and is enabled by default
9464 at @option{-O} and higher.
9465
9466 @item -fssa-backprop
9467 @opindex fssa-backprop
9468 Propagate information about uses of a value up the definition chain
9469 in order to simplify the definitions. For example, this pass strips
9470 sign operations if the sign of a value never matters. The flag is
9471 enabled by default at @option{-O} and higher.
9472
9473 @item -fssa-phiopt
9474 @opindex fssa-phiopt
9475 Perform pattern matching on SSA PHI nodes to optimize conditional
9476 code. This pass is enabled by default at @option{-O1} and higher,
9477 except for @option{-Og}.
9478
9479 @item -ftree-switch-conversion
9480 @opindex ftree-switch-conversion
9481 Perform conversion of simple initializations in a switch to
9482 initializations from a scalar array. This flag is enabled by default
9483 at @option{-O2} and higher.
9484
9485 @item -ftree-tail-merge
9486 @opindex ftree-tail-merge
9487 Look for identical code sequences. When found, replace one with a jump to the
9488 other. This optimization is known as tail merging or cross jumping. This flag
9489 is enabled by default at @option{-O2} and higher. The compilation time
9490 in this pass can
9491 be limited using @option{max-tail-merge-comparisons} parameter and
9492 @option{max-tail-merge-iterations} parameter.
9493
9494 @item -ftree-dce
9495 @opindex ftree-dce
9496 Perform dead code elimination (DCE) on trees. This flag is enabled by
9497 default at @option{-O} and higher.
9498
9499 @item -ftree-builtin-call-dce
9500 @opindex ftree-builtin-call-dce
9501 Perform conditional dead code elimination (DCE) for calls to built-in functions
9502 that may set @code{errno} but are otherwise free of side effects. This flag is
9503 enabled by default at @option{-O2} and higher if @option{-Os} is not also
9504 specified.
9505
9506 @item -ftree-dominator-opts
9507 @opindex ftree-dominator-opts
9508 Perform a variety of simple scalar cleanups (constant/copy
9509 propagation, redundancy elimination, range propagation and expression
9510 simplification) based on a dominator tree traversal. This also
9511 performs jump threading (to reduce jumps to jumps). This flag is
9512 enabled by default at @option{-O} and higher.
9513
9514 @item -ftree-dse
9515 @opindex ftree-dse
9516 Perform dead store elimination (DSE) on trees. A dead store is a store into
9517 a memory location that is later overwritten by another store without
9518 any intervening loads. In this case the earlier store can be deleted. This
9519 flag is enabled by default at @option{-O} and higher.
9520
9521 @item -ftree-ch
9522 @opindex ftree-ch
9523 Perform loop header copying on trees. This is beneficial since it increases
9524 effectiveness of code motion optimizations. It also saves one jump. This flag
9525 is enabled by default at @option{-O} and higher. It is not enabled
9526 for @option{-Os}, since it usually increases code size.
9527
9528 @item -ftree-loop-optimize
9529 @opindex ftree-loop-optimize
9530 Perform loop optimizations on trees. This flag is enabled by default
9531 at @option{-O} and higher.
9532
9533 @item -ftree-loop-linear
9534 @itemx -floop-strip-mine
9535 @itemx -floop-block
9536 @opindex ftree-loop-linear
9537 @opindex floop-strip-mine
9538 @opindex floop-block
9539 Perform loop nest optimizations. Same as
9540 @option{-floop-nest-optimize}. To use this code transformation, GCC has
9541 to be configured with @option{--with-isl} to enable the Graphite loop
9542 transformation infrastructure.
9543
9544 @item -fgraphite-identity
9545 @opindex fgraphite-identity
9546 Enable the identity transformation for graphite. For every SCoP we generate
9547 the polyhedral representation and transform it back to gimple. Using
9548 @option{-fgraphite-identity} we can check the costs or benefits of the
9549 GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
9550 are also performed by the code generator isl, like index splitting and
9551 dead code elimination in loops.
9552
9553 @item -floop-nest-optimize
9554 @opindex floop-nest-optimize
9555 Enable the isl based loop nest optimizer. This is a generic loop nest
9556 optimizer based on the Pluto optimization algorithms. It calculates a loop
9557 structure optimized for data-locality and parallelism. This option
9558 is experimental.
9559
9560 @item -floop-parallelize-all
9561 @opindex floop-parallelize-all
9562 Use the Graphite data dependence analysis to identify loops that can
9563 be parallelized. Parallelize all the loops that can be analyzed to
9564 not contain loop carried dependences without checking that it is
9565 profitable to parallelize the loops.
9566
9567 @item -ftree-coalesce-vars
9568 @opindex ftree-coalesce-vars
9569 While transforming the program out of the SSA representation, attempt to
9570 reduce copying by coalescing versions of different user-defined
9571 variables, instead of just compiler temporaries. This may severely
9572 limit the ability to debug an optimized program compiled with
9573 @option{-fno-var-tracking-assignments}. In the negated form, this flag
9574 prevents SSA coalescing of user variables. This option is enabled by
9575 default if optimization is enabled, and it does very little otherwise.
9576
9577 @item -ftree-loop-if-convert
9578 @opindex ftree-loop-if-convert
9579 Attempt to transform conditional jumps in the innermost loops to
9580 branch-less equivalents. The intent is to remove control-flow from
9581 the innermost loops in order to improve the ability of the
9582 vectorization pass to handle these loops. This is enabled by default
9583 if vectorization is enabled.
9584
9585 @item -ftree-loop-distribution
9586 @opindex ftree-loop-distribution
9587 Perform loop distribution. This flag can improve cache performance on
9588 big loop bodies and allow further loop optimizations, like
9589 parallelization or vectorization, to take place. For example, the loop
9590 @smallexample
9591 DO I = 1, N
9592 A(I) = B(I) + C
9593 D(I) = E(I) * F
9594 ENDDO
9595 @end smallexample
9596 is transformed to
9597 @smallexample
9598 DO I = 1, N
9599 A(I) = B(I) + C
9600 ENDDO
9601 DO I = 1, N
9602 D(I) = E(I) * F
9603 ENDDO
9604 @end smallexample
9605 This flag is enabled by default at @option{-O3}.
9606 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9607
9608 @item -ftree-loop-distribute-patterns
9609 @opindex ftree-loop-distribute-patterns
9610 Perform loop distribution of patterns that can be code generated with
9611 calls to a library. This flag is enabled by default at @option{-O3}, and
9612 by @option{-fprofile-use} and @option{-fauto-profile}.
9613
9614 This pass distributes the initialization loops and generates a call to
9615 memset zero. For example, the loop
9616 @smallexample
9617 DO I = 1, N
9618 A(I) = 0
9619 B(I) = A(I) + I
9620 ENDDO
9621 @end smallexample
9622 is transformed to
9623 @smallexample
9624 DO I = 1, N
9625 A(I) = 0
9626 ENDDO
9627 DO I = 1, N
9628 B(I) = A(I) + I
9629 ENDDO
9630 @end smallexample
9631 and the initialization loop is transformed into a call to memset zero.
9632 This flag is enabled by default at @option{-O3}.
9633 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9634
9635 @item -floop-interchange
9636 @opindex floop-interchange
9637 Perform loop interchange outside of graphite. This flag can improve cache
9638 performance on loop nest and allow further loop optimizations, like
9639 vectorization, to take place. For example, the loop
9640 @smallexample
9641 for (int i = 0; i < N; i++)
9642 for (int j = 0; j < N; j++)
9643 for (int k = 0; k < N; k++)
9644 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9645 @end smallexample
9646 is transformed to
9647 @smallexample
9648 for (int i = 0; i < N; i++)
9649 for (int k = 0; k < N; k++)
9650 for (int j = 0; j < N; j++)
9651 c[i][j] = c[i][j] + a[i][k]*b[k][j];
9652 @end smallexample
9653 This flag is enabled by default at @option{-O3}.
9654 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9655
9656 @item -floop-unroll-and-jam
9657 @opindex floop-unroll-and-jam
9658 Apply unroll and jam transformations on feasible loops. In a loop
9659 nest this unrolls the outer loop by some factor and fuses the resulting
9660 multiple inner loops. This flag is enabled by default at @option{-O3}.
9661 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9662
9663 @item -ftree-loop-im
9664 @opindex ftree-loop-im
9665 Perform loop invariant motion on trees. This pass moves only invariants that
9666 are hard to handle at RTL level (function calls, operations that expand to
9667 nontrivial sequences of insns). With @option{-funswitch-loops} it also moves
9668 operands of conditions that are invariant out of the loop, so that we can use
9669 just trivial invariantness analysis in loop unswitching. The pass also includes
9670 store motion.
9671
9672 @item -ftree-loop-ivcanon
9673 @opindex ftree-loop-ivcanon
9674 Create a canonical counter for number of iterations in loops for which
9675 determining number of iterations requires complicated analysis. Later
9676 optimizations then may determine the number easily. Useful especially
9677 in connection with unrolling.
9678
9679 @item -ftree-scev-cprop
9680 @opindex ftree-scev-cprop
9681 Perform final value replacement. If a variable is modified in a loop
9682 in such a way that its value when exiting the loop can be determined using
9683 only its initial value and the number of loop iterations, replace uses of
9684 the final value by such a computation, provided it is sufficiently cheap.
9685 This reduces data dependencies and may allow further simplifications.
9686 Enabled by default at @option{-O} and higher.
9687
9688 @item -fivopts
9689 @opindex fivopts
9690 Perform induction variable optimizations (strength reduction, induction
9691 variable merging and induction variable elimination) on trees.
9692
9693 @item -ftree-parallelize-loops=n
9694 @opindex ftree-parallelize-loops
9695 Parallelize loops, i.e., split their iteration space to run in n threads.
9696 This is only possible for loops whose iterations are independent
9697 and can be arbitrarily reordered. The optimization is only
9698 profitable on multiprocessor machines, for loops that are CPU-intensive,
9699 rather than constrained e.g.@: by memory bandwidth. This option
9700 implies @option{-pthread}, and thus is only supported on targets
9701 that have support for @option{-pthread}.
9702
9703 @item -ftree-pta
9704 @opindex ftree-pta
9705 Perform function-local points-to analysis on trees. This flag is
9706 enabled by default at @option{-O1} and higher, except for @option{-Og}.
9707
9708 @item -ftree-sra
9709 @opindex ftree-sra
9710 Perform scalar replacement of aggregates. This pass replaces structure
9711 references with scalars to prevent committing structures to memory too
9712 early. This flag is enabled by default at @option{-O1} and higher,
9713 except for @option{-Og}.
9714
9715 @item -fstore-merging
9716 @opindex fstore-merging
9717 Perform merging of narrow stores to consecutive memory addresses. This pass
9718 merges contiguous stores of immediate values narrower than a word into fewer
9719 wider stores to reduce the number of instructions. This is enabled by default
9720 at @option{-O2} and higher as well as @option{-Os}.
9721
9722 @item -ftree-ter
9723 @opindex ftree-ter
9724 Perform temporary expression replacement during the SSA->normal phase. Single
9725 use/single def temporaries are replaced at their use location with their
9726 defining expression. This results in non-GIMPLE code, but gives the expanders
9727 much more complex trees to work on resulting in better RTL generation. This is
9728 enabled by default at @option{-O} and higher.
9729
9730 @item -ftree-slsr
9731 @opindex ftree-slsr
9732 Perform straight-line strength reduction on trees. This recognizes related
9733 expressions involving multiplications and replaces them by less expensive
9734 calculations when possible. This is enabled by default at @option{-O} and
9735 higher.
9736
9737 @item -ftree-vectorize
9738 @opindex ftree-vectorize
9739 Perform vectorization on trees. This flag enables @option{-ftree-loop-vectorize}
9740 and @option{-ftree-slp-vectorize} if not explicitly specified.
9741
9742 @item -ftree-loop-vectorize
9743 @opindex ftree-loop-vectorize
9744 Perform loop vectorization on trees. This flag is enabled by default at
9745 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9746 and @option{-fauto-profile}.
9747
9748 @item -ftree-slp-vectorize
9749 @opindex ftree-slp-vectorize
9750 Perform basic block vectorization on trees. This flag is enabled by default at
9751 @option{-O3} and by @option{-ftree-vectorize}, @option{-fprofile-use},
9752 and @option{-fauto-profile}.
9753
9754 @item -fvect-cost-model=@var{model}
9755 @opindex fvect-cost-model
9756 Alter the cost model used for vectorization. The @var{model} argument
9757 should be one of @samp{unlimited}, @samp{dynamic} or @samp{cheap}.
9758 With the @samp{unlimited} model the vectorized code-path is assumed
9759 to be profitable while with the @samp{dynamic} model a runtime check
9760 guards the vectorized code-path to enable it only for iteration
9761 counts that will likely execute faster than when executing the original
9762 scalar loop. The @samp{cheap} model disables vectorization of
9763 loops where doing so would be cost prohibitive for example due to
9764 required runtime checks for data dependence or alignment but otherwise
9765 is equal to the @samp{dynamic} model.
9766 The default cost model depends on other optimization flags and is
9767 either @samp{dynamic} or @samp{cheap}.
9768
9769 @item -fsimd-cost-model=@var{model}
9770 @opindex fsimd-cost-model
9771 Alter the cost model used for vectorization of loops marked with the OpenMP
9772 simd directive. The @var{model} argument should be one of
9773 @samp{unlimited}, @samp{dynamic}, @samp{cheap}. All values of @var{model}
9774 have the same meaning as described in @option{-fvect-cost-model} and by
9775 default a cost model defined with @option{-fvect-cost-model} is used.
9776
9777 @item -ftree-vrp
9778 @opindex ftree-vrp
9779 Perform Value Range Propagation on trees. This is similar to the
9780 constant propagation pass, but instead of values, ranges of values are
9781 propagated. This allows the optimizers to remove unnecessary range
9782 checks like array bound checks and null pointer checks. This is
9783 enabled by default at @option{-O2} and higher. Null pointer check
9784 elimination is only done if @option{-fdelete-null-pointer-checks} is
9785 enabled.
9786
9787 @item -fsplit-paths
9788 @opindex fsplit-paths
9789 Split paths leading to loop backedges. This can improve dead code
9790 elimination and common subexpression elimination. This is enabled by
9791 default at @option{-O3} and above.
9792
9793 @item -fsplit-ivs-in-unroller
9794 @opindex fsplit-ivs-in-unroller
9795 Enables expression of values of induction variables in later iterations
9796 of the unrolled loop using the value in the first iteration. This breaks
9797 long dependency chains, thus improving efficiency of the scheduling passes.
9798
9799 A combination of @option{-fweb} and CSE is often sufficient to obtain the
9800 same effect. However, that is not reliable in cases where the loop body
9801 is more complicated than a single basic block. It also does not work at all
9802 on some architectures due to restrictions in the CSE pass.
9803
9804 This optimization is enabled by default.
9805
9806 @item -fvariable-expansion-in-unroller
9807 @opindex fvariable-expansion-in-unroller
9808 With this option, the compiler creates multiple copies of some
9809 local variables when unrolling a loop, which can result in superior code.
9810
9811 @item -fpartial-inlining
9812 @opindex fpartial-inlining
9813 Inline parts of functions. This option has any effect only
9814 when inlining itself is turned on by the @option{-finline-functions}
9815 or @option{-finline-small-functions} options.
9816
9817 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9818
9819 @item -fpredictive-commoning
9820 @opindex fpredictive-commoning
9821 Perform predictive commoning optimization, i.e., reusing computations
9822 (especially memory loads and stores) performed in previous
9823 iterations of loops.
9824
9825 This option is enabled at level @option{-O3}.
9826 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
9827
9828 @item -fprefetch-loop-arrays
9829 @opindex fprefetch-loop-arrays
9830 If supported by the target machine, generate instructions to prefetch
9831 memory to improve the performance of loops that access large arrays.
9832
9833 This option may generate better or worse code; results are highly
9834 dependent on the structure of loops within the source code.
9835
9836 Disabled at level @option{-Os}.
9837
9838 @item -fno-printf-return-value
9839 @opindex fno-printf-return-value
9840 @opindex fprintf-return-value
9841 Do not substitute constants for known return value of formatted output
9842 functions such as @code{sprintf}, @code{snprintf}, @code{vsprintf}, and
9843 @code{vsnprintf} (but not @code{printf} of @code{fprintf}). This
9844 transformation allows GCC to optimize or even eliminate branches based
9845 on the known return value of these functions called with arguments that
9846 are either constant, or whose values are known to be in a range that
9847 makes determining the exact return value possible. For example, when
9848 @option{-fprintf-return-value} is in effect, both the branch and the
9849 body of the @code{if} statement (but not the call to @code{snprint})
9850 can be optimized away when @code{i} is a 32-bit or smaller integer
9851 because the return value is guaranteed to be at most 8.
9852
9853 @smallexample
9854 char buf[9];
9855 if (snprintf (buf, "%08x", i) >= sizeof buf)
9856 @dots{}
9857 @end smallexample
9858
9859 The @option{-fprintf-return-value} option relies on other optimizations
9860 and yields best results with @option{-O2} and above. It works in tandem
9861 with the @option{-Wformat-overflow} and @option{-Wformat-truncation}
9862 options. The @option{-fprintf-return-value} option is enabled by default.
9863
9864 @item -fno-peephole
9865 @itemx -fno-peephole2
9866 @opindex fno-peephole
9867 @opindex fpeephole
9868 @opindex fno-peephole2
9869 @opindex fpeephole2
9870 Disable any machine-specific peephole optimizations. The difference
9871 between @option{-fno-peephole} and @option{-fno-peephole2} is in how they
9872 are implemented in the compiler; some targets use one, some use the
9873 other, a few use both.
9874
9875 @option{-fpeephole} is enabled by default.
9876 @option{-fpeephole2} enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9877
9878 @item -fno-guess-branch-probability
9879 @opindex fno-guess-branch-probability
9880 @opindex fguess-branch-probability
9881 Do not guess branch probabilities using heuristics.
9882
9883 GCC uses heuristics to guess branch probabilities if they are
9884 not provided by profiling feedback (@option{-fprofile-arcs}). These
9885 heuristics are based on the control flow graph. If some branch probabilities
9886 are specified by @code{__builtin_expect}, then the heuristics are
9887 used to guess branch probabilities for the rest of the control flow graph,
9888 taking the @code{__builtin_expect} info into account. The interactions
9889 between the heuristics and @code{__builtin_expect} can be complex, and in
9890 some cases, it may be useful to disable the heuristics so that the effects
9891 of @code{__builtin_expect} are easier to understand.
9892
9893 It is also possible to specify expected probability of the expression
9894 with @code{__builtin_expect_with_probability} built-in function.
9895
9896 The default is @option{-fguess-branch-probability} at levels
9897 @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9898
9899 @item -freorder-blocks
9900 @opindex freorder-blocks
9901 Reorder basic blocks in the compiled function in order to reduce number of
9902 taken branches and improve code locality.
9903
9904 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
9905
9906 @item -freorder-blocks-algorithm=@var{algorithm}
9907 @opindex freorder-blocks-algorithm
9908 Use the specified algorithm for basic block reordering. The
9909 @var{algorithm} argument can be @samp{simple}, which does not increase
9910 code size (except sometimes due to secondary effects like alignment),
9911 or @samp{stc}, the ``software trace cache'' algorithm, which tries to
9912 put all often executed code together, minimizing the number of branches
9913 executed by making extra copies of code.
9914
9915 The default is @samp{simple} at levels @option{-O}, @option{-Os}, and
9916 @samp{stc} at levels @option{-O2}, @option{-O3}.
9917
9918 @item -freorder-blocks-and-partition
9919 @opindex freorder-blocks-and-partition
9920 In addition to reordering basic blocks in the compiled function, in order
9921 to reduce number of taken branches, partitions hot and cold basic blocks
9922 into separate sections of the assembly and @file{.o} files, to improve
9923 paging and cache locality performance.
9924
9925 This optimization is automatically turned off in the presence of
9926 exception handling or unwind tables (on targets using setjump/longjump or target specific scheme), for linkonce sections, for functions with a user-defined
9927 section attribute and on any architecture that does not support named
9928 sections. When @option{-fsplit-stack} is used this option is not
9929 enabled by default (to avoid linker errors), but may be enabled
9930 explicitly (if using a working linker).
9931
9932 Enabled for x86 at levels @option{-O2}, @option{-O3}, @option{-Os}.
9933
9934 @item -freorder-functions
9935 @opindex freorder-functions
9936 Reorder functions in the object file in order to
9937 improve code locality. This is implemented by using special
9938 subsections @code{.text.hot} for most frequently executed functions and
9939 @code{.text.unlikely} for unlikely executed functions. Reordering is done by
9940 the linker so object file format must support named sections and linker must
9941 place them in a reasonable way.
9942
9943 This option isn't effective unless you either provide profile feedback
9944 (see @option{-fprofile-arcs} for details) or manually annotate functions with
9945 @code{hot} or @code{cold} attributes (@pxref{Common Function Attributes}).
9946
9947 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
9948
9949 @item -fstrict-aliasing
9950 @opindex fstrict-aliasing
9951 Allow the compiler to assume the strictest aliasing rules applicable to
9952 the language being compiled. For C (and C++), this activates
9953 optimizations based on the type of expressions. In particular, an
9954 object of one type is assumed never to reside at the same address as an
9955 object of a different type, unless the types are almost the same. For
9956 example, an @code{unsigned int} can alias an @code{int}, but not a
9957 @code{void*} or a @code{double}. A character type may alias any other
9958 type.
9959
9960 @anchor{Type-punning}Pay special attention to code like this:
9961 @smallexample
9962 union a_union @{
9963 int i;
9964 double d;
9965 @};
9966
9967 int f() @{
9968 union a_union t;
9969 t.d = 3.0;
9970 return t.i;
9971 @}
9972 @end smallexample
9973 The practice of reading from a different union member than the one most
9974 recently written to (called ``type-punning'') is common. Even with
9975 @option{-fstrict-aliasing}, type-punning is allowed, provided the memory
9976 is accessed through the union type. So, the code above works as
9977 expected. @xref{Structures unions enumerations and bit-fields
9978 implementation}. However, this code might not:
9979 @smallexample
9980 int f() @{
9981 union a_union t;
9982 int* ip;
9983 t.d = 3.0;
9984 ip = &t.i;
9985 return *ip;
9986 @}
9987 @end smallexample
9988
9989 Similarly, access by taking the address, casting the resulting pointer
9990 and dereferencing the result has undefined behavior, even if the cast
9991 uses a union type, e.g.:
9992 @smallexample
9993 int f() @{
9994 double d = 3.0;
9995 return ((union a_union *) &d)->i;
9996 @}
9997 @end smallexample
9998
9999 The @option{-fstrict-aliasing} option is enabled at levels
10000 @option{-O2}, @option{-O3}, @option{-Os}.
10001
10002 @item -falign-functions
10003 @itemx -falign-functions=@var{n}
10004 @itemx -falign-functions=@var{n}:@var{m}
10005 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}
10006 @itemx -falign-functions=@var{n}:@var{m}:@var{n2}:@var{m2}
10007 @opindex falign-functions
10008 Align the start of functions to the next power-of-two greater than
10009 @var{n}, skipping up to @var{m}-1 bytes. This ensures that at least
10010 the first @var{m} bytes of the function can be fetched by the CPU
10011 without crossing an @var{n}-byte alignment boundary.
10012
10013 If @var{m} is not specified, it defaults to @var{n}.
10014
10015 Examples: @option{-falign-functions=32} aligns functions to the next
10016 32-byte boundary, @option{-falign-functions=24} aligns to the next
10017 32-byte boundary only if this can be done by skipping 23 bytes or less,
10018 @option{-falign-functions=32:7} aligns to the next
10019 32-byte boundary only if this can be done by skipping 6 bytes or less.
10020
10021 The second pair of @var{n2}:@var{m2} values allows you to specify
10022 a secondary alignment: @option{-falign-functions=64:7:32:3} aligns to
10023 the next 64-byte boundary if this can be done by skipping 6 bytes or less,
10024 otherwise aligns to the next 32-byte boundary if this can be done
10025 by skipping 2 bytes or less.
10026 If @var{m2} is not specified, it defaults to @var{n2}.
10027
10028 Some assemblers only support this flag when @var{n} is a power of two;
10029 in that case, it is rounded up.
10030
10031 @option{-fno-align-functions} and @option{-falign-functions=1} are
10032 equivalent and mean that functions are not aligned.
10033
10034 If @var{n} is not specified or is zero, use a machine-dependent default.
10035 The maximum allowed @var{n} option value is 65536.
10036
10037 Enabled at levels @option{-O2}, @option{-O3}.
10038
10039 @item -flimit-function-alignment
10040 If this option is enabled, the compiler tries to avoid unnecessarily
10041 overaligning functions. It attempts to instruct the assembler to align
10042 by the amount specified by @option{-falign-functions}, but not to
10043 skip more bytes than the size of the function.
10044
10045 @item -falign-labels
10046 @itemx -falign-labels=@var{n}
10047 @itemx -falign-labels=@var{n}:@var{m}
10048 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}
10049 @itemx -falign-labels=@var{n}:@var{m}:@var{n2}:@var{m2}
10050 @opindex falign-labels
10051 Align all branch targets to a power-of-two boundary.
10052
10053 Parameters of this option are analogous to the @option{-falign-functions} option.
10054 @option{-fno-align-labels} and @option{-falign-labels=1} are
10055 equivalent and mean that labels are not aligned.
10056
10057 If @option{-falign-loops} or @option{-falign-jumps} are applicable and
10058 are greater than this value, then their values are used instead.
10059
10060 If @var{n} is not specified or is zero, use a machine-dependent default
10061 which is very likely to be @samp{1}, meaning no alignment.
10062 The maximum allowed @var{n} option value is 65536.
10063
10064 Enabled at levels @option{-O2}, @option{-O3}.
10065
10066 @item -falign-loops
10067 @itemx -falign-loops=@var{n}
10068 @itemx -falign-loops=@var{n}:@var{m}
10069 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}
10070 @itemx -falign-loops=@var{n}:@var{m}:@var{n2}:@var{m2}
10071 @opindex falign-loops
10072 Align loops to a power-of-two boundary. If the loops are executed
10073 many times, this makes up for any execution of the dummy padding
10074 instructions.
10075
10076 Parameters of this option are analogous to the @option{-falign-functions} option.
10077 @option{-fno-align-loops} and @option{-falign-loops=1} are
10078 equivalent and mean that loops are not aligned.
10079 The maximum allowed @var{n} option value is 65536.
10080
10081 If @var{n} is not specified or is zero, use a machine-dependent default.
10082
10083 Enabled at levels @option{-O2}, @option{-O3}.
10084
10085 @item -falign-jumps
10086 @itemx -falign-jumps=@var{n}
10087 @itemx -falign-jumps=@var{n}:@var{m}
10088 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}
10089 @itemx -falign-jumps=@var{n}:@var{m}:@var{n2}:@var{m2}
10090 @opindex falign-jumps
10091 Align branch targets to a power-of-two boundary, for branch targets
10092 where the targets can only be reached by jumping. In this case,
10093 no dummy operations need be executed.
10094
10095 Parameters of this option are analogous to the @option{-falign-functions} option.
10096 @option{-fno-align-jumps} and @option{-falign-jumps=1} are
10097 equivalent and mean that loops are not aligned.
10098
10099 If @var{n} is not specified or is zero, use a machine-dependent default.
10100 The maximum allowed @var{n} option value is 65536.
10101
10102 Enabled at levels @option{-O2}, @option{-O3}.
10103
10104 @item -funit-at-a-time
10105 @opindex funit-at-a-time
10106 This option is left for compatibility reasons. @option{-funit-at-a-time}
10107 has no effect, while @option{-fno-unit-at-a-time} implies
10108 @option{-fno-toplevel-reorder} and @option{-fno-section-anchors}.
10109
10110 Enabled by default.
10111
10112 @item -fno-toplevel-reorder
10113 @opindex fno-toplevel-reorder
10114 @opindex ftoplevel-reorder
10115 Do not reorder top-level functions, variables, and @code{asm}
10116 statements. Output them in the same order that they appear in the
10117 input file. When this option is used, unreferenced static variables
10118 are not removed. This option is intended to support existing code
10119 that relies on a particular ordering. For new code, it is better to
10120 use attributes when possible.
10121
10122 @option{-ftoplevel-reorder} is the default at @option{-O1} and higher, and
10123 also at @option{-O0} if @option{-fsection-anchors} is explicitly requested.
10124 Additionally @option{-fno-toplevel-reorder} implies
10125 @option{-fno-section-anchors}.
10126
10127 @item -fweb
10128 @opindex fweb
10129 Constructs webs as commonly used for register allocation purposes and assign
10130 each web individual pseudo register. This allows the register allocation pass
10131 to operate on pseudos directly, but also strengthens several other optimization
10132 passes, such as CSE, loop optimizer and trivial dead code remover. It can,
10133 however, make debugging impossible, since variables no longer stay in a
10134 ``home register''.
10135
10136 Enabled by default with @option{-funroll-loops}.
10137
10138 @item -fwhole-program
10139 @opindex fwhole-program
10140 Assume that the current compilation unit represents the whole program being
10141 compiled. All public functions and variables with the exception of @code{main}
10142 and those merged by attribute @code{externally_visible} become static functions
10143 and in effect are optimized more aggressively by interprocedural optimizers.
10144
10145 This option should not be used in combination with @option{-flto}.
10146 Instead relying on a linker plugin should provide safer and more precise
10147 information.
10148
10149 @item -flto[=@var{n}]
10150 @opindex flto
10151 This option runs the standard link-time optimizer. When invoked
10152 with source code, it generates GIMPLE (one of GCC's internal
10153 representations) and writes it to special ELF sections in the object
10154 file. When the object files are linked together, all the function
10155 bodies are read from these ELF sections and instantiated as if they
10156 had been part of the same translation unit.
10157
10158 To use the link-time optimizer, @option{-flto} and optimization
10159 options should be specified at compile time and during the final link.
10160 It is recommended that you compile all the files participating in the
10161 same link with the same options and also specify those options at
10162 link time.
10163 For example:
10164
10165 @smallexample
10166 gcc -c -O2 -flto foo.c
10167 gcc -c -O2 -flto bar.c
10168 gcc -o myprog -flto -O2 foo.o bar.o
10169 @end smallexample
10170
10171 The first two invocations to GCC save a bytecode representation
10172 of GIMPLE into special ELF sections inside @file{foo.o} and
10173 @file{bar.o}. The final invocation reads the GIMPLE bytecode from
10174 @file{foo.o} and @file{bar.o}, merges the two files into a single
10175 internal image, and compiles the result as usual. Since both
10176 @file{foo.o} and @file{bar.o} are merged into a single image, this
10177 causes all the interprocedural analyses and optimizations in GCC to
10178 work across the two files as if they were a single one. This means,
10179 for example, that the inliner is able to inline functions in
10180 @file{bar.o} into functions in @file{foo.o} and vice-versa.
10181
10182 Another (simpler) way to enable link-time optimization is:
10183
10184 @smallexample
10185 gcc -o myprog -flto -O2 foo.c bar.c
10186 @end smallexample
10187
10188 The above generates bytecode for @file{foo.c} and @file{bar.c},
10189 merges them together into a single GIMPLE representation and optimizes
10190 them as usual to produce @file{myprog}.
10191
10192 The important thing to keep in mind is that to enable link-time
10193 optimizations you need to use the GCC driver to perform the link step.
10194 GCC automatically performs link-time optimization if any of the
10195 objects involved were compiled with the @option{-flto} command-line option.
10196 You can always override
10197 the automatic decision to do link-time optimization
10198 by passing @option{-fno-lto} to the link command.
10199
10200 To make whole program optimization effective, it is necessary to make
10201 certain whole program assumptions. The compiler needs to know
10202 what functions and variables can be accessed by libraries and runtime
10203 outside of the link-time optimized unit. When supported by the linker,
10204 the linker plugin (see @option{-fuse-linker-plugin}) passes information
10205 to the compiler about used and externally visible symbols. When
10206 the linker plugin is not available, @option{-fwhole-program} should be
10207 used to allow the compiler to make these assumptions, which leads
10208 to more aggressive optimization decisions.
10209
10210 When a file is compiled with @option{-flto} without
10211 @option{-fuse-linker-plugin}, the generated object file is larger than
10212 a regular object file because it contains GIMPLE bytecodes and the usual
10213 final code (see @option{-ffat-lto-objects}. This means that
10214 object files with LTO information can be linked as normal object
10215 files; if @option{-fno-lto} is passed to the linker, no
10216 interprocedural optimizations are applied. Note that when
10217 @option{-fno-fat-lto-objects} is enabled the compile stage is faster
10218 but you cannot perform a regular, non-LTO link on them.
10219
10220 When producing the final binary, GCC only
10221 applies link-time optimizations to those files that contain bytecode.
10222 Therefore, you can mix and match object files and libraries with
10223 GIMPLE bytecodes and final object code. GCC automatically selects
10224 which files to optimize in LTO mode and which files to link without
10225 further processing.
10226
10227 Generally, options specified at link time override those
10228 specified at compile time, although in some cases GCC attempts to infer
10229 link-time options from the settings used to compile the input files.
10230
10231 If you do not specify an optimization level option @option{-O} at
10232 link time, then GCC uses the highest optimization level
10233 used when compiling the object files. Note that it is generally
10234 ineffective to specify an optimization level option only at link time and
10235 not at compile time, for two reasons. First, compiling without
10236 optimization suppresses compiler passes that gather information
10237 needed for effective optimization at link time. Second, some early
10238 optimization passes can be performed only at compile time and
10239 not at link time.
10240
10241 There are some code generation flags preserved by GCC when
10242 generating bytecodes, as they need to be used during the final link.
10243 Currently, the following options and their settings are taken from
10244 the first object file that explicitly specifies them:
10245 @option{-fPIC}, @option{-fpic}, @option{-fpie}, @option{-fcommon},
10246 @option{-fexceptions}, @option{-fnon-call-exceptions}, @option{-fgnu-tm}
10247 and all the @option{-m} target flags.
10248
10249 Certain ABI-changing flags are required to match in all compilation units,
10250 and trying to override this at link time with a conflicting value
10251 is ignored. This includes options such as @option{-freg-struct-return}
10252 and @option{-fpcc-struct-return}.
10253
10254 Other options such as @option{-ffp-contract}, @option{-fno-strict-overflow},
10255 @option{-fwrapv}, @option{-fno-trapv} or @option{-fno-strict-aliasing}
10256 are passed through to the link stage and merged conservatively for
10257 conflicting translation units. Specifically
10258 @option{-fno-strict-overflow}, @option{-fwrapv} and @option{-fno-trapv} take
10259 precedence; and for example @option{-ffp-contract=off} takes precedence
10260 over @option{-ffp-contract=fast}. You can override them at link time.
10261
10262 If LTO encounters objects with C linkage declared with incompatible
10263 types in separate translation units to be linked together (undefined
10264 behavior according to ISO C99 6.2.7), a non-fatal diagnostic may be
10265 issued. The behavior is still undefined at run time. Similar
10266 diagnostics may be raised for other languages.
10267
10268 Another feature of LTO is that it is possible to apply interprocedural
10269 optimizations on files written in different languages:
10270
10271 @smallexample
10272 gcc -c -flto foo.c
10273 g++ -c -flto bar.cc
10274 gfortran -c -flto baz.f90
10275 g++ -o myprog -flto -O3 foo.o bar.o baz.o -lgfortran
10276 @end smallexample
10277
10278 Notice that the final link is done with @command{g++} to get the C++
10279 runtime libraries and @option{-lgfortran} is added to get the Fortran
10280 runtime libraries. In general, when mixing languages in LTO mode, you
10281 should use the same link command options as when mixing languages in a
10282 regular (non-LTO) compilation.
10283
10284 If object files containing GIMPLE bytecode are stored in a library archive, say
10285 @file{libfoo.a}, it is possible to extract and use them in an LTO link if you
10286 are using a linker with plugin support. To create static libraries suitable
10287 for LTO, use @command{gcc-ar} and @command{gcc-ranlib} instead of @command{ar}
10288 and @command{ranlib};
10289 to show the symbols of object files with GIMPLE bytecode, use
10290 @command{gcc-nm}. Those commands require that @command{ar}, @command{ranlib}
10291 and @command{nm} have been compiled with plugin support. At link time, use the
10292 flag @option{-fuse-linker-plugin} to ensure that the library participates in
10293 the LTO optimization process:
10294
10295 @smallexample
10296 gcc -o myprog -O2 -flto -fuse-linker-plugin a.o b.o -lfoo
10297 @end smallexample
10298
10299 With the linker plugin enabled, the linker extracts the needed
10300 GIMPLE files from @file{libfoo.a} and passes them on to the running GCC
10301 to make them part of the aggregated GIMPLE image to be optimized.
10302
10303 If you are not using a linker with plugin support and/or do not
10304 enable the linker plugin, then the objects inside @file{libfoo.a}
10305 are extracted and linked as usual, but they do not participate
10306 in the LTO optimization process. In order to make a static library suitable
10307 for both LTO optimization and usual linkage, compile its object files with
10308 @option{-flto} @option{-ffat-lto-objects}.
10309
10310 Link-time optimizations do not require the presence of the whole program to
10311 operate. If the program does not require any symbols to be exported, it is
10312 possible to combine @option{-flto} and @option{-fwhole-program} to allow
10313 the interprocedural optimizers to use more aggressive assumptions which may
10314 lead to improved optimization opportunities.
10315 Use of @option{-fwhole-program} is not needed when linker plugin is
10316 active (see @option{-fuse-linker-plugin}).
10317
10318 The current implementation of LTO makes no
10319 attempt to generate bytecode that is portable between different
10320 types of hosts. The bytecode files are versioned and there is a
10321 strict version check, so bytecode files generated in one version of
10322 GCC do not work with an older or newer version of GCC.
10323
10324 Link-time optimization does not work well with generation of debugging
10325 information on systems other than those using a combination of ELF and
10326 DWARF.
10327
10328 If you specify the optional @var{n}, the optimization and code
10329 generation done at link time is executed in parallel using @var{n}
10330 parallel jobs by utilizing an installed @command{make} program. The
10331 environment variable @env{MAKE} may be used to override the program
10332 used. The default value for @var{n} is 1.
10333
10334 You can also specify @option{-flto=jobserver} to use GNU make's
10335 job server mode to determine the number of parallel jobs. This
10336 is useful when the Makefile calling GCC is already executing in parallel.
10337 You must prepend a @samp{+} to the command recipe in the parent Makefile
10338 for this to work. This option likely only works if @env{MAKE} is
10339 GNU make.
10340
10341 @item -flto-partition=@var{alg}
10342 @opindex flto-partition
10343 Specify the partitioning algorithm used by the link-time optimizer.
10344 The value is either @samp{1to1} to specify a partitioning mirroring
10345 the original source files or @samp{balanced} to specify partitioning
10346 into equally sized chunks (whenever possible) or @samp{max} to create
10347 new partition for every symbol where possible. Specifying @samp{none}
10348 as an algorithm disables partitioning and streaming completely.
10349 The default value is @samp{balanced}. While @samp{1to1} can be used
10350 as an workaround for various code ordering issues, the @samp{max}
10351 partitioning is intended for internal testing only.
10352 The value @samp{one} specifies that exactly one partition should be
10353 used while the value @samp{none} bypasses partitioning and executes
10354 the link-time optimization step directly from the WPA phase.
10355
10356 @item -flto-compression-level=@var{n}
10357 @opindex flto-compression-level
10358 This option specifies the level of compression used for intermediate
10359 language written to LTO object files, and is only meaningful in
10360 conjunction with LTO mode (@option{-flto}). Valid
10361 values are 0 (no compression) to 9 (maximum compression). Values
10362 outside this range are clamped to either 0 or 9. If the option is not
10363 given, a default balanced compression setting is used.
10364
10365 @item -fuse-linker-plugin
10366 @opindex fuse-linker-plugin
10367 Enables the use of a linker plugin during link-time optimization. This
10368 option relies on plugin support in the linker, which is available in gold
10369 or in GNU ld 2.21 or newer.
10370
10371 This option enables the extraction of object files with GIMPLE bytecode out
10372 of library archives. This improves the quality of optimization by exposing
10373 more code to the link-time optimizer. This information specifies what
10374 symbols can be accessed externally (by non-LTO object or during dynamic
10375 linking). Resulting code quality improvements on binaries (and shared
10376 libraries that use hidden visibility) are similar to @option{-fwhole-program}.
10377 See @option{-flto} for a description of the effect of this flag and how to
10378 use it.
10379
10380 This option is enabled by default when LTO support in GCC is enabled
10381 and GCC was configured for use with
10382 a linker supporting plugins (GNU ld 2.21 or newer or gold).
10383
10384 @item -ffat-lto-objects
10385 @opindex ffat-lto-objects
10386 Fat LTO objects are object files that contain both the intermediate language
10387 and the object code. This makes them usable for both LTO linking and normal
10388 linking. This option is effective only when compiling with @option{-flto}
10389 and is ignored at link time.
10390
10391 @option{-fno-fat-lto-objects} improves compilation time over plain LTO, but
10392 requires the complete toolchain to be aware of LTO. It requires a linker with
10393 linker plugin support for basic functionality. Additionally,
10394 @command{nm}, @command{ar} and @command{ranlib}
10395 need to support linker plugins to allow a full-featured build environment
10396 (capable of building static libraries etc). GCC provides the @command{gcc-ar},
10397 @command{gcc-nm}, @command{gcc-ranlib} wrappers to pass the right options
10398 to these tools. With non fat LTO makefiles need to be modified to use them.
10399
10400 Note that modern binutils provide plugin auto-load mechanism.
10401 Installing the linker plugin into @file{$libdir/bfd-plugins} has the same
10402 effect as usage of the command wrappers (@command{gcc-ar}, @command{gcc-nm} and
10403 @command{gcc-ranlib}).
10404
10405 The default is @option{-fno-fat-lto-objects} on targets with linker plugin
10406 support.
10407
10408 @item -fcompare-elim
10409 @opindex fcompare-elim
10410 After register allocation and post-register allocation instruction splitting,
10411 identify arithmetic instructions that compute processor flags similar to a
10412 comparison operation based on that arithmetic. If possible, eliminate the
10413 explicit comparison operation.
10414
10415 This pass only applies to certain targets that cannot explicitly represent
10416 the comparison operation before register allocation is complete.
10417
10418 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10419
10420 @item -fcprop-registers
10421 @opindex fcprop-registers
10422 After register allocation and post-register allocation instruction splitting,
10423 perform a copy-propagation pass to try to reduce scheduling dependencies
10424 and occasionally eliminate the copy.
10425
10426 Enabled at levels @option{-O}, @option{-O2}, @option{-O3}, @option{-Os}.
10427
10428 @item -fprofile-correction
10429 @opindex fprofile-correction
10430 Profiles collected using an instrumented binary for multi-threaded programs may
10431 be inconsistent due to missed counter updates. When this option is specified,
10432 GCC uses heuristics to correct or smooth out such inconsistencies. By
10433 default, GCC emits an error message when an inconsistent profile is detected.
10434
10435 This option is enabled by @option{-fauto-profile}.
10436
10437 @item -fprofile-use
10438 @itemx -fprofile-use=@var{path}
10439 @opindex fprofile-use
10440 Enable profile feedback-directed optimizations,
10441 and the following optimizations, many of which
10442 are generally profitable only with profile feedback available:
10443
10444 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10445 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10446 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10447 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10448 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10449 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10450 -fprofile-reorder-functions}
10451
10452 Before you can use this option, you must first generate profiling information.
10453 @xref{Instrumentation Options}, for information about the
10454 @option{-fprofile-generate} option.
10455
10456 By default, GCC emits an error message if the feedback profiles do not
10457 match the source code. This error can be turned into a warning by using
10458 @option{-Wno-error=coverage-mismatch}. Note this may result in poorly
10459 optimized code. Additionally, by default, GCC also emits a warning message if
10460 the feedback profiles do not exist (see @option{-Wmissing-profile}).
10461
10462 If @var{path} is specified, GCC looks at the @var{path} to find
10463 the profile feedback data files. See @option{-fprofile-dir}.
10464
10465 @item -fauto-profile
10466 @itemx -fauto-profile=@var{path}
10467 @opindex fauto-profile
10468 Enable sampling-based feedback-directed optimizations,
10469 and the following optimizations,
10470 many of which are generally profitable only with profile feedback available:
10471
10472 @gccoptlist{-fbranch-probabilities -fprofile-values @gol
10473 -funroll-loops -fpeel-loops -ftracer -fvpt @gol
10474 -finline-functions -fipa-cp -fipa-cp-clone -fipa-bit-cp @gol
10475 -fpredictive-commoning -fsplit-loops -funswitch-loops @gol
10476 -fgcse-after-reload -ftree-loop-vectorize -ftree-slp-vectorize @gol
10477 -fvect-cost-model=dynamic -ftree-loop-distribute-patterns @gol
10478 -fprofile-correction}
10479
10480 @var{path} is the name of a file containing AutoFDO profile information.
10481 If omitted, it defaults to @file{fbdata.afdo} in the current directory.
10482
10483 Producing an AutoFDO profile data file requires running your program
10484 with the @command{perf} utility on a supported GNU/Linux target system.
10485 For more information, see @uref{https://perf.wiki.kernel.org/}.
10486
10487 E.g.
10488 @smallexample
10489 perf record -e br_inst_retired:near_taken -b -o perf.data \
10490 -- your_program
10491 @end smallexample
10492
10493 Then use the @command{create_gcov} tool to convert the raw profile data
10494 to a format that can be used by GCC.@ You must also supply the
10495 unstripped binary for your program to this tool.
10496 See @uref{https://github.com/google/autofdo}.
10497
10498 E.g.
10499 @smallexample
10500 create_gcov --binary=your_program.unstripped --profile=perf.data \
10501 --gcov=profile.afdo
10502 @end smallexample
10503 @end table
10504
10505 The following options control compiler behavior regarding floating-point
10506 arithmetic. These options trade off between speed and
10507 correctness. All must be specifically enabled.
10508
10509 @table @gcctabopt
10510 @item -ffloat-store
10511 @opindex ffloat-store
10512 Do not store floating-point variables in registers, and inhibit other
10513 options that might change whether a floating-point value is taken from a
10514 register or memory.
10515
10516 @cindex floating-point precision
10517 This option prevents undesirable excess precision on machines such as
10518 the 68000 where the floating registers (of the 68881) keep more
10519 precision than a @code{double} is supposed to have. Similarly for the
10520 x86 architecture. For most programs, the excess precision does only
10521 good, but a few programs rely on the precise definition of IEEE floating
10522 point. Use @option{-ffloat-store} for such programs, after modifying
10523 them to store all pertinent intermediate computations into variables.
10524
10525 @item -fexcess-precision=@var{style}
10526 @opindex fexcess-precision
10527 This option allows further control over excess precision on machines
10528 where floating-point operations occur in a format with more precision or
10529 range than the IEEE standard and interchange floating-point types. By
10530 default, @option{-fexcess-precision=fast} is in effect; this means that
10531 operations may be carried out in a wider precision than the types specified
10532 in the source if that would result in faster code, and it is unpredictable
10533 when rounding to the types specified in the source code takes place.
10534 When compiling C, if @option{-fexcess-precision=standard} is specified then
10535 excess precision follows the rules specified in ISO C99; in particular,
10536 both casts and assignments cause values to be rounded to their
10537 semantic types (whereas @option{-ffloat-store} only affects
10538 assignments). This option is enabled by default for C if a strict
10539 conformance option such as @option{-std=c99} is used.
10540 @option{-ffast-math} enables @option{-fexcess-precision=fast} by default
10541 regardless of whether a strict conformance option is used.
10542
10543 @opindex mfpmath
10544 @option{-fexcess-precision=standard} is not implemented for languages
10545 other than C. On the x86, it has no effect if @option{-mfpmath=sse}
10546 or @option{-mfpmath=sse+387} is specified; in the former case, IEEE
10547 semantics apply without excess precision, and in the latter, rounding
10548 is unpredictable.
10549
10550 @item -ffast-math
10551 @opindex ffast-math
10552 Sets the options @option{-fno-math-errno}, @option{-funsafe-math-optimizations},
10553 @option{-ffinite-math-only}, @option{-fno-rounding-math},
10554 @option{-fno-signaling-nans}, @option{-fcx-limited-range} and
10555 @option{-fexcess-precision=fast}.
10556
10557 This option causes the preprocessor macro @code{__FAST_MATH__} to be defined.
10558
10559 This option is not turned on by any @option{-O} option besides
10560 @option{-Ofast} since it can result in incorrect output for programs
10561 that depend on an exact implementation of IEEE or ISO rules/specifications
10562 for math functions. It may, however, yield faster code for programs
10563 that do not require the guarantees of these specifications.
10564
10565 @item -fno-math-errno
10566 @opindex fno-math-errno
10567 @opindex fmath-errno
10568 Do not set @code{errno} after calling math functions that are executed
10569 with a single instruction, e.g., @code{sqrt}. A program that relies on
10570 IEEE exceptions for math error handling may want to use this flag
10571 for speed while maintaining IEEE arithmetic compatibility.
10572
10573 This option is not turned on by any @option{-O} option since
10574 it can result in incorrect output for programs that depend on
10575 an exact implementation of IEEE or ISO rules/specifications for
10576 math functions. It may, however, yield faster code for programs
10577 that do not require the guarantees of these specifications.
10578
10579 The default is @option{-fmath-errno}.
10580
10581 On Darwin systems, the math library never sets @code{errno}. There is
10582 therefore no reason for the compiler to consider the possibility that
10583 it might, and @option{-fno-math-errno} is the default.
10584
10585 @item -funsafe-math-optimizations
10586 @opindex funsafe-math-optimizations
10587
10588 Allow optimizations for floating-point arithmetic that (a) assume
10589 that arguments and results are valid and (b) may violate IEEE or
10590 ANSI standards. When used at link time, it may include libraries
10591 or startup files that change the default FPU control word or other
10592 similar optimizations.
10593
10594 This option is not turned on by any @option{-O} option since
10595 it can result in incorrect output for programs that depend on
10596 an exact implementation of IEEE or ISO rules/specifications for
10597 math functions. It may, however, yield faster code for programs
10598 that do not require the guarantees of these specifications.
10599 Enables @option{-fno-signed-zeros}, @option{-fno-trapping-math},
10600 @option{-fassociative-math} and @option{-freciprocal-math}.
10601
10602 The default is @option{-fno-unsafe-math-optimizations}.
10603
10604 @item -fassociative-math
10605 @opindex fassociative-math
10606
10607 Allow re-association of operands in series of floating-point operations.
10608 This violates the ISO C and C++ language standard by possibly changing
10609 computation result. NOTE: re-ordering may change the sign of zero as
10610 well as ignore NaNs and inhibit or create underflow or overflow (and
10611 thus cannot be used on code that relies on rounding behavior like
10612 @code{(x + 2**52) - 2**52}. May also reorder floating-point comparisons
10613 and thus may not be used when ordered comparisons are required.
10614 This option requires that both @option{-fno-signed-zeros} and
10615 @option{-fno-trapping-math} be in effect. Moreover, it doesn't make
10616 much sense with @option{-frounding-math}. For Fortran the option
10617 is automatically enabled when both @option{-fno-signed-zeros} and
10618 @option{-fno-trapping-math} are in effect.
10619
10620 The default is @option{-fno-associative-math}.
10621
10622 @item -freciprocal-math
10623 @opindex freciprocal-math
10624
10625 Allow the reciprocal of a value to be used instead of dividing by
10626 the value if this enables optimizations. For example @code{x / y}
10627 can be replaced with @code{x * (1/y)}, which is useful if @code{(1/y)}
10628 is subject to common subexpression elimination. Note that this loses
10629 precision and increases the number of flops operating on the value.
10630
10631 The default is @option{-fno-reciprocal-math}.
10632
10633 @item -ffinite-math-only
10634 @opindex ffinite-math-only
10635 Allow optimizations for floating-point arithmetic that assume
10636 that arguments and results are not NaNs or +-Infs.
10637
10638 This option is not turned on by any @option{-O} option since
10639 it can result in incorrect output for programs that depend on
10640 an exact implementation of IEEE or ISO rules/specifications for
10641 math functions. It may, however, yield faster code for programs
10642 that do not require the guarantees of these specifications.
10643
10644 The default is @option{-fno-finite-math-only}.
10645
10646 @item -fno-signed-zeros
10647 @opindex fno-signed-zeros
10648 @opindex fsigned-zeros
10649 Allow optimizations for floating-point arithmetic that ignore the
10650 signedness of zero. IEEE arithmetic specifies the behavior of
10651 distinct +0.0 and @minus{}0.0 values, which then prohibits simplification
10652 of expressions such as x+0.0 or 0.0*x (even with @option{-ffinite-math-only}).
10653 This option implies that the sign of a zero result isn't significant.
10654
10655 The default is @option{-fsigned-zeros}.
10656
10657 @item -fno-trapping-math
10658 @opindex fno-trapping-math
10659 @opindex ftrapping-math
10660 Compile code assuming that floating-point operations cannot generate
10661 user-visible traps. These traps include division by zero, overflow,
10662 underflow, inexact result and invalid operation. This option requires
10663 that @option{-fno-signaling-nans} be in effect. Setting this option may
10664 allow faster code if one relies on ``non-stop'' IEEE arithmetic, for example.
10665
10666 This option should never be turned on by any @option{-O} option since
10667 it can result in incorrect output for programs that depend on
10668 an exact implementation of IEEE or ISO rules/specifications for
10669 math functions.
10670
10671 The default is @option{-ftrapping-math}.
10672
10673 @item -frounding-math
10674 @opindex frounding-math
10675 Disable transformations and optimizations that assume default floating-point
10676 rounding behavior. This is round-to-zero for all floating point
10677 to integer conversions, and round-to-nearest for all other arithmetic
10678 truncations. This option should be specified for programs that change
10679 the FP rounding mode dynamically, or that may be executed with a
10680 non-default rounding mode. This option disables constant folding of
10681 floating-point expressions at compile time (which may be affected by
10682 rounding mode) and arithmetic transformations that are unsafe in the
10683 presence of sign-dependent rounding modes.
10684
10685 The default is @option{-fno-rounding-math}.
10686
10687 This option is experimental and does not currently guarantee to
10688 disable all GCC optimizations that are affected by rounding mode.
10689 Future versions of GCC may provide finer control of this setting
10690 using C99's @code{FENV_ACCESS} pragma. This command-line option
10691 will be used to specify the default state for @code{FENV_ACCESS}.
10692
10693 @item -fsignaling-nans
10694 @opindex fsignaling-nans
10695 Compile code assuming that IEEE signaling NaNs may generate user-visible
10696 traps during floating-point operations. Setting this option disables
10697 optimizations that may change the number of exceptions visible with
10698 signaling NaNs. This option implies @option{-ftrapping-math}.
10699
10700 This option causes the preprocessor macro @code{__SUPPORT_SNAN__} to
10701 be defined.
10702
10703 The default is @option{-fno-signaling-nans}.
10704
10705 This option is experimental and does not currently guarantee to
10706 disable all GCC optimizations that affect signaling NaN behavior.
10707
10708 @item -fno-fp-int-builtin-inexact
10709 @opindex fno-fp-int-builtin-inexact
10710 @opindex ffp-int-builtin-inexact
10711 Do not allow the built-in functions @code{ceil}, @code{floor},
10712 @code{round} and @code{trunc}, and their @code{float} and @code{long
10713 double} variants, to generate code that raises the ``inexact''
10714 floating-point exception for noninteger arguments. ISO C99 and C11
10715 allow these functions to raise the ``inexact'' exception, but ISO/IEC
10716 TS 18661-1:2014, the C bindings to IEEE 754-2008, does not allow these
10717 functions to do so.
10718
10719 The default is @option{-ffp-int-builtin-inexact}, allowing the
10720 exception to be raised. This option does nothing unless
10721 @option{-ftrapping-math} is in effect.
10722
10723 Even if @option{-fno-fp-int-builtin-inexact} is used, if the functions
10724 generate a call to a library function then the ``inexact'' exception
10725 may be raised if the library implementation does not follow TS 18661.
10726
10727 @item -fsingle-precision-constant
10728 @opindex fsingle-precision-constant
10729 Treat floating-point constants as single precision instead of
10730 implicitly converting them to double-precision constants.
10731
10732 @item -fcx-limited-range
10733 @opindex fcx-limited-range
10734 When enabled, this option states that a range reduction step is not
10735 needed when performing complex division. Also, there is no checking
10736 whether the result of a complex multiplication or division is @code{NaN
10737 + I*NaN}, with an attempt to rescue the situation in that case. The
10738 default is @option{-fno-cx-limited-range}, but is enabled by
10739 @option{-ffast-math}.
10740
10741 This option controls the default setting of the ISO C99
10742 @code{CX_LIMITED_RANGE} pragma. Nevertheless, the option applies to
10743 all languages.
10744
10745 @item -fcx-fortran-rules
10746 @opindex fcx-fortran-rules
10747 Complex multiplication and division follow Fortran rules. Range
10748 reduction is done as part of complex division, but there is no checking
10749 whether the result of a complex multiplication or division is @code{NaN
10750 + I*NaN}, with an attempt to rescue the situation in that case.
10751
10752 The default is @option{-fno-cx-fortran-rules}.
10753
10754 @end table
10755
10756 The following options control optimizations that may improve
10757 performance, but are not enabled by any @option{-O} options. This
10758 section includes experimental options that may produce broken code.
10759
10760 @table @gcctabopt
10761 @item -fbranch-probabilities
10762 @opindex fbranch-probabilities
10763 After running a program compiled with @option{-fprofile-arcs}
10764 (@pxref{Instrumentation Options}),
10765 you can compile it a second time using
10766 @option{-fbranch-probabilities}, to improve optimizations based on
10767 the number of times each branch was taken. When a program
10768 compiled with @option{-fprofile-arcs} exits, it saves arc execution
10769 counts to a file called @file{@var{sourcename}.gcda} for each source
10770 file. The information in this data file is very dependent on the
10771 structure of the generated code, so you must use the same source code
10772 and the same optimization options for both compilations.
10773
10774 With @option{-fbranch-probabilities}, GCC puts a
10775 @samp{REG_BR_PROB} note on each @samp{JUMP_INSN} and @samp{CALL_INSN}.
10776 These can be used to improve optimization. Currently, they are only
10777 used in one place: in @file{reorg.c}, instead of guessing which path a
10778 branch is most likely to take, the @samp{REG_BR_PROB} values are used to
10779 exactly determine which path is taken more often.
10780
10781 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10782
10783 @item -fprofile-values
10784 @opindex fprofile-values
10785 If combined with @option{-fprofile-arcs}, it adds code so that some
10786 data about values of expressions in the program is gathered.
10787
10788 With @option{-fbranch-probabilities}, it reads back the data gathered
10789 from profiling values of expressions for usage in optimizations.
10790
10791 Enabled by @option{-fprofile-generate}, @option{-fprofile-use}, and
10792 @option{-fauto-profile}.
10793
10794 @item -fprofile-reorder-functions
10795 @opindex fprofile-reorder-functions
10796 Function reordering based on profile instrumentation collects
10797 first time of execution of a function and orders these functions
10798 in ascending order.
10799
10800 Enabled with @option{-fprofile-use}.
10801
10802 @item -fvpt
10803 @opindex fvpt
10804 If combined with @option{-fprofile-arcs}, this option instructs the compiler
10805 to add code to gather information about values of expressions.
10806
10807 With @option{-fbranch-probabilities}, it reads back the data gathered
10808 and actually performs the optimizations based on them.
10809 Currently the optimizations include specialization of division operations
10810 using the knowledge about the value of the denominator.
10811
10812 Enabled with @option{-fprofile-use} and @option{-fauto-profile}.
10813
10814 @item -frename-registers
10815 @opindex frename-registers
10816 Attempt to avoid false dependencies in scheduled code by making use
10817 of registers left over after register allocation. This optimization
10818 most benefits processors with lots of registers. Depending on the
10819 debug information format adopted by the target, however, it can
10820 make debugging impossible, since variables no longer stay in
10821 a ``home register''.
10822
10823 Enabled by default with @option{-funroll-loops}.
10824
10825 @item -fschedule-fusion
10826 @opindex fschedule-fusion
10827 Performs a target dependent pass over the instruction stream to schedule
10828 instructions of same type together because target machine can execute them
10829 more efficiently if they are adjacent to each other in the instruction flow.
10830
10831 Enabled at levels @option{-O2}, @option{-O3}, @option{-Os}.
10832
10833 @item -ftracer
10834 @opindex ftracer
10835 Perform tail duplication to enlarge superblock size. This transformation
10836 simplifies the control flow of the function allowing other optimizations to do
10837 a better job.
10838
10839 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10840
10841 @item -funroll-loops
10842 @opindex funroll-loops
10843 Unroll loops whose number of iterations can be determined at compile time or
10844 upon entry to the loop. @option{-funroll-loops} implies
10845 @option{-frerun-cse-after-loop}, @option{-fweb} and @option{-frename-registers}.
10846 It also turns on complete loop peeling (i.e.@: complete removal of loops with
10847 a small constant number of iterations). This option makes code larger, and may
10848 or may not make it run faster.
10849
10850 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10851
10852 @item -funroll-all-loops
10853 @opindex funroll-all-loops
10854 Unroll all loops, even if their number of iterations is uncertain when
10855 the loop is entered. This usually makes programs run more slowly.
10856 @option{-funroll-all-loops} implies the same options as
10857 @option{-funroll-loops}.
10858
10859 @item -fpeel-loops
10860 @opindex fpeel-loops
10861 Peels loops for which there is enough information that they do not
10862 roll much (from profile feedback or static analysis). It also turns on
10863 complete loop peeling (i.e.@: complete removal of loops with small constant
10864 number of iterations).
10865
10866 Enabled by @option{-O3}, @option{-fprofile-use}, and @option{-fauto-profile}.
10867
10868 @item -fmove-loop-invariants
10869 @opindex fmove-loop-invariants
10870 Enables the loop invariant motion pass in the RTL loop optimizer. Enabled
10871 at level @option{-O1} and higher, except for @option{-Og}.
10872
10873 @item -fsplit-loops
10874 @opindex fsplit-loops
10875 Split a loop into two if it contains a condition that's always true
10876 for one side of the iteration space and false for the other.
10877
10878 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10879
10880 @item -funswitch-loops
10881 @opindex funswitch-loops
10882 Move branches with loop invariant conditions out of the loop, with duplicates
10883 of the loop on both branches (modified according to result of the condition).
10884
10885 Enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10886
10887 @item -fversion-loops-for-strides
10888 @opindex fversion-loops-for-strides
10889 If a loop iterates over an array with a variable stride, create another
10890 version of the loop that assumes the stride is always one. For example:
10891
10892 @smallexample
10893 for (int i = 0; i < n; ++i)
10894 x[i * stride] = @dots{};
10895 @end smallexample
10896
10897 becomes:
10898
10899 @smallexample
10900 if (stride == 1)
10901 for (int i = 0; i < n; ++i)
10902 x[i] = @dots{};
10903 else
10904 for (int i = 0; i < n; ++i)
10905 x[i * stride] = @dots{};
10906 @end smallexample
10907
10908 This is particularly useful for assumed-shape arrays in Fortran where
10909 (for example) it allows better vectorization assuming contiguous accesses.
10910 This flag is enabled by default at @option{-O3}.
10911 It is also enabled by @option{-fprofile-use} and @option{-fauto-profile}.
10912
10913 @item -ffunction-sections
10914 @itemx -fdata-sections
10915 @opindex ffunction-sections
10916 @opindex fdata-sections
10917 Place each function or data item into its own section in the output
10918 file if the target supports arbitrary sections. The name of the
10919 function or the name of the data item determines the section's name
10920 in the output file.
10921
10922 Use these options on systems where the linker can perform optimizations to
10923 improve locality of reference in the instruction space. Most systems using the
10924 ELF object format have linkers with such optimizations. On AIX, the linker
10925 rearranges sections (CSECTs) based on the call graph. The performance impact
10926 varies.
10927
10928 Together with a linker garbage collection (linker @option{--gc-sections}
10929 option) these options may lead to smaller statically-linked executables (after
10930 stripping).
10931
10932 On ELF/DWARF systems these options do not degenerate the quality of the debug
10933 information. There could be issues with other object files/debug info formats.
10934
10935 Only use these options when there are significant benefits from doing so. When
10936 you specify these options, the assembler and linker create larger object and
10937 executable files and are also slower. These options affect code generation.
10938 They prevent optimizations by the compiler and assembler using relative
10939 locations inside a translation unit since the locations are unknown until
10940 link time. An example of such an optimization is relaxing calls to short call
10941 instructions.
10942
10943 @item -fbranch-target-load-optimize
10944 @opindex fbranch-target-load-optimize
10945 Perform branch target register load optimization before prologue / epilogue
10946 threading.
10947 The use of target registers can typically be exposed only during reload,
10948 thus hoisting loads out of loops and doing inter-block scheduling needs
10949 a separate optimization pass.
10950
10951 @item -fbranch-target-load-optimize2
10952 @opindex fbranch-target-load-optimize2
10953 Perform branch target register load optimization after prologue / epilogue
10954 threading.
10955
10956 @item -fbtr-bb-exclusive
10957 @opindex fbtr-bb-exclusive
10958 When performing branch target register load optimization, don't reuse
10959 branch target registers within any basic block.
10960
10961 @item -fstdarg-opt
10962 @opindex fstdarg-opt
10963 Optimize the prologue of variadic argument functions with respect to usage of
10964 those arguments.
10965
10966 @item -fsection-anchors
10967 @opindex fsection-anchors
10968 Try to reduce the number of symbolic address calculations by using
10969 shared ``anchor'' symbols to address nearby objects. This transformation
10970 can help to reduce the number of GOT entries and GOT accesses on some
10971 targets.
10972
10973 For example, the implementation of the following function @code{foo}:
10974
10975 @smallexample
10976 static int a, b, c;
10977 int foo (void) @{ return a + b + c; @}
10978 @end smallexample
10979
10980 @noindent
10981 usually calculates the addresses of all three variables, but if you
10982 compile it with @option{-fsection-anchors}, it accesses the variables
10983 from a common anchor point instead. The effect is similar to the
10984 following pseudocode (which isn't valid C):
10985
10986 @smallexample
10987 int foo (void)
10988 @{
10989 register int *xr = &x;
10990 return xr[&a - &x] + xr[&b - &x] + xr[&c - &x];
10991 @}
10992 @end smallexample
10993
10994 Not all targets support this option.
10995
10996 @item --param @var{name}=@var{value}
10997 @opindex param
10998 In some places, GCC uses various constants to control the amount of
10999 optimization that is done. For example, GCC does not inline functions
11000 that contain more than a certain number of instructions. You can
11001 control some of these constants on the command line using the
11002 @option{--param} option.
11003
11004 The names of specific parameters, and the meaning of the values, are
11005 tied to the internals of the compiler, and are subject to change
11006 without notice in future releases.
11007
11008 In order to get minimal, maximal and default value of a parameter,
11009 one can use @option{--help=param -Q} options.
11010
11011 In each case, the @var{value} is an integer. The allowable choices for
11012 @var{name} are:
11013
11014 @table @gcctabopt
11015 @item predictable-branch-outcome
11016 When branch is predicted to be taken with probability lower than this threshold
11017 (in percent), then it is considered well predictable.
11018
11019 @item max-rtl-if-conversion-insns
11020 RTL if-conversion tries to remove conditional branches around a block and
11021 replace them with conditionally executed instructions. This parameter
11022 gives the maximum number of instructions in a block which should be
11023 considered for if-conversion. The compiler will
11024 also use other heuristics to decide whether if-conversion is likely to be
11025 profitable.
11026
11027 @item max-rtl-if-conversion-predictable-cost
11028 @itemx max-rtl-if-conversion-unpredictable-cost
11029 RTL if-conversion will try to remove conditional branches around a block
11030 and replace them with conditionally executed instructions. These parameters
11031 give the maximum permissible cost for the sequence that would be generated
11032 by if-conversion depending on whether the branch is statically determined
11033 to be predictable or not. The units for this parameter are the same as
11034 those for the GCC internal seq_cost metric. The compiler will try to
11035 provide a reasonable default for this parameter using the BRANCH_COST
11036 target macro.
11037
11038 @item max-crossjump-edges
11039 The maximum number of incoming edges to consider for cross-jumping.
11040 The algorithm used by @option{-fcrossjumping} is @math{O(N^2)} in
11041 the number of edges incoming to each block. Increasing values mean
11042 more aggressive optimization, making the compilation time increase with
11043 probably small improvement in executable size.
11044
11045 @item min-crossjump-insns
11046 The minimum number of instructions that must be matched at the end
11047 of two blocks before cross-jumping is performed on them. This
11048 value is ignored in the case where all instructions in the block being
11049 cross-jumped from are matched.
11050
11051 @item max-grow-copy-bb-insns
11052 The maximum code size expansion factor when copying basic blocks
11053 instead of jumping. The expansion is relative to a jump instruction.
11054
11055 @item max-goto-duplication-insns
11056 The maximum number of instructions to duplicate to a block that jumps
11057 to a computed goto. To avoid @math{O(N^2)} behavior in a number of
11058 passes, GCC factors computed gotos early in the compilation process,
11059 and unfactors them as late as possible. Only computed jumps at the
11060 end of a basic blocks with no more than max-goto-duplication-insns are
11061 unfactored.
11062
11063 @item max-delay-slot-insn-search
11064 The maximum number of instructions to consider when looking for an
11065 instruction to fill a delay slot. If more than this arbitrary number of
11066 instructions are searched, the time savings from filling the delay slot
11067 are minimal, so stop searching. Increasing values mean more
11068 aggressive optimization, making the compilation time increase with probably
11069 small improvement in execution time.
11070
11071 @item max-delay-slot-live-search
11072 When trying to fill delay slots, the maximum number of instructions to
11073 consider when searching for a block with valid live register
11074 information. Increasing this arbitrarily chosen value means more
11075 aggressive optimization, increasing the compilation time. This parameter
11076 should be removed when the delay slot code is rewritten to maintain the
11077 control-flow graph.
11078
11079 @item max-gcse-memory
11080 The approximate maximum amount of memory that can be allocated in
11081 order to perform the global common subexpression elimination
11082 optimization. If more memory than specified is required, the
11083 optimization is not done.
11084
11085 @item max-gcse-insertion-ratio
11086 If the ratio of expression insertions to deletions is larger than this value
11087 for any expression, then RTL PRE inserts or removes the expression and thus
11088 leaves partially redundant computations in the instruction stream.
11089
11090 @item max-pending-list-length
11091 The maximum number of pending dependencies scheduling allows
11092 before flushing the current state and starting over. Large functions
11093 with few branches or calls can create excessively large lists which
11094 needlessly consume memory and resources.
11095
11096 @item max-modulo-backtrack-attempts
11097 The maximum number of backtrack attempts the scheduler should make
11098 when modulo scheduling a loop. Larger values can exponentially increase
11099 compilation time.
11100
11101 @item max-inline-insns-single
11102 Several parameters control the tree inliner used in GCC@.
11103 This number sets the maximum number of instructions (counted in GCC's
11104 internal representation) in a single function that the tree inliner
11105 considers for inlining. This only affects functions declared
11106 inline and methods implemented in a class declaration (C++).
11107
11108 @item max-inline-insns-auto
11109 When you use @option{-finline-functions} (included in @option{-O3}),
11110 a lot of functions that would otherwise not be considered for inlining
11111 by the compiler are investigated. To those functions, a different
11112 (more restrictive) limit compared to functions declared inline can
11113 be applied.
11114
11115 @item max-inline-insns-small
11116 This is bound applied to calls which are considered relevant with
11117 @option{-finline-small-functions}.
11118
11119 @item max-inline-insns-size
11120 This is bound applied to calls which are optimized for size. Small growth
11121 may be desirable to anticipate optimization oppurtunities exposed by inlining.
11122
11123 @item uninlined-function-insns
11124 Number of instructions accounted by inliner for function overhead such as
11125 function prologue and epilogue.
11126
11127 @item uninlined-function-time
11128 Extra time accounted by inliner for function overhead such as time needed to
11129 execute function prologue and epilogue
11130
11131 @item uninlined-thunk-insns
11132 @item uninlined-thunk-time
11133 Same as @option{--param uninlined-function-insns} and
11134 @option{--param uninlined-function-time} but applied to function thunks
11135
11136 @item inline-min-speedup
11137 When estimated performance improvement of caller + callee runtime exceeds this
11138 threshold (in percent), the function can be inlined regardless of the limit on
11139 @option{--param max-inline-insns-single} and @option{--param
11140 max-inline-insns-auto}.
11141
11142 @item large-function-insns
11143 The limit specifying really large functions. For functions larger than this
11144 limit after inlining, inlining is constrained by
11145 @option{--param large-function-growth}. This parameter is useful primarily
11146 to avoid extreme compilation time caused by non-linear algorithms used by the
11147 back end.
11148
11149 @item large-function-growth
11150 Specifies maximal growth of large function caused by inlining in percents.
11151 For example, parameter value 100 limits large function growth to 2.0 times
11152 the original size.
11153
11154 @item large-unit-insns
11155 The limit specifying large translation unit. Growth caused by inlining of
11156 units larger than this limit is limited by @option{--param inline-unit-growth}.
11157 For small units this might be too tight.
11158 For example, consider a unit consisting of function A
11159 that is inline and B that just calls A three times. If B is small relative to
11160 A, the growth of unit is 300\% and yet such inlining is very sane. For very
11161 large units consisting of small inlineable functions, however, the overall unit
11162 growth limit is needed to avoid exponential explosion of code size. Thus for
11163 smaller units, the size is increased to @option{--param large-unit-insns}
11164 before applying @option{--param inline-unit-growth}.
11165
11166 @item inline-unit-growth
11167 Specifies maximal overall growth of the compilation unit caused by inlining.
11168 For example, parameter value 20 limits unit growth to 1.2 times the original
11169 size. Cold functions (either marked cold via an attribute or by profile
11170 feedback) are not accounted into the unit size.
11171
11172 @item ipcp-unit-growth
11173 Specifies maximal overall growth of the compilation unit caused by
11174 interprocedural constant propagation. For example, parameter value 10 limits
11175 unit growth to 1.1 times the original size.
11176
11177 @item large-stack-frame
11178 The limit specifying large stack frames. While inlining the algorithm is trying
11179 to not grow past this limit too much.
11180
11181 @item large-stack-frame-growth
11182 Specifies maximal growth of large stack frames caused by inlining in percents.
11183 For example, parameter value 1000 limits large stack frame growth to 11 times
11184 the original size.
11185
11186 @item max-inline-insns-recursive
11187 @itemx max-inline-insns-recursive-auto
11188 Specifies the maximum number of instructions an out-of-line copy of a
11189 self-recursive inline
11190 function can grow into by performing recursive inlining.
11191
11192 @option{--param max-inline-insns-recursive} applies to functions
11193 declared inline.
11194 For functions not declared inline, recursive inlining
11195 happens only when @option{-finline-functions} (included in @option{-O3}) is
11196 enabled; @option{--param max-inline-insns-recursive-auto} applies instead.
11197
11198 @item max-inline-recursive-depth
11199 @itemx max-inline-recursive-depth-auto
11200 Specifies the maximum recursion depth used for recursive inlining.
11201
11202 @option{--param max-inline-recursive-depth} applies to functions
11203 declared inline. For functions not declared inline, recursive inlining
11204 happens only when @option{-finline-functions} (included in @option{-O3}) is
11205 enabled; @option{--param max-inline-recursive-depth-auto} applies instead.
11206
11207 @item min-inline-recursive-probability
11208 Recursive inlining is profitable only for function having deep recursion
11209 in average and can hurt for function having little recursion depth by
11210 increasing the prologue size or complexity of function body to other
11211 optimizers.
11212
11213 When profile feedback is available (see @option{-fprofile-generate}) the actual
11214 recursion depth can be guessed from the probability that function recurses
11215 via a given call expression. This parameter limits inlining only to call
11216 expressions whose probability exceeds the given threshold (in percents).
11217
11218 @item early-inlining-insns
11219 Specify growth that the early inliner can make. In effect it increases
11220 the amount of inlining for code having a large abstraction penalty.
11221
11222 @item max-early-inliner-iterations
11223 Limit of iterations of the early inliner. This basically bounds
11224 the number of nested indirect calls the early inliner can resolve.
11225 Deeper chains are still handled by late inlining.
11226
11227 @item comdat-sharing-probability
11228 Probability (in percent) that C++ inline function with comdat visibility
11229 are shared across multiple compilation units.
11230
11231 @item profile-func-internal-id
11232 A parameter to control whether to use function internal id in profile
11233 database lookup. If the value is 0, the compiler uses an id that
11234 is based on function assembler name and filename, which makes old profile
11235 data more tolerant to source changes such as function reordering etc.
11236
11237 @item min-vect-loop-bound
11238 The minimum number of iterations under which loops are not vectorized
11239 when @option{-ftree-vectorize} is used. The number of iterations after
11240 vectorization needs to be greater than the value specified by this option
11241 to allow vectorization.
11242
11243 @item gcse-cost-distance-ratio
11244 Scaling factor in calculation of maximum distance an expression
11245 can be moved by GCSE optimizations. This is currently supported only in the
11246 code hoisting pass. The bigger the ratio, the more aggressive code hoisting
11247 is with simple expressions, i.e., the expressions that have cost
11248 less than @option{gcse-unrestricted-cost}. Specifying 0 disables
11249 hoisting of simple expressions.
11250
11251 @item gcse-unrestricted-cost
11252 Cost, roughly measured as the cost of a single typical machine
11253 instruction, at which GCSE optimizations do not constrain
11254 the distance an expression can travel. This is currently
11255 supported only in the code hoisting pass. The lesser the cost,
11256 the more aggressive code hoisting is. Specifying 0
11257 allows all expressions to travel unrestricted distances.
11258
11259 @item max-hoist-depth
11260 The depth of search in the dominator tree for expressions to hoist.
11261 This is used to avoid quadratic behavior in hoisting algorithm.
11262 The value of 0 does not limit on the search, but may slow down compilation
11263 of huge functions.
11264
11265 @item max-tail-merge-comparisons
11266 The maximum amount of similar bbs to compare a bb with. This is used to
11267 avoid quadratic behavior in tree tail merging.
11268
11269 @item max-tail-merge-iterations
11270 The maximum amount of iterations of the pass over the function. This is used to
11271 limit compilation time in tree tail merging.
11272
11273 @item store-merging-allow-unaligned
11274 Allow the store merging pass to introduce unaligned stores if it is legal to
11275 do so.
11276
11277 @item max-stores-to-merge
11278 The maximum number of stores to attempt to merge into wider stores in the store
11279 merging pass.
11280
11281 @item max-unrolled-insns
11282 The maximum number of instructions that a loop may have to be unrolled.
11283 If a loop is unrolled, this parameter also determines how many times
11284 the loop code is unrolled.
11285
11286 @item max-average-unrolled-insns
11287 The maximum number of instructions biased by probabilities of their execution
11288 that a loop may have to be unrolled. If a loop is unrolled,
11289 this parameter also determines how many times the loop code is unrolled.
11290
11291 @item max-unroll-times
11292 The maximum number of unrollings of a single loop.
11293
11294 @item max-peeled-insns
11295 The maximum number of instructions that a loop may have to be peeled.
11296 If a loop is peeled, this parameter also determines how many times
11297 the loop code is peeled.
11298
11299 @item max-peel-times
11300 The maximum number of peelings of a single loop.
11301
11302 @item max-peel-branches
11303 The maximum number of branches on the hot path through the peeled sequence.
11304
11305 @item max-completely-peeled-insns
11306 The maximum number of insns of a completely peeled loop.
11307
11308 @item max-completely-peel-times
11309 The maximum number of iterations of a loop to be suitable for complete peeling.
11310
11311 @item max-completely-peel-loop-nest-depth
11312 The maximum depth of a loop nest suitable for complete peeling.
11313
11314 @item max-unswitch-insns
11315 The maximum number of insns of an unswitched loop.
11316
11317 @item max-unswitch-level
11318 The maximum number of branches unswitched in a single loop.
11319
11320 @item lim-expensive
11321 The minimum cost of an expensive expression in the loop invariant motion.
11322
11323 @item iv-consider-all-candidates-bound
11324 Bound on number of candidates for induction variables, below which
11325 all candidates are considered for each use in induction variable
11326 optimizations. If there are more candidates than this,
11327 only the most relevant ones are considered to avoid quadratic time complexity.
11328
11329 @item iv-max-considered-uses
11330 The induction variable optimizations give up on loops that contain more
11331 induction variable uses.
11332
11333 @item iv-always-prune-cand-set-bound
11334 If the number of candidates in the set is smaller than this value,
11335 always try to remove unnecessary ivs from the set
11336 when adding a new one.
11337
11338 @item avg-loop-niter
11339 Average number of iterations of a loop.
11340
11341 @item dse-max-object-size
11342 Maximum size (in bytes) of objects tracked bytewise by dead store elimination.
11343 Larger values may result in larger compilation times.
11344
11345 @item dse-max-alias-queries-per-store
11346 Maximum number of queries into the alias oracle per store.
11347 Larger values result in larger compilation times and may result in more
11348 removed dead stores.
11349
11350 @item scev-max-expr-size
11351 Bound on size of expressions used in the scalar evolutions analyzer.
11352 Large expressions slow the analyzer.
11353
11354 @item scev-max-expr-complexity
11355 Bound on the complexity of the expressions in the scalar evolutions analyzer.
11356 Complex expressions slow the analyzer.
11357
11358 @item max-tree-if-conversion-phi-args
11359 Maximum number of arguments in a PHI supported by TREE if conversion
11360 unless the loop is marked with simd pragma.
11361
11362 @item vect-max-version-for-alignment-checks
11363 The maximum number of run-time checks that can be performed when
11364 doing loop versioning for alignment in the vectorizer.
11365
11366 @item vect-max-version-for-alias-checks
11367 The maximum number of run-time checks that can be performed when
11368 doing loop versioning for alias in the vectorizer.
11369
11370 @item vect-max-peeling-for-alignment
11371 The maximum number of loop peels to enhance access alignment
11372 for vectorizer. Value -1 means no limit.
11373
11374 @item max-iterations-to-track
11375 The maximum number of iterations of a loop the brute-force algorithm
11376 for analysis of the number of iterations of the loop tries to evaluate.
11377
11378 @item hot-bb-count-ws-permille
11379 A basic block profile count is considered hot if it contributes to
11380 the given permillage (i.e.@: 0...1000) of the entire profiled execution.
11381
11382 @item hot-bb-frequency-fraction
11383 Select fraction of the entry block frequency of executions of basic block in
11384 function given basic block needs to have to be considered hot.
11385
11386 @item max-predicted-iterations
11387 The maximum number of loop iterations we predict statically. This is useful
11388 in cases where a function contains a single loop with known bound and
11389 another loop with unknown bound.
11390 The known number of iterations is predicted correctly, while
11391 the unknown number of iterations average to roughly 10. This means that the
11392 loop without bounds appears artificially cold relative to the other one.
11393
11394 @item builtin-expect-probability
11395 Control the probability of the expression having the specified value. This
11396 parameter takes a percentage (i.e.@: 0 ... 100) as input.
11397
11398 @item builtin-string-cmp-inline-length
11399 The maximum length of a constant string for a builtin string cmp call
11400 eligible for inlining.
11401
11402 @item align-threshold
11403
11404 Select fraction of the maximal frequency of executions of a basic block in
11405 a function to align the basic block.
11406
11407 @item align-loop-iterations
11408
11409 A loop expected to iterate at least the selected number of iterations is
11410 aligned.
11411
11412 @item tracer-dynamic-coverage
11413 @itemx tracer-dynamic-coverage-feedback
11414
11415 This value is used to limit superblock formation once the given percentage of
11416 executed instructions is covered. This limits unnecessary code size
11417 expansion.
11418
11419 The @option{tracer-dynamic-coverage-feedback} parameter
11420 is used only when profile
11421 feedback is available. The real profiles (as opposed to statically estimated
11422 ones) are much less balanced allowing the threshold to be larger value.
11423
11424 @item tracer-max-code-growth
11425 Stop tail duplication once code growth has reached given percentage. This is
11426 a rather artificial limit, as most of the duplicates are eliminated later in
11427 cross jumping, so it may be set to much higher values than is the desired code
11428 growth.
11429
11430 @item tracer-min-branch-ratio
11431
11432 Stop reverse growth when the reverse probability of best edge is less than this
11433 threshold (in percent).
11434
11435 @item tracer-min-branch-probability
11436 @itemx tracer-min-branch-probability-feedback
11437
11438 Stop forward growth if the best edge has probability lower than this
11439 threshold.
11440
11441 Similarly to @option{tracer-dynamic-coverage} two parameters are
11442 provided. @option{tracer-min-branch-probability-feedback} is used for
11443 compilation with profile feedback and @option{tracer-min-branch-probability}
11444 compilation without. The value for compilation with profile feedback
11445 needs to be more conservative (higher) in order to make tracer
11446 effective.
11447
11448 @item stack-clash-protection-guard-size
11449 Specify the size of the operating system provided stack guard as
11450 2 raised to @var{num} bytes. Higher values may reduce the
11451 number of explicit probes, but a value larger than the operating system
11452 provided guard will leave code vulnerable to stack clash style attacks.
11453
11454 @item stack-clash-protection-probe-interval
11455 Stack clash protection involves probing stack space as it is allocated. This
11456 param controls the maximum distance between probes into the stack as 2 raised
11457 to @var{num} bytes. Higher values may reduce the number of explicit probes, but a value
11458 larger than the operating system provided guard will leave code vulnerable to
11459 stack clash style attacks.
11460
11461 @item max-cse-path-length
11462
11463 The maximum number of basic blocks on path that CSE considers.
11464
11465 @item max-cse-insns
11466 The maximum number of instructions CSE processes before flushing.
11467
11468 @item ggc-min-expand
11469
11470 GCC uses a garbage collector to manage its own memory allocation. This
11471 parameter specifies the minimum percentage by which the garbage
11472 collector's heap should be allowed to expand between collections.
11473 Tuning this may improve compilation speed; it has no effect on code
11474 generation.
11475
11476 The default is 30% + 70% * (RAM/1GB) with an upper bound of 100% when
11477 RAM >= 1GB@. If @code{getrlimit} is available, the notion of ``RAM'' is
11478 the smallest of actual RAM and @code{RLIMIT_DATA} or @code{RLIMIT_AS}. If
11479 GCC is not able to calculate RAM on a particular platform, the lower
11480 bound of 30% is used. Setting this parameter and
11481 @option{ggc-min-heapsize} to zero causes a full collection to occur at
11482 every opportunity. This is extremely slow, but can be useful for
11483 debugging.
11484
11485 @item ggc-min-heapsize
11486
11487 Minimum size of the garbage collector's heap before it begins bothering
11488 to collect garbage. The first collection occurs after the heap expands
11489 by @option{ggc-min-expand}% beyond @option{ggc-min-heapsize}. Again,
11490 tuning this may improve compilation speed, and has no effect on code
11491 generation.
11492
11493 The default is the smaller of RAM/8, RLIMIT_RSS, or a limit that
11494 tries to ensure that RLIMIT_DATA or RLIMIT_AS are not exceeded, but
11495 with a lower bound of 4096 (four megabytes) and an upper bound of
11496 131072 (128 megabytes). If GCC is not able to calculate RAM on a
11497 particular platform, the lower bound is used. Setting this parameter
11498 very large effectively disables garbage collection. Setting this
11499 parameter and @option{ggc-min-expand} to zero causes a full collection
11500 to occur at every opportunity.
11501
11502 @item max-reload-search-insns
11503 The maximum number of instruction reload should look backward for equivalent
11504 register. Increasing values mean more aggressive optimization, making the
11505 compilation time increase with probably slightly better performance.
11506
11507 @item max-cselib-memory-locations
11508 The maximum number of memory locations cselib should take into account.
11509 Increasing values mean more aggressive optimization, making the compilation time
11510 increase with probably slightly better performance.
11511
11512 @item max-sched-ready-insns
11513 The maximum number of instructions ready to be issued the scheduler should
11514 consider at any given time during the first scheduling pass. Increasing
11515 values mean more thorough searches, making the compilation time increase
11516 with probably little benefit.
11517
11518 @item max-sched-region-blocks
11519 The maximum number of blocks in a region to be considered for
11520 interblock scheduling.
11521
11522 @item max-pipeline-region-blocks
11523 The maximum number of blocks in a region to be considered for
11524 pipelining in the selective scheduler.
11525
11526 @item max-sched-region-insns
11527 The maximum number of insns in a region to be considered for
11528 interblock scheduling.
11529
11530 @item max-pipeline-region-insns
11531 The maximum number of insns in a region to be considered for
11532 pipelining in the selective scheduler.
11533
11534 @item min-spec-prob
11535 The minimum probability (in percents) of reaching a source block
11536 for interblock speculative scheduling.
11537
11538 @item max-sched-extend-regions-iters
11539 The maximum number of iterations through CFG to extend regions.
11540 A value of 0 disables region extensions.
11541
11542 @item max-sched-insn-conflict-delay
11543 The maximum conflict delay for an insn to be considered for speculative motion.
11544
11545 @item sched-spec-prob-cutoff
11546 The minimal probability of speculation success (in percents), so that
11547 speculative insns are scheduled.
11548
11549 @item sched-state-edge-prob-cutoff
11550 The minimum probability an edge must have for the scheduler to save its
11551 state across it.
11552
11553 @item sched-mem-true-dep-cost
11554 Minimal distance (in CPU cycles) between store and load targeting same
11555 memory locations.
11556
11557 @item selsched-max-lookahead
11558 The maximum size of the lookahead window of selective scheduling. It is a
11559 depth of search for available instructions.
11560
11561 @item selsched-max-sched-times
11562 The maximum number of times that an instruction is scheduled during
11563 selective scheduling. This is the limit on the number of iterations
11564 through which the instruction may be pipelined.
11565
11566 @item selsched-insns-to-rename
11567 The maximum number of best instructions in the ready list that are considered
11568 for renaming in the selective scheduler.
11569
11570 @item sms-min-sc
11571 The minimum value of stage count that swing modulo scheduler
11572 generates.
11573
11574 @item max-last-value-rtl
11575 The maximum size measured as number of RTLs that can be recorded in an expression
11576 in combiner for a pseudo register as last known value of that register.
11577
11578 @item max-combine-insns
11579 The maximum number of instructions the RTL combiner tries to combine.
11580
11581 @item integer-share-limit
11582 Small integer constants can use a shared data structure, reducing the
11583 compiler's memory usage and increasing its speed. This sets the maximum
11584 value of a shared integer constant.
11585
11586 @item ssp-buffer-size
11587 The minimum size of buffers (i.e.@: arrays) that receive stack smashing
11588 protection when @option{-fstack-protection} is used.
11589
11590 @item min-size-for-stack-sharing
11591 The minimum size of variables taking part in stack slot sharing when not
11592 optimizing.
11593
11594 @item max-jump-thread-duplication-stmts
11595 Maximum number of statements allowed in a block that needs to be
11596 duplicated when threading jumps.
11597
11598 @item max-fields-for-field-sensitive
11599 Maximum number of fields in a structure treated in
11600 a field sensitive manner during pointer analysis.
11601
11602 @item prefetch-latency
11603 Estimate on average number of instructions that are executed before
11604 prefetch finishes. The distance prefetched ahead is proportional
11605 to this constant. Increasing this number may also lead to less
11606 streams being prefetched (see @option{simultaneous-prefetches}).
11607
11608 @item simultaneous-prefetches
11609 Maximum number of prefetches that can run at the same time.
11610
11611 @item l1-cache-line-size
11612 The size of cache line in L1 data cache, in bytes.
11613
11614 @item l1-cache-size
11615 The size of L1 data cache, in kilobytes.
11616
11617 @item l2-cache-size
11618 The size of L2 data cache, in kilobytes.
11619
11620 @item prefetch-dynamic-strides
11621 Whether the loop array prefetch pass should issue software prefetch hints
11622 for strides that are non-constant. In some cases this may be
11623 beneficial, though the fact the stride is non-constant may make it
11624 hard to predict when there is clear benefit to issuing these hints.
11625
11626 Set to 1 if the prefetch hints should be issued for non-constant
11627 strides. Set to 0 if prefetch hints should be issued only for strides that
11628 are known to be constant and below @option{prefetch-minimum-stride}.
11629
11630 @item prefetch-minimum-stride
11631 Minimum constant stride, in bytes, to start using prefetch hints for. If
11632 the stride is less than this threshold, prefetch hints will not be issued.
11633
11634 This setting is useful for processors that have hardware prefetchers, in
11635 which case there may be conflicts between the hardware prefetchers and
11636 the software prefetchers. If the hardware prefetchers have a maximum
11637 stride they can handle, it should be used here to improve the use of
11638 software prefetchers.
11639
11640 A value of -1 means we don't have a threshold and therefore
11641 prefetch hints can be issued for any constant stride.
11642
11643 This setting is only useful for strides that are known and constant.
11644
11645 @item loop-interchange-max-num-stmts
11646 The maximum number of stmts in a loop to be interchanged.
11647
11648 @item loop-interchange-stride-ratio
11649 The minimum ratio between stride of two loops for interchange to be profitable.
11650
11651 @item min-insn-to-prefetch-ratio
11652 The minimum ratio between the number of instructions and the
11653 number of prefetches to enable prefetching in a loop.
11654
11655 @item prefetch-min-insn-to-mem-ratio
11656 The minimum ratio between the number of instructions and the
11657 number of memory references to enable prefetching in a loop.
11658
11659 @item use-canonical-types
11660 Whether the compiler should use the ``canonical'' type system.
11661 Should always be 1, which uses a more efficient internal
11662 mechanism for comparing types in C++ and Objective-C++. However, if
11663 bugs in the canonical type system are causing compilation failures,
11664 set this value to 0 to disable canonical types.
11665
11666 @item switch-conversion-max-branch-ratio
11667 Switch initialization conversion refuses to create arrays that are
11668 bigger than @option{switch-conversion-max-branch-ratio} times the number of
11669 branches in the switch.
11670
11671 @item max-partial-antic-length
11672 Maximum length of the partial antic set computed during the tree
11673 partial redundancy elimination optimization (@option{-ftree-pre}) when
11674 optimizing at @option{-O3} and above. For some sorts of source code
11675 the enhanced partial redundancy elimination optimization can run away,
11676 consuming all of the memory available on the host machine. This
11677 parameter sets a limit on the length of the sets that are computed,
11678 which prevents the runaway behavior. Setting a value of 0 for
11679 this parameter allows an unlimited set length.
11680
11681 @item rpo-vn-max-loop-depth
11682 Maximum loop depth that is value-numbered optimistically.
11683 When the limit hits the innermost
11684 @var{rpo-vn-max-loop-depth} loops and the outermost loop in the
11685 loop nest are value-numbered optimistically and the remaining ones not.
11686
11687 @item sccvn-max-alias-queries-per-access
11688 Maximum number of alias-oracle queries we perform when looking for
11689 redundancies for loads and stores. If this limit is hit the search
11690 is aborted and the load or store is not considered redundant. The
11691 number of queries is algorithmically limited to the number of
11692 stores on all paths from the load to the function entry.
11693
11694 @item ira-max-loops-num
11695 IRA uses regional register allocation by default. If a function
11696 contains more loops than the number given by this parameter, only at most
11697 the given number of the most frequently-executed loops form regions
11698 for regional register allocation.
11699
11700 @item ira-max-conflict-table-size
11701 Although IRA uses a sophisticated algorithm to compress the conflict
11702 table, the table can still require excessive amounts of memory for
11703 huge functions. If the conflict table for a function could be more
11704 than the size in MB given by this parameter, the register allocator
11705 instead uses a faster, simpler, and lower-quality
11706 algorithm that does not require building a pseudo-register conflict table.
11707
11708 @item ira-loop-reserved-regs
11709 IRA can be used to evaluate more accurate register pressure in loops
11710 for decisions to move loop invariants (see @option{-O3}). The number
11711 of available registers reserved for some other purposes is given
11712 by this parameter. Default of the parameter
11713 is the best found from numerous experiments.
11714
11715 @item lra-inheritance-ebb-probability-cutoff
11716 LRA tries to reuse values reloaded in registers in subsequent insns.
11717 This optimization is called inheritance. EBB is used as a region to
11718 do this optimization. The parameter defines a minimal fall-through
11719 edge probability in percentage used to add BB to inheritance EBB in
11720 LRA. The default value was chosen
11721 from numerous runs of SPEC2000 on x86-64.
11722
11723 @item loop-invariant-max-bbs-in-loop
11724 Loop invariant motion can be very expensive, both in compilation time and
11725 in amount of needed compile-time memory, with very large loops. Loops
11726 with more basic blocks than this parameter won't have loop invariant
11727 motion optimization performed on them.
11728
11729 @item loop-max-datarefs-for-datadeps
11730 Building data dependencies is expensive for very large loops. This
11731 parameter limits the number of data references in loops that are
11732 considered for data dependence analysis. These large loops are no
11733 handled by the optimizations using loop data dependencies.
11734
11735 @item max-vartrack-size
11736 Sets a maximum number of hash table slots to use during variable
11737 tracking dataflow analysis of any function. If this limit is exceeded
11738 with variable tracking at assignments enabled, analysis for that
11739 function is retried without it, after removing all debug insns from
11740 the function. If the limit is exceeded even without debug insns, var
11741 tracking analysis is completely disabled for the function. Setting
11742 the parameter to zero makes it unlimited.
11743
11744 @item max-vartrack-expr-depth
11745 Sets a maximum number of recursion levels when attempting to map
11746 variable names or debug temporaries to value expressions. This trades
11747 compilation time for more complete debug information. If this is set too
11748 low, value expressions that are available and could be represented in
11749 debug information may end up not being used; setting this higher may
11750 enable the compiler to find more complex debug expressions, but compile
11751 time and memory use may grow.
11752
11753 @item max-debug-marker-count
11754 Sets a threshold on the number of debug markers (e.g.@: begin stmt
11755 markers) to avoid complexity explosion at inlining or expanding to RTL.
11756 If a function has more such gimple stmts than the set limit, such stmts
11757 will be dropped from the inlined copy of a function, and from its RTL
11758 expansion.
11759
11760 @item min-nondebug-insn-uid
11761 Use uids starting at this parameter for nondebug insns. The range below
11762 the parameter is reserved exclusively for debug insns created by
11763 @option{-fvar-tracking-assignments}, but debug insns may get
11764 (non-overlapping) uids above it if the reserved range is exhausted.
11765
11766 @item ipa-sra-ptr-growth-factor
11767 IPA-SRA replaces a pointer to an aggregate with one or more new
11768 parameters only when their cumulative size is less or equal to
11769 @option{ipa-sra-ptr-growth-factor} times the size of the original
11770 pointer parameter.
11771
11772 @item sra-max-scalarization-size-Ospeed
11773 @itemx sra-max-scalarization-size-Osize
11774 The two Scalar Reduction of Aggregates passes (SRA and IPA-SRA) aim to
11775 replace scalar parts of aggregates with uses of independent scalar
11776 variables. These parameters control the maximum size, in storage units,
11777 of aggregate which is considered for replacement when compiling for
11778 speed
11779 (@option{sra-max-scalarization-size-Ospeed}) or size
11780 (@option{sra-max-scalarization-size-Osize}) respectively.
11781
11782 @item tm-max-aggregate-size
11783 When making copies of thread-local variables in a transaction, this
11784 parameter specifies the size in bytes after which variables are
11785 saved with the logging functions as opposed to save/restore code
11786 sequence pairs. This option only applies when using
11787 @option{-fgnu-tm}.
11788
11789 @item graphite-max-nb-scop-params
11790 To avoid exponential effects in the Graphite loop transforms, the
11791 number of parameters in a Static Control Part (SCoP) is bounded.
11792 A value of zero can be used to lift
11793 the bound. A variable whose value is unknown at compilation time and
11794 defined outside a SCoP is a parameter of the SCoP.
11795
11796 @item loop-block-tile-size
11797 Loop blocking or strip mining transforms, enabled with
11798 @option{-floop-block} or @option{-floop-strip-mine}, strip mine each
11799 loop in the loop nest by a given number of iterations. The strip
11800 length can be changed using the @option{loop-block-tile-size}
11801 parameter.
11802
11803 @item ipa-cp-value-list-size
11804 IPA-CP attempts to track all possible values and types passed to a function's
11805 parameter in order to propagate them and perform devirtualization.
11806 @option{ipa-cp-value-list-size} is the maximum number of values and types it
11807 stores per one formal parameter of a function.
11808
11809 @item ipa-cp-eval-threshold
11810 IPA-CP calculates its own score of cloning profitability heuristics
11811 and performs those cloning opportunities with scores that exceed
11812 @option{ipa-cp-eval-threshold}.
11813
11814 @item ipa-cp-recursion-penalty
11815 Percentage penalty the recursive functions will receive when they
11816 are evaluated for cloning.
11817
11818 @item ipa-cp-single-call-penalty
11819 Percentage penalty functions containing a single call to another
11820 function will receive when they are evaluated for cloning.
11821
11822 @item ipa-max-agg-items
11823 IPA-CP is also capable to propagate a number of scalar values passed
11824 in an aggregate. @option{ipa-max-agg-items} controls the maximum
11825 number of such values per one parameter.
11826
11827 @item ipa-cp-loop-hint-bonus
11828 When IPA-CP determines that a cloning candidate would make the number
11829 of iterations of a loop known, it adds a bonus of
11830 @option{ipa-cp-loop-hint-bonus} to the profitability score of
11831 the candidate.
11832
11833 @item ipa-cp-array-index-hint-bonus
11834 When IPA-CP determines that a cloning candidate would make the index of
11835 an array access known, it adds a bonus of
11836 @option{ipa-cp-array-index-hint-bonus} to the profitability
11837 score of the candidate.
11838
11839 @item ipa-max-aa-steps
11840 During its analysis of function bodies, IPA-CP employs alias analysis
11841 in order to track values pointed to by function parameters. In order
11842 not spend too much time analyzing huge functions, it gives up and
11843 consider all memory clobbered after examining
11844 @option{ipa-max-aa-steps} statements modifying memory.
11845
11846 @item lto-partitions
11847 Specify desired number of partitions produced during WHOPR compilation.
11848 The number of partitions should exceed the number of CPUs used for compilation.
11849
11850 @item lto-min-partition
11851 Size of minimal partition for WHOPR (in estimated instructions).
11852 This prevents expenses of splitting very small programs into too many
11853 partitions.
11854
11855 @item lto-max-partition
11856 Size of max partition for WHOPR (in estimated instructions).
11857 to provide an upper bound for individual size of partition.
11858 Meant to be used only with balanced partitioning.
11859
11860 @item lto-max-streaming-parallelism
11861 Maximal number of parallel processes used for LTO streaming.
11862
11863 @item cxx-max-namespaces-for-diagnostic-help
11864 The maximum number of namespaces to consult for suggestions when C++
11865 name lookup fails for an identifier.
11866
11867 @item sink-frequency-threshold
11868 The maximum relative execution frequency (in percents) of the target block
11869 relative to a statement's original block to allow statement sinking of a
11870 statement. Larger numbers result in more aggressive statement sinking.
11871 A small positive adjustment is applied for
11872 statements with memory operands as those are even more profitable so sink.
11873
11874 @item max-stores-to-sink
11875 The maximum number of conditional store pairs that can be sunk. Set to 0
11876 if either vectorization (@option{-ftree-vectorize}) or if-conversion
11877 (@option{-ftree-loop-if-convert}) is disabled.
11878
11879 @item allow-store-data-races
11880 Allow optimizers to introduce new data races on stores.
11881 Set to 1 to allow, otherwise to 0.
11882
11883 @item case-values-threshold
11884 The smallest number of different values for which it is best to use a
11885 jump-table instead of a tree of conditional branches. If the value is
11886 0, use the default for the machine.
11887
11888 @item jump-table-max-growth-ratio-for-size
11889 The maximum code size growth ratio when expanding
11890 into a jump table (in percent). The parameter is used when
11891 optimizing for size.
11892
11893 @item jump-table-max-growth-ratio-for-speed
11894 The maximum code size growth ratio when expanding
11895 into a jump table (in percent). The parameter is used when
11896 optimizing for speed.
11897
11898 @item tree-reassoc-width
11899 Set the maximum number of instructions executed in parallel in
11900 reassociated tree. This parameter overrides target dependent
11901 heuristics used by default if has non zero value.
11902
11903 @item sched-pressure-algorithm
11904 Choose between the two available implementations of
11905 @option{-fsched-pressure}. Algorithm 1 is the original implementation
11906 and is the more likely to prevent instructions from being reordered.
11907 Algorithm 2 was designed to be a compromise between the relatively
11908 conservative approach taken by algorithm 1 and the rather aggressive
11909 approach taken by the default scheduler. It relies more heavily on
11910 having a regular register file and accurate register pressure classes.
11911 See @file{haifa-sched.c} in the GCC sources for more details.
11912
11913 The default choice depends on the target.
11914
11915 @item max-slsr-cand-scan
11916 Set the maximum number of existing candidates that are considered when
11917 seeking a basis for a new straight-line strength reduction candidate.
11918
11919 @item asan-globals
11920 Enable buffer overflow detection for global objects. This kind
11921 of protection is enabled by default if you are using
11922 @option{-fsanitize=address} option.
11923 To disable global objects protection use @option{--param asan-globals=0}.
11924
11925 @item asan-stack
11926 Enable buffer overflow detection for stack objects. This kind of
11927 protection is enabled by default when using @option{-fsanitize=address}.
11928 To disable stack protection use @option{--param asan-stack=0} option.
11929
11930 @item asan-instrument-reads
11931 Enable buffer overflow detection for memory reads. This kind of
11932 protection is enabled by default when using @option{-fsanitize=address}.
11933 To disable memory reads protection use
11934 @option{--param asan-instrument-reads=0}.
11935
11936 @item asan-instrument-writes
11937 Enable buffer overflow detection for memory writes. This kind of
11938 protection is enabled by default when using @option{-fsanitize=address}.
11939 To disable memory writes protection use
11940 @option{--param asan-instrument-writes=0} option.
11941
11942 @item asan-memintrin
11943 Enable detection for built-in functions. This kind of protection
11944 is enabled by default when using @option{-fsanitize=address}.
11945 To disable built-in functions protection use
11946 @option{--param asan-memintrin=0}.
11947
11948 @item asan-use-after-return
11949 Enable detection of use-after-return. This kind of protection
11950 is enabled by default when using the @option{-fsanitize=address} option.
11951 To disable it use @option{--param asan-use-after-return=0}.
11952
11953 Note: By default the check is disabled at run time. To enable it,
11954 add @code{detect_stack_use_after_return=1} to the environment variable
11955 @env{ASAN_OPTIONS}.
11956
11957 @item asan-instrumentation-with-call-threshold
11958 If number of memory accesses in function being instrumented
11959 is greater or equal to this number, use callbacks instead of inline checks.
11960 E.g. to disable inline code use
11961 @option{--param asan-instrumentation-with-call-threshold=0}.
11962
11963 @item use-after-scope-direct-emission-threshold
11964 If the size of a local variable in bytes is smaller or equal to this
11965 number, directly poison (or unpoison) shadow memory instead of using
11966 run-time callbacks.
11967
11968 @item max-fsm-thread-path-insns
11969 Maximum number of instructions to copy when duplicating blocks on a
11970 finite state automaton jump thread path.
11971
11972 @item max-fsm-thread-length
11973 Maximum number of basic blocks on a finite state automaton jump thread
11974 path.
11975
11976 @item max-fsm-thread-paths
11977 Maximum number of new jump thread paths to create for a finite state
11978 automaton.
11979
11980 @item parloops-chunk-size
11981 Chunk size of omp schedule for loops parallelized by parloops.
11982
11983 @item parloops-schedule
11984 Schedule type of omp schedule for loops parallelized by parloops (static,
11985 dynamic, guided, auto, runtime).
11986
11987 @item parloops-min-per-thread
11988 The minimum number of iterations per thread of an innermost parallelized
11989 loop for which the parallelized variant is preferred over the single threaded
11990 one. Note that for a parallelized loop nest the
11991 minimum number of iterations of the outermost loop per thread is two.
11992
11993 @item max-ssa-name-query-depth
11994 Maximum depth of recursion when querying properties of SSA names in things
11995 like fold routines. One level of recursion corresponds to following a
11996 use-def chain.
11997
11998 @item hsa-gen-debug-stores
11999 Enable emission of special debug stores within HSA kernels which are
12000 then read and reported by libgomp plugin. Generation of these stores
12001 is disabled by default, use @option{--param hsa-gen-debug-stores=1} to
12002 enable it.
12003
12004 @item max-speculative-devirt-maydefs
12005 The maximum number of may-defs we analyze when looking for a must-def
12006 specifying the dynamic type of an object that invokes a virtual call
12007 we may be able to devirtualize speculatively.
12008
12009 @item max-vrp-switch-assertions
12010 The maximum number of assertions to add along the default edge of a switch
12011 statement during VRP.
12012
12013 @item unroll-jam-min-percent
12014 The minimum percentage of memory references that must be optimized
12015 away for the unroll-and-jam transformation to be considered profitable.
12016
12017 @item unroll-jam-max-unroll
12018 The maximum number of times the outer loop should be unrolled by
12019 the unroll-and-jam transformation.
12020
12021 @item max-rtl-if-conversion-unpredictable-cost
12022 Maximum permissible cost for the sequence that would be generated
12023 by the RTL if-conversion pass for a branch that is considered unpredictable.
12024
12025 @item max-variable-expansions-in-unroller
12026 If @option{-fvariable-expansion-in-unroller} is used, the maximum number
12027 of times that an individual variable will be expanded during loop unrolling.
12028
12029 @item tracer-min-branch-probability-feedback
12030 Stop forward growth if the probability of best edge is less than
12031 this threshold (in percent). Used when profile feedback is available.
12032
12033 @item partial-inlining-entry-probability
12034 Maximum probability of the entry BB of split region
12035 (in percent relative to entry BB of the function)
12036 to make partial inlining happen.
12037
12038 @item max-tracked-strlens
12039 Maximum number of strings for which strlen optimization pass will
12040 track string lengths.
12041
12042 @item gcse-after-reload-partial-fraction
12043 The threshold ratio for performing partial redundancy
12044 elimination after reload.
12045
12046 @item gcse-after-reload-critical-fraction
12047 The threshold ratio of critical edges execution count that
12048 permit performing redundancy elimination after reload.
12049
12050 @item max-loop-header-insns
12051 The maximum number of insns in loop header duplicated
12052 by the copy loop headers pass.
12053
12054 @item vect-epilogues-nomask
12055 Enable loop epilogue vectorization using smaller vector size.
12056
12057 @item slp-max-insns-in-bb
12058 Maximum number of instructions in basic block to be
12059 considered for SLP vectorization.
12060
12061 @item avoid-fma-max-bits
12062 Maximum number of bits for which we avoid creating FMAs.
12063
12064 @item sms-loop-average-count-threshold
12065 A threshold on the average loop count considered by the swing modulo scheduler.
12066
12067 @item sms-dfa-history
12068 The number of cycles the swing modulo scheduler considers when checking
12069 conflicts using DFA.
12070
12071 @item hot-bb-count-fraction
12072 Select fraction of the maximal count of repetitions of basic block
12073 in program given basic block needs
12074 to have to be considered hot (used in non-LTO mode)
12075
12076 @item max-inline-insns-recursive-auto
12077 The maximum number of instructions non-inline function
12078 can grow to via recursive inlining.
12079
12080 @item graphite-allow-codegen-errors
12081 Whether codegen errors should be ICEs when @option{-fchecking}.
12082
12083 @item sms-max-ii-factor
12084 A factor for tuning the upper bound that swing modulo scheduler
12085 uses for scheduling a loop.
12086
12087 @item lra-max-considered-reload-pseudos
12088 The max number of reload pseudos which are considered during
12089 spilling a non-reload pseudo.
12090
12091 @item max-pow-sqrt-depth
12092 Maximum depth of sqrt chains to use when synthesizing exponentiation
12093 by a real constant.
12094
12095 @item max-dse-active-local-stores
12096 Maximum number of active local stores in RTL dead store elimination.
12097
12098 @item asan-instrument-allocas
12099 Enable asan allocas/VLAs protection.
12100
12101 @item max-iterations-computation-cost
12102 Bound on the cost of an expression to compute the number of iterations.
12103
12104 @item max-isl-operations
12105 Maximum number of isl operations, 0 means unlimited.
12106
12107 @item graphite-max-arrays-per-scop
12108 Maximum number of arrays per scop.
12109
12110 @item max-vartrack-reverse-op-size
12111 Max. size of loc list for which reverse ops should be added.
12112
12113 @item unlikely-bb-count-fraction
12114 The minimum fraction of profile runs a given basic block execution count
12115 must be not to be considered unlikely.
12116
12117 @item tracer-dynamic-coverage-feedback
12118 The percentage of function, weighted by execution frequency,
12119 that must be covered by trace formation.
12120 Used when profile feedback is available.
12121
12122 @item max-inline-recursive-depth-auto
12123 The maximum depth of recursive inlining for non-inline functions.
12124
12125 @item fsm-scale-path-stmts
12126 Scale factor to apply to the number of statements in a threading path
12127 when comparing to the number of (scaled) blocks.
12128
12129 @item fsm-maximum-phi-arguments
12130 Maximum number of arguments a PHI may have before the FSM threader
12131 will not try to thread through its block.
12132
12133 @item uninit-control-dep-attempts
12134 Maximum number of nested calls to search for control dependencies
12135 during uninitialized variable analysis.
12136
12137 @item max-once-peeled-insns
12138 The maximum number of insns of a peeled loop that rolls only once.
12139
12140 @item sra-max-scalarization-size-Osize
12141 Maximum size, in storage units, of an aggregate
12142 which should be considered for scalarization when compiling for size.
12143
12144 @item fsm-scale-path-blocks
12145 Scale factor to apply to the number of blocks in a threading path
12146 when comparing to the number of (scaled) statements.
12147
12148 @item sched-autopref-queue-depth
12149 Hardware autoprefetcher scheduler model control flag.
12150 Number of lookahead cycles the model looks into; at '
12151 ' only enable instruction sorting heuristic.
12152
12153 @item loop-versioning-max-inner-insns
12154 The maximum number of instructions that an inner loop can have
12155 before the loop versioning pass considers it too big to copy.
12156
12157 @item loop-versioning-max-outer-insns
12158 The maximum number of instructions that an outer loop can have
12159 before the loop versioning pass considers it too big to copy,
12160 discounting any instructions in inner loops that directly benefit
12161 from versioning.
12162
12163 @end table
12164 @end table
12165
12166 @node Instrumentation Options
12167 @section Program Instrumentation Options
12168 @cindex instrumentation options
12169 @cindex program instrumentation options
12170 @cindex run-time error checking options
12171 @cindex profiling options
12172 @cindex options, program instrumentation
12173 @cindex options, run-time error checking
12174 @cindex options, profiling
12175
12176 GCC supports a number of command-line options that control adding
12177 run-time instrumentation to the code it normally generates.
12178 For example, one purpose of instrumentation is collect profiling
12179 statistics for use in finding program hot spots, code coverage
12180 analysis, or profile-guided optimizations.
12181 Another class of program instrumentation is adding run-time checking
12182 to detect programming errors like invalid pointer
12183 dereferences or out-of-bounds array accesses, as well as deliberately
12184 hostile attacks such as stack smashing or C++ vtable hijacking.
12185 There is also a general hook which can be used to implement other
12186 forms of tracing or function-level instrumentation for debug or
12187 program analysis purposes.
12188
12189 @table @gcctabopt
12190 @cindex @command{prof}
12191 @cindex @command{gprof}
12192 @item -p
12193 @itemx -pg
12194 @opindex p
12195 @opindex pg
12196 Generate extra code to write profile information suitable for the
12197 analysis program @command{prof} (for @option{-p}) or @command{gprof}
12198 (for @option{-pg}). You must use this option when compiling
12199 the source files you want data about, and you must also use it when
12200 linking.
12201
12202 You can use the function attribute @code{no_instrument_function} to
12203 suppress profiling of individual functions when compiling with these options.
12204 @xref{Common Function Attributes}.
12205
12206 @item -fprofile-arcs
12207 @opindex fprofile-arcs
12208 Add code so that program flow @dfn{arcs} are instrumented. During
12209 execution the program records how many times each branch and call is
12210 executed and how many times it is taken or returns. On targets that support
12211 constructors with priority support, profiling properly handles constructors,
12212 destructors and C++ constructors (and destructors) of classes which are used
12213 as a type of a global variable.
12214
12215 When the compiled
12216 program exits it saves this data to a file called
12217 @file{@var{auxname}.gcda} for each source file. The data may be used for
12218 profile-directed optimizations (@option{-fbranch-probabilities}), or for
12219 test coverage analysis (@option{-ftest-coverage}). Each object file's
12220 @var{auxname} is generated from the name of the output file, if
12221 explicitly specified and it is not the final executable, otherwise it is
12222 the basename of the source file. In both cases any suffix is removed
12223 (e.g.@: @file{foo.gcda} for input file @file{dir/foo.c}, or
12224 @file{dir/foo.gcda} for output file specified as @option{-o dir/foo.o}).
12225 @xref{Cross-profiling}.
12226
12227 @cindex @command{gcov}
12228 @item --coverage
12229 @opindex coverage
12230
12231 This option is used to compile and link code instrumented for coverage
12232 analysis. The option is a synonym for @option{-fprofile-arcs}
12233 @option{-ftest-coverage} (when compiling) and @option{-lgcov} (when
12234 linking). See the documentation for those options for more details.
12235
12236 @itemize
12237
12238 @item
12239 Compile the source files with @option{-fprofile-arcs} plus optimization
12240 and code generation options. For test coverage analysis, use the
12241 additional @option{-ftest-coverage} option. You do not need to profile
12242 every source file in a program.
12243
12244 @item
12245 Compile the source files additionally with @option{-fprofile-abs-path}
12246 to create absolute path names in the @file{.gcno} files. This allows
12247 @command{gcov} to find the correct sources in projects where compilations
12248 occur with different working directories.
12249
12250 @item
12251 Link your object files with @option{-lgcov} or @option{-fprofile-arcs}
12252 (the latter implies the former).
12253
12254 @item
12255 Run the program on a representative workload to generate the arc profile
12256 information. This may be repeated any number of times. You can run
12257 concurrent instances of your program, and provided that the file system
12258 supports locking, the data files will be correctly updated. Unless
12259 a strict ISO C dialect option is in effect, @code{fork} calls are
12260 detected and correctly handled without double counting.
12261
12262 @item
12263 For profile-directed optimizations, compile the source files again with
12264 the same optimization and code generation options plus
12265 @option{-fbranch-probabilities} (@pxref{Optimize Options,,Options that
12266 Control Optimization}).
12267
12268 @item
12269 For test coverage analysis, use @command{gcov} to produce human readable
12270 information from the @file{.gcno} and @file{.gcda} files. Refer to the
12271 @command{gcov} documentation for further information.
12272
12273 @end itemize
12274
12275 With @option{-fprofile-arcs}, for each function of your program GCC
12276 creates a program flow graph, then finds a spanning tree for the graph.
12277 Only arcs that are not on the spanning tree have to be instrumented: the
12278 compiler adds code to count the number of times that these arcs are
12279 executed. When an arc is the only exit or only entrance to a block, the
12280 instrumentation code can be added to the block; otherwise, a new basic
12281 block must be created to hold the instrumentation code.
12282
12283 @need 2000
12284 @item -ftest-coverage
12285 @opindex ftest-coverage
12286 Produce a notes file that the @command{gcov} code-coverage utility
12287 (@pxref{Gcov,, @command{gcov}---a Test Coverage Program}) can use to
12288 show program coverage. Each source file's note file is called
12289 @file{@var{auxname}.gcno}. Refer to the @option{-fprofile-arcs} option
12290 above for a description of @var{auxname} and instructions on how to
12291 generate test coverage data. Coverage data matches the source files
12292 more closely if you do not optimize.
12293
12294 @item -fprofile-abs-path
12295 @opindex fprofile-abs-path
12296 Automatically convert relative source file names to absolute path names
12297 in the @file{.gcno} files. This allows @command{gcov} to find the correct
12298 sources in projects where compilations occur with different working
12299 directories.
12300
12301 @item -fprofile-dir=@var{path}
12302 @opindex fprofile-dir
12303
12304 Set the directory to search for the profile data files in to @var{path}.
12305 This option affects only the profile data generated by
12306 @option{-fprofile-generate}, @option{-ftest-coverage}, @option{-fprofile-arcs}
12307 and used by @option{-fprofile-use} and @option{-fbranch-probabilities}
12308 and its related options. Both absolute and relative paths can be used.
12309 By default, GCC uses the current directory as @var{path}, thus the
12310 profile data file appears in the same directory as the object file.
12311 In order to prevent the file name clashing, if the object file name is
12312 not an absolute path, we mangle the absolute path of the
12313 @file{@var{sourcename}.gcda} file and use it as the file name of a
12314 @file{.gcda} file.
12315
12316 When an executable is run in a massive parallel environment, it is recommended
12317 to save profile to different folders. That can be done with variables
12318 in @var{path} that are exported during run-time:
12319
12320 @table @gcctabopt
12321
12322 @item %p
12323 process ID.
12324
12325 @item %q@{VAR@}
12326 value of environment variable @var{VAR}
12327
12328 @end table
12329
12330 @item -fprofile-generate
12331 @itemx -fprofile-generate=@var{path}
12332 @opindex fprofile-generate
12333
12334 Enable options usually used for instrumenting application to produce
12335 profile useful for later recompilation with profile feedback based
12336 optimization. You must use @option{-fprofile-generate} both when
12337 compiling and when linking your program.
12338
12339 The following options are enabled:
12340 @option{-fprofile-arcs}, @option{-fprofile-values},
12341 @option{-finline-functions}, and @option{-fipa-bit-cp}.
12342
12343 If @var{path} is specified, GCC looks at the @var{path} to find
12344 the profile feedback data files. See @option{-fprofile-dir}.
12345
12346 To optimize the program based on the collected profile information, use
12347 @option{-fprofile-use}. @xref{Optimize Options}, for more information.
12348
12349 @item -fprofile-update=@var{method}
12350 @opindex fprofile-update
12351
12352 Alter the update method for an application instrumented for profile
12353 feedback based optimization. The @var{method} argument should be one of
12354 @samp{single}, @samp{atomic} or @samp{prefer-atomic}.
12355 The first one is useful for single-threaded applications,
12356 while the second one prevents profile corruption by emitting thread-safe code.
12357
12358 @strong{Warning:} When an application does not properly join all threads
12359 (or creates an detached thread), a profile file can be still corrupted.
12360
12361 Using @samp{prefer-atomic} would be transformed either to @samp{atomic},
12362 when supported by a target, or to @samp{single} otherwise. The GCC driver
12363 automatically selects @samp{prefer-atomic} when @option{-pthread}
12364 is present in the command line.
12365
12366 @item -fprofile-filter-files=@var{regex}
12367 @opindex fprofile-filter-files
12368
12369 Instrument only functions from files where names match
12370 any regular expression (separated by a semi-colon).
12371
12372 For example, @option{-fprofile-filter-files=main.c;module.*.c} will instrument
12373 only @file{main.c} and all C files starting with 'module'.
12374
12375 @item -fprofile-exclude-files=@var{regex}
12376 @opindex fprofile-exclude-files
12377
12378 Instrument only functions from files where names do not match
12379 all the regular expressions (separated by a semi-colon).
12380
12381 For example, @option{-fprofile-exclude-files=/usr/*} will prevent instrumentation
12382 of all files that are located in @file{/usr/} folder.
12383
12384 @item -fsanitize=address
12385 @opindex fsanitize=address
12386 Enable AddressSanitizer, a fast memory error detector.
12387 Memory access instructions are instrumented to detect
12388 out-of-bounds and use-after-free bugs.
12389 The option enables @option{-fsanitize-address-use-after-scope}.
12390 See @uref{https://github.com/google/sanitizers/wiki/AddressSanitizer} for
12391 more details. The run-time behavior can be influenced using the
12392 @env{ASAN_OPTIONS} environment variable. When set to @code{help=1},
12393 the available options are shown at startup of the instrumented program. See
12394 @url{https://github.com/google/sanitizers/wiki/AddressSanitizerFlags#run-time-flags}
12395 for a list of supported options.
12396 The option cannot be combined with @option{-fsanitize=thread}.
12397
12398 @item -fsanitize=kernel-address
12399 @opindex fsanitize=kernel-address
12400 Enable AddressSanitizer for Linux kernel.
12401 See @uref{https://github.com/google/kasan/wiki} for more details.
12402
12403 @item -fsanitize=pointer-compare
12404 @opindex fsanitize=pointer-compare
12405 Instrument comparison operation (<, <=, >, >=) with pointer operands.
12406 The option must be combined with either @option{-fsanitize=kernel-address} or
12407 @option{-fsanitize=address}
12408 The option cannot be combined with @option{-fsanitize=thread}.
12409 Note: By default the check is disabled at run time. To enable it,
12410 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12411 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12412 invalid operation only when both pointers are non-null.
12413
12414 @item -fsanitize=pointer-subtract
12415 @opindex fsanitize=pointer-subtract
12416 Instrument subtraction with pointer operands.
12417 The option must be combined with either @option{-fsanitize=kernel-address} or
12418 @option{-fsanitize=address}
12419 The option cannot be combined with @option{-fsanitize=thread}.
12420 Note: By default the check is disabled at run time. To enable it,
12421 add @code{detect_invalid_pointer_pairs=2} to the environment variable
12422 @env{ASAN_OPTIONS}. Using @code{detect_invalid_pointer_pairs=1} detects
12423 invalid operation only when both pointers are non-null.
12424
12425 @item -fsanitize=thread
12426 @opindex fsanitize=thread
12427 Enable ThreadSanitizer, a fast data race detector.
12428 Memory access instructions are instrumented to detect
12429 data race bugs. See @uref{https://github.com/google/sanitizers/wiki#threadsanitizer} for more
12430 details. The run-time behavior can be influenced using the @env{TSAN_OPTIONS}
12431 environment variable; see
12432 @url{https://github.com/google/sanitizers/wiki/ThreadSanitizerFlags} for a list of
12433 supported options.
12434 The option cannot be combined with @option{-fsanitize=address},
12435 @option{-fsanitize=leak}.
12436
12437 Note that sanitized atomic builtins cannot throw exceptions when
12438 operating on invalid memory addresses with non-call exceptions
12439 (@option{-fnon-call-exceptions}).
12440
12441 @item -fsanitize=leak
12442 @opindex fsanitize=leak
12443 Enable LeakSanitizer, a memory leak detector.
12444 This option only matters for linking of executables and
12445 the executable is linked against a library that overrides @code{malloc}
12446 and other allocator functions. See
12447 @uref{https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer} for more
12448 details. The run-time behavior can be influenced using the
12449 @env{LSAN_OPTIONS} environment variable.
12450 The option cannot be combined with @option{-fsanitize=thread}.
12451
12452 @item -fsanitize=undefined
12453 @opindex fsanitize=undefined
12454 Enable UndefinedBehaviorSanitizer, a fast undefined behavior detector.
12455 Various computations are instrumented to detect undefined behavior
12456 at runtime. Current suboptions are:
12457
12458 @table @gcctabopt
12459
12460 @item -fsanitize=shift
12461 @opindex fsanitize=shift
12462 This option enables checking that the result of a shift operation is
12463 not undefined. Note that what exactly is considered undefined differs
12464 slightly between C and C++, as well as between ISO C90 and C99, etc.
12465 This option has two suboptions, @option{-fsanitize=shift-base} and
12466 @option{-fsanitize=shift-exponent}.
12467
12468 @item -fsanitize=shift-exponent
12469 @opindex fsanitize=shift-exponent
12470 This option enables checking that the second argument of a shift operation
12471 is not negative and is smaller than the precision of the promoted first
12472 argument.
12473
12474 @item -fsanitize=shift-base
12475 @opindex fsanitize=shift-base
12476 If the second argument of a shift operation is within range, check that the
12477 result of a shift operation is not undefined. Note that what exactly is
12478 considered undefined differs slightly between C and C++, as well as between
12479 ISO C90 and C99, etc.
12480
12481 @item -fsanitize=integer-divide-by-zero
12482 @opindex fsanitize=integer-divide-by-zero
12483 Detect integer division by zero as well as @code{INT_MIN / -1} division.
12484
12485 @item -fsanitize=unreachable
12486 @opindex fsanitize=unreachable
12487 With this option, the compiler turns the @code{__builtin_unreachable}
12488 call into a diagnostics message call instead. When reaching the
12489 @code{__builtin_unreachable} call, the behavior is undefined.
12490
12491 @item -fsanitize=vla-bound
12492 @opindex fsanitize=vla-bound
12493 This option instructs the compiler to check that the size of a variable
12494 length array is positive.
12495
12496 @item -fsanitize=null
12497 @opindex fsanitize=null
12498 This option enables pointer checking. Particularly, the application
12499 built with this option turned on will issue an error message when it
12500 tries to dereference a NULL pointer, or if a reference (possibly an
12501 rvalue reference) is bound to a NULL pointer, or if a method is invoked
12502 on an object pointed by a NULL pointer.
12503
12504 @item -fsanitize=return
12505 @opindex fsanitize=return
12506 This option enables return statement checking. Programs
12507 built with this option turned on will issue an error message
12508 when the end of a non-void function is reached without actually
12509 returning a value. This option works in C++ only.
12510
12511 @item -fsanitize=signed-integer-overflow
12512 @opindex fsanitize=signed-integer-overflow
12513 This option enables signed integer overflow checking. We check that
12514 the result of @code{+}, @code{*}, and both unary and binary @code{-}
12515 does not overflow in the signed arithmetics. Note, integer promotion
12516 rules must be taken into account. That is, the following is not an
12517 overflow:
12518 @smallexample
12519 signed char a = SCHAR_MAX;
12520 a++;
12521 @end smallexample
12522
12523 @item -fsanitize=bounds
12524 @opindex fsanitize=bounds
12525 This option enables instrumentation of array bounds. Various out of bounds
12526 accesses are detected. Flexible array members, flexible array member-like
12527 arrays, and initializers of variables with static storage are not instrumented.
12528
12529 @item -fsanitize=bounds-strict
12530 @opindex fsanitize=bounds-strict
12531 This option enables strict instrumentation of array bounds. Most out of bounds
12532 accesses are detected, including flexible array members and flexible array
12533 member-like arrays. Initializers of variables with static storage are not
12534 instrumented.
12535
12536 @item -fsanitize=alignment
12537 @opindex fsanitize=alignment
12538
12539 This option enables checking of alignment of pointers when they are
12540 dereferenced, or when a reference is bound to insufficiently aligned target,
12541 or when a method or constructor is invoked on insufficiently aligned object.
12542
12543 @item -fsanitize=object-size
12544 @opindex fsanitize=object-size
12545 This option enables instrumentation of memory references using the
12546 @code{__builtin_object_size} function. Various out of bounds pointer
12547 accesses are detected.
12548
12549 @item -fsanitize=float-divide-by-zero
12550 @opindex fsanitize=float-divide-by-zero
12551 Detect floating-point division by zero. Unlike other similar options,
12552 @option{-fsanitize=float-divide-by-zero} is not enabled by
12553 @option{-fsanitize=undefined}, since floating-point division by zero can
12554 be a legitimate way of obtaining infinities and NaNs.
12555
12556 @item -fsanitize=float-cast-overflow
12557 @opindex fsanitize=float-cast-overflow
12558 This option enables floating-point type to integer conversion checking.
12559 We check that the result of the conversion does not overflow.
12560 Unlike other similar options, @option{-fsanitize=float-cast-overflow} is
12561 not enabled by @option{-fsanitize=undefined}.
12562 This option does not work well with @code{FE_INVALID} exceptions enabled.
12563
12564 @item -fsanitize=nonnull-attribute
12565 @opindex fsanitize=nonnull-attribute
12566
12567 This option enables instrumentation of calls, checking whether null values
12568 are not passed to arguments marked as requiring a non-null value by the
12569 @code{nonnull} function attribute.
12570
12571 @item -fsanitize=returns-nonnull-attribute
12572 @opindex fsanitize=returns-nonnull-attribute
12573
12574 This option enables instrumentation of return statements in functions
12575 marked with @code{returns_nonnull} function attribute, to detect returning
12576 of null values from such functions.
12577
12578 @item -fsanitize=bool
12579 @opindex fsanitize=bool
12580
12581 This option enables instrumentation of loads from bool. If a value other
12582 than 0/1 is loaded, a run-time error is issued.
12583
12584 @item -fsanitize=enum
12585 @opindex fsanitize=enum
12586
12587 This option enables instrumentation of loads from an enum type. If
12588 a value outside the range of values for the enum type is loaded,
12589 a run-time error is issued.
12590
12591 @item -fsanitize=vptr
12592 @opindex fsanitize=vptr
12593
12594 This option enables instrumentation of C++ member function calls, member
12595 accesses and some conversions between pointers to base and derived classes,
12596 to verify the referenced object has the correct dynamic type.
12597
12598 @item -fsanitize=pointer-overflow
12599 @opindex fsanitize=pointer-overflow
12600
12601 This option enables instrumentation of pointer arithmetics. If the pointer
12602 arithmetics overflows, a run-time error is issued.
12603
12604 @item -fsanitize=builtin
12605 @opindex fsanitize=builtin
12606
12607 This option enables instrumentation of arguments to selected builtin
12608 functions. If an invalid value is passed to such arguments, a run-time
12609 error is issued. E.g.@ passing 0 as the argument to @code{__builtin_ctz}
12610 or @code{__builtin_clz} invokes undefined behavior and is diagnosed
12611 by this option.
12612
12613 @end table
12614
12615 While @option{-ftrapv} causes traps for signed overflows to be emitted,
12616 @option{-fsanitize=undefined} gives a diagnostic message.
12617 This currently works only for the C family of languages.
12618
12619 @item -fno-sanitize=all
12620 @opindex fno-sanitize=all
12621
12622 This option disables all previously enabled sanitizers.
12623 @option{-fsanitize=all} is not allowed, as some sanitizers cannot be used
12624 together.
12625
12626 @item -fasan-shadow-offset=@var{number}
12627 @opindex fasan-shadow-offset
12628 This option forces GCC to use custom shadow offset in AddressSanitizer checks.
12629 It is useful for experimenting with different shadow memory layouts in
12630 Kernel AddressSanitizer.
12631
12632 @item -fsanitize-sections=@var{s1},@var{s2},...
12633 @opindex fsanitize-sections
12634 Sanitize global variables in selected user-defined sections. @var{si} may
12635 contain wildcards.
12636
12637 @item -fsanitize-recover@r{[}=@var{opts}@r{]}
12638 @opindex fsanitize-recover
12639 @opindex fno-sanitize-recover
12640 @option{-fsanitize-recover=} controls error recovery mode for sanitizers
12641 mentioned in comma-separated list of @var{opts}. Enabling this option
12642 for a sanitizer component causes it to attempt to continue
12643 running the program as if no error happened. This means multiple
12644 runtime errors can be reported in a single program run, and the exit
12645 code of the program may indicate success even when errors
12646 have been reported. The @option{-fno-sanitize-recover=} option
12647 can be used to alter
12648 this behavior: only the first detected error is reported
12649 and program then exits with a non-zero exit code.
12650
12651 Currently this feature only works for @option{-fsanitize=undefined} (and its suboptions
12652 except for @option{-fsanitize=unreachable} and @option{-fsanitize=return}),
12653 @option{-fsanitize=float-cast-overflow}, @option{-fsanitize=float-divide-by-zero},
12654 @option{-fsanitize=bounds-strict},
12655 @option{-fsanitize=kernel-address} and @option{-fsanitize=address}.
12656 For these sanitizers error recovery is turned on by default,
12657 except @option{-fsanitize=address}, for which this feature is experimental.
12658 @option{-fsanitize-recover=all} and @option{-fno-sanitize-recover=all} is also
12659 accepted, the former enables recovery for all sanitizers that support it,
12660 the latter disables recovery for all sanitizers that support it.
12661
12662 Even if a recovery mode is turned on the compiler side, it needs to be also
12663 enabled on the runtime library side, otherwise the failures are still fatal.
12664 The runtime library defaults to @code{halt_on_error=0} for
12665 ThreadSanitizer and UndefinedBehaviorSanitizer, while default value for
12666 AddressSanitizer is @code{halt_on_error=1}. This can be overridden through
12667 setting the @code{halt_on_error} flag in the corresponding environment variable.
12668
12669 Syntax without an explicit @var{opts} parameter is deprecated. It is
12670 equivalent to specifying an @var{opts} list of:
12671
12672 @smallexample
12673 undefined,float-cast-overflow,float-divide-by-zero,bounds-strict
12674 @end smallexample
12675
12676 @item -fsanitize-address-use-after-scope
12677 @opindex fsanitize-address-use-after-scope
12678 Enable sanitization of local variables to detect use-after-scope bugs.
12679 The option sets @option{-fstack-reuse} to @samp{none}.
12680
12681 @item -fsanitize-undefined-trap-on-error
12682 @opindex fsanitize-undefined-trap-on-error
12683 The @option{-fsanitize-undefined-trap-on-error} option instructs the compiler to
12684 report undefined behavior using @code{__builtin_trap} rather than
12685 a @code{libubsan} library routine. The advantage of this is that the
12686 @code{libubsan} library is not needed and is not linked in, so this
12687 is usable even in freestanding environments.
12688
12689 @item -fsanitize-coverage=trace-pc
12690 @opindex fsanitize-coverage=trace-pc
12691 Enable coverage-guided fuzzing code instrumentation.
12692 Inserts a call to @code{__sanitizer_cov_trace_pc} into every basic block.
12693
12694 @item -fsanitize-coverage=trace-cmp
12695 @opindex fsanitize-coverage=trace-cmp
12696 Enable dataflow guided fuzzing code instrumentation.
12697 Inserts a call to @code{__sanitizer_cov_trace_cmp1},
12698 @code{__sanitizer_cov_trace_cmp2}, @code{__sanitizer_cov_trace_cmp4} or
12699 @code{__sanitizer_cov_trace_cmp8} for integral comparison with both operands
12700 variable or @code{__sanitizer_cov_trace_const_cmp1},
12701 @code{__sanitizer_cov_trace_const_cmp2},
12702 @code{__sanitizer_cov_trace_const_cmp4} or
12703 @code{__sanitizer_cov_trace_const_cmp8} for integral comparison with one
12704 operand constant, @code{__sanitizer_cov_trace_cmpf} or
12705 @code{__sanitizer_cov_trace_cmpd} for float or double comparisons and
12706 @code{__sanitizer_cov_trace_switch} for switch statements.
12707
12708 @item -fcf-protection=@r{[}full@r{|}branch@r{|}return@r{|}none@r{]}
12709 @opindex fcf-protection
12710 Enable code instrumentation of control-flow transfers to increase
12711 program security by checking that target addresses of control-flow
12712 transfer instructions (such as indirect function call, function return,
12713 indirect jump) are valid. This prevents diverting the flow of control
12714 to an unexpected target. This is intended to protect against such
12715 threats as Return-oriented Programming (ROP), and similarly
12716 call/jmp-oriented programming (COP/JOP).
12717
12718 The value @code{branch} tells the compiler to implement checking of
12719 validity of control-flow transfer at the point of indirect branch
12720 instructions, i.e.@: call/jmp instructions. The value @code{return}
12721 implements checking of validity at the point of returning from a
12722 function. The value @code{full} is an alias for specifying both
12723 @code{branch} and @code{return}. The value @code{none} turns off
12724 instrumentation.
12725
12726 The macro @code{__CET__} is defined when @option{-fcf-protection} is
12727 used. The first bit of @code{__CET__} is set to 1 for the value
12728 @code{branch} and the second bit of @code{__CET__} is set to 1 for
12729 the @code{return}.
12730
12731 You can also use the @code{nocf_check} attribute to identify
12732 which functions and calls should be skipped from instrumentation
12733 (@pxref{Function Attributes}).
12734
12735 Currently the x86 GNU/Linux target provides an implementation based
12736 on Intel Control-flow Enforcement Technology (CET).
12737
12738 @item -fstack-protector
12739 @opindex fstack-protector
12740 Emit extra code to check for buffer overflows, such as stack smashing
12741 attacks. This is done by adding a guard variable to functions with
12742 vulnerable objects. This includes functions that call @code{alloca}, and
12743 functions with buffers larger than 8 bytes. The guards are initialized
12744 when a function is entered and then checked when the function exits.
12745 If a guard check fails, an error message is printed and the program exits.
12746
12747 @item -fstack-protector-all
12748 @opindex fstack-protector-all
12749 Like @option{-fstack-protector} except that all functions are protected.
12750
12751 @item -fstack-protector-strong
12752 @opindex fstack-protector-strong
12753 Like @option{-fstack-protector} but includes additional functions to
12754 be protected --- those that have local array definitions, or have
12755 references to local frame addresses.
12756
12757 @item -fstack-protector-explicit
12758 @opindex fstack-protector-explicit
12759 Like @option{-fstack-protector} but only protects those functions which
12760 have the @code{stack_protect} attribute.
12761
12762 @item -fstack-check
12763 @opindex fstack-check
12764 Generate code to verify that you do not go beyond the boundary of the
12765 stack. You should specify this flag if you are running in an
12766 environment with multiple threads, but you only rarely need to specify it in
12767 a single-threaded environment since stack overflow is automatically
12768 detected on nearly all systems if there is only one stack.
12769
12770 Note that this switch does not actually cause checking to be done; the
12771 operating system or the language runtime must do that. The switch causes
12772 generation of code to ensure that they see the stack being extended.
12773
12774 You can additionally specify a string parameter: @samp{no} means no
12775 checking, @samp{generic} means force the use of old-style checking,
12776 @samp{specific} means use the best checking method and is equivalent
12777 to bare @option{-fstack-check}.
12778
12779 Old-style checking is a generic mechanism that requires no specific
12780 target support in the compiler but comes with the following drawbacks:
12781
12782 @enumerate
12783 @item
12784 Modified allocation strategy for large objects: they are always
12785 allocated dynamically if their size exceeds a fixed threshold. Note this
12786 may change the semantics of some code.
12787
12788 @item
12789 Fixed limit on the size of the static frame of functions: when it is
12790 topped by a particular function, stack checking is not reliable and
12791 a warning is issued by the compiler.
12792
12793 @item
12794 Inefficiency: because of both the modified allocation strategy and the
12795 generic implementation, code performance is hampered.
12796 @end enumerate
12797
12798 Note that old-style stack checking is also the fallback method for
12799 @samp{specific} if no target support has been added in the compiler.
12800
12801 @samp{-fstack-check=} is designed for Ada's needs to detect infinite recursion
12802 and stack overflows. @samp{specific} is an excellent choice when compiling
12803 Ada code. It is not generally sufficient to protect against stack-clash
12804 attacks. To protect against those you want @samp{-fstack-clash-protection}.
12805
12806 @item -fstack-clash-protection
12807 @opindex fstack-clash-protection
12808 Generate code to prevent stack clash style attacks. When this option is
12809 enabled, the compiler will only allocate one page of stack space at a time
12810 and each page is accessed immediately after allocation. Thus, it prevents
12811 allocations from jumping over any stack guard page provided by the
12812 operating system.
12813
12814 Most targets do not fully support stack clash protection. However, on
12815 those targets @option{-fstack-clash-protection} will protect dynamic stack
12816 allocations. @option{-fstack-clash-protection} may also provide limited
12817 protection for static stack allocations if the target supports
12818 @option{-fstack-check=specific}.
12819
12820 @item -fstack-limit-register=@var{reg}
12821 @itemx -fstack-limit-symbol=@var{sym}
12822 @itemx -fno-stack-limit
12823 @opindex fstack-limit-register
12824 @opindex fstack-limit-symbol
12825 @opindex fno-stack-limit
12826 Generate code to ensure that the stack does not grow beyond a certain value,
12827 either the value of a register or the address of a symbol. If a larger
12828 stack is required, a signal is raised at run time. For most targets,
12829 the signal is raised before the stack overruns the boundary, so
12830 it is possible to catch the signal without taking special precautions.
12831
12832 For instance, if the stack starts at absolute address @samp{0x80000000}
12833 and grows downwards, you can use the flags
12834 @option{-fstack-limit-symbol=__stack_limit} and
12835 @option{-Wl,--defsym,__stack_limit=0x7ffe0000} to enforce a stack limit
12836 of 128KB@. Note that this may only work with the GNU linker.
12837
12838 You can locally override stack limit checking by using the
12839 @code{no_stack_limit} function attribute (@pxref{Function Attributes}).
12840
12841 @item -fsplit-stack
12842 @opindex fsplit-stack
12843 Generate code to automatically split the stack before it overflows.
12844 The resulting program has a discontiguous stack which can only
12845 overflow if the program is unable to allocate any more memory. This
12846 is most useful when running threaded programs, as it is no longer
12847 necessary to calculate a good stack size to use for each thread. This
12848 is currently only implemented for the x86 targets running
12849 GNU/Linux.
12850
12851 When code compiled with @option{-fsplit-stack} calls code compiled
12852 without @option{-fsplit-stack}, there may not be much stack space
12853 available for the latter code to run. If compiling all code,
12854 including library code, with @option{-fsplit-stack} is not an option,
12855 then the linker can fix up these calls so that the code compiled
12856 without @option{-fsplit-stack} always has a large stack. Support for
12857 this is implemented in the gold linker in GNU binutils release 2.21
12858 and later.
12859
12860 @item -fvtable-verify=@r{[}std@r{|}preinit@r{|}none@r{]}
12861 @opindex fvtable-verify
12862 This option is only available when compiling C++ code.
12863 It turns on (or off, if using @option{-fvtable-verify=none}) the security
12864 feature that verifies at run time, for every virtual call, that
12865 the vtable pointer through which the call is made is valid for the type of
12866 the object, and has not been corrupted or overwritten. If an invalid vtable
12867 pointer is detected at run time, an error is reported and execution of the
12868 program is immediately halted.
12869
12870 This option causes run-time data structures to be built at program startup,
12871 which are used for verifying the vtable pointers.
12872 The options @samp{std} and @samp{preinit}
12873 control the timing of when these data structures are built. In both cases the
12874 data structures are built before execution reaches @code{main}. Using
12875 @option{-fvtable-verify=std} causes the data structures to be built after
12876 shared libraries have been loaded and initialized.
12877 @option{-fvtable-verify=preinit} causes them to be built before shared
12878 libraries have been loaded and initialized.
12879
12880 If this option appears multiple times in the command line with different
12881 values specified, @samp{none} takes highest priority over both @samp{std} and
12882 @samp{preinit}; @samp{preinit} takes priority over @samp{std}.
12883
12884 @item -fvtv-debug
12885 @opindex fvtv-debug
12886 When used in conjunction with @option{-fvtable-verify=std} or
12887 @option{-fvtable-verify=preinit}, causes debug versions of the
12888 runtime functions for the vtable verification feature to be called.
12889 This flag also causes the compiler to log information about which
12890 vtable pointers it finds for each class.
12891 This information is written to a file named @file{vtv_set_ptr_data.log}
12892 in the directory named by the environment variable @env{VTV_LOGS_DIR}
12893 if that is defined or the current working directory otherwise.
12894
12895 Note: This feature @emph{appends} data to the log file. If you want a fresh log
12896 file, be sure to delete any existing one.
12897
12898 @item -fvtv-counts
12899 @opindex fvtv-counts
12900 This is a debugging flag. When used in conjunction with
12901 @option{-fvtable-verify=std} or @option{-fvtable-verify=preinit}, this
12902 causes the compiler to keep track of the total number of virtual calls
12903 it encounters and the number of verifications it inserts. It also
12904 counts the number of calls to certain run-time library functions
12905 that it inserts and logs this information for each compilation unit.
12906 The compiler writes this information to a file named
12907 @file{vtv_count_data.log} in the directory named by the environment
12908 variable @env{VTV_LOGS_DIR} if that is defined or the current working
12909 directory otherwise. It also counts the size of the vtable pointer sets
12910 for each class, and writes this information to @file{vtv_class_set_sizes.log}
12911 in the same directory.
12912
12913 Note: This feature @emph{appends} data to the log files. To get fresh log
12914 files, be sure to delete any existing ones.
12915
12916 @item -finstrument-functions
12917 @opindex finstrument-functions
12918 Generate instrumentation calls for entry and exit to functions. Just
12919 after function entry and just before function exit, the following
12920 profiling functions are called with the address of the current
12921 function and its call site. (On some platforms,
12922 @code{__builtin_return_address} does not work beyond the current
12923 function, so the call site information may not be available to the
12924 profiling functions otherwise.)
12925
12926 @smallexample
12927 void __cyg_profile_func_enter (void *this_fn,
12928 void *call_site);
12929 void __cyg_profile_func_exit (void *this_fn,
12930 void *call_site);
12931 @end smallexample
12932
12933 The first argument is the address of the start of the current function,
12934 which may be looked up exactly in the symbol table.
12935
12936 This instrumentation is also done for functions expanded inline in other
12937 functions. The profiling calls indicate where, conceptually, the
12938 inline function is entered and exited. This means that addressable
12939 versions of such functions must be available. If all your uses of a
12940 function are expanded inline, this may mean an additional expansion of
12941 code size. If you use @code{extern inline} in your C code, an
12942 addressable version of such functions must be provided. (This is
12943 normally the case anyway, but if you get lucky and the optimizer always
12944 expands the functions inline, you might have gotten away without
12945 providing static copies.)
12946
12947 A function may be given the attribute @code{no_instrument_function}, in
12948 which case this instrumentation is not done. This can be used, for
12949 example, for the profiling functions listed above, high-priority
12950 interrupt routines, and any functions from which the profiling functions
12951 cannot safely be called (perhaps signal handlers, if the profiling
12952 routines generate output or allocate memory).
12953 @xref{Common Function Attributes}.
12954
12955 @item -finstrument-functions-exclude-file-list=@var{file},@var{file},@dots{}
12956 @opindex finstrument-functions-exclude-file-list
12957
12958 Set the list of functions that are excluded from instrumentation (see
12959 the description of @option{-finstrument-functions}). If the file that
12960 contains a function definition matches with one of @var{file}, then
12961 that function is not instrumented. The match is done on substrings:
12962 if the @var{file} parameter is a substring of the file name, it is
12963 considered to be a match.
12964
12965 For example:
12966
12967 @smallexample
12968 -finstrument-functions-exclude-file-list=/bits/stl,include/sys
12969 @end smallexample
12970
12971 @noindent
12972 excludes any inline function defined in files whose pathnames
12973 contain @file{/bits/stl} or @file{include/sys}.
12974
12975 If, for some reason, you want to include letter @samp{,} in one of
12976 @var{sym}, write @samp{\,}. For example,
12977 @option{-finstrument-functions-exclude-file-list='\,\,tmp'}
12978 (note the single quote surrounding the option).
12979
12980 @item -finstrument-functions-exclude-function-list=@var{sym},@var{sym},@dots{}
12981 @opindex finstrument-functions-exclude-function-list
12982
12983 This is similar to @option{-finstrument-functions-exclude-file-list},
12984 but this option sets the list of function names to be excluded from
12985 instrumentation. The function name to be matched is its user-visible
12986 name, such as @code{vector<int> blah(const vector<int> &)}, not the
12987 internal mangled name (e.g., @code{_Z4blahRSt6vectorIiSaIiEE}). The
12988 match is done on substrings: if the @var{sym} parameter is a substring
12989 of the function name, it is considered to be a match. For C99 and C++
12990 extended identifiers, the function name must be given in UTF-8, not
12991 using universal character names.
12992
12993 @item -fpatchable-function-entry=@var{N}[,@var{M}]
12994 @opindex fpatchable-function-entry
12995 Generate @var{N} NOPs right at the beginning
12996 of each function, with the function entry point before the @var{M}th NOP.
12997 If @var{M} is omitted, it defaults to @code{0} so the
12998 function entry points to the address just at the first NOP.
12999 The NOP instructions reserve extra space which can be used to patch in
13000 any desired instrumentation at run time, provided that the code segment
13001 is writable. The amount of space is controllable indirectly via
13002 the number of NOPs; the NOP instruction used corresponds to the instruction
13003 emitted by the internal GCC back-end interface @code{gen_nop}. This behavior
13004 is target-specific and may also depend on the architecture variant and/or
13005 other compilation options.
13006
13007 For run-time identification, the starting addresses of these areas,
13008 which correspond to their respective function entries minus @var{M},
13009 are additionally collected in the @code{__patchable_function_entries}
13010 section of the resulting binary.
13011
13012 Note that the value of @code{__attribute__ ((patchable_function_entry
13013 (N,M)))} takes precedence over command-line option
13014 @option{-fpatchable-function-entry=N,M}. This can be used to increase
13015 the area size or to remove it completely on a single function.
13016 If @code{N=0}, no pad location is recorded.
13017
13018 The NOP instructions are inserted at---and maybe before, depending on
13019 @var{M}---the function entry address, even before the prologue.
13020
13021 @end table
13022
13023
13024 @node Preprocessor Options
13025 @section Options Controlling the Preprocessor
13026 @cindex preprocessor options
13027 @cindex options, preprocessor
13028
13029 These options control the C preprocessor, which is run on each C source
13030 file before actual compilation.
13031
13032 If you use the @option{-E} option, nothing is done except preprocessing.
13033 Some of these options make sense only together with @option{-E} because
13034 they cause the preprocessor output to be unsuitable for actual
13035 compilation.
13036
13037 In addition to the options listed here, there are a number of options
13038 to control search paths for include files documented in
13039 @ref{Directory Options}.
13040 Options to control preprocessor diagnostics are listed in
13041 @ref{Warning Options}.
13042
13043 @table @gcctabopt
13044 @include cppopts.texi
13045
13046 @item -Wp,@var{option}
13047 @opindex Wp
13048 You can use @option{-Wp,@var{option}} to bypass the compiler driver
13049 and pass @var{option} directly through to the preprocessor. If
13050 @var{option} contains commas, it is split into multiple options at the
13051 commas. However, many options are modified, translated or interpreted
13052 by the compiler driver before being passed to the preprocessor, and
13053 @option{-Wp} forcibly bypasses this phase. The preprocessor's direct
13054 interface is undocumented and subject to change, so whenever possible
13055 you should avoid using @option{-Wp} and let the driver handle the
13056 options instead.
13057
13058 @item -Xpreprocessor @var{option}
13059 @opindex Xpreprocessor
13060 Pass @var{option} as an option to the preprocessor. You can use this to
13061 supply system-specific preprocessor options that GCC does not
13062 recognize.
13063
13064 If you want to pass an option that takes an argument, you must use
13065 @option{-Xpreprocessor} twice, once for the option and once for the argument.
13066
13067 @item -no-integrated-cpp
13068 @opindex no-integrated-cpp
13069 Perform preprocessing as a separate pass before compilation.
13070 By default, GCC performs preprocessing as an integrated part of
13071 input tokenization and parsing.
13072 If this option is provided, the appropriate language front end
13073 (@command{cc1}, @command{cc1plus}, or @command{cc1obj} for C, C++,
13074 and Objective-C, respectively) is instead invoked twice,
13075 once for preprocessing only and once for actual compilation
13076 of the preprocessed input.
13077 This option may be useful in conjunction with the @option{-B} or
13078 @option{-wrapper} options to specify an alternate preprocessor or
13079 perform additional processing of the program source between
13080 normal preprocessing and compilation.
13081
13082 @end table
13083
13084 @node Assembler Options
13085 @section Passing Options to the Assembler
13086
13087 @c prevent bad page break with this line
13088 You can pass options to the assembler.
13089
13090 @table @gcctabopt
13091 @item -Wa,@var{option}
13092 @opindex Wa
13093 Pass @var{option} as an option to the assembler. If @var{option}
13094 contains commas, it is split into multiple options at the commas.
13095
13096 @item -Xassembler @var{option}
13097 @opindex Xassembler
13098 Pass @var{option} as an option to the assembler. You can use this to
13099 supply system-specific assembler options that GCC does not
13100 recognize.
13101
13102 If you want to pass an option that takes an argument, you must use
13103 @option{-Xassembler} twice, once for the option and once for the argument.
13104
13105 @end table
13106
13107 @node Link Options
13108 @section Options for Linking
13109 @cindex link options
13110 @cindex options, linking
13111
13112 These options come into play when the compiler links object files into
13113 an executable output file. They are meaningless if the compiler is
13114 not doing a link step.
13115
13116 @table @gcctabopt
13117 @cindex file names
13118 @item @var{object-file-name}
13119 A file name that does not end in a special recognized suffix is
13120 considered to name an object file or library. (Object files are
13121 distinguished from libraries by the linker according to the file
13122 contents.) If linking is done, these object files are used as input
13123 to the linker.
13124
13125 @item -c
13126 @itemx -S
13127 @itemx -E
13128 @opindex c
13129 @opindex S
13130 @opindex E
13131 If any of these options is used, then the linker is not run, and
13132 object file names should not be used as arguments. @xref{Overall
13133 Options}.
13134
13135 @item -flinker-output=@var{type}
13136 @opindex flinker-output
13137 This option controls code generation of the link time optimizer. By
13138 default the linker output is automatically determined by the linker
13139 plugin. For debugging the compiler and if incremental linking with a
13140 non-LTO object file is desired, it may be useful to control the type
13141 manually.
13142
13143 If @var{type} is @samp{exec} code generation produces a static
13144 binary. In this case @option{-fpic} and @option{-fpie} are both
13145 disabled.
13146
13147 If @var{type} is @samp{dyn} code generation produces a shared
13148 library. In this case @option{-fpic} or @option{-fPIC} is preserved,
13149 but not enabled automatically. This allows to build shared libraries
13150 without position independent code on architectures where this is
13151 possible, i.e.@: on x86.
13152
13153 If @var{type} is @samp{pie} code generation produces an @option{-fpie}
13154 executable. This results in similar optimizations as @samp{exec}
13155 except that @option{-fpie} is not disabled if specified at compilation
13156 time.
13157
13158 If @var{type} is @samp{rel} the compiler assumes that incremental linking is
13159 done. The sections containing intermediate code for link-time optimization are
13160 merged, pre-optimized, and output to the resulting object file. In addition, if
13161 @option{-ffat-lto-objects} is specified the binary code is produced for future
13162 non-LTO linking. The object file produced by incremental linking will be smaller
13163 than a static library produced from the same object files. At link time the
13164 result of incremental linking will also load faster to compiler than a static
13165 library assuming that the majority of objects in the library are used.
13166
13167 Finally @samp{nolto-rel} configures the compiler for incremental linking where
13168 code generation is forced, a final binary is produced and the intermediate
13169 code for later link-time optimization is stripped. When multiple object files
13170 are linked together the resulting code will be optimized better than with
13171 link-time optimizations disabled (for example, cross-module inlining will
13172 happen), most of benefits of whole program optimizations are however lost.
13173
13174 During the incremental link (by @option{-r}) the linker plugin will default to
13175 @option{rel}. With current interfaces to GNU Binutils it is however not
13176 possible to incrementally link LTO objects and non-LTO objects into a single
13177 mixed object file. In the case any of object files in incremental link cannot
13178 be used for link-time optimization the linker plugin will issue a warning and
13179 use @samp{nolto-rel}. To maintain the whole program optimization it is
13180 recommended to link such objects into static library instead. Alternatively it
13181 is possible to use H.J. Lu's binutils with support for mixed objects.
13182
13183 @item -fuse-ld=bfd
13184 @opindex fuse-ld=bfd
13185 Use the @command{bfd} linker instead of the default linker.
13186
13187 @item -fuse-ld=gold
13188 @opindex fuse-ld=gold
13189 Use the @command{gold} linker instead of the default linker.
13190
13191 @item -fuse-ld=lld
13192 @opindex fuse-ld=lld
13193 Use the LLVM @command{lld} linker instead of the default linker.
13194
13195 @cindex Libraries
13196 @item -l@var{library}
13197 @itemx -l @var{library}
13198 @opindex l
13199 Search the library named @var{library} when linking. (The second
13200 alternative with the library as a separate argument is only for
13201 POSIX compliance and is not recommended.)
13202
13203 The @option{-l} option is passed directly to the linker by GCC. Refer
13204 to your linker documentation for exact details. The general
13205 description below applies to the GNU linker.
13206
13207 The linker searches a standard list of directories for the library.
13208 The directories searched include several standard system directories
13209 plus any that you specify with @option{-L}.
13210
13211 Static libraries are archives of object files, and have file names
13212 like @file{lib@var{library}.a}. Some targets also support shared
13213 libraries, which typically have names like @file{lib@var{library}.so}.
13214 If both static and shared libraries are found, the linker gives
13215 preference to linking with the shared library unless the
13216 @option{-static} option is used.
13217
13218 It makes a difference where in the command you write this option; the
13219 linker searches and processes libraries and object files in the order they
13220 are specified. Thus, @samp{foo.o -lz bar.o} searches library @samp{z}
13221 after file @file{foo.o} but before @file{bar.o}. If @file{bar.o} refers
13222 to functions in @samp{z}, those functions may not be loaded.
13223
13224 @item -lobjc
13225 @opindex lobjc
13226 You need this special case of the @option{-l} option in order to
13227 link an Objective-C or Objective-C++ program.
13228
13229 @item -nostartfiles
13230 @opindex nostartfiles
13231 Do not use the standard system startup files when linking.
13232 The standard system libraries are used normally, unless @option{-nostdlib},
13233 @option{-nolibc}, or @option{-nodefaultlibs} is used.
13234
13235 @item -nodefaultlibs
13236 @opindex nodefaultlibs
13237 Do not use the standard system libraries when linking.
13238 Only the libraries you specify are passed to the linker, and options
13239 specifying linkage of the system libraries, such as @option{-static-libgcc}
13240 or @option{-shared-libgcc}, are ignored.
13241 The standard startup files are used normally, unless @option{-nostartfiles}
13242 is used.
13243
13244 The compiler may generate calls to @code{memcmp},
13245 @code{memset}, @code{memcpy} and @code{memmove}.
13246 These entries are usually resolved by entries in
13247 libc. These entry points should be supplied through some other
13248 mechanism when this option is specified.
13249
13250 @item -nolibc
13251 @opindex nolibc
13252 Do not use the C library or system libraries tightly coupled with it when
13253 linking. Still link with the startup files, @file{libgcc} or toolchain
13254 provided language support libraries such as @file{libgnat}, @file{libgfortran}
13255 or @file{libstdc++} unless options preventing their inclusion are used as
13256 well. This typically removes @option{-lc} from the link command line, as well
13257 as system libraries that normally go with it and become meaningless when
13258 absence of a C library is assumed, for example @option{-lpthread} or
13259 @option{-lm} in some configurations. This is intended for bare-board
13260 targets when there is indeed no C library available.
13261
13262 @item -nostdlib
13263 @opindex nostdlib
13264 Do not use the standard system startup files or libraries when linking.
13265 No startup files and only the libraries you specify are passed to
13266 the linker, and options specifying linkage of the system libraries, such as
13267 @option{-static-libgcc} or @option{-shared-libgcc}, are ignored.
13268
13269 The compiler may generate calls to @code{memcmp}, @code{memset},
13270 @code{memcpy} and @code{memmove}.
13271 These entries are usually resolved by entries in
13272 libc. These entry points should be supplied through some other
13273 mechanism when this option is specified.
13274
13275 @cindex @option{-lgcc}, use with @option{-nostdlib}
13276 @cindex @option{-nostdlib} and unresolved references
13277 @cindex unresolved references and @option{-nostdlib}
13278 @cindex @option{-lgcc}, use with @option{-nodefaultlibs}
13279 @cindex @option{-nodefaultlibs} and unresolved references
13280 @cindex unresolved references and @option{-nodefaultlibs}
13281 One of the standard libraries bypassed by @option{-nostdlib} and
13282 @option{-nodefaultlibs} is @file{libgcc.a}, a library of internal subroutines
13283 which GCC uses to overcome shortcomings of particular machines, or special
13284 needs for some languages.
13285 (@xref{Interface,,Interfacing to GCC Output,gccint,GNU Compiler
13286 Collection (GCC) Internals},
13287 for more discussion of @file{libgcc.a}.)
13288 In most cases, you need @file{libgcc.a} even when you want to avoid
13289 other standard libraries. In other words, when you specify @option{-nostdlib}
13290 or @option{-nodefaultlibs} you should usually specify @option{-lgcc} as well.
13291 This ensures that you have no unresolved references to internal GCC
13292 library subroutines.
13293 (An example of such an internal subroutine is @code{__main}, used to ensure C++
13294 constructors are called; @pxref{Collect2,,@code{collect2}, gccint,
13295 GNU Compiler Collection (GCC) Internals}.)
13296
13297 @item -e @var{entry}
13298 @itemx --entry=@var{entry}
13299 @opindex e
13300 @opindex entry
13301
13302 Specify that the program entry point is @var{entry}. The argument is
13303 interpreted by the linker; the GNU linker accepts either a symbol name
13304 or an address.
13305
13306 @item -pie
13307 @opindex pie
13308 Produce a dynamically linked position independent executable on targets
13309 that support it. For predictable results, you must also specify the same
13310 set of options used for compilation (@option{-fpie}, @option{-fPIE},
13311 or model suboptions) when you specify this linker option.
13312
13313 @item -no-pie
13314 @opindex no-pie
13315 Don't produce a dynamically linked position independent executable.
13316
13317 @item -static-pie
13318 @opindex static-pie
13319 Produce a static position independent executable on targets that support
13320 it. A static position independent executable is similar to a static
13321 executable, but can be loaded at any address without a dynamic linker.
13322 For predictable results, you must also specify the same set of options
13323 used for compilation (@option{-fpie}, @option{-fPIE}, or model
13324 suboptions) when you specify this linker option.
13325
13326 @item -pthread
13327 @opindex pthread
13328 Link with the POSIX threads library. This option is supported on
13329 GNU/Linux targets, most other Unix derivatives, and also on
13330 x86 Cygwin and MinGW targets. On some targets this option also sets
13331 flags for the preprocessor, so it should be used consistently for both
13332 compilation and linking.
13333
13334 @item -r
13335 @opindex r
13336 Produce a relocatable object as output. This is also known as partial
13337 linking.
13338
13339 @item -rdynamic
13340 @opindex rdynamic
13341 Pass the flag @option{-export-dynamic} to the ELF linker, on targets
13342 that support it. This instructs the linker to add all symbols, not
13343 only used ones, to the dynamic symbol table. This option is needed
13344 for some uses of @code{dlopen} or to allow obtaining backtraces
13345 from within a program.
13346
13347 @item -s
13348 @opindex s
13349 Remove all symbol table and relocation information from the executable.
13350
13351 @item -static
13352 @opindex static
13353 On systems that support dynamic linking, this overrides @option{-pie}
13354 and prevents linking with the shared libraries. On other systems, this
13355 option has no effect.
13356
13357 @item -shared
13358 @opindex shared
13359 Produce a shared object which can then be linked with other objects to
13360 form an executable. Not all systems support this option. For predictable
13361 results, you must also specify the same set of options used for compilation
13362 (@option{-fpic}, @option{-fPIC}, or model suboptions) when
13363 you specify this linker option.@footnote{On some systems, @samp{gcc -shared}
13364 needs to build supplementary stub code for constructors to work. On
13365 multi-libbed systems, @samp{gcc -shared} must select the correct support
13366 libraries to link against. Failing to supply the correct flags may lead
13367 to subtle defects. Supplying them in cases where they are not necessary
13368 is innocuous.}
13369
13370 @item -shared-libgcc
13371 @itemx -static-libgcc
13372 @opindex shared-libgcc
13373 @opindex static-libgcc
13374 On systems that provide @file{libgcc} as a shared library, these options
13375 force the use of either the shared or static version, respectively.
13376 If no shared version of @file{libgcc} was built when the compiler was
13377 configured, these options have no effect.
13378
13379 There are several situations in which an application should use the
13380 shared @file{libgcc} instead of the static version. The most common
13381 of these is when the application wishes to throw and catch exceptions
13382 across different shared libraries. In that case, each of the libraries
13383 as well as the application itself should use the shared @file{libgcc}.
13384
13385 Therefore, the G++ driver automatically adds @option{-shared-libgcc}
13386 whenever you build a shared library or a main executable, because C++
13387 programs typically use exceptions, so this is the right thing to do.
13388
13389 If, instead, you use the GCC driver to create shared libraries, you may
13390 find that they are not always linked with the shared @file{libgcc}.
13391 If GCC finds, at its configuration time, that you have a non-GNU linker
13392 or a GNU linker that does not support option @option{--eh-frame-hdr},
13393 it links the shared version of @file{libgcc} into shared libraries
13394 by default. Otherwise, it takes advantage of the linker and optimizes
13395 away the linking with the shared version of @file{libgcc}, linking with
13396 the static version of libgcc by default. This allows exceptions to
13397 propagate through such shared libraries, without incurring relocation
13398 costs at library load time.
13399
13400 However, if a library or main executable is supposed to throw or catch
13401 exceptions, you must link it using the G++ driver, or using the option
13402 @option{-shared-libgcc}, such that it is linked with the shared
13403 @file{libgcc}.
13404
13405 @item -static-libasan
13406 @opindex static-libasan
13407 When the @option{-fsanitize=address} option is used to link a program,
13408 the GCC driver automatically links against @option{libasan}. If
13409 @file{libasan} is available as a shared library, and the @option{-static}
13410 option is not used, then this links against the shared version of
13411 @file{libasan}. The @option{-static-libasan} option directs the GCC
13412 driver to link @file{libasan} statically, without necessarily linking
13413 other libraries statically.
13414
13415 @item -static-libtsan
13416 @opindex static-libtsan
13417 When the @option{-fsanitize=thread} option is used to link a program,
13418 the GCC driver automatically links against @option{libtsan}. If
13419 @file{libtsan} is available as a shared library, and the @option{-static}
13420 option is not used, then this links against the shared version of
13421 @file{libtsan}. The @option{-static-libtsan} option directs the GCC
13422 driver to link @file{libtsan} statically, without necessarily linking
13423 other libraries statically.
13424
13425 @item -static-liblsan
13426 @opindex static-liblsan
13427 When the @option{-fsanitize=leak} option is used to link a program,
13428 the GCC driver automatically links against @option{liblsan}. If
13429 @file{liblsan} is available as a shared library, and the @option{-static}
13430 option is not used, then this links against the shared version of
13431 @file{liblsan}. The @option{-static-liblsan} option directs the GCC
13432 driver to link @file{liblsan} statically, without necessarily linking
13433 other libraries statically.
13434
13435 @item -static-libubsan
13436 @opindex static-libubsan
13437 When the @option{-fsanitize=undefined} option is used to link a program,
13438 the GCC driver automatically links against @option{libubsan}. If
13439 @file{libubsan} is available as a shared library, and the @option{-static}
13440 option is not used, then this links against the shared version of
13441 @file{libubsan}. The @option{-static-libubsan} option directs the GCC
13442 driver to link @file{libubsan} statically, without necessarily linking
13443 other libraries statically.
13444
13445 @item -static-libstdc++
13446 @opindex static-libstdc++
13447 When the @command{g++} program is used to link a C++ program, it
13448 normally automatically links against @option{libstdc++}. If
13449 @file{libstdc++} is available as a shared library, and the
13450 @option{-static} option is not used, then this links against the
13451 shared version of @file{libstdc++}. That is normally fine. However, it
13452 is sometimes useful to freeze the version of @file{libstdc++} used by
13453 the program without going all the way to a fully static link. The
13454 @option{-static-libstdc++} option directs the @command{g++} driver to
13455 link @file{libstdc++} statically, without necessarily linking other
13456 libraries statically.
13457
13458 @item -symbolic
13459 @opindex symbolic
13460 Bind references to global symbols when building a shared object. Warn
13461 about any unresolved references (unless overridden by the link editor
13462 option @option{-Xlinker -z -Xlinker defs}). Only a few systems support
13463 this option.
13464
13465 @item -T @var{script}
13466 @opindex T
13467 @cindex linker script
13468 Use @var{script} as the linker script. This option is supported by most
13469 systems using the GNU linker. On some targets, such as bare-board
13470 targets without an operating system, the @option{-T} option may be required
13471 when linking to avoid references to undefined symbols.
13472
13473 @item -Xlinker @var{option}
13474 @opindex Xlinker
13475 Pass @var{option} as an option to the linker. You can use this to
13476 supply system-specific linker options that GCC does not recognize.
13477
13478 If you want to pass an option that takes a separate argument, you must use
13479 @option{-Xlinker} twice, once for the option and once for the argument.
13480 For example, to pass @option{-assert definitions}, you must write
13481 @option{-Xlinker -assert -Xlinker definitions}. It does not work to write
13482 @option{-Xlinker "-assert definitions"}, because this passes the entire
13483 string as a single argument, which is not what the linker expects.
13484
13485 When using the GNU linker, it is usually more convenient to pass
13486 arguments to linker options using the @option{@var{option}=@var{value}}
13487 syntax than as separate arguments. For example, you can specify
13488 @option{-Xlinker -Map=output.map} rather than
13489 @option{-Xlinker -Map -Xlinker output.map}. Other linkers may not support
13490 this syntax for command-line options.
13491
13492 @item -Wl,@var{option}
13493 @opindex Wl
13494 Pass @var{option} as an option to the linker. If @var{option} contains
13495 commas, it is split into multiple options at the commas. You can use this
13496 syntax to pass an argument to the option.
13497 For example, @option{-Wl,-Map,output.map} passes @option{-Map output.map} to the
13498 linker. When using the GNU linker, you can also get the same effect with
13499 @option{-Wl,-Map=output.map}.
13500
13501 @item -u @var{symbol}
13502 @opindex u
13503 Pretend the symbol @var{symbol} is undefined, to force linking of
13504 library modules to define it. You can use @option{-u} multiple times with
13505 different symbols to force loading of additional library modules.
13506
13507 @item -z @var{keyword}
13508 @opindex z
13509 @option{-z} is passed directly on to the linker along with the keyword
13510 @var{keyword}. See the section in the documentation of your linker for
13511 permitted values and their meanings.
13512 @end table
13513
13514 @node Directory Options
13515 @section Options for Directory Search
13516 @cindex directory options
13517 @cindex options, directory search
13518 @cindex search path
13519
13520 These options specify directories to search for header files, for
13521 libraries and for parts of the compiler:
13522
13523 @table @gcctabopt
13524 @include cppdiropts.texi
13525
13526 @item -iplugindir=@var{dir}
13527 @opindex iplugindir=
13528 Set the directory to search for plugins that are passed
13529 by @option{-fplugin=@var{name}} instead of
13530 @option{-fplugin=@var{path}/@var{name}.so}. This option is not meant
13531 to be used by the user, but only passed by the driver.
13532
13533 @item -L@var{dir}
13534 @opindex L
13535 Add directory @var{dir} to the list of directories to be searched
13536 for @option{-l}.
13537
13538 @item -B@var{prefix}
13539 @opindex B
13540 This option specifies where to find the executables, libraries,
13541 include files, and data files of the compiler itself.
13542
13543 The compiler driver program runs one or more of the subprograms
13544 @command{cpp}, @command{cc1}, @command{as} and @command{ld}. It tries
13545 @var{prefix} as a prefix for each program it tries to run, both with and
13546 without @samp{@var{machine}/@var{version}/} for the corresponding target
13547 machine and compiler version.
13548
13549 For each subprogram to be run, the compiler driver first tries the
13550 @option{-B} prefix, if any. If that name is not found, or if @option{-B}
13551 is not specified, the driver tries two standard prefixes,
13552 @file{/usr/lib/gcc/} and @file{/usr/local/lib/gcc/}. If neither of
13553 those results in a file name that is found, the unmodified program
13554 name is searched for using the directories specified in your
13555 @env{PATH} environment variable.
13556
13557 The compiler checks to see if the path provided by @option{-B}
13558 refers to a directory, and if necessary it adds a directory
13559 separator character at the end of the path.
13560
13561 @option{-B} prefixes that effectively specify directory names also apply
13562 to libraries in the linker, because the compiler translates these
13563 options into @option{-L} options for the linker. They also apply to
13564 include files in the preprocessor, because the compiler translates these
13565 options into @option{-isystem} options for the preprocessor. In this case,
13566 the compiler appends @samp{include} to the prefix.
13567
13568 The runtime support file @file{libgcc.a} can also be searched for using
13569 the @option{-B} prefix, if needed. If it is not found there, the two
13570 standard prefixes above are tried, and that is all. The file is left
13571 out of the link if it is not found by those means.
13572
13573 Another way to specify a prefix much like the @option{-B} prefix is to use
13574 the environment variable @env{GCC_EXEC_PREFIX}. @xref{Environment
13575 Variables}.
13576
13577 As a special kludge, if the path provided by @option{-B} is
13578 @file{[dir/]stage@var{N}/}, where @var{N} is a number in the range 0 to
13579 9, then it is replaced by @file{[dir/]include}. This is to help
13580 with boot-strapping the compiler.
13581
13582 @item -no-canonical-prefixes
13583 @opindex no-canonical-prefixes
13584 Do not expand any symbolic links, resolve references to @samp{/../}
13585 or @samp{/./}, or make the path absolute when generating a relative
13586 prefix.
13587
13588 @item --sysroot=@var{dir}
13589 @opindex sysroot
13590 Use @var{dir} as the logical root directory for headers and libraries.
13591 For example, if the compiler normally searches for headers in
13592 @file{/usr/include} and libraries in @file{/usr/lib}, it instead
13593 searches @file{@var{dir}/usr/include} and @file{@var{dir}/usr/lib}.
13594
13595 If you use both this option and the @option{-isysroot} option, then
13596 the @option{--sysroot} option applies to libraries, but the
13597 @option{-isysroot} option applies to header files.
13598
13599 The GNU linker (beginning with version 2.16) has the necessary support
13600 for this option. If your linker does not support this option, the
13601 header file aspect of @option{--sysroot} still works, but the
13602 library aspect does not.
13603
13604 @item --no-sysroot-suffix
13605 @opindex no-sysroot-suffix
13606 For some targets, a suffix is added to the root directory specified
13607 with @option{--sysroot}, depending on the other options used, so that
13608 headers may for example be found in
13609 @file{@var{dir}/@var{suffix}/usr/include} instead of
13610 @file{@var{dir}/usr/include}. This option disables the addition of
13611 such a suffix.
13612
13613 @end table
13614
13615 @node Code Gen Options
13616 @section Options for Code Generation Conventions
13617 @cindex code generation conventions
13618 @cindex options, code generation
13619 @cindex run-time options
13620
13621 These machine-independent options control the interface conventions
13622 used in code generation.
13623
13624 Most of them have both positive and negative forms; the negative form
13625 of @option{-ffoo} is @option{-fno-foo}. In the table below, only
13626 one of the forms is listed---the one that is not the default. You
13627 can figure out the other form by either removing @samp{no-} or adding
13628 it.
13629
13630 @table @gcctabopt
13631 @item -fstack-reuse=@var{reuse-level}
13632 @opindex fstack_reuse
13633 This option controls stack space reuse for user declared local/auto variables
13634 and compiler generated temporaries. @var{reuse_level} can be @samp{all},
13635 @samp{named_vars}, or @samp{none}. @samp{all} enables stack reuse for all
13636 local variables and temporaries, @samp{named_vars} enables the reuse only for
13637 user defined local variables with names, and @samp{none} disables stack reuse
13638 completely. The default value is @samp{all}. The option is needed when the
13639 program extends the lifetime of a scoped local variable or a compiler generated
13640 temporary beyond the end point defined by the language. When a lifetime of
13641 a variable ends, and if the variable lives in memory, the optimizing compiler
13642 has the freedom to reuse its stack space with other temporaries or scoped
13643 local variables whose live range does not overlap with it. Legacy code extending
13644 local lifetime is likely to break with the stack reuse optimization.
13645
13646 For example,
13647
13648 @smallexample
13649 int *p;
13650 @{
13651 int local1;
13652
13653 p = &local1;
13654 local1 = 10;
13655 ....
13656 @}
13657 @{
13658 int local2;
13659 local2 = 20;
13660 ...
13661 @}
13662
13663 if (*p == 10) // out of scope use of local1
13664 @{
13665
13666 @}
13667 @end smallexample
13668
13669 Another example:
13670 @smallexample
13671
13672 struct A
13673 @{
13674 A(int k) : i(k), j(k) @{ @}
13675 int i;
13676 int j;
13677 @};
13678
13679 A *ap;
13680
13681 void foo(const A& ar)
13682 @{
13683 ap = &ar;
13684 @}
13685
13686 void bar()
13687 @{
13688 foo(A(10)); // temp object's lifetime ends when foo returns
13689
13690 @{
13691 A a(20);
13692 ....
13693 @}
13694 ap->i+= 10; // ap references out of scope temp whose space
13695 // is reused with a. What is the value of ap->i?
13696 @}
13697
13698 @end smallexample
13699
13700 The lifetime of a compiler generated temporary is well defined by the C++
13701 standard. When a lifetime of a temporary ends, and if the temporary lives
13702 in memory, the optimizing compiler has the freedom to reuse its stack
13703 space with other temporaries or scoped local variables whose live range
13704 does not overlap with it. However some of the legacy code relies on
13705 the behavior of older compilers in which temporaries' stack space is
13706 not reused, the aggressive stack reuse can lead to runtime errors. This
13707 option is used to control the temporary stack reuse optimization.
13708
13709 @item -ftrapv
13710 @opindex ftrapv
13711 This option generates traps for signed overflow on addition, subtraction,
13712 multiplication operations.
13713 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13714 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13715 @option{-fwrapv} being effective. Note that only active options override, so
13716 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13717 results in @option{-ftrapv} being effective.
13718
13719 @item -fwrapv
13720 @opindex fwrapv
13721 This option instructs the compiler to assume that signed arithmetic
13722 overflow of addition, subtraction and multiplication wraps around
13723 using twos-complement representation. This flag enables some optimizations
13724 and disables others.
13725 The options @option{-ftrapv} and @option{-fwrapv} override each other, so using
13726 @option{-ftrapv} @option{-fwrapv} on the command-line results in
13727 @option{-fwrapv} being effective. Note that only active options override, so
13728 using @option{-ftrapv} @option{-fwrapv} @option{-fno-wrapv} on the command-line
13729 results in @option{-ftrapv} being effective.
13730
13731 @item -fwrapv-pointer
13732 @opindex fwrapv-pointer
13733 This option instructs the compiler to assume that pointer arithmetic
13734 overflow on addition and subtraction wraps around using twos-complement
13735 representation. This flag disables some optimizations which assume
13736 pointer overflow is invalid.
13737
13738 @item -fstrict-overflow
13739 @opindex fstrict-overflow
13740 This option implies @option{-fno-wrapv} @option{-fno-wrapv-pointer} and when
13741 negated implies @option{-fwrapv} @option{-fwrapv-pointer}.
13742
13743 @item -fexceptions
13744 @opindex fexceptions
13745 Enable exception handling. Generates extra code needed to propagate
13746 exceptions. For some targets, this implies GCC generates frame
13747 unwind information for all functions, which can produce significant data
13748 size overhead, although it does not affect execution. If you do not
13749 specify this option, GCC enables it by default for languages like
13750 C++ that normally require exception handling, and disables it for
13751 languages like C that do not normally require it. However, you may need
13752 to enable this option when compiling C code that needs to interoperate
13753 properly with exception handlers written in C++. You may also wish to
13754 disable this option if you are compiling older C++ programs that don't
13755 use exception handling.
13756
13757 @item -fnon-call-exceptions
13758 @opindex fnon-call-exceptions
13759 Generate code that allows trapping instructions to throw exceptions.
13760 Note that this requires platform-specific runtime support that does
13761 not exist everywhere. Moreover, it only allows @emph{trapping}
13762 instructions to throw exceptions, i.e.@: memory references or floating-point
13763 instructions. It does not allow exceptions to be thrown from
13764 arbitrary signal handlers such as @code{SIGALRM}.
13765
13766 @item -fdelete-dead-exceptions
13767 @opindex fdelete-dead-exceptions
13768 Consider that instructions that may throw exceptions but don't otherwise
13769 contribute to the execution of the program can be optimized away.
13770 This option is enabled by default for the Ada front end, as permitted by
13771 the Ada language specification.
13772 Optimization passes that cause dead exceptions to be removed are enabled independently at different optimization levels.
13773
13774 @item -funwind-tables
13775 @opindex funwind-tables
13776 Similar to @option{-fexceptions}, except that it just generates any needed
13777 static data, but does not affect the generated code in any other way.
13778 You normally do not need to enable this option; instead, a language processor
13779 that needs this handling enables it on your behalf.
13780
13781 @item -fasynchronous-unwind-tables
13782 @opindex fasynchronous-unwind-tables
13783 Generate unwind table in DWARF format, if supported by target machine. The
13784 table is exact at each instruction boundary, so it can be used for stack
13785 unwinding from asynchronous events (such as debugger or garbage collector).
13786
13787 @item -fno-gnu-unique
13788 @opindex fno-gnu-unique
13789 @opindex fgnu-unique
13790 On systems with recent GNU assembler and C library, the C++ compiler
13791 uses the @code{STB_GNU_UNIQUE} binding to make sure that definitions
13792 of template static data members and static local variables in inline
13793 functions are unique even in the presence of @code{RTLD_LOCAL}; this
13794 is necessary to avoid problems with a library used by two different
13795 @code{RTLD_LOCAL} plugins depending on a definition in one of them and
13796 therefore disagreeing with the other one about the binding of the
13797 symbol. But this causes @code{dlclose} to be ignored for affected
13798 DSOs; if your program relies on reinitialization of a DSO via
13799 @code{dlclose} and @code{dlopen}, you can use
13800 @option{-fno-gnu-unique}.
13801
13802 @item -fpcc-struct-return
13803 @opindex fpcc-struct-return
13804 Return ``short'' @code{struct} and @code{union} values in memory like
13805 longer ones, rather than in registers. This convention is less
13806 efficient, but it has the advantage of allowing intercallability between
13807 GCC-compiled files and files compiled with other compilers, particularly
13808 the Portable C Compiler (pcc).
13809
13810 The precise convention for returning structures in memory depends
13811 on the target configuration macros.
13812
13813 Short structures and unions are those whose size and alignment match
13814 that of some integer type.
13815
13816 @strong{Warning:} code compiled with the @option{-fpcc-struct-return}
13817 switch is not binary compatible with code compiled with the
13818 @option{-freg-struct-return} switch.
13819 Use it to conform to a non-default application binary interface.
13820
13821 @item -freg-struct-return
13822 @opindex freg-struct-return
13823 Return @code{struct} and @code{union} values in registers when possible.
13824 This is more efficient for small structures than
13825 @option{-fpcc-struct-return}.
13826
13827 If you specify neither @option{-fpcc-struct-return} nor
13828 @option{-freg-struct-return}, GCC defaults to whichever convention is
13829 standard for the target. If there is no standard convention, GCC
13830 defaults to @option{-fpcc-struct-return}, except on targets where GCC is
13831 the principal compiler. In those cases, we can choose the standard, and
13832 we chose the more efficient register return alternative.
13833
13834 @strong{Warning:} code compiled with the @option{-freg-struct-return}
13835 switch is not binary compatible with code compiled with the
13836 @option{-fpcc-struct-return} switch.
13837 Use it to conform to a non-default application binary interface.
13838
13839 @item -fshort-enums
13840 @opindex fshort-enums
13841 Allocate to an @code{enum} type only as many bytes as it needs for the
13842 declared range of possible values. Specifically, the @code{enum} type
13843 is equivalent to the smallest integer type that has enough room.
13844
13845 @strong{Warning:} the @option{-fshort-enums} switch causes GCC to generate
13846 code that is not binary compatible with code generated without that switch.
13847 Use it to conform to a non-default application binary interface.
13848
13849 @item -fshort-wchar
13850 @opindex fshort-wchar
13851 Override the underlying type for @code{wchar_t} to be @code{short
13852 unsigned int} instead of the default for the target. This option is
13853 useful for building programs to run under WINE@.
13854
13855 @strong{Warning:} the @option{-fshort-wchar} switch causes GCC to generate
13856 code that is not binary compatible with code generated without that switch.
13857 Use it to conform to a non-default application binary interface.
13858
13859 @item -fno-common
13860 @opindex fno-common
13861 @opindex fcommon
13862 @cindex tentative definitions
13863 In C code, this option controls the placement of global variables
13864 defined without an initializer, known as @dfn{tentative definitions}
13865 in the C standard. Tentative definitions are distinct from declarations
13866 of a variable with the @code{extern} keyword, which do not allocate storage.
13867
13868 Unix C compilers have traditionally allocated storage for
13869 uninitialized global variables in a common block. This allows the
13870 linker to resolve all tentative definitions of the same variable
13871 in different compilation units to the same object, or to a non-tentative
13872 definition.
13873 This is the behavior specified by @option{-fcommon}, and is the default for
13874 GCC on most targets.
13875 On the other hand, this behavior is not required by ISO
13876 C, and on some targets may carry a speed or code size penalty on
13877 variable references.
13878
13879 The @option{-fno-common} option specifies that the compiler should instead
13880 place uninitialized global variables in the BSS section of the object file.
13881 This inhibits the merging of tentative definitions by the linker so
13882 you get a multiple-definition error if the same
13883 variable is defined in more than one compilation unit.
13884 Compiling with @option{-fno-common} is useful on targets for which
13885 it provides better performance, or if you wish to verify that the
13886 program will work on other systems that always treat uninitialized
13887 variable definitions this way.
13888
13889 @item -fno-ident
13890 @opindex fno-ident
13891 @opindex fident
13892 Ignore the @code{#ident} directive.
13893
13894 @item -finhibit-size-directive
13895 @opindex finhibit-size-directive
13896 Don't output a @code{.size} assembler directive, or anything else that
13897 would cause trouble if the function is split in the middle, and the
13898 two halves are placed at locations far apart in memory. This option is
13899 used when compiling @file{crtstuff.c}; you should not need to use it
13900 for anything else.
13901
13902 @item -fverbose-asm
13903 @opindex fverbose-asm
13904 Put extra commentary information in the generated assembly code to
13905 make it more readable. This option is generally only of use to those
13906 who actually need to read the generated assembly code (perhaps while
13907 debugging the compiler itself).
13908
13909 @option{-fno-verbose-asm}, the default, causes the
13910 extra information to be omitted and is useful when comparing two assembler
13911 files.
13912
13913 The added comments include:
13914
13915 @itemize @bullet
13916
13917 @item
13918 information on the compiler version and command-line options,
13919
13920 @item
13921 the source code lines associated with the assembly instructions,
13922 in the form FILENAME:LINENUMBER:CONTENT OF LINE,
13923
13924 @item
13925 hints on which high-level expressions correspond to
13926 the various assembly instruction operands.
13927
13928 @end itemize
13929
13930 For example, given this C source file:
13931
13932 @smallexample
13933 int test (int n)
13934 @{
13935 int i;
13936 int total = 0;
13937
13938 for (i = 0; i < n; i++)
13939 total += i * i;
13940
13941 return total;
13942 @}
13943 @end smallexample
13944
13945 compiling to (x86_64) assembly via @option{-S} and emitting the result
13946 direct to stdout via @option{-o} @option{-}
13947
13948 @smallexample
13949 gcc -S test.c -fverbose-asm -Os -o -
13950 @end smallexample
13951
13952 gives output similar to this:
13953
13954 @smallexample
13955 .file "test.c"
13956 # GNU C11 (GCC) version 7.0.0 20160809 (experimental) (x86_64-pc-linux-gnu)
13957 [...snip...]
13958 # options passed:
13959 [...snip...]
13960
13961 .text
13962 .globl test
13963 .type test, @@function
13964 test:
13965 .LFB0:
13966 .cfi_startproc
13967 # test.c:4: int total = 0;
13968 xorl %eax, %eax # <retval>
13969 # test.c:6: for (i = 0; i < n; i++)
13970 xorl %edx, %edx # i
13971 .L2:
13972 # test.c:6: for (i = 0; i < n; i++)
13973 cmpl %edi, %edx # n, i
13974 jge .L5 #,
13975 # test.c:7: total += i * i;
13976 movl %edx, %ecx # i, tmp92
13977 imull %edx, %ecx # i, tmp92
13978 # test.c:6: for (i = 0; i < n; i++)
13979 incl %edx # i
13980 # test.c:7: total += i * i;
13981 addl %ecx, %eax # tmp92, <retval>
13982 jmp .L2 #
13983 .L5:
13984 # test.c:10: @}
13985 ret
13986 .cfi_endproc
13987 .LFE0:
13988 .size test, .-test
13989 .ident "GCC: (GNU) 7.0.0 20160809 (experimental)"
13990 .section .note.GNU-stack,"",@@progbits
13991 @end smallexample
13992
13993 The comments are intended for humans rather than machines and hence the
13994 precise format of the comments is subject to change.
13995
13996 @item -frecord-gcc-switches
13997 @opindex frecord-gcc-switches
13998 This switch causes the command line used to invoke the
13999 compiler to be recorded into the object file that is being created.
14000 This switch is only implemented on some targets and the exact format
14001 of the recording is target and binary file format dependent, but it
14002 usually takes the form of a section containing ASCII text. This
14003 switch is related to the @option{-fverbose-asm} switch, but that
14004 switch only records information in the assembler output file as
14005 comments, so it never reaches the object file.
14006 See also @option{-grecord-gcc-switches} for another
14007 way of storing compiler options into the object file.
14008
14009 @item -fpic
14010 @opindex fpic
14011 @cindex global offset table
14012 @cindex PIC
14013 Generate position-independent code (PIC) suitable for use in a shared
14014 library, if supported for the target machine. Such code accesses all
14015 constant addresses through a global offset table (GOT)@. The dynamic
14016 loader resolves the GOT entries when the program starts (the dynamic
14017 loader is not part of GCC; it is part of the operating system). If
14018 the GOT size for the linked executable exceeds a machine-specific
14019 maximum size, you get an error message from the linker indicating that
14020 @option{-fpic} does not work; in that case, recompile with @option{-fPIC}
14021 instead. (These maximums are 8k on the SPARC, 28k on AArch64 and 32k
14022 on the m68k and RS/6000. The x86 has no such limit.)
14023
14024 Position-independent code requires special support, and therefore works
14025 only on certain machines. For the x86, GCC supports PIC for System V
14026 but not for the Sun 386i. Code generated for the IBM RS/6000 is always
14027 position-independent.
14028
14029 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14030 are defined to 1.
14031
14032 @item -fPIC
14033 @opindex fPIC
14034 If supported for the target machine, emit position-independent code,
14035 suitable for dynamic linking and avoiding any limit on the size of the
14036 global offset table. This option makes a difference on AArch64, m68k,
14037 PowerPC and SPARC@.
14038
14039 Position-independent code requires special support, and therefore works
14040 only on certain machines.
14041
14042 When this flag is set, the macros @code{__pic__} and @code{__PIC__}
14043 are defined to 2.
14044
14045 @item -fpie
14046 @itemx -fPIE
14047 @opindex fpie
14048 @opindex fPIE
14049 These options are similar to @option{-fpic} and @option{-fPIC}, but the
14050 generated position-independent code can be only linked into executables.
14051 Usually these options are used to compile code that will be linked using
14052 the @option{-pie} GCC option.
14053
14054 @option{-fpie} and @option{-fPIE} both define the macros
14055 @code{__pie__} and @code{__PIE__}. The macros have the value 1
14056 for @option{-fpie} and 2 for @option{-fPIE}.
14057
14058 @item -fno-plt
14059 @opindex fno-plt
14060 @opindex fplt
14061 Do not use the PLT for external function calls in position-independent code.
14062 Instead, load the callee address at call sites from the GOT and branch to it.
14063 This leads to more efficient code by eliminating PLT stubs and exposing
14064 GOT loads to optimizations. On architectures such as 32-bit x86 where
14065 PLT stubs expect the GOT pointer in a specific register, this gives more
14066 register allocation freedom to the compiler.
14067 Lazy binding requires use of the PLT;
14068 with @option{-fno-plt} all external symbols are resolved at load time.
14069
14070 Alternatively, the function attribute @code{noplt} can be used to avoid calls
14071 through the PLT for specific external functions.
14072
14073 In position-dependent code, a few targets also convert calls to
14074 functions that are marked to not use the PLT to use the GOT instead.
14075
14076 @item -fno-jump-tables
14077 @opindex fno-jump-tables
14078 @opindex fjump-tables
14079 Do not use jump tables for switch statements even where it would be
14080 more efficient than other code generation strategies. This option is
14081 of use in conjunction with @option{-fpic} or @option{-fPIC} for
14082 building code that forms part of a dynamic linker and cannot
14083 reference the address of a jump table. On some targets, jump tables
14084 do not require a GOT and this option is not needed.
14085
14086 @item -ffixed-@var{reg}
14087 @opindex ffixed
14088 Treat the register named @var{reg} as a fixed register; generated code
14089 should never refer to it (except perhaps as a stack pointer, frame
14090 pointer or in some other fixed role).
14091
14092 @var{reg} must be the name of a register. The register names accepted
14093 are machine-specific and are defined in the @code{REGISTER_NAMES}
14094 macro in the machine description macro file.
14095
14096 This flag does not have a negative form, because it specifies a
14097 three-way choice.
14098
14099 @item -fcall-used-@var{reg}
14100 @opindex fcall-used
14101 Treat the register named @var{reg} as an allocable register that is
14102 clobbered by function calls. It may be allocated for temporaries or
14103 variables that do not live across a call. Functions compiled this way
14104 do not save and restore the register @var{reg}.
14105
14106 It is an error to use this flag with the frame pointer or stack pointer.
14107 Use of this flag for other registers that have fixed pervasive roles in
14108 the machine's execution model produces disastrous results.
14109
14110 This flag does not have a negative form, because it specifies a
14111 three-way choice.
14112
14113 @item -fcall-saved-@var{reg}
14114 @opindex fcall-saved
14115 Treat the register named @var{reg} as an allocable register saved by
14116 functions. It may be allocated even for temporaries or variables that
14117 live across a call. Functions compiled this way save and restore
14118 the register @var{reg} if they use it.
14119
14120 It is an error to use this flag with the frame pointer or stack pointer.
14121 Use of this flag for other registers that have fixed pervasive roles in
14122 the machine's execution model produces disastrous results.
14123
14124 A different sort of disaster results from the use of this flag for
14125 a register in which function values may be returned.
14126
14127 This flag does not have a negative form, because it specifies a
14128 three-way choice.
14129
14130 @item -fpack-struct[=@var{n}]
14131 @opindex fpack-struct
14132 Without a value specified, pack all structure members together without
14133 holes. When a value is specified (which must be a small power of two), pack
14134 structure members according to this value, representing the maximum
14135 alignment (that is, objects with default alignment requirements larger than
14136 this are output potentially unaligned at the next fitting location.
14137
14138 @strong{Warning:} the @option{-fpack-struct} switch causes GCC to generate
14139 code that is not binary compatible with code generated without that switch.
14140 Additionally, it makes the code suboptimal.
14141 Use it to conform to a non-default application binary interface.
14142
14143 @item -fleading-underscore
14144 @opindex fleading-underscore
14145 This option and its counterpart, @option{-fno-leading-underscore}, forcibly
14146 change the way C symbols are represented in the object file. One use
14147 is to help link with legacy assembly code.
14148
14149 @strong{Warning:} the @option{-fleading-underscore} switch causes GCC to
14150 generate code that is not binary compatible with code generated without that
14151 switch. Use it to conform to a non-default application binary interface.
14152 Not all targets provide complete support for this switch.
14153
14154 @item -ftls-model=@var{model}
14155 @opindex ftls-model
14156 Alter the thread-local storage model to be used (@pxref{Thread-Local}).
14157 The @var{model} argument should be one of @samp{global-dynamic},
14158 @samp{local-dynamic}, @samp{initial-exec} or @samp{local-exec}.
14159 Note that the choice is subject to optimization: the compiler may use
14160 a more efficient model for symbols not visible outside of the translation
14161 unit, or if @option{-fpic} is not given on the command line.
14162
14163 The default without @option{-fpic} is @samp{initial-exec}; with
14164 @option{-fpic} the default is @samp{global-dynamic}.
14165
14166 @item -ftrampolines
14167 @opindex ftrampolines
14168 For targets that normally need trampolines for nested functions, always
14169 generate them instead of using descriptors. Otherwise, for targets that
14170 do not need them, like for example HP-PA or IA-64, do nothing.
14171
14172 A trampoline is a small piece of code that is created at run time on the
14173 stack when the address of a nested function is taken, and is used to call
14174 the nested function indirectly. Therefore, it requires the stack to be
14175 made executable in order for the program to work properly.
14176
14177 @option{-fno-trampolines} is enabled by default on a language by language
14178 basis to let the compiler avoid generating them, if it computes that this
14179 is safe, and replace them with descriptors. Descriptors are made up of data
14180 only, but the generated code must be prepared to deal with them. As of this
14181 writing, @option{-fno-trampolines} is enabled by default only for Ada.
14182
14183 Moreover, code compiled with @option{-ftrampolines} and code compiled with
14184 @option{-fno-trampolines} are not binary compatible if nested functions are
14185 present. This option must therefore be used on a program-wide basis and be
14186 manipulated with extreme care.
14187
14188 @item -fvisibility=@r{[}default@r{|}internal@r{|}hidden@r{|}protected@r{]}
14189 @opindex fvisibility
14190 Set the default ELF image symbol visibility to the specified option---all
14191 symbols are marked with this unless overridden within the code.
14192 Using this feature can very substantially improve linking and
14193 load times of shared object libraries, produce more optimized
14194 code, provide near-perfect API export and prevent symbol clashes.
14195 It is @strong{strongly} recommended that you use this in any shared objects
14196 you distribute.
14197
14198 Despite the nomenclature, @samp{default} always means public; i.e.,
14199 available to be linked against from outside the shared object.
14200 @samp{protected} and @samp{internal} are pretty useless in real-world
14201 usage so the only other commonly used option is @samp{hidden}.
14202 The default if @option{-fvisibility} isn't specified is
14203 @samp{default}, i.e., make every symbol public.
14204
14205 A good explanation of the benefits offered by ensuring ELF
14206 symbols have the correct visibility is given by ``How To Write
14207 Shared Libraries'' by Ulrich Drepper (which can be found at
14208 @w{@uref{https://www.akkadia.org/drepper/}})---however a superior
14209 solution made possible by this option to marking things hidden when
14210 the default is public is to make the default hidden and mark things
14211 public. This is the norm with DLLs on Windows and with @option{-fvisibility=hidden}
14212 and @code{__attribute__ ((visibility("default")))} instead of
14213 @code{__declspec(dllexport)} you get almost identical semantics with
14214 identical syntax. This is a great boon to those working with
14215 cross-platform projects.
14216
14217 For those adding visibility support to existing code, you may find
14218 @code{#pragma GCC visibility} of use. This works by you enclosing
14219 the declarations you wish to set visibility for with (for example)
14220 @code{#pragma GCC visibility push(hidden)} and
14221 @code{#pragma GCC visibility pop}.
14222 Bear in mind that symbol visibility should be viewed @strong{as
14223 part of the API interface contract} and thus all new code should
14224 always specify visibility when it is not the default; i.e., declarations
14225 only for use within the local DSO should @strong{always} be marked explicitly
14226 as hidden as so to avoid PLT indirection overheads---making this
14227 abundantly clear also aids readability and self-documentation of the code.
14228 Note that due to ISO C++ specification requirements, @code{operator new} and
14229 @code{operator delete} must always be of default visibility.
14230
14231 Be aware that headers from outside your project, in particular system
14232 headers and headers from any other library you use, may not be
14233 expecting to be compiled with visibility other than the default. You
14234 may need to explicitly say @code{#pragma GCC visibility push(default)}
14235 before including any such headers.
14236
14237 @code{extern} declarations are not affected by @option{-fvisibility}, so
14238 a lot of code can be recompiled with @option{-fvisibility=hidden} with
14239 no modifications. However, this means that calls to @code{extern}
14240 functions with no explicit visibility use the PLT, so it is more
14241 effective to use @code{__attribute ((visibility))} and/or
14242 @code{#pragma GCC visibility} to tell the compiler which @code{extern}
14243 declarations should be treated as hidden.
14244
14245 Note that @option{-fvisibility} does affect C++ vague linkage
14246 entities. This means that, for instance, an exception class that is
14247 be thrown between DSOs must be explicitly marked with default
14248 visibility so that the @samp{type_info} nodes are unified between
14249 the DSOs.
14250
14251 An overview of these techniques, their benefits and how to use them
14252 is at @uref{http://gcc.gnu.org/@/wiki/@/Visibility}.
14253
14254 @item -fstrict-volatile-bitfields
14255 @opindex fstrict-volatile-bitfields
14256 This option should be used if accesses to volatile bit-fields (or other
14257 structure fields, although the compiler usually honors those types
14258 anyway) should use a single access of the width of the
14259 field's type, aligned to a natural alignment if possible. For
14260 example, targets with memory-mapped peripheral registers might require
14261 all such accesses to be 16 bits wide; with this flag you can
14262 declare all peripheral bit-fields as @code{unsigned short} (assuming short
14263 is 16 bits on these targets) to force GCC to use 16-bit accesses
14264 instead of, perhaps, a more efficient 32-bit access.
14265
14266 If this option is disabled, the compiler uses the most efficient
14267 instruction. In the previous example, that might be a 32-bit load
14268 instruction, even though that accesses bytes that do not contain
14269 any portion of the bit-field, or memory-mapped registers unrelated to
14270 the one being updated.
14271
14272 In some cases, such as when the @code{packed} attribute is applied to a
14273 structure field, it may not be possible to access the field with a single
14274 read or write that is correctly aligned for the target machine. In this
14275 case GCC falls back to generating multiple accesses rather than code that
14276 will fault or truncate the result at run time.
14277
14278 Note: Due to restrictions of the C/C++11 memory model, write accesses are
14279 not allowed to touch non bit-field members. It is therefore recommended
14280 to define all bits of the field's type as bit-field members.
14281
14282 The default value of this option is determined by the application binary
14283 interface for the target processor.
14284
14285 @item -fsync-libcalls
14286 @opindex fsync-libcalls
14287 This option controls whether any out-of-line instance of the @code{__sync}
14288 family of functions may be used to implement the C++11 @code{__atomic}
14289 family of functions.
14290
14291 The default value of this option is enabled, thus the only useful form
14292 of the option is @option{-fno-sync-libcalls}. This option is used in
14293 the implementation of the @file{libatomic} runtime library.
14294
14295 @end table
14296
14297 @node Developer Options
14298 @section GCC Developer Options
14299 @cindex developer options
14300 @cindex debugging GCC
14301 @cindex debug dump options
14302 @cindex dump options
14303 @cindex compilation statistics
14304
14305 This section describes command-line options that are primarily of
14306 interest to GCC developers, including options to support compiler
14307 testing and investigation of compiler bugs and compile-time
14308 performance problems. This includes options that produce debug dumps
14309 at various points in the compilation; that print statistics such as
14310 memory use and execution time; and that print information about GCC's
14311 configuration, such as where it searches for libraries. You should
14312 rarely need to use any of these options for ordinary compilation and
14313 linking tasks.
14314
14315 Many developer options that cause GCC to dump output to a file take an
14316 optional @samp{=@var{filename}} suffix. You can specify @samp{stdout}
14317 or @samp{-} to dump to standard output, and @samp{stderr} for standard
14318 error.
14319
14320 If @samp{=@var{filename}} is omitted, a default dump file name is
14321 constructed by concatenating the base dump file name, a pass number,
14322 phase letter, and pass name. The base dump file name is the name of
14323 output file produced by the compiler if explicitly specified and not
14324 an executable; otherwise it is the source file name.
14325 The pass number is determined by the order passes are registered with
14326 the compiler's pass manager.
14327 This is generally the same as the order of execution, but passes
14328 registered by plugins, target-specific passes, or passes that are
14329 otherwise registered late are numbered higher than the pass named
14330 @samp{final}, even if they are executed earlier. The phase letter is
14331 one of @samp{i} (inter-procedural analysis), @samp{l}
14332 (language-specific), @samp{r} (RTL), or @samp{t} (tree).
14333 The files are created in the directory of the output file.
14334
14335 @table @gcctabopt
14336
14337 @item -d@var{letters}
14338 @itemx -fdump-rtl-@var{pass}
14339 @itemx -fdump-rtl-@var{pass}=@var{filename}
14340 @opindex d
14341 @opindex fdump-rtl-@var{pass}
14342 Says to make debugging dumps during compilation at times specified by
14343 @var{letters}. This is used for debugging the RTL-based passes of the
14344 compiler.
14345
14346 Some @option{-d@var{letters}} switches have different meaning when
14347 @option{-E} is used for preprocessing. @xref{Preprocessor Options},
14348 for information about preprocessor-specific dump options.
14349
14350 Debug dumps can be enabled with a @option{-fdump-rtl} switch or some
14351 @option{-d} option @var{letters}. Here are the possible
14352 letters for use in @var{pass} and @var{letters}, and their meanings:
14353
14354 @table @gcctabopt
14355
14356 @item -fdump-rtl-alignments
14357 @opindex fdump-rtl-alignments
14358 Dump after branch alignments have been computed.
14359
14360 @item -fdump-rtl-asmcons
14361 @opindex fdump-rtl-asmcons
14362 Dump after fixing rtl statements that have unsatisfied in/out constraints.
14363
14364 @item -fdump-rtl-auto_inc_dec
14365 @opindex fdump-rtl-auto_inc_dec
14366 Dump after auto-inc-dec discovery. This pass is only run on
14367 architectures that have auto inc or auto dec instructions.
14368
14369 @item -fdump-rtl-barriers
14370 @opindex fdump-rtl-barriers
14371 Dump after cleaning up the barrier instructions.
14372
14373 @item -fdump-rtl-bbpart
14374 @opindex fdump-rtl-bbpart
14375 Dump after partitioning hot and cold basic blocks.
14376
14377 @item -fdump-rtl-bbro
14378 @opindex fdump-rtl-bbro
14379 Dump after block reordering.
14380
14381 @item -fdump-rtl-btl1
14382 @itemx -fdump-rtl-btl2
14383 @opindex fdump-rtl-btl2
14384 @opindex fdump-rtl-btl2
14385 @option{-fdump-rtl-btl1} and @option{-fdump-rtl-btl2} enable dumping
14386 after the two branch
14387 target load optimization passes.
14388
14389 @item -fdump-rtl-bypass
14390 @opindex fdump-rtl-bypass
14391 Dump after jump bypassing and control flow optimizations.
14392
14393 @item -fdump-rtl-combine
14394 @opindex fdump-rtl-combine
14395 Dump after the RTL instruction combination pass.
14396
14397 @item -fdump-rtl-compgotos
14398 @opindex fdump-rtl-compgotos
14399 Dump after duplicating the computed gotos.
14400
14401 @item -fdump-rtl-ce1
14402 @itemx -fdump-rtl-ce2
14403 @itemx -fdump-rtl-ce3
14404 @opindex fdump-rtl-ce1
14405 @opindex fdump-rtl-ce2
14406 @opindex fdump-rtl-ce3
14407 @option{-fdump-rtl-ce1}, @option{-fdump-rtl-ce2}, and
14408 @option{-fdump-rtl-ce3} enable dumping after the three
14409 if conversion passes.
14410
14411 @item -fdump-rtl-cprop_hardreg
14412 @opindex fdump-rtl-cprop_hardreg
14413 Dump after hard register copy propagation.
14414
14415 @item -fdump-rtl-csa
14416 @opindex fdump-rtl-csa
14417 Dump after combining stack adjustments.
14418
14419 @item -fdump-rtl-cse1
14420 @itemx -fdump-rtl-cse2
14421 @opindex fdump-rtl-cse1
14422 @opindex fdump-rtl-cse2
14423 @option{-fdump-rtl-cse1} and @option{-fdump-rtl-cse2} enable dumping after
14424 the two common subexpression elimination passes.
14425
14426 @item -fdump-rtl-dce
14427 @opindex fdump-rtl-dce
14428 Dump after the standalone dead code elimination passes.
14429
14430 @item -fdump-rtl-dbr
14431 @opindex fdump-rtl-dbr
14432 Dump after delayed branch scheduling.
14433
14434 @item -fdump-rtl-dce1
14435 @itemx -fdump-rtl-dce2
14436 @opindex fdump-rtl-dce1
14437 @opindex fdump-rtl-dce2
14438 @option{-fdump-rtl-dce1} and @option{-fdump-rtl-dce2} enable dumping after
14439 the two dead store elimination passes.
14440
14441 @item -fdump-rtl-eh
14442 @opindex fdump-rtl-eh
14443 Dump after finalization of EH handling code.
14444
14445 @item -fdump-rtl-eh_ranges
14446 @opindex fdump-rtl-eh_ranges
14447 Dump after conversion of EH handling range regions.
14448
14449 @item -fdump-rtl-expand
14450 @opindex fdump-rtl-expand
14451 Dump after RTL generation.
14452
14453 @item -fdump-rtl-fwprop1
14454 @itemx -fdump-rtl-fwprop2
14455 @opindex fdump-rtl-fwprop1
14456 @opindex fdump-rtl-fwprop2
14457 @option{-fdump-rtl-fwprop1} and @option{-fdump-rtl-fwprop2} enable
14458 dumping after the two forward propagation passes.
14459
14460 @item -fdump-rtl-gcse1
14461 @itemx -fdump-rtl-gcse2
14462 @opindex fdump-rtl-gcse1
14463 @opindex fdump-rtl-gcse2
14464 @option{-fdump-rtl-gcse1} and @option{-fdump-rtl-gcse2} enable dumping
14465 after global common subexpression elimination.
14466
14467 @item -fdump-rtl-init-regs
14468 @opindex fdump-rtl-init-regs
14469 Dump after the initialization of the registers.
14470
14471 @item -fdump-rtl-initvals
14472 @opindex fdump-rtl-initvals
14473 Dump after the computation of the initial value sets.
14474
14475 @item -fdump-rtl-into_cfglayout
14476 @opindex fdump-rtl-into_cfglayout
14477 Dump after converting to cfglayout mode.
14478
14479 @item -fdump-rtl-ira
14480 @opindex fdump-rtl-ira
14481 Dump after iterated register allocation.
14482
14483 @item -fdump-rtl-jump
14484 @opindex fdump-rtl-jump
14485 Dump after the second jump optimization.
14486
14487 @item -fdump-rtl-loop2
14488 @opindex fdump-rtl-loop2
14489 @option{-fdump-rtl-loop2} enables dumping after the rtl
14490 loop optimization passes.
14491
14492 @item -fdump-rtl-mach
14493 @opindex fdump-rtl-mach
14494 Dump after performing the machine dependent reorganization pass, if that
14495 pass exists.
14496
14497 @item -fdump-rtl-mode_sw
14498 @opindex fdump-rtl-mode_sw
14499 Dump after removing redundant mode switches.
14500
14501 @item -fdump-rtl-rnreg
14502 @opindex fdump-rtl-rnreg
14503 Dump after register renumbering.
14504
14505 @item -fdump-rtl-outof_cfglayout
14506 @opindex fdump-rtl-outof_cfglayout
14507 Dump after converting from cfglayout mode.
14508
14509 @item -fdump-rtl-peephole2
14510 @opindex fdump-rtl-peephole2
14511 Dump after the peephole pass.
14512
14513 @item -fdump-rtl-postreload
14514 @opindex fdump-rtl-postreload
14515 Dump after post-reload optimizations.
14516
14517 @item -fdump-rtl-pro_and_epilogue
14518 @opindex fdump-rtl-pro_and_epilogue
14519 Dump after generating the function prologues and epilogues.
14520
14521 @item -fdump-rtl-sched1
14522 @itemx -fdump-rtl-sched2
14523 @opindex fdump-rtl-sched1
14524 @opindex fdump-rtl-sched2
14525 @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2} enable dumping
14526 after the basic block scheduling passes.
14527
14528 @item -fdump-rtl-ree
14529 @opindex fdump-rtl-ree
14530 Dump after sign/zero extension elimination.
14531
14532 @item -fdump-rtl-seqabstr
14533 @opindex fdump-rtl-seqabstr
14534 Dump after common sequence discovery.
14535
14536 @item -fdump-rtl-shorten
14537 @opindex fdump-rtl-shorten
14538 Dump after shortening branches.
14539
14540 @item -fdump-rtl-sibling
14541 @opindex fdump-rtl-sibling
14542 Dump after sibling call optimizations.
14543
14544 @item -fdump-rtl-split1
14545 @itemx -fdump-rtl-split2
14546 @itemx -fdump-rtl-split3
14547 @itemx -fdump-rtl-split4
14548 @itemx -fdump-rtl-split5
14549 @opindex fdump-rtl-split1
14550 @opindex fdump-rtl-split2
14551 @opindex fdump-rtl-split3
14552 @opindex fdump-rtl-split4
14553 @opindex fdump-rtl-split5
14554 These options enable dumping after five rounds of
14555 instruction splitting.
14556
14557 @item -fdump-rtl-sms
14558 @opindex fdump-rtl-sms
14559 Dump after modulo scheduling. This pass is only run on some
14560 architectures.
14561
14562 @item -fdump-rtl-stack
14563 @opindex fdump-rtl-stack
14564 Dump after conversion from GCC's ``flat register file'' registers to the
14565 x87's stack-like registers. This pass is only run on x86 variants.
14566
14567 @item -fdump-rtl-subreg1
14568 @itemx -fdump-rtl-subreg2
14569 @opindex fdump-rtl-subreg1
14570 @opindex fdump-rtl-subreg2
14571 @option{-fdump-rtl-subreg1} and @option{-fdump-rtl-subreg2} enable dumping after
14572 the two subreg expansion passes.
14573
14574 @item -fdump-rtl-unshare
14575 @opindex fdump-rtl-unshare
14576 Dump after all rtl has been unshared.
14577
14578 @item -fdump-rtl-vartrack
14579 @opindex fdump-rtl-vartrack
14580 Dump after variable tracking.
14581
14582 @item -fdump-rtl-vregs
14583 @opindex fdump-rtl-vregs
14584 Dump after converting virtual registers to hard registers.
14585
14586 @item -fdump-rtl-web
14587 @opindex fdump-rtl-web
14588 Dump after live range splitting.
14589
14590 @item -fdump-rtl-regclass
14591 @itemx -fdump-rtl-subregs_of_mode_init
14592 @itemx -fdump-rtl-subregs_of_mode_finish
14593 @itemx -fdump-rtl-dfinit
14594 @itemx -fdump-rtl-dfinish
14595 @opindex fdump-rtl-regclass
14596 @opindex fdump-rtl-subregs_of_mode_init
14597 @opindex fdump-rtl-subregs_of_mode_finish
14598 @opindex fdump-rtl-dfinit
14599 @opindex fdump-rtl-dfinish
14600 These dumps are defined but always produce empty files.
14601
14602 @item -da
14603 @itemx -fdump-rtl-all
14604 @opindex da
14605 @opindex fdump-rtl-all
14606 Produce all the dumps listed above.
14607
14608 @item -dA
14609 @opindex dA
14610 Annotate the assembler output with miscellaneous debugging information.
14611
14612 @item -dD
14613 @opindex dD
14614 Dump all macro definitions, at the end of preprocessing, in addition to
14615 normal output.
14616
14617 @item -dH
14618 @opindex dH
14619 Produce a core dump whenever an error occurs.
14620
14621 @item -dp
14622 @opindex dp
14623 Annotate the assembler output with a comment indicating which
14624 pattern and alternative is used. The length and cost of each instruction are
14625 also printed.
14626
14627 @item -dP
14628 @opindex dP
14629 Dump the RTL in the assembler output as a comment before each instruction.
14630 Also turns on @option{-dp} annotation.
14631
14632 @item -dx
14633 @opindex dx
14634 Just generate RTL for a function instead of compiling it. Usually used
14635 with @option{-fdump-rtl-expand}.
14636 @end table
14637
14638 @item -fdump-debug
14639 @opindex fdump-debug
14640 Dump debugging information generated during the debug
14641 generation phase.
14642
14643 @item -fdump-earlydebug
14644 @opindex fdump-earlydebug
14645 Dump debugging information generated during the early debug
14646 generation phase.
14647
14648 @item -fdump-noaddr
14649 @opindex fdump-noaddr
14650 When doing debugging dumps, suppress address output. This makes it more
14651 feasible to use diff on debugging dumps for compiler invocations with
14652 different compiler binaries and/or different
14653 text / bss / data / heap / stack / dso start locations.
14654
14655 @item -freport-bug
14656 @opindex freport-bug
14657 Collect and dump debug information into a temporary file if an
14658 internal compiler error (ICE) occurs.
14659
14660 @item -fdump-unnumbered
14661 @opindex fdump-unnumbered
14662 When doing debugging dumps, suppress instruction numbers and address output.
14663 This makes it more feasible to use diff on debugging dumps for compiler
14664 invocations with different options, in particular with and without
14665 @option{-g}.
14666
14667 @item -fdump-unnumbered-links
14668 @opindex fdump-unnumbered-links
14669 When doing debugging dumps (see @option{-d} option above), suppress
14670 instruction numbers for the links to the previous and next instructions
14671 in a sequence.
14672
14673 @item -fdump-ipa-@var{switch}
14674 @itemx -fdump-ipa-@var{switch}-@var{options}
14675 @opindex fdump-ipa
14676 Control the dumping at various stages of inter-procedural analysis
14677 language tree to a file. The file name is generated by appending a
14678 switch specific suffix to the source file name, and the file is created
14679 in the same directory as the output file. The following dumps are
14680 possible:
14681
14682 @table @samp
14683 @item all
14684 Enables all inter-procedural analysis dumps.
14685
14686 @item cgraph
14687 Dumps information about call-graph optimization, unused function removal,
14688 and inlining decisions.
14689
14690 @item inline
14691 Dump after function inlining.
14692
14693 @end table
14694
14695 Additionally, the options @option{-optimized}, @option{-missed},
14696 @option{-note}, and @option{-all} can be provided, with the same meaning
14697 as for @option{-fopt-info}, defaulting to @option{-optimized}.
14698
14699 For example, @option{-fdump-ipa-inline-optimized-missed} will emit
14700 information on callsites that were inlined, along with callsites
14701 that were not inlined.
14702
14703 By default, the dump will contain messages about successful
14704 optimizations (equivalent to @option{-optimized}) together with
14705 low-level details about the analysis.
14706
14707 @item -fdump-lang-all
14708 @itemx -fdump-lang-@var{switch}
14709 @itemx -fdump-lang-@var{switch}-@var{options}
14710 @itemx -fdump-lang-@var{switch}-@var{options}=@var{filename}
14711 @opindex fdump-lang-all
14712 @opindex fdump-lang
14713 Control the dumping of language-specific information. The @var{options}
14714 and @var{filename} portions behave as described in the
14715 @option{-fdump-tree} option. The following @var{switch} values are
14716 accepted:
14717
14718 @table @samp
14719 @item all
14720
14721 Enable all language-specific dumps.
14722
14723 @item class
14724 Dump class hierarchy information. Virtual table information is emitted
14725 unless '@option{slim}' is specified. This option is applicable to C++ only.
14726
14727 @item raw
14728 Dump the raw internal tree data. This option is applicable to C++ only.
14729
14730 @end table
14731
14732 @item -fdump-passes
14733 @opindex fdump-passes
14734 Print on @file{stderr} the list of optimization passes that are turned
14735 on and off by the current command-line options.
14736
14737 @item -fdump-statistics-@var{option}
14738 @opindex fdump-statistics
14739 Enable and control dumping of pass statistics in a separate file. The
14740 file name is generated by appending a suffix ending in
14741 @samp{.statistics} to the source file name, and the file is created in
14742 the same directory as the output file. If the @samp{-@var{option}}
14743 form is used, @samp{-stats} causes counters to be summed over the
14744 whole compilation unit while @samp{-details} dumps every event as
14745 the passes generate them. The default with no option is to sum
14746 counters for each function compiled.
14747
14748 @item -fdump-tree-all
14749 @itemx -fdump-tree-@var{switch}
14750 @itemx -fdump-tree-@var{switch}-@var{options}
14751 @itemx -fdump-tree-@var{switch}-@var{options}=@var{filename}
14752 @opindex fdump-tree-all
14753 @opindex fdump-tree
14754 Control the dumping at various stages of processing the intermediate
14755 language tree to a file. If the @samp{-@var{options}}
14756 form is used, @var{options} is a list of @samp{-} separated options
14757 which control the details of the dump. Not all options are applicable
14758 to all dumps; those that are not meaningful are ignored. The
14759 following options are available
14760
14761 @table @samp
14762 @item address
14763 Print the address of each node. Usually this is not meaningful as it
14764 changes according to the environment and source file. Its primary use
14765 is for tying up a dump file with a debug environment.
14766 @item asmname
14767 If @code{DECL_ASSEMBLER_NAME} has been set for a given decl, use that
14768 in the dump instead of @code{DECL_NAME}. Its primary use is ease of
14769 use working backward from mangled names in the assembly file.
14770 @item slim
14771 When dumping front-end intermediate representations, inhibit dumping
14772 of members of a scope or body of a function merely because that scope
14773 has been reached. Only dump such items when they are directly reachable
14774 by some other path.
14775
14776 When dumping pretty-printed trees, this option inhibits dumping the
14777 bodies of control structures.
14778
14779 When dumping RTL, print the RTL in slim (condensed) form instead of
14780 the default LISP-like representation.
14781 @item raw
14782 Print a raw representation of the tree. By default, trees are
14783 pretty-printed into a C-like representation.
14784 @item details
14785 Enable more detailed dumps (not honored by every dump option). Also
14786 include information from the optimization passes.
14787 @item stats
14788 Enable dumping various statistics about the pass (not honored by every dump
14789 option).
14790 @item blocks
14791 Enable showing basic block boundaries (disabled in raw dumps).
14792 @item graph
14793 For each of the other indicated dump files (@option{-fdump-rtl-@var{pass}}),
14794 dump a representation of the control flow graph suitable for viewing with
14795 GraphViz to @file{@var{file}.@var{passid}.@var{pass}.dot}. Each function in
14796 the file is pretty-printed as a subgraph, so that GraphViz can render them
14797 all in a single plot.
14798
14799 This option currently only works for RTL dumps, and the RTL is always
14800 dumped in slim form.
14801 @item vops
14802 Enable showing virtual operands for every statement.
14803 @item lineno
14804 Enable showing line numbers for statements.
14805 @item uid
14806 Enable showing the unique ID (@code{DECL_UID}) for each variable.
14807 @item verbose
14808 Enable showing the tree dump for each statement.
14809 @item eh
14810 Enable showing the EH region number holding each statement.
14811 @item scev
14812 Enable showing scalar evolution analysis details.
14813 @item optimized
14814 Enable showing optimization information (only available in certain
14815 passes).
14816 @item missed
14817 Enable showing missed optimization information (only available in certain
14818 passes).
14819 @item note
14820 Enable other detailed optimization information (only available in
14821 certain passes).
14822 @item all
14823 Turn on all options, except @option{raw}, @option{slim}, @option{verbose}
14824 and @option{lineno}.
14825 @item optall
14826 Turn on all optimization options, i.e., @option{optimized},
14827 @option{missed}, and @option{note}.
14828 @end table
14829
14830 To determine what tree dumps are available or find the dump for a pass
14831 of interest follow the steps below.
14832
14833 @enumerate
14834 @item
14835 Invoke GCC with @option{-fdump-passes} and in the @file{stderr} output
14836 look for a code that corresponds to the pass you are interested in.
14837 For example, the codes @code{tree-evrp}, @code{tree-vrp1}, and
14838 @code{tree-vrp2} correspond to the three Value Range Propagation passes.
14839 The number at the end distinguishes distinct invocations of the same pass.
14840 @item
14841 To enable the creation of the dump file, append the pass code to
14842 the @option{-fdump-} option prefix and invoke GCC with it. For example,
14843 to enable the dump from the Early Value Range Propagation pass, invoke
14844 GCC with the @option{-fdump-tree-evrp} option. Optionally, you may
14845 specify the name of the dump file. If you don't specify one, GCC
14846 creates as described below.
14847 @item
14848 Find the pass dump in a file whose name is composed of three components
14849 separated by a period: the name of the source file GCC was invoked to
14850 compile, a numeric suffix indicating the pass number followed by the
14851 letter @samp{t} for tree passes (and the letter @samp{r} for RTL passes),
14852 and finally the pass code. For example, the Early VRP pass dump might
14853 be in a file named @file{myfile.c.038t.evrp} in the current working
14854 directory. Note that the numeric codes are not stable and may change
14855 from one version of GCC to another.
14856 @end enumerate
14857
14858 @item -fopt-info
14859 @itemx -fopt-info-@var{options}
14860 @itemx -fopt-info-@var{options}=@var{filename}
14861 @opindex fopt-info
14862 Controls optimization dumps from various optimization passes. If the
14863 @samp{-@var{options}} form is used, @var{options} is a list of
14864 @samp{-} separated option keywords to select the dump details and
14865 optimizations.
14866
14867 The @var{options} can be divided into three groups:
14868 @enumerate
14869 @item
14870 options describing what kinds of messages should be emitted,
14871 @item
14872 options describing the verbosity of the dump, and
14873 @item
14874 options describing which optimizations should be included.
14875 @end enumerate
14876 The options from each group can be freely mixed as they are
14877 non-overlapping. However, in case of any conflicts,
14878 the later options override the earlier options on the command
14879 line.
14880
14881 The following options control which kinds of messages should be emitted:
14882
14883 @table @samp
14884 @item optimized
14885 Print information when an optimization is successfully applied. It is
14886 up to a pass to decide which information is relevant. For example, the
14887 vectorizer passes print the source location of loops which are
14888 successfully vectorized.
14889 @item missed
14890 Print information about missed optimizations. Individual passes
14891 control which information to include in the output.
14892 @item note
14893 Print verbose information about optimizations, such as certain
14894 transformations, more detailed messages about decisions etc.
14895 @item all
14896 Print detailed optimization information. This includes
14897 @samp{optimized}, @samp{missed}, and @samp{note}.
14898 @end table
14899
14900 The following option controls the dump verbosity:
14901
14902 @table @samp
14903 @item internals
14904 By default, only ``high-level'' messages are emitted. This option enables
14905 additional, more detailed, messages, which are likely to only be of interest
14906 to GCC developers.
14907 @end table
14908
14909 One or more of the following option keywords can be used to describe a
14910 group of optimizations:
14911
14912 @table @samp
14913 @item ipa
14914 Enable dumps from all interprocedural optimizations.
14915 @item loop
14916 Enable dumps from all loop optimizations.
14917 @item inline
14918 Enable dumps from all inlining optimizations.
14919 @item omp
14920 Enable dumps from all OMP (Offloading and Multi Processing) optimizations.
14921 @item vec
14922 Enable dumps from all vectorization optimizations.
14923 @item optall
14924 Enable dumps from all optimizations. This is a superset of
14925 the optimization groups listed above.
14926 @end table
14927
14928 If @var{options} is
14929 omitted, it defaults to @samp{optimized-optall}, which means to dump messages
14930 about successful optimizations from all the passes, omitting messages
14931 that are treated as ``internals''.
14932
14933 If the @var{filename} is provided, then the dumps from all the
14934 applicable optimizations are concatenated into the @var{filename}.
14935 Otherwise the dump is output onto @file{stderr}. Though multiple
14936 @option{-fopt-info} options are accepted, only one of them can include
14937 a @var{filename}. If other filenames are provided then all but the
14938 first such option are ignored.
14939
14940 Note that the output @var{filename} is overwritten
14941 in case of multiple translation units. If a combined output from
14942 multiple translation units is desired, @file{stderr} should be used
14943 instead.
14944
14945 In the following example, the optimization info is output to
14946 @file{stderr}:
14947
14948 @smallexample
14949 gcc -O3 -fopt-info
14950 @end smallexample
14951
14952 This example:
14953 @smallexample
14954 gcc -O3 -fopt-info-missed=missed.all
14955 @end smallexample
14956
14957 @noindent
14958 outputs missed optimization report from all the passes into
14959 @file{missed.all}, and this one:
14960
14961 @smallexample
14962 gcc -O2 -ftree-vectorize -fopt-info-vec-missed
14963 @end smallexample
14964
14965 @noindent
14966 prints information about missed optimization opportunities from
14967 vectorization passes on @file{stderr}.
14968 Note that @option{-fopt-info-vec-missed} is equivalent to
14969 @option{-fopt-info-missed-vec}. The order of the optimization group
14970 names and message types listed after @option{-fopt-info} does not matter.
14971
14972 As another example,
14973 @smallexample
14974 gcc -O3 -fopt-info-inline-optimized-missed=inline.txt
14975 @end smallexample
14976
14977 @noindent
14978 outputs information about missed optimizations as well as
14979 optimized locations from all the inlining passes into
14980 @file{inline.txt}.
14981
14982 Finally, consider:
14983
14984 @smallexample
14985 gcc -fopt-info-vec-missed=vec.miss -fopt-info-loop-optimized=loop.opt
14986 @end smallexample
14987
14988 @noindent
14989 Here the two output filenames @file{vec.miss} and @file{loop.opt} are
14990 in conflict since only one output file is allowed. In this case, only
14991 the first option takes effect and the subsequent options are
14992 ignored. Thus only @file{vec.miss} is produced which contains
14993 dumps from the vectorizer about missed opportunities.
14994
14995 @item -fsave-optimization-record
14996 @opindex fsave-optimization-record
14997 Write a SRCFILE.opt-record.json.gz file detailing what optimizations
14998 were performed, for those optimizations that support @option{-fopt-info}.
14999
15000 This option is experimental and the format of the data within the
15001 compressed JSON file is subject to change.
15002
15003 It is roughly equivalent to a machine-readable version of
15004 @option{-fopt-info-all}, as a collection of messages with source file,
15005 line number and column number, with the following additional data for
15006 each message:
15007
15008 @itemize @bullet
15009
15010 @item
15011 the execution count of the code being optimized, along with metadata about
15012 whether this was from actual profile data, or just an estimate, allowing
15013 consumers to prioritize messages by code hotness,
15014
15015 @item
15016 the function name of the code being optimized, where applicable,
15017
15018 @item
15019 the ``inlining chain'' for the code being optimized, so that when
15020 a function is inlined into several different places (which might
15021 themselves be inlined), the reader can distinguish between the copies,
15022
15023 @item
15024 objects identifying those parts of the message that refer to expressions,
15025 statements or symbol-table nodes, which of these categories they are, and,
15026 when available, their source code location,
15027
15028 @item
15029 the GCC pass that emitted the message, and
15030
15031 @item
15032 the location in GCC's own code from which the message was emitted
15033
15034 @end itemize
15035
15036 Additionally, some messages are logically nested within other
15037 messages, reflecting implementation details of the optimization
15038 passes.
15039
15040 @item -fsched-verbose=@var{n}
15041 @opindex fsched-verbose
15042 On targets that use instruction scheduling, this option controls the
15043 amount of debugging output the scheduler prints to the dump files.
15044
15045 For @var{n} greater than zero, @option{-fsched-verbose} outputs the
15046 same information as @option{-fdump-rtl-sched1} and @option{-fdump-rtl-sched2}.
15047 For @var{n} greater than one, it also output basic block probabilities,
15048 detailed ready list information and unit/insn info. For @var{n} greater
15049 than two, it includes RTL at abort point, control-flow and regions info.
15050 And for @var{n} over four, @option{-fsched-verbose} also includes
15051 dependence info.
15052
15053
15054
15055 @item -fenable-@var{kind}-@var{pass}
15056 @itemx -fdisable-@var{kind}-@var{pass}=@var{range-list}
15057 @opindex fdisable-
15058 @opindex fenable-
15059
15060 This is a set of options that are used to explicitly disable/enable
15061 optimization passes. These options are intended for use for debugging GCC.
15062 Compiler users should use regular options for enabling/disabling
15063 passes instead.
15064
15065 @table @gcctabopt
15066
15067 @item -fdisable-ipa-@var{pass}
15068 Disable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15069 statically invoked in the compiler multiple times, the pass name should be
15070 appended with a sequential number starting from 1.
15071
15072 @item -fdisable-rtl-@var{pass}
15073 @itemx -fdisable-rtl-@var{pass}=@var{range-list}
15074 Disable RTL pass @var{pass}. @var{pass} is the pass name. If the same pass is
15075 statically invoked in the compiler multiple times, the pass name should be
15076 appended with a sequential number starting from 1. @var{range-list} is a
15077 comma-separated list of function ranges or assembler names. Each range is a number
15078 pair separated by a colon. The range is inclusive in both ends. If the range
15079 is trivial, the number pair can be simplified as a single number. If the
15080 function's call graph node's @var{uid} falls within one of the specified ranges,
15081 the @var{pass} is disabled for that function. The @var{uid} is shown in the
15082 function header of a dump file, and the pass names can be dumped by using
15083 option @option{-fdump-passes}.
15084
15085 @item -fdisable-tree-@var{pass}
15086 @itemx -fdisable-tree-@var{pass}=@var{range-list}
15087 Disable tree pass @var{pass}. See @option{-fdisable-rtl} for the description of
15088 option arguments.
15089
15090 @item -fenable-ipa-@var{pass}
15091 Enable IPA pass @var{pass}. @var{pass} is the pass name. If the same pass is
15092 statically invoked in the compiler multiple times, the pass name should be
15093 appended with a sequential number starting from 1.
15094
15095 @item -fenable-rtl-@var{pass}
15096 @itemx -fenable-rtl-@var{pass}=@var{range-list}
15097 Enable RTL pass @var{pass}. See @option{-fdisable-rtl} for option argument
15098 description and examples.
15099
15100 @item -fenable-tree-@var{pass}
15101 @itemx -fenable-tree-@var{pass}=@var{range-list}
15102 Enable tree pass @var{pass}. See @option{-fdisable-rtl} for the description
15103 of option arguments.
15104
15105 @end table
15106
15107 Here are some examples showing uses of these options.
15108
15109 @smallexample
15110
15111 # disable ccp1 for all functions
15112 -fdisable-tree-ccp1
15113 # disable complete unroll for function whose cgraph node uid is 1
15114 -fenable-tree-cunroll=1
15115 # disable gcse2 for functions at the following ranges [1,1],
15116 # [300,400], and [400,1000]
15117 # disable gcse2 for functions foo and foo2
15118 -fdisable-rtl-gcse2=foo,foo2
15119 # disable early inlining
15120 -fdisable-tree-einline
15121 # disable ipa inlining
15122 -fdisable-ipa-inline
15123 # enable tree full unroll
15124 -fenable-tree-unroll
15125
15126 @end smallexample
15127
15128 @item -fchecking
15129 @itemx -fchecking=@var{n}
15130 @opindex fchecking
15131 @opindex fno-checking
15132 Enable internal consistency checking. The default depends on
15133 the compiler configuration. @option{-fchecking=2} enables further
15134 internal consistency checking that might affect code generation.
15135
15136 @item -frandom-seed=@var{string}
15137 @opindex frandom-seed
15138 This option provides a seed that GCC uses in place of
15139 random numbers in generating certain symbol names
15140 that have to be different in every compiled file. It is also used to
15141 place unique stamps in coverage data files and the object files that
15142 produce them. You can use the @option{-frandom-seed} option to produce
15143 reproducibly identical object files.
15144
15145 The @var{string} can either be a number (decimal, octal or hex) or an
15146 arbitrary string (in which case it's converted to a number by
15147 computing CRC32).
15148
15149 The @var{string} should be different for every file you compile.
15150
15151 @item -save-temps
15152 @itemx -save-temps=cwd
15153 @opindex save-temps
15154 Store the usual ``temporary'' intermediate files permanently; place them
15155 in the current directory and name them based on the source file. Thus,
15156 compiling @file{foo.c} with @option{-c -save-temps} produces files
15157 @file{foo.i} and @file{foo.s}, as well as @file{foo.o}. This creates a
15158 preprocessed @file{foo.i} output file even though the compiler now
15159 normally uses an integrated preprocessor.
15160
15161 When used in combination with the @option{-x} command-line option,
15162 @option{-save-temps} is sensible enough to avoid over writing an
15163 input source file with the same extension as an intermediate file.
15164 The corresponding intermediate file may be obtained by renaming the
15165 source file before using @option{-save-temps}.
15166
15167 If you invoke GCC in parallel, compiling several different source
15168 files that share a common base name in different subdirectories or the
15169 same source file compiled for multiple output destinations, it is
15170 likely that the different parallel compilers will interfere with each
15171 other, and overwrite the temporary files. For instance:
15172
15173 @smallexample
15174 gcc -save-temps -o outdir1/foo.o indir1/foo.c&
15175 gcc -save-temps -o outdir2/foo.o indir2/foo.c&
15176 @end smallexample
15177
15178 may result in @file{foo.i} and @file{foo.o} being written to
15179 simultaneously by both compilers.
15180
15181 @item -save-temps=obj
15182 @opindex save-temps=obj
15183 Store the usual ``temporary'' intermediate files permanently. If the
15184 @option{-o} option is used, the temporary files are based on the
15185 object file. If the @option{-o} option is not used, the
15186 @option{-save-temps=obj} switch behaves like @option{-save-temps}.
15187
15188 For example:
15189
15190 @smallexample
15191 gcc -save-temps=obj -c foo.c
15192 gcc -save-temps=obj -c bar.c -o dir/xbar.o
15193 gcc -save-temps=obj foobar.c -o dir2/yfoobar
15194 @end smallexample
15195
15196 @noindent
15197 creates @file{foo.i}, @file{foo.s}, @file{dir/xbar.i},
15198 @file{dir/xbar.s}, @file{dir2/yfoobar.i}, @file{dir2/yfoobar.s}, and
15199 @file{dir2/yfoobar.o}.
15200
15201 @item -time@r{[}=@var{file}@r{]}
15202 @opindex time
15203 Report the CPU time taken by each subprocess in the compilation
15204 sequence. For C source files, this is the compiler proper and assembler
15205 (plus the linker if linking is done).
15206
15207 Without the specification of an output file, the output looks like this:
15208
15209 @smallexample
15210 # cc1 0.12 0.01
15211 # as 0.00 0.01
15212 @end smallexample
15213
15214 The first number on each line is the ``user time'', that is time spent
15215 executing the program itself. The second number is ``system time'',
15216 time spent executing operating system routines on behalf of the program.
15217 Both numbers are in seconds.
15218
15219 With the specification of an output file, the output is appended to the
15220 named file, and it looks like this:
15221
15222 @smallexample
15223 0.12 0.01 cc1 @var{options}
15224 0.00 0.01 as @var{options}
15225 @end smallexample
15226
15227 The ``user time'' and the ``system time'' are moved before the program
15228 name, and the options passed to the program are displayed, so that one
15229 can later tell what file was being compiled, and with which options.
15230
15231 @item -fdump-final-insns@r{[}=@var{file}@r{]}
15232 @opindex fdump-final-insns
15233 Dump the final internal representation (RTL) to @var{file}. If the
15234 optional argument is omitted (or if @var{file} is @code{.}), the name
15235 of the dump file is determined by appending @code{.gkd} to the
15236 compilation output file name.
15237
15238 @item -fcompare-debug@r{[}=@var{opts}@r{]}
15239 @opindex fcompare-debug
15240 @opindex fno-compare-debug
15241 If no error occurs during compilation, run the compiler a second time,
15242 adding @var{opts} and @option{-fcompare-debug-second} to the arguments
15243 passed to the second compilation. Dump the final internal
15244 representation in both compilations, and print an error if they differ.
15245
15246 If the equal sign is omitted, the default @option{-gtoggle} is used.
15247
15248 The environment variable @env{GCC_COMPARE_DEBUG}, if defined, non-empty
15249 and nonzero, implicitly enables @option{-fcompare-debug}. If
15250 @env{GCC_COMPARE_DEBUG} is defined to a string starting with a dash,
15251 then it is used for @var{opts}, otherwise the default @option{-gtoggle}
15252 is used.
15253
15254 @option{-fcompare-debug=}, with the equal sign but without @var{opts},
15255 is equivalent to @option{-fno-compare-debug}, which disables the dumping
15256 of the final representation and the second compilation, preventing even
15257 @env{GCC_COMPARE_DEBUG} from taking effect.
15258
15259 To verify full coverage during @option{-fcompare-debug} testing, set
15260 @env{GCC_COMPARE_DEBUG} to say @option{-fcompare-debug-not-overridden},
15261 which GCC rejects as an invalid option in any actual compilation
15262 (rather than preprocessing, assembly or linking). To get just a
15263 warning, setting @env{GCC_COMPARE_DEBUG} to @samp{-w%n-fcompare-debug
15264 not overridden} will do.
15265
15266 @item -fcompare-debug-second
15267 @opindex fcompare-debug-second
15268 This option is implicitly passed to the compiler for the second
15269 compilation requested by @option{-fcompare-debug}, along with options to
15270 silence warnings, and omitting other options that would cause the compiler
15271 to produce output to files or to standard output as a side effect. Dump
15272 files and preserved temporary files are renamed so as to contain the
15273 @code{.gk} additional extension during the second compilation, to avoid
15274 overwriting those generated by the first.
15275
15276 When this option is passed to the compiler driver, it causes the
15277 @emph{first} compilation to be skipped, which makes it useful for little
15278 other than debugging the compiler proper.
15279
15280 @item -gtoggle
15281 @opindex gtoggle
15282 Turn off generation of debug info, if leaving out this option
15283 generates it, or turn it on at level 2 otherwise. The position of this
15284 argument in the command line does not matter; it takes effect after all
15285 other options are processed, and it does so only once, no matter how
15286 many times it is given. This is mainly intended to be used with
15287 @option{-fcompare-debug}.
15288
15289 @item -fvar-tracking-assignments-toggle
15290 @opindex fvar-tracking-assignments-toggle
15291 @opindex fno-var-tracking-assignments-toggle
15292 Toggle @option{-fvar-tracking-assignments}, in the same way that
15293 @option{-gtoggle} toggles @option{-g}.
15294
15295 @item -Q
15296 @opindex Q
15297 Makes the compiler print out each function name as it is compiled, and
15298 print some statistics about each pass when it finishes.
15299
15300 @item -ftime-report
15301 @opindex ftime-report
15302 Makes the compiler print some statistics about the time consumed by each
15303 pass when it finishes.
15304
15305 @item -ftime-report-details
15306 @opindex ftime-report-details
15307 Record the time consumed by infrastructure parts separately for each pass.
15308
15309 @item -fira-verbose=@var{n}
15310 @opindex fira-verbose
15311 Control the verbosity of the dump file for the integrated register allocator.
15312 The default value is 5. If the value @var{n} is greater or equal to 10,
15313 the dump output is sent to stderr using the same format as @var{n} minus 10.
15314
15315 @item -flto-report
15316 @opindex flto-report
15317 Prints a report with internal details on the workings of the link-time
15318 optimizer. The contents of this report vary from version to version.
15319 It is meant to be useful to GCC developers when processing object
15320 files in LTO mode (via @option{-flto}).
15321
15322 Disabled by default.
15323
15324 @item -flto-report-wpa
15325 @opindex flto-report-wpa
15326 Like @option{-flto-report}, but only print for the WPA phase of Link
15327 Time Optimization.
15328
15329 @item -fmem-report
15330 @opindex fmem-report
15331 Makes the compiler print some statistics about permanent memory
15332 allocation when it finishes.
15333
15334 @item -fmem-report-wpa
15335 @opindex fmem-report-wpa
15336 Makes the compiler print some statistics about permanent memory
15337 allocation for the WPA phase only.
15338
15339 @item -fpre-ipa-mem-report
15340 @opindex fpre-ipa-mem-report
15341 @item -fpost-ipa-mem-report
15342 @opindex fpost-ipa-mem-report
15343 Makes the compiler print some statistics about permanent memory
15344 allocation before or after interprocedural optimization.
15345
15346 @item -fprofile-report
15347 @opindex fprofile-report
15348 Makes the compiler print some statistics about consistency of the
15349 (estimated) profile and effect of individual passes.
15350
15351 @item -fstack-usage
15352 @opindex fstack-usage
15353 Makes the compiler output stack usage information for the program, on a
15354 per-function basis. The filename for the dump is made by appending
15355 @file{.su} to the @var{auxname}. @var{auxname} is generated from the name of
15356 the output file, if explicitly specified and it is not an executable,
15357 otherwise it is the basename of the source file. An entry is made up
15358 of three fields:
15359
15360 @itemize
15361 @item
15362 The name of the function.
15363 @item
15364 A number of bytes.
15365 @item
15366 One or more qualifiers: @code{static}, @code{dynamic}, @code{bounded}.
15367 @end itemize
15368
15369 The qualifier @code{static} means that the function manipulates the stack
15370 statically: a fixed number of bytes are allocated for the frame on function
15371 entry and released on function exit; no stack adjustments are otherwise made
15372 in the function. The second field is this fixed number of bytes.
15373
15374 The qualifier @code{dynamic} means that the function manipulates the stack
15375 dynamically: in addition to the static allocation described above, stack
15376 adjustments are made in the body of the function, for example to push/pop
15377 arguments around function calls. If the qualifier @code{bounded} is also
15378 present, the amount of these adjustments is bounded at compile time and
15379 the second field is an upper bound of the total amount of stack used by
15380 the function. If it is not present, the amount of these adjustments is
15381 not bounded at compile time and the second field only represents the
15382 bounded part.
15383
15384 @item -fstats
15385 @opindex fstats
15386 Emit statistics about front-end processing at the end of the compilation.
15387 This option is supported only by the C++ front end, and
15388 the information is generally only useful to the G++ development team.
15389
15390 @item -fdbg-cnt-list
15391 @opindex fdbg-cnt-list
15392 Print the name and the counter upper bound for all debug counters.
15393
15394
15395 @item -fdbg-cnt=@var{counter-value-list}
15396 @opindex fdbg-cnt
15397 Set the internal debug counter lower and upper bound. @var{counter-value-list}
15398 is a comma-separated list of @var{name}:@var{lower_bound}:@var{upper_bound}
15399 tuples which sets the lower and the upper bound of each debug
15400 counter @var{name}. The @var{lower_bound} is optional and is zero
15401 initialized if not set.
15402 All debug counters have the initial upper bound of @code{UINT_MAX};
15403 thus @code{dbg_cnt} returns true always unless the upper bound
15404 is set by this option.
15405 For example, with @option{-fdbg-cnt=dce:2:4,tail_call:10},
15406 @code{dbg_cnt(dce)} returns true only for third and fourth invocation.
15407 For @code{dbg_cnt(tail_call)} true is returned for first 10 invocations.
15408
15409 @item -print-file-name=@var{library}
15410 @opindex print-file-name
15411 Print the full absolute name of the library file @var{library} that
15412 would be used when linking---and don't do anything else. With this
15413 option, GCC does not compile or link anything; it just prints the
15414 file name.
15415
15416 @item -print-multi-directory
15417 @opindex print-multi-directory
15418 Print the directory name corresponding to the multilib selected by any
15419 other switches present in the command line. This directory is supposed
15420 to exist in @env{GCC_EXEC_PREFIX}.
15421
15422 @item -print-multi-lib
15423 @opindex print-multi-lib
15424 Print the mapping from multilib directory names to compiler switches
15425 that enable them. The directory name is separated from the switches by
15426 @samp{;}, and each switch starts with an @samp{@@} instead of the
15427 @samp{-}, without spaces between multiple switches. This is supposed to
15428 ease shell processing.
15429
15430 @item -print-multi-os-directory
15431 @opindex print-multi-os-directory
15432 Print the path to OS libraries for the selected
15433 multilib, relative to some @file{lib} subdirectory. If OS libraries are
15434 present in the @file{lib} subdirectory and no multilibs are used, this is
15435 usually just @file{.}, if OS libraries are present in @file{lib@var{suffix}}
15436 sibling directories this prints e.g.@: @file{../lib64}, @file{../lib} or
15437 @file{../lib32}, or if OS libraries are present in @file{lib/@var{subdir}}
15438 subdirectories it prints e.g.@: @file{amd64}, @file{sparcv9} or @file{ev6}.
15439
15440 @item -print-multiarch
15441 @opindex print-multiarch
15442 Print the path to OS libraries for the selected multiarch,
15443 relative to some @file{lib} subdirectory.
15444
15445 @item -print-prog-name=@var{program}
15446 @opindex print-prog-name
15447 Like @option{-print-file-name}, but searches for a program such as @command{cpp}.
15448
15449 @item -print-libgcc-file-name
15450 @opindex print-libgcc-file-name
15451 Same as @option{-print-file-name=libgcc.a}.
15452
15453 This is useful when you use @option{-nostdlib} or @option{-nodefaultlibs}
15454 but you do want to link with @file{libgcc.a}. You can do:
15455
15456 @smallexample
15457 gcc -nostdlib @var{files}@dots{} `gcc -print-libgcc-file-name`
15458 @end smallexample
15459
15460 @item -print-search-dirs
15461 @opindex print-search-dirs
15462 Print the name of the configured installation directory and a list of
15463 program and library directories @command{gcc} searches---and don't do anything else.
15464
15465 This is useful when @command{gcc} prints the error message
15466 @samp{installation problem, cannot exec cpp0: No such file or directory}.
15467 To resolve this you either need to put @file{cpp0} and the other compiler
15468 components where @command{gcc} expects to find them, or you can set the environment
15469 variable @env{GCC_EXEC_PREFIX} to the directory where you installed them.
15470 Don't forget the trailing @samp{/}.
15471 @xref{Environment Variables}.
15472
15473 @item -print-sysroot
15474 @opindex print-sysroot
15475 Print the target sysroot directory that is used during
15476 compilation. This is the target sysroot specified either at configure
15477 time or using the @option{--sysroot} option, possibly with an extra
15478 suffix that depends on compilation options. If no target sysroot is
15479 specified, the option prints nothing.
15480
15481 @item -print-sysroot-headers-suffix
15482 @opindex print-sysroot-headers-suffix
15483 Print the suffix added to the target sysroot when searching for
15484 headers, or give an error if the compiler is not configured with such
15485 a suffix---and don't do anything else.
15486
15487 @item -dumpmachine
15488 @opindex dumpmachine
15489 Print the compiler's target machine (for example,
15490 @samp{i686-pc-linux-gnu})---and don't do anything else.
15491
15492 @item -dumpversion
15493 @opindex dumpversion
15494 Print the compiler version (for example, @code{3.0}, @code{6.3.0} or @code{7})---and don't do
15495 anything else. This is the compiler version used in filesystem paths and
15496 specs. Depending on how the compiler has been configured it can be just
15497 a single number (major version), two numbers separated by a dot (major and
15498 minor version) or three numbers separated by dots (major, minor and patchlevel
15499 version).
15500
15501 @item -dumpfullversion
15502 @opindex dumpfullversion
15503 Print the full compiler version---and don't do anything else. The output is
15504 always three numbers separated by dots, major, minor and patchlevel version.
15505
15506 @item -dumpspecs
15507 @opindex dumpspecs
15508 Print the compiler's built-in specs---and don't do anything else. (This
15509 is used when GCC itself is being built.) @xref{Spec Files}.
15510 @end table
15511
15512 @node Submodel Options
15513 @section Machine-Dependent Options
15514 @cindex submodel options
15515 @cindex specifying hardware config
15516 @cindex hardware models and configurations, specifying
15517 @cindex target-dependent options
15518 @cindex machine-dependent options
15519
15520 Each target machine supported by GCC can have its own options---for
15521 example, to allow you to compile for a particular processor variant or
15522 ABI, or to control optimizations specific to that machine. By
15523 convention, the names of machine-specific options start with
15524 @samp{-m}.
15525
15526 Some configurations of the compiler also support additional target-specific
15527 options, usually for compatibility with other compilers on the same
15528 platform.
15529
15530 @c This list is ordered alphanumerically by subsection name.
15531 @c It should be the same order and spelling as these options are listed
15532 @c in Machine Dependent Options
15533
15534 @menu
15535 * AArch64 Options::
15536 * Adapteva Epiphany Options::
15537 * AMD GCN Options::
15538 * ARC Options::
15539 * ARM Options::
15540 * AVR Options::
15541 * Blackfin Options::
15542 * C6X Options::
15543 * CRIS Options::
15544 * CR16 Options::
15545 * C-SKY Options::
15546 * Darwin Options::
15547 * DEC Alpha Options::
15548 * FR30 Options::
15549 * FT32 Options::
15550 * FRV Options::
15551 * GNU/Linux Options::
15552 * H8/300 Options::
15553 * HPPA Options::
15554 * IA-64 Options::
15555 * LM32 Options::
15556 * M32C Options::
15557 * M32R/D Options::
15558 * M680x0 Options::
15559 * MCore Options::
15560 * MeP Options::
15561 * MicroBlaze Options::
15562 * MIPS Options::
15563 * MMIX Options::
15564 * MN10300 Options::
15565 * Moxie Options::
15566 * MSP430 Options::
15567 * NDS32 Options::
15568 * Nios II Options::
15569 * Nvidia PTX Options::
15570 * OpenRISC Options::
15571 * PDP-11 Options::
15572 * picoChip Options::
15573 * PowerPC Options::
15574 * RISC-V Options::
15575 * RL78 Options::
15576 * RS/6000 and PowerPC Options::
15577 * RX Options::
15578 * S/390 and zSeries Options::
15579 * Score Options::
15580 * SH Options::
15581 * Solaris 2 Options::
15582 * SPARC Options::
15583 * SPU Options::
15584 * System V Options::
15585 * TILE-Gx Options::
15586 * TILEPro Options::
15587 * V850 Options::
15588 * VAX Options::
15589 * Visium Options::
15590 * VMS Options::
15591 * VxWorks Options::
15592 * x86 Options::
15593 * x86 Windows Options::
15594 * Xstormy16 Options::
15595 * Xtensa Options::
15596 * zSeries Options::
15597 @end menu
15598
15599 @node AArch64 Options
15600 @subsection AArch64 Options
15601 @cindex AArch64 Options
15602
15603 These options are defined for AArch64 implementations:
15604
15605 @table @gcctabopt
15606
15607 @item -mabi=@var{name}
15608 @opindex mabi
15609 Generate code for the specified data model. Permissible values
15610 are @samp{ilp32} for SysV-like data model where int, long int and pointers
15611 are 32 bits, and @samp{lp64} for SysV-like data model where int is 32 bits,
15612 but long int and pointers are 64 bits.
15613
15614 The default depends on the specific target configuration. Note that
15615 the LP64 and ILP32 ABIs are not link-compatible; you must compile your
15616 entire program with the same ABI, and link with a compatible set of libraries.
15617
15618 @item -mbig-endian
15619 @opindex mbig-endian
15620 Generate big-endian code. This is the default when GCC is configured for an
15621 @samp{aarch64_be-*-*} target.
15622
15623 @item -mgeneral-regs-only
15624 @opindex mgeneral-regs-only
15625 Generate code which uses only the general-purpose registers. This will prevent
15626 the compiler from using floating-point and Advanced SIMD registers but will not
15627 impose any restrictions on the assembler.
15628
15629 @item -mlittle-endian
15630 @opindex mlittle-endian
15631 Generate little-endian code. This is the default when GCC is configured for an
15632 @samp{aarch64-*-*} but not an @samp{aarch64_be-*-*} target.
15633
15634 @item -mcmodel=tiny
15635 @opindex mcmodel=tiny
15636 Generate code for the tiny code model. The program and its statically defined
15637 symbols must be within 1MB of each other. Programs can be statically or
15638 dynamically linked.
15639
15640 @item -mcmodel=small
15641 @opindex mcmodel=small
15642 Generate code for the small code model. The program and its statically defined
15643 symbols must be within 4GB of each other. Programs can be statically or
15644 dynamically linked. This is the default code model.
15645
15646 @item -mcmodel=large
15647 @opindex mcmodel=large
15648 Generate code for the large code model. This makes no assumptions about
15649 addresses and sizes of sections. Programs can be statically linked only.
15650
15651 @item -mstrict-align
15652 @itemx -mno-strict-align
15653 @opindex mstrict-align
15654 @opindex mno-strict-align
15655 Avoid or allow generating memory accesses that may not be aligned on a natural
15656 object boundary as described in the architecture specification.
15657
15658 @item -momit-leaf-frame-pointer
15659 @itemx -mno-omit-leaf-frame-pointer
15660 @opindex momit-leaf-frame-pointer
15661 @opindex mno-omit-leaf-frame-pointer
15662 Omit or keep the frame pointer in leaf functions. The former behavior is the
15663 default.
15664
15665 @item -mstack-protector-guard=@var{guard}
15666 @itemx -mstack-protector-guard-reg=@var{reg}
15667 @itemx -mstack-protector-guard-offset=@var{offset}
15668 @opindex mstack-protector-guard
15669 @opindex mstack-protector-guard-reg
15670 @opindex mstack-protector-guard-offset
15671 Generate stack protection code using canary at @var{guard}. Supported
15672 locations are @samp{global} for a global canary or @samp{sysreg} for a
15673 canary in an appropriate system register.
15674
15675 With the latter choice the options
15676 @option{-mstack-protector-guard-reg=@var{reg}} and
15677 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15678 which system register to use as base register for reading the canary,
15679 and from what offset from that base register. There is no default
15680 register or offset as this is entirely for use within the Linux
15681 kernel.
15682
15683 @item -mstack-protector-guard=@var{guard}
15684 @itemx -mstack-protector-guard-reg=@var{reg}
15685 @itemx -mstack-protector-guard-offset=@var{offset}
15686 @opindex mstack-protector-guard
15687 @opindex mstack-protector-guard-reg
15688 @opindex mstack-protector-guard-offset
15689 Generate stack protection code using canary at @var{guard}. Supported
15690 locations are @samp{global} for a global canary or @samp{sysreg} for a
15691 canary in an appropriate system register.
15692
15693 With the latter choice the options
15694 @option{-mstack-protector-guard-reg=@var{reg}} and
15695 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
15696 which system register to use as base register for reading the canary,
15697 and from what offset from that base register. There is no default
15698 register or offset as this is entirely for use within the Linux
15699 kernel.
15700
15701 @item -mtls-dialect=desc
15702 @opindex mtls-dialect=desc
15703 Use TLS descriptors as the thread-local storage mechanism for dynamic accesses
15704 of TLS variables. This is the default.
15705
15706 @item -mtls-dialect=traditional
15707 @opindex mtls-dialect=traditional
15708 Use traditional TLS as the thread-local storage mechanism for dynamic accesses
15709 of TLS variables.
15710
15711 @item -mtls-size=@var{size}
15712 @opindex mtls-size
15713 Specify bit size of immediate TLS offsets. Valid values are 12, 24, 32, 48.
15714 This option requires binutils 2.26 or newer.
15715
15716 @item -mfix-cortex-a53-835769
15717 @itemx -mno-fix-cortex-a53-835769
15718 @opindex mfix-cortex-a53-835769
15719 @opindex mno-fix-cortex-a53-835769
15720 Enable or disable the workaround for the ARM Cortex-A53 erratum number 835769.
15721 This involves inserting a NOP instruction between memory instructions and
15722 64-bit integer multiply-accumulate instructions.
15723
15724 @item -mfix-cortex-a53-843419
15725 @itemx -mno-fix-cortex-a53-843419
15726 @opindex mfix-cortex-a53-843419
15727 @opindex mno-fix-cortex-a53-843419
15728 Enable or disable the workaround for the ARM Cortex-A53 erratum number 843419.
15729 This erratum workaround is made at link time and this will only pass the
15730 corresponding flag to the linker.
15731
15732 @item -mlow-precision-recip-sqrt
15733 @itemx -mno-low-precision-recip-sqrt
15734 @opindex mlow-precision-recip-sqrt
15735 @opindex mno-low-precision-recip-sqrt
15736 Enable or disable the reciprocal square root approximation.
15737 This option only has an effect if @option{-ffast-math} or
15738 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15739 precision of reciprocal square root results to about 16 bits for
15740 single precision and to 32 bits for double precision.
15741
15742 @item -mlow-precision-sqrt
15743 @itemx -mno-low-precision-sqrt
15744 @opindex mlow-precision-sqrt
15745 @opindex mno-low-precision-sqrt
15746 Enable or disable the square root approximation.
15747 This option only has an effect if @option{-ffast-math} or
15748 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15749 precision of square root results to about 16 bits for
15750 single precision and to 32 bits for double precision.
15751 If enabled, it implies @option{-mlow-precision-recip-sqrt}.
15752
15753 @item -mlow-precision-div
15754 @itemx -mno-low-precision-div
15755 @opindex mlow-precision-div
15756 @opindex mno-low-precision-div
15757 Enable or disable the division approximation.
15758 This option only has an effect if @option{-ffast-math} or
15759 @option{-funsafe-math-optimizations} is used as well. Enabling this reduces
15760 precision of division results to about 16 bits for
15761 single precision and to 32 bits for double precision.
15762
15763 @item -mtrack-speculation
15764 @itemx -mno-track-speculation
15765 Enable or disable generation of additional code to track speculative
15766 execution through conditional branches. The tracking state can then
15767 be used by the compiler when expanding calls to
15768 @code{__builtin_speculation_safe_copy} to permit a more efficient code
15769 sequence to be generated.
15770
15771 @item -march=@var{name}
15772 @opindex march
15773 Specify the name of the target architecture and, optionally, one or
15774 more feature modifiers. This option has the form
15775 @option{-march=@var{arch}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}.
15776
15777 The permissible values for @var{arch} are @samp{armv8-a},
15778 @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a}, @samp{armv8.4-a},
15779 @samp{armv8.5-a} or @var{native}.
15780
15781 The value @samp{armv8.5-a} implies @samp{armv8.4-a} and enables compiler
15782 support for the ARMv8.5-A architecture extensions.
15783
15784 The value @samp{armv8.4-a} implies @samp{armv8.3-a} and enables compiler
15785 support for the ARMv8.4-A architecture extensions.
15786
15787 The value @samp{armv8.3-a} implies @samp{armv8.2-a} and enables compiler
15788 support for the ARMv8.3-A architecture extensions.
15789
15790 The value @samp{armv8.2-a} implies @samp{armv8.1-a} and enables compiler
15791 support for the ARMv8.2-A architecture extensions.
15792
15793 The value @samp{armv8.1-a} implies @samp{armv8-a} and enables compiler
15794 support for the ARMv8.1-A architecture extension. In particular, it
15795 enables the @samp{+crc}, @samp{+lse}, and @samp{+rdma} features.
15796
15797 The value @samp{native} is available on native AArch64 GNU/Linux and
15798 causes the compiler to pick the architecture of the host system. This
15799 option has no effect if the compiler is unable to recognize the
15800 architecture of the host system,
15801
15802 The permissible values for @var{feature} are listed in the sub-section
15803 on @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15804 Feature Modifiers}. Where conflicting feature modifiers are
15805 specified, the right-most feature is used.
15806
15807 GCC uses @var{name} to determine what kind of instructions it can emit
15808 when generating assembly code. If @option{-march} is specified
15809 without either of @option{-mtune} or @option{-mcpu} also being
15810 specified, the code is tuned to perform well across a range of target
15811 processors implementing the target architecture.
15812
15813 @item -mtune=@var{name}
15814 @opindex mtune
15815 Specify the name of the target processor for which GCC should tune the
15816 performance of the code. Permissible values for this option are:
15817 @samp{generic}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
15818 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
15819 @samp{cortex-a76}, @samp{ares}, @samp{exynos-m1}, @samp{emag}, @samp{falkor},
15820 @samp{neoverse-e1},@samp{neoverse-n1},@samp{qdf24xx}, @samp{saphira},
15821 @samp{phecda}, @samp{xgene1}, @samp{vulcan}, @samp{octeontx},
15822 @samp{octeontx81}, @samp{octeontx83}, @samp{thunderx}, @samp{thunderxt88},
15823 @samp{thunderxt88p1}, @samp{thunderxt81}, @samp{tsv110},
15824 @samp{thunderxt83}, @samp{thunderx2t99},
15825 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15826 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15827 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}
15828 @samp{native}.
15829
15830 The values @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
15831 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53},
15832 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55} specify that GCC
15833 should tune for a big.LITTLE system.
15834
15835 Additionally on native AArch64 GNU/Linux systems the value
15836 @samp{native} tunes performance to the host system. This option has no effect
15837 if the compiler is unable to recognize the processor of the host system.
15838
15839 Where none of @option{-mtune=}, @option{-mcpu=} or @option{-march=}
15840 are specified, the code is tuned to perform well across a range
15841 of target processors.
15842
15843 This option cannot be suffixed by feature modifiers.
15844
15845 @item -mcpu=@var{name}
15846 @opindex mcpu
15847 Specify the name of the target processor, optionally suffixed by one
15848 or more feature modifiers. This option has the form
15849 @option{-mcpu=@var{cpu}@r{@{}+@r{[}no@r{]}@var{feature}@r{@}*}}, where
15850 the permissible values for @var{cpu} are the same as those available
15851 for @option{-mtune}. The permissible values for @var{feature} are
15852 documented in the sub-section on
15853 @ref{aarch64-feature-modifiers,,@option{-march} and @option{-mcpu}
15854 Feature Modifiers}. Where conflicting feature modifiers are
15855 specified, the right-most feature is used.
15856
15857 GCC uses @var{name} to determine what kind of instructions it can emit when
15858 generating assembly code (as if by @option{-march}) and to determine
15859 the target processor for which to tune for performance (as if
15860 by @option{-mtune}). Where this option is used in conjunction
15861 with @option{-march} or @option{-mtune}, those options take precedence
15862 over the appropriate part of this option.
15863
15864 @item -moverride=@var{string}
15865 @opindex moverride
15866 Override tuning decisions made by the back-end in response to a
15867 @option{-mtune=} switch. The syntax, semantics, and accepted values
15868 for @var{string} in this option are not guaranteed to be consistent
15869 across releases.
15870
15871 This option is only intended to be useful when developing GCC.
15872
15873 @item -mverbose-cost-dump
15874 @opindex mverbose-cost-dump
15875 Enable verbose cost model dumping in the debug dump files. This option is
15876 provided for use in debugging the compiler.
15877
15878 @item -mpc-relative-literal-loads
15879 @itemx -mno-pc-relative-literal-loads
15880 @opindex mpc-relative-literal-loads
15881 @opindex mno-pc-relative-literal-loads
15882 Enable or disable PC-relative literal loads. With this option literal pools are
15883 accessed using a single instruction and emitted after each function. This
15884 limits the maximum size of functions to 1MB. This is enabled by default for
15885 @option{-mcmodel=tiny}.
15886
15887 @item -msign-return-address=@var{scope}
15888 @opindex msign-return-address
15889 Select the function scope on which return address signing will be applied.
15890 Permissible values are @samp{none}, which disables return address signing,
15891 @samp{non-leaf}, which enables pointer signing for functions which are not leaf
15892 functions, and @samp{all}, which enables pointer signing for all functions. The
15893 default value is @samp{none}. This option has been deprecated by
15894 -mbranch-protection.
15895
15896 @item -mbranch-protection=@var{none}|@var{standard}|@var{pac-ret}[+@var{leaf}+@var{b-key}]|@var{bti}
15897 @opindex mbranch-protection
15898 Select the branch protection features to use.
15899 @samp{none} is the default and turns off all types of branch protection.
15900 @samp{standard} turns on all types of branch protection features. If a feature
15901 has additional tuning options, then @samp{standard} sets it to its standard
15902 level.
15903 @samp{pac-ret[+@var{leaf}]} turns on return address signing to its standard
15904 level: signing functions that save the return address to memory (non-leaf
15905 functions will practically always do this) using the a-key. The optional
15906 argument @samp{leaf} can be used to extend the signing to include leaf
15907 functions. The optional argument @samp{b-key} can be used to sign the functions
15908 with the B-key instead of the A-key.
15909 @samp{bti} turns on branch target identification mechanism.
15910
15911 @item -msve-vector-bits=@var{bits}
15912 @opindex msve-vector-bits
15913 Specify the number of bits in an SVE vector register. This option only has
15914 an effect when SVE is enabled.
15915
15916 GCC supports two forms of SVE code generation: ``vector-length
15917 agnostic'' output that works with any size of vector register and
15918 ``vector-length specific'' output that allows GCC to make assumptions
15919 about the vector length when it is useful for optimization reasons.
15920 The possible values of @samp{bits} are: @samp{scalable}, @samp{128},
15921 @samp{256}, @samp{512}, @samp{1024} and @samp{2048}.
15922 Specifying @samp{scalable} selects vector-length agnostic
15923 output. At present @samp{-msve-vector-bits=128} also generates vector-length
15924 agnostic output. All other values generate vector-length specific code.
15925 The behavior of these values may change in future releases and no value except
15926 @samp{scalable} should be relied on for producing code that is portable across
15927 different hardware SVE vector lengths.
15928
15929 The default is @samp{-msve-vector-bits=scalable}, which produces
15930 vector-length agnostic code.
15931 @end table
15932
15933 @subsubsection @option{-march} and @option{-mcpu} Feature Modifiers
15934 @anchor{aarch64-feature-modifiers}
15935 @cindex @option{-march} feature modifiers
15936 @cindex @option{-mcpu} feature modifiers
15937 Feature modifiers used with @option{-march} and @option{-mcpu} can be any of
15938 the following and their inverses @option{no@var{feature}}:
15939
15940 @table @samp
15941 @item crc
15942 Enable CRC extension. This is on by default for
15943 @option{-march=armv8.1-a}.
15944 @item crypto
15945 Enable Crypto extension. This also enables Advanced SIMD and floating-point
15946 instructions.
15947 @item fp
15948 Enable floating-point instructions. This is on by default for all possible
15949 values for options @option{-march} and @option{-mcpu}.
15950 @item simd
15951 Enable Advanced SIMD instructions. This also enables floating-point
15952 instructions. This is on by default for all possible values for options
15953 @option{-march} and @option{-mcpu}.
15954 @item sve
15955 Enable Scalable Vector Extension instructions. This also enables Advanced
15956 SIMD and floating-point instructions.
15957 @item lse
15958 Enable Large System Extension instructions. This is on by default for
15959 @option{-march=armv8.1-a}.
15960 @item rdma
15961 Enable Round Double Multiply Accumulate instructions. This is on by default
15962 for @option{-march=armv8.1-a}.
15963 @item fp16
15964 Enable FP16 extension. This also enables floating-point instructions.
15965 @item fp16fml
15966 Enable FP16 fmla extension. This also enables FP16 extensions and
15967 floating-point instructions. This option is enabled by default for @option{-march=armv8.4-a}. Use of this option with architectures prior to Armv8.2-A is not supported.
15968
15969 @item rcpc
15970 Enable the RcPc extension. This does not change code generation from GCC,
15971 but is passed on to the assembler, enabling inline asm statements to use
15972 instructions from the RcPc extension.
15973 @item dotprod
15974 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
15975 @item aes
15976 Enable the Armv8-a aes and pmull crypto extension. This also enables Advanced
15977 SIMD instructions.
15978 @item sha2
15979 Enable the Armv8-a sha2 crypto extension. This also enables Advanced SIMD instructions.
15980 @item sha3
15981 Enable the sha512 and sha3 crypto extension. This also enables Advanced SIMD
15982 instructions. Use of this option with architectures prior to Armv8.2-A is not supported.
15983 @item sm4
15984 Enable the sm3 and sm4 crypto extension. This also enables Advanced SIMD instructions.
15985 Use of this option with architectures prior to Armv8.2-A is not supported.
15986 @item profile
15987 Enable the Statistical Profiling extension. This option is only to enable the
15988 extension at the assembler level and does not affect code generation.
15989 @item rng
15990 Enable the Armv8.5-a Random Number instructions. This option is only to
15991 enable the extension at the assembler level and does not affect code
15992 generation.
15993 @item memtag
15994 Enable the Armv8.5-a Memory Tagging Extensions. This option is only to
15995 enable the extension at the assembler level and does not affect code
15996 generation.
15997 @item sb
15998 Enable the Armv8-a Speculation Barrier instruction. This option is only to
15999 enable the extension at the assembler level and does not affect code
16000 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16001 @item ssbs
16002 Enable the Armv8-a Speculative Store Bypass Safe instruction. This option
16003 is only to enable the extension at the assembler level and does not affect code
16004 generation. This option is enabled by default for @option{-march=armv8.5-a}.
16005 @item predres
16006 Enable the Armv8-a Execution and Data Prediction Restriction instructions.
16007 This option is only to enable the extension at the assembler level and does
16008 not affect code generation. This option is enabled by default for
16009 @item sve2
16010 Enable the Armv8-a Scalable Vector Extension 2. This also enables SVE
16011 instructions.
16012 @item bitperm
16013 Enable SVE2 bitperm instructions. This also enables SVE2 instructions.
16014 @item sve2-sm4
16015 Enable SVE2 sm4 instructions. This also enables SVE2 instructions.
16016 @item sve2-aes
16017 Enable SVE2 aes instructions. This also enables SVE2 instructions.
16018 @item sve2-sha3
16019 Enable SVE2 sha3 instructions. This also enables SVE2 instructions.
16020 @option{-march=armv8.5-a}.
16021
16022 @end table
16023
16024 Feature @option{crypto} implies @option{aes}, @option{sha2}, and @option{simd},
16025 which implies @option{fp}.
16026 Conversely, @option{nofp} implies @option{nosimd}, which implies
16027 @option{nocrypto}, @option{noaes} and @option{nosha2}.
16028
16029 @node Adapteva Epiphany Options
16030 @subsection Adapteva Epiphany Options
16031
16032 These @samp{-m} options are defined for Adapteva Epiphany:
16033
16034 @table @gcctabopt
16035 @item -mhalf-reg-file
16036 @opindex mhalf-reg-file
16037 Don't allocate any register in the range @code{r32}@dots{}@code{r63}.
16038 That allows code to run on hardware variants that lack these registers.
16039
16040 @item -mprefer-short-insn-regs
16041 @opindex mprefer-short-insn-regs
16042 Preferentially allocate registers that allow short instruction generation.
16043 This can result in increased instruction count, so this may either reduce or
16044 increase overall code size.
16045
16046 @item -mbranch-cost=@var{num}
16047 @opindex mbranch-cost
16048 Set the cost of branches to roughly @var{num} ``simple'' instructions.
16049 This cost is only a heuristic and is not guaranteed to produce
16050 consistent results across releases.
16051
16052 @item -mcmove
16053 @opindex mcmove
16054 Enable the generation of conditional moves.
16055
16056 @item -mnops=@var{num}
16057 @opindex mnops
16058 Emit @var{num} NOPs before every other generated instruction.
16059
16060 @item -mno-soft-cmpsf
16061 @opindex mno-soft-cmpsf
16062 @opindex msoft-cmpsf
16063 For single-precision floating-point comparisons, emit an @code{fsub} instruction
16064 and test the flags. This is faster than a software comparison, but can
16065 get incorrect results in the presence of NaNs, or when two different small
16066 numbers are compared such that their difference is calculated as zero.
16067 The default is @option{-msoft-cmpsf}, which uses slower, but IEEE-compliant,
16068 software comparisons.
16069
16070 @item -mstack-offset=@var{num}
16071 @opindex mstack-offset
16072 Set the offset between the top of the stack and the stack pointer.
16073 E.g., a value of 8 means that the eight bytes in the range @code{sp+0@dots{}sp+7}
16074 can be used by leaf functions without stack allocation.
16075 Values other than @samp{8} or @samp{16} are untested and unlikely to work.
16076 Note also that this option changes the ABI; compiling a program with a
16077 different stack offset than the libraries have been compiled with
16078 generally does not work.
16079 This option can be useful if you want to evaluate if a different stack
16080 offset would give you better code, but to actually use a different stack
16081 offset to build working programs, it is recommended to configure the
16082 toolchain with the appropriate @option{--with-stack-offset=@var{num}} option.
16083
16084 @item -mno-round-nearest
16085 @opindex mno-round-nearest
16086 @opindex mround-nearest
16087 Make the scheduler assume that the rounding mode has been set to
16088 truncating. The default is @option{-mround-nearest}.
16089
16090 @item -mlong-calls
16091 @opindex mlong-calls
16092 If not otherwise specified by an attribute, assume all calls might be beyond
16093 the offset range of the @code{b} / @code{bl} instructions, and therefore load the
16094 function address into a register before performing a (otherwise direct) call.
16095 This is the default.
16096
16097 @item -mshort-calls
16098 @opindex short-calls
16099 If not otherwise specified by an attribute, assume all direct calls are
16100 in the range of the @code{b} / @code{bl} instructions, so use these instructions
16101 for direct calls. The default is @option{-mlong-calls}.
16102
16103 @item -msmall16
16104 @opindex msmall16
16105 Assume addresses can be loaded as 16-bit unsigned values. This does not
16106 apply to function addresses for which @option{-mlong-calls} semantics
16107 are in effect.
16108
16109 @item -mfp-mode=@var{mode}
16110 @opindex mfp-mode
16111 Set the prevailing mode of the floating-point unit.
16112 This determines the floating-point mode that is provided and expected
16113 at function call and return time. Making this mode match the mode you
16114 predominantly need at function start can make your programs smaller and
16115 faster by avoiding unnecessary mode switches.
16116
16117 @var{mode} can be set to one the following values:
16118
16119 @table @samp
16120 @item caller
16121 Any mode at function entry is valid, and retained or restored when
16122 the function returns, and when it calls other functions.
16123 This mode is useful for compiling libraries or other compilation units
16124 you might want to incorporate into different programs with different
16125 prevailing FPU modes, and the convenience of being able to use a single
16126 object file outweighs the size and speed overhead for any extra
16127 mode switching that might be needed, compared with what would be needed
16128 with a more specific choice of prevailing FPU mode.
16129
16130 @item truncate
16131 This is the mode used for floating-point calculations with
16132 truncating (i.e.@: round towards zero) rounding mode. That includes
16133 conversion from floating point to integer.
16134
16135 @item round-nearest
16136 This is the mode used for floating-point calculations with
16137 round-to-nearest-or-even rounding mode.
16138
16139 @item int
16140 This is the mode used to perform integer calculations in the FPU, e.g.@:
16141 integer multiply, or integer multiply-and-accumulate.
16142 @end table
16143
16144 The default is @option{-mfp-mode=caller}
16145
16146 @item -mno-split-lohi
16147 @itemx -mno-postinc
16148 @itemx -mno-postmodify
16149 @opindex mno-split-lohi
16150 @opindex msplit-lohi
16151 @opindex mno-postinc
16152 @opindex mpostinc
16153 @opindex mno-postmodify
16154 @opindex mpostmodify
16155 Code generation tweaks that disable, respectively, splitting of 32-bit
16156 loads, generation of post-increment addresses, and generation of
16157 post-modify addresses. The defaults are @option{msplit-lohi},
16158 @option{-mpost-inc}, and @option{-mpost-modify}.
16159
16160 @item -mnovect-double
16161 @opindex mno-vect-double
16162 @opindex mvect-double
16163 Change the preferred SIMD mode to SImode. The default is
16164 @option{-mvect-double}, which uses DImode as preferred SIMD mode.
16165
16166 @item -max-vect-align=@var{num}
16167 @opindex max-vect-align
16168 The maximum alignment for SIMD vector mode types.
16169 @var{num} may be 4 or 8. The default is 8.
16170 Note that this is an ABI change, even though many library function
16171 interfaces are unaffected if they don't use SIMD vector modes
16172 in places that affect size and/or alignment of relevant types.
16173
16174 @item -msplit-vecmove-early
16175 @opindex msplit-vecmove-early
16176 Split vector moves into single word moves before reload. In theory this
16177 can give better register allocation, but so far the reverse seems to be
16178 generally the case.
16179
16180 @item -m1reg-@var{reg}
16181 @opindex m1reg-
16182 Specify a register to hold the constant @minus{}1, which makes loading small negative
16183 constants and certain bitmasks faster.
16184 Allowable values for @var{reg} are @samp{r43} and @samp{r63},
16185 which specify use of that register as a fixed register,
16186 and @samp{none}, which means that no register is used for this
16187 purpose. The default is @option{-m1reg-none}.
16188
16189 @end table
16190
16191 @node AMD GCN Options
16192 @subsection AMD GCN Options
16193 @cindex AMD GCN Options
16194
16195 These options are defined specifically for the AMD GCN port.
16196
16197 @table @gcctabopt
16198
16199 @item -march=@var{gpu}
16200 @opindex march
16201 @itemx -mtune=@var{gpu}
16202 @opindex mtune
16203 Set architecture type or tuning for @var{gpu}. Supported values for @var{gpu}
16204 are
16205
16206 @table @samp
16207 @opindex fiji
16208 @item fiji
16209 Compile for GCN3 Fiji devices (gfx803).
16210
16211 @item gfx900
16212 Compile for GCN5 Vega 10 devices (gfx900).
16213
16214 @item gfx906
16215 Compile for GCN5 Vega 20 devices (gfx906).
16216
16217 @end table
16218
16219 @item -mstack-size=@var{bytes}
16220 @opindex mstack-size
16221 Specify how many @var{bytes} of stack space will be requested for each GPU
16222 thread (wave-front). Beware that there may be many threads and limited memory
16223 available. The size of the stack allocation may also have an impact on
16224 run-time performance. The default is 32KB when using OpenACC or OpenMP, and
16225 1MB otherwise.
16226
16227 @end table
16228
16229 @node ARC Options
16230 @subsection ARC Options
16231 @cindex ARC options
16232
16233 The following options control the architecture variant for which code
16234 is being compiled:
16235
16236 @c architecture variants
16237 @table @gcctabopt
16238
16239 @item -mbarrel-shifter
16240 @opindex mbarrel-shifter
16241 Generate instructions supported by barrel shifter. This is the default
16242 unless @option{-mcpu=ARC601} or @samp{-mcpu=ARCEM} is in effect.
16243
16244 @item -mjli-always
16245 @opindex mjli-alawys
16246 Force to call a function using jli_s instruction. This option is
16247 valid only for ARCv2 architecture.
16248
16249 @item -mcpu=@var{cpu}
16250 @opindex mcpu
16251 Set architecture type, register usage, and instruction scheduling
16252 parameters for @var{cpu}. There are also shortcut alias options
16253 available for backward compatibility and convenience. Supported
16254 values for @var{cpu} are
16255
16256 @table @samp
16257 @opindex mA6
16258 @opindex mARC600
16259 @item arc600
16260 Compile for ARC600. Aliases: @option{-mA6}, @option{-mARC600}.
16261
16262 @item arc601
16263 @opindex mARC601
16264 Compile for ARC601. Alias: @option{-mARC601}.
16265
16266 @item arc700
16267 @opindex mA7
16268 @opindex mARC700
16269 Compile for ARC700. Aliases: @option{-mA7}, @option{-mARC700}.
16270 This is the default when configured with @option{--with-cpu=arc700}@.
16271
16272 @item arcem
16273 Compile for ARC EM.
16274
16275 @item archs
16276 Compile for ARC HS.
16277
16278 @item em
16279 Compile for ARC EM CPU with no hardware extensions.
16280
16281 @item em4
16282 Compile for ARC EM4 CPU.
16283
16284 @item em4_dmips
16285 Compile for ARC EM4 DMIPS CPU.
16286
16287 @item em4_fpus
16288 Compile for ARC EM4 DMIPS CPU with the single-precision floating-point
16289 extension.
16290
16291 @item em4_fpuda
16292 Compile for ARC EM4 DMIPS CPU with single-precision floating-point and
16293 double assist instructions.
16294
16295 @item hs
16296 Compile for ARC HS CPU with no hardware extensions except the atomic
16297 instructions.
16298
16299 @item hs34
16300 Compile for ARC HS34 CPU.
16301
16302 @item hs38
16303 Compile for ARC HS38 CPU.
16304
16305 @item hs38_linux
16306 Compile for ARC HS38 CPU with all hardware extensions on.
16307
16308 @item arc600_norm
16309 Compile for ARC 600 CPU with @code{norm} instructions enabled.
16310
16311 @item arc600_mul32x16
16312 Compile for ARC 600 CPU with @code{norm} and 32x16-bit multiply
16313 instructions enabled.
16314
16315 @item arc600_mul64
16316 Compile for ARC 600 CPU with @code{norm} and @code{mul64}-family
16317 instructions enabled.
16318
16319 @item arc601_norm
16320 Compile for ARC 601 CPU with @code{norm} instructions enabled.
16321
16322 @item arc601_mul32x16
16323 Compile for ARC 601 CPU with @code{norm} and 32x16-bit multiply
16324 instructions enabled.
16325
16326 @item arc601_mul64
16327 Compile for ARC 601 CPU with @code{norm} and @code{mul64}-family
16328 instructions enabled.
16329
16330 @item nps400
16331 Compile for ARC 700 on NPS400 chip.
16332
16333 @item em_mini
16334 Compile for ARC EM minimalist configuration featuring reduced register
16335 set.
16336
16337 @end table
16338
16339 @item -mdpfp
16340 @opindex mdpfp
16341 @itemx -mdpfp-compact
16342 @opindex mdpfp-compact
16343 Generate double-precision FPX instructions, tuned for the compact
16344 implementation.
16345
16346 @item -mdpfp-fast
16347 @opindex mdpfp-fast
16348 Generate double-precision FPX instructions, tuned for the fast
16349 implementation.
16350
16351 @item -mno-dpfp-lrsr
16352 @opindex mno-dpfp-lrsr
16353 Disable @code{lr} and @code{sr} instructions from using FPX extension
16354 aux registers.
16355
16356 @item -mea
16357 @opindex mea
16358 Generate extended arithmetic instructions. Currently only
16359 @code{divaw}, @code{adds}, @code{subs}, and @code{sat16} are
16360 supported. This is always enabled for @option{-mcpu=ARC700}.
16361
16362 @item -mno-mpy
16363 @opindex mno-mpy
16364 @opindex mmpy
16365 Do not generate @code{mpy}-family instructions for ARC700. This option is
16366 deprecated.
16367
16368 @item -mmul32x16
16369 @opindex mmul32x16
16370 Generate 32x16-bit multiply and multiply-accumulate instructions.
16371
16372 @item -mmul64
16373 @opindex mmul64
16374 Generate @code{mul64} and @code{mulu64} instructions.
16375 Only valid for @option{-mcpu=ARC600}.
16376
16377 @item -mnorm
16378 @opindex mnorm
16379 Generate @code{norm} instructions. This is the default if @option{-mcpu=ARC700}
16380 is in effect.
16381
16382 @item -mspfp
16383 @opindex mspfp
16384 @itemx -mspfp-compact
16385 @opindex mspfp-compact
16386 Generate single-precision FPX instructions, tuned for the compact
16387 implementation.
16388
16389 @item -mspfp-fast
16390 @opindex mspfp-fast
16391 Generate single-precision FPX instructions, tuned for the fast
16392 implementation.
16393
16394 @item -msimd
16395 @opindex msimd
16396 Enable generation of ARC SIMD instructions via target-specific
16397 builtins. Only valid for @option{-mcpu=ARC700}.
16398
16399 @item -msoft-float
16400 @opindex msoft-float
16401 This option ignored; it is provided for compatibility purposes only.
16402 Software floating-point code is emitted by default, and this default
16403 can overridden by FPX options; @option{-mspfp}, @option{-mspfp-compact}, or
16404 @option{-mspfp-fast} for single precision, and @option{-mdpfp},
16405 @option{-mdpfp-compact}, or @option{-mdpfp-fast} for double precision.
16406
16407 @item -mswap
16408 @opindex mswap
16409 Generate @code{swap} instructions.
16410
16411 @item -matomic
16412 @opindex matomic
16413 This enables use of the locked load/store conditional extension to implement
16414 atomic memory built-in functions. Not available for ARC 6xx or ARC
16415 EM cores.
16416
16417 @item -mdiv-rem
16418 @opindex mdiv-rem
16419 Enable @code{div} and @code{rem} instructions for ARCv2 cores.
16420
16421 @item -mcode-density
16422 @opindex mcode-density
16423 Enable code density instructions for ARC EM.
16424 This option is on by default for ARC HS.
16425
16426 @item -mll64
16427 @opindex mll64
16428 Enable double load/store operations for ARC HS cores.
16429
16430 @item -mtp-regno=@var{regno}
16431 @opindex mtp-regno
16432 Specify thread pointer register number.
16433
16434 @item -mmpy-option=@var{multo}
16435 @opindex mmpy-option
16436 Compile ARCv2 code with a multiplier design option. You can specify
16437 the option using either a string or numeric value for @var{multo}.
16438 @samp{wlh1} is the default value. The recognized values are:
16439
16440 @table @samp
16441 @item 0
16442 @itemx none
16443 No multiplier available.
16444
16445 @item 1
16446 @itemx w
16447 16x16 multiplier, fully pipelined.
16448 The following instructions are enabled: @code{mpyw} and @code{mpyuw}.
16449
16450 @item 2
16451 @itemx wlh1
16452 32x32 multiplier, fully
16453 pipelined (1 stage). The following instructions are additionally
16454 enabled: @code{mpy}, @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16455
16456 @item 3
16457 @itemx wlh2
16458 32x32 multiplier, fully pipelined
16459 (2 stages). The following instructions are additionally enabled: @code{mpy},
16460 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16461
16462 @item 4
16463 @itemx wlh3
16464 Two 16x16 multipliers, blocking,
16465 sequential. The following instructions are additionally enabled: @code{mpy},
16466 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16467
16468 @item 5
16469 @itemx wlh4
16470 One 16x16 multiplier, blocking,
16471 sequential. The following instructions are additionally enabled: @code{mpy},
16472 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16473
16474 @item 6
16475 @itemx wlh5
16476 One 32x4 multiplier, blocking,
16477 sequential. The following instructions are additionally enabled: @code{mpy},
16478 @code{mpyu}, @code{mpym}, @code{mpymu}, and @code{mpy_s}.
16479
16480 @item 7
16481 @itemx plus_dmpy
16482 ARC HS SIMD support.
16483
16484 @item 8
16485 @itemx plus_macd
16486 ARC HS SIMD support.
16487
16488 @item 9
16489 @itemx plus_qmacw
16490 ARC HS SIMD support.
16491
16492 @end table
16493
16494 This option is only available for ARCv2 cores@.
16495
16496 @item -mfpu=@var{fpu}
16497 @opindex mfpu
16498 Enables support for specific floating-point hardware extensions for ARCv2
16499 cores. Supported values for @var{fpu} are:
16500
16501 @table @samp
16502
16503 @item fpus
16504 Enables support for single-precision floating-point hardware
16505 extensions@.
16506
16507 @item fpud
16508 Enables support for double-precision floating-point hardware
16509 extensions. The single-precision floating-point extension is also
16510 enabled. Not available for ARC EM@.
16511
16512 @item fpuda
16513 Enables support for double-precision floating-point hardware
16514 extensions using double-precision assist instructions. The single-precision
16515 floating-point extension is also enabled. This option is
16516 only available for ARC EM@.
16517
16518 @item fpuda_div
16519 Enables support for double-precision floating-point hardware
16520 extensions using double-precision assist instructions.
16521 The single-precision floating-point, square-root, and divide
16522 extensions are also enabled. This option is
16523 only available for ARC EM@.
16524
16525 @item fpuda_fma
16526 Enables support for double-precision floating-point hardware
16527 extensions using double-precision assist instructions.
16528 The single-precision floating-point and fused multiply and add
16529 hardware extensions are also enabled. This option is
16530 only available for ARC EM@.
16531
16532 @item fpuda_all
16533 Enables support for double-precision floating-point hardware
16534 extensions using double-precision assist instructions.
16535 All single-precision floating-point hardware extensions are also
16536 enabled. This option is only available for ARC EM@.
16537
16538 @item fpus_div
16539 Enables support for single-precision floating-point, square-root and divide
16540 hardware extensions@.
16541
16542 @item fpud_div
16543 Enables support for double-precision floating-point, square-root and divide
16544 hardware extensions. This option
16545 includes option @samp{fpus_div}. Not available for ARC EM@.
16546
16547 @item fpus_fma
16548 Enables support for single-precision floating-point and
16549 fused multiply and add hardware extensions@.
16550
16551 @item fpud_fma
16552 Enables support for double-precision floating-point and
16553 fused multiply and add hardware extensions. This option
16554 includes option @samp{fpus_fma}. Not available for ARC EM@.
16555
16556 @item fpus_all
16557 Enables support for all single-precision floating-point hardware
16558 extensions@.
16559
16560 @item fpud_all
16561 Enables support for all single- and double-precision floating-point
16562 hardware extensions. Not available for ARC EM@.
16563
16564 @end table
16565
16566 @item -mirq-ctrl-saved=@var{register-range}, @var{blink}, @var{lp_count}
16567 @opindex mirq-ctrl-saved
16568 Specifies general-purposes registers that the processor automatically
16569 saves/restores on interrupt entry and exit. @var{register-range} is
16570 specified as two registers separated by a dash. The register range
16571 always starts with @code{r0}, the upper limit is @code{fp} register.
16572 @var{blink} and @var{lp_count} are optional. This option is only
16573 valid for ARC EM and ARC HS cores.
16574
16575 @item -mrgf-banked-regs=@var{number}
16576 @opindex mrgf-banked-regs
16577 Specifies the number of registers replicated in second register bank
16578 on entry to fast interrupt. Fast interrupts are interrupts with the
16579 highest priority level P0. These interrupts save only PC and STATUS32
16580 registers to avoid memory transactions during interrupt entry and exit
16581 sequences. Use this option when you are using fast interrupts in an
16582 ARC V2 family processor. Permitted values are 4, 8, 16, and 32.
16583
16584 @item -mlpc-width=@var{width}
16585 @opindex mlpc-width
16586 Specify the width of the @code{lp_count} register. Valid values for
16587 @var{width} are 8, 16, 20, 24, 28 and 32 bits. The default width is
16588 fixed to 32 bits. If the width is less than 32, the compiler does not
16589 attempt to transform loops in your program to use the zero-delay loop
16590 mechanism unless it is known that the @code{lp_count} register can
16591 hold the required loop-counter value. Depending on the width
16592 specified, the compiler and run-time library might continue to use the
16593 loop mechanism for various needs. This option defines macro
16594 @code{__ARC_LPC_WIDTH__} with the value of @var{width}.
16595
16596 @item -mrf16
16597 @opindex mrf16
16598 This option instructs the compiler to generate code for a 16-entry
16599 register file. This option defines the @code{__ARC_RF16__}
16600 preprocessor macro.
16601
16602 @item -mbranch-index
16603 @opindex mbranch-index
16604 Enable use of @code{bi} or @code{bih} instructions to implement jump
16605 tables.
16606
16607 @end table
16608
16609 The following options are passed through to the assembler, and also
16610 define preprocessor macro symbols.
16611
16612 @c Flags used by the assembler, but for which we define preprocessor
16613 @c macro symbols as well.
16614 @table @gcctabopt
16615 @item -mdsp-packa
16616 @opindex mdsp-packa
16617 Passed down to the assembler to enable the DSP Pack A extensions.
16618 Also sets the preprocessor symbol @code{__Xdsp_packa}. This option is
16619 deprecated.
16620
16621 @item -mdvbf
16622 @opindex mdvbf
16623 Passed down to the assembler to enable the dual Viterbi butterfly
16624 extension. Also sets the preprocessor symbol @code{__Xdvbf}. This
16625 option is deprecated.
16626
16627 @c ARC700 4.10 extension instruction
16628 @item -mlock
16629 @opindex mlock
16630 Passed down to the assembler to enable the locked load/store
16631 conditional extension. Also sets the preprocessor symbol
16632 @code{__Xlock}.
16633
16634 @item -mmac-d16
16635 @opindex mmac-d16
16636 Passed down to the assembler. Also sets the preprocessor symbol
16637 @code{__Xxmac_d16}. This option is deprecated.
16638
16639 @item -mmac-24
16640 @opindex mmac-24
16641 Passed down to the assembler. Also sets the preprocessor symbol
16642 @code{__Xxmac_24}. This option is deprecated.
16643
16644 @c ARC700 4.10 extension instruction
16645 @item -mrtsc
16646 @opindex mrtsc
16647 Passed down to the assembler to enable the 64-bit time-stamp counter
16648 extension instruction. Also sets the preprocessor symbol
16649 @code{__Xrtsc}. This option is deprecated.
16650
16651 @c ARC700 4.10 extension instruction
16652 @item -mswape
16653 @opindex mswape
16654 Passed down to the assembler to enable the swap byte ordering
16655 extension instruction. Also sets the preprocessor symbol
16656 @code{__Xswape}.
16657
16658 @item -mtelephony
16659 @opindex mtelephony
16660 Passed down to the assembler to enable dual- and single-operand
16661 instructions for telephony. Also sets the preprocessor symbol
16662 @code{__Xtelephony}. This option is deprecated.
16663
16664 @item -mxy
16665 @opindex mxy
16666 Passed down to the assembler to enable the XY memory extension. Also
16667 sets the preprocessor symbol @code{__Xxy}.
16668
16669 @end table
16670
16671 The following options control how the assembly code is annotated:
16672
16673 @c Assembly annotation options
16674 @table @gcctabopt
16675 @item -misize
16676 @opindex misize
16677 Annotate assembler instructions with estimated addresses.
16678
16679 @item -mannotate-align
16680 @opindex mannotate-align
16681 Explain what alignment considerations lead to the decision to make an
16682 instruction short or long.
16683
16684 @end table
16685
16686 The following options are passed through to the linker:
16687
16688 @c options passed through to the linker
16689 @table @gcctabopt
16690 @item -marclinux
16691 @opindex marclinux
16692 Passed through to the linker, to specify use of the @code{arclinux} emulation.
16693 This option is enabled by default in tool chains built for
16694 @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets
16695 when profiling is not requested.
16696
16697 @item -marclinux_prof
16698 @opindex marclinux_prof
16699 Passed through to the linker, to specify use of the
16700 @code{arclinux_prof} emulation. This option is enabled by default in
16701 tool chains built for @w{@code{arc-linux-uclibc}} and
16702 @w{@code{arceb-linux-uclibc}} targets when profiling is requested.
16703
16704 @end table
16705
16706 The following options control the semantics of generated code:
16707
16708 @c semantically relevant code generation options
16709 @table @gcctabopt
16710 @item -mlong-calls
16711 @opindex mlong-calls
16712 Generate calls as register indirect calls, thus providing access
16713 to the full 32-bit address range.
16714
16715 @item -mmedium-calls
16716 @opindex mmedium-calls
16717 Don't use less than 25-bit addressing range for calls, which is the
16718 offset available for an unconditional branch-and-link
16719 instruction. Conditional execution of function calls is suppressed, to
16720 allow use of the 25-bit range, rather than the 21-bit range with
16721 conditional branch-and-link. This is the default for tool chains built
16722 for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}} targets.
16723
16724 @item -G @var{num}
16725 @opindex G
16726 Put definitions of externally-visible data in a small data section if
16727 that data is no bigger than @var{num} bytes. The default value of
16728 @var{num} is 4 for any ARC configuration, or 8 when we have double
16729 load/store operations.
16730
16731 @item -mno-sdata
16732 @opindex mno-sdata
16733 @opindex msdata
16734 Do not generate sdata references. This is the default for tool chains
16735 built for @w{@code{arc-linux-uclibc}} and @w{@code{arceb-linux-uclibc}}
16736 targets.
16737
16738 @item -mvolatile-cache
16739 @opindex mvolatile-cache
16740 Use ordinarily cached memory accesses for volatile references. This is the
16741 default.
16742
16743 @item -mno-volatile-cache
16744 @opindex mno-volatile-cache
16745 @opindex mvolatile-cache
16746 Enable cache bypass for volatile references.
16747
16748 @end table
16749
16750 The following options fine tune code generation:
16751 @c code generation tuning options
16752 @table @gcctabopt
16753 @item -malign-call
16754 @opindex malign-call
16755 Do alignment optimizations for call instructions.
16756
16757 @item -mauto-modify-reg
16758 @opindex mauto-modify-reg
16759 Enable the use of pre/post modify with register displacement.
16760
16761 @item -mbbit-peephole
16762 @opindex mbbit-peephole
16763 Enable bbit peephole2.
16764
16765 @item -mno-brcc
16766 @opindex mno-brcc
16767 This option disables a target-specific pass in @file{arc_reorg} to
16768 generate compare-and-branch (@code{br@var{cc}}) instructions.
16769 It has no effect on
16770 generation of these instructions driven by the combiner pass.
16771
16772 @item -mcase-vector-pcrel
16773 @opindex mcase-vector-pcrel
16774 Use PC-relative switch case tables to enable case table shortening.
16775 This is the default for @option{-Os}.
16776
16777 @item -mcompact-casesi
16778 @opindex mcompact-casesi
16779 Enable compact @code{casesi} pattern. This is the default for @option{-Os},
16780 and only available for ARCv1 cores. This option is deprecated.
16781
16782 @item -mno-cond-exec
16783 @opindex mno-cond-exec
16784 Disable the ARCompact-specific pass to generate conditional
16785 execution instructions.
16786
16787 Due to delay slot scheduling and interactions between operand numbers,
16788 literal sizes, instruction lengths, and the support for conditional execution,
16789 the target-independent pass to generate conditional execution is often lacking,
16790 so the ARC port has kept a special pass around that tries to find more
16791 conditional execution generation opportunities after register allocation,
16792 branch shortening, and delay slot scheduling have been done. This pass
16793 generally, but not always, improves performance and code size, at the cost of
16794 extra compilation time, which is why there is an option to switch it off.
16795 If you have a problem with call instructions exceeding their allowable
16796 offset range because they are conditionalized, you should consider using
16797 @option{-mmedium-calls} instead.
16798
16799 @item -mearly-cbranchsi
16800 @opindex mearly-cbranchsi
16801 Enable pre-reload use of the @code{cbranchsi} pattern.
16802
16803 @item -mexpand-adddi
16804 @opindex mexpand-adddi
16805 Expand @code{adddi3} and @code{subdi3} at RTL generation time into
16806 @code{add.f}, @code{adc} etc. This option is deprecated.
16807
16808 @item -mindexed-loads
16809 @opindex mindexed-loads
16810 Enable the use of indexed loads. This can be problematic because some
16811 optimizers then assume that indexed stores exist, which is not
16812 the case.
16813
16814 @item -mlra
16815 @opindex mlra
16816 Enable Local Register Allocation. This is still experimental for ARC,
16817 so by default the compiler uses standard reload
16818 (i.e.@: @option{-mno-lra}).
16819
16820 @item -mlra-priority-none
16821 @opindex mlra-priority-none
16822 Don't indicate any priority for target registers.
16823
16824 @item -mlra-priority-compact
16825 @opindex mlra-priority-compact
16826 Indicate target register priority for r0..r3 / r12..r15.
16827
16828 @item -mlra-priority-noncompact
16829 @opindex mlra-priority-noncompact
16830 Reduce target register priority for r0..r3 / r12..r15.
16831
16832 @item -mmillicode
16833 @opindex mmillicode
16834 When optimizing for size (using @option{-Os}), prologues and epilogues
16835 that have to save or restore a large number of registers are often
16836 shortened by using call to a special function in libgcc; this is
16837 referred to as a @emph{millicode} call. As these calls can pose
16838 performance issues, and/or cause linking issues when linking in a
16839 nonstandard way, this option is provided to turn on or off millicode
16840 call generation.
16841
16842 @item -mcode-density-frame
16843 @opindex mcode-density-frame
16844 This option enable the compiler to emit @code{enter} and @code{leave}
16845 instructions. These instructions are only valid for CPUs with
16846 code-density feature.
16847
16848 @item -mmixed-code
16849 @opindex mmixed-code
16850 Tweak register allocation to help 16-bit instruction generation.
16851 This generally has the effect of decreasing the average instruction size
16852 while increasing the instruction count.
16853
16854 @item -mq-class
16855 @opindex mq-class
16856 Enable @samp{q} instruction alternatives.
16857 This is the default for @option{-Os}.
16858
16859 @item -mRcq
16860 @opindex mRcq
16861 Enable @samp{Rcq} constraint handling.
16862 Most short code generation depends on this.
16863 This is the default.
16864
16865 @item -mRcw
16866 @opindex mRcw
16867 Enable @samp{Rcw} constraint handling.
16868 Most ccfsm condexec mostly depends on this.
16869 This is the default.
16870
16871 @item -msize-level=@var{level}
16872 @opindex msize-level
16873 Fine-tune size optimization with regards to instruction lengths and alignment.
16874 The recognized values for @var{level} are:
16875 @table @samp
16876 @item 0
16877 No size optimization. This level is deprecated and treated like @samp{1}.
16878
16879 @item 1
16880 Short instructions are used opportunistically.
16881
16882 @item 2
16883 In addition, alignment of loops and of code after barriers are dropped.
16884
16885 @item 3
16886 In addition, optional data alignment is dropped, and the option @option{Os} is enabled.
16887
16888 @end table
16889
16890 This defaults to @samp{3} when @option{-Os} is in effect. Otherwise,
16891 the behavior when this is not set is equivalent to level @samp{1}.
16892
16893 @item -mtune=@var{cpu}
16894 @opindex mtune
16895 Set instruction scheduling parameters for @var{cpu}, overriding any implied
16896 by @option{-mcpu=}.
16897
16898 Supported values for @var{cpu} are
16899
16900 @table @samp
16901 @item ARC600
16902 Tune for ARC600 CPU.
16903
16904 @item ARC601
16905 Tune for ARC601 CPU.
16906
16907 @item ARC700
16908 Tune for ARC700 CPU with standard multiplier block.
16909
16910 @item ARC700-xmac
16911 Tune for ARC700 CPU with XMAC block.
16912
16913 @item ARC725D
16914 Tune for ARC725D CPU.
16915
16916 @item ARC750D
16917 Tune for ARC750D CPU.
16918
16919 @end table
16920
16921 @item -mmultcost=@var{num}
16922 @opindex mmultcost
16923 Cost to assume for a multiply instruction, with @samp{4} being equal to a
16924 normal instruction.
16925
16926 @item -munalign-prob-threshold=@var{probability}
16927 @opindex munalign-prob-threshold
16928 Set probability threshold for unaligning branches.
16929 When tuning for @samp{ARC700} and optimizing for speed, branches without
16930 filled delay slot are preferably emitted unaligned and long, unless
16931 profiling indicates that the probability for the branch to be taken
16932 is below @var{probability}. @xref{Cross-profiling}.
16933 The default is (REG_BR_PROB_BASE/2), i.e.@: 5000.
16934
16935 @end table
16936
16937 The following options are maintained for backward compatibility, but
16938 are now deprecated and will be removed in a future release:
16939
16940 @c Deprecated options
16941 @table @gcctabopt
16942
16943 @item -margonaut
16944 @opindex margonaut
16945 Obsolete FPX.
16946
16947 @item -mbig-endian
16948 @opindex mbig-endian
16949 @itemx -EB
16950 @opindex EB
16951 Compile code for big-endian targets. Use of these options is now
16952 deprecated. Big-endian code is supported by configuring GCC to build
16953 @w{@code{arceb-elf32}} and @w{@code{arceb-linux-uclibc}} targets,
16954 for which big endian is the default.
16955
16956 @item -mlittle-endian
16957 @opindex mlittle-endian
16958 @itemx -EL
16959 @opindex EL
16960 Compile code for little-endian targets. Use of these options is now
16961 deprecated. Little-endian code is supported by configuring GCC to build
16962 @w{@code{arc-elf32}} and @w{@code{arc-linux-uclibc}} targets,
16963 for which little endian is the default.
16964
16965 @item -mbarrel_shifter
16966 @opindex mbarrel_shifter
16967 Replaced by @option{-mbarrel-shifter}.
16968
16969 @item -mdpfp_compact
16970 @opindex mdpfp_compact
16971 Replaced by @option{-mdpfp-compact}.
16972
16973 @item -mdpfp_fast
16974 @opindex mdpfp_fast
16975 Replaced by @option{-mdpfp-fast}.
16976
16977 @item -mdsp_packa
16978 @opindex mdsp_packa
16979 Replaced by @option{-mdsp-packa}.
16980
16981 @item -mEA
16982 @opindex mEA
16983 Replaced by @option{-mea}.
16984
16985 @item -mmac_24
16986 @opindex mmac_24
16987 Replaced by @option{-mmac-24}.
16988
16989 @item -mmac_d16
16990 @opindex mmac_d16
16991 Replaced by @option{-mmac-d16}.
16992
16993 @item -mspfp_compact
16994 @opindex mspfp_compact
16995 Replaced by @option{-mspfp-compact}.
16996
16997 @item -mspfp_fast
16998 @opindex mspfp_fast
16999 Replaced by @option{-mspfp-fast}.
17000
17001 @item -mtune=@var{cpu}
17002 @opindex mtune
17003 Values @samp{arc600}, @samp{arc601}, @samp{arc700} and
17004 @samp{arc700-xmac} for @var{cpu} are replaced by @samp{ARC600},
17005 @samp{ARC601}, @samp{ARC700} and @samp{ARC700-xmac} respectively.
17006
17007 @item -multcost=@var{num}
17008 @opindex multcost
17009 Replaced by @option{-mmultcost}.
17010
17011 @end table
17012
17013 @node ARM Options
17014 @subsection ARM Options
17015 @cindex ARM options
17016
17017 These @samp{-m} options are defined for the ARM port:
17018
17019 @table @gcctabopt
17020 @item -mabi=@var{name}
17021 @opindex mabi
17022 Generate code for the specified ABI@. Permissible values are: @samp{apcs-gnu},
17023 @samp{atpcs}, @samp{aapcs}, @samp{aapcs-linux} and @samp{iwmmxt}.
17024
17025 @item -mapcs-frame
17026 @opindex mapcs-frame
17027 Generate a stack frame that is compliant with the ARM Procedure Call
17028 Standard for all functions, even if this is not strictly necessary for
17029 correct execution of the code. Specifying @option{-fomit-frame-pointer}
17030 with this option causes the stack frames not to be generated for
17031 leaf functions. The default is @option{-mno-apcs-frame}.
17032 This option is deprecated.
17033
17034 @item -mapcs
17035 @opindex mapcs
17036 This is a synonym for @option{-mapcs-frame} and is deprecated.
17037
17038 @ignore
17039 @c not currently implemented
17040 @item -mapcs-stack-check
17041 @opindex mapcs-stack-check
17042 Generate code to check the amount of stack space available upon entry to
17043 every function (that actually uses some stack space). If there is
17044 insufficient space available then either the function
17045 @code{__rt_stkovf_split_small} or @code{__rt_stkovf_split_big} is
17046 called, depending upon the amount of stack space required. The runtime
17047 system is required to provide these functions. The default is
17048 @option{-mno-apcs-stack-check}, since this produces smaller code.
17049
17050 @c not currently implemented
17051 @item -mapcs-reentrant
17052 @opindex mapcs-reentrant
17053 Generate reentrant, position-independent code. The default is
17054 @option{-mno-apcs-reentrant}.
17055 @end ignore
17056
17057 @item -mthumb-interwork
17058 @opindex mthumb-interwork
17059 Generate code that supports calling between the ARM and Thumb
17060 instruction sets. Without this option, on pre-v5 architectures, the
17061 two instruction sets cannot be reliably used inside one program. The
17062 default is @option{-mno-thumb-interwork}, since slightly larger code
17063 is generated when @option{-mthumb-interwork} is specified. In AAPCS
17064 configurations this option is meaningless.
17065
17066 @item -mno-sched-prolog
17067 @opindex mno-sched-prolog
17068 @opindex msched-prolog
17069 Prevent the reordering of instructions in the function prologue, or the
17070 merging of those instruction with the instructions in the function's
17071 body. This means that all functions start with a recognizable set
17072 of instructions (or in fact one of a choice from a small set of
17073 different function prologues), and this information can be used to
17074 locate the start of functions inside an executable piece of code. The
17075 default is @option{-msched-prolog}.
17076
17077 @item -mfloat-abi=@var{name}
17078 @opindex mfloat-abi
17079 Specifies which floating-point ABI to use. Permissible values
17080 are: @samp{soft}, @samp{softfp} and @samp{hard}.
17081
17082 Specifying @samp{soft} causes GCC to generate output containing
17083 library calls for floating-point operations.
17084 @samp{softfp} allows the generation of code using hardware floating-point
17085 instructions, but still uses the soft-float calling conventions.
17086 @samp{hard} allows generation of floating-point instructions
17087 and uses FPU-specific calling conventions.
17088
17089 The default depends on the specific target configuration. Note that
17090 the hard-float and soft-float ABIs are not link-compatible; you must
17091 compile your entire program with the same ABI, and link with a
17092 compatible set of libraries.
17093
17094 @item -mgeneral-regs-only
17095 @opindex mgeneral-regs-only
17096 Generate code which uses only the general-purpose registers. This will prevent
17097 the compiler from using floating-point and Advanced SIMD registers but will not
17098 impose any restrictions on the assembler.
17099
17100 @item -mlittle-endian
17101 @opindex mlittle-endian
17102 Generate code for a processor running in little-endian mode. This is
17103 the default for all standard configurations.
17104
17105 @item -mbig-endian
17106 @opindex mbig-endian
17107 Generate code for a processor running in big-endian mode; the default is
17108 to compile code for a little-endian processor.
17109
17110 @item -mbe8
17111 @itemx -mbe32
17112 @opindex mbe8
17113 When linking a big-endian image select between BE8 and BE32 formats.
17114 The option has no effect for little-endian images and is ignored. The
17115 default is dependent on the selected target architecture. For ARMv6
17116 and later architectures the default is BE8, for older architectures
17117 the default is BE32. BE32 format has been deprecated by ARM.
17118
17119 @item -march=@var{name}@r{[}+extension@dots{}@r{]}
17120 @opindex march
17121 This specifies the name of the target ARM architecture. GCC uses this
17122 name to determine what kind of instructions it can emit when generating
17123 assembly code. This option can be used in conjunction with or instead
17124 of the @option{-mcpu=} option.
17125
17126 Permissible names are:
17127 @samp{armv4t},
17128 @samp{armv5t}, @samp{armv5te},
17129 @samp{armv6}, @samp{armv6j}, @samp{armv6k}, @samp{armv6kz}, @samp{armv6t2},
17130 @samp{armv6z}, @samp{armv6zk},
17131 @samp{armv7}, @samp{armv7-a}, @samp{armv7ve},
17132 @samp{armv8-a}, @samp{armv8.1-a}, @samp{armv8.2-a}, @samp{armv8.3-a},
17133 @samp{armv8.4-a},
17134 @samp{armv8.5-a},
17135 @samp{armv7-r},
17136 @samp{armv8-r},
17137 @samp{armv6-m}, @samp{armv6s-m},
17138 @samp{armv7-m}, @samp{armv7e-m},
17139 @samp{armv8-m.base}, @samp{armv8-m.main},
17140 @samp{iwmmxt} and @samp{iwmmxt2}.
17141
17142 Additionally, the following architectures, which lack support for the
17143 Thumb execution state, are recognized but support is deprecated: @samp{armv4}.
17144
17145 Many of the architectures support extensions. These can be added by
17146 appending @samp{+@var{extension}} to the architecture name. Extension
17147 options are processed in order and capabilities accumulate. An extension
17148 will also enable any necessary base extensions
17149 upon which it depends. For example, the @samp{+crypto} extension
17150 will always enable the @samp{+simd} extension. The exception to the
17151 additive construction is for extensions that are prefixed with
17152 @samp{+no@dots{}}: these extensions disable the specified option and
17153 any other extensions that may depend on the presence of that
17154 extension.
17155
17156 For example, @samp{-march=armv7-a+simd+nofp+vfpv4} is equivalent to
17157 writing @samp{-march=armv7-a+vfpv4} since the @samp{+simd} option is
17158 entirely disabled by the @samp{+nofp} option that follows it.
17159
17160 Most extension names are generically named, but have an effect that is
17161 dependent upon the architecture to which it is applied. For example,
17162 the @samp{+simd} option can be applied to both @samp{armv7-a} and
17163 @samp{armv8-a} architectures, but will enable the original ARMv7-A
17164 Advanced SIMD (Neon) extensions for @samp{armv7-a} and the ARMv8-A
17165 variant for @samp{armv8-a}.
17166
17167 The table below lists the supported extensions for each architecture.
17168 Architectures not mentioned do not support any extensions.
17169
17170 @table @samp
17171 @item armv5te
17172 @itemx armv6
17173 @itemx armv6j
17174 @itemx armv6k
17175 @itemx armv6kz
17176 @itemx armv6t2
17177 @itemx armv6z
17178 @itemx armv6zk
17179 @table @samp
17180 @item +fp
17181 The VFPv2 floating-point instructions. The extension @samp{+vfpv2} can be
17182 used as an alias for this extension.
17183
17184 @item +nofp
17185 Disable the floating-point instructions.
17186 @end table
17187
17188 @item armv7
17189 The common subset of the ARMv7-A, ARMv7-R and ARMv7-M architectures.
17190 @table @samp
17191 @item +fp
17192 The VFPv3 floating-point instructions, with 16 double-precision
17193 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17194 for this extension. Note that floating-point is not supported by the
17195 base ARMv7-M architecture, but is compatible with both the ARMv7-A and
17196 ARMv7-R architectures.
17197
17198 @item +nofp
17199 Disable the floating-point instructions.
17200 @end table
17201
17202 @item armv7-a
17203 @table @samp
17204 @item +mp
17205 The multiprocessing extension.
17206
17207 @item +sec
17208 The security extension.
17209
17210 @item +fp
17211 The VFPv3 floating-point instructions, with 16 double-precision
17212 registers. The extension @samp{+vfpv3-d16} can be used as an alias
17213 for this extension.
17214
17215 @item +simd
17216 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17217 The extensions @samp{+neon} and @samp{+neon-vfpv3} can be used as aliases
17218 for this extension.
17219
17220 @item +vfpv3
17221 The VFPv3 floating-point instructions, with 32 double-precision
17222 registers.
17223
17224 @item +vfpv3-d16-fp16
17225 The VFPv3 floating-point instructions, with 16 double-precision
17226 registers and the half-precision floating-point conversion operations.
17227
17228 @item +vfpv3-fp16
17229 The VFPv3 floating-point instructions, with 32 double-precision
17230 registers and the half-precision floating-point conversion operations.
17231
17232 @item +vfpv4-d16
17233 The VFPv4 floating-point instructions, with 16 double-precision
17234 registers.
17235
17236 @item +vfpv4
17237 The VFPv4 floating-point instructions, with 32 double-precision
17238 registers.
17239
17240 @item +neon-fp16
17241 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17242 the half-precision floating-point conversion operations.
17243
17244 @item +neon-vfpv4
17245 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions.
17246
17247 @item +nosimd
17248 Disable the Advanced SIMD instructions (does not disable floating point).
17249
17250 @item +nofp
17251 Disable the floating-point and Advanced SIMD instructions.
17252 @end table
17253
17254 @item armv7ve
17255 The extended version of the ARMv7-A architecture with support for
17256 virtualization.
17257 @table @samp
17258 @item +fp
17259 The VFPv4 floating-point instructions, with 16 double-precision registers.
17260 The extension @samp{+vfpv4-d16} can be used as an alias for this extension.
17261
17262 @item +simd
17263 The Advanced SIMD (Neon) v2 and the VFPv4 floating-point instructions. The
17264 extension @samp{+neon-vfpv4} can be used as an alias for this extension.
17265
17266 @item +vfpv3-d16
17267 The VFPv3 floating-point instructions, with 16 double-precision
17268 registers.
17269
17270 @item +vfpv3
17271 The VFPv3 floating-point instructions, with 32 double-precision
17272 registers.
17273
17274 @item +vfpv3-d16-fp16
17275 The VFPv3 floating-point instructions, with 16 double-precision
17276 registers and the half-precision floating-point conversion operations.
17277
17278 @item +vfpv3-fp16
17279 The VFPv3 floating-point instructions, with 32 double-precision
17280 registers and the half-precision floating-point conversion operations.
17281
17282 @item +vfpv4-d16
17283 The VFPv4 floating-point instructions, with 16 double-precision
17284 registers.
17285
17286 @item +vfpv4
17287 The VFPv4 floating-point instructions, with 32 double-precision
17288 registers.
17289
17290 @item +neon
17291 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions.
17292 The extension @samp{+neon-vfpv3} can be used as an alias for this extension.
17293
17294 @item +neon-fp16
17295 The Advanced SIMD (Neon) v1 and the VFPv3 floating-point instructions, with
17296 the half-precision floating-point conversion operations.
17297
17298 @item +nosimd
17299 Disable the Advanced SIMD instructions (does not disable floating point).
17300
17301 @item +nofp
17302 Disable the floating-point and Advanced SIMD instructions.
17303 @end table
17304
17305 @item armv8-a
17306 @table @samp
17307 @item +crc
17308 The Cyclic Redundancy Check (CRC) instructions.
17309 @item +simd
17310 The ARMv8-A Advanced SIMD and floating-point instructions.
17311 @item +crypto
17312 The cryptographic instructions.
17313 @item +nocrypto
17314 Disable the cryptographic instructions.
17315 @item +nofp
17316 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17317 @item +sb
17318 Speculation Barrier Instruction.
17319 @item +predres
17320 Execution and Data Prediction Restriction Instructions.
17321 @end table
17322
17323 @item armv8.1-a
17324 @table @samp
17325 @item +simd
17326 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17327
17328 @item +crypto
17329 The cryptographic instructions. This also enables the Advanced SIMD and
17330 floating-point instructions.
17331
17332 @item +nocrypto
17333 Disable the cryptographic instructions.
17334
17335 @item +nofp
17336 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17337
17338 @item +sb
17339 Speculation Barrier Instruction.
17340
17341 @item +predres
17342 Execution and Data Prediction Restriction Instructions.
17343 @end table
17344
17345 @item armv8.2-a
17346 @itemx armv8.3-a
17347 @table @samp
17348 @item +fp16
17349 The half-precision floating-point data processing instructions.
17350 This also enables the Advanced SIMD and floating-point instructions.
17351
17352 @item +fp16fml
17353 The half-precision floating-point fmla extension. This also enables
17354 the half-precision floating-point extension and Advanced SIMD and
17355 floating-point instructions.
17356
17357 @item +simd
17358 The ARMv8.1-A Advanced SIMD and floating-point instructions.
17359
17360 @item +crypto
17361 The cryptographic instructions. This also enables the Advanced SIMD and
17362 floating-point instructions.
17363
17364 @item +dotprod
17365 Enable the Dot Product extension. This also enables Advanced SIMD instructions.
17366
17367 @item +nocrypto
17368 Disable the cryptographic extension.
17369
17370 @item +nofp
17371 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17372
17373 @item +sb
17374 Speculation Barrier Instruction.
17375
17376 @item +predres
17377 Execution and Data Prediction Restriction Instructions.
17378 @end table
17379
17380 @item armv8.4-a
17381 @table @samp
17382 @item +fp16
17383 The half-precision floating-point data processing instructions.
17384 This also enables the Advanced SIMD and floating-point instructions as well
17385 as the Dot Product extension and the half-precision floating-point fmla
17386 extension.
17387
17388 @item +simd
17389 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17390 Dot Product extension.
17391
17392 @item +crypto
17393 The cryptographic instructions. This also enables the Advanced SIMD and
17394 floating-point instructions as well as the Dot Product extension.
17395
17396 @item +nocrypto
17397 Disable the cryptographic extension.
17398
17399 @item +nofp
17400 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17401
17402 @item +sb
17403 Speculation Barrier Instruction.
17404
17405 @item +predres
17406 Execution and Data Prediction Restriction Instructions.
17407 @end table
17408
17409 @item armv8.5-a
17410 @table @samp
17411 @item +fp16
17412 The half-precision floating-point data processing instructions.
17413 This also enables the Advanced SIMD and floating-point instructions as well
17414 as the Dot Product extension and the half-precision floating-point fmla
17415 extension.
17416
17417 @item +simd
17418 The ARMv8.3-A Advanced SIMD and floating-point instructions as well as the
17419 Dot Product extension.
17420
17421 @item +crypto
17422 The cryptographic instructions. This also enables the Advanced SIMD and
17423 floating-point instructions as well as the Dot Product extension.
17424
17425 @item +nocrypto
17426 Disable the cryptographic extension.
17427
17428 @item +nofp
17429 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17430 @end table
17431
17432 @item armv7-r
17433 @table @samp
17434 @item +fp.sp
17435 The single-precision VFPv3 floating-point instructions. The extension
17436 @samp{+vfpv3xd} can be used as an alias for this extension.
17437
17438 @item +fp
17439 The VFPv3 floating-point instructions with 16 double-precision registers.
17440 The extension +vfpv3-d16 can be used as an alias for this extension.
17441
17442 @item +vfpv3xd-d16-fp16
17443 The single-precision VFPv3 floating-point instructions with 16 double-precision
17444 registers and the half-precision floating-point conversion operations.
17445
17446 @item +vfpv3-d16-fp16
17447 The VFPv3 floating-point instructions with 16 double-precision
17448 registers and the half-precision floating-point conversion operations.
17449
17450 @item +nofp
17451 Disable the floating-point extension.
17452
17453 @item +idiv
17454 The ARM-state integer division instructions.
17455
17456 @item +noidiv
17457 Disable the ARM-state integer division extension.
17458 @end table
17459
17460 @item armv7e-m
17461 @table @samp
17462 @item +fp
17463 The single-precision VFPv4 floating-point instructions.
17464
17465 @item +fpv5
17466 The single-precision FPv5 floating-point instructions.
17467
17468 @item +fp.dp
17469 The single- and double-precision FPv5 floating-point instructions.
17470
17471 @item +nofp
17472 Disable the floating-point extensions.
17473 @end table
17474
17475 @item armv8-m.main
17476 @table @samp
17477 @item +dsp
17478 The DSP instructions.
17479
17480 @item +nodsp
17481 Disable the DSP extension.
17482
17483 @item +fp
17484 The single-precision floating-point instructions.
17485
17486 @item +fp.dp
17487 The single- and double-precision floating-point instructions.
17488
17489 @item +nofp
17490 Disable the floating-point extension.
17491 @end table
17492
17493 @item armv8-r
17494 @table @samp
17495 @item +crc
17496 The Cyclic Redundancy Check (CRC) instructions.
17497 @item +fp.sp
17498 The single-precision FPv5 floating-point instructions.
17499 @item +simd
17500 The ARMv8-A Advanced SIMD and floating-point instructions.
17501 @item +crypto
17502 The cryptographic instructions.
17503 @item +nocrypto
17504 Disable the cryptographic instructions.
17505 @item +nofp
17506 Disable the floating-point, Advanced SIMD and cryptographic instructions.
17507 @end table
17508
17509 @end table
17510
17511 @option{-march=native} causes the compiler to auto-detect the architecture
17512 of the build computer. At present, this feature is only supported on
17513 GNU/Linux, and not all architectures are recognized. If the auto-detect
17514 is unsuccessful the option has no effect.
17515
17516 @item -mtune=@var{name}
17517 @opindex mtune
17518 This option specifies the name of the target ARM processor for
17519 which GCC should tune the performance of the code.
17520 For some ARM implementations better performance can be obtained by using
17521 this option.
17522 Permissible names are: @samp{arm7tdmi}, @samp{arm7tdmi-s}, @samp{arm710t},
17523 @samp{arm720t}, @samp{arm740t}, @samp{strongarm}, @samp{strongarm110},
17524 @samp{strongarm1100}, 0@samp{strongarm1110}, @samp{arm8}, @samp{arm810},
17525 @samp{arm9}, @samp{arm9e}, @samp{arm920}, @samp{arm920t}, @samp{arm922t},
17526 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm926ej-s},
17527 @samp{arm940t}, @samp{arm9tdmi}, @samp{arm10tdmi}, @samp{arm1020t},
17528 @samp{arm1026ej-s}, @samp{arm10e}, @samp{arm1020e}, @samp{arm1022e},
17529 @samp{arm1136j-s}, @samp{arm1136jf-s}, @samp{mpcore}, @samp{mpcorenovfp},
17530 @samp{arm1156t2-s}, @samp{arm1156t2f-s}, @samp{arm1176jz-s}, @samp{arm1176jzf-s},
17531 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}, @samp{cortex-a8},
17532 @samp{cortex-a9}, @samp{cortex-a12}, @samp{cortex-a15}, @samp{cortex-a17},
17533 @samp{cortex-a32}, @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55},
17534 @samp{cortex-a57}, @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75},
17535 @samp{cortex-a76}, @samp{ares}, @samp{cortex-r4}, @samp{cortex-r4f},
17536 @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52},
17537 @samp{cortex-m0}, @samp{cortex-m0plus}, @samp{cortex-m1}, @samp{cortex-m3},
17538 @samp{cortex-m4}, @samp{cortex-m7}, @samp{cortex-m23}, @samp{cortex-m33},
17539 @samp{cortex-m1.small-multiply}, @samp{cortex-m0.small-multiply},
17540 @samp{cortex-m0plus.small-multiply}, @samp{exynos-m1}, @samp{marvell-pj4},
17541 @samp{neoverse-n1}, @samp{xscale}, @samp{iwmmxt}, @samp{iwmmxt2},
17542 @samp{ep9312}, @samp{fa526}, @samp{fa626}, @samp{fa606te}, @samp{fa626te},
17543 @samp{fmp626}, @samp{fa726te}, @samp{xgene1}.
17544
17545 Additionally, this option can specify that GCC should tune the performance
17546 of the code for a big.LITTLE system. Permissible names are:
17547 @samp{cortex-a15.cortex-a7}, @samp{cortex-a17.cortex-a7},
17548 @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17549 @samp{cortex-a72.cortex-a35}, @samp{cortex-a73.cortex-a53},
17550 @samp{cortex-a75.cortex-a55}, @samp{cortex-a76.cortex-a55}.
17551
17552 @option{-mtune=generic-@var{arch}} specifies that GCC should tune the
17553 performance for a blend of processors within architecture @var{arch}.
17554 The aim is to generate code that run well on the current most popular
17555 processors, balancing between optimizations that benefit some CPUs in the
17556 range, and avoiding performance pitfalls of other CPUs. The effects of
17557 this option may change in future GCC versions as CPU models come and go.
17558
17559 @option{-mtune} permits the same extension options as @option{-mcpu}, but
17560 the extension options do not affect the tuning of the generated code.
17561
17562 @option{-mtune=native} causes the compiler to auto-detect the CPU
17563 of the build computer. At present, this feature is only supported on
17564 GNU/Linux, and not all architectures are recognized. If the auto-detect is
17565 unsuccessful the option has no effect.
17566
17567 @item -mcpu=@var{name}@r{[}+extension@dots{}@r{]}
17568 @opindex mcpu
17569 This specifies the name of the target ARM processor. GCC uses this name
17570 to derive the name of the target ARM architecture (as if specified
17571 by @option{-march}) and the ARM processor type for which to tune for
17572 performance (as if specified by @option{-mtune}). Where this option
17573 is used in conjunction with @option{-march} or @option{-mtune},
17574 those options take precedence over the appropriate part of this option.
17575
17576 Many of the supported CPUs implement optional architectural
17577 extensions. Where this is so the architectural extensions are
17578 normally enabled by default. If implementations that lack the
17579 extension exist, then the extension syntax can be used to disable
17580 those extensions that have been omitted. For floating-point and
17581 Advanced SIMD (Neon) instructions, the settings of the options
17582 @option{-mfloat-abi} and @option{-mfpu} must also be considered:
17583 floating-point and Advanced SIMD instructions will only be used if
17584 @option{-mfloat-abi} is not set to @samp{soft}; and any setting of
17585 @option{-mfpu} other than @samp{auto} will override the available
17586 floating-point and SIMD extension instructions.
17587
17588 For example, @samp{cortex-a9} can be found in three major
17589 configurations: integer only, with just a floating-point unit or with
17590 floating-point and Advanced SIMD. The default is to enable all the
17591 instructions, but the extensions @samp{+nosimd} and @samp{+nofp} can
17592 be used to disable just the SIMD or both the SIMD and floating-point
17593 instructions respectively.
17594
17595 Permissible names for this option are the same as those for
17596 @option{-mtune}.
17597
17598 The following extension options are common to the listed CPUs:
17599
17600 @table @samp
17601 @item +nodsp
17602 Disable the DSP instructions on @samp{cortex-m33}.
17603
17604 @item +nofp
17605 Disables the floating-point instructions on @samp{arm9e},
17606 @samp{arm946e-s}, @samp{arm966e-s}, @samp{arm968e-s}, @samp{arm10e},
17607 @samp{arm1020e}, @samp{arm1022e}, @samp{arm926ej-s},
17608 @samp{arm1026ej-s}, @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8},
17609 @samp{cortex-m4}, @samp{cortex-m7} and @samp{cortex-m33}.
17610 Disables the floating-point and SIMD instructions on
17611 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7},
17612 @samp{cortex-a8}, @samp{cortex-a9}, @samp{cortex-a12},
17613 @samp{cortex-a15}, @samp{cortex-a17}, @samp{cortex-a15.cortex-a7},
17614 @samp{cortex-a17.cortex-a7}, @samp{cortex-a32}, @samp{cortex-a35},
17615 @samp{cortex-a53} and @samp{cortex-a55}.
17616
17617 @item +nofp.dp
17618 Disables the double-precision component of the floating-point instructions
17619 on @samp{cortex-r5}, @samp{cortex-r7}, @samp{cortex-r8}, @samp{cortex-r52} and
17620 @samp{cortex-m7}.
17621
17622 @item +nosimd
17623 Disables the SIMD (but not floating-point) instructions on
17624 @samp{generic-armv7-a}, @samp{cortex-a5}, @samp{cortex-a7}
17625 and @samp{cortex-a9}.
17626
17627 @item +crypto
17628 Enables the cryptographic instructions on @samp{cortex-a32},
17629 @samp{cortex-a35}, @samp{cortex-a53}, @samp{cortex-a55}, @samp{cortex-a57},
17630 @samp{cortex-a72}, @samp{cortex-a73}, @samp{cortex-a75}, @samp{exynos-m1},
17631 @samp{xgene1}, @samp{cortex-a57.cortex-a53}, @samp{cortex-a72.cortex-a53},
17632 @samp{cortex-a73.cortex-a35}, @samp{cortex-a73.cortex-a53} and
17633 @samp{cortex-a75.cortex-a55}.
17634 @end table
17635
17636 Additionally the @samp{generic-armv7-a} pseudo target defaults to
17637 VFPv3 with 16 double-precision registers. It supports the following
17638 extension options: @samp{mp}, @samp{sec}, @samp{vfpv3-d16},
17639 @samp{vfpv3}, @samp{vfpv3-d16-fp16}, @samp{vfpv3-fp16},
17640 @samp{vfpv4-d16}, @samp{vfpv4}, @samp{neon}, @samp{neon-vfpv3},
17641 @samp{neon-fp16}, @samp{neon-vfpv4}. The meanings are the same as for
17642 the extensions to @option{-march=armv7-a}.
17643
17644 @option{-mcpu=generic-@var{arch}} is also permissible, and is
17645 equivalent to @option{-march=@var{arch} -mtune=generic-@var{arch}}.
17646 See @option{-mtune} for more information.
17647
17648 @option{-mcpu=native} causes the compiler to auto-detect the CPU
17649 of the build computer. At present, this feature is only supported on
17650 GNU/Linux, and not all architectures are recognized. If the auto-detect
17651 is unsuccessful the option has no effect.
17652
17653 @item -mfpu=@var{name}
17654 @opindex mfpu
17655 This specifies what floating-point hardware (or hardware emulation) is
17656 available on the target. Permissible names are: @samp{auto}, @samp{vfpv2},
17657 @samp{vfpv3},
17658 @samp{vfpv3-fp16}, @samp{vfpv3-d16}, @samp{vfpv3-d16-fp16}, @samp{vfpv3xd},
17659 @samp{vfpv3xd-fp16}, @samp{neon-vfpv3}, @samp{neon-fp16}, @samp{vfpv4},
17660 @samp{vfpv4-d16}, @samp{fpv4-sp-d16}, @samp{neon-vfpv4},
17661 @samp{fpv5-d16}, @samp{fpv5-sp-d16},
17662 @samp{fp-armv8}, @samp{neon-fp-armv8} and @samp{crypto-neon-fp-armv8}.
17663 Note that @samp{neon} is an alias for @samp{neon-vfpv3} and @samp{vfp}
17664 is an alias for @samp{vfpv2}.
17665
17666 The setting @samp{auto} is the default and is special. It causes the
17667 compiler to select the floating-point and Advanced SIMD instructions
17668 based on the settings of @option{-mcpu} and @option{-march}.
17669
17670 If the selected floating-point hardware includes the NEON extension
17671 (e.g.@: @option{-mfpu=neon}), note that floating-point
17672 operations are not generated by GCC's auto-vectorization pass unless
17673 @option{-funsafe-math-optimizations} is also specified. This is
17674 because NEON hardware does not fully implement the IEEE 754 standard for
17675 floating-point arithmetic (in particular denormal values are treated as
17676 zero), so the use of NEON instructions may lead to a loss of precision.
17677
17678 You can also set the fpu name at function level by using the @code{target("fpu=")} function attributes (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17679
17680 @item -mfp16-format=@var{name}
17681 @opindex mfp16-format
17682 Specify the format of the @code{__fp16} half-precision floating-point type.
17683 Permissible names are @samp{none}, @samp{ieee}, and @samp{alternative};
17684 the default is @samp{none}, in which case the @code{__fp16} type is not
17685 defined. @xref{Half-Precision}, for more information.
17686
17687 @item -mstructure-size-boundary=@var{n}
17688 @opindex mstructure-size-boundary
17689 The sizes of all structures and unions are rounded up to a multiple
17690 of the number of bits set by this option. Permissible values are 8, 32
17691 and 64. The default value varies for different toolchains. For the COFF
17692 targeted toolchain the default value is 8. A value of 64 is only allowed
17693 if the underlying ABI supports it.
17694
17695 Specifying a larger number can produce faster, more efficient code, but
17696 can also increase the size of the program. Different values are potentially
17697 incompatible. Code compiled with one value cannot necessarily expect to
17698 work with code or libraries compiled with another value, if they exchange
17699 information using structures or unions.
17700
17701 This option is deprecated.
17702
17703 @item -mabort-on-noreturn
17704 @opindex mabort-on-noreturn
17705 Generate a call to the function @code{abort} at the end of a
17706 @code{noreturn} function. It is executed if the function tries to
17707 return.
17708
17709 @item -mlong-calls
17710 @itemx -mno-long-calls
17711 @opindex mlong-calls
17712 @opindex mno-long-calls
17713 Tells the compiler to perform function calls by first loading the
17714 address of the function into a register and then performing a subroutine
17715 call on this register. This switch is needed if the target function
17716 lies outside of the 64-megabyte addressing range of the offset-based
17717 version of subroutine call instruction.
17718
17719 Even if this switch is enabled, not all function calls are turned
17720 into long calls. The heuristic is that static functions, functions
17721 that have the @code{short_call} attribute, functions that are inside
17722 the scope of a @code{#pragma no_long_calls} directive, and functions whose
17723 definitions have already been compiled within the current compilation
17724 unit are not turned into long calls. The exceptions to this rule are
17725 that weak function definitions, functions with the @code{long_call}
17726 attribute or the @code{section} attribute, and functions that are within
17727 the scope of a @code{#pragma long_calls} directive are always
17728 turned into long calls.
17729
17730 This feature is not enabled by default. Specifying
17731 @option{-mno-long-calls} restores the default behavior, as does
17732 placing the function calls within the scope of a @code{#pragma
17733 long_calls_off} directive. Note these switches have no effect on how
17734 the compiler generates code to handle function calls via function
17735 pointers.
17736
17737 @item -msingle-pic-base
17738 @opindex msingle-pic-base
17739 Treat the register used for PIC addressing as read-only, rather than
17740 loading it in the prologue for each function. The runtime system is
17741 responsible for initializing this register with an appropriate value
17742 before execution begins.
17743
17744 @item -mpic-register=@var{reg}
17745 @opindex mpic-register
17746 Specify the register to be used for PIC addressing.
17747 For standard PIC base case, the default is any suitable register
17748 determined by compiler. For single PIC base case, the default is
17749 @samp{R9} if target is EABI based or stack-checking is enabled,
17750 otherwise the default is @samp{R10}.
17751
17752 @item -mpic-data-is-text-relative
17753 @opindex mpic-data-is-text-relative
17754 Assume that the displacement between the text and data segments is fixed
17755 at static link time. This permits using PC-relative addressing
17756 operations to access data known to be in the data segment. For
17757 non-VxWorks RTP targets, this option is enabled by default. When
17758 disabled on such targets, it will enable @option{-msingle-pic-base} by
17759 default.
17760
17761 @item -mpoke-function-name
17762 @opindex mpoke-function-name
17763 Write the name of each function into the text section, directly
17764 preceding the function prologue. The generated code is similar to this:
17765
17766 @smallexample
17767 t0
17768 .ascii "arm_poke_function_name", 0
17769 .align
17770 t1
17771 .word 0xff000000 + (t1 - t0)
17772 arm_poke_function_name
17773 mov ip, sp
17774 stmfd sp!, @{fp, ip, lr, pc@}
17775 sub fp, ip, #4
17776 @end smallexample
17777
17778 When performing a stack backtrace, code can inspect the value of
17779 @code{pc} stored at @code{fp + 0}. If the trace function then looks at
17780 location @code{pc - 12} and the top 8 bits are set, then we know that
17781 there is a function name embedded immediately preceding this location
17782 and has length @code{((pc[-3]) & 0xff000000)}.
17783
17784 @item -mthumb
17785 @itemx -marm
17786 @opindex marm
17787 @opindex mthumb
17788
17789 Select between generating code that executes in ARM and Thumb
17790 states. The default for most configurations is to generate code
17791 that executes in ARM state, but the default can be changed by
17792 configuring GCC with the @option{--with-mode=}@var{state}
17793 configure option.
17794
17795 You can also override the ARM and Thumb mode for each function
17796 by using the @code{target("thumb")} and @code{target("arm")} function attributes
17797 (@pxref{ARM Function Attributes}) or pragmas (@pxref{Function Specific Option Pragmas}).
17798
17799 @item -mflip-thumb
17800 @opindex mflip-thumb
17801 Switch ARM/Thumb modes on alternating functions.
17802 This option is provided for regression testing of mixed Thumb/ARM code
17803 generation, and is not intended for ordinary use in compiling code.
17804
17805 @item -mtpcs-frame
17806 @opindex mtpcs-frame
17807 Generate a stack frame that is compliant with the Thumb Procedure Call
17808 Standard for all non-leaf functions. (A leaf function is one that does
17809 not call any other functions.) The default is @option{-mno-tpcs-frame}.
17810
17811 @item -mtpcs-leaf-frame
17812 @opindex mtpcs-leaf-frame
17813 Generate a stack frame that is compliant with the Thumb Procedure Call
17814 Standard for all leaf functions. (A leaf function is one that does
17815 not call any other functions.) The default is @option{-mno-apcs-leaf-frame}.
17816
17817 @item -mcallee-super-interworking
17818 @opindex mcallee-super-interworking
17819 Gives all externally visible functions in the file being compiled an ARM
17820 instruction set header which switches to Thumb mode before executing the
17821 rest of the function. This allows these functions to be called from
17822 non-interworking code. This option is not valid in AAPCS configurations
17823 because interworking is enabled by default.
17824
17825 @item -mcaller-super-interworking
17826 @opindex mcaller-super-interworking
17827 Allows calls via function pointers (including virtual functions) to
17828 execute correctly regardless of whether the target code has been
17829 compiled for interworking or not. There is a small overhead in the cost
17830 of executing a function pointer if this option is enabled. This option
17831 is not valid in AAPCS configurations because interworking is enabled
17832 by default.
17833
17834 @item -mtp=@var{name}
17835 @opindex mtp
17836 Specify the access model for the thread local storage pointer. The valid
17837 models are @samp{soft}, which generates calls to @code{__aeabi_read_tp},
17838 @samp{cp15}, which fetches the thread pointer from @code{cp15} directly
17839 (supported in the arm6k architecture), and @samp{auto}, which uses the
17840 best available method for the selected processor. The default setting is
17841 @samp{auto}.
17842
17843 @item -mtls-dialect=@var{dialect}
17844 @opindex mtls-dialect
17845 Specify the dialect to use for accessing thread local storage. Two
17846 @var{dialect}s are supported---@samp{gnu} and @samp{gnu2}. The
17847 @samp{gnu} dialect selects the original GNU scheme for supporting
17848 local and global dynamic TLS models. The @samp{gnu2} dialect
17849 selects the GNU descriptor scheme, which provides better performance
17850 for shared libraries. The GNU descriptor scheme is compatible with
17851 the original scheme, but does require new assembler, linker and
17852 library support. Initial and local exec TLS models are unaffected by
17853 this option and always use the original scheme.
17854
17855 @item -mword-relocations
17856 @opindex mword-relocations
17857 Only generate absolute relocations on word-sized values (i.e.@: R_ARM_ABS32).
17858 This is enabled by default on targets (uClinux, SymbianOS) where the runtime
17859 loader imposes this restriction, and when @option{-fpic} or @option{-fPIC}
17860 is specified. This option conflicts with @option{-mslow-flash-data}.
17861
17862 @item -mfix-cortex-m3-ldrd
17863 @opindex mfix-cortex-m3-ldrd
17864 Some Cortex-M3 cores can cause data corruption when @code{ldrd} instructions
17865 with overlapping destination and base registers are used. This option avoids
17866 generating these instructions. This option is enabled by default when
17867 @option{-mcpu=cortex-m3} is specified.
17868
17869 @item -munaligned-access
17870 @itemx -mno-unaligned-access
17871 @opindex munaligned-access
17872 @opindex mno-unaligned-access
17873 Enables (or disables) reading and writing of 16- and 32- bit values
17874 from addresses that are not 16- or 32- bit aligned. By default
17875 unaligned access is disabled for all pre-ARMv6, all ARMv6-M and for
17876 ARMv8-M Baseline architectures, and enabled for all other
17877 architectures. If unaligned access is not enabled then words in packed
17878 data structures are accessed a byte at a time.
17879
17880 The ARM attribute @code{Tag_CPU_unaligned_access} is set in the
17881 generated object file to either true or false, depending upon the
17882 setting of this option. If unaligned access is enabled then the
17883 preprocessor symbol @code{__ARM_FEATURE_UNALIGNED} is also
17884 defined.
17885
17886 @item -mneon-for-64bits
17887 @opindex mneon-for-64bits
17888 Enables using Neon to handle scalar 64-bits operations. This is
17889 disabled by default since the cost of moving data from core registers
17890 to Neon is high.
17891
17892 @item -mslow-flash-data
17893 @opindex mslow-flash-data
17894 Assume loading data from flash is slower than fetching instruction.
17895 Therefore literal load is minimized for better performance.
17896 This option is only supported when compiling for ARMv7 M-profile and
17897 off by default. It conflicts with @option{-mword-relocations}.
17898
17899 @item -masm-syntax-unified
17900 @opindex masm-syntax-unified
17901 Assume inline assembler is using unified asm syntax. The default is
17902 currently off which implies divided syntax. This option has no impact
17903 on Thumb2. However, this may change in future releases of GCC.
17904 Divided syntax should be considered deprecated.
17905
17906 @item -mrestrict-it
17907 @opindex mrestrict-it
17908 Restricts generation of IT blocks to conform to the rules of ARMv8-A.
17909 IT blocks can only contain a single 16-bit instruction from a select
17910 set of instructions. This option is on by default for ARMv8-A Thumb mode.
17911
17912 @item -mprint-tune-info
17913 @opindex mprint-tune-info
17914 Print CPU tuning information as comment in assembler file. This is
17915 an option used only for regression testing of the compiler and not
17916 intended for ordinary use in compiling code. This option is disabled
17917 by default.
17918
17919 @item -mverbose-cost-dump
17920 @opindex mverbose-cost-dump
17921 Enable verbose cost model dumping in the debug dump files. This option is
17922 provided for use in debugging the compiler.
17923
17924 @item -mpure-code
17925 @opindex mpure-code
17926 Do not allow constant data to be placed in code sections.
17927 Additionally, when compiling for ELF object format give all text sections the
17928 ELF processor-specific section attribute @code{SHF_ARM_PURECODE}. This option
17929 is only available when generating non-pic code for M-profile targets with the
17930 MOVT instruction.
17931
17932 @item -mcmse
17933 @opindex mcmse
17934 Generate secure code as per the "ARMv8-M Security Extensions: Requirements on
17935 Development Tools Engineering Specification", which can be found on
17936 @url{http://infocenter.arm.com/help/topic/com.arm.doc.ecm0359818/ECM0359818_armv8m_security_extensions_reqs_on_dev_tools_1_0.pdf}.
17937 @end table
17938
17939 @node AVR Options
17940 @subsection AVR Options
17941 @cindex AVR Options
17942
17943 These options are defined for AVR implementations:
17944
17945 @table @gcctabopt
17946 @item -mmcu=@var{mcu}
17947 @opindex mmcu
17948 Specify Atmel AVR instruction set architectures (ISA) or MCU type.
17949
17950 The default for this option is@tie{}@samp{avr2}.
17951
17952 GCC supports the following AVR devices and ISAs:
17953
17954 @include avr-mmcu.texi
17955
17956 @item -mabsdata
17957 @opindex mabsdata
17958
17959 Assume that all data in static storage can be accessed by LDS / STS
17960 instructions. This option has only an effect on reduced Tiny devices like
17961 ATtiny40. See also the @code{absdata}
17962 @ref{AVR Variable Attributes,variable attribute}.
17963
17964 @item -maccumulate-args
17965 @opindex maccumulate-args
17966 Accumulate outgoing function arguments and acquire/release the needed
17967 stack space for outgoing function arguments once in function
17968 prologue/epilogue. Without this option, outgoing arguments are pushed
17969 before calling a function and popped afterwards.
17970
17971 Popping the arguments after the function call can be expensive on
17972 AVR so that accumulating the stack space might lead to smaller
17973 executables because arguments need not be removed from the
17974 stack after such a function call.
17975
17976 This option can lead to reduced code size for functions that perform
17977 several calls to functions that get their arguments on the stack like
17978 calls to printf-like functions.
17979
17980 @item -mbranch-cost=@var{cost}
17981 @opindex mbranch-cost
17982 Set the branch costs for conditional branch instructions to
17983 @var{cost}. Reasonable values for @var{cost} are small, non-negative
17984 integers. The default branch cost is 0.
17985
17986 @item -mcall-prologues
17987 @opindex mcall-prologues
17988 Functions prologues/epilogues are expanded as calls to appropriate
17989 subroutines. Code size is smaller.
17990
17991 @item -mgas-isr-prologues
17992 @opindex mgas-isr-prologues
17993 Interrupt service routines (ISRs) may use the @code{__gcc_isr} pseudo
17994 instruction supported by GNU Binutils.
17995 If this option is on, the feature can still be disabled for individual
17996 ISRs by means of the @ref{AVR Function Attributes,,@code{no_gccisr}}
17997 function attribute. This feature is activated per default
17998 if optimization is on (but not with @option{-Og}, @pxref{Optimize Options}),
17999 and if GNU Binutils support @w{@uref{https://sourceware.org/PR21683,PR21683}}.
18000
18001 @item -mint8
18002 @opindex mint8
18003 Assume @code{int} to be 8-bit integer. This affects the sizes of all types: a
18004 @code{char} is 1 byte, an @code{int} is 1 byte, a @code{long} is 2 bytes,
18005 and @code{long long} is 4 bytes. Please note that this option does not
18006 conform to the C standards, but it results in smaller code
18007 size.
18008
18009 @item -mmain-is-OS_task
18010 @opindex mmain-is-OS_task
18011 Do not save registers in @code{main}. The effect is the same like
18012 attaching attribute @ref{AVR Function Attributes,,@code{OS_task}}
18013 to @code{main}. It is activated per default if optimization is on.
18014
18015 @item -mn-flash=@var{num}
18016 @opindex mn-flash
18017 Assume that the flash memory has a size of
18018 @var{num} times 64@tie{}KiB.
18019
18020 @item -mno-interrupts
18021 @opindex mno-interrupts
18022 Generated code is not compatible with hardware interrupts.
18023 Code size is smaller.
18024
18025 @item -mrelax
18026 @opindex mrelax
18027 Try to replace @code{CALL} resp.@: @code{JMP} instruction by the shorter
18028 @code{RCALL} resp.@: @code{RJMP} instruction if applicable.
18029 Setting @option{-mrelax} just adds the @option{--mlink-relax} option to
18030 the assembler's command line and the @option{--relax} option to the
18031 linker's command line.
18032
18033 Jump relaxing is performed by the linker because jump offsets are not
18034 known before code is located. Therefore, the assembler code generated by the
18035 compiler is the same, but the instructions in the executable may
18036 differ from instructions in the assembler code.
18037
18038 Relaxing must be turned on if linker stubs are needed, see the
18039 section on @code{EIND} and linker stubs below.
18040
18041 @item -mrmw
18042 @opindex mrmw
18043 Assume that the device supports the Read-Modify-Write
18044 instructions @code{XCH}, @code{LAC}, @code{LAS} and @code{LAT}.
18045
18046 @item -mshort-calls
18047 @opindex mshort-calls
18048
18049 Assume that @code{RJMP} and @code{RCALL} can target the whole
18050 program memory.
18051
18052 This option is used internally for multilib selection. It is
18053 not an optimization option, and you don't need to set it by hand.
18054
18055 @item -msp8
18056 @opindex msp8
18057 Treat the stack pointer register as an 8-bit register,
18058 i.e.@: assume the high byte of the stack pointer is zero.
18059 In general, you don't need to set this option by hand.
18060
18061 This option is used internally by the compiler to select and
18062 build multilibs for architectures @code{avr2} and @code{avr25}.
18063 These architectures mix devices with and without @code{SPH}.
18064 For any setting other than @option{-mmcu=avr2} or @option{-mmcu=avr25}
18065 the compiler driver adds or removes this option from the compiler
18066 proper's command line, because the compiler then knows if the device
18067 or architecture has an 8-bit stack pointer and thus no @code{SPH}
18068 register or not.
18069
18070 @item -mstrict-X
18071 @opindex mstrict-X
18072 Use address register @code{X} in a way proposed by the hardware. This means
18073 that @code{X} is only used in indirect, post-increment or
18074 pre-decrement addressing.
18075
18076 Without this option, the @code{X} register may be used in the same way
18077 as @code{Y} or @code{Z} which then is emulated by additional
18078 instructions.
18079 For example, loading a value with @code{X+const} addressing with a
18080 small non-negative @code{const < 64} to a register @var{Rn} is
18081 performed as
18082
18083 @example
18084 adiw r26, const ; X += const
18085 ld @var{Rn}, X ; @var{Rn} = *X
18086 sbiw r26, const ; X -= const
18087 @end example
18088
18089 @item -mtiny-stack
18090 @opindex mtiny-stack
18091 Only change the lower 8@tie{}bits of the stack pointer.
18092
18093 @item -mfract-convert-truncate
18094 @opindex mfract-convert-truncate
18095 Allow to use truncation instead of rounding towards zero for fractional fixed-point types.
18096
18097 @item -nodevicelib
18098 @opindex nodevicelib
18099 Don't link against AVR-LibC's device specific library @code{lib<mcu>.a}.
18100
18101 @item -Waddr-space-convert
18102 @opindex Waddr-space-convert
18103 @opindex Wno-addr-space-convert
18104 Warn about conversions between address spaces in the case where the
18105 resulting address space is not contained in the incoming address space.
18106
18107 @item -Wmisspelled-isr
18108 @opindex Wmisspelled-isr
18109 @opindex Wno-misspelled-isr
18110 Warn if the ISR is misspelled, i.e.@: without __vector prefix.
18111 Enabled by default.
18112 @end table
18113
18114 @subsubsection @code{EIND} and Devices with More Than 128 Ki Bytes of Flash
18115 @cindex @code{EIND}
18116 Pointers in the implementation are 16@tie{}bits wide.
18117 The address of a function or label is represented as word address so
18118 that indirect jumps and calls can target any code address in the
18119 range of 64@tie{}Ki words.
18120
18121 In order to facilitate indirect jump on devices with more than 128@tie{}Ki
18122 bytes of program memory space, there is a special function register called
18123 @code{EIND} that serves as most significant part of the target address
18124 when @code{EICALL} or @code{EIJMP} instructions are used.
18125
18126 Indirect jumps and calls on these devices are handled as follows by
18127 the compiler and are subject to some limitations:
18128
18129 @itemize @bullet
18130
18131 @item
18132 The compiler never sets @code{EIND}.
18133
18134 @item
18135 The compiler uses @code{EIND} implicitly in @code{EICALL}/@code{EIJMP}
18136 instructions or might read @code{EIND} directly in order to emulate an
18137 indirect call/jump by means of a @code{RET} instruction.
18138
18139 @item
18140 The compiler assumes that @code{EIND} never changes during the startup
18141 code or during the application. In particular, @code{EIND} is not
18142 saved/restored in function or interrupt service routine
18143 prologue/epilogue.
18144
18145 @item
18146 For indirect calls to functions and computed goto, the linker
18147 generates @emph{stubs}. Stubs are jump pads sometimes also called
18148 @emph{trampolines}. Thus, the indirect call/jump jumps to such a stub.
18149 The stub contains a direct jump to the desired address.
18150
18151 @item
18152 Linker relaxation must be turned on so that the linker generates
18153 the stubs correctly in all situations. See the compiler option
18154 @option{-mrelax} and the linker option @option{--relax}.
18155 There are corner cases where the linker is supposed to generate stubs
18156 but aborts without relaxation and without a helpful error message.
18157
18158 @item
18159 The default linker script is arranged for code with @code{EIND = 0}.
18160 If code is supposed to work for a setup with @code{EIND != 0}, a custom
18161 linker script has to be used in order to place the sections whose
18162 name start with @code{.trampolines} into the segment where @code{EIND}
18163 points to.
18164
18165 @item
18166 The startup code from libgcc never sets @code{EIND}.
18167 Notice that startup code is a blend of code from libgcc and AVR-LibC.
18168 For the impact of AVR-LibC on @code{EIND}, see the
18169 @w{@uref{http://nongnu.org/avr-libc/user-manual/,AVR-LibC user manual}}.
18170
18171 @item
18172 It is legitimate for user-specific startup code to set up @code{EIND}
18173 early, for example by means of initialization code located in
18174 section @code{.init3}. Such code runs prior to general startup code
18175 that initializes RAM and calls constructors, but after the bit
18176 of startup code from AVR-LibC that sets @code{EIND} to the segment
18177 where the vector table is located.
18178 @example
18179 #include <avr/io.h>
18180
18181 static void
18182 __attribute__((section(".init3"),naked,used,no_instrument_function))
18183 init3_set_eind (void)
18184 @{
18185 __asm volatile ("ldi r24,pm_hh8(__trampolines_start)\n\t"
18186 "out %i0,r24" :: "n" (&EIND) : "r24","memory");
18187 @}
18188 @end example
18189
18190 @noindent
18191 The @code{__trampolines_start} symbol is defined in the linker script.
18192
18193 @item
18194 Stubs are generated automatically by the linker if
18195 the following two conditions are met:
18196 @itemize @minus
18197
18198 @item The address of a label is taken by means of the @code{gs} modifier
18199 (short for @emph{generate stubs}) like so:
18200 @example
18201 LDI r24, lo8(gs(@var{func}))
18202 LDI r25, hi8(gs(@var{func}))
18203 @end example
18204 @item The final location of that label is in a code segment
18205 @emph{outside} the segment where the stubs are located.
18206 @end itemize
18207
18208 @item
18209 The compiler emits such @code{gs} modifiers for code labels in the
18210 following situations:
18211 @itemize @minus
18212 @item Taking address of a function or code label.
18213 @item Computed goto.
18214 @item If prologue-save function is used, see @option{-mcall-prologues}
18215 command-line option.
18216 @item Switch/case dispatch tables. If you do not want such dispatch
18217 tables you can specify the @option{-fno-jump-tables} command-line option.
18218 @item C and C++ constructors/destructors called during startup/shutdown.
18219 @item If the tools hit a @code{gs()} modifier explained above.
18220 @end itemize
18221
18222 @item
18223 Jumping to non-symbolic addresses like so is @emph{not} supported:
18224
18225 @example
18226 int main (void)
18227 @{
18228 /* Call function at word address 0x2 */
18229 return ((int(*)(void)) 0x2)();
18230 @}
18231 @end example
18232
18233 Instead, a stub has to be set up, i.e.@: the function has to be called
18234 through a symbol (@code{func_4} in the example):
18235
18236 @example
18237 int main (void)
18238 @{
18239 extern int func_4 (void);
18240
18241 /* Call function at byte address 0x4 */
18242 return func_4();
18243 @}
18244 @end example
18245
18246 and the application be linked with @option{-Wl,--defsym,func_4=0x4}.
18247 Alternatively, @code{func_4} can be defined in the linker script.
18248 @end itemize
18249
18250 @subsubsection Handling of the @code{RAMPD}, @code{RAMPX}, @code{RAMPY} and @code{RAMPZ} Special Function Registers
18251 @cindex @code{RAMPD}
18252 @cindex @code{RAMPX}
18253 @cindex @code{RAMPY}
18254 @cindex @code{RAMPZ}
18255 Some AVR devices support memories larger than the 64@tie{}KiB range
18256 that can be accessed with 16-bit pointers. To access memory locations
18257 outside this 64@tie{}KiB range, the content of a @code{RAMP}
18258 register is used as high part of the address:
18259 The @code{X}, @code{Y}, @code{Z} address register is concatenated
18260 with the @code{RAMPX}, @code{RAMPY}, @code{RAMPZ} special function
18261 register, respectively, to get a wide address. Similarly,
18262 @code{RAMPD} is used together with direct addressing.
18263
18264 @itemize
18265 @item
18266 The startup code initializes the @code{RAMP} special function
18267 registers with zero.
18268
18269 @item
18270 If a @ref{AVR Named Address Spaces,named address space} other than
18271 generic or @code{__flash} is used, then @code{RAMPZ} is set
18272 as needed before the operation.
18273
18274 @item
18275 If the device supports RAM larger than 64@tie{}KiB and the compiler
18276 needs to change @code{RAMPZ} to accomplish an operation, @code{RAMPZ}
18277 is reset to zero after the operation.
18278
18279 @item
18280 If the device comes with a specific @code{RAMP} register, the ISR
18281 prologue/epilogue saves/restores that SFR and initializes it with
18282 zero in case the ISR code might (implicitly) use it.
18283
18284 @item
18285 RAM larger than 64@tie{}KiB is not supported by GCC for AVR targets.
18286 If you use inline assembler to read from locations outside the
18287 16-bit address range and change one of the @code{RAMP} registers,
18288 you must reset it to zero after the access.
18289
18290 @end itemize
18291
18292 @subsubsection AVR Built-in Macros
18293
18294 GCC defines several built-in macros so that the user code can test
18295 for the presence or absence of features. Almost any of the following
18296 built-in macros are deduced from device capabilities and thus
18297 triggered by the @option{-mmcu=} command-line option.
18298
18299 For even more AVR-specific built-in macros see
18300 @ref{AVR Named Address Spaces} and @ref{AVR Built-in Functions}.
18301
18302 @table @code
18303
18304 @item __AVR_ARCH__
18305 Build-in macro that resolves to a decimal number that identifies the
18306 architecture and depends on the @option{-mmcu=@var{mcu}} option.
18307 Possible values are:
18308
18309 @code{2}, @code{25}, @code{3}, @code{31}, @code{35},
18310 @code{4}, @code{5}, @code{51}, @code{6}
18311
18312 for @var{mcu}=@code{avr2}, @code{avr25}, @code{avr3}, @code{avr31},
18313 @code{avr35}, @code{avr4}, @code{avr5}, @code{avr51}, @code{avr6},
18314
18315 respectively and
18316
18317 @code{100},
18318 @code{102}, @code{103}, @code{104},
18319 @code{105}, @code{106}, @code{107}
18320
18321 for @var{mcu}=@code{avrtiny},
18322 @code{avrxmega2}, @code{avrxmega3}, @code{avrxmega4},
18323 @code{avrxmega5}, @code{avrxmega6}, @code{avrxmega7}, respectively.
18324 If @var{mcu} specifies a device, this built-in macro is set
18325 accordingly. For example, with @option{-mmcu=atmega8} the macro is
18326 defined to @code{4}.
18327
18328 @item __AVR_@var{Device}__
18329 Setting @option{-mmcu=@var{device}} defines this built-in macro which reflects
18330 the device's name. For example, @option{-mmcu=atmega8} defines the
18331 built-in macro @code{__AVR_ATmega8__}, @option{-mmcu=attiny261a} defines
18332 @code{__AVR_ATtiny261A__}, etc.
18333
18334 The built-in macros' names follow
18335 the scheme @code{__AVR_@var{Device}__} where @var{Device} is
18336 the device name as from the AVR user manual. The difference between
18337 @var{Device} in the built-in macro and @var{device} in
18338 @option{-mmcu=@var{device}} is that the latter is always lowercase.
18339
18340 If @var{device} is not a device but only a core architecture like
18341 @samp{avr51}, this macro is not defined.
18342
18343 @item __AVR_DEVICE_NAME__
18344 Setting @option{-mmcu=@var{device}} defines this built-in macro to
18345 the device's name. For example, with @option{-mmcu=atmega8} the macro
18346 is defined to @code{atmega8}.
18347
18348 If @var{device} is not a device but only a core architecture like
18349 @samp{avr51}, this macro is not defined.
18350
18351 @item __AVR_XMEGA__
18352 The device / architecture belongs to the XMEGA family of devices.
18353
18354 @item __AVR_HAVE_ELPM__
18355 The device has the @code{ELPM} instruction.
18356
18357 @item __AVR_HAVE_ELPMX__
18358 The device has the @code{ELPM R@var{n},Z} and @code{ELPM
18359 R@var{n},Z+} instructions.
18360
18361 @item __AVR_HAVE_MOVW__
18362 The device has the @code{MOVW} instruction to perform 16-bit
18363 register-register moves.
18364
18365 @item __AVR_HAVE_LPMX__
18366 The device has the @code{LPM R@var{n},Z} and
18367 @code{LPM R@var{n},Z+} instructions.
18368
18369 @item __AVR_HAVE_MUL__
18370 The device has a hardware multiplier.
18371
18372 @item __AVR_HAVE_JMP_CALL__
18373 The device has the @code{JMP} and @code{CALL} instructions.
18374 This is the case for devices with more than 8@tie{}KiB of program
18375 memory.
18376
18377 @item __AVR_HAVE_EIJMP_EICALL__
18378 @itemx __AVR_3_BYTE_PC__
18379 The device has the @code{EIJMP} and @code{EICALL} instructions.
18380 This is the case for devices with more than 128@tie{}KiB of program memory.
18381 This also means that the program counter
18382 (PC) is 3@tie{}bytes wide.
18383
18384 @item __AVR_2_BYTE_PC__
18385 The program counter (PC) is 2@tie{}bytes wide. This is the case for devices
18386 with up to 128@tie{}KiB of program memory.
18387
18388 @item __AVR_HAVE_8BIT_SP__
18389 @itemx __AVR_HAVE_16BIT_SP__
18390 The stack pointer (SP) register is treated as 8-bit respectively
18391 16-bit register by the compiler.
18392 The definition of these macros is affected by @option{-mtiny-stack}.
18393
18394 @item __AVR_HAVE_SPH__
18395 @itemx __AVR_SP8__
18396 The device has the SPH (high part of stack pointer) special function
18397 register or has an 8-bit stack pointer, respectively.
18398 The definition of these macros is affected by @option{-mmcu=} and
18399 in the cases of @option{-mmcu=avr2} and @option{-mmcu=avr25} also
18400 by @option{-msp8}.
18401
18402 @item __AVR_HAVE_RAMPD__
18403 @itemx __AVR_HAVE_RAMPX__
18404 @itemx __AVR_HAVE_RAMPY__
18405 @itemx __AVR_HAVE_RAMPZ__
18406 The device has the @code{RAMPD}, @code{RAMPX}, @code{RAMPY},
18407 @code{RAMPZ} special function register, respectively.
18408
18409 @item __NO_INTERRUPTS__
18410 This macro reflects the @option{-mno-interrupts} command-line option.
18411
18412 @item __AVR_ERRATA_SKIP__
18413 @itemx __AVR_ERRATA_SKIP_JMP_CALL__
18414 Some AVR devices (AT90S8515, ATmega103) must not skip 32-bit
18415 instructions because of a hardware erratum. Skip instructions are
18416 @code{SBRS}, @code{SBRC}, @code{SBIS}, @code{SBIC} and @code{CPSE}.
18417 The second macro is only defined if @code{__AVR_HAVE_JMP_CALL__} is also
18418 set.
18419
18420 @item __AVR_ISA_RMW__
18421 The device has Read-Modify-Write instructions (XCH, LAC, LAS and LAT).
18422
18423 @item __AVR_SFR_OFFSET__=@var{offset}
18424 Instructions that can address I/O special function registers directly
18425 like @code{IN}, @code{OUT}, @code{SBI}, etc.@: may use a different
18426 address as if addressed by an instruction to access RAM like @code{LD}
18427 or @code{STS}. This offset depends on the device architecture and has
18428 to be subtracted from the RAM address in order to get the
18429 respective I/O@tie{}address.
18430
18431 @item __AVR_SHORT_CALLS__
18432 The @option{-mshort-calls} command line option is set.
18433
18434 @item __AVR_PM_BASE_ADDRESS__=@var{addr}
18435 Some devices support reading from flash memory by means of @code{LD*}
18436 instructions. The flash memory is seen in the data address space
18437 at an offset of @code{__AVR_PM_BASE_ADDRESS__}. If this macro
18438 is not defined, this feature is not available. If defined,
18439 the address space is linear and there is no need to put
18440 @code{.rodata} into RAM. This is handled by the default linker
18441 description file, and is currently available for
18442 @code{avrtiny} and @code{avrxmega3}. Even more convenient,
18443 there is no need to use address spaces like @code{__flash} or
18444 features like attribute @code{progmem} and @code{pgm_read_*}.
18445
18446 @item __WITH_AVRLIBC__
18447 The compiler is configured to be used together with AVR-Libc.
18448 See the @option{--with-avrlibc} configure option.
18449
18450 @end table
18451
18452 @node Blackfin Options
18453 @subsection Blackfin Options
18454 @cindex Blackfin Options
18455
18456 @table @gcctabopt
18457 @item -mcpu=@var{cpu}@r{[}-@var{sirevision}@r{]}
18458 @opindex mcpu=
18459 Specifies the name of the target Blackfin processor. Currently, @var{cpu}
18460 can be one of @samp{bf512}, @samp{bf514}, @samp{bf516}, @samp{bf518},
18461 @samp{bf522}, @samp{bf523}, @samp{bf524}, @samp{bf525}, @samp{bf526},
18462 @samp{bf527}, @samp{bf531}, @samp{bf532}, @samp{bf533},
18463 @samp{bf534}, @samp{bf536}, @samp{bf537}, @samp{bf538}, @samp{bf539},
18464 @samp{bf542}, @samp{bf544}, @samp{bf547}, @samp{bf548}, @samp{bf549},
18465 @samp{bf542m}, @samp{bf544m}, @samp{bf547m}, @samp{bf548m}, @samp{bf549m},
18466 @samp{bf561}, @samp{bf592}.
18467
18468 The optional @var{sirevision} specifies the silicon revision of the target
18469 Blackfin processor. Any workarounds available for the targeted silicon revision
18470 are enabled. If @var{sirevision} is @samp{none}, no workarounds are enabled.
18471 If @var{sirevision} is @samp{any}, all workarounds for the targeted processor
18472 are enabled. The @code{__SILICON_REVISION__} macro is defined to two
18473 hexadecimal digits representing the major and minor numbers in the silicon
18474 revision. If @var{sirevision} is @samp{none}, the @code{__SILICON_REVISION__}
18475 is not defined. If @var{sirevision} is @samp{any}, the
18476 @code{__SILICON_REVISION__} is defined to be @code{0xffff}.
18477 If this optional @var{sirevision} is not used, GCC assumes the latest known
18478 silicon revision of the targeted Blackfin processor.
18479
18480 GCC defines a preprocessor macro for the specified @var{cpu}.
18481 For the @samp{bfin-elf} toolchain, this option causes the hardware BSP
18482 provided by libgloss to be linked in if @option{-msim} is not given.
18483
18484 Without this option, @samp{bf532} is used as the processor by default.
18485
18486 Note that support for @samp{bf561} is incomplete. For @samp{bf561},
18487 only the preprocessor macro is defined.
18488
18489 @item -msim
18490 @opindex msim
18491 Specifies that the program will be run on the simulator. This causes
18492 the simulator BSP provided by libgloss to be linked in. This option
18493 has effect only for @samp{bfin-elf} toolchain.
18494 Certain other options, such as @option{-mid-shared-library} and
18495 @option{-mfdpic}, imply @option{-msim}.
18496
18497 @item -momit-leaf-frame-pointer
18498 @opindex momit-leaf-frame-pointer
18499 Don't keep the frame pointer in a register for leaf functions. This
18500 avoids the instructions to save, set up and restore frame pointers and
18501 makes an extra register available in leaf functions.
18502
18503 @item -mspecld-anomaly
18504 @opindex mspecld-anomaly
18505 When enabled, the compiler ensures that the generated code does not
18506 contain speculative loads after jump instructions. If this option is used,
18507 @code{__WORKAROUND_SPECULATIVE_LOADS} is defined.
18508
18509 @item -mno-specld-anomaly
18510 @opindex mno-specld-anomaly
18511 @opindex mspecld-anomaly
18512 Don't generate extra code to prevent speculative loads from occurring.
18513
18514 @item -mcsync-anomaly
18515 @opindex mcsync-anomaly
18516 When enabled, the compiler ensures that the generated code does not
18517 contain CSYNC or SSYNC instructions too soon after conditional branches.
18518 If this option is used, @code{__WORKAROUND_SPECULATIVE_SYNCS} is defined.
18519
18520 @item -mno-csync-anomaly
18521 @opindex mno-csync-anomaly
18522 @opindex mcsync-anomaly
18523 Don't generate extra code to prevent CSYNC or SSYNC instructions from
18524 occurring too soon after a conditional branch.
18525
18526 @item -mlow64k
18527 @opindex mlow64k
18528 When enabled, the compiler is free to take advantage of the knowledge that
18529 the entire program fits into the low 64k of memory.
18530
18531 @item -mno-low64k
18532 @opindex mno-low64k
18533 Assume that the program is arbitrarily large. This is the default.
18534
18535 @item -mstack-check-l1
18536 @opindex mstack-check-l1
18537 Do stack checking using information placed into L1 scratchpad memory by the
18538 uClinux kernel.
18539
18540 @item -mid-shared-library
18541 @opindex mid-shared-library
18542 Generate code that supports shared libraries via the library ID method.
18543 This allows for execute in place and shared libraries in an environment
18544 without virtual memory management. This option implies @option{-fPIC}.
18545 With a @samp{bfin-elf} target, this option implies @option{-msim}.
18546
18547 @item -mno-id-shared-library
18548 @opindex mno-id-shared-library
18549 @opindex mid-shared-library
18550 Generate code that doesn't assume ID-based shared libraries are being used.
18551 This is the default.
18552
18553 @item -mleaf-id-shared-library
18554 @opindex mleaf-id-shared-library
18555 Generate code that supports shared libraries via the library ID method,
18556 but assumes that this library or executable won't link against any other
18557 ID shared libraries. That allows the compiler to use faster code for jumps
18558 and calls.
18559
18560 @item -mno-leaf-id-shared-library
18561 @opindex mno-leaf-id-shared-library
18562 @opindex mleaf-id-shared-library
18563 Do not assume that the code being compiled won't link against any ID shared
18564 libraries. Slower code is generated for jump and call insns.
18565
18566 @item -mshared-library-id=n
18567 @opindex mshared-library-id
18568 Specifies the identification number of the ID-based shared library being
18569 compiled. Specifying a value of 0 generates more compact code; specifying
18570 other values forces the allocation of that number to the current
18571 library but is no more space- or time-efficient than omitting this option.
18572
18573 @item -msep-data
18574 @opindex msep-data
18575 Generate code that allows the data segment to be located in a different
18576 area of memory from the text segment. This allows for execute in place in
18577 an environment without virtual memory management by eliminating relocations
18578 against the text section.
18579
18580 @item -mno-sep-data
18581 @opindex mno-sep-data
18582 @opindex msep-data
18583 Generate code that assumes that the data segment follows the text segment.
18584 This is the default.
18585
18586 @item -mlong-calls
18587 @itemx -mno-long-calls
18588 @opindex mlong-calls
18589 @opindex mno-long-calls
18590 Tells the compiler to perform function calls by first loading the
18591 address of the function into a register and then performing a subroutine
18592 call on this register. This switch is needed if the target function
18593 lies outside of the 24-bit addressing range of the offset-based
18594 version of subroutine call instruction.
18595
18596 This feature is not enabled by default. Specifying
18597 @option{-mno-long-calls} restores the default behavior. Note these
18598 switches have no effect on how the compiler generates code to handle
18599 function calls via function pointers.
18600
18601 @item -mfast-fp
18602 @opindex mfast-fp
18603 Link with the fast floating-point library. This library relaxes some of
18604 the IEEE floating-point standard's rules for checking inputs against
18605 Not-a-Number (NAN), in the interest of performance.
18606
18607 @item -minline-plt
18608 @opindex minline-plt
18609 Enable inlining of PLT entries in function calls to functions that are
18610 not known to bind locally. It has no effect without @option{-mfdpic}.
18611
18612 @item -mmulticore
18613 @opindex mmulticore
18614 Build a standalone application for multicore Blackfin processors.
18615 This option causes proper start files and link scripts supporting
18616 multicore to be used, and defines the macro @code{__BFIN_MULTICORE}.
18617 It can only be used with @option{-mcpu=bf561@r{[}-@var{sirevision}@r{]}}.
18618
18619 This option can be used with @option{-mcorea} or @option{-mcoreb}, which
18620 selects the one-application-per-core programming model. Without
18621 @option{-mcorea} or @option{-mcoreb}, the single-application/dual-core
18622 programming model is used. In this model, the main function of Core B
18623 should be named as @code{coreb_main}.
18624
18625 If this option is not used, the single-core application programming
18626 model is used.
18627
18628 @item -mcorea
18629 @opindex mcorea
18630 Build a standalone application for Core A of BF561 when using
18631 the one-application-per-core programming model. Proper start files
18632 and link scripts are used to support Core A, and the macro
18633 @code{__BFIN_COREA} is defined.
18634 This option can only be used in conjunction with @option{-mmulticore}.
18635
18636 @item -mcoreb
18637 @opindex mcoreb
18638 Build a standalone application for Core B of BF561 when using
18639 the one-application-per-core programming model. Proper start files
18640 and link scripts are used to support Core B, and the macro
18641 @code{__BFIN_COREB} is defined. When this option is used, @code{coreb_main}
18642 should be used instead of @code{main}.
18643 This option can only be used in conjunction with @option{-mmulticore}.
18644
18645 @item -msdram
18646 @opindex msdram
18647 Build a standalone application for SDRAM. Proper start files and
18648 link scripts are used to put the application into SDRAM, and the macro
18649 @code{__BFIN_SDRAM} is defined.
18650 The loader should initialize SDRAM before loading the application.
18651
18652 @item -micplb
18653 @opindex micplb
18654 Assume that ICPLBs are enabled at run time. This has an effect on certain
18655 anomaly workarounds. For Linux targets, the default is to assume ICPLBs
18656 are enabled; for standalone applications the default is off.
18657 @end table
18658
18659 @node C6X Options
18660 @subsection C6X Options
18661 @cindex C6X Options
18662
18663 @table @gcctabopt
18664 @item -march=@var{name}
18665 @opindex march
18666 This specifies the name of the target architecture. GCC uses this
18667 name to determine what kind of instructions it can emit when generating
18668 assembly code. Permissible names are: @samp{c62x},
18669 @samp{c64x}, @samp{c64x+}, @samp{c67x}, @samp{c67x+}, @samp{c674x}.
18670
18671 @item -mbig-endian
18672 @opindex mbig-endian
18673 Generate code for a big-endian target.
18674
18675 @item -mlittle-endian
18676 @opindex mlittle-endian
18677 Generate code for a little-endian target. This is the default.
18678
18679 @item -msim
18680 @opindex msim
18681 Choose startup files and linker script suitable for the simulator.
18682
18683 @item -msdata=default
18684 @opindex msdata=default
18685 Put small global and static data in the @code{.neardata} section,
18686 which is pointed to by register @code{B14}. Put small uninitialized
18687 global and static data in the @code{.bss} section, which is adjacent
18688 to the @code{.neardata} section. Put small read-only data into the
18689 @code{.rodata} section. The corresponding sections used for large
18690 pieces of data are @code{.fardata}, @code{.far} and @code{.const}.
18691
18692 @item -msdata=all
18693 @opindex msdata=all
18694 Put all data, not just small objects, into the sections reserved for
18695 small data, and use addressing relative to the @code{B14} register to
18696 access them.
18697
18698 @item -msdata=none
18699 @opindex msdata=none
18700 Make no use of the sections reserved for small data, and use absolute
18701 addresses to access all data. Put all initialized global and static
18702 data in the @code{.fardata} section, and all uninitialized data in the
18703 @code{.far} section. Put all constant data into the @code{.const}
18704 section.
18705 @end table
18706
18707 @node CRIS Options
18708 @subsection CRIS Options
18709 @cindex CRIS Options
18710
18711 These options are defined specifically for the CRIS ports.
18712
18713 @table @gcctabopt
18714 @item -march=@var{architecture-type}
18715 @itemx -mcpu=@var{architecture-type}
18716 @opindex march
18717 @opindex mcpu
18718 Generate code for the specified architecture. The choices for
18719 @var{architecture-type} are @samp{v3}, @samp{v8} and @samp{v10} for
18720 respectively ETRAX@w{ }4, ETRAX@w{ }100, and ETRAX@w{ }100@w{ }LX@.
18721 Default is @samp{v0} except for cris-axis-linux-gnu, where the default is
18722 @samp{v10}.
18723
18724 @item -mtune=@var{architecture-type}
18725 @opindex mtune
18726 Tune to @var{architecture-type} everything applicable about the generated
18727 code, except for the ABI and the set of available instructions. The
18728 choices for @var{architecture-type} are the same as for
18729 @option{-march=@var{architecture-type}}.
18730
18731 @item -mmax-stack-frame=@var{n}
18732 @opindex mmax-stack-frame
18733 Warn when the stack frame of a function exceeds @var{n} bytes.
18734
18735 @item -metrax4
18736 @itemx -metrax100
18737 @opindex metrax4
18738 @opindex metrax100
18739 The options @option{-metrax4} and @option{-metrax100} are synonyms for
18740 @option{-march=v3} and @option{-march=v8} respectively.
18741
18742 @item -mmul-bug-workaround
18743 @itemx -mno-mul-bug-workaround
18744 @opindex mmul-bug-workaround
18745 @opindex mno-mul-bug-workaround
18746 Work around a bug in the @code{muls} and @code{mulu} instructions for CPU
18747 models where it applies. This option is active by default.
18748
18749 @item -mpdebug
18750 @opindex mpdebug
18751 Enable CRIS-specific verbose debug-related information in the assembly
18752 code. This option also has the effect of turning off the @samp{#NO_APP}
18753 formatted-code indicator to the assembler at the beginning of the
18754 assembly file.
18755
18756 @item -mcc-init
18757 @opindex mcc-init
18758 Do not use condition-code results from previous instruction; always emit
18759 compare and test instructions before use of condition codes.
18760
18761 @item -mno-side-effects
18762 @opindex mno-side-effects
18763 @opindex mside-effects
18764 Do not emit instructions with side effects in addressing modes other than
18765 post-increment.
18766
18767 @item -mstack-align
18768 @itemx -mno-stack-align
18769 @itemx -mdata-align
18770 @itemx -mno-data-align
18771 @itemx -mconst-align
18772 @itemx -mno-const-align
18773 @opindex mstack-align
18774 @opindex mno-stack-align
18775 @opindex mdata-align
18776 @opindex mno-data-align
18777 @opindex mconst-align
18778 @opindex mno-const-align
18779 These options (@samp{no-} options) arrange (eliminate arrangements) for the
18780 stack frame, individual data and constants to be aligned for the maximum
18781 single data access size for the chosen CPU model. The default is to
18782 arrange for 32-bit alignment. ABI details such as structure layout are
18783 not affected by these options.
18784
18785 @item -m32-bit
18786 @itemx -m16-bit
18787 @itemx -m8-bit
18788 @opindex m32-bit
18789 @opindex m16-bit
18790 @opindex m8-bit
18791 Similar to the stack- data- and const-align options above, these options
18792 arrange for stack frame, writable data and constants to all be 32-bit,
18793 16-bit or 8-bit aligned. The default is 32-bit alignment.
18794
18795 @item -mno-prologue-epilogue
18796 @itemx -mprologue-epilogue
18797 @opindex mno-prologue-epilogue
18798 @opindex mprologue-epilogue
18799 With @option{-mno-prologue-epilogue}, the normal function prologue and
18800 epilogue which set up the stack frame are omitted and no return
18801 instructions or return sequences are generated in the code. Use this
18802 option only together with visual inspection of the compiled code: no
18803 warnings or errors are generated when call-saved registers must be saved,
18804 or storage for local variables needs to be allocated.
18805
18806 @item -mno-gotplt
18807 @itemx -mgotplt
18808 @opindex mno-gotplt
18809 @opindex mgotplt
18810 With @option{-fpic} and @option{-fPIC}, don't generate (do generate)
18811 instruction sequences that load addresses for functions from the PLT part
18812 of the GOT rather than (traditional on other architectures) calls to the
18813 PLT@. The default is @option{-mgotplt}.
18814
18815 @item -melf
18816 @opindex melf
18817 Legacy no-op option only recognized with the cris-axis-elf and
18818 cris-axis-linux-gnu targets.
18819
18820 @item -mlinux
18821 @opindex mlinux
18822 Legacy no-op option only recognized with the cris-axis-linux-gnu target.
18823
18824 @item -sim
18825 @opindex sim
18826 This option, recognized for the cris-axis-elf, arranges
18827 to link with input-output functions from a simulator library. Code,
18828 initialized data and zero-initialized data are allocated consecutively.
18829
18830 @item -sim2
18831 @opindex sim2
18832 Like @option{-sim}, but pass linker options to locate initialized data at
18833 0x40000000 and zero-initialized data at 0x80000000.
18834 @end table
18835
18836 @node CR16 Options
18837 @subsection CR16 Options
18838 @cindex CR16 Options
18839
18840 These options are defined specifically for the CR16 ports.
18841
18842 @table @gcctabopt
18843
18844 @item -mmac
18845 @opindex mmac
18846 Enable the use of multiply-accumulate instructions. Disabled by default.
18847
18848 @item -mcr16cplus
18849 @itemx -mcr16c
18850 @opindex mcr16cplus
18851 @opindex mcr16c
18852 Generate code for CR16C or CR16C+ architecture. CR16C+ architecture
18853 is default.
18854
18855 @item -msim
18856 @opindex msim
18857 Links the library libsim.a which is in compatible with simulator. Applicable
18858 to ELF compiler only.
18859
18860 @item -mint32
18861 @opindex mint32
18862 Choose integer type as 32-bit wide.
18863
18864 @item -mbit-ops
18865 @opindex mbit-ops
18866 Generates @code{sbit}/@code{cbit} instructions for bit manipulations.
18867
18868 @item -mdata-model=@var{model}
18869 @opindex mdata-model
18870 Choose a data model. The choices for @var{model} are @samp{near},
18871 @samp{far} or @samp{medium}. @samp{medium} is default.
18872 However, @samp{far} is not valid with @option{-mcr16c}, as the
18873 CR16C architecture does not support the far data model.
18874 @end table
18875
18876 @node C-SKY Options
18877 @subsection C-SKY Options
18878 @cindex C-SKY Options
18879
18880 GCC supports these options when compiling for C-SKY V2 processors.
18881
18882 @table @gcctabopt
18883
18884 @item -march=@var{arch}
18885 @opindex march=
18886 Specify the C-SKY target architecture. Valid values for @var{arch} are:
18887 @samp{ck801}, @samp{ck802}, @samp{ck803}, @samp{ck807}, and @samp{ck810}.
18888 The default is @samp{ck810}.
18889
18890 @item -mcpu=@var{cpu}
18891 @opindex mcpu=
18892 Specify the C-SKY target processor. Valid values for @var{cpu} are:
18893 @samp{ck801}, @samp{ck801t},
18894 @samp{ck802}, @samp{ck802t}, @samp{ck802j},
18895 @samp{ck803}, @samp{ck803h}, @samp{ck803t}, @samp{ck803ht},
18896 @samp{ck803f}, @samp{ck803fh}, @samp{ck803e}, @samp{ck803eh},
18897 @samp{ck803et}, @samp{ck803eht}, @samp{ck803ef}, @samp{ck803efh},
18898 @samp{ck803ft}, @samp{ck803eft}, @samp{ck803efht}, @samp{ck803r1},
18899 @samp{ck803hr1}, @samp{ck803tr1}, @samp{ck803htr1}, @samp{ck803fr1},
18900 @samp{ck803fhr1}, @samp{ck803er1}, @samp{ck803ehr1}, @samp{ck803etr1},
18901 @samp{ck803ehtr1}, @samp{ck803efr1}, @samp{ck803efhr1}, @samp{ck803ftr1},
18902 @samp{ck803eftr1}, @samp{ck803efhtr1},
18903 @samp{ck803s}, @samp{ck803st}, @samp{ck803se}, @samp{ck803sf},
18904 @samp{ck803sef}, @samp{ck803seft},
18905 @samp{ck807e}, @samp{ck807ef}, @samp{ck807}, @samp{ck807f},
18906 @samp{ck810e}, @samp{ck810et}, @samp{ck810ef}, @samp{ck810eft},
18907 @samp{ck810}, @samp{ck810v}, @samp{ck810f}, @samp{ck810t}, @samp{ck810fv},
18908 @samp{ck810tv}, @samp{ck810ft}, and @samp{ck810ftv}.
18909
18910 @item -mbig-endian
18911 @opindex mbig-endian
18912 @itemx -EB
18913 @opindex EB
18914 @itemx -mlittle-endian
18915 @opindex mlittle-endian
18916 @itemx -EL
18917 @opindex EL
18918
18919 Select big- or little-endian code. The default is little-endian.
18920
18921 @item -mhard-float
18922 @opindex mhard-float
18923 @itemx -msoft-float
18924 @opindex msoft-float
18925
18926 Select hardware or software floating-point implementations.
18927 The default is soft float.
18928
18929 @item -mdouble-float
18930 @itemx -mno-double-float
18931 @opindex mdouble-float
18932 When @option{-mhard-float} is in effect, enable generation of
18933 double-precision float instructions. This is the default except
18934 when compiling for CK803.
18935
18936 @item -mfdivdu
18937 @itemx -mno-fdivdu
18938 @opindex mfdivdu
18939 When @option{-mhard-float} is in effect, enable generation of
18940 @code{frecipd}, @code{fsqrtd}, and @code{fdivd} instructions.
18941 This is the default except when compiling for CK803.
18942
18943 @item -mfpu=@var{fpu}
18944 @opindex mfpu=
18945 Select the floating-point processor. This option can only be used with
18946 @option{-mhard-float}.
18947 Values for @var{fpu} are
18948 @samp{fpv2_sf} (equivalent to @samp{-mno-double-float -mno-fdivdu}),
18949 @samp{fpv2} (@samp{-mdouble-float -mno-divdu}), and
18950 @samp{fpv2_divd} (@samp{-mdouble-float -mdivdu}).
18951
18952 @item -melrw
18953 @itemx -mno-elrw
18954 @opindex melrw
18955 Enable the extended @code{lrw} instruction. This option defaults to on
18956 for CK801 and off otherwise.
18957
18958 @item -mistack
18959 @itemx -mno-istack
18960 @opindex mistack
18961 Enable interrupt stack instructions; the default is off.
18962
18963 The @option{-mistack} option is required to handle the
18964 @code{interrupt} and @code{isr} function attributes
18965 (@pxref{C-SKY Function Attributes}).
18966
18967 @item -mmp
18968 @opindex mmp
18969 Enable multiprocessor instructions; the default is off.
18970
18971 @item -mcp
18972 @opindex mcp
18973 Enable coprocessor instructions; the default is off.
18974
18975 @item -mcache
18976 @opindex mcache
18977 Enable coprocessor instructions; the default is off.
18978
18979 @item -msecurity
18980 @opindex msecurity
18981 Enable C-SKY security instructions; the default is off.
18982
18983 @item -mtrust
18984 @opindex mtrust
18985 Enable C-SKY trust instructions; the default is off.
18986
18987 @item -mdsp
18988 @opindex mdsp
18989 @itemx -medsp
18990 @opindex medsp
18991 @itemx -mvdsp
18992 @opindex mvdsp
18993 Enable C-SKY DSP, Enhanced DSP, or Vector DSP instructions, respectively.
18994 All of these options default to off.
18995
18996 @item -mdiv
18997 @itemx -mno-div
18998 @opindex mdiv
18999 Generate divide instructions. Default is off.
19000
19001 @item -msmart
19002 @itemx -mno-smart
19003 @opindex msmart
19004 Generate code for Smart Mode, using only registers numbered 0-7 to allow
19005 use of 16-bit instructions. This option is ignored for CK801 where this
19006 is the required behavior, and it defaults to on for CK802.
19007 For other targets, the default is off.
19008
19009 @item -mhigh-registers
19010 @itemx -mno-high-registers
19011 @opindex mhigh-registers
19012 Generate code using the high registers numbered 16-31. This option
19013 is not supported on CK801, CK802, or CK803, and is enabled by default
19014 for other processors.
19015
19016 @item -manchor
19017 @itemx -mno-anchor
19018 @opindex manchor
19019 Generate code using global anchor symbol addresses.
19020
19021 @item -mpushpop
19022 @itemx -mno-pushpop
19023 @opindex mpushpop
19024 Generate code using @code{push} and @code{pop} instructions. This option
19025 defaults to on.
19026
19027 @item -mmultiple-stld
19028 @itemx -mstm
19029 @itemx -mno-multiple-stld
19030 @itemx -mno-stm
19031 @opindex mmultiple-stld
19032 Generate code using @code{stm} and @code{ldm} instructions. This option
19033 isn't supported on CK801 but is enabled by default on other processors.
19034
19035 @item -mconstpool
19036 @itemx -mno-constpool
19037 @opindex mconstpool
19038 Create constant pools in the compiler instead of deferring it to the
19039 assembler. This option is the default and required for correct code
19040 generation on CK801 and CK802, and is optional on other processors.
19041
19042 @item -mstack-size
19043 @item -mno-stack-size
19044 @opindex mstack-size
19045 Emit @code{.stack_size} directives for each function in the assembly
19046 output. This option defaults to off.
19047
19048 @item -mccrt
19049 @itemx -mno-ccrt
19050 @opindex mccrt
19051 Generate code for the C-SKY compiler runtime instead of libgcc. This
19052 option defaults to off.
19053
19054 @item -mbranch-cost=@var{n}
19055 @opindex mbranch-cost=
19056 Set the branch costs to roughly @code{n} instructions. The default is 1.
19057
19058 @item -msched-prolog
19059 @itemx -mno-sched-prolog
19060 @opindex msched-prolog
19061 Permit scheduling of function prologue and epilogue sequences. Using
19062 this option can result in code that is not compliant with the C-SKY V2 ABI
19063 prologue requirements and that cannot be debugged or backtraced.
19064 It is disabled by default.
19065
19066 @end table
19067
19068 @node Darwin Options
19069 @subsection Darwin Options
19070 @cindex Darwin options
19071
19072 These options are defined for all architectures running the Darwin operating
19073 system.
19074
19075 FSF GCC on Darwin does not create ``fat'' object files; it creates
19076 an object file for the single architecture that GCC was built to
19077 target. Apple's GCC on Darwin does create ``fat'' files if multiple
19078 @option{-arch} options are used; it does so by running the compiler or
19079 linker multiple times and joining the results together with
19080 @file{lipo}.
19081
19082 The subtype of the file created (like @samp{ppc7400} or @samp{ppc970} or
19083 @samp{i686}) is determined by the flags that specify the ISA
19084 that GCC is targeting, like @option{-mcpu} or @option{-march}. The
19085 @option{-force_cpusubtype_ALL} option can be used to override this.
19086
19087 The Darwin tools vary in their behavior when presented with an ISA
19088 mismatch. The assembler, @file{as}, only permits instructions to
19089 be used that are valid for the subtype of the file it is generating,
19090 so you cannot put 64-bit instructions in a @samp{ppc750} object file.
19091 The linker for shared libraries, @file{/usr/bin/libtool}, fails
19092 and prints an error if asked to create a shared library with a less
19093 restrictive subtype than its input files (for instance, trying to put
19094 a @samp{ppc970} object file in a @samp{ppc7400} library). The linker
19095 for executables, @command{ld}, quietly gives the executable the most
19096 restrictive subtype of any of its input files.
19097
19098 @table @gcctabopt
19099 @item -F@var{dir}
19100 @opindex F
19101 Add the framework directory @var{dir} to the head of the list of
19102 directories to be searched for header files. These directories are
19103 interleaved with those specified by @option{-I} options and are
19104 scanned in a left-to-right order.
19105
19106 A framework directory is a directory with frameworks in it. A
19107 framework is a directory with a @file{Headers} and/or
19108 @file{PrivateHeaders} directory contained directly in it that ends
19109 in @file{.framework}. The name of a framework is the name of this
19110 directory excluding the @file{.framework}. Headers associated with
19111 the framework are found in one of those two directories, with
19112 @file{Headers} being searched first. A subframework is a framework
19113 directory that is in a framework's @file{Frameworks} directory.
19114 Includes of subframework headers can only appear in a header of a
19115 framework that contains the subframework, or in a sibling subframework
19116 header. Two subframeworks are siblings if they occur in the same
19117 framework. A subframework should not have the same name as a
19118 framework; a warning is issued if this is violated. Currently a
19119 subframework cannot have subframeworks; in the future, the mechanism
19120 may be extended to support this. The standard frameworks can be found
19121 in @file{/System/Library/Frameworks} and
19122 @file{/Library/Frameworks}. An example include looks like
19123 @code{#include <Framework/header.h>}, where @file{Framework} denotes
19124 the name of the framework and @file{header.h} is found in the
19125 @file{PrivateHeaders} or @file{Headers} directory.
19126
19127 @item -iframework@var{dir}
19128 @opindex iframework
19129 Like @option{-F} except the directory is a treated as a system
19130 directory. The main difference between this @option{-iframework} and
19131 @option{-F} is that with @option{-iframework} the compiler does not
19132 warn about constructs contained within header files found via
19133 @var{dir}. This option is valid only for the C family of languages.
19134
19135 @item -gused
19136 @opindex gused
19137 Emit debugging information for symbols that are used. For stabs
19138 debugging format, this enables @option{-feliminate-unused-debug-symbols}.
19139 This is by default ON@.
19140
19141 @item -gfull
19142 @opindex gfull
19143 Emit debugging information for all symbols and types.
19144
19145 @item -mmacosx-version-min=@var{version}
19146 The earliest version of MacOS X that this executable will run on
19147 is @var{version}. Typical values of @var{version} include @code{10.1},
19148 @code{10.2}, and @code{10.3.9}.
19149
19150 If the compiler was built to use the system's headers by default,
19151 then the default for this option is the system version on which the
19152 compiler is running, otherwise the default is to make choices that
19153 are compatible with as many systems and code bases as possible.
19154
19155 @item -mkernel
19156 @opindex mkernel
19157 Enable kernel development mode. The @option{-mkernel} option sets
19158 @option{-static}, @option{-fno-common}, @option{-fno-use-cxa-atexit},
19159 @option{-fno-exceptions}, @option{-fno-non-call-exceptions},
19160 @option{-fapple-kext}, @option{-fno-weak} and @option{-fno-rtti} where
19161 applicable. This mode also sets @option{-mno-altivec},
19162 @option{-msoft-float}, @option{-fno-builtin} and
19163 @option{-mlong-branch} for PowerPC targets.
19164
19165 @item -mone-byte-bool
19166 @opindex mone-byte-bool
19167 Override the defaults for @code{bool} so that @code{sizeof(bool)==1}.
19168 By default @code{sizeof(bool)} is @code{4} when compiling for
19169 Darwin/PowerPC and @code{1} when compiling for Darwin/x86, so this
19170 option has no effect on x86.
19171
19172 @strong{Warning:} The @option{-mone-byte-bool} switch causes GCC
19173 to generate code that is not binary compatible with code generated
19174 without that switch. Using this switch may require recompiling all
19175 other modules in a program, including system libraries. Use this
19176 switch to conform to a non-default data model.
19177
19178 @item -mfix-and-continue
19179 @itemx -ffix-and-continue
19180 @itemx -findirect-data
19181 @opindex mfix-and-continue
19182 @opindex ffix-and-continue
19183 @opindex findirect-data
19184 Generate code suitable for fast turnaround development, such as to
19185 allow GDB to dynamically load @file{.o} files into already-running
19186 programs. @option{-findirect-data} and @option{-ffix-and-continue}
19187 are provided for backwards compatibility.
19188
19189 @item -all_load
19190 @opindex all_load
19191 Loads all members of static archive libraries.
19192 See man ld(1) for more information.
19193
19194 @item -arch_errors_fatal
19195 @opindex arch_errors_fatal
19196 Cause the errors having to do with files that have the wrong architecture
19197 to be fatal.
19198
19199 @item -bind_at_load
19200 @opindex bind_at_load
19201 Causes the output file to be marked such that the dynamic linker will
19202 bind all undefined references when the file is loaded or launched.
19203
19204 @item -bundle
19205 @opindex bundle
19206 Produce a Mach-o bundle format file.
19207 See man ld(1) for more information.
19208
19209 @item -bundle_loader @var{executable}
19210 @opindex bundle_loader
19211 This option specifies the @var{executable} that will load the build
19212 output file being linked. See man ld(1) for more information.
19213
19214 @item -dynamiclib
19215 @opindex dynamiclib
19216 When passed this option, GCC produces a dynamic library instead of
19217 an executable when linking, using the Darwin @file{libtool} command.
19218
19219 @item -force_cpusubtype_ALL
19220 @opindex force_cpusubtype_ALL
19221 This causes GCC's output file to have the @samp{ALL} subtype, instead of
19222 one controlled by the @option{-mcpu} or @option{-march} option.
19223
19224 @item -allowable_client @var{client_name}
19225 @itemx -client_name
19226 @itemx -compatibility_version
19227 @itemx -current_version
19228 @itemx -dead_strip
19229 @itemx -dependency-file
19230 @itemx -dylib_file
19231 @itemx -dylinker_install_name
19232 @itemx -dynamic
19233 @itemx -exported_symbols_list
19234 @itemx -filelist
19235 @need 800
19236 @itemx -flat_namespace
19237 @itemx -force_flat_namespace
19238 @itemx -headerpad_max_install_names
19239 @itemx -image_base
19240 @itemx -init
19241 @itemx -install_name
19242 @itemx -keep_private_externs
19243 @itemx -multi_module
19244 @itemx -multiply_defined
19245 @itemx -multiply_defined_unused
19246 @need 800
19247 @itemx -noall_load
19248 @itemx -no_dead_strip_inits_and_terms
19249 @itemx -nofixprebinding
19250 @itemx -nomultidefs
19251 @itemx -noprebind
19252 @itemx -noseglinkedit
19253 @itemx -pagezero_size
19254 @itemx -prebind
19255 @itemx -prebind_all_twolevel_modules
19256 @itemx -private_bundle
19257 @need 800
19258 @itemx -read_only_relocs
19259 @itemx -sectalign
19260 @itemx -sectobjectsymbols
19261 @itemx -whyload
19262 @itemx -seg1addr
19263 @itemx -sectcreate
19264 @itemx -sectobjectsymbols
19265 @itemx -sectorder
19266 @itemx -segaddr
19267 @itemx -segs_read_only_addr
19268 @need 800
19269 @itemx -segs_read_write_addr
19270 @itemx -seg_addr_table
19271 @itemx -seg_addr_table_filename
19272 @itemx -seglinkedit
19273 @itemx -segprot
19274 @itemx -segs_read_only_addr
19275 @itemx -segs_read_write_addr
19276 @itemx -single_module
19277 @itemx -static
19278 @itemx -sub_library
19279 @need 800
19280 @itemx -sub_umbrella
19281 @itemx -twolevel_namespace
19282 @itemx -umbrella
19283 @itemx -undefined
19284 @itemx -unexported_symbols_list
19285 @itemx -weak_reference_mismatches
19286 @itemx -whatsloaded
19287 @opindex allowable_client
19288 @opindex client_name
19289 @opindex compatibility_version
19290 @opindex current_version
19291 @opindex dead_strip
19292 @opindex dependency-file
19293 @opindex dylib_file
19294 @opindex dylinker_install_name
19295 @opindex dynamic
19296 @opindex exported_symbols_list
19297 @opindex filelist
19298 @opindex flat_namespace
19299 @opindex force_flat_namespace
19300 @opindex headerpad_max_install_names
19301 @opindex image_base
19302 @opindex init
19303 @opindex install_name
19304 @opindex keep_private_externs
19305 @opindex multi_module
19306 @opindex multiply_defined
19307 @opindex multiply_defined_unused
19308 @opindex noall_load
19309 @opindex no_dead_strip_inits_and_terms
19310 @opindex nofixprebinding
19311 @opindex nomultidefs
19312 @opindex noprebind
19313 @opindex noseglinkedit
19314 @opindex pagezero_size
19315 @opindex prebind
19316 @opindex prebind_all_twolevel_modules
19317 @opindex private_bundle
19318 @opindex read_only_relocs
19319 @opindex sectalign
19320 @opindex sectobjectsymbols
19321 @opindex whyload
19322 @opindex seg1addr
19323 @opindex sectcreate
19324 @opindex sectobjectsymbols
19325 @opindex sectorder
19326 @opindex segaddr
19327 @opindex segs_read_only_addr
19328 @opindex segs_read_write_addr
19329 @opindex seg_addr_table
19330 @opindex seg_addr_table_filename
19331 @opindex seglinkedit
19332 @opindex segprot
19333 @opindex segs_read_only_addr
19334 @opindex segs_read_write_addr
19335 @opindex single_module
19336 @opindex static
19337 @opindex sub_library
19338 @opindex sub_umbrella
19339 @opindex twolevel_namespace
19340 @opindex umbrella
19341 @opindex undefined
19342 @opindex unexported_symbols_list
19343 @opindex weak_reference_mismatches
19344 @opindex whatsloaded
19345 These options are passed to the Darwin linker. The Darwin linker man page
19346 describes them in detail.
19347 @end table
19348
19349 @node DEC Alpha Options
19350 @subsection DEC Alpha Options
19351
19352 These @samp{-m} options are defined for the DEC Alpha implementations:
19353
19354 @table @gcctabopt
19355 @item -mno-soft-float
19356 @itemx -msoft-float
19357 @opindex mno-soft-float
19358 @opindex msoft-float
19359 Use (do not use) the hardware floating-point instructions for
19360 floating-point operations. When @option{-msoft-float} is specified,
19361 functions in @file{libgcc.a} are used to perform floating-point
19362 operations. Unless they are replaced by routines that emulate the
19363 floating-point operations, or compiled in such a way as to call such
19364 emulations routines, these routines issue floating-point
19365 operations. If you are compiling for an Alpha without floating-point
19366 operations, you must ensure that the library is built so as not to call
19367 them.
19368
19369 Note that Alpha implementations without floating-point operations are
19370 required to have floating-point registers.
19371
19372 @item -mfp-reg
19373 @itemx -mno-fp-regs
19374 @opindex mfp-reg
19375 @opindex mno-fp-regs
19376 Generate code that uses (does not use) the floating-point register set.
19377 @option{-mno-fp-regs} implies @option{-msoft-float}. If the floating-point
19378 register set is not used, floating-point operands are passed in integer
19379 registers as if they were integers and floating-point results are passed
19380 in @code{$0} instead of @code{$f0}. This is a non-standard calling sequence,
19381 so any function with a floating-point argument or return value called by code
19382 compiled with @option{-mno-fp-regs} must also be compiled with that
19383 option.
19384
19385 A typical use of this option is building a kernel that does not use,
19386 and hence need not save and restore, any floating-point registers.
19387
19388 @item -mieee
19389 @opindex mieee
19390 The Alpha architecture implements floating-point hardware optimized for
19391 maximum performance. It is mostly compliant with the IEEE floating-point
19392 standard. However, for full compliance, software assistance is
19393 required. This option generates code fully IEEE-compliant code
19394 @emph{except} that the @var{inexact-flag} is not maintained (see below).
19395 If this option is turned on, the preprocessor macro @code{_IEEE_FP} is
19396 defined during compilation. The resulting code is less efficient but is
19397 able to correctly support denormalized numbers and exceptional IEEE
19398 values such as not-a-number and plus/minus infinity. Other Alpha
19399 compilers call this option @option{-ieee_with_no_inexact}.
19400
19401 @item -mieee-with-inexact
19402 @opindex mieee-with-inexact
19403 This is like @option{-mieee} except the generated code also maintains
19404 the IEEE @var{inexact-flag}. Turning on this option causes the
19405 generated code to implement fully-compliant IEEE math. In addition to
19406 @code{_IEEE_FP}, @code{_IEEE_FP_EXACT} is defined as a preprocessor
19407 macro. On some Alpha implementations the resulting code may execute
19408 significantly slower than the code generated by default. Since there is
19409 very little code that depends on the @var{inexact-flag}, you should
19410 normally not specify this option. Other Alpha compilers call this
19411 option @option{-ieee_with_inexact}.
19412
19413 @item -mfp-trap-mode=@var{trap-mode}
19414 @opindex mfp-trap-mode
19415 This option controls what floating-point related traps are enabled.
19416 Other Alpha compilers call this option @option{-fptm @var{trap-mode}}.
19417 The trap mode can be set to one of four values:
19418
19419 @table @samp
19420 @item n
19421 This is the default (normal) setting. The only traps that are enabled
19422 are the ones that cannot be disabled in software (e.g., division by zero
19423 trap).
19424
19425 @item u
19426 In addition to the traps enabled by @samp{n}, underflow traps are enabled
19427 as well.
19428
19429 @item su
19430 Like @samp{u}, but the instructions are marked to be safe for software
19431 completion (see Alpha architecture manual for details).
19432
19433 @item sui
19434 Like @samp{su}, but inexact traps are enabled as well.
19435 @end table
19436
19437 @item -mfp-rounding-mode=@var{rounding-mode}
19438 @opindex mfp-rounding-mode
19439 Selects the IEEE rounding mode. Other Alpha compilers call this option
19440 @option{-fprm @var{rounding-mode}}. The @var{rounding-mode} can be one
19441 of:
19442
19443 @table @samp
19444 @item n
19445 Normal IEEE rounding mode. Floating-point numbers are rounded towards
19446 the nearest machine number or towards the even machine number in case
19447 of a tie.
19448
19449 @item m
19450 Round towards minus infinity.
19451
19452 @item c
19453 Chopped rounding mode. Floating-point numbers are rounded towards zero.
19454
19455 @item d
19456 Dynamic rounding mode. A field in the floating-point control register
19457 (@var{fpcr}, see Alpha architecture reference manual) controls the
19458 rounding mode in effect. The C library initializes this register for
19459 rounding towards plus infinity. Thus, unless your program modifies the
19460 @var{fpcr}, @samp{d} corresponds to round towards plus infinity.
19461 @end table
19462
19463 @item -mtrap-precision=@var{trap-precision}
19464 @opindex mtrap-precision
19465 In the Alpha architecture, floating-point traps are imprecise. This
19466 means without software assistance it is impossible to recover from a
19467 floating trap and program execution normally needs to be terminated.
19468 GCC can generate code that can assist operating system trap handlers
19469 in determining the exact location that caused a floating-point trap.
19470 Depending on the requirements of an application, different levels of
19471 precisions can be selected:
19472
19473 @table @samp
19474 @item p
19475 Program precision. This option is the default and means a trap handler
19476 can only identify which program caused a floating-point exception.
19477
19478 @item f
19479 Function precision. The trap handler can determine the function that
19480 caused a floating-point exception.
19481
19482 @item i
19483 Instruction precision. The trap handler can determine the exact
19484 instruction that caused a floating-point exception.
19485 @end table
19486
19487 Other Alpha compilers provide the equivalent options called
19488 @option{-scope_safe} and @option{-resumption_safe}.
19489
19490 @item -mieee-conformant
19491 @opindex mieee-conformant
19492 This option marks the generated code as IEEE conformant. You must not
19493 use this option unless you also specify @option{-mtrap-precision=i} and either
19494 @option{-mfp-trap-mode=su} or @option{-mfp-trap-mode=sui}. Its only effect
19495 is to emit the line @samp{.eflag 48} in the function prologue of the
19496 generated assembly file.
19497
19498 @item -mbuild-constants
19499 @opindex mbuild-constants
19500 Normally GCC examines a 32- or 64-bit integer constant to
19501 see if it can construct it from smaller constants in two or three
19502 instructions. If it cannot, it outputs the constant as a literal and
19503 generates code to load it from the data segment at run time.
19504
19505 Use this option to require GCC to construct @emph{all} integer constants
19506 using code, even if it takes more instructions (the maximum is six).
19507
19508 You typically use this option to build a shared library dynamic
19509 loader. Itself a shared library, it must relocate itself in memory
19510 before it can find the variables and constants in its own data segment.
19511
19512 @item -mbwx
19513 @itemx -mno-bwx
19514 @itemx -mcix
19515 @itemx -mno-cix
19516 @itemx -mfix
19517 @itemx -mno-fix
19518 @itemx -mmax
19519 @itemx -mno-max
19520 @opindex mbwx
19521 @opindex mno-bwx
19522 @opindex mcix
19523 @opindex mno-cix
19524 @opindex mfix
19525 @opindex mno-fix
19526 @opindex mmax
19527 @opindex mno-max
19528 Indicate whether GCC should generate code to use the optional BWX,
19529 CIX, FIX and MAX instruction sets. The default is to use the instruction
19530 sets supported by the CPU type specified via @option{-mcpu=} option or that
19531 of the CPU on which GCC was built if none is specified.
19532
19533 @item -mfloat-vax
19534 @itemx -mfloat-ieee
19535 @opindex mfloat-vax
19536 @opindex mfloat-ieee
19537 Generate code that uses (does not use) VAX F and G floating-point
19538 arithmetic instead of IEEE single and double precision.
19539
19540 @item -mexplicit-relocs
19541 @itemx -mno-explicit-relocs
19542 @opindex mexplicit-relocs
19543 @opindex mno-explicit-relocs
19544 Older Alpha assemblers provided no way to generate symbol relocations
19545 except via assembler macros. Use of these macros does not allow
19546 optimal instruction scheduling. GNU binutils as of version 2.12
19547 supports a new syntax that allows the compiler to explicitly mark
19548 which relocations should apply to which instructions. This option
19549 is mostly useful for debugging, as GCC detects the capabilities of
19550 the assembler when it is built and sets the default accordingly.
19551
19552 @item -msmall-data
19553 @itemx -mlarge-data
19554 @opindex msmall-data
19555 @opindex mlarge-data
19556 When @option{-mexplicit-relocs} is in effect, static data is
19557 accessed via @dfn{gp-relative} relocations. When @option{-msmall-data}
19558 is used, objects 8 bytes long or smaller are placed in a @dfn{small data area}
19559 (the @code{.sdata} and @code{.sbss} sections) and are accessed via
19560 16-bit relocations off of the @code{$gp} register. This limits the
19561 size of the small data area to 64KB, but allows the variables to be
19562 directly accessed via a single instruction.
19563
19564 The default is @option{-mlarge-data}. With this option the data area
19565 is limited to just below 2GB@. Programs that require more than 2GB of
19566 data must use @code{malloc} or @code{mmap} to allocate the data in the
19567 heap instead of in the program's data segment.
19568
19569 When generating code for shared libraries, @option{-fpic} implies
19570 @option{-msmall-data} and @option{-fPIC} implies @option{-mlarge-data}.
19571
19572 @item -msmall-text
19573 @itemx -mlarge-text
19574 @opindex msmall-text
19575 @opindex mlarge-text
19576 When @option{-msmall-text} is used, the compiler assumes that the
19577 code of the entire program (or shared library) fits in 4MB, and is
19578 thus reachable with a branch instruction. When @option{-msmall-data}
19579 is used, the compiler can assume that all local symbols share the
19580 same @code{$gp} value, and thus reduce the number of instructions
19581 required for a function call from 4 to 1.
19582
19583 The default is @option{-mlarge-text}.
19584
19585 @item -mcpu=@var{cpu_type}
19586 @opindex mcpu
19587 Set the instruction set and instruction scheduling parameters for
19588 machine type @var{cpu_type}. You can specify either the @samp{EV}
19589 style name or the corresponding chip number. GCC supports scheduling
19590 parameters for the EV4, EV5 and EV6 family of processors and
19591 chooses the default values for the instruction set from the processor
19592 you specify. If you do not specify a processor type, GCC defaults
19593 to the processor on which the compiler was built.
19594
19595 Supported values for @var{cpu_type} are
19596
19597 @table @samp
19598 @item ev4
19599 @itemx ev45
19600 @itemx 21064
19601 Schedules as an EV4 and has no instruction set extensions.
19602
19603 @item ev5
19604 @itemx 21164
19605 Schedules as an EV5 and has no instruction set extensions.
19606
19607 @item ev56
19608 @itemx 21164a
19609 Schedules as an EV5 and supports the BWX extension.
19610
19611 @item pca56
19612 @itemx 21164pc
19613 @itemx 21164PC
19614 Schedules as an EV5 and supports the BWX and MAX extensions.
19615
19616 @item ev6
19617 @itemx 21264
19618 Schedules as an EV6 and supports the BWX, FIX, and MAX extensions.
19619
19620 @item ev67
19621 @itemx 21264a
19622 Schedules as an EV6 and supports the BWX, CIX, FIX, and MAX extensions.
19623 @end table
19624
19625 Native toolchains also support the value @samp{native},
19626 which selects the best architecture option for the host processor.
19627 @option{-mcpu=native} has no effect if GCC does not recognize
19628 the processor.
19629
19630 @item -mtune=@var{cpu_type}
19631 @opindex mtune
19632 Set only the instruction scheduling parameters for machine type
19633 @var{cpu_type}. The instruction set is not changed.
19634
19635 Native toolchains also support the value @samp{native},
19636 which selects the best architecture option for the host processor.
19637 @option{-mtune=native} has no effect if GCC does not recognize
19638 the processor.
19639
19640 @item -mmemory-latency=@var{time}
19641 @opindex mmemory-latency
19642 Sets the latency the scheduler should assume for typical memory
19643 references as seen by the application. This number is highly
19644 dependent on the memory access patterns used by the application
19645 and the size of the external cache on the machine.
19646
19647 Valid options for @var{time} are
19648
19649 @table @samp
19650 @item @var{number}
19651 A decimal number representing clock cycles.
19652
19653 @item L1
19654 @itemx L2
19655 @itemx L3
19656 @itemx main
19657 The compiler contains estimates of the number of clock cycles for
19658 ``typical'' EV4 & EV5 hardware for the Level 1, 2 & 3 caches
19659 (also called Dcache, Scache, and Bcache), as well as to main memory.
19660 Note that L3 is only valid for EV5.
19661
19662 @end table
19663 @end table
19664
19665 @node FR30 Options
19666 @subsection FR30 Options
19667 @cindex FR30 Options
19668
19669 These options are defined specifically for the FR30 port.
19670
19671 @table @gcctabopt
19672
19673 @item -msmall-model
19674 @opindex msmall-model
19675 Use the small address space model. This can produce smaller code, but
19676 it does assume that all symbolic values and addresses fit into a
19677 20-bit range.
19678
19679 @item -mno-lsim
19680 @opindex mno-lsim
19681 Assume that runtime support has been provided and so there is no need
19682 to include the simulator library (@file{libsim.a}) on the linker
19683 command line.
19684
19685 @end table
19686
19687 @node FT32 Options
19688 @subsection FT32 Options
19689 @cindex FT32 Options
19690
19691 These options are defined specifically for the FT32 port.
19692
19693 @table @gcctabopt
19694
19695 @item -msim
19696 @opindex msim
19697 Specifies that the program will be run on the simulator. This causes
19698 an alternate runtime startup and library to be linked.
19699 You must not use this option when generating programs that will run on
19700 real hardware; you must provide your own runtime library for whatever
19701 I/O functions are needed.
19702
19703 @item -mlra
19704 @opindex mlra
19705 Enable Local Register Allocation. This is still experimental for FT32,
19706 so by default the compiler uses standard reload.
19707
19708 @item -mnodiv
19709 @opindex mnodiv
19710 Do not use div and mod instructions.
19711
19712 @item -mft32b
19713 @opindex mft32b
19714 Enable use of the extended instructions of the FT32B processor.
19715
19716 @item -mcompress
19717 @opindex mcompress
19718 Compress all code using the Ft32B code compression scheme.
19719
19720 @item -mnopm
19721 @opindex mnopm
19722 Do not generate code that reads program memory.
19723
19724 @end table
19725
19726 @node FRV Options
19727 @subsection FRV Options
19728 @cindex FRV Options
19729
19730 @table @gcctabopt
19731 @item -mgpr-32
19732 @opindex mgpr-32
19733
19734 Only use the first 32 general-purpose registers.
19735
19736 @item -mgpr-64
19737 @opindex mgpr-64
19738
19739 Use all 64 general-purpose registers.
19740
19741 @item -mfpr-32
19742 @opindex mfpr-32
19743
19744 Use only the first 32 floating-point registers.
19745
19746 @item -mfpr-64
19747 @opindex mfpr-64
19748
19749 Use all 64 floating-point registers.
19750
19751 @item -mhard-float
19752 @opindex mhard-float
19753
19754 Use hardware instructions for floating-point operations.
19755
19756 @item -msoft-float
19757 @opindex msoft-float
19758
19759 Use library routines for floating-point operations.
19760
19761 @item -malloc-cc
19762 @opindex malloc-cc
19763
19764 Dynamically allocate condition code registers.
19765
19766 @item -mfixed-cc
19767 @opindex mfixed-cc
19768
19769 Do not try to dynamically allocate condition code registers, only
19770 use @code{icc0} and @code{fcc0}.
19771
19772 @item -mdword
19773 @opindex mdword
19774
19775 Change ABI to use double word insns.
19776
19777 @item -mno-dword
19778 @opindex mno-dword
19779 @opindex mdword
19780
19781 Do not use double word instructions.
19782
19783 @item -mdouble
19784 @opindex mdouble
19785
19786 Use floating-point double instructions.
19787
19788 @item -mno-double
19789 @opindex mno-double
19790
19791 Do not use floating-point double instructions.
19792
19793 @item -mmedia
19794 @opindex mmedia
19795
19796 Use media instructions.
19797
19798 @item -mno-media
19799 @opindex mno-media
19800
19801 Do not use media instructions.
19802
19803 @item -mmuladd
19804 @opindex mmuladd
19805
19806 Use multiply and add/subtract instructions.
19807
19808 @item -mno-muladd
19809 @opindex mno-muladd
19810
19811 Do not use multiply and add/subtract instructions.
19812
19813 @item -mfdpic
19814 @opindex mfdpic
19815
19816 Select the FDPIC ABI, which uses function descriptors to represent
19817 pointers to functions. Without any PIC/PIE-related options, it
19818 implies @option{-fPIE}. With @option{-fpic} or @option{-fpie}, it
19819 assumes GOT entries and small data are within a 12-bit range from the
19820 GOT base address; with @option{-fPIC} or @option{-fPIE}, GOT offsets
19821 are computed with 32 bits.
19822 With a @samp{bfin-elf} target, this option implies @option{-msim}.
19823
19824 @item -minline-plt
19825 @opindex minline-plt
19826
19827 Enable inlining of PLT entries in function calls to functions that are
19828 not known to bind locally. It has no effect without @option{-mfdpic}.
19829 It's enabled by default if optimizing for speed and compiling for
19830 shared libraries (i.e., @option{-fPIC} or @option{-fpic}), or when an
19831 optimization option such as @option{-O3} or above is present in the
19832 command line.
19833
19834 @item -mTLS
19835 @opindex mTLS
19836
19837 Assume a large TLS segment when generating thread-local code.
19838
19839 @item -mtls
19840 @opindex mtls
19841
19842 Do not assume a large TLS segment when generating thread-local code.
19843
19844 @item -mgprel-ro
19845 @opindex mgprel-ro
19846
19847 Enable the use of @code{GPREL} relocations in the FDPIC ABI for data
19848 that is known to be in read-only sections. It's enabled by default,
19849 except for @option{-fpic} or @option{-fpie}: even though it may help
19850 make the global offset table smaller, it trades 1 instruction for 4.
19851 With @option{-fPIC} or @option{-fPIE}, it trades 3 instructions for 4,
19852 one of which may be shared by multiple symbols, and it avoids the need
19853 for a GOT entry for the referenced symbol, so it's more likely to be a
19854 win. If it is not, @option{-mno-gprel-ro} can be used to disable it.
19855
19856 @item -multilib-library-pic
19857 @opindex multilib-library-pic
19858
19859 Link with the (library, not FD) pic libraries. It's implied by
19860 @option{-mlibrary-pic}, as well as by @option{-fPIC} and
19861 @option{-fpic} without @option{-mfdpic}. You should never have to use
19862 it explicitly.
19863
19864 @item -mlinked-fp
19865 @opindex mlinked-fp
19866
19867 Follow the EABI requirement of always creating a frame pointer whenever
19868 a stack frame is allocated. This option is enabled by default and can
19869 be disabled with @option{-mno-linked-fp}.
19870
19871 @item -mlong-calls
19872 @opindex mlong-calls
19873
19874 Use indirect addressing to call functions outside the current
19875 compilation unit. This allows the functions to be placed anywhere
19876 within the 32-bit address space.
19877
19878 @item -malign-labels
19879 @opindex malign-labels
19880
19881 Try to align labels to an 8-byte boundary by inserting NOPs into the
19882 previous packet. This option only has an effect when VLIW packing
19883 is enabled. It doesn't create new packets; it merely adds NOPs to
19884 existing ones.
19885
19886 @item -mlibrary-pic
19887 @opindex mlibrary-pic
19888
19889 Generate position-independent EABI code.
19890
19891 @item -macc-4
19892 @opindex macc-4
19893
19894 Use only the first four media accumulator registers.
19895
19896 @item -macc-8
19897 @opindex macc-8
19898
19899 Use all eight media accumulator registers.
19900
19901 @item -mpack
19902 @opindex mpack
19903
19904 Pack VLIW instructions.
19905
19906 @item -mno-pack
19907 @opindex mno-pack
19908
19909 Do not pack VLIW instructions.
19910
19911 @item -mno-eflags
19912 @opindex mno-eflags
19913
19914 Do not mark ABI switches in e_flags.
19915
19916 @item -mcond-move
19917 @opindex mcond-move
19918
19919 Enable the use of conditional-move instructions (default).
19920
19921 This switch is mainly for debugging the compiler and will likely be removed
19922 in a future version.
19923
19924 @item -mno-cond-move
19925 @opindex mno-cond-move
19926
19927 Disable the use of conditional-move instructions.
19928
19929 This switch is mainly for debugging the compiler and will likely be removed
19930 in a future version.
19931
19932 @item -mscc
19933 @opindex mscc
19934
19935 Enable the use of conditional set instructions (default).
19936
19937 This switch is mainly for debugging the compiler and will likely be removed
19938 in a future version.
19939
19940 @item -mno-scc
19941 @opindex mno-scc
19942
19943 Disable the use of conditional set instructions.
19944
19945 This switch is mainly for debugging the compiler and will likely be removed
19946 in a future version.
19947
19948 @item -mcond-exec
19949 @opindex mcond-exec
19950
19951 Enable the use of conditional execution (default).
19952
19953 This switch is mainly for debugging the compiler and will likely be removed
19954 in a future version.
19955
19956 @item -mno-cond-exec
19957 @opindex mno-cond-exec
19958
19959 Disable the use of conditional execution.
19960
19961 This switch is mainly for debugging the compiler and will likely be removed
19962 in a future version.
19963
19964 @item -mvliw-branch
19965 @opindex mvliw-branch
19966
19967 Run a pass to pack branches into VLIW instructions (default).
19968
19969 This switch is mainly for debugging the compiler and will likely be removed
19970 in a future version.
19971
19972 @item -mno-vliw-branch
19973 @opindex mno-vliw-branch
19974
19975 Do not run a pass to pack branches into VLIW instructions.
19976
19977 This switch is mainly for debugging the compiler and will likely be removed
19978 in a future version.
19979
19980 @item -mmulti-cond-exec
19981 @opindex mmulti-cond-exec
19982
19983 Enable optimization of @code{&&} and @code{||} in conditional execution
19984 (default).
19985
19986 This switch is mainly for debugging the compiler and will likely be removed
19987 in a future version.
19988
19989 @item -mno-multi-cond-exec
19990 @opindex mno-multi-cond-exec
19991
19992 Disable optimization of @code{&&} and @code{||} in conditional execution.
19993
19994 This switch is mainly for debugging the compiler and will likely be removed
19995 in a future version.
19996
19997 @item -mnested-cond-exec
19998 @opindex mnested-cond-exec
19999
20000 Enable nested conditional execution optimizations (default).
20001
20002 This switch is mainly for debugging the compiler and will likely be removed
20003 in a future version.
20004
20005 @item -mno-nested-cond-exec
20006 @opindex mno-nested-cond-exec
20007
20008 Disable nested conditional execution optimizations.
20009
20010 This switch is mainly for debugging the compiler and will likely be removed
20011 in a future version.
20012
20013 @item -moptimize-membar
20014 @opindex moptimize-membar
20015
20016 This switch removes redundant @code{membar} instructions from the
20017 compiler-generated code. It is enabled by default.
20018
20019 @item -mno-optimize-membar
20020 @opindex mno-optimize-membar
20021 @opindex moptimize-membar
20022
20023 This switch disables the automatic removal of redundant @code{membar}
20024 instructions from the generated code.
20025
20026 @item -mtomcat-stats
20027 @opindex mtomcat-stats
20028
20029 Cause gas to print out tomcat statistics.
20030
20031 @item -mcpu=@var{cpu}
20032 @opindex mcpu
20033
20034 Select the processor type for which to generate code. Possible values are
20035 @samp{frv}, @samp{fr550}, @samp{tomcat}, @samp{fr500}, @samp{fr450},
20036 @samp{fr405}, @samp{fr400}, @samp{fr300} and @samp{simple}.
20037
20038 @end table
20039
20040 @node GNU/Linux Options
20041 @subsection GNU/Linux Options
20042
20043 These @samp{-m} options are defined for GNU/Linux targets:
20044
20045 @table @gcctabopt
20046 @item -mglibc
20047 @opindex mglibc
20048 Use the GNU C library. This is the default except
20049 on @samp{*-*-linux-*uclibc*}, @samp{*-*-linux-*musl*} and
20050 @samp{*-*-linux-*android*} targets.
20051
20052 @item -muclibc
20053 @opindex muclibc
20054 Use uClibc C library. This is the default on
20055 @samp{*-*-linux-*uclibc*} targets.
20056
20057 @item -mmusl
20058 @opindex mmusl
20059 Use the musl C library. This is the default on
20060 @samp{*-*-linux-*musl*} targets.
20061
20062 @item -mbionic
20063 @opindex mbionic
20064 Use Bionic C library. This is the default on
20065 @samp{*-*-linux-*android*} targets.
20066
20067 @item -mandroid
20068 @opindex mandroid
20069 Compile code compatible with Android platform. This is the default on
20070 @samp{*-*-linux-*android*} targets.
20071
20072 When compiling, this option enables @option{-mbionic}, @option{-fPIC},
20073 @option{-fno-exceptions} and @option{-fno-rtti} by default. When linking,
20074 this option makes the GCC driver pass Android-specific options to the linker.
20075 Finally, this option causes the preprocessor macro @code{__ANDROID__}
20076 to be defined.
20077
20078 @item -tno-android-cc
20079 @opindex tno-android-cc
20080 Disable compilation effects of @option{-mandroid}, i.e., do not enable
20081 @option{-mbionic}, @option{-fPIC}, @option{-fno-exceptions} and
20082 @option{-fno-rtti} by default.
20083
20084 @item -tno-android-ld
20085 @opindex tno-android-ld
20086 Disable linking effects of @option{-mandroid}, i.e., pass standard Linux
20087 linking options to the linker.
20088
20089 @end table
20090
20091 @node H8/300 Options
20092 @subsection H8/300 Options
20093
20094 These @samp{-m} options are defined for the H8/300 implementations:
20095
20096 @table @gcctabopt
20097 @item -mrelax
20098 @opindex mrelax
20099 Shorten some address references at link time, when possible; uses the
20100 linker option @option{-relax}. @xref{H8/300,, @code{ld} and the H8/300,
20101 ld, Using ld}, for a fuller description.
20102
20103 @item -mh
20104 @opindex mh
20105 Generate code for the H8/300H@.
20106
20107 @item -ms
20108 @opindex ms
20109 Generate code for the H8S@.
20110
20111 @item -mn
20112 @opindex mn
20113 Generate code for the H8S and H8/300H in the normal mode. This switch
20114 must be used either with @option{-mh} or @option{-ms}.
20115
20116 @item -ms2600
20117 @opindex ms2600
20118 Generate code for the H8S/2600. This switch must be used with @option{-ms}.
20119
20120 @item -mexr
20121 @opindex mexr
20122 Extended registers are stored on stack before execution of function
20123 with monitor attribute. Default option is @option{-mexr}.
20124 This option is valid only for H8S targets.
20125
20126 @item -mno-exr
20127 @opindex mno-exr
20128 @opindex mexr
20129 Extended registers are not stored on stack before execution of function
20130 with monitor attribute. Default option is @option{-mno-exr}.
20131 This option is valid only for H8S targets.
20132
20133 @item -mint32
20134 @opindex mint32
20135 Make @code{int} data 32 bits by default.
20136
20137 @item -malign-300
20138 @opindex malign-300
20139 On the H8/300H and H8S, use the same alignment rules as for the H8/300.
20140 The default for the H8/300H and H8S is to align longs and floats on
20141 4-byte boundaries.
20142 @option{-malign-300} causes them to be aligned on 2-byte boundaries.
20143 This option has no effect on the H8/300.
20144 @end table
20145
20146 @node HPPA Options
20147 @subsection HPPA Options
20148 @cindex HPPA Options
20149
20150 These @samp{-m} options are defined for the HPPA family of computers:
20151
20152 @table @gcctabopt
20153 @item -march=@var{architecture-type}
20154 @opindex march
20155 Generate code for the specified architecture. The choices for
20156 @var{architecture-type} are @samp{1.0} for PA 1.0, @samp{1.1} for PA
20157 1.1, and @samp{2.0} for PA 2.0 processors. Refer to
20158 @file{/usr/lib/sched.models} on an HP-UX system to determine the proper
20159 architecture option for your machine. Code compiled for lower numbered
20160 architectures runs on higher numbered architectures, but not the
20161 other way around.
20162
20163 @item -mpa-risc-1-0
20164 @itemx -mpa-risc-1-1
20165 @itemx -mpa-risc-2-0
20166 @opindex mpa-risc-1-0
20167 @opindex mpa-risc-1-1
20168 @opindex mpa-risc-2-0
20169 Synonyms for @option{-march=1.0}, @option{-march=1.1}, and @option{-march=2.0} respectively.
20170
20171 @item -mcaller-copies
20172 @opindex mcaller-copies
20173 The caller copies function arguments passed by hidden reference. This
20174 option should be used with care as it is not compatible with the default
20175 32-bit runtime. However, only aggregates larger than eight bytes are
20176 passed by hidden reference and the option provides better compatibility
20177 with OpenMP.
20178
20179 @item -mjump-in-delay
20180 @opindex mjump-in-delay
20181 This option is ignored and provided for compatibility purposes only.
20182
20183 @item -mdisable-fpregs
20184 @opindex mdisable-fpregs
20185 Prevent floating-point registers from being used in any manner. This is
20186 necessary for compiling kernels that perform lazy context switching of
20187 floating-point registers. If you use this option and attempt to perform
20188 floating-point operations, the compiler aborts.
20189
20190 @item -mdisable-indexing
20191 @opindex mdisable-indexing
20192 Prevent the compiler from using indexing address modes. This avoids some
20193 rather obscure problems when compiling MIG generated code under MACH@.
20194
20195 @item -mno-space-regs
20196 @opindex mno-space-regs
20197 @opindex mspace-regs
20198 Generate code that assumes the target has no space registers. This allows
20199 GCC to generate faster indirect calls and use unscaled index address modes.
20200
20201 Such code is suitable for level 0 PA systems and kernels.
20202
20203 @item -mfast-indirect-calls
20204 @opindex mfast-indirect-calls
20205 Generate code that assumes calls never cross space boundaries. This
20206 allows GCC to emit code that performs faster indirect calls.
20207
20208 This option does not work in the presence of shared libraries or nested
20209 functions.
20210
20211 @item -mfixed-range=@var{register-range}
20212 @opindex mfixed-range
20213 Generate code treating the given register range as fixed registers.
20214 A fixed register is one that the register allocator cannot use. This is
20215 useful when compiling kernel code. A register range is specified as
20216 two registers separated by a dash. Multiple register ranges can be
20217 specified separated by a comma.
20218
20219 @item -mlong-load-store
20220 @opindex mlong-load-store
20221 Generate 3-instruction load and store sequences as sometimes required by
20222 the HP-UX 10 linker. This is equivalent to the @samp{+k} option to
20223 the HP compilers.
20224
20225 @item -mportable-runtime
20226 @opindex mportable-runtime
20227 Use the portable calling conventions proposed by HP for ELF systems.
20228
20229 @item -mgas
20230 @opindex mgas
20231 Enable the use of assembler directives only GAS understands.
20232
20233 @item -mschedule=@var{cpu-type}
20234 @opindex mschedule
20235 Schedule code according to the constraints for the machine type
20236 @var{cpu-type}. The choices for @var{cpu-type} are @samp{700}
20237 @samp{7100}, @samp{7100LC}, @samp{7200}, @samp{7300} and @samp{8000}. Refer
20238 to @file{/usr/lib/sched.models} on an HP-UX system to determine the
20239 proper scheduling option for your machine. The default scheduling is
20240 @samp{8000}.
20241
20242 @item -mlinker-opt
20243 @opindex mlinker-opt
20244 Enable the optimization pass in the HP-UX linker. Note this makes symbolic
20245 debugging impossible. It also triggers a bug in the HP-UX 8 and HP-UX 9
20246 linkers in which they give bogus error messages when linking some programs.
20247
20248 @item -msoft-float
20249 @opindex msoft-float
20250 Generate output containing library calls for floating point.
20251 @strong{Warning:} the requisite libraries are not available for all HPPA
20252 targets. Normally the facilities of the machine's usual C compiler are
20253 used, but this cannot be done directly in cross-compilation. You must make
20254 your own arrangements to provide suitable library functions for
20255 cross-compilation.
20256
20257 @option{-msoft-float} changes the calling convention in the output file;
20258 therefore, it is only useful if you compile @emph{all} of a program with
20259 this option. In particular, you need to compile @file{libgcc.a}, the
20260 library that comes with GCC, with @option{-msoft-float} in order for
20261 this to work.
20262
20263 @item -msio
20264 @opindex msio
20265 Generate the predefine, @code{_SIO}, for server IO@. The default is
20266 @option{-mwsio}. This generates the predefines, @code{__hp9000s700},
20267 @code{__hp9000s700__} and @code{_WSIO}, for workstation IO@. These
20268 options are available under HP-UX and HI-UX@.
20269
20270 @item -mgnu-ld
20271 @opindex mgnu-ld
20272 Use options specific to GNU @command{ld}.
20273 This passes @option{-shared} to @command{ld} when
20274 building a shared library. It is the default when GCC is configured,
20275 explicitly or implicitly, with the GNU linker. This option does not
20276 affect which @command{ld} is called; it only changes what parameters
20277 are passed to that @command{ld}.
20278 The @command{ld} that is called is determined by the
20279 @option{--with-ld} configure option, GCC's program search path, and
20280 finally by the user's @env{PATH}. The linker used by GCC can be printed
20281 using @samp{which `gcc -print-prog-name=ld`}. This option is only available
20282 on the 64-bit HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20283
20284 @item -mhp-ld
20285 @opindex mhp-ld
20286 Use options specific to HP @command{ld}.
20287 This passes @option{-b} to @command{ld} when building
20288 a shared library and passes @option{+Accept TypeMismatch} to @command{ld} on all
20289 links. It is the default when GCC is configured, explicitly or
20290 implicitly, with the HP linker. This option does not affect
20291 which @command{ld} is called; it only changes what parameters are passed to that
20292 @command{ld}.
20293 The @command{ld} that is called is determined by the @option{--with-ld}
20294 configure option, GCC's program search path, and finally by the user's
20295 @env{PATH}. The linker used by GCC can be printed using @samp{which
20296 `gcc -print-prog-name=ld`}. This option is only available on the 64-bit
20297 HP-UX GCC, i.e.@: configured with @samp{hppa*64*-*-hpux*}.
20298
20299 @item -mlong-calls
20300 @opindex mno-long-calls
20301 @opindex mlong-calls
20302 Generate code that uses long call sequences. This ensures that a call
20303 is always able to reach linker generated stubs. The default is to generate
20304 long calls only when the distance from the call site to the beginning
20305 of the function or translation unit, as the case may be, exceeds a
20306 predefined limit set by the branch type being used. The limits for
20307 normal calls are 7,600,000 and 240,000 bytes, respectively for the
20308 PA 2.0 and PA 1.X architectures. Sibcalls are always limited at
20309 240,000 bytes.
20310
20311 Distances are measured from the beginning of functions when using the
20312 @option{-ffunction-sections} option, or when using the @option{-mgas}
20313 and @option{-mno-portable-runtime} options together under HP-UX with
20314 the SOM linker.
20315
20316 It is normally not desirable to use this option as it degrades
20317 performance. However, it may be useful in large applications,
20318 particularly when partial linking is used to build the application.
20319
20320 The types of long calls used depends on the capabilities of the
20321 assembler and linker, and the type of code being generated. The
20322 impact on systems that support long absolute calls, and long pic
20323 symbol-difference or pc-relative calls should be relatively small.
20324 However, an indirect call is used on 32-bit ELF systems in pic code
20325 and it is quite long.
20326
20327 @item -munix=@var{unix-std}
20328 @opindex march
20329 Generate compiler predefines and select a startfile for the specified
20330 UNIX standard. The choices for @var{unix-std} are @samp{93}, @samp{95}
20331 and @samp{98}. @samp{93} is supported on all HP-UX versions. @samp{95}
20332 is available on HP-UX 10.10 and later. @samp{98} is available on HP-UX
20333 11.11 and later. The default values are @samp{93} for HP-UX 10.00,
20334 @samp{95} for HP-UX 10.10 though to 11.00, and @samp{98} for HP-UX 11.11
20335 and later.
20336
20337 @option{-munix=93} provides the same predefines as GCC 3.3 and 3.4.
20338 @option{-munix=95} provides additional predefines for @code{XOPEN_UNIX}
20339 and @code{_XOPEN_SOURCE_EXTENDED}, and the startfile @file{unix95.o}.
20340 @option{-munix=98} provides additional predefines for @code{_XOPEN_UNIX},
20341 @code{_XOPEN_SOURCE_EXTENDED}, @code{_INCLUDE__STDC_A1_SOURCE} and
20342 @code{_INCLUDE_XOPEN_SOURCE_500}, and the startfile @file{unix98.o}.
20343
20344 It is @emph{important} to note that this option changes the interfaces
20345 for various library routines. It also affects the operational behavior
20346 of the C library. Thus, @emph{extreme} care is needed in using this
20347 option.
20348
20349 Library code that is intended to operate with more than one UNIX
20350 standard must test, set and restore the variable @code{__xpg4_extended_mask}
20351 as appropriate. Most GNU software doesn't provide this capability.
20352
20353 @item -nolibdld
20354 @opindex nolibdld
20355 Suppress the generation of link options to search libdld.sl when the
20356 @option{-static} option is specified on HP-UX 10 and later.
20357
20358 @item -static
20359 @opindex static
20360 The HP-UX implementation of setlocale in libc has a dependency on
20361 libdld.sl. There isn't an archive version of libdld.sl. Thus,
20362 when the @option{-static} option is specified, special link options
20363 are needed to resolve this dependency.
20364
20365 On HP-UX 10 and later, the GCC driver adds the necessary options to
20366 link with libdld.sl when the @option{-static} option is specified.
20367 This causes the resulting binary to be dynamic. On the 64-bit port,
20368 the linkers generate dynamic binaries by default in any case. The
20369 @option{-nolibdld} option can be used to prevent the GCC driver from
20370 adding these link options.
20371
20372 @item -threads
20373 @opindex threads
20374 Add support for multithreading with the @dfn{dce thread} library
20375 under HP-UX@. This option sets flags for both the preprocessor and
20376 linker.
20377 @end table
20378
20379 @node IA-64 Options
20380 @subsection IA-64 Options
20381 @cindex IA-64 Options
20382
20383 These are the @samp{-m} options defined for the Intel IA-64 architecture.
20384
20385 @table @gcctabopt
20386 @item -mbig-endian
20387 @opindex mbig-endian
20388 Generate code for a big-endian target. This is the default for HP-UX@.
20389
20390 @item -mlittle-endian
20391 @opindex mlittle-endian
20392 Generate code for a little-endian target. This is the default for AIX5
20393 and GNU/Linux.
20394
20395 @item -mgnu-as
20396 @itemx -mno-gnu-as
20397 @opindex mgnu-as
20398 @opindex mno-gnu-as
20399 Generate (or don't) code for the GNU assembler. This is the default.
20400 @c Also, this is the default if the configure option @option{--with-gnu-as}
20401 @c is used.
20402
20403 @item -mgnu-ld
20404 @itemx -mno-gnu-ld
20405 @opindex mgnu-ld
20406 @opindex mno-gnu-ld
20407 Generate (or don't) code for the GNU linker. This is the default.
20408 @c Also, this is the default if the configure option @option{--with-gnu-ld}
20409 @c is used.
20410
20411 @item -mno-pic
20412 @opindex mno-pic
20413 Generate code that does not use a global pointer register. The result
20414 is not position independent code, and violates the IA-64 ABI@.
20415
20416 @item -mvolatile-asm-stop
20417 @itemx -mno-volatile-asm-stop
20418 @opindex mvolatile-asm-stop
20419 @opindex mno-volatile-asm-stop
20420 Generate (or don't) a stop bit immediately before and after volatile asm
20421 statements.
20422
20423 @item -mregister-names
20424 @itemx -mno-register-names
20425 @opindex mregister-names
20426 @opindex mno-register-names
20427 Generate (or don't) @samp{in}, @samp{loc}, and @samp{out} register names for
20428 the stacked registers. This may make assembler output more readable.
20429
20430 @item -mno-sdata
20431 @itemx -msdata
20432 @opindex mno-sdata
20433 @opindex msdata
20434 Disable (or enable) optimizations that use the small data section. This may
20435 be useful for working around optimizer bugs.
20436
20437 @item -mconstant-gp
20438 @opindex mconstant-gp
20439 Generate code that uses a single constant global pointer value. This is
20440 useful when compiling kernel code.
20441
20442 @item -mauto-pic
20443 @opindex mauto-pic
20444 Generate code that is self-relocatable. This implies @option{-mconstant-gp}.
20445 This is useful when compiling firmware code.
20446
20447 @item -minline-float-divide-min-latency
20448 @opindex minline-float-divide-min-latency
20449 Generate code for inline divides of floating-point values
20450 using the minimum latency algorithm.
20451
20452 @item -minline-float-divide-max-throughput
20453 @opindex minline-float-divide-max-throughput
20454 Generate code for inline divides of floating-point values
20455 using the maximum throughput algorithm.
20456
20457 @item -mno-inline-float-divide
20458 @opindex mno-inline-float-divide
20459 Do not generate inline code for divides of floating-point values.
20460
20461 @item -minline-int-divide-min-latency
20462 @opindex minline-int-divide-min-latency
20463 Generate code for inline divides of integer values
20464 using the minimum latency algorithm.
20465
20466 @item -minline-int-divide-max-throughput
20467 @opindex minline-int-divide-max-throughput
20468 Generate code for inline divides of integer values
20469 using the maximum throughput algorithm.
20470
20471 @item -mno-inline-int-divide
20472 @opindex mno-inline-int-divide
20473 @opindex minline-int-divide
20474 Do not generate inline code for divides of integer values.
20475
20476 @item -minline-sqrt-min-latency
20477 @opindex minline-sqrt-min-latency
20478 Generate code for inline square roots
20479 using the minimum latency algorithm.
20480
20481 @item -minline-sqrt-max-throughput
20482 @opindex minline-sqrt-max-throughput
20483 Generate code for inline square roots
20484 using the maximum throughput algorithm.
20485
20486 @item -mno-inline-sqrt
20487 @opindex mno-inline-sqrt
20488 Do not generate inline code for @code{sqrt}.
20489
20490 @item -mfused-madd
20491 @itemx -mno-fused-madd
20492 @opindex mfused-madd
20493 @opindex mno-fused-madd
20494 Do (don't) generate code that uses the fused multiply/add or multiply/subtract
20495 instructions. The default is to use these instructions.
20496
20497 @item -mno-dwarf2-asm
20498 @itemx -mdwarf2-asm
20499 @opindex mno-dwarf2-asm
20500 @opindex mdwarf2-asm
20501 Don't (or do) generate assembler code for the DWARF line number debugging
20502 info. This may be useful when not using the GNU assembler.
20503
20504 @item -mearly-stop-bits
20505 @itemx -mno-early-stop-bits
20506 @opindex mearly-stop-bits
20507 @opindex mno-early-stop-bits
20508 Allow stop bits to be placed earlier than immediately preceding the
20509 instruction that triggered the stop bit. This can improve instruction
20510 scheduling, but does not always do so.
20511
20512 @item -mfixed-range=@var{register-range}
20513 @opindex mfixed-range
20514 Generate code treating the given register range as fixed registers.
20515 A fixed register is one that the register allocator cannot use. This is
20516 useful when compiling kernel code. A register range is specified as
20517 two registers separated by a dash. Multiple register ranges can be
20518 specified separated by a comma.
20519
20520 @item -mtls-size=@var{tls-size}
20521 @opindex mtls-size
20522 Specify bit size of immediate TLS offsets. Valid values are 14, 22, and
20523 64.
20524
20525 @item -mtune=@var{cpu-type}
20526 @opindex mtune
20527 Tune the instruction scheduling for a particular CPU, Valid values are
20528 @samp{itanium}, @samp{itanium1}, @samp{merced}, @samp{itanium2},
20529 and @samp{mckinley}.
20530
20531 @item -milp32
20532 @itemx -mlp64
20533 @opindex milp32
20534 @opindex mlp64
20535 Generate code for a 32-bit or 64-bit environment.
20536 The 32-bit environment sets int, long and pointer to 32 bits.
20537 The 64-bit environment sets int to 32 bits and long and pointer
20538 to 64 bits. These are HP-UX specific flags.
20539
20540 @item -mno-sched-br-data-spec
20541 @itemx -msched-br-data-spec
20542 @opindex mno-sched-br-data-spec
20543 @opindex msched-br-data-spec
20544 (Dis/En)able data speculative scheduling before reload.
20545 This results in generation of @code{ld.a} instructions and
20546 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20547 The default setting is disabled.
20548
20549 @item -msched-ar-data-spec
20550 @itemx -mno-sched-ar-data-spec
20551 @opindex msched-ar-data-spec
20552 @opindex mno-sched-ar-data-spec
20553 (En/Dis)able data speculative scheduling after reload.
20554 This results in generation of @code{ld.a} instructions and
20555 the corresponding check instructions (@code{ld.c} / @code{chk.a}).
20556 The default setting is enabled.
20557
20558 @item -mno-sched-control-spec
20559 @itemx -msched-control-spec
20560 @opindex mno-sched-control-spec
20561 @opindex msched-control-spec
20562 (Dis/En)able control speculative scheduling. This feature is
20563 available only during region scheduling (i.e.@: before reload).
20564 This results in generation of the @code{ld.s} instructions and
20565 the corresponding check instructions @code{chk.s}.
20566 The default setting is disabled.
20567
20568 @item -msched-br-in-data-spec
20569 @itemx -mno-sched-br-in-data-spec
20570 @opindex msched-br-in-data-spec
20571 @opindex mno-sched-br-in-data-spec
20572 (En/Dis)able speculative scheduling of the instructions that
20573 are dependent on the data speculative loads before reload.
20574 This is effective only with @option{-msched-br-data-spec} enabled.
20575 The default setting is enabled.
20576
20577 @item -msched-ar-in-data-spec
20578 @itemx -mno-sched-ar-in-data-spec
20579 @opindex msched-ar-in-data-spec
20580 @opindex mno-sched-ar-in-data-spec
20581 (En/Dis)able speculative scheduling of the instructions that
20582 are dependent on the data speculative loads after reload.
20583 This is effective only with @option{-msched-ar-data-spec} enabled.
20584 The default setting is enabled.
20585
20586 @item -msched-in-control-spec
20587 @itemx -mno-sched-in-control-spec
20588 @opindex msched-in-control-spec
20589 @opindex mno-sched-in-control-spec
20590 (En/Dis)able speculative scheduling of the instructions that
20591 are dependent on the control speculative loads.
20592 This is effective only with @option{-msched-control-spec} enabled.
20593 The default setting is enabled.
20594
20595 @item -mno-sched-prefer-non-data-spec-insns
20596 @itemx -msched-prefer-non-data-spec-insns
20597 @opindex mno-sched-prefer-non-data-spec-insns
20598 @opindex msched-prefer-non-data-spec-insns
20599 If enabled, data-speculative instructions are chosen for schedule
20600 only if there are no other choices at the moment. This makes
20601 the use of the data speculation much more conservative.
20602 The default setting is disabled.
20603
20604 @item -mno-sched-prefer-non-control-spec-insns
20605 @itemx -msched-prefer-non-control-spec-insns
20606 @opindex mno-sched-prefer-non-control-spec-insns
20607 @opindex msched-prefer-non-control-spec-insns
20608 If enabled, control-speculative instructions are chosen for schedule
20609 only if there are no other choices at the moment. This makes
20610 the use of the control speculation much more conservative.
20611 The default setting is disabled.
20612
20613 @item -mno-sched-count-spec-in-critical-path
20614 @itemx -msched-count-spec-in-critical-path
20615 @opindex mno-sched-count-spec-in-critical-path
20616 @opindex msched-count-spec-in-critical-path
20617 If enabled, speculative dependencies are considered during
20618 computation of the instructions priorities. This makes the use of the
20619 speculation a bit more conservative.
20620 The default setting is disabled.
20621
20622 @item -msched-spec-ldc
20623 @opindex msched-spec-ldc
20624 Use a simple data speculation check. This option is on by default.
20625
20626 @item -msched-control-spec-ldc
20627 @opindex msched-spec-ldc
20628 Use a simple check for control speculation. This option is on by default.
20629
20630 @item -msched-stop-bits-after-every-cycle
20631 @opindex msched-stop-bits-after-every-cycle
20632 Place a stop bit after every cycle when scheduling. This option is on
20633 by default.
20634
20635 @item -msched-fp-mem-deps-zero-cost
20636 @opindex msched-fp-mem-deps-zero-cost
20637 Assume that floating-point stores and loads are not likely to cause a conflict
20638 when placed into the same instruction group. This option is disabled by
20639 default.
20640
20641 @item -msel-sched-dont-check-control-spec
20642 @opindex msel-sched-dont-check-control-spec
20643 Generate checks for control speculation in selective scheduling.
20644 This flag is disabled by default.
20645
20646 @item -msched-max-memory-insns=@var{max-insns}
20647 @opindex msched-max-memory-insns
20648 Limit on the number of memory insns per instruction group, giving lower
20649 priority to subsequent memory insns attempting to schedule in the same
20650 instruction group. Frequently useful to prevent cache bank conflicts.
20651 The default value is 1.
20652
20653 @item -msched-max-memory-insns-hard-limit
20654 @opindex msched-max-memory-insns-hard-limit
20655 Makes the limit specified by @option{msched-max-memory-insns} a hard limit,
20656 disallowing more than that number in an instruction group.
20657 Otherwise, the limit is ``soft'', meaning that non-memory operations
20658 are preferred when the limit is reached, but memory operations may still
20659 be scheduled.
20660
20661 @end table
20662
20663 @node LM32 Options
20664 @subsection LM32 Options
20665 @cindex LM32 options
20666
20667 These @option{-m} options are defined for the LatticeMico32 architecture:
20668
20669 @table @gcctabopt
20670 @item -mbarrel-shift-enabled
20671 @opindex mbarrel-shift-enabled
20672 Enable barrel-shift instructions.
20673
20674 @item -mdivide-enabled
20675 @opindex mdivide-enabled
20676 Enable divide and modulus instructions.
20677
20678 @item -mmultiply-enabled
20679 @opindex multiply-enabled
20680 Enable multiply instructions.
20681
20682 @item -msign-extend-enabled
20683 @opindex msign-extend-enabled
20684 Enable sign extend instructions.
20685
20686 @item -muser-enabled
20687 @opindex muser-enabled
20688 Enable user-defined instructions.
20689
20690 @end table
20691
20692 @node M32C Options
20693 @subsection M32C Options
20694 @cindex M32C options
20695
20696 @table @gcctabopt
20697 @item -mcpu=@var{name}
20698 @opindex mcpu=
20699 Select the CPU for which code is generated. @var{name} may be one of
20700 @samp{r8c} for the R8C/Tiny series, @samp{m16c} for the M16C (up to
20701 /60) series, @samp{m32cm} for the M16C/80 series, or @samp{m32c} for
20702 the M32C/80 series.
20703
20704 @item -msim
20705 @opindex msim
20706 Specifies that the program will be run on the simulator. This causes
20707 an alternate runtime library to be linked in which supports, for
20708 example, file I/O@. You must not use this option when generating
20709 programs that will run on real hardware; you must provide your own
20710 runtime library for whatever I/O functions are needed.
20711
20712 @item -memregs=@var{number}
20713 @opindex memregs=
20714 Specifies the number of memory-based pseudo-registers GCC uses
20715 during code generation. These pseudo-registers are used like real
20716 registers, so there is a tradeoff between GCC's ability to fit the
20717 code into available registers, and the performance penalty of using
20718 memory instead of registers. Note that all modules in a program must
20719 be compiled with the same value for this option. Because of that, you
20720 must not use this option with GCC's default runtime libraries.
20721
20722 @end table
20723
20724 @node M32R/D Options
20725 @subsection M32R/D Options
20726 @cindex M32R/D options
20727
20728 These @option{-m} options are defined for Renesas M32R/D architectures:
20729
20730 @table @gcctabopt
20731 @item -m32r2
20732 @opindex m32r2
20733 Generate code for the M32R/2@.
20734
20735 @item -m32rx
20736 @opindex m32rx
20737 Generate code for the M32R/X@.
20738
20739 @item -m32r
20740 @opindex m32r
20741 Generate code for the M32R@. This is the default.
20742
20743 @item -mmodel=small
20744 @opindex mmodel=small
20745 Assume all objects live in the lower 16MB of memory (so that their addresses
20746 can be loaded with the @code{ld24} instruction), and assume all subroutines
20747 are reachable with the @code{bl} instruction.
20748 This is the default.
20749
20750 The addressability of a particular object can be set with the
20751 @code{model} attribute.
20752
20753 @item -mmodel=medium
20754 @opindex mmodel=medium
20755 Assume objects may be anywhere in the 32-bit address space (the compiler
20756 generates @code{seth/add3} instructions to load their addresses), and
20757 assume all subroutines are reachable with the @code{bl} instruction.
20758
20759 @item -mmodel=large
20760 @opindex mmodel=large
20761 Assume objects may be anywhere in the 32-bit address space (the compiler
20762 generates @code{seth/add3} instructions to load their addresses), and
20763 assume subroutines may not be reachable with the @code{bl} instruction
20764 (the compiler generates the much slower @code{seth/add3/jl}
20765 instruction sequence).
20766
20767 @item -msdata=none
20768 @opindex msdata=none
20769 Disable use of the small data area. Variables are put into
20770 one of @code{.data}, @code{.bss}, or @code{.rodata} (unless the
20771 @code{section} attribute has been specified).
20772 This is the default.
20773
20774 The small data area consists of sections @code{.sdata} and @code{.sbss}.
20775 Objects may be explicitly put in the small data area with the
20776 @code{section} attribute using one of these sections.
20777
20778 @item -msdata=sdata
20779 @opindex msdata=sdata
20780 Put small global and static data in the small data area, but do not
20781 generate special code to reference them.
20782
20783 @item -msdata=use
20784 @opindex msdata=use
20785 Put small global and static data in the small data area, and generate
20786 special instructions to reference them.
20787
20788 @item -G @var{num}
20789 @opindex G
20790 @cindex smaller data references
20791 Put global and static objects less than or equal to @var{num} bytes
20792 into the small data or BSS sections instead of the normal data or BSS
20793 sections. The default value of @var{num} is 8.
20794 The @option{-msdata} option must be set to one of @samp{sdata} or @samp{use}
20795 for this option to have any effect.
20796
20797 All modules should be compiled with the same @option{-G @var{num}} value.
20798 Compiling with different values of @var{num} may or may not work; if it
20799 doesn't the linker gives an error message---incorrect code is not
20800 generated.
20801
20802 @item -mdebug
20803 @opindex mdebug
20804 Makes the M32R-specific code in the compiler display some statistics
20805 that might help in debugging programs.
20806
20807 @item -malign-loops
20808 @opindex malign-loops
20809 Align all loops to a 32-byte boundary.
20810
20811 @item -mno-align-loops
20812 @opindex mno-align-loops
20813 Do not enforce a 32-byte alignment for loops. This is the default.
20814
20815 @item -missue-rate=@var{number}
20816 @opindex missue-rate=@var{number}
20817 Issue @var{number} instructions per cycle. @var{number} can only be 1
20818 or 2.
20819
20820 @item -mbranch-cost=@var{number}
20821 @opindex mbranch-cost=@var{number}
20822 @var{number} can only be 1 or 2. If it is 1 then branches are
20823 preferred over conditional code, if it is 2, then the opposite applies.
20824
20825 @item -mflush-trap=@var{number}
20826 @opindex mflush-trap=@var{number}
20827 Specifies the trap number to use to flush the cache. The default is
20828 12. Valid numbers are between 0 and 15 inclusive.
20829
20830 @item -mno-flush-trap
20831 @opindex mno-flush-trap
20832 Specifies that the cache cannot be flushed by using a trap.
20833
20834 @item -mflush-func=@var{name}
20835 @opindex mflush-func=@var{name}
20836 Specifies the name of the operating system function to call to flush
20837 the cache. The default is @samp{_flush_cache}, but a function call
20838 is only used if a trap is not available.
20839
20840 @item -mno-flush-func
20841 @opindex mno-flush-func
20842 Indicates that there is no OS function for flushing the cache.
20843
20844 @end table
20845
20846 @node M680x0 Options
20847 @subsection M680x0 Options
20848 @cindex M680x0 options
20849
20850 These are the @samp{-m} options defined for M680x0 and ColdFire processors.
20851 The default settings depend on which architecture was selected when
20852 the compiler was configured; the defaults for the most common choices
20853 are given below.
20854
20855 @table @gcctabopt
20856 @item -march=@var{arch}
20857 @opindex march
20858 Generate code for a specific M680x0 or ColdFire instruction set
20859 architecture. Permissible values of @var{arch} for M680x0
20860 architectures are: @samp{68000}, @samp{68010}, @samp{68020},
20861 @samp{68030}, @samp{68040}, @samp{68060} and @samp{cpu32}. ColdFire
20862 architectures are selected according to Freescale's ISA classification
20863 and the permissible values are: @samp{isaa}, @samp{isaaplus},
20864 @samp{isab} and @samp{isac}.
20865
20866 GCC defines a macro @code{__mcf@var{arch}__} whenever it is generating
20867 code for a ColdFire target. The @var{arch} in this macro is one of the
20868 @option{-march} arguments given above.
20869
20870 When used together, @option{-march} and @option{-mtune} select code
20871 that runs on a family of similar processors but that is optimized
20872 for a particular microarchitecture.
20873
20874 @item -mcpu=@var{cpu}
20875 @opindex mcpu
20876 Generate code for a specific M680x0 or ColdFire processor.
20877 The M680x0 @var{cpu}s are: @samp{68000}, @samp{68010}, @samp{68020},
20878 @samp{68030}, @samp{68040}, @samp{68060}, @samp{68302}, @samp{68332}
20879 and @samp{cpu32}. The ColdFire @var{cpu}s are given by the table
20880 below, which also classifies the CPUs into families:
20881
20882 @multitable @columnfractions 0.20 0.80
20883 @item @strong{Family} @tab @strong{@samp{-mcpu} arguments}
20884 @item @samp{51} @tab @samp{51} @samp{51ac} @samp{51ag} @samp{51cn} @samp{51em} @samp{51je} @samp{51jf} @samp{51jg} @samp{51jm} @samp{51mm} @samp{51qe} @samp{51qm}
20885 @item @samp{5206} @tab @samp{5202} @samp{5204} @samp{5206}
20886 @item @samp{5206e} @tab @samp{5206e}
20887 @item @samp{5208} @tab @samp{5207} @samp{5208}
20888 @item @samp{5211a} @tab @samp{5210a} @samp{5211a}
20889 @item @samp{5213} @tab @samp{5211} @samp{5212} @samp{5213}
20890 @item @samp{5216} @tab @samp{5214} @samp{5216}
20891 @item @samp{52235} @tab @samp{52230} @samp{52231} @samp{52232} @samp{52233} @samp{52234} @samp{52235}
20892 @item @samp{5225} @tab @samp{5224} @samp{5225}
20893 @item @samp{52259} @tab @samp{52252} @samp{52254} @samp{52255} @samp{52256} @samp{52258} @samp{52259}
20894 @item @samp{5235} @tab @samp{5232} @samp{5233} @samp{5234} @samp{5235} @samp{523x}
20895 @item @samp{5249} @tab @samp{5249}
20896 @item @samp{5250} @tab @samp{5250}
20897 @item @samp{5271} @tab @samp{5270} @samp{5271}
20898 @item @samp{5272} @tab @samp{5272}
20899 @item @samp{5275} @tab @samp{5274} @samp{5275}
20900 @item @samp{5282} @tab @samp{5280} @samp{5281} @samp{5282} @samp{528x}
20901 @item @samp{53017} @tab @samp{53011} @samp{53012} @samp{53013} @samp{53014} @samp{53015} @samp{53016} @samp{53017}
20902 @item @samp{5307} @tab @samp{5307}
20903 @item @samp{5329} @tab @samp{5327} @samp{5328} @samp{5329} @samp{532x}
20904 @item @samp{5373} @tab @samp{5372} @samp{5373} @samp{537x}
20905 @item @samp{5407} @tab @samp{5407}
20906 @item @samp{5475} @tab @samp{5470} @samp{5471} @samp{5472} @samp{5473} @samp{5474} @samp{5475} @samp{547x} @samp{5480} @samp{5481} @samp{5482} @samp{5483} @samp{5484} @samp{5485}
20907 @end multitable
20908
20909 @option{-mcpu=@var{cpu}} overrides @option{-march=@var{arch}} if
20910 @var{arch} is compatible with @var{cpu}. Other combinations of
20911 @option{-mcpu} and @option{-march} are rejected.
20912
20913 GCC defines the macro @code{__mcf_cpu_@var{cpu}} when ColdFire target
20914 @var{cpu} is selected. It also defines @code{__mcf_family_@var{family}},
20915 where the value of @var{family} is given by the table above.
20916
20917 @item -mtune=@var{tune}
20918 @opindex mtune
20919 Tune the code for a particular microarchitecture within the
20920 constraints set by @option{-march} and @option{-mcpu}.
20921 The M680x0 microarchitectures are: @samp{68000}, @samp{68010},
20922 @samp{68020}, @samp{68030}, @samp{68040}, @samp{68060}
20923 and @samp{cpu32}. The ColdFire microarchitectures
20924 are: @samp{cfv1}, @samp{cfv2}, @samp{cfv3}, @samp{cfv4} and @samp{cfv4e}.
20925
20926 You can also use @option{-mtune=68020-40} for code that needs
20927 to run relatively well on 68020, 68030 and 68040 targets.
20928 @option{-mtune=68020-60} is similar but includes 68060 targets
20929 as well. These two options select the same tuning decisions as
20930 @option{-m68020-40} and @option{-m68020-60} respectively.
20931
20932 GCC defines the macros @code{__mc@var{arch}} and @code{__mc@var{arch}__}
20933 when tuning for 680x0 architecture @var{arch}. It also defines
20934 @code{mc@var{arch}} unless either @option{-ansi} or a non-GNU @option{-std}
20935 option is used. If GCC is tuning for a range of architectures,
20936 as selected by @option{-mtune=68020-40} or @option{-mtune=68020-60},
20937 it defines the macros for every architecture in the range.
20938
20939 GCC also defines the macro @code{__m@var{uarch}__} when tuning for
20940 ColdFire microarchitecture @var{uarch}, where @var{uarch} is one
20941 of the arguments given above.
20942
20943 @item -m68000
20944 @itemx -mc68000
20945 @opindex m68000
20946 @opindex mc68000
20947 Generate output for a 68000. This is the default
20948 when the compiler is configured for 68000-based systems.
20949 It is equivalent to @option{-march=68000}.
20950
20951 Use this option for microcontrollers with a 68000 or EC000 core,
20952 including the 68008, 68302, 68306, 68307, 68322, 68328 and 68356.
20953
20954 @item -m68010
20955 @opindex m68010
20956 Generate output for a 68010. This is the default
20957 when the compiler is configured for 68010-based systems.
20958 It is equivalent to @option{-march=68010}.
20959
20960 @item -m68020
20961 @itemx -mc68020
20962 @opindex m68020
20963 @opindex mc68020
20964 Generate output for a 68020. This is the default
20965 when the compiler is configured for 68020-based systems.
20966 It is equivalent to @option{-march=68020}.
20967
20968 @item -m68030
20969 @opindex m68030
20970 Generate output for a 68030. This is the default when the compiler is
20971 configured for 68030-based systems. It is equivalent to
20972 @option{-march=68030}.
20973
20974 @item -m68040
20975 @opindex m68040
20976 Generate output for a 68040. This is the default when the compiler is
20977 configured for 68040-based systems. It is equivalent to
20978 @option{-march=68040}.
20979
20980 This option inhibits the use of 68881/68882 instructions that have to be
20981 emulated by software on the 68040. Use this option if your 68040 does not
20982 have code to emulate those instructions.
20983
20984 @item -m68060
20985 @opindex m68060
20986 Generate output for a 68060. This is the default when the compiler is
20987 configured for 68060-based systems. It is equivalent to
20988 @option{-march=68060}.
20989
20990 This option inhibits the use of 68020 and 68881/68882 instructions that
20991 have to be emulated by software on the 68060. Use this option if your 68060
20992 does not have code to emulate those instructions.
20993
20994 @item -mcpu32
20995 @opindex mcpu32
20996 Generate output for a CPU32. This is the default
20997 when the compiler is configured for CPU32-based systems.
20998 It is equivalent to @option{-march=cpu32}.
20999
21000 Use this option for microcontrollers with a
21001 CPU32 or CPU32+ core, including the 68330, 68331, 68332, 68333, 68334,
21002 68336, 68340, 68341, 68349 and 68360.
21003
21004 @item -m5200
21005 @opindex m5200
21006 Generate output for a 520X ColdFire CPU@. This is the default
21007 when the compiler is configured for 520X-based systems.
21008 It is equivalent to @option{-mcpu=5206}, and is now deprecated
21009 in favor of that option.
21010
21011 Use this option for microcontroller with a 5200 core, including
21012 the MCF5202, MCF5203, MCF5204 and MCF5206.
21013
21014 @item -m5206e
21015 @opindex m5206e
21016 Generate output for a 5206e ColdFire CPU@. The option is now
21017 deprecated in favor of the equivalent @option{-mcpu=5206e}.
21018
21019 @item -m528x
21020 @opindex m528x
21021 Generate output for a member of the ColdFire 528X family.
21022 The option is now deprecated in favor of the equivalent
21023 @option{-mcpu=528x}.
21024
21025 @item -m5307
21026 @opindex m5307
21027 Generate output for a ColdFire 5307 CPU@. The option is now deprecated
21028 in favor of the equivalent @option{-mcpu=5307}.
21029
21030 @item -m5407
21031 @opindex m5407
21032 Generate output for a ColdFire 5407 CPU@. The option is now deprecated
21033 in favor of the equivalent @option{-mcpu=5407}.
21034
21035 @item -mcfv4e
21036 @opindex mcfv4e
21037 Generate output for a ColdFire V4e family CPU (e.g.@: 547x/548x).
21038 This includes use of hardware floating-point instructions.
21039 The option is equivalent to @option{-mcpu=547x}, and is now
21040 deprecated in favor of that option.
21041
21042 @item -m68020-40
21043 @opindex m68020-40
21044 Generate output for a 68040, without using any of the new instructions.
21045 This results in code that can run relatively efficiently on either a
21046 68020/68881 or a 68030 or a 68040. The generated code does use the
21047 68881 instructions that are emulated on the 68040.
21048
21049 The option is equivalent to @option{-march=68020} @option{-mtune=68020-40}.
21050
21051 @item -m68020-60
21052 @opindex m68020-60
21053 Generate output for a 68060, without using any of the new instructions.
21054 This results in code that can run relatively efficiently on either a
21055 68020/68881 or a 68030 or a 68040. The generated code does use the
21056 68881 instructions that are emulated on the 68060.
21057
21058 The option is equivalent to @option{-march=68020} @option{-mtune=68020-60}.
21059
21060 @item -mhard-float
21061 @itemx -m68881
21062 @opindex mhard-float
21063 @opindex m68881
21064 Generate floating-point instructions. This is the default for 68020
21065 and above, and for ColdFire devices that have an FPU@. It defines the
21066 macro @code{__HAVE_68881__} on M680x0 targets and @code{__mcffpu__}
21067 on ColdFire targets.
21068
21069 @item -msoft-float
21070 @opindex msoft-float
21071 Do not generate floating-point instructions; use library calls instead.
21072 This is the default for 68000, 68010, and 68832 targets. It is also
21073 the default for ColdFire devices that have no FPU.
21074
21075 @item -mdiv
21076 @itemx -mno-div
21077 @opindex mdiv
21078 @opindex mno-div
21079 Generate (do not generate) ColdFire hardware divide and remainder
21080 instructions. If @option{-march} is used without @option{-mcpu},
21081 the default is ``on'' for ColdFire architectures and ``off'' for M680x0
21082 architectures. Otherwise, the default is taken from the target CPU
21083 (either the default CPU, or the one specified by @option{-mcpu}). For
21084 example, the default is ``off'' for @option{-mcpu=5206} and ``on'' for
21085 @option{-mcpu=5206e}.
21086
21087 GCC defines the macro @code{__mcfhwdiv__} when this option is enabled.
21088
21089 @item -mshort
21090 @opindex mshort
21091 Consider type @code{int} to be 16 bits wide, like @code{short int}.
21092 Additionally, parameters passed on the stack are also aligned to a
21093 16-bit boundary even on targets whose API mandates promotion to 32-bit.
21094
21095 @item -mno-short
21096 @opindex mno-short
21097 Do not consider type @code{int} to be 16 bits wide. This is the default.
21098
21099 @item -mnobitfield
21100 @itemx -mno-bitfield
21101 @opindex mnobitfield
21102 @opindex mno-bitfield
21103 Do not use the bit-field instructions. The @option{-m68000}, @option{-mcpu32}
21104 and @option{-m5200} options imply @w{@option{-mnobitfield}}.
21105
21106 @item -mbitfield
21107 @opindex mbitfield
21108 Do use the bit-field instructions. The @option{-m68020} option implies
21109 @option{-mbitfield}. This is the default if you use a configuration
21110 designed for a 68020.
21111
21112 @item -mrtd
21113 @opindex mrtd
21114 Use a different function-calling convention, in which functions
21115 that take a fixed number of arguments return with the @code{rtd}
21116 instruction, which pops their arguments while returning. This
21117 saves one instruction in the caller since there is no need to pop
21118 the arguments there.
21119
21120 This calling convention is incompatible with the one normally
21121 used on Unix, so you cannot use it if you need to call libraries
21122 compiled with the Unix compiler.
21123
21124 Also, you must provide function prototypes for all functions that
21125 take variable numbers of arguments (including @code{printf});
21126 otherwise incorrect code is generated for calls to those
21127 functions.
21128
21129 In addition, seriously incorrect code results if you call a
21130 function with too many arguments. (Normally, extra arguments are
21131 harmlessly ignored.)
21132
21133 The @code{rtd} instruction is supported by the 68010, 68020, 68030,
21134 68040, 68060 and CPU32 processors, but not by the 68000 or 5200.
21135
21136 The default is @option{-mno-rtd}.
21137
21138 @item -malign-int
21139 @itemx -mno-align-int
21140 @opindex malign-int
21141 @opindex mno-align-int
21142 Control whether GCC aligns @code{int}, @code{long}, @code{long long},
21143 @code{float}, @code{double}, and @code{long double} variables on a 32-bit
21144 boundary (@option{-malign-int}) or a 16-bit boundary (@option{-mno-align-int}).
21145 Aligning variables on 32-bit boundaries produces code that runs somewhat
21146 faster on processors with 32-bit busses at the expense of more memory.
21147
21148 @strong{Warning:} if you use the @option{-malign-int} switch, GCC
21149 aligns structures containing the above types differently than
21150 most published application binary interface specifications for the m68k.
21151
21152 @item -mpcrel
21153 @opindex mpcrel
21154 Use the pc-relative addressing mode of the 68000 directly, instead of
21155 using a global offset table. At present, this option implies @option{-fpic},
21156 allowing at most a 16-bit offset for pc-relative addressing. @option{-fPIC} is
21157 not presently supported with @option{-mpcrel}, though this could be supported for
21158 68020 and higher processors.
21159
21160 @item -mno-strict-align
21161 @itemx -mstrict-align
21162 @opindex mno-strict-align
21163 @opindex mstrict-align
21164 Do not (do) assume that unaligned memory references are handled by
21165 the system.
21166
21167 @item -msep-data
21168 Generate code that allows the data segment to be located in a different
21169 area of memory from the text segment. This allows for execute-in-place in
21170 an environment without virtual memory management. This option implies
21171 @option{-fPIC}.
21172
21173 @item -mno-sep-data
21174 Generate code that assumes that the data segment follows the text segment.
21175 This is the default.
21176
21177 @item -mid-shared-library
21178 Generate code that supports shared libraries via the library ID method.
21179 This allows for execute-in-place and shared libraries in an environment
21180 without virtual memory management. This option implies @option{-fPIC}.
21181
21182 @item -mno-id-shared-library
21183 Generate code that doesn't assume ID-based shared libraries are being used.
21184 This is the default.
21185
21186 @item -mshared-library-id=n
21187 Specifies the identification number of the ID-based shared library being
21188 compiled. Specifying a value of 0 generates more compact code; specifying
21189 other values forces the allocation of that number to the current
21190 library, but is no more space- or time-efficient than omitting this option.
21191
21192 @item -mxgot
21193 @itemx -mno-xgot
21194 @opindex mxgot
21195 @opindex mno-xgot
21196 When generating position-independent code for ColdFire, generate code
21197 that works if the GOT has more than 8192 entries. This code is
21198 larger and slower than code generated without this option. On M680x0
21199 processors, this option is not needed; @option{-fPIC} suffices.
21200
21201 GCC normally uses a single instruction to load values from the GOT@.
21202 While this is relatively efficient, it only works if the GOT
21203 is smaller than about 64k. Anything larger causes the linker
21204 to report an error such as:
21205
21206 @cindex relocation truncated to fit (ColdFire)
21207 @smallexample
21208 relocation truncated to fit: R_68K_GOT16O foobar
21209 @end smallexample
21210
21211 If this happens, you should recompile your code with @option{-mxgot}.
21212 It should then work with very large GOTs. However, code generated with
21213 @option{-mxgot} is less efficient, since it takes 4 instructions to fetch
21214 the value of a global symbol.
21215
21216 Note that some linkers, including newer versions of the GNU linker,
21217 can create multiple GOTs and sort GOT entries. If you have such a linker,
21218 you should only need to use @option{-mxgot} when compiling a single
21219 object file that accesses more than 8192 GOT entries. Very few do.
21220
21221 These options have no effect unless GCC is generating
21222 position-independent code.
21223
21224 @item -mlong-jump-table-offsets
21225 @opindex mlong-jump-table-offsets
21226 Use 32-bit offsets in @code{switch} tables. The default is to use
21227 16-bit offsets.
21228
21229 @end table
21230
21231 @node MCore Options
21232 @subsection MCore Options
21233 @cindex MCore options
21234
21235 These are the @samp{-m} options defined for the Motorola M*Core
21236 processors.
21237
21238 @table @gcctabopt
21239
21240 @item -mhardlit
21241 @itemx -mno-hardlit
21242 @opindex mhardlit
21243 @opindex mno-hardlit
21244 Inline constants into the code stream if it can be done in two
21245 instructions or less.
21246
21247 @item -mdiv
21248 @itemx -mno-div
21249 @opindex mdiv
21250 @opindex mno-div
21251 Use the divide instruction. (Enabled by default).
21252
21253 @item -mrelax-immediate
21254 @itemx -mno-relax-immediate
21255 @opindex mrelax-immediate
21256 @opindex mno-relax-immediate
21257 Allow arbitrary-sized immediates in bit operations.
21258
21259 @item -mwide-bitfields
21260 @itemx -mno-wide-bitfields
21261 @opindex mwide-bitfields
21262 @opindex mno-wide-bitfields
21263 Always treat bit-fields as @code{int}-sized.
21264
21265 @item -m4byte-functions
21266 @itemx -mno-4byte-functions
21267 @opindex m4byte-functions
21268 @opindex mno-4byte-functions
21269 Force all functions to be aligned to a 4-byte boundary.
21270
21271 @item -mcallgraph-data
21272 @itemx -mno-callgraph-data
21273 @opindex mcallgraph-data
21274 @opindex mno-callgraph-data
21275 Emit callgraph information.
21276
21277 @item -mslow-bytes
21278 @itemx -mno-slow-bytes
21279 @opindex mslow-bytes
21280 @opindex mno-slow-bytes
21281 Prefer word access when reading byte quantities.
21282
21283 @item -mlittle-endian
21284 @itemx -mbig-endian
21285 @opindex mlittle-endian
21286 @opindex mbig-endian
21287 Generate code for a little-endian target.
21288
21289 @item -m210
21290 @itemx -m340
21291 @opindex m210
21292 @opindex m340
21293 Generate code for the 210 processor.
21294
21295 @item -mno-lsim
21296 @opindex mno-lsim
21297 Assume that runtime support has been provided and so omit the
21298 simulator library (@file{libsim.a)} from the linker command line.
21299
21300 @item -mstack-increment=@var{size}
21301 @opindex mstack-increment
21302 Set the maximum amount for a single stack increment operation. Large
21303 values can increase the speed of programs that contain functions
21304 that need a large amount of stack space, but they can also trigger a
21305 segmentation fault if the stack is extended too much. The default
21306 value is 0x1000.
21307
21308 @end table
21309
21310 @node MeP Options
21311 @subsection MeP Options
21312 @cindex MeP options
21313
21314 @table @gcctabopt
21315
21316 @item -mabsdiff
21317 @opindex mabsdiff
21318 Enables the @code{abs} instruction, which is the absolute difference
21319 between two registers.
21320
21321 @item -mall-opts
21322 @opindex mall-opts
21323 Enables all the optional instructions---average, multiply, divide, bit
21324 operations, leading zero, absolute difference, min/max, clip, and
21325 saturation.
21326
21327
21328 @item -maverage
21329 @opindex maverage
21330 Enables the @code{ave} instruction, which computes the average of two
21331 registers.
21332
21333 @item -mbased=@var{n}
21334 @opindex mbased=
21335 Variables of size @var{n} bytes or smaller are placed in the
21336 @code{.based} section by default. Based variables use the @code{$tp}
21337 register as a base register, and there is a 128-byte limit to the
21338 @code{.based} section.
21339
21340 @item -mbitops
21341 @opindex mbitops
21342 Enables the bit operation instructions---bit test (@code{btstm}), set
21343 (@code{bsetm}), clear (@code{bclrm}), invert (@code{bnotm}), and
21344 test-and-set (@code{tas}).
21345
21346 @item -mc=@var{name}
21347 @opindex mc=
21348 Selects which section constant data is placed in. @var{name} may
21349 be @samp{tiny}, @samp{near}, or @samp{far}.
21350
21351 @item -mclip
21352 @opindex mclip
21353 Enables the @code{clip} instruction. Note that @option{-mclip} is not
21354 useful unless you also provide @option{-mminmax}.
21355
21356 @item -mconfig=@var{name}
21357 @opindex mconfig=
21358 Selects one of the built-in core configurations. Each MeP chip has
21359 one or more modules in it; each module has a core CPU and a variety of
21360 coprocessors, optional instructions, and peripherals. The
21361 @code{MeP-Integrator} tool, not part of GCC, provides these
21362 configurations through this option; using this option is the same as
21363 using all the corresponding command-line options. The default
21364 configuration is @samp{default}.
21365
21366 @item -mcop
21367 @opindex mcop
21368 Enables the coprocessor instructions. By default, this is a 32-bit
21369 coprocessor. Note that the coprocessor is normally enabled via the
21370 @option{-mconfig=} option.
21371
21372 @item -mcop32
21373 @opindex mcop32
21374 Enables the 32-bit coprocessor's instructions.
21375
21376 @item -mcop64
21377 @opindex mcop64
21378 Enables the 64-bit coprocessor's instructions.
21379
21380 @item -mivc2
21381 @opindex mivc2
21382 Enables IVC2 scheduling. IVC2 is a 64-bit VLIW coprocessor.
21383
21384 @item -mdc
21385 @opindex mdc
21386 Causes constant variables to be placed in the @code{.near} section.
21387
21388 @item -mdiv
21389 @opindex mdiv
21390 Enables the @code{div} and @code{divu} instructions.
21391
21392 @item -meb
21393 @opindex meb
21394 Generate big-endian code.
21395
21396 @item -mel
21397 @opindex mel
21398 Generate little-endian code.
21399
21400 @item -mio-volatile
21401 @opindex mio-volatile
21402 Tells the compiler that any variable marked with the @code{io}
21403 attribute is to be considered volatile.
21404
21405 @item -ml
21406 @opindex ml
21407 Causes variables to be assigned to the @code{.far} section by default.
21408
21409 @item -mleadz
21410 @opindex mleadz
21411 Enables the @code{leadz} (leading zero) instruction.
21412
21413 @item -mm
21414 @opindex mm
21415 Causes variables to be assigned to the @code{.near} section by default.
21416
21417 @item -mminmax
21418 @opindex mminmax
21419 Enables the @code{min} and @code{max} instructions.
21420
21421 @item -mmult
21422 @opindex mmult
21423 Enables the multiplication and multiply-accumulate instructions.
21424
21425 @item -mno-opts
21426 @opindex mno-opts
21427 Disables all the optional instructions enabled by @option{-mall-opts}.
21428
21429 @item -mrepeat
21430 @opindex mrepeat
21431 Enables the @code{repeat} and @code{erepeat} instructions, used for
21432 low-overhead looping.
21433
21434 @item -ms
21435 @opindex ms
21436 Causes all variables to default to the @code{.tiny} section. Note
21437 that there is a 65536-byte limit to this section. Accesses to these
21438 variables use the @code{%gp} base register.
21439
21440 @item -msatur
21441 @opindex msatur
21442 Enables the saturation instructions. Note that the compiler does not
21443 currently generate these itself, but this option is included for
21444 compatibility with other tools, like @code{as}.
21445
21446 @item -msdram
21447 @opindex msdram
21448 Link the SDRAM-based runtime instead of the default ROM-based runtime.
21449
21450 @item -msim
21451 @opindex msim
21452 Link the simulator run-time libraries.
21453
21454 @item -msimnovec
21455 @opindex msimnovec
21456 Link the simulator runtime libraries, excluding built-in support
21457 for reset and exception vectors and tables.
21458
21459 @item -mtf
21460 @opindex mtf
21461 Causes all functions to default to the @code{.far} section. Without
21462 this option, functions default to the @code{.near} section.
21463
21464 @item -mtiny=@var{n}
21465 @opindex mtiny=
21466 Variables that are @var{n} bytes or smaller are allocated to the
21467 @code{.tiny} section. These variables use the @code{$gp} base
21468 register. The default for this option is 4, but note that there's a
21469 65536-byte limit to the @code{.tiny} section.
21470
21471 @end table
21472
21473 @node MicroBlaze Options
21474 @subsection MicroBlaze Options
21475 @cindex MicroBlaze Options
21476
21477 @table @gcctabopt
21478
21479 @item -msoft-float
21480 @opindex msoft-float
21481 Use software emulation for floating point (default).
21482
21483 @item -mhard-float
21484 @opindex mhard-float
21485 Use hardware floating-point instructions.
21486
21487 @item -mmemcpy
21488 @opindex mmemcpy
21489 Do not optimize block moves, use @code{memcpy}.
21490
21491 @item -mno-clearbss
21492 @opindex mno-clearbss
21493 This option is deprecated. Use @option{-fno-zero-initialized-in-bss} instead.
21494
21495 @item -mcpu=@var{cpu-type}
21496 @opindex mcpu=
21497 Use features of, and schedule code for, the given CPU.
21498 Supported values are in the format @samp{v@var{X}.@var{YY}.@var{Z}},
21499 where @var{X} is a major version, @var{YY} is the minor version, and
21500 @var{Z} is compatibility code. Example values are @samp{v3.00.a},
21501 @samp{v4.00.b}, @samp{v5.00.a}, @samp{v5.00.b}, @samp{v6.00.a}.
21502
21503 @item -mxl-soft-mul
21504 @opindex mxl-soft-mul
21505 Use software multiply emulation (default).
21506
21507 @item -mxl-soft-div
21508 @opindex mxl-soft-div
21509 Use software emulation for divides (default).
21510
21511 @item -mxl-barrel-shift
21512 @opindex mxl-barrel-shift
21513 Use the hardware barrel shifter.
21514
21515 @item -mxl-pattern-compare
21516 @opindex mxl-pattern-compare
21517 Use pattern compare instructions.
21518
21519 @item -msmall-divides
21520 @opindex msmall-divides
21521 Use table lookup optimization for small signed integer divisions.
21522
21523 @item -mxl-stack-check
21524 @opindex mxl-stack-check
21525 This option is deprecated. Use @option{-fstack-check} instead.
21526
21527 @item -mxl-gp-opt
21528 @opindex mxl-gp-opt
21529 Use GP-relative @code{.sdata}/@code{.sbss} sections.
21530
21531 @item -mxl-multiply-high
21532 @opindex mxl-multiply-high
21533 Use multiply high instructions for high part of 32x32 multiply.
21534
21535 @item -mxl-float-convert
21536 @opindex mxl-float-convert
21537 Use hardware floating-point conversion instructions.
21538
21539 @item -mxl-float-sqrt
21540 @opindex mxl-float-sqrt
21541 Use hardware floating-point square root instruction.
21542
21543 @item -mbig-endian
21544 @opindex mbig-endian
21545 Generate code for a big-endian target.
21546
21547 @item -mlittle-endian
21548 @opindex mlittle-endian
21549 Generate code for a little-endian target.
21550
21551 @item -mxl-reorder
21552 @opindex mxl-reorder
21553 Use reorder instructions (swap and byte reversed load/store).
21554
21555 @item -mxl-mode-@var{app-model}
21556 Select application model @var{app-model}. Valid models are
21557 @table @samp
21558 @item executable
21559 normal executable (default), uses startup code @file{crt0.o}.
21560
21561 @item -mpic-data-is-text-relative
21562 @opindex mpic-data-is-text-relative
21563 Assume that the displacement between the text and data segments is fixed
21564 at static link time. This allows data to be referenced by offset from start of
21565 text address instead of GOT since PC-relative addressing is not supported.
21566
21567 @item xmdstub
21568 for use with Xilinx Microprocessor Debugger (XMD) based
21569 software intrusive debug agent called xmdstub. This uses startup file
21570 @file{crt1.o} and sets the start address of the program to 0x800.
21571
21572 @item bootstrap
21573 for applications that are loaded using a bootloader.
21574 This model uses startup file @file{crt2.o} which does not contain a processor
21575 reset vector handler. This is suitable for transferring control on a
21576 processor reset to the bootloader rather than the application.
21577
21578 @item novectors
21579 for applications that do not require any of the
21580 MicroBlaze vectors. This option may be useful for applications running
21581 within a monitoring application. This model uses @file{crt3.o} as a startup file.
21582 @end table
21583
21584 Option @option{-xl-mode-@var{app-model}} is a deprecated alias for
21585 @option{-mxl-mode-@var{app-model}}.
21586
21587 @end table
21588
21589 @node MIPS Options
21590 @subsection MIPS Options
21591 @cindex MIPS options
21592
21593 @table @gcctabopt
21594
21595 @item -EB
21596 @opindex EB
21597 Generate big-endian code.
21598
21599 @item -EL
21600 @opindex EL
21601 Generate little-endian code. This is the default for @samp{mips*el-*-*}
21602 configurations.
21603
21604 @item -march=@var{arch}
21605 @opindex march
21606 Generate code that runs on @var{arch}, which can be the name of a
21607 generic MIPS ISA, or the name of a particular processor.
21608 The ISA names are:
21609 @samp{mips1}, @samp{mips2}, @samp{mips3}, @samp{mips4},
21610 @samp{mips32}, @samp{mips32r2}, @samp{mips32r3}, @samp{mips32r5},
21611 @samp{mips32r6}, @samp{mips64}, @samp{mips64r2}, @samp{mips64r3},
21612 @samp{mips64r5} and @samp{mips64r6}.
21613 The processor names are:
21614 @samp{4kc}, @samp{4km}, @samp{4kp}, @samp{4ksc},
21615 @samp{4kec}, @samp{4kem}, @samp{4kep}, @samp{4ksd},
21616 @samp{5kc}, @samp{5kf},
21617 @samp{20kc},
21618 @samp{24kc}, @samp{24kf2_1}, @samp{24kf1_1},
21619 @samp{24kec}, @samp{24kef2_1}, @samp{24kef1_1},
21620 @samp{34kc}, @samp{34kf2_1}, @samp{34kf1_1}, @samp{34kn},
21621 @samp{74kc}, @samp{74kf2_1}, @samp{74kf1_1}, @samp{74kf3_2},
21622 @samp{1004kc}, @samp{1004kf2_1}, @samp{1004kf1_1},
21623 @samp{i6400}, @samp{i6500},
21624 @samp{interaptiv},
21625 @samp{loongson2e}, @samp{loongson2f}, @samp{loongson3a}, @samp{gs464},
21626 @samp{gs464e}, @samp{gs264e},
21627 @samp{m4k},
21628 @samp{m14k}, @samp{m14kc}, @samp{m14ke}, @samp{m14kec},
21629 @samp{m5100}, @samp{m5101},
21630 @samp{octeon}, @samp{octeon+}, @samp{octeon2}, @samp{octeon3},
21631 @samp{orion},
21632 @samp{p5600}, @samp{p6600},
21633 @samp{r2000}, @samp{r3000}, @samp{r3900}, @samp{r4000}, @samp{r4400},
21634 @samp{r4600}, @samp{r4650}, @samp{r4700}, @samp{r5900},
21635 @samp{r6000}, @samp{r8000},
21636 @samp{rm7000}, @samp{rm9000},
21637 @samp{r10000}, @samp{r12000}, @samp{r14000}, @samp{r16000},
21638 @samp{sb1},
21639 @samp{sr71000},
21640 @samp{vr4100}, @samp{vr4111}, @samp{vr4120}, @samp{vr4130}, @samp{vr4300},
21641 @samp{vr5000}, @samp{vr5400}, @samp{vr5500},
21642 @samp{xlr} and @samp{xlp}.
21643 The special value @samp{from-abi} selects the
21644 most compatible architecture for the selected ABI (that is,
21645 @samp{mips1} for 32-bit ABIs and @samp{mips3} for 64-bit ABIs)@.
21646
21647 The native Linux/GNU toolchain also supports the value @samp{native},
21648 which selects the best architecture option for the host processor.
21649 @option{-march=native} has no effect if GCC does not recognize
21650 the processor.
21651
21652 In processor names, a final @samp{000} can be abbreviated as @samp{k}
21653 (for example, @option{-march=r2k}). Prefixes are optional, and
21654 @samp{vr} may be written @samp{r}.
21655
21656 Names of the form @samp{@var{n}f2_1} refer to processors with
21657 FPUs clocked at half the rate of the core, names of the form
21658 @samp{@var{n}f1_1} refer to processors with FPUs clocked at the same
21659 rate as the core, and names of the form @samp{@var{n}f3_2} refer to
21660 processors with FPUs clocked a ratio of 3:2 with respect to the core.
21661 For compatibility reasons, @samp{@var{n}f} is accepted as a synonym
21662 for @samp{@var{n}f2_1} while @samp{@var{n}x} and @samp{@var{b}fx} are
21663 accepted as synonyms for @samp{@var{n}f1_1}.
21664
21665 GCC defines two macros based on the value of this option. The first
21666 is @code{_MIPS_ARCH}, which gives the name of target architecture, as
21667 a string. The second has the form @code{_MIPS_ARCH_@var{foo}},
21668 where @var{foo} is the capitalized value of @code{_MIPS_ARCH}@.
21669 For example, @option{-march=r2000} sets @code{_MIPS_ARCH}
21670 to @code{"r2000"} and defines the macro @code{_MIPS_ARCH_R2000}.
21671
21672 Note that the @code{_MIPS_ARCH} macro uses the processor names given
21673 above. In other words, it has the full prefix and does not
21674 abbreviate @samp{000} as @samp{k}. In the case of @samp{from-abi},
21675 the macro names the resolved architecture (either @code{"mips1"} or
21676 @code{"mips3"}). It names the default architecture when no
21677 @option{-march} option is given.
21678
21679 @item -mtune=@var{arch}
21680 @opindex mtune
21681 Optimize for @var{arch}. Among other things, this option controls
21682 the way instructions are scheduled, and the perceived cost of arithmetic
21683 operations. The list of @var{arch} values is the same as for
21684 @option{-march}.
21685
21686 When this option is not used, GCC optimizes for the processor
21687 specified by @option{-march}. By using @option{-march} and
21688 @option{-mtune} together, it is possible to generate code that
21689 runs on a family of processors, but optimize the code for one
21690 particular member of that family.
21691
21692 @option{-mtune} defines the macros @code{_MIPS_TUNE} and
21693 @code{_MIPS_TUNE_@var{foo}}, which work in the same way as the
21694 @option{-march} ones described above.
21695
21696 @item -mips1
21697 @opindex mips1
21698 Equivalent to @option{-march=mips1}.
21699
21700 @item -mips2
21701 @opindex mips2
21702 Equivalent to @option{-march=mips2}.
21703
21704 @item -mips3
21705 @opindex mips3
21706 Equivalent to @option{-march=mips3}.
21707
21708 @item -mips4
21709 @opindex mips4
21710 Equivalent to @option{-march=mips4}.
21711
21712 @item -mips32
21713 @opindex mips32
21714 Equivalent to @option{-march=mips32}.
21715
21716 @item -mips32r3
21717 @opindex mips32r3
21718 Equivalent to @option{-march=mips32r3}.
21719
21720 @item -mips32r5
21721 @opindex mips32r5
21722 Equivalent to @option{-march=mips32r5}.
21723
21724 @item -mips32r6
21725 @opindex mips32r6
21726 Equivalent to @option{-march=mips32r6}.
21727
21728 @item -mips64
21729 @opindex mips64
21730 Equivalent to @option{-march=mips64}.
21731
21732 @item -mips64r2
21733 @opindex mips64r2
21734 Equivalent to @option{-march=mips64r2}.
21735
21736 @item -mips64r3
21737 @opindex mips64r3
21738 Equivalent to @option{-march=mips64r3}.
21739
21740 @item -mips64r5
21741 @opindex mips64r5
21742 Equivalent to @option{-march=mips64r5}.
21743
21744 @item -mips64r6
21745 @opindex mips64r6
21746 Equivalent to @option{-march=mips64r6}.
21747
21748 @item -mips16
21749 @itemx -mno-mips16
21750 @opindex mips16
21751 @opindex mno-mips16
21752 Generate (do not generate) MIPS16 code. If GCC is targeting a
21753 MIPS32 or MIPS64 architecture, it makes use of the MIPS16e ASE@.
21754
21755 MIPS16 code generation can also be controlled on a per-function basis
21756 by means of @code{mips16} and @code{nomips16} attributes.
21757 @xref{Function Attributes}, for more information.
21758
21759 @item -mflip-mips16
21760 @opindex mflip-mips16
21761 Generate MIPS16 code on alternating functions. This option is provided
21762 for regression testing of mixed MIPS16/non-MIPS16 code generation, and is
21763 not intended for ordinary use in compiling user code.
21764
21765 @item -minterlink-compressed
21766 @itemx -mno-interlink-compressed
21767 @opindex minterlink-compressed
21768 @opindex mno-interlink-compressed
21769 Require (do not require) that code using the standard (uncompressed) MIPS ISA
21770 be link-compatible with MIPS16 and microMIPS code, and vice versa.
21771
21772 For example, code using the standard ISA encoding cannot jump directly
21773 to MIPS16 or microMIPS code; it must either use a call or an indirect jump.
21774 @option{-minterlink-compressed} therefore disables direct jumps unless GCC
21775 knows that the target of the jump is not compressed.
21776
21777 @item -minterlink-mips16
21778 @itemx -mno-interlink-mips16
21779 @opindex minterlink-mips16
21780 @opindex mno-interlink-mips16
21781 Aliases of @option{-minterlink-compressed} and
21782 @option{-mno-interlink-compressed}. These options predate the microMIPS ASE
21783 and are retained for backwards compatibility.
21784
21785 @item -mabi=32
21786 @itemx -mabi=o64
21787 @itemx -mabi=n32
21788 @itemx -mabi=64
21789 @itemx -mabi=eabi
21790 @opindex mabi=32
21791 @opindex mabi=o64
21792 @opindex mabi=n32
21793 @opindex mabi=64
21794 @opindex mabi=eabi
21795 Generate code for the given ABI@.
21796
21797 Note that the EABI has a 32-bit and a 64-bit variant. GCC normally
21798 generates 64-bit code when you select a 64-bit architecture, but you
21799 can use @option{-mgp32} to get 32-bit code instead.
21800
21801 For information about the O64 ABI, see
21802 @uref{http://gcc.gnu.org/@/projects/@/mipso64-abi.html}.
21803
21804 GCC supports a variant of the o32 ABI in which floating-point registers
21805 are 64 rather than 32 bits wide. You can select this combination with
21806 @option{-mabi=32} @option{-mfp64}. This ABI relies on the @code{mthc1}
21807 and @code{mfhc1} instructions and is therefore only supported for
21808 MIPS32R2, MIPS32R3 and MIPS32R5 processors.
21809
21810 The register assignments for arguments and return values remain the
21811 same, but each scalar value is passed in a single 64-bit register
21812 rather than a pair of 32-bit registers. For example, scalar
21813 floating-point values are returned in @samp{$f0} only, not a
21814 @samp{$f0}/@samp{$f1} pair. The set of call-saved registers also
21815 remains the same in that the even-numbered double-precision registers
21816 are saved.
21817
21818 Two additional variants of the o32 ABI are supported to enable
21819 a transition from 32-bit to 64-bit registers. These are FPXX
21820 (@option{-mfpxx}) and FP64A (@option{-mfp64} @option{-mno-odd-spreg}).
21821 The FPXX extension mandates that all code must execute correctly
21822 when run using 32-bit or 64-bit registers. The code can be interlinked
21823 with either FP32 or FP64, but not both.
21824 The FP64A extension is similar to the FP64 extension but forbids the
21825 use of odd-numbered single-precision registers. This can be used
21826 in conjunction with the @code{FRE} mode of FPUs in MIPS32R5
21827 processors and allows both FP32 and FP64A code to interlink and
21828 run in the same process without changing FPU modes.
21829
21830 @item -mabicalls
21831 @itemx -mno-abicalls
21832 @opindex mabicalls
21833 @opindex mno-abicalls
21834 Generate (do not generate) code that is suitable for SVR4-style
21835 dynamic objects. @option{-mabicalls} is the default for SVR4-based
21836 systems.
21837
21838 @item -mshared
21839 @itemx -mno-shared
21840 Generate (do not generate) code that is fully position-independent,
21841 and that can therefore be linked into shared libraries. This option
21842 only affects @option{-mabicalls}.
21843
21844 All @option{-mabicalls} code has traditionally been position-independent,
21845 regardless of options like @option{-fPIC} and @option{-fpic}. However,
21846 as an extension, the GNU toolchain allows executables to use absolute
21847 accesses for locally-binding symbols. It can also use shorter GP
21848 initialization sequences and generate direct calls to locally-defined
21849 functions. This mode is selected by @option{-mno-shared}.
21850
21851 @option{-mno-shared} depends on binutils 2.16 or higher and generates
21852 objects that can only be linked by the GNU linker. However, the option
21853 does not affect the ABI of the final executable; it only affects the ABI
21854 of relocatable objects. Using @option{-mno-shared} generally makes
21855 executables both smaller and quicker.
21856
21857 @option{-mshared} is the default.
21858
21859 @item -mplt
21860 @itemx -mno-plt
21861 @opindex mplt
21862 @opindex mno-plt
21863 Assume (do not assume) that the static and dynamic linkers
21864 support PLTs and copy relocations. This option only affects
21865 @option{-mno-shared -mabicalls}. For the n64 ABI, this option
21866 has no effect without @option{-msym32}.
21867
21868 You can make @option{-mplt} the default by configuring
21869 GCC with @option{--with-mips-plt}. The default is
21870 @option{-mno-plt} otherwise.
21871
21872 @item -mxgot
21873 @itemx -mno-xgot
21874 @opindex mxgot
21875 @opindex mno-xgot
21876 Lift (do not lift) the usual restrictions on the size of the global
21877 offset table.
21878
21879 GCC normally uses a single instruction to load values from the GOT@.
21880 While this is relatively efficient, it only works if the GOT
21881 is smaller than about 64k. Anything larger causes the linker
21882 to report an error such as:
21883
21884 @cindex relocation truncated to fit (MIPS)
21885 @smallexample
21886 relocation truncated to fit: R_MIPS_GOT16 foobar
21887 @end smallexample
21888
21889 If this happens, you should recompile your code with @option{-mxgot}.
21890 This works with very large GOTs, although the code is also
21891 less efficient, since it takes three instructions to fetch the
21892 value of a global symbol.
21893
21894 Note that some linkers can create multiple GOTs. If you have such a
21895 linker, you should only need to use @option{-mxgot} when a single object
21896 file accesses more than 64k's worth of GOT entries. Very few do.
21897
21898 These options have no effect unless GCC is generating position
21899 independent code.
21900
21901 @item -mgp32
21902 @opindex mgp32
21903 Assume that general-purpose registers are 32 bits wide.
21904
21905 @item -mgp64
21906 @opindex mgp64
21907 Assume that general-purpose registers are 64 bits wide.
21908
21909 @item -mfp32
21910 @opindex mfp32
21911 Assume that floating-point registers are 32 bits wide.
21912
21913 @item -mfp64
21914 @opindex mfp64
21915 Assume that floating-point registers are 64 bits wide.
21916
21917 @item -mfpxx
21918 @opindex mfpxx
21919 Do not assume the width of floating-point registers.
21920
21921 @item -mhard-float
21922 @opindex mhard-float
21923 Use floating-point coprocessor instructions.
21924
21925 @item -msoft-float
21926 @opindex msoft-float
21927 Do not use floating-point coprocessor instructions. Implement
21928 floating-point calculations using library calls instead.
21929
21930 @item -mno-float
21931 @opindex mno-float
21932 Equivalent to @option{-msoft-float}, but additionally asserts that the
21933 program being compiled does not perform any floating-point operations.
21934 This option is presently supported only by some bare-metal MIPS
21935 configurations, where it may select a special set of libraries
21936 that lack all floating-point support (including, for example, the
21937 floating-point @code{printf} formats).
21938 If code compiled with @option{-mno-float} accidentally contains
21939 floating-point operations, it is likely to suffer a link-time
21940 or run-time failure.
21941
21942 @item -msingle-float
21943 @opindex msingle-float
21944 Assume that the floating-point coprocessor only supports single-precision
21945 operations.
21946
21947 @item -mdouble-float
21948 @opindex mdouble-float
21949 Assume that the floating-point coprocessor supports double-precision
21950 operations. This is the default.
21951
21952 @item -modd-spreg
21953 @itemx -mno-odd-spreg
21954 @opindex modd-spreg
21955 @opindex mno-odd-spreg
21956 Enable the use of odd-numbered single-precision floating-point registers
21957 for the o32 ABI. This is the default for processors that are known to
21958 support these registers. When using the o32 FPXX ABI, @option{-mno-odd-spreg}
21959 is set by default.
21960
21961 @item -mabs=2008
21962 @itemx -mabs=legacy
21963 @opindex mabs=2008
21964 @opindex mabs=legacy
21965 These options control the treatment of the special not-a-number (NaN)
21966 IEEE 754 floating-point data with the @code{abs.@i{fmt}} and
21967 @code{neg.@i{fmt}} machine instructions.
21968
21969 By default or when @option{-mabs=legacy} is used the legacy
21970 treatment is selected. In this case these instructions are considered
21971 arithmetic and avoided where correct operation is required and the
21972 input operand might be a NaN. A longer sequence of instructions that
21973 manipulate the sign bit of floating-point datum manually is used
21974 instead unless the @option{-ffinite-math-only} option has also been
21975 specified.
21976
21977 The @option{-mabs=2008} option selects the IEEE 754-2008 treatment. In
21978 this case these instructions are considered non-arithmetic and therefore
21979 operating correctly in all cases, including in particular where the
21980 input operand is a NaN. These instructions are therefore always used
21981 for the respective operations.
21982
21983 @item -mnan=2008
21984 @itemx -mnan=legacy
21985 @opindex mnan=2008
21986 @opindex mnan=legacy
21987 These options control the encoding of the special not-a-number (NaN)
21988 IEEE 754 floating-point data.
21989
21990 The @option{-mnan=legacy} option selects the legacy encoding. In this
21991 case quiet NaNs (qNaNs) are denoted by the first bit of their trailing
21992 significand field being 0, whereas signaling NaNs (sNaNs) are denoted
21993 by the first bit of their trailing significand field being 1.
21994
21995 The @option{-mnan=2008} option selects the IEEE 754-2008 encoding. In
21996 this case qNaNs are denoted by the first bit of their trailing
21997 significand field being 1, whereas sNaNs are denoted by the first bit of
21998 their trailing significand field being 0.
21999
22000 The default is @option{-mnan=legacy} unless GCC has been configured with
22001 @option{--with-nan=2008}.
22002
22003 @item -mllsc
22004 @itemx -mno-llsc
22005 @opindex mllsc
22006 @opindex mno-llsc
22007 Use (do not use) @samp{ll}, @samp{sc}, and @samp{sync} instructions to
22008 implement atomic memory built-in functions. When neither option is
22009 specified, GCC uses the instructions if the target architecture
22010 supports them.
22011
22012 @option{-mllsc} is useful if the runtime environment can emulate the
22013 instructions and @option{-mno-llsc} can be useful when compiling for
22014 nonstandard ISAs. You can make either option the default by
22015 configuring GCC with @option{--with-llsc} and @option{--without-llsc}
22016 respectively. @option{--with-llsc} is the default for some
22017 configurations; see the installation documentation for details.
22018
22019 @item -mdsp
22020 @itemx -mno-dsp
22021 @opindex mdsp
22022 @opindex mno-dsp
22023 Use (do not use) revision 1 of the MIPS DSP ASE@.
22024 @xref{MIPS DSP Built-in Functions}. This option defines the
22025 preprocessor macro @code{__mips_dsp}. It also defines
22026 @code{__mips_dsp_rev} to 1.
22027
22028 @item -mdspr2
22029 @itemx -mno-dspr2
22030 @opindex mdspr2
22031 @opindex mno-dspr2
22032 Use (do not use) revision 2 of the MIPS DSP ASE@.
22033 @xref{MIPS DSP Built-in Functions}. This option defines the
22034 preprocessor macros @code{__mips_dsp} and @code{__mips_dspr2}.
22035 It also defines @code{__mips_dsp_rev} to 2.
22036
22037 @item -msmartmips
22038 @itemx -mno-smartmips
22039 @opindex msmartmips
22040 @opindex mno-smartmips
22041 Use (do not use) the MIPS SmartMIPS ASE.
22042
22043 @item -mpaired-single
22044 @itemx -mno-paired-single
22045 @opindex mpaired-single
22046 @opindex mno-paired-single
22047 Use (do not use) paired-single floating-point instructions.
22048 @xref{MIPS Paired-Single Support}. This option requires
22049 hardware floating-point support to be enabled.
22050
22051 @item -mdmx
22052 @itemx -mno-mdmx
22053 @opindex mdmx
22054 @opindex mno-mdmx
22055 Use (do not use) MIPS Digital Media Extension instructions.
22056 This option can only be used when generating 64-bit code and requires
22057 hardware floating-point support to be enabled.
22058
22059 @item -mips3d
22060 @itemx -mno-mips3d
22061 @opindex mips3d
22062 @opindex mno-mips3d
22063 Use (do not use) the MIPS-3D ASE@. @xref{MIPS-3D Built-in Functions}.
22064 The option @option{-mips3d} implies @option{-mpaired-single}.
22065
22066 @item -mmicromips
22067 @itemx -mno-micromips
22068 @opindex mmicromips
22069 @opindex mno-mmicromips
22070 Generate (do not generate) microMIPS code.
22071
22072 MicroMIPS code generation can also be controlled on a per-function basis
22073 by means of @code{micromips} and @code{nomicromips} attributes.
22074 @xref{Function Attributes}, for more information.
22075
22076 @item -mmt
22077 @itemx -mno-mt
22078 @opindex mmt
22079 @opindex mno-mt
22080 Use (do not use) MT Multithreading instructions.
22081
22082 @item -mmcu
22083 @itemx -mno-mcu
22084 @opindex mmcu
22085 @opindex mno-mcu
22086 Use (do not use) the MIPS MCU ASE instructions.
22087
22088 @item -meva
22089 @itemx -mno-eva
22090 @opindex meva
22091 @opindex mno-eva
22092 Use (do not use) the MIPS Enhanced Virtual Addressing instructions.
22093
22094 @item -mvirt
22095 @itemx -mno-virt
22096 @opindex mvirt
22097 @opindex mno-virt
22098 Use (do not use) the MIPS Virtualization (VZ) instructions.
22099
22100 @item -mxpa
22101 @itemx -mno-xpa
22102 @opindex mxpa
22103 @opindex mno-xpa
22104 Use (do not use) the MIPS eXtended Physical Address (XPA) instructions.
22105
22106 @item -mcrc
22107 @itemx -mno-crc
22108 @opindex mcrc
22109 @opindex mno-crc
22110 Use (do not use) the MIPS Cyclic Redundancy Check (CRC) instructions.
22111
22112 @item -mginv
22113 @itemx -mno-ginv
22114 @opindex mginv
22115 @opindex mno-ginv
22116 Use (do not use) the MIPS Global INValidate (GINV) instructions.
22117
22118 @item -mloongson-mmi
22119 @itemx -mno-loongson-mmi
22120 @opindex mloongson-mmi
22121 @opindex mno-loongson-mmi
22122 Use (do not use) the MIPS Loongson MultiMedia extensions Instructions (MMI).
22123
22124 @item -mloongson-ext
22125 @itemx -mno-loongson-ext
22126 @opindex mloongson-ext
22127 @opindex mno-loongson-ext
22128 Use (do not use) the MIPS Loongson EXTensions (EXT) instructions.
22129
22130 @item -mloongson-ext2
22131 @itemx -mno-loongson-ext2
22132 @opindex mloongson-ext2
22133 @opindex mno-loongson-ext2
22134 Use (do not use) the MIPS Loongson EXTensions r2 (EXT2) instructions.
22135
22136 @item -mlong64
22137 @opindex mlong64
22138 Force @code{long} types to be 64 bits wide. See @option{-mlong32} for
22139 an explanation of the default and the way that the pointer size is
22140 determined.
22141
22142 @item -mlong32
22143 @opindex mlong32
22144 Force @code{long}, @code{int}, and pointer types to be 32 bits wide.
22145
22146 The default size of @code{int}s, @code{long}s and pointers depends on
22147 the ABI@. All the supported ABIs use 32-bit @code{int}s. The n64 ABI
22148 uses 64-bit @code{long}s, as does the 64-bit EABI; the others use
22149 32-bit @code{long}s. Pointers are the same size as @code{long}s,
22150 or the same size as integer registers, whichever is smaller.
22151
22152 @item -msym32
22153 @itemx -mno-sym32
22154 @opindex msym32
22155 @opindex mno-sym32
22156 Assume (do not assume) that all symbols have 32-bit values, regardless
22157 of the selected ABI@. This option is useful in combination with
22158 @option{-mabi=64} and @option{-mno-abicalls} because it allows GCC
22159 to generate shorter and faster references to symbolic addresses.
22160
22161 @item -G @var{num}
22162 @opindex G
22163 Put definitions of externally-visible data in a small data section
22164 if that data is no bigger than @var{num} bytes. GCC can then generate
22165 more efficient accesses to the data; see @option{-mgpopt} for details.
22166
22167 The default @option{-G} option depends on the configuration.
22168
22169 @item -mlocal-sdata
22170 @itemx -mno-local-sdata
22171 @opindex mlocal-sdata
22172 @opindex mno-local-sdata
22173 Extend (do not extend) the @option{-G} behavior to local data too,
22174 such as to static variables in C@. @option{-mlocal-sdata} is the
22175 default for all configurations.
22176
22177 If the linker complains that an application is using too much small data,
22178 you might want to try rebuilding the less performance-critical parts with
22179 @option{-mno-local-sdata}. You might also want to build large
22180 libraries with @option{-mno-local-sdata}, so that the libraries leave
22181 more room for the main program.
22182
22183 @item -mextern-sdata
22184 @itemx -mno-extern-sdata
22185 @opindex mextern-sdata
22186 @opindex mno-extern-sdata
22187 Assume (do not assume) that externally-defined data is in
22188 a small data section if the size of that data is within the @option{-G} limit.
22189 @option{-mextern-sdata} is the default for all configurations.
22190
22191 If you compile a module @var{Mod} with @option{-mextern-sdata} @option{-G
22192 @var{num}} @option{-mgpopt}, and @var{Mod} references a variable @var{Var}
22193 that is no bigger than @var{num} bytes, you must make sure that @var{Var}
22194 is placed in a small data section. If @var{Var} is defined by another
22195 module, you must either compile that module with a high-enough
22196 @option{-G} setting or attach a @code{section} attribute to @var{Var}'s
22197 definition. If @var{Var} is common, you must link the application
22198 with a high-enough @option{-G} setting.
22199
22200 The easiest way of satisfying these restrictions is to compile
22201 and link every module with the same @option{-G} option. However,
22202 you may wish to build a library that supports several different
22203 small data limits. You can do this by compiling the library with
22204 the highest supported @option{-G} setting and additionally using
22205 @option{-mno-extern-sdata} to stop the library from making assumptions
22206 about externally-defined data.
22207
22208 @item -mgpopt
22209 @itemx -mno-gpopt
22210 @opindex mgpopt
22211 @opindex mno-gpopt
22212 Use (do not use) GP-relative accesses for symbols that are known to be
22213 in a small data section; see @option{-G}, @option{-mlocal-sdata} and
22214 @option{-mextern-sdata}. @option{-mgpopt} is the default for all
22215 configurations.
22216
22217 @option{-mno-gpopt} is useful for cases where the @code{$gp} register
22218 might not hold the value of @code{_gp}. For example, if the code is
22219 part of a library that might be used in a boot monitor, programs that
22220 call boot monitor routines pass an unknown value in @code{$gp}.
22221 (In such situations, the boot monitor itself is usually compiled
22222 with @option{-G0}.)
22223
22224 @option{-mno-gpopt} implies @option{-mno-local-sdata} and
22225 @option{-mno-extern-sdata}.
22226
22227 @item -membedded-data
22228 @itemx -mno-embedded-data
22229 @opindex membedded-data
22230 @opindex mno-embedded-data
22231 Allocate variables to the read-only data section first if possible, then
22232 next in the small data section if possible, otherwise in data. This gives
22233 slightly slower code than the default, but reduces the amount of RAM required
22234 when executing, and thus may be preferred for some embedded systems.
22235
22236 @item -muninit-const-in-rodata
22237 @itemx -mno-uninit-const-in-rodata
22238 @opindex muninit-const-in-rodata
22239 @opindex mno-uninit-const-in-rodata
22240 Put uninitialized @code{const} variables in the read-only data section.
22241 This option is only meaningful in conjunction with @option{-membedded-data}.
22242
22243 @item -mcode-readable=@var{setting}
22244 @opindex mcode-readable
22245 Specify whether GCC may generate code that reads from executable sections.
22246 There are three possible settings:
22247
22248 @table @gcctabopt
22249 @item -mcode-readable=yes
22250 Instructions may freely access executable sections. This is the
22251 default setting.
22252
22253 @item -mcode-readable=pcrel
22254 MIPS16 PC-relative load instructions can access executable sections,
22255 but other instructions must not do so. This option is useful on 4KSc
22256 and 4KSd processors when the code TLBs have the Read Inhibit bit set.
22257 It is also useful on processors that can be configured to have a dual
22258 instruction/data SRAM interface and that, like the M4K, automatically
22259 redirect PC-relative loads to the instruction RAM.
22260
22261 @item -mcode-readable=no
22262 Instructions must not access executable sections. This option can be
22263 useful on targets that are configured to have a dual instruction/data
22264 SRAM interface but that (unlike the M4K) do not automatically redirect
22265 PC-relative loads to the instruction RAM.
22266 @end table
22267
22268 @item -msplit-addresses
22269 @itemx -mno-split-addresses
22270 @opindex msplit-addresses
22271 @opindex mno-split-addresses
22272 Enable (disable) use of the @code{%hi()} and @code{%lo()} assembler
22273 relocation operators. This option has been superseded by
22274 @option{-mexplicit-relocs} but is retained for backwards compatibility.
22275
22276 @item -mexplicit-relocs
22277 @itemx -mno-explicit-relocs
22278 @opindex mexplicit-relocs
22279 @opindex mno-explicit-relocs
22280 Use (do not use) assembler relocation operators when dealing with symbolic
22281 addresses. The alternative, selected by @option{-mno-explicit-relocs},
22282 is to use assembler macros instead.
22283
22284 @option{-mexplicit-relocs} is the default if GCC was configured
22285 to use an assembler that supports relocation operators.
22286
22287 @item -mcheck-zero-division
22288 @itemx -mno-check-zero-division
22289 @opindex mcheck-zero-division
22290 @opindex mno-check-zero-division
22291 Trap (do not trap) on integer division by zero.
22292
22293 The default is @option{-mcheck-zero-division}.
22294
22295 @item -mdivide-traps
22296 @itemx -mdivide-breaks
22297 @opindex mdivide-traps
22298 @opindex mdivide-breaks
22299 MIPS systems check for division by zero by generating either a
22300 conditional trap or a break instruction. Using traps results in
22301 smaller code, but is only supported on MIPS II and later. Also, some
22302 versions of the Linux kernel have a bug that prevents trap from
22303 generating the proper signal (@code{SIGFPE}). Use @option{-mdivide-traps} to
22304 allow conditional traps on architectures that support them and
22305 @option{-mdivide-breaks} to force the use of breaks.
22306
22307 The default is usually @option{-mdivide-traps}, but this can be
22308 overridden at configure time using @option{--with-divide=breaks}.
22309 Divide-by-zero checks can be completely disabled using
22310 @option{-mno-check-zero-division}.
22311
22312 @item -mload-store-pairs
22313 @itemx -mno-load-store-pairs
22314 @opindex mload-store-pairs
22315 @opindex mno-load-store-pairs
22316 Enable (disable) an optimization that pairs consecutive load or store
22317 instructions to enable load/store bonding. This option is enabled by
22318 default but only takes effect when the selected architecture is known
22319 to support bonding.
22320
22321 @item -mmemcpy
22322 @itemx -mno-memcpy
22323 @opindex mmemcpy
22324 @opindex mno-memcpy
22325 Force (do not force) the use of @code{memcpy} for non-trivial block
22326 moves. The default is @option{-mno-memcpy}, which allows GCC to inline
22327 most constant-sized copies.
22328
22329 @item -mlong-calls
22330 @itemx -mno-long-calls
22331 @opindex mlong-calls
22332 @opindex mno-long-calls
22333 Disable (do not disable) use of the @code{jal} instruction. Calling
22334 functions using @code{jal} is more efficient but requires the caller
22335 and callee to be in the same 256 megabyte segment.
22336
22337 This option has no effect on abicalls code. The default is
22338 @option{-mno-long-calls}.
22339
22340 @item -mmad
22341 @itemx -mno-mad
22342 @opindex mmad
22343 @opindex mno-mad
22344 Enable (disable) use of the @code{mad}, @code{madu} and @code{mul}
22345 instructions, as provided by the R4650 ISA@.
22346
22347 @item -mimadd
22348 @itemx -mno-imadd
22349 @opindex mimadd
22350 @opindex mno-imadd
22351 Enable (disable) use of the @code{madd} and @code{msub} integer
22352 instructions. The default is @option{-mimadd} on architectures
22353 that support @code{madd} and @code{msub} except for the 74k
22354 architecture where it was found to generate slower code.
22355
22356 @item -mfused-madd
22357 @itemx -mno-fused-madd
22358 @opindex mfused-madd
22359 @opindex mno-fused-madd
22360 Enable (disable) use of the floating-point multiply-accumulate
22361 instructions, when they are available. The default is
22362 @option{-mfused-madd}.
22363
22364 On the R8000 CPU when multiply-accumulate instructions are used,
22365 the intermediate product is calculated to infinite precision
22366 and is not subject to the FCSR Flush to Zero bit. This may be
22367 undesirable in some circumstances. On other processors the result
22368 is numerically identical to the equivalent computation using
22369 separate multiply, add, subtract and negate instructions.
22370
22371 @item -nocpp
22372 @opindex nocpp
22373 Tell the MIPS assembler to not run its preprocessor over user
22374 assembler files (with a @samp{.s} suffix) when assembling them.
22375
22376 @item -mfix-24k
22377 @itemx -mno-fix-24k
22378 @opindex mfix-24k
22379 @opindex mno-fix-24k
22380 Work around the 24K E48 (lost data on stores during refill) errata.
22381 The workarounds are implemented by the assembler rather than by GCC@.
22382
22383 @item -mfix-r4000
22384 @itemx -mno-fix-r4000
22385 @opindex mfix-r4000
22386 @opindex mno-fix-r4000
22387 Work around certain R4000 CPU errata:
22388 @itemize @minus
22389 @item
22390 A double-word or a variable shift may give an incorrect result if executed
22391 immediately after starting an integer division.
22392 @item
22393 A double-word or a variable shift may give an incorrect result if executed
22394 while an integer multiplication is in progress.
22395 @item
22396 An integer division may give an incorrect result if started in a delay slot
22397 of a taken branch or a jump.
22398 @end itemize
22399
22400 @item -mfix-r4400
22401 @itemx -mno-fix-r4400
22402 @opindex mfix-r4400
22403 @opindex mno-fix-r4400
22404 Work around certain R4400 CPU errata:
22405 @itemize @minus
22406 @item
22407 A double-word or a variable shift may give an incorrect result if executed
22408 immediately after starting an integer division.
22409 @end itemize
22410
22411 @item -mfix-r10000
22412 @itemx -mno-fix-r10000
22413 @opindex mfix-r10000
22414 @opindex mno-fix-r10000
22415 Work around certain R10000 errata:
22416 @itemize @minus
22417 @item
22418 @code{ll}/@code{sc} sequences may not behave atomically on revisions
22419 prior to 3.0. They may deadlock on revisions 2.6 and earlier.
22420 @end itemize
22421
22422 This option can only be used if the target architecture supports
22423 branch-likely instructions. @option{-mfix-r10000} is the default when
22424 @option{-march=r10000} is used; @option{-mno-fix-r10000} is the default
22425 otherwise.
22426
22427 @item -mfix-r5900
22428 @itemx -mno-fix-r5900
22429 @opindex mfix-r5900
22430 Do not attempt to schedule the preceding instruction into the delay slot
22431 of a branch instruction placed at the end of a short loop of six
22432 instructions or fewer and always schedule a @code{nop} instruction there
22433 instead. The short loop bug under certain conditions causes loops to
22434 execute only once or twice, due to a hardware bug in the R5900 chip. The
22435 workaround is implemented by the assembler rather than by GCC@.
22436
22437 @item -mfix-rm7000
22438 @itemx -mno-fix-rm7000
22439 @opindex mfix-rm7000
22440 Work around the RM7000 @code{dmult}/@code{dmultu} errata. The
22441 workarounds are implemented by the assembler rather than by GCC@.
22442
22443 @item -mfix-vr4120
22444 @itemx -mno-fix-vr4120
22445 @opindex mfix-vr4120
22446 Work around certain VR4120 errata:
22447 @itemize @minus
22448 @item
22449 @code{dmultu} does not always produce the correct result.
22450 @item
22451 @code{div} and @code{ddiv} do not always produce the correct result if one
22452 of the operands is negative.
22453 @end itemize
22454 The workarounds for the division errata rely on special functions in
22455 @file{libgcc.a}. At present, these functions are only provided by
22456 the @code{mips64vr*-elf} configurations.
22457
22458 Other VR4120 errata require a NOP to be inserted between certain pairs of
22459 instructions. These errata are handled by the assembler, not by GCC itself.
22460
22461 @item -mfix-vr4130
22462 @opindex mfix-vr4130
22463 Work around the VR4130 @code{mflo}/@code{mfhi} errata. The
22464 workarounds are implemented by the assembler rather than by GCC,
22465 although GCC avoids using @code{mflo} and @code{mfhi} if the
22466 VR4130 @code{macc}, @code{macchi}, @code{dmacc} and @code{dmacchi}
22467 instructions are available instead.
22468
22469 @item -mfix-sb1
22470 @itemx -mno-fix-sb1
22471 @opindex mfix-sb1
22472 Work around certain SB-1 CPU core errata.
22473 (This flag currently works around the SB-1 revision 2
22474 ``F1'' and ``F2'' floating-point errata.)
22475
22476 @item -mr10k-cache-barrier=@var{setting}
22477 @opindex mr10k-cache-barrier
22478 Specify whether GCC should insert cache barriers to avoid the
22479 side effects of speculation on R10K processors.
22480
22481 In common with many processors, the R10K tries to predict the outcome
22482 of a conditional branch and speculatively executes instructions from
22483 the ``taken'' branch. It later aborts these instructions if the
22484 predicted outcome is wrong. However, on the R10K, even aborted
22485 instructions can have side effects.
22486
22487 This problem only affects kernel stores and, depending on the system,
22488 kernel loads. As an example, a speculatively-executed store may load
22489 the target memory into cache and mark the cache line as dirty, even if
22490 the store itself is later aborted. If a DMA operation writes to the
22491 same area of memory before the ``dirty'' line is flushed, the cached
22492 data overwrites the DMA-ed data. See the R10K processor manual
22493 for a full description, including other potential problems.
22494
22495 One workaround is to insert cache barrier instructions before every memory
22496 access that might be speculatively executed and that might have side
22497 effects even if aborted. @option{-mr10k-cache-barrier=@var{setting}}
22498 controls GCC's implementation of this workaround. It assumes that
22499 aborted accesses to any byte in the following regions does not have
22500 side effects:
22501
22502 @enumerate
22503 @item
22504 the memory occupied by the current function's stack frame;
22505
22506 @item
22507 the memory occupied by an incoming stack argument;
22508
22509 @item
22510 the memory occupied by an object with a link-time-constant address.
22511 @end enumerate
22512
22513 It is the kernel's responsibility to ensure that speculative
22514 accesses to these regions are indeed safe.
22515
22516 If the input program contains a function declaration such as:
22517
22518 @smallexample
22519 void foo (void);
22520 @end smallexample
22521
22522 then the implementation of @code{foo} must allow @code{j foo} and
22523 @code{jal foo} to be executed speculatively. GCC honors this
22524 restriction for functions it compiles itself. It expects non-GCC
22525 functions (such as hand-written assembly code) to do the same.
22526
22527 The option has three forms:
22528
22529 @table @gcctabopt
22530 @item -mr10k-cache-barrier=load-store
22531 Insert a cache barrier before a load or store that might be
22532 speculatively executed and that might have side effects even
22533 if aborted.
22534
22535 @item -mr10k-cache-barrier=store
22536 Insert a cache barrier before a store that might be speculatively
22537 executed and that might have side effects even if aborted.
22538
22539 @item -mr10k-cache-barrier=none
22540 Disable the insertion of cache barriers. This is the default setting.
22541 @end table
22542
22543 @item -mflush-func=@var{func}
22544 @itemx -mno-flush-func
22545 @opindex mflush-func
22546 Specifies the function to call to flush the I and D caches, or to not
22547 call any such function. If called, the function must take the same
22548 arguments as the common @code{_flush_func}, that is, the address of the
22549 memory range for which the cache is being flushed, the size of the
22550 memory range, and the number 3 (to flush both caches). The default
22551 depends on the target GCC was configured for, but commonly is either
22552 @code{_flush_func} or @code{__cpu_flush}.
22553
22554 @item mbranch-cost=@var{num}
22555 @opindex mbranch-cost
22556 Set the cost of branches to roughly @var{num} ``simple'' instructions.
22557 This cost is only a heuristic and is not guaranteed to produce
22558 consistent results across releases. A zero cost redundantly selects
22559 the default, which is based on the @option{-mtune} setting.
22560
22561 @item -mbranch-likely
22562 @itemx -mno-branch-likely
22563 @opindex mbranch-likely
22564 @opindex mno-branch-likely
22565 Enable or disable use of Branch Likely instructions, regardless of the
22566 default for the selected architecture. By default, Branch Likely
22567 instructions may be generated if they are supported by the selected
22568 architecture. An exception is for the MIPS32 and MIPS64 architectures
22569 and processors that implement those architectures; for those, Branch
22570 Likely instructions are not be generated by default because the MIPS32
22571 and MIPS64 architectures specifically deprecate their use.
22572
22573 @item -mcompact-branches=never
22574 @itemx -mcompact-branches=optimal
22575 @itemx -mcompact-branches=always
22576 @opindex mcompact-branches=never
22577 @opindex mcompact-branches=optimal
22578 @opindex mcompact-branches=always
22579 These options control which form of branches will be generated. The
22580 default is @option{-mcompact-branches=optimal}.
22581
22582 The @option{-mcompact-branches=never} option ensures that compact branch
22583 instructions will never be generated.
22584
22585 The @option{-mcompact-branches=always} option ensures that a compact
22586 branch instruction will be generated if available. If a compact branch
22587 instruction is not available, a delay slot form of the branch will be
22588 used instead.
22589
22590 This option is supported from MIPS Release 6 onwards.
22591
22592 The @option{-mcompact-branches=optimal} option will cause a delay slot
22593 branch to be used if one is available in the current ISA and the delay
22594 slot is successfully filled. If the delay slot is not filled, a compact
22595 branch will be chosen if one is available.
22596
22597 @item -mfp-exceptions
22598 @itemx -mno-fp-exceptions
22599 @opindex mfp-exceptions
22600 Specifies whether FP exceptions are enabled. This affects how
22601 FP instructions are scheduled for some processors.
22602 The default is that FP exceptions are
22603 enabled.
22604
22605 For instance, on the SB-1, if FP exceptions are disabled, and we are emitting
22606 64-bit code, then we can use both FP pipes. Otherwise, we can only use one
22607 FP pipe.
22608
22609 @item -mvr4130-align
22610 @itemx -mno-vr4130-align
22611 @opindex mvr4130-align
22612 The VR4130 pipeline is two-way superscalar, but can only issue two
22613 instructions together if the first one is 8-byte aligned. When this
22614 option is enabled, GCC aligns pairs of instructions that it
22615 thinks should execute in parallel.
22616
22617 This option only has an effect when optimizing for the VR4130.
22618 It normally makes code faster, but at the expense of making it bigger.
22619 It is enabled by default at optimization level @option{-O3}.
22620
22621 @item -msynci
22622 @itemx -mno-synci
22623 @opindex msynci
22624 Enable (disable) generation of @code{synci} instructions on
22625 architectures that support it. The @code{synci} instructions (if
22626 enabled) are generated when @code{__builtin___clear_cache} is
22627 compiled.
22628
22629 This option defaults to @option{-mno-synci}, but the default can be
22630 overridden by configuring GCC with @option{--with-synci}.
22631
22632 When compiling code for single processor systems, it is generally safe
22633 to use @code{synci}. However, on many multi-core (SMP) systems, it
22634 does not invalidate the instruction caches on all cores and may lead
22635 to undefined behavior.
22636
22637 @item -mrelax-pic-calls
22638 @itemx -mno-relax-pic-calls
22639 @opindex mrelax-pic-calls
22640 Try to turn PIC calls that are normally dispatched via register
22641 @code{$25} into direct calls. This is only possible if the linker can
22642 resolve the destination at link time and if the destination is within
22643 range for a direct call.
22644
22645 @option{-mrelax-pic-calls} is the default if GCC was configured to use
22646 an assembler and a linker that support the @code{.reloc} assembly
22647 directive and @option{-mexplicit-relocs} is in effect. With
22648 @option{-mno-explicit-relocs}, this optimization can be performed by the
22649 assembler and the linker alone without help from the compiler.
22650
22651 @item -mmcount-ra-address
22652 @itemx -mno-mcount-ra-address
22653 @opindex mmcount-ra-address
22654 @opindex mno-mcount-ra-address
22655 Emit (do not emit) code that allows @code{_mcount} to modify the
22656 calling function's return address. When enabled, this option extends
22657 the usual @code{_mcount} interface with a new @var{ra-address}
22658 parameter, which has type @code{intptr_t *} and is passed in register
22659 @code{$12}. @code{_mcount} can then modify the return address by
22660 doing both of the following:
22661 @itemize
22662 @item
22663 Returning the new address in register @code{$31}.
22664 @item
22665 Storing the new address in @code{*@var{ra-address}},
22666 if @var{ra-address} is nonnull.
22667 @end itemize
22668
22669 The default is @option{-mno-mcount-ra-address}.
22670
22671 @item -mframe-header-opt
22672 @itemx -mno-frame-header-opt
22673 @opindex mframe-header-opt
22674 Enable (disable) frame header optimization in the o32 ABI. When using the
22675 o32 ABI, calling functions will allocate 16 bytes on the stack for the called
22676 function to write out register arguments. When enabled, this optimization
22677 will suppress the allocation of the frame header if it can be determined that
22678 it is unused.
22679
22680 This optimization is off by default at all optimization levels.
22681
22682 @item -mlxc1-sxc1
22683 @itemx -mno-lxc1-sxc1
22684 @opindex mlxc1-sxc1
22685 When applicable, enable (disable) the generation of @code{lwxc1},
22686 @code{swxc1}, @code{ldxc1}, @code{sdxc1} instructions. Enabled by default.
22687
22688 @item -mmadd4
22689 @itemx -mno-madd4
22690 @opindex mmadd4
22691 When applicable, enable (disable) the generation of 4-operand @code{madd.s},
22692 @code{madd.d} and related instructions. Enabled by default.
22693
22694 @end table
22695
22696 @node MMIX Options
22697 @subsection MMIX Options
22698 @cindex MMIX Options
22699
22700 These options are defined for the MMIX:
22701
22702 @table @gcctabopt
22703 @item -mlibfuncs
22704 @itemx -mno-libfuncs
22705 @opindex mlibfuncs
22706 @opindex mno-libfuncs
22707 Specify that intrinsic library functions are being compiled, passing all
22708 values in registers, no matter the size.
22709
22710 @item -mepsilon
22711 @itemx -mno-epsilon
22712 @opindex mepsilon
22713 @opindex mno-epsilon
22714 Generate floating-point comparison instructions that compare with respect
22715 to the @code{rE} epsilon register.
22716
22717 @item -mabi=mmixware
22718 @itemx -mabi=gnu
22719 @opindex mabi=mmixware
22720 @opindex mabi=gnu
22721 Generate code that passes function parameters and return values that (in
22722 the called function) are seen as registers @code{$0} and up, as opposed to
22723 the GNU ABI which uses global registers @code{$231} and up.
22724
22725 @item -mzero-extend
22726 @itemx -mno-zero-extend
22727 @opindex mzero-extend
22728 @opindex mno-zero-extend
22729 When reading data from memory in sizes shorter than 64 bits, use (do not
22730 use) zero-extending load instructions by default, rather than
22731 sign-extending ones.
22732
22733 @item -mknuthdiv
22734 @itemx -mno-knuthdiv
22735 @opindex mknuthdiv
22736 @opindex mno-knuthdiv
22737 Make the result of a division yielding a remainder have the same sign as
22738 the divisor. With the default, @option{-mno-knuthdiv}, the sign of the
22739 remainder follows the sign of the dividend. Both methods are
22740 arithmetically valid, the latter being almost exclusively used.
22741
22742 @item -mtoplevel-symbols
22743 @itemx -mno-toplevel-symbols
22744 @opindex mtoplevel-symbols
22745 @opindex mno-toplevel-symbols
22746 Prepend (do not prepend) a @samp{:} to all global symbols, so the assembly
22747 code can be used with the @code{PREFIX} assembly directive.
22748
22749 @item -melf
22750 @opindex melf
22751 Generate an executable in the ELF format, rather than the default
22752 @samp{mmo} format used by the @command{mmix} simulator.
22753
22754 @item -mbranch-predict
22755 @itemx -mno-branch-predict
22756 @opindex mbranch-predict
22757 @opindex mno-branch-predict
22758 Use (do not use) the probable-branch instructions, when static branch
22759 prediction indicates a probable branch.
22760
22761 @item -mbase-addresses
22762 @itemx -mno-base-addresses
22763 @opindex mbase-addresses
22764 @opindex mno-base-addresses
22765 Generate (do not generate) code that uses @emph{base addresses}. Using a
22766 base address automatically generates a request (handled by the assembler
22767 and the linker) for a constant to be set up in a global register. The
22768 register is used for one or more base address requests within the range 0
22769 to 255 from the value held in the register. The generally leads to short
22770 and fast code, but the number of different data items that can be
22771 addressed is limited. This means that a program that uses lots of static
22772 data may require @option{-mno-base-addresses}.
22773
22774 @item -msingle-exit
22775 @itemx -mno-single-exit
22776 @opindex msingle-exit
22777 @opindex mno-single-exit
22778 Force (do not force) generated code to have a single exit point in each
22779 function.
22780 @end table
22781
22782 @node MN10300 Options
22783 @subsection MN10300 Options
22784 @cindex MN10300 options
22785
22786 These @option{-m} options are defined for Matsushita MN10300 architectures:
22787
22788 @table @gcctabopt
22789 @item -mmult-bug
22790 @opindex mmult-bug
22791 Generate code to avoid bugs in the multiply instructions for the MN10300
22792 processors. This is the default.
22793
22794 @item -mno-mult-bug
22795 @opindex mno-mult-bug
22796 Do not generate code to avoid bugs in the multiply instructions for the
22797 MN10300 processors.
22798
22799 @item -mam33
22800 @opindex mam33
22801 Generate code using features specific to the AM33 processor.
22802
22803 @item -mno-am33
22804 @opindex mno-am33
22805 Do not generate code using features specific to the AM33 processor. This
22806 is the default.
22807
22808 @item -mam33-2
22809 @opindex mam33-2
22810 Generate code using features specific to the AM33/2.0 processor.
22811
22812 @item -mam34
22813 @opindex mam34
22814 Generate code using features specific to the AM34 processor.
22815
22816 @item -mtune=@var{cpu-type}
22817 @opindex mtune
22818 Use the timing characteristics of the indicated CPU type when
22819 scheduling instructions. This does not change the targeted processor
22820 type. The CPU type must be one of @samp{mn10300}, @samp{am33},
22821 @samp{am33-2} or @samp{am34}.
22822
22823 @item -mreturn-pointer-on-d0
22824 @opindex mreturn-pointer-on-d0
22825 When generating a function that returns a pointer, return the pointer
22826 in both @code{a0} and @code{d0}. Otherwise, the pointer is returned
22827 only in @code{a0}, and attempts to call such functions without a prototype
22828 result in errors. Note that this option is on by default; use
22829 @option{-mno-return-pointer-on-d0} to disable it.
22830
22831 @item -mno-crt0
22832 @opindex mno-crt0
22833 Do not link in the C run-time initialization object file.
22834
22835 @item -mrelax
22836 @opindex mrelax
22837 Indicate to the linker that it should perform a relaxation optimization pass
22838 to shorten branches, calls and absolute memory addresses. This option only
22839 has an effect when used on the command line for the final link step.
22840
22841 This option makes symbolic debugging impossible.
22842
22843 @item -mliw
22844 @opindex mliw
22845 Allow the compiler to generate @emph{Long Instruction Word}
22846 instructions if the target is the @samp{AM33} or later. This is the
22847 default. This option defines the preprocessor macro @code{__LIW__}.
22848
22849 @item -mno-liw
22850 @opindex mno-liw
22851 Do not allow the compiler to generate @emph{Long Instruction Word}
22852 instructions. This option defines the preprocessor macro
22853 @code{__NO_LIW__}.
22854
22855 @item -msetlb
22856 @opindex msetlb
22857 Allow the compiler to generate the @emph{SETLB} and @emph{Lcc}
22858 instructions if the target is the @samp{AM33} or later. This is the
22859 default. This option defines the preprocessor macro @code{__SETLB__}.
22860
22861 @item -mno-setlb
22862 @opindex mno-setlb
22863 Do not allow the compiler to generate @emph{SETLB} or @emph{Lcc}
22864 instructions. This option defines the preprocessor macro
22865 @code{__NO_SETLB__}.
22866
22867 @end table
22868
22869 @node Moxie Options
22870 @subsection Moxie Options
22871 @cindex Moxie Options
22872
22873 @table @gcctabopt
22874
22875 @item -meb
22876 @opindex meb
22877 Generate big-endian code. This is the default for @samp{moxie-*-*}
22878 configurations.
22879
22880 @item -mel
22881 @opindex mel
22882 Generate little-endian code.
22883
22884 @item -mmul.x
22885 @opindex mmul.x
22886 Generate mul.x and umul.x instructions. This is the default for
22887 @samp{moxiebox-*-*} configurations.
22888
22889 @item -mno-crt0
22890 @opindex mno-crt0
22891 Do not link in the C run-time initialization object file.
22892
22893 @end table
22894
22895 @node MSP430 Options
22896 @subsection MSP430 Options
22897 @cindex MSP430 Options
22898
22899 These options are defined for the MSP430:
22900
22901 @table @gcctabopt
22902
22903 @item -masm-hex
22904 @opindex masm-hex
22905 Force assembly output to always use hex constants. Normally such
22906 constants are signed decimals, but this option is available for
22907 testsuite and/or aesthetic purposes.
22908
22909 @item -mmcu=
22910 @opindex mmcu=
22911 Select the MCU to target. This is used to create a C preprocessor
22912 symbol based upon the MCU name, converted to upper case and pre- and
22913 post-fixed with @samp{__}. This in turn is used by the
22914 @file{msp430.h} header file to select an MCU-specific supplementary
22915 header file.
22916
22917 The option also sets the ISA to use. If the MCU name is one that is
22918 known to only support the 430 ISA then that is selected, otherwise the
22919 430X ISA is selected. A generic MCU name of @samp{msp430} can also be
22920 used to select the 430 ISA. Similarly the generic @samp{msp430x} MCU
22921 name selects the 430X ISA.
22922
22923 In addition an MCU-specific linker script is added to the linker
22924 command line. The script's name is the name of the MCU with
22925 @file{.ld} appended. Thus specifying @option{-mmcu=xxx} on the @command{gcc}
22926 command line defines the C preprocessor symbol @code{__XXX__} and
22927 cause the linker to search for a script called @file{xxx.ld}.
22928
22929 This option is also passed on to the assembler.
22930
22931 @item -mwarn-mcu
22932 @itemx -mno-warn-mcu
22933 @opindex mwarn-mcu
22934 @opindex mno-warn-mcu
22935 This option enables or disables warnings about conflicts between the
22936 MCU name specified by the @option{-mmcu} option and the ISA set by the
22937 @option{-mcpu} option and/or the hardware multiply support set by the
22938 @option{-mhwmult} option. It also toggles warnings about unrecognized
22939 MCU names. This option is on by default.
22940
22941 @item -mcpu=
22942 @opindex mcpu=
22943 Specifies the ISA to use. Accepted values are @samp{msp430},
22944 @samp{msp430x} and @samp{msp430xv2}. This option is deprecated. The
22945 @option{-mmcu=} option should be used to select the ISA.
22946
22947 @item -msim
22948 @opindex msim
22949 Link to the simulator runtime libraries and linker script. Overrides
22950 any scripts that would be selected by the @option{-mmcu=} option.
22951
22952 @item -mlarge
22953 @opindex mlarge
22954 Use large-model addressing (20-bit pointers, 32-bit @code{size_t}).
22955
22956 @item -msmall
22957 @opindex msmall
22958 Use small-model addressing (16-bit pointers, 16-bit @code{size_t}).
22959
22960 @item -mrelax
22961 @opindex mrelax
22962 This option is passed to the assembler and linker, and allows the
22963 linker to perform certain optimizations that cannot be done until
22964 the final link.
22965
22966 @item mhwmult=
22967 @opindex mhwmult=
22968 Describes the type of hardware multiply supported by the target.
22969 Accepted values are @samp{none} for no hardware multiply, @samp{16bit}
22970 for the original 16-bit-only multiply supported by early MCUs.
22971 @samp{32bit} for the 16/32-bit multiply supported by later MCUs and
22972 @samp{f5series} for the 16/32-bit multiply supported by F5-series MCUs.
22973 A value of @samp{auto} can also be given. This tells GCC to deduce
22974 the hardware multiply support based upon the MCU name provided by the
22975 @option{-mmcu} option. If no @option{-mmcu} option is specified or if
22976 the MCU name is not recognized then no hardware multiply support is
22977 assumed. @code{auto} is the default setting.
22978
22979 Hardware multiplies are normally performed by calling a library
22980 routine. This saves space in the generated code. When compiling at
22981 @option{-O3} or higher however the hardware multiplier is invoked
22982 inline. This makes for bigger, but faster code.
22983
22984 The hardware multiply routines disable interrupts whilst running and
22985 restore the previous interrupt state when they finish. This makes
22986 them safe to use inside interrupt handlers as well as in normal code.
22987
22988 @item -minrt
22989 @opindex minrt
22990 Enable the use of a minimum runtime environment - no static
22991 initializers or constructors. This is intended for memory-constrained
22992 devices. The compiler includes special symbols in some objects
22993 that tell the linker and runtime which code fragments are required.
22994
22995 @item -mcode-region=
22996 @itemx -mdata-region=
22997 @opindex mcode-region
22998 @opindex mdata-region
22999 These options tell the compiler where to place functions and data that
23000 do not have one of the @code{lower}, @code{upper}, @code{either} or
23001 @code{section} attributes. Possible values are @code{lower},
23002 @code{upper}, @code{either} or @code{any}. The first three behave
23003 like the corresponding attribute. The fourth possible value -
23004 @code{any} - is the default. It leaves placement entirely up to the
23005 linker script and how it assigns the standard sections
23006 (@code{.text}, @code{.data}, etc) to the memory regions.
23007
23008 @item -msilicon-errata=
23009 @opindex msilicon-errata
23010 This option passes on a request to assembler to enable the fixes for
23011 the named silicon errata.
23012
23013 @item -msilicon-errata-warn=
23014 @opindex msilicon-errata-warn
23015 This option passes on a request to the assembler to enable warning
23016 messages when a silicon errata might need to be applied.
23017
23018 @end table
23019
23020 @node NDS32 Options
23021 @subsection NDS32 Options
23022 @cindex NDS32 Options
23023
23024 These options are defined for NDS32 implementations:
23025
23026 @table @gcctabopt
23027
23028 @item -mbig-endian
23029 @opindex mbig-endian
23030 Generate code in big-endian mode.
23031
23032 @item -mlittle-endian
23033 @opindex mlittle-endian
23034 Generate code in little-endian mode.
23035
23036 @item -mreduced-regs
23037 @opindex mreduced-regs
23038 Use reduced-set registers for register allocation.
23039
23040 @item -mfull-regs
23041 @opindex mfull-regs
23042 Use full-set registers for register allocation.
23043
23044 @item -mcmov
23045 @opindex mcmov
23046 Generate conditional move instructions.
23047
23048 @item -mno-cmov
23049 @opindex mno-cmov
23050 Do not generate conditional move instructions.
23051
23052 @item -mext-perf
23053 @opindex mext-perf
23054 Generate performance extension instructions.
23055
23056 @item -mno-ext-perf
23057 @opindex mno-ext-perf
23058 Do not generate performance extension instructions.
23059
23060 @item -mext-perf2
23061 @opindex mext-perf2
23062 Generate performance extension 2 instructions.
23063
23064 @item -mno-ext-perf2
23065 @opindex mno-ext-perf2
23066 Do not generate performance extension 2 instructions.
23067
23068 @item -mext-string
23069 @opindex mext-string
23070 Generate string extension instructions.
23071
23072 @item -mno-ext-string
23073 @opindex mno-ext-string
23074 Do not generate string extension instructions.
23075
23076 @item -mv3push
23077 @opindex mv3push
23078 Generate v3 push25/pop25 instructions.
23079
23080 @item -mno-v3push
23081 @opindex mno-v3push
23082 Do not generate v3 push25/pop25 instructions.
23083
23084 @item -m16-bit
23085 @opindex m16-bit
23086 Generate 16-bit instructions.
23087
23088 @item -mno-16-bit
23089 @opindex mno-16-bit
23090 Do not generate 16-bit instructions.
23091
23092 @item -misr-vector-size=@var{num}
23093 @opindex misr-vector-size
23094 Specify the size of each interrupt vector, which must be 4 or 16.
23095
23096 @item -mcache-block-size=@var{num}
23097 @opindex mcache-block-size
23098 Specify the size of each cache block,
23099 which must be a power of 2 between 4 and 512.
23100
23101 @item -march=@var{arch}
23102 @opindex march
23103 Specify the name of the target architecture.
23104
23105 @item -mcmodel=@var{code-model}
23106 @opindex mcmodel
23107 Set the code model to one of
23108 @table @asis
23109 @item @samp{small}
23110 All the data and read-only data segments must be within 512KB addressing space.
23111 The text segment must be within 16MB addressing space.
23112 @item @samp{medium}
23113 The data segment must be within 512KB while the read-only data segment can be
23114 within 4GB addressing space. The text segment should be still within 16MB
23115 addressing space.
23116 @item @samp{large}
23117 All the text and data segments can be within 4GB addressing space.
23118 @end table
23119
23120 @item -mctor-dtor
23121 @opindex mctor-dtor
23122 Enable constructor/destructor feature.
23123
23124 @item -mrelax
23125 @opindex mrelax
23126 Guide linker to relax instructions.
23127
23128 @end table
23129
23130 @node Nios II Options
23131 @subsection Nios II Options
23132 @cindex Nios II options
23133 @cindex Altera Nios II options
23134
23135 These are the options defined for the Altera Nios II processor.
23136
23137 @table @gcctabopt
23138
23139 @item -G @var{num}
23140 @opindex G
23141 @cindex smaller data references
23142 Put global and static objects less than or equal to @var{num} bytes
23143 into the small data or BSS sections instead of the normal data or BSS
23144 sections. The default value of @var{num} is 8.
23145
23146 @item -mgpopt=@var{option}
23147 @itemx -mgpopt
23148 @itemx -mno-gpopt
23149 @opindex mgpopt
23150 @opindex mno-gpopt
23151 Generate (do not generate) GP-relative accesses. The following
23152 @var{option} names are recognized:
23153
23154 @table @samp
23155
23156 @item none
23157 Do not generate GP-relative accesses.
23158
23159 @item local
23160 Generate GP-relative accesses for small data objects that are not
23161 external, weak, or uninitialized common symbols.
23162 Also use GP-relative addressing for objects that
23163 have been explicitly placed in a small data section via a @code{section}
23164 attribute.
23165
23166 @item global
23167 As for @samp{local}, but also generate GP-relative accesses for
23168 small data objects that are external, weak, or common. If you use this option,
23169 you must ensure that all parts of your program (including libraries) are
23170 compiled with the same @option{-G} setting.
23171
23172 @item data
23173 Generate GP-relative accesses for all data objects in the program. If you
23174 use this option, the entire data and BSS segments
23175 of your program must fit in 64K of memory and you must use an appropriate
23176 linker script to allocate them within the addressable range of the
23177 global pointer.
23178
23179 @item all
23180 Generate GP-relative addresses for function pointers as well as data
23181 pointers. If you use this option, the entire text, data, and BSS segments
23182 of your program must fit in 64K of memory and you must use an appropriate
23183 linker script to allocate them within the addressable range of the
23184 global pointer.
23185
23186 @end table
23187
23188 @option{-mgpopt} is equivalent to @option{-mgpopt=local}, and
23189 @option{-mno-gpopt} is equivalent to @option{-mgpopt=none}.
23190
23191 The default is @option{-mgpopt} except when @option{-fpic} or
23192 @option{-fPIC} is specified to generate position-independent code.
23193 Note that the Nios II ABI does not permit GP-relative accesses from
23194 shared libraries.
23195
23196 You may need to specify @option{-mno-gpopt} explicitly when building
23197 programs that include large amounts of small data, including large
23198 GOT data sections. In this case, the 16-bit offset for GP-relative
23199 addressing may not be large enough to allow access to the entire
23200 small data section.
23201
23202 @item -mgprel-sec=@var{regexp}
23203 @opindex mgprel-sec
23204 This option specifies additional section names that can be accessed via
23205 GP-relative addressing. It is most useful in conjunction with
23206 @code{section} attributes on variable declarations
23207 (@pxref{Common Variable Attributes}) and a custom linker script.
23208 The @var{regexp} is a POSIX Extended Regular Expression.
23209
23210 This option does not affect the behavior of the @option{-G} option, and
23211 the specified sections are in addition to the standard @code{.sdata}
23212 and @code{.sbss} small-data sections that are recognized by @option{-mgpopt}.
23213
23214 @item -mr0rel-sec=@var{regexp}
23215 @opindex mr0rel-sec
23216 This option specifies names of sections that can be accessed via a
23217 16-bit offset from @code{r0}; that is, in the low 32K or high 32K
23218 of the 32-bit address space. It is most useful in conjunction with
23219 @code{section} attributes on variable declarations
23220 (@pxref{Common Variable Attributes}) and a custom linker script.
23221 The @var{regexp} is a POSIX Extended Regular Expression.
23222
23223 In contrast to the use of GP-relative addressing for small data,
23224 zero-based addressing is never generated by default and there are no
23225 conventional section names used in standard linker scripts for sections
23226 in the low or high areas of memory.
23227
23228 @item -mel
23229 @itemx -meb
23230 @opindex mel
23231 @opindex meb
23232 Generate little-endian (default) or big-endian (experimental) code,
23233 respectively.
23234
23235 @item -march=@var{arch}
23236 @opindex march
23237 This specifies the name of the target Nios II architecture. GCC uses this
23238 name to determine what kind of instructions it can emit when generating
23239 assembly code. Permissible names are: @samp{r1}, @samp{r2}.
23240
23241 The preprocessor macro @code{__nios2_arch__} is available to programs,
23242 with value 1 or 2, indicating the targeted ISA level.
23243
23244 @item -mbypass-cache
23245 @itemx -mno-bypass-cache
23246 @opindex mno-bypass-cache
23247 @opindex mbypass-cache
23248 Force all load and store instructions to always bypass cache by
23249 using I/O variants of the instructions. The default is not to
23250 bypass the cache.
23251
23252 @item -mno-cache-volatile
23253 @itemx -mcache-volatile
23254 @opindex mcache-volatile
23255 @opindex mno-cache-volatile
23256 Volatile memory access bypass the cache using the I/O variants of
23257 the load and store instructions. The default is not to bypass the cache.
23258
23259 @item -mno-fast-sw-div
23260 @itemx -mfast-sw-div
23261 @opindex mno-fast-sw-div
23262 @opindex mfast-sw-div
23263 Do not use table-based fast divide for small numbers. The default
23264 is to use the fast divide at @option{-O3} and above.
23265
23266 @item -mno-hw-mul
23267 @itemx -mhw-mul
23268 @itemx -mno-hw-mulx
23269 @itemx -mhw-mulx
23270 @itemx -mno-hw-div
23271 @itemx -mhw-div
23272 @opindex mno-hw-mul
23273 @opindex mhw-mul
23274 @opindex mno-hw-mulx
23275 @opindex mhw-mulx
23276 @opindex mno-hw-div
23277 @opindex mhw-div
23278 Enable or disable emitting @code{mul}, @code{mulx} and @code{div} family of
23279 instructions by the compiler. The default is to emit @code{mul}
23280 and not emit @code{div} and @code{mulx}.
23281
23282 @item -mbmx
23283 @itemx -mno-bmx
23284 @itemx -mcdx
23285 @itemx -mno-cdx
23286 Enable or disable generation of Nios II R2 BMX (bit manipulation) and
23287 CDX (code density) instructions. Enabling these instructions also
23288 requires @option{-march=r2}. Since these instructions are optional
23289 extensions to the R2 architecture, the default is not to emit them.
23290
23291 @item -mcustom-@var{insn}=@var{N}
23292 @itemx -mno-custom-@var{insn}
23293 @opindex mcustom-@var{insn}
23294 @opindex mno-custom-@var{insn}
23295 Each @option{-mcustom-@var{insn}=@var{N}} option enables use of a
23296 custom instruction with encoding @var{N} when generating code that uses
23297 @var{insn}. For example, @option{-mcustom-fadds=253} generates custom
23298 instruction 253 for single-precision floating-point add operations instead
23299 of the default behavior of using a library call.
23300
23301 The following values of @var{insn} are supported. Except as otherwise
23302 noted, floating-point operations are expected to be implemented with
23303 normal IEEE 754 semantics and correspond directly to the C operators or the
23304 equivalent GCC built-in functions (@pxref{Other Builtins}).
23305
23306 Single-precision floating point:
23307 @table @asis
23308
23309 @item @samp{fadds}, @samp{fsubs}, @samp{fdivs}, @samp{fmuls}
23310 Binary arithmetic operations.
23311
23312 @item @samp{fnegs}
23313 Unary negation.
23314
23315 @item @samp{fabss}
23316 Unary absolute value.
23317
23318 @item @samp{fcmpeqs}, @samp{fcmpges}, @samp{fcmpgts}, @samp{fcmples}, @samp{fcmplts}, @samp{fcmpnes}
23319 Comparison operations.
23320
23321 @item @samp{fmins}, @samp{fmaxs}
23322 Floating-point minimum and maximum. These instructions are only
23323 generated if @option{-ffinite-math-only} is specified.
23324
23325 @item @samp{fsqrts}
23326 Unary square root operation.
23327
23328 @item @samp{fcoss}, @samp{fsins}, @samp{ftans}, @samp{fatans}, @samp{fexps}, @samp{flogs}
23329 Floating-point trigonometric and exponential functions. These instructions
23330 are only generated if @option{-funsafe-math-optimizations} is also specified.
23331
23332 @end table
23333
23334 Double-precision floating point:
23335 @table @asis
23336
23337 @item @samp{faddd}, @samp{fsubd}, @samp{fdivd}, @samp{fmuld}
23338 Binary arithmetic operations.
23339
23340 @item @samp{fnegd}
23341 Unary negation.
23342
23343 @item @samp{fabsd}
23344 Unary absolute value.
23345
23346 @item @samp{fcmpeqd}, @samp{fcmpged}, @samp{fcmpgtd}, @samp{fcmpled}, @samp{fcmpltd}, @samp{fcmpned}
23347 Comparison operations.
23348
23349 @item @samp{fmind}, @samp{fmaxd}
23350 Double-precision minimum and maximum. These instructions are only
23351 generated if @option{-ffinite-math-only} is specified.
23352
23353 @item @samp{fsqrtd}
23354 Unary square root operation.
23355
23356 @item @samp{fcosd}, @samp{fsind}, @samp{ftand}, @samp{fatand}, @samp{fexpd}, @samp{flogd}
23357 Double-precision trigonometric and exponential functions. These instructions
23358 are only generated if @option{-funsafe-math-optimizations} is also specified.
23359
23360 @end table
23361
23362 Conversions:
23363 @table @asis
23364 @item @samp{fextsd}
23365 Conversion from single precision to double precision.
23366
23367 @item @samp{ftruncds}
23368 Conversion from double precision to single precision.
23369
23370 @item @samp{fixsi}, @samp{fixsu}, @samp{fixdi}, @samp{fixdu}
23371 Conversion from floating point to signed or unsigned integer types, with
23372 truncation towards zero.
23373
23374 @item @samp{round}
23375 Conversion from single-precision floating point to signed integer,
23376 rounding to the nearest integer and ties away from zero.
23377 This corresponds to the @code{__builtin_lroundf} function when
23378 @option{-fno-math-errno} is used.
23379
23380 @item @samp{floatis}, @samp{floatus}, @samp{floatid}, @samp{floatud}
23381 Conversion from signed or unsigned integer types to floating-point types.
23382
23383 @end table
23384
23385 In addition, all of the following transfer instructions for internal
23386 registers X and Y must be provided to use any of the double-precision
23387 floating-point instructions. Custom instructions taking two
23388 double-precision source operands expect the first operand in the
23389 64-bit register X. The other operand (or only operand of a unary
23390 operation) is given to the custom arithmetic instruction with the
23391 least significant half in source register @var{src1} and the most
23392 significant half in @var{src2}. A custom instruction that returns a
23393 double-precision result returns the most significant 32 bits in the
23394 destination register and the other half in 32-bit register Y.
23395 GCC automatically generates the necessary code sequences to write
23396 register X and/or read register Y when double-precision floating-point
23397 instructions are used.
23398
23399 @table @asis
23400
23401 @item @samp{fwrx}
23402 Write @var{src1} into the least significant half of X and @var{src2} into
23403 the most significant half of X.
23404
23405 @item @samp{fwry}
23406 Write @var{src1} into Y.
23407
23408 @item @samp{frdxhi}, @samp{frdxlo}
23409 Read the most or least (respectively) significant half of X and store it in
23410 @var{dest}.
23411
23412 @item @samp{frdy}
23413 Read the value of Y and store it into @var{dest}.
23414 @end table
23415
23416 Note that you can gain more local control over generation of Nios II custom
23417 instructions by using the @code{target("custom-@var{insn}=@var{N}")}
23418 and @code{target("no-custom-@var{insn}")} function attributes
23419 (@pxref{Function Attributes})
23420 or pragmas (@pxref{Function Specific Option Pragmas}).
23421
23422 @item -mcustom-fpu-cfg=@var{name}
23423 @opindex mcustom-fpu-cfg
23424
23425 This option enables a predefined, named set of custom instruction encodings
23426 (see @option{-mcustom-@var{insn}} above).
23427 Currently, the following sets are defined:
23428
23429 @option{-mcustom-fpu-cfg=60-1} is equivalent to:
23430 @gccoptlist{-mcustom-fmuls=252 @gol
23431 -mcustom-fadds=253 @gol
23432 -mcustom-fsubs=254 @gol
23433 -fsingle-precision-constant}
23434
23435 @option{-mcustom-fpu-cfg=60-2} is equivalent to:
23436 @gccoptlist{-mcustom-fmuls=252 @gol
23437 -mcustom-fadds=253 @gol
23438 -mcustom-fsubs=254 @gol
23439 -mcustom-fdivs=255 @gol
23440 -fsingle-precision-constant}
23441
23442 @option{-mcustom-fpu-cfg=72-3} is equivalent to:
23443 @gccoptlist{-mcustom-floatus=243 @gol
23444 -mcustom-fixsi=244 @gol
23445 -mcustom-floatis=245 @gol
23446 -mcustom-fcmpgts=246 @gol
23447 -mcustom-fcmples=249 @gol
23448 -mcustom-fcmpeqs=250 @gol
23449 -mcustom-fcmpnes=251 @gol
23450 -mcustom-fmuls=252 @gol
23451 -mcustom-fadds=253 @gol
23452 -mcustom-fsubs=254 @gol
23453 -mcustom-fdivs=255 @gol
23454 -fsingle-precision-constant}
23455
23456 Custom instruction assignments given by individual
23457 @option{-mcustom-@var{insn}=} options override those given by
23458 @option{-mcustom-fpu-cfg=}, regardless of the
23459 order of the options on the command line.
23460
23461 Note that you can gain more local control over selection of a FPU
23462 configuration by using the @code{target("custom-fpu-cfg=@var{name}")}
23463 function attribute (@pxref{Function Attributes})
23464 or pragma (@pxref{Function Specific Option Pragmas}).
23465
23466 @end table
23467
23468 These additional @samp{-m} options are available for the Altera Nios II
23469 ELF (bare-metal) target:
23470
23471 @table @gcctabopt
23472
23473 @item -mhal
23474 @opindex mhal
23475 Link with HAL BSP. This suppresses linking with the GCC-provided C runtime
23476 startup and termination code, and is typically used in conjunction with
23477 @option{-msys-crt0=} to specify the location of the alternate startup code
23478 provided by the HAL BSP.
23479
23480 @item -msmallc
23481 @opindex msmallc
23482 Link with a limited version of the C library, @option{-lsmallc}, rather than
23483 Newlib.
23484
23485 @item -msys-crt0=@var{startfile}
23486 @opindex msys-crt0
23487 @var{startfile} is the file name of the startfile (crt0) to use
23488 when linking. This option is only useful in conjunction with @option{-mhal}.
23489
23490 @item -msys-lib=@var{systemlib}
23491 @opindex msys-lib
23492 @var{systemlib} is the library name of the library that provides
23493 low-level system calls required by the C library,
23494 e.g.@: @code{read} and @code{write}.
23495 This option is typically used to link with a library provided by a HAL BSP.
23496
23497 @end table
23498
23499 @node Nvidia PTX Options
23500 @subsection Nvidia PTX Options
23501 @cindex Nvidia PTX options
23502 @cindex nvptx options
23503
23504 These options are defined for Nvidia PTX:
23505
23506 @table @gcctabopt
23507
23508 @item -m32
23509 @itemx -m64
23510 @opindex m32
23511 @opindex m64
23512 Generate code for 32-bit or 64-bit ABI.
23513
23514 @item -misa=@var{ISA-string}
23515 @opindex march
23516 Generate code for given the specified PTX ISA (e.g.@: @samp{sm_35}). ISA
23517 strings must be lower-case. Valid ISA strings include @samp{sm_30} and
23518 @samp{sm_35}. The default ISA is sm_30.
23519
23520 @item -mmainkernel
23521 @opindex mmainkernel
23522 Link in code for a __main kernel. This is for stand-alone instead of
23523 offloading execution.
23524
23525 @item -moptimize
23526 @opindex moptimize
23527 Apply partitioned execution optimizations. This is the default when any
23528 level of optimization is selected.
23529
23530 @item -msoft-stack
23531 @opindex msoft-stack
23532 Generate code that does not use @code{.local} memory
23533 directly for stack storage. Instead, a per-warp stack pointer is
23534 maintained explicitly. This enables variable-length stack allocation (with
23535 variable-length arrays or @code{alloca}), and when global memory is used for
23536 underlying storage, makes it possible to access automatic variables from other
23537 threads, or with atomic instructions. This code generation variant is used
23538 for OpenMP offloading, but the option is exposed on its own for the purpose
23539 of testing the compiler; to generate code suitable for linking into programs
23540 using OpenMP offloading, use option @option{-mgomp}.
23541
23542 @item -muniform-simt
23543 @opindex muniform-simt
23544 Switch to code generation variant that allows to execute all threads in each
23545 warp, while maintaining memory state and side effects as if only one thread
23546 in each warp was active outside of OpenMP SIMD regions. All atomic operations
23547 and calls to runtime (malloc, free, vprintf) are conditionally executed (iff
23548 current lane index equals the master lane index), and the register being
23549 assigned is copied via a shuffle instruction from the master lane. Outside of
23550 SIMD regions lane 0 is the master; inside, each thread sees itself as the
23551 master. Shared memory array @code{int __nvptx_uni[]} stores all-zeros or
23552 all-ones bitmasks for each warp, indicating current mode (0 outside of SIMD
23553 regions). Each thread can bitwise-and the bitmask at position @code{tid.y}
23554 with current lane index to compute the master lane index.
23555
23556 @item -mgomp
23557 @opindex mgomp
23558 Generate code for use in OpenMP offloading: enables @option{-msoft-stack} and
23559 @option{-muniform-simt} options, and selects corresponding multilib variant.
23560
23561 @end table
23562
23563 @node OpenRISC Options
23564 @subsection OpenRISC Options
23565 @cindex OpenRISC Options
23566
23567 These options are defined for OpenRISC:
23568
23569 @table @gcctabopt
23570
23571 @item -mboard=@var{name}
23572 @opindex mboard
23573 Configure a board specific runtime. This will be passed to the linker for
23574 newlib board library linking. The default is @code{or1ksim}.
23575
23576 @item -mnewlib
23577 @opindex mnewlib
23578 For compatibility, it's always newlib for elf now.
23579
23580 @item -mhard-div
23581 @opindex mhard-div
23582 Generate code for hardware which supports divide instructions. This is the
23583 default.
23584
23585 @item -mhard-mul
23586 @opindex mhard-mul
23587 Generate code for hardware which supports multiply instructions. This is the
23588 default.
23589
23590 @item -mcmov
23591 @opindex mcmov
23592 Generate code for hardware which supports the conditional move (@code{l.cmov})
23593 instruction.
23594
23595 @item -mror
23596 @opindex mror
23597 Generate code for hardware which supports rotate right instructions.
23598
23599 @item -msext
23600 @opindex msext
23601 Generate code for hardware which supports sign-extension instructions.
23602
23603 @item -msfimm
23604 @opindex msfimm
23605 Generate code for hardware which supports set flag immediate (@code{l.sf*i})
23606 instructions.
23607
23608 @item -mshftimm
23609 @opindex mshftimm
23610 Generate code for hardware which supports shift immediate related instructions
23611 (i.e. @code{l.srai}, @code{l.srli}, @code{l.slli}, @code{1.rori}). Note, to
23612 enable generation of the @code{l.rori} instruction the @option{-mror} flag must
23613 also be specified.
23614
23615 @item -msoft-div
23616 @opindex msoft-div
23617 Generate code for hardware which requires divide instruction emulation.
23618
23619 @item -msoft-mul
23620 @opindex msoft-mul
23621 Generate code for hardware which requires multiply instruction emulation.
23622
23623 @end table
23624
23625 @node PDP-11 Options
23626 @subsection PDP-11 Options
23627 @cindex PDP-11 Options
23628
23629 These options are defined for the PDP-11:
23630
23631 @table @gcctabopt
23632 @item -mfpu
23633 @opindex mfpu
23634 Use hardware FPP floating point. This is the default. (FIS floating
23635 point on the PDP-11/40 is not supported.) Implies -m45.
23636
23637 @item -msoft-float
23638 @opindex msoft-float
23639 Do not use hardware floating point.
23640
23641 @item -mac0
23642 @opindex mac0
23643 Return floating-point results in ac0 (fr0 in Unix assembler syntax).
23644
23645 @item -mno-ac0
23646 @opindex mno-ac0
23647 Return floating-point results in memory. This is the default.
23648
23649 @item -m40
23650 @opindex m40
23651 Generate code for a PDP-11/40. Implies -msoft-float -mno-split.
23652
23653 @item -m45
23654 @opindex m45
23655 Generate code for a PDP-11/45. This is the default.
23656
23657 @item -m10
23658 @opindex m10
23659 Generate code for a PDP-11/10. Implies -msoft-float -mno-split.
23660
23661 @item -mint16
23662 @itemx -mno-int32
23663 @opindex mint16
23664 @opindex mno-int32
23665 Use 16-bit @code{int}. This is the default.
23666
23667 @item -mint32
23668 @itemx -mno-int16
23669 @opindex mint32
23670 @opindex mno-int16
23671 Use 32-bit @code{int}.
23672
23673 @item -msplit
23674 @opindex msplit
23675 Target has split instruction and data space. Implies -m45.
23676
23677 @item -munix-asm
23678 @opindex munix-asm
23679 Use Unix assembler syntax.
23680
23681 @item -mdec-asm
23682 @opindex mdec-asm
23683 Use DEC assembler syntax.
23684
23685 @item -mgnu-asm
23686 @opindex mgnu-asm
23687 Use GNU assembler syntax. This is the default.
23688
23689 @item -mlra
23690 @opindex mlra
23691 Use the new LRA register allocator. By default, the old ``reload''
23692 allocator is used.
23693 @end table
23694
23695 @node picoChip Options
23696 @subsection picoChip Options
23697 @cindex picoChip options
23698
23699 These @samp{-m} options are defined for picoChip implementations:
23700
23701 @table @gcctabopt
23702
23703 @item -mae=@var{ae_type}
23704 @opindex mcpu
23705 Set the instruction set, register set, and instruction scheduling
23706 parameters for array element type @var{ae_type}. Supported values
23707 for @var{ae_type} are @samp{ANY}, @samp{MUL}, and @samp{MAC}.
23708
23709 @option{-mae=ANY} selects a completely generic AE type. Code
23710 generated with this option runs on any of the other AE types. The
23711 code is not as efficient as it would be if compiled for a specific
23712 AE type, and some types of operation (e.g., multiplication) do not
23713 work properly on all types of AE.
23714
23715 @option{-mae=MUL} selects a MUL AE type. This is the most useful AE type
23716 for compiled code, and is the default.
23717
23718 @option{-mae=MAC} selects a DSP-style MAC AE. Code compiled with this
23719 option may suffer from poor performance of byte (char) manipulation,
23720 since the DSP AE does not provide hardware support for byte load/stores.
23721
23722 @item -msymbol-as-address
23723 Enable the compiler to directly use a symbol name as an address in a
23724 load/store instruction, without first loading it into a
23725 register. Typically, the use of this option generates larger
23726 programs, which run faster than when the option isn't used. However, the
23727 results vary from program to program, so it is left as a user option,
23728 rather than being permanently enabled.
23729
23730 @item -mno-inefficient-warnings
23731 Disables warnings about the generation of inefficient code. These
23732 warnings can be generated, for example, when compiling code that
23733 performs byte-level memory operations on the MAC AE type. The MAC AE has
23734 no hardware support for byte-level memory operations, so all byte
23735 load/stores must be synthesized from word load/store operations. This is
23736 inefficient and a warning is generated to indicate
23737 that you should rewrite the code to avoid byte operations, or to target
23738 an AE type that has the necessary hardware support. This option disables
23739 these warnings.
23740
23741 @end table
23742
23743 @node PowerPC Options
23744 @subsection PowerPC Options
23745 @cindex PowerPC options
23746
23747 These are listed under @xref{RS/6000 and PowerPC Options}.
23748
23749 @node RISC-V Options
23750 @subsection RISC-V Options
23751 @cindex RISC-V Options
23752
23753 These command-line options are defined for RISC-V targets:
23754
23755 @table @gcctabopt
23756 @item -mbranch-cost=@var{n}
23757 @opindex mbranch-cost
23758 Set the cost of branches to roughly @var{n} instructions.
23759
23760 @item -mplt
23761 @itemx -mno-plt
23762 @opindex plt
23763 When generating PIC code, do or don't allow the use of PLTs. Ignored for
23764 non-PIC. The default is @option{-mplt}.
23765
23766 @item -mabi=@var{ABI-string}
23767 @opindex mabi
23768 Specify integer and floating-point calling convention. @var{ABI-string}
23769 contains two parts: the size of integer types and the registers used for
23770 floating-point types. For example @samp{-march=rv64ifd -mabi=lp64d} means that
23771 @samp{long} and pointers are 64-bit (implicitly defining @samp{int} to be
23772 32-bit), and that floating-point values up to 64 bits wide are passed in F
23773 registers. Contrast this with @samp{-march=rv64ifd -mabi=lp64f}, which still
23774 allows the compiler to generate code that uses the F and D extensions but only
23775 allows floating-point values up to 32 bits long to be passed in registers; or
23776 @samp{-march=rv64ifd -mabi=lp64}, in which no floating-point arguments will be
23777 passed in registers.
23778
23779 The default for this argument is system dependent, users who want a specific
23780 calling convention should specify one explicitly. The valid calling
23781 conventions are: @samp{ilp32}, @samp{ilp32f}, @samp{ilp32d}, @samp{lp64},
23782 @samp{lp64f}, and @samp{lp64d}. Some calling conventions are impossible to
23783 implement on some ISAs: for example, @samp{-march=rv32if -mabi=ilp32d} is
23784 invalid because the ABI requires 64-bit values be passed in F registers, but F
23785 registers are only 32 bits wide. There is also the @samp{ilp32e} ABI that can
23786 only be used with the @samp{rv32e} architecture. This ABI is not well
23787 specified at present, and is subject to change.
23788
23789 @item -mfdiv
23790 @itemx -mno-fdiv
23791 @opindex mfdiv
23792 Do or don't use hardware floating-point divide and square root instructions.
23793 This requires the F or D extensions for floating-point registers. The default
23794 is to use them if the specified architecture has these instructions.
23795
23796 @item -mdiv
23797 @itemx -mno-div
23798 @opindex mdiv
23799 Do or don't use hardware instructions for integer division. This requires the
23800 M extension. The default is to use them if the specified architecture has
23801 these instructions.
23802
23803 @item -march=@var{ISA-string}
23804 @opindex march
23805 Generate code for given RISC-V ISA (e.g.@: @samp{rv64im}). ISA strings must be
23806 lower-case. Examples include @samp{rv64i}, @samp{rv32g}, @samp{rv32e}, and
23807 @samp{rv32imaf}.
23808
23809 @item -mtune=@var{processor-string}
23810 @opindex mtune
23811 Optimize the output for the given processor, specified by microarchitecture
23812 name. Permissible values for this option are: @samp{rocket},
23813 @samp{sifive-3-series}, @samp{sifive-5-series}, @samp{sifive-7-series},
23814 and @samp{size}.
23815
23816 When @option{-mtune=} is not specified, the default is @samp{rocket}.
23817
23818 The @samp{size} choice is not intended for use by end-users. This is used
23819 when @option{-Os} is specified. It overrides the instruction cost info
23820 provided by @option{-mtune=}, but does not override the pipeline info. This
23821 helps reduce code size while still giving good performance.
23822
23823 @item -mpreferred-stack-boundary=@var{num}
23824 @opindex mpreferred-stack-boundary
23825 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
23826 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
23827 the default is 4 (16 bytes or 128-bits).
23828
23829 @strong{Warning:} If you use this switch, then you must build all modules with
23830 the same value, including any libraries. This includes the system libraries
23831 and startup modules.
23832
23833 @item -msmall-data-limit=@var{n}
23834 @opindex msmall-data-limit
23835 Put global and static data smaller than @var{n} bytes into a special section
23836 (on some targets).
23837
23838 @item -msave-restore
23839 @itemx -mno-save-restore
23840 @opindex msave-restore
23841 Do or don't use smaller but slower prologue and epilogue code that uses
23842 library function calls. The default is to use fast inline prologues and
23843 epilogues.
23844
23845 @item -mstrict-align
23846 @itemx -mno-strict-align
23847 @opindex mstrict-align
23848 Do not or do generate unaligned memory accesses. The default is set depending
23849 on whether the processor we are optimizing for supports fast unaligned access
23850 or not.
23851
23852 @item -mcmodel=medlow
23853 @opindex mcmodel=medlow
23854 Generate code for the medium-low code model. The program and its statically
23855 defined symbols must lie within a single 2 GiB address range and must lie
23856 between absolute addresses @minus{}2 GiB and +2 GiB. Programs can be
23857 statically or dynamically linked. This is the default code model.
23858
23859 @item -mcmodel=medany
23860 @opindex mcmodel=medany
23861 Generate code for the medium-any code model. The program and its statically
23862 defined symbols must be within any single 2 GiB address range. Programs can be
23863 statically or dynamically linked.
23864
23865 @item -mexplicit-relocs
23866 @itemx -mno-exlicit-relocs
23867 Use or do not use assembler relocation operators when dealing with symbolic
23868 addresses. The alternative is to use assembler macros instead, which may
23869 limit optimization.
23870
23871 @item -mrelax
23872 @itemx -mno-relax
23873 Take advantage of linker relaxations to reduce the number of instructions
23874 required to materialize symbol addresses. The default is to take advantage of
23875 linker relaxations.
23876
23877 @item -memit-attribute
23878 @itemx -mno-emit-attribute
23879 Emit (do not emit) RISC-V attribute to record extra information into ELF
23880 objects. This feature requires at least binutils 2.32.
23881 @end table
23882
23883 @node RL78 Options
23884 @subsection RL78 Options
23885 @cindex RL78 Options
23886
23887 @table @gcctabopt
23888
23889 @item -msim
23890 @opindex msim
23891 Links in additional target libraries to support operation within a
23892 simulator.
23893
23894 @item -mmul=none
23895 @itemx -mmul=g10
23896 @itemx -mmul=g13
23897 @itemx -mmul=g14
23898 @itemx -mmul=rl78
23899 @opindex mmul
23900 Specifies the type of hardware multiplication and division support to
23901 be used. The simplest is @code{none}, which uses software for both
23902 multiplication and division. This is the default. The @code{g13}
23903 value is for the hardware multiply/divide peripheral found on the
23904 RL78/G13 (S2 core) targets. The @code{g14} value selects the use of
23905 the multiplication and division instructions supported by the RL78/G14
23906 (S3 core) parts. The value @code{rl78} is an alias for @code{g14} and
23907 the value @code{mg10} is an alias for @code{none}.
23908
23909 In addition a C preprocessor macro is defined, based upon the setting
23910 of this option. Possible values are: @code{__RL78_MUL_NONE__},
23911 @code{__RL78_MUL_G13__} or @code{__RL78_MUL_G14__}.
23912
23913 @item -mcpu=g10
23914 @itemx -mcpu=g13
23915 @itemx -mcpu=g14
23916 @itemx -mcpu=rl78
23917 @opindex mcpu
23918 Specifies the RL78 core to target. The default is the G14 core, also
23919 known as an S3 core or just RL78. The G13 or S2 core does not have
23920 multiply or divide instructions, instead it uses a hardware peripheral
23921 for these operations. The G10 or S1 core does not have register
23922 banks, so it uses a different calling convention.
23923
23924 If this option is set it also selects the type of hardware multiply
23925 support to use, unless this is overridden by an explicit
23926 @option{-mmul=none} option on the command line. Thus specifying
23927 @option{-mcpu=g13} enables the use of the G13 hardware multiply
23928 peripheral and specifying @option{-mcpu=g10} disables the use of
23929 hardware multiplications altogether.
23930
23931 Note, although the RL78/G14 core is the default target, specifying
23932 @option{-mcpu=g14} or @option{-mcpu=rl78} on the command line does
23933 change the behavior of the toolchain since it also enables G14
23934 hardware multiply support. If these options are not specified on the
23935 command line then software multiplication routines will be used even
23936 though the code targets the RL78 core. This is for backwards
23937 compatibility with older toolchains which did not have hardware
23938 multiply and divide support.
23939
23940 In addition a C preprocessor macro is defined, based upon the setting
23941 of this option. Possible values are: @code{__RL78_G10__},
23942 @code{__RL78_G13__} or @code{__RL78_G14__}.
23943
23944 @item -mg10
23945 @itemx -mg13
23946 @itemx -mg14
23947 @itemx -mrl78
23948 @opindex mg10
23949 @opindex mg13
23950 @opindex mg14
23951 @opindex mrl78
23952 These are aliases for the corresponding @option{-mcpu=} option. They
23953 are provided for backwards compatibility.
23954
23955 @item -mallregs
23956 @opindex mallregs
23957 Allow the compiler to use all of the available registers. By default
23958 registers @code{r24..r31} are reserved for use in interrupt handlers.
23959 With this option enabled these registers can be used in ordinary
23960 functions as well.
23961
23962 @item -m64bit-doubles
23963 @itemx -m32bit-doubles
23964 @opindex m64bit-doubles
23965 @opindex m32bit-doubles
23966 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
23967 or 32 bits (@option{-m32bit-doubles}) in size. The default is
23968 @option{-m32bit-doubles}.
23969
23970 @item -msave-mduc-in-interrupts
23971 @itemx -mno-save-mduc-in-interrupts
23972 @opindex msave-mduc-in-interrupts
23973 @opindex mno-save-mduc-in-interrupts
23974 Specifies that interrupt handler functions should preserve the
23975 MDUC registers. This is only necessary if normal code might use
23976 the MDUC registers, for example because it performs multiplication
23977 and division operations. The default is to ignore the MDUC registers
23978 as this makes the interrupt handlers faster. The target option -mg13
23979 needs to be passed for this to work as this feature is only available
23980 on the G13 target (S2 core). The MDUC registers will only be saved
23981 if the interrupt handler performs a multiplication or division
23982 operation or it calls another function.
23983
23984 @end table
23985
23986 @node RS/6000 and PowerPC Options
23987 @subsection IBM RS/6000 and PowerPC Options
23988 @cindex RS/6000 and PowerPC Options
23989 @cindex IBM RS/6000 and PowerPC Options
23990
23991 These @samp{-m} options are defined for the IBM RS/6000 and PowerPC:
23992 @table @gcctabopt
23993 @item -mpowerpc-gpopt
23994 @itemx -mno-powerpc-gpopt
23995 @itemx -mpowerpc-gfxopt
23996 @itemx -mno-powerpc-gfxopt
23997 @need 800
23998 @itemx -mpowerpc64
23999 @itemx -mno-powerpc64
24000 @itemx -mmfcrf
24001 @itemx -mno-mfcrf
24002 @itemx -mpopcntb
24003 @itemx -mno-popcntb
24004 @itemx -mpopcntd
24005 @itemx -mno-popcntd
24006 @itemx -mfprnd
24007 @itemx -mno-fprnd
24008 @need 800
24009 @itemx -mcmpb
24010 @itemx -mno-cmpb
24011 @itemx -mhard-dfp
24012 @itemx -mno-hard-dfp
24013 @opindex mpowerpc-gpopt
24014 @opindex mno-powerpc-gpopt
24015 @opindex mpowerpc-gfxopt
24016 @opindex mno-powerpc-gfxopt
24017 @opindex mpowerpc64
24018 @opindex mno-powerpc64
24019 @opindex mmfcrf
24020 @opindex mno-mfcrf
24021 @opindex mpopcntb
24022 @opindex mno-popcntb
24023 @opindex mpopcntd
24024 @opindex mno-popcntd
24025 @opindex mfprnd
24026 @opindex mno-fprnd
24027 @opindex mcmpb
24028 @opindex mno-cmpb
24029 @opindex mhard-dfp
24030 @opindex mno-hard-dfp
24031 You use these options to specify which instructions are available on the
24032 processor you are using. The default value of these options is
24033 determined when configuring GCC@. Specifying the
24034 @option{-mcpu=@var{cpu_type}} overrides the specification of these
24035 options. We recommend you use the @option{-mcpu=@var{cpu_type}} option
24036 rather than the options listed above.
24037
24038 Specifying @option{-mpowerpc-gpopt} allows
24039 GCC to use the optional PowerPC architecture instructions in the
24040 General Purpose group, including floating-point square root. Specifying
24041 @option{-mpowerpc-gfxopt} allows GCC to
24042 use the optional PowerPC architecture instructions in the Graphics
24043 group, including floating-point select.
24044
24045 The @option{-mmfcrf} option allows GCC to generate the move from
24046 condition register field instruction implemented on the POWER4
24047 processor and other processors that support the PowerPC V2.01
24048 architecture.
24049 The @option{-mpopcntb} option allows GCC to generate the popcount and
24050 double-precision FP reciprocal estimate instruction implemented on the
24051 POWER5 processor and other processors that support the PowerPC V2.02
24052 architecture.
24053 The @option{-mpopcntd} option allows GCC to generate the popcount
24054 instruction implemented on the POWER7 processor and other processors
24055 that support the PowerPC V2.06 architecture.
24056 The @option{-mfprnd} option allows GCC to generate the FP round to
24057 integer instructions implemented on the POWER5+ processor and other
24058 processors that support the PowerPC V2.03 architecture.
24059 The @option{-mcmpb} option allows GCC to generate the compare bytes
24060 instruction implemented on the POWER6 processor and other processors
24061 that support the PowerPC V2.05 architecture.
24062 The @option{-mhard-dfp} option allows GCC to generate the decimal
24063 floating-point instructions implemented on some POWER processors.
24064
24065 The @option{-mpowerpc64} option allows GCC to generate the additional
24066 64-bit instructions that are found in the full PowerPC64 architecture
24067 and to treat GPRs as 64-bit, doubleword quantities. GCC defaults to
24068 @option{-mno-powerpc64}.
24069
24070 @item -mcpu=@var{cpu_type}
24071 @opindex mcpu
24072 Set architecture type, register usage, and
24073 instruction scheduling parameters for machine type @var{cpu_type}.
24074 Supported values for @var{cpu_type} are @samp{401}, @samp{403},
24075 @samp{405}, @samp{405fp}, @samp{440}, @samp{440fp}, @samp{464}, @samp{464fp},
24076 @samp{476}, @samp{476fp}, @samp{505}, @samp{601}, @samp{602}, @samp{603},
24077 @samp{603e}, @samp{604}, @samp{604e}, @samp{620}, @samp{630}, @samp{740},
24078 @samp{7400}, @samp{7450}, @samp{750}, @samp{801}, @samp{821}, @samp{823},
24079 @samp{860}, @samp{970}, @samp{8540}, @samp{a2}, @samp{e300c2},
24080 @samp{e300c3}, @samp{e500mc}, @samp{e500mc64}, @samp{e5500},
24081 @samp{e6500}, @samp{ec603e}, @samp{G3}, @samp{G4}, @samp{G5},
24082 @samp{titan}, @samp{power3}, @samp{power4}, @samp{power5}, @samp{power5+},
24083 @samp{power6}, @samp{power6x}, @samp{power7}, @samp{power8},
24084 @samp{power9}, @samp{future}, @samp{powerpc}, @samp{powerpc64},
24085 @samp{powerpc64le}, @samp{rs64}, and @samp{native}.
24086
24087 @option{-mcpu=powerpc}, @option{-mcpu=powerpc64}, and
24088 @option{-mcpu=powerpc64le} specify pure 32-bit PowerPC (either
24089 endian), 64-bit big endian PowerPC and 64-bit little endian PowerPC
24090 architecture machine types, with an appropriate, generic processor
24091 model assumed for scheduling purposes.
24092
24093 Specifying @samp{native} as cpu type detects and selects the
24094 architecture option that corresponds to the host processor of the
24095 system performing the compilation.
24096 @option{-mcpu=native} has no effect if GCC does not recognize the
24097 processor.
24098
24099 The other options specify a specific processor. Code generated under
24100 those options runs best on that processor, and may not run at all on
24101 others.
24102
24103 The @option{-mcpu} options automatically enable or disable the
24104 following options:
24105
24106 @gccoptlist{-maltivec -mfprnd -mhard-float -mmfcrf -mmultiple @gol
24107 -mpopcntb -mpopcntd -mpowerpc64 @gol
24108 -mpowerpc-gpopt -mpowerpc-gfxopt @gol
24109 -mmulhw -mdlmzb -mmfpgpr -mvsx @gol
24110 -mcrypto -mhtm -mpower8-fusion -mpower8-vector @gol
24111 -mquad-memory -mquad-memory-atomic -mfloat128 -mfloat128-hardware}
24112
24113 The particular options set for any particular CPU varies between
24114 compiler versions, depending on what setting seems to produce optimal
24115 code for that CPU; it doesn't necessarily reflect the actual hardware's
24116 capabilities. If you wish to set an individual option to a particular
24117 value, you may specify it after the @option{-mcpu} option, like
24118 @option{-mcpu=970 -mno-altivec}.
24119
24120 On AIX, the @option{-maltivec} and @option{-mpowerpc64} options are
24121 not enabled or disabled by the @option{-mcpu} option at present because
24122 AIX does not have full support for these options. You may still
24123 enable or disable them individually if you're sure it'll work in your
24124 environment.
24125
24126 @item -mtune=@var{cpu_type}
24127 @opindex mtune
24128 Set the instruction scheduling parameters for machine type
24129 @var{cpu_type}, but do not set the architecture type or register usage,
24130 as @option{-mcpu=@var{cpu_type}} does. The same
24131 values for @var{cpu_type} are used for @option{-mtune} as for
24132 @option{-mcpu}. If both are specified, the code generated uses the
24133 architecture and registers set by @option{-mcpu}, but the
24134 scheduling parameters set by @option{-mtune}.
24135
24136 @item -mcmodel=small
24137 @opindex mcmodel=small
24138 Generate PowerPC64 code for the small model: The TOC is limited to
24139 64k.
24140
24141 @item -mcmodel=medium
24142 @opindex mcmodel=medium
24143 Generate PowerPC64 code for the medium model: The TOC and other static
24144 data may be up to a total of 4G in size. This is the default for 64-bit
24145 Linux.
24146
24147 @item -mcmodel=large
24148 @opindex mcmodel=large
24149 Generate PowerPC64 code for the large model: The TOC may be up to 4G
24150 in size. Other data and code is only limited by the 64-bit address
24151 space.
24152
24153 @item -maltivec
24154 @itemx -mno-altivec
24155 @opindex maltivec
24156 @opindex mno-altivec
24157 Generate code that uses (does not use) AltiVec instructions, and also
24158 enable the use of built-in functions that allow more direct access to
24159 the AltiVec instruction set. You may also need to set
24160 @option{-mabi=altivec} to adjust the current ABI with AltiVec ABI
24161 enhancements.
24162
24163 When @option{-maltivec} is used, the element order for AltiVec intrinsics
24164 such as @code{vec_splat}, @code{vec_extract}, and @code{vec_insert}
24165 match array element order corresponding to the endianness of the
24166 target. That is, element zero identifies the leftmost element in a
24167 vector register when targeting a big-endian platform, and identifies
24168 the rightmost element in a vector register when targeting a
24169 little-endian platform.
24170
24171 @item -mvrsave
24172 @itemx -mno-vrsave
24173 @opindex mvrsave
24174 @opindex mno-vrsave
24175 Generate VRSAVE instructions when generating AltiVec code.
24176
24177 @item -msecure-plt
24178 @opindex msecure-plt
24179 Generate code that allows @command{ld} and @command{ld.so}
24180 to build executables and shared
24181 libraries with non-executable @code{.plt} and @code{.got} sections.
24182 This is a PowerPC
24183 32-bit SYSV ABI option.
24184
24185 @item -mbss-plt
24186 @opindex mbss-plt
24187 Generate code that uses a BSS @code{.plt} section that @command{ld.so}
24188 fills in, and
24189 requires @code{.plt} and @code{.got}
24190 sections that are both writable and executable.
24191 This is a PowerPC 32-bit SYSV ABI option.
24192
24193 @item -misel
24194 @itemx -mno-isel
24195 @opindex misel
24196 @opindex mno-isel
24197 This switch enables or disables the generation of ISEL instructions.
24198
24199 @item -mvsx
24200 @itemx -mno-vsx
24201 @opindex mvsx
24202 @opindex mno-vsx
24203 Generate code that uses (does not use) vector/scalar (VSX)
24204 instructions, and also enable the use of built-in functions that allow
24205 more direct access to the VSX instruction set.
24206
24207 @item -mcrypto
24208 @itemx -mno-crypto
24209 @opindex mcrypto
24210 @opindex mno-crypto
24211 Enable the use (disable) of the built-in functions that allow direct
24212 access to the cryptographic instructions that were added in version
24213 2.07 of the PowerPC ISA.
24214
24215 @item -mhtm
24216 @itemx -mno-htm
24217 @opindex mhtm
24218 @opindex mno-htm
24219 Enable (disable) the use of the built-in functions that allow direct
24220 access to the Hardware Transactional Memory (HTM) instructions that
24221 were added in version 2.07 of the PowerPC ISA.
24222
24223 @item -mpower8-fusion
24224 @itemx -mno-power8-fusion
24225 @opindex mpower8-fusion
24226 @opindex mno-power8-fusion
24227 Generate code that keeps (does not keeps) some integer operations
24228 adjacent so that the instructions can be fused together on power8 and
24229 later processors.
24230
24231 @item -mpower8-vector
24232 @itemx -mno-power8-vector
24233 @opindex mpower8-vector
24234 @opindex mno-power8-vector
24235 Generate code that uses (does not use) the vector and scalar
24236 instructions that were added in version 2.07 of the PowerPC ISA. Also
24237 enable the use of built-in functions that allow more direct access to
24238 the vector instructions.
24239
24240 @item -mquad-memory
24241 @itemx -mno-quad-memory
24242 @opindex mquad-memory
24243 @opindex mno-quad-memory
24244 Generate code that uses (does not use) the non-atomic quad word memory
24245 instructions. The @option{-mquad-memory} option requires use of
24246 64-bit mode.
24247
24248 @item -mquad-memory-atomic
24249 @itemx -mno-quad-memory-atomic
24250 @opindex mquad-memory-atomic
24251 @opindex mno-quad-memory-atomic
24252 Generate code that uses (does not use) the atomic quad word memory
24253 instructions. The @option{-mquad-memory-atomic} option requires use of
24254 64-bit mode.
24255
24256 @item -mfloat128
24257 @itemx -mno-float128
24258 @opindex mfloat128
24259 @opindex mno-float128
24260 Enable/disable the @var{__float128} keyword for IEEE 128-bit floating point
24261 and use either software emulation for IEEE 128-bit floating point or
24262 hardware instructions.
24263
24264 The VSX instruction set (@option{-mvsx}, @option{-mcpu=power7},
24265 @option{-mcpu=power8}), or @option{-mcpu=power9} must be enabled to
24266 use the IEEE 128-bit floating point support. The IEEE 128-bit
24267 floating point support only works on PowerPC Linux systems.
24268
24269 The default for @option{-mfloat128} is enabled on PowerPC Linux
24270 systems using the VSX instruction set, and disabled on other systems.
24271
24272 If you use the ISA 3.0 instruction set (@option{-mpower9-vector} or
24273 @option{-mcpu=power9}) on a 64-bit system, the IEEE 128-bit floating
24274 point support will also enable the generation of ISA 3.0 IEEE 128-bit
24275 floating point instructions. Otherwise, if you do not specify to
24276 generate ISA 3.0 instructions or you are targeting a 32-bit big endian
24277 system, IEEE 128-bit floating point will be done with software
24278 emulation.
24279
24280 @item -mfloat128-hardware
24281 @itemx -mno-float128-hardware
24282 @opindex mfloat128-hardware
24283 @opindex mno-float128-hardware
24284 Enable/disable using ISA 3.0 hardware instructions to support the
24285 @var{__float128} data type.
24286
24287 The default for @option{-mfloat128-hardware} is enabled on PowerPC
24288 Linux systems using the ISA 3.0 instruction set, and disabled on other
24289 systems.
24290
24291 @item -m32
24292 @itemx -m64
24293 @opindex m32
24294 @opindex m64
24295 Generate code for 32-bit or 64-bit environments of Darwin and SVR4
24296 targets (including GNU/Linux). The 32-bit environment sets int, long
24297 and pointer to 32 bits and generates code that runs on any PowerPC
24298 variant. The 64-bit environment sets int to 32 bits and long and
24299 pointer to 64 bits, and generates code for PowerPC64, as for
24300 @option{-mpowerpc64}.
24301
24302 @item -mfull-toc
24303 @itemx -mno-fp-in-toc
24304 @itemx -mno-sum-in-toc
24305 @itemx -mminimal-toc
24306 @opindex mfull-toc
24307 @opindex mno-fp-in-toc
24308 @opindex mno-sum-in-toc
24309 @opindex mminimal-toc
24310 Modify generation of the TOC (Table Of Contents), which is created for
24311 every executable file. The @option{-mfull-toc} option is selected by
24312 default. In that case, GCC allocates at least one TOC entry for
24313 each unique non-automatic variable reference in your program. GCC
24314 also places floating-point constants in the TOC@. However, only
24315 16,384 entries are available in the TOC@.
24316
24317 If you receive a linker error message that saying you have overflowed
24318 the available TOC space, you can reduce the amount of TOC space used
24319 with the @option{-mno-fp-in-toc} and @option{-mno-sum-in-toc} options.
24320 @option{-mno-fp-in-toc} prevents GCC from putting floating-point
24321 constants in the TOC and @option{-mno-sum-in-toc} forces GCC to
24322 generate code to calculate the sum of an address and a constant at
24323 run time instead of putting that sum into the TOC@. You may specify one
24324 or both of these options. Each causes GCC to produce very slightly
24325 slower and larger code at the expense of conserving TOC space.
24326
24327 If you still run out of space in the TOC even when you specify both of
24328 these options, specify @option{-mminimal-toc} instead. This option causes
24329 GCC to make only one TOC entry for every file. When you specify this
24330 option, GCC produces code that is slower and larger but which
24331 uses extremely little TOC space. You may wish to use this option
24332 only on files that contain less frequently-executed code.
24333
24334 @item -maix64
24335 @itemx -maix32
24336 @opindex maix64
24337 @opindex maix32
24338 Enable 64-bit AIX ABI and calling convention: 64-bit pointers, 64-bit
24339 @code{long} type, and the infrastructure needed to support them.
24340 Specifying @option{-maix64} implies @option{-mpowerpc64},
24341 while @option{-maix32} disables the 64-bit ABI and
24342 implies @option{-mno-powerpc64}. GCC defaults to @option{-maix32}.
24343
24344 @item -mxl-compat
24345 @itemx -mno-xl-compat
24346 @opindex mxl-compat
24347 @opindex mno-xl-compat
24348 Produce code that conforms more closely to IBM XL compiler semantics
24349 when using AIX-compatible ABI@. Pass floating-point arguments to
24350 prototyped functions beyond the register save area (RSA) on the stack
24351 in addition to argument FPRs. Do not assume that most significant
24352 double in 128-bit long double value is properly rounded when comparing
24353 values and converting to double. Use XL symbol names for long double
24354 support routines.
24355
24356 The AIX calling convention was extended but not initially documented to
24357 handle an obscure K&R C case of calling a function that takes the
24358 address of its arguments with fewer arguments than declared. IBM XL
24359 compilers access floating-point arguments that do not fit in the
24360 RSA from the stack when a subroutine is compiled without
24361 optimization. Because always storing floating-point arguments on the
24362 stack is inefficient and rarely needed, this option is not enabled by
24363 default and only is necessary when calling subroutines compiled by IBM
24364 XL compilers without optimization.
24365
24366 @item -mpe
24367 @opindex mpe
24368 Support @dfn{IBM RS/6000 SP} @dfn{Parallel Environment} (PE)@. Link an
24369 application written to use message passing with special startup code to
24370 enable the application to run. The system must have PE installed in the
24371 standard location (@file{/usr/lpp/ppe.poe/}), or the @file{specs} file
24372 must be overridden with the @option{-specs=} option to specify the
24373 appropriate directory location. The Parallel Environment does not
24374 support threads, so the @option{-mpe} option and the @option{-pthread}
24375 option are incompatible.
24376
24377 @item -malign-natural
24378 @itemx -malign-power
24379 @opindex malign-natural
24380 @opindex malign-power
24381 On AIX, 32-bit Darwin, and 64-bit PowerPC GNU/Linux, the option
24382 @option{-malign-natural} overrides the ABI-defined alignment of larger
24383 types, such as floating-point doubles, on their natural size-based boundary.
24384 The option @option{-malign-power} instructs GCC to follow the ABI-specified
24385 alignment rules. GCC defaults to the standard alignment defined in the ABI@.
24386
24387 On 64-bit Darwin, natural alignment is the default, and @option{-malign-power}
24388 is not supported.
24389
24390 @item -msoft-float
24391 @itemx -mhard-float
24392 @opindex msoft-float
24393 @opindex mhard-float
24394 Generate code that does not use (uses) the floating-point register set.
24395 Software floating-point emulation is provided if you use the
24396 @option{-msoft-float} option, and pass the option to GCC when linking.
24397
24398 @item -mmultiple
24399 @itemx -mno-multiple
24400 @opindex mmultiple
24401 @opindex mno-multiple
24402 Generate code that uses (does not use) the load multiple word
24403 instructions and the store multiple word instructions. These
24404 instructions are generated by default on POWER systems, and not
24405 generated on PowerPC systems. Do not use @option{-mmultiple} on little-endian
24406 PowerPC systems, since those instructions do not work when the
24407 processor is in little-endian mode. The exceptions are PPC740 and
24408 PPC750 which permit these instructions in little-endian mode.
24409
24410 @item -mupdate
24411 @itemx -mno-update
24412 @opindex mupdate
24413 @opindex mno-update
24414 Generate code that uses (does not use) the load or store instructions
24415 that update the base register to the address of the calculated memory
24416 location. These instructions are generated by default. If you use
24417 @option{-mno-update}, there is a small window between the time that the
24418 stack pointer is updated and the address of the previous frame is
24419 stored, which means code that walks the stack frame across interrupts or
24420 signals may get corrupted data.
24421
24422 @item -mavoid-indexed-addresses
24423 @itemx -mno-avoid-indexed-addresses
24424 @opindex mavoid-indexed-addresses
24425 @opindex mno-avoid-indexed-addresses
24426 Generate code that tries to avoid (not avoid) the use of indexed load
24427 or store instructions. These instructions can incur a performance
24428 penalty on Power6 processors in certain situations, such as when
24429 stepping through large arrays that cross a 16M boundary. This option
24430 is enabled by default when targeting Power6 and disabled otherwise.
24431
24432 @item -mfused-madd
24433 @itemx -mno-fused-madd
24434 @opindex mfused-madd
24435 @opindex mno-fused-madd
24436 Generate code that uses (does not use) the floating-point multiply and
24437 accumulate instructions. These instructions are generated by default
24438 if hardware floating point is used. The machine-dependent
24439 @option{-mfused-madd} option is now mapped to the machine-independent
24440 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
24441 mapped to @option{-ffp-contract=off}.
24442
24443 @item -mmulhw
24444 @itemx -mno-mulhw
24445 @opindex mmulhw
24446 @opindex mno-mulhw
24447 Generate code that uses (does not use) the half-word multiply and
24448 multiply-accumulate instructions on the IBM 405, 440, 464 and 476 processors.
24449 These instructions are generated by default when targeting those
24450 processors.
24451
24452 @item -mdlmzb
24453 @itemx -mno-dlmzb
24454 @opindex mdlmzb
24455 @opindex mno-dlmzb
24456 Generate code that uses (does not use) the string-search @samp{dlmzb}
24457 instruction on the IBM 405, 440, 464 and 476 processors. This instruction is
24458 generated by default when targeting those processors.
24459
24460 @item -mno-bit-align
24461 @itemx -mbit-align
24462 @opindex mno-bit-align
24463 @opindex mbit-align
24464 On System V.4 and embedded PowerPC systems do not (do) force structures
24465 and unions that contain bit-fields to be aligned to the base type of the
24466 bit-field.
24467
24468 For example, by default a structure containing nothing but 8
24469 @code{unsigned} bit-fields of length 1 is aligned to a 4-byte
24470 boundary and has a size of 4 bytes. By using @option{-mno-bit-align},
24471 the structure is aligned to a 1-byte boundary and is 1 byte in
24472 size.
24473
24474 @item -mno-strict-align
24475 @itemx -mstrict-align
24476 @opindex mno-strict-align
24477 @opindex mstrict-align
24478 On System V.4 and embedded PowerPC systems do not (do) assume that
24479 unaligned memory references are handled by the system.
24480
24481 @item -mrelocatable
24482 @itemx -mno-relocatable
24483 @opindex mrelocatable
24484 @opindex mno-relocatable
24485 Generate code that allows (does not allow) a static executable to be
24486 relocated to a different address at run time. A simple embedded
24487 PowerPC system loader should relocate the entire contents of
24488 @code{.got2} and 4-byte locations listed in the @code{.fixup} section,
24489 a table of 32-bit addresses generated by this option. For this to
24490 work, all objects linked together must be compiled with
24491 @option{-mrelocatable} or @option{-mrelocatable-lib}.
24492 @option{-mrelocatable} code aligns the stack to an 8-byte boundary.
24493
24494 @item -mrelocatable-lib
24495 @itemx -mno-relocatable-lib
24496 @opindex mrelocatable-lib
24497 @opindex mno-relocatable-lib
24498 Like @option{-mrelocatable}, @option{-mrelocatable-lib} generates a
24499 @code{.fixup} section to allow static executables to be relocated at
24500 run time, but @option{-mrelocatable-lib} does not use the smaller stack
24501 alignment of @option{-mrelocatable}. Objects compiled with
24502 @option{-mrelocatable-lib} may be linked with objects compiled with
24503 any combination of the @option{-mrelocatable} options.
24504
24505 @item -mno-toc
24506 @itemx -mtoc
24507 @opindex mno-toc
24508 @opindex mtoc
24509 On System V.4 and embedded PowerPC systems do not (do) assume that
24510 register 2 contains a pointer to a global area pointing to the addresses
24511 used in the program.
24512
24513 @item -mlittle
24514 @itemx -mlittle-endian
24515 @opindex mlittle
24516 @opindex mlittle-endian
24517 On System V.4 and embedded PowerPC systems compile code for the
24518 processor in little-endian mode. The @option{-mlittle-endian} option is
24519 the same as @option{-mlittle}.
24520
24521 @item -mbig
24522 @itemx -mbig-endian
24523 @opindex mbig
24524 @opindex mbig-endian
24525 On System V.4 and embedded PowerPC systems compile code for the
24526 processor in big-endian mode. The @option{-mbig-endian} option is
24527 the same as @option{-mbig}.
24528
24529 @item -mdynamic-no-pic
24530 @opindex mdynamic-no-pic
24531 On Darwin and Mac OS X systems, compile code so that it is not
24532 relocatable, but that its external references are relocatable. The
24533 resulting code is suitable for applications, but not shared
24534 libraries.
24535
24536 @item -msingle-pic-base
24537 @opindex msingle-pic-base
24538 Treat the register used for PIC addressing as read-only, rather than
24539 loading it in the prologue for each function. The runtime system is
24540 responsible for initializing this register with an appropriate value
24541 before execution begins.
24542
24543 @item -mprioritize-restricted-insns=@var{priority}
24544 @opindex mprioritize-restricted-insns
24545 This option controls the priority that is assigned to
24546 dispatch-slot restricted instructions during the second scheduling
24547 pass. The argument @var{priority} takes the value @samp{0}, @samp{1},
24548 or @samp{2} to assign no, highest, or second-highest (respectively)
24549 priority to dispatch-slot restricted
24550 instructions.
24551
24552 @item -msched-costly-dep=@var{dependence_type}
24553 @opindex msched-costly-dep
24554 This option controls which dependences are considered costly
24555 by the target during instruction scheduling. The argument
24556 @var{dependence_type} takes one of the following values:
24557
24558 @table @asis
24559 @item @samp{no}
24560 No dependence is costly.
24561
24562 @item @samp{all}
24563 All dependences are costly.
24564
24565 @item @samp{true_store_to_load}
24566 A true dependence from store to load is costly.
24567
24568 @item @samp{store_to_load}
24569 Any dependence from store to load is costly.
24570
24571 @item @var{number}
24572 Any dependence for which the latency is greater than or equal to
24573 @var{number} is costly.
24574 @end table
24575
24576 @item -minsert-sched-nops=@var{scheme}
24577 @opindex minsert-sched-nops
24578 This option controls which NOP insertion scheme is used during
24579 the second scheduling pass. The argument @var{scheme} takes one of the
24580 following values:
24581
24582 @table @asis
24583 @item @samp{no}
24584 Don't insert NOPs.
24585
24586 @item @samp{pad}
24587 Pad with NOPs any dispatch group that has vacant issue slots,
24588 according to the scheduler's grouping.
24589
24590 @item @samp{regroup_exact}
24591 Insert NOPs to force costly dependent insns into
24592 separate groups. Insert exactly as many NOPs as needed to force an insn
24593 to a new group, according to the estimated processor grouping.
24594
24595 @item @var{number}
24596 Insert NOPs to force costly dependent insns into
24597 separate groups. Insert @var{number} NOPs to force an insn to a new group.
24598 @end table
24599
24600 @item -mcall-sysv
24601 @opindex mcall-sysv
24602 On System V.4 and embedded PowerPC systems compile code using calling
24603 conventions that adhere to the March 1995 draft of the System V
24604 Application Binary Interface, PowerPC processor supplement. This is the
24605 default unless you configured GCC using @samp{powerpc-*-eabiaix}.
24606
24607 @item -mcall-sysv-eabi
24608 @itemx -mcall-eabi
24609 @opindex mcall-sysv-eabi
24610 @opindex mcall-eabi
24611 Specify both @option{-mcall-sysv} and @option{-meabi} options.
24612
24613 @item -mcall-sysv-noeabi
24614 @opindex mcall-sysv-noeabi
24615 Specify both @option{-mcall-sysv} and @option{-mno-eabi} options.
24616
24617 @item -mcall-aixdesc
24618 @opindex m
24619 On System V.4 and embedded PowerPC systems compile code for the AIX
24620 operating system.
24621
24622 @item -mcall-linux
24623 @opindex mcall-linux
24624 On System V.4 and embedded PowerPC systems compile code for the
24625 Linux-based GNU system.
24626
24627 @item -mcall-freebsd
24628 @opindex mcall-freebsd
24629 On System V.4 and embedded PowerPC systems compile code for the
24630 FreeBSD operating system.
24631
24632 @item -mcall-netbsd
24633 @opindex mcall-netbsd
24634 On System V.4 and embedded PowerPC systems compile code for the
24635 NetBSD operating system.
24636
24637 @item -mcall-openbsd
24638 @opindex mcall-netbsd
24639 On System V.4 and embedded PowerPC systems compile code for the
24640 OpenBSD operating system.
24641
24642 @item -mtraceback=@var{traceback_type}
24643 @opindex mtraceback
24644 Select the type of traceback table. Valid values for @var{traceback_type}
24645 are @samp{full}, @samp{part}, and @samp{no}.
24646
24647 @item -maix-struct-return
24648 @opindex maix-struct-return
24649 Return all structures in memory (as specified by the AIX ABI)@.
24650
24651 @item -msvr4-struct-return
24652 @opindex msvr4-struct-return
24653 Return structures smaller than 8 bytes in registers (as specified by the
24654 SVR4 ABI)@.
24655
24656 @item -mabi=@var{abi-type}
24657 @opindex mabi
24658 Extend the current ABI with a particular extension, or remove such extension.
24659 Valid values are @samp{altivec}, @samp{no-altivec},
24660 @samp{ibmlongdouble}, @samp{ieeelongdouble},
24661 @samp{elfv1}, @samp{elfv2}@.
24662
24663 @item -mabi=ibmlongdouble
24664 @opindex mabi=ibmlongdouble
24665 Change the current ABI to use IBM extended-precision long double.
24666 This is not likely to work if your system defaults to using IEEE
24667 extended-precision long double. If you change the long double type
24668 from IEEE extended-precision, the compiler will issue a warning unless
24669 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24670 to be enabled.
24671
24672 @item -mabi=ieeelongdouble
24673 @opindex mabi=ieeelongdouble
24674 Change the current ABI to use IEEE extended-precision long double.
24675 This is not likely to work if your system defaults to using IBM
24676 extended-precision long double. If you change the long double type
24677 from IBM extended-precision, the compiler will issue a warning unless
24678 you use the @option{-Wno-psabi} option. Requires @option{-mlong-double-128}
24679 to be enabled.
24680
24681 @item -mabi=elfv1
24682 @opindex mabi=elfv1
24683 Change the current ABI to use the ELFv1 ABI.
24684 This is the default ABI for big-endian PowerPC 64-bit Linux.
24685 Overriding the default ABI requires special system support and is
24686 likely to fail in spectacular ways.
24687
24688 @item -mabi=elfv2
24689 @opindex mabi=elfv2
24690 Change the current ABI to use the ELFv2 ABI.
24691 This is the default ABI for little-endian PowerPC 64-bit Linux.
24692 Overriding the default ABI requires special system support and is
24693 likely to fail in spectacular ways.
24694
24695 @item -mgnu-attribute
24696 @itemx -mno-gnu-attribute
24697 @opindex mgnu-attribute
24698 @opindex mno-gnu-attribute
24699 Emit .gnu_attribute assembly directives to set tag/value pairs in a
24700 .gnu.attributes section that specify ABI variations in function
24701 parameters or return values.
24702
24703 @item -mprototype
24704 @itemx -mno-prototype
24705 @opindex mprototype
24706 @opindex mno-prototype
24707 On System V.4 and embedded PowerPC systems assume that all calls to
24708 variable argument functions are properly prototyped. Otherwise, the
24709 compiler must insert an instruction before every non-prototyped call to
24710 set or clear bit 6 of the condition code register (@code{CR}) to
24711 indicate whether floating-point values are passed in the floating-point
24712 registers in case the function takes variable arguments. With
24713 @option{-mprototype}, only calls to prototyped variable argument functions
24714 set or clear the bit.
24715
24716 @item -msim
24717 @opindex msim
24718 On embedded PowerPC systems, assume that the startup module is called
24719 @file{sim-crt0.o} and that the standard C libraries are @file{libsim.a} and
24720 @file{libc.a}. This is the default for @samp{powerpc-*-eabisim}
24721 configurations.
24722
24723 @item -mmvme
24724 @opindex mmvme
24725 On embedded PowerPC systems, assume that the startup module is called
24726 @file{crt0.o} and the standard C libraries are @file{libmvme.a} and
24727 @file{libc.a}.
24728
24729 @item -mads
24730 @opindex mads
24731 On embedded PowerPC systems, assume that the startup module is called
24732 @file{crt0.o} and the standard C libraries are @file{libads.a} and
24733 @file{libc.a}.
24734
24735 @item -myellowknife
24736 @opindex myellowknife
24737 On embedded PowerPC systems, assume that the startup module is called
24738 @file{crt0.o} and the standard C libraries are @file{libyk.a} and
24739 @file{libc.a}.
24740
24741 @item -mvxworks
24742 @opindex mvxworks
24743 On System V.4 and embedded PowerPC systems, specify that you are
24744 compiling for a VxWorks system.
24745
24746 @item -memb
24747 @opindex memb
24748 On embedded PowerPC systems, set the @code{PPC_EMB} bit in the ELF flags
24749 header to indicate that @samp{eabi} extended relocations are used.
24750
24751 @item -meabi
24752 @itemx -mno-eabi
24753 @opindex meabi
24754 @opindex mno-eabi
24755 On System V.4 and embedded PowerPC systems do (do not) adhere to the
24756 Embedded Applications Binary Interface (EABI), which is a set of
24757 modifications to the System V.4 specifications. Selecting @option{-meabi}
24758 means that the stack is aligned to an 8-byte boundary, a function
24759 @code{__eabi} is called from @code{main} to set up the EABI
24760 environment, and the @option{-msdata} option can use both @code{r2} and
24761 @code{r13} to point to two separate small data areas. Selecting
24762 @option{-mno-eabi} means that the stack is aligned to a 16-byte boundary,
24763 no EABI initialization function is called from @code{main}, and the
24764 @option{-msdata} option only uses @code{r13} to point to a single
24765 small data area. The @option{-meabi} option is on by default if you
24766 configured GCC using one of the @samp{powerpc*-*-eabi*} options.
24767
24768 @item -msdata=eabi
24769 @opindex msdata=eabi
24770 On System V.4 and embedded PowerPC systems, put small initialized
24771 @code{const} global and static data in the @code{.sdata2} section, which
24772 is pointed to by register @code{r2}. Put small initialized
24773 non-@code{const} global and static data in the @code{.sdata} section,
24774 which is pointed to by register @code{r13}. Put small uninitialized
24775 global and static data in the @code{.sbss} section, which is adjacent to
24776 the @code{.sdata} section. The @option{-msdata=eabi} option is
24777 incompatible with the @option{-mrelocatable} option. The
24778 @option{-msdata=eabi} option also sets the @option{-memb} option.
24779
24780 @item -msdata=sysv
24781 @opindex msdata=sysv
24782 On System V.4 and embedded PowerPC systems, put small global and static
24783 data in the @code{.sdata} section, which is pointed to by register
24784 @code{r13}. Put small uninitialized global and static data in the
24785 @code{.sbss} section, which is adjacent to the @code{.sdata} section.
24786 The @option{-msdata=sysv} option is incompatible with the
24787 @option{-mrelocatable} option.
24788
24789 @item -msdata=default
24790 @itemx -msdata
24791 @opindex msdata=default
24792 @opindex msdata
24793 On System V.4 and embedded PowerPC systems, if @option{-meabi} is used,
24794 compile code the same as @option{-msdata=eabi}, otherwise compile code the
24795 same as @option{-msdata=sysv}.
24796
24797 @item -msdata=data
24798 @opindex msdata=data
24799 On System V.4 and embedded PowerPC systems, put small global
24800 data in the @code{.sdata} section. Put small uninitialized global
24801 data in the @code{.sbss} section. Do not use register @code{r13}
24802 to address small data however. This is the default behavior unless
24803 other @option{-msdata} options are used.
24804
24805 @item -msdata=none
24806 @itemx -mno-sdata
24807 @opindex msdata=none
24808 @opindex mno-sdata
24809 On embedded PowerPC systems, put all initialized global and static data
24810 in the @code{.data} section, and all uninitialized data in the
24811 @code{.bss} section.
24812
24813 @item -mreadonly-in-sdata
24814 @opindex mreadonly-in-sdata
24815 @opindex mno-readonly-in-sdata
24816 Put read-only objects in the @code{.sdata} section as well. This is the
24817 default.
24818
24819 @item -mblock-move-inline-limit=@var{num}
24820 @opindex mblock-move-inline-limit
24821 Inline all block moves (such as calls to @code{memcpy} or structure
24822 copies) less than or equal to @var{num} bytes. The minimum value for
24823 @var{num} is 32 bytes on 32-bit targets and 64 bytes on 64-bit
24824 targets. The default value is target-specific.
24825
24826 @item -mblock-compare-inline-limit=@var{num}
24827 @opindex mblock-compare-inline-limit
24828 Generate non-looping inline code for all block compares (such as calls
24829 to @code{memcmp} or structure compares) less than or equal to @var{num}
24830 bytes. If @var{num} is 0, all inline expansion (non-loop and loop) of
24831 block compare is disabled. The default value is target-specific.
24832
24833 @item -mblock-compare-inline-loop-limit=@var{num}
24834 @opindex mblock-compare-inline-loop-limit
24835 Generate an inline expansion using loop code for all block compares that
24836 are less than or equal to @var{num} bytes, but greater than the limit
24837 for non-loop inline block compare expansion. If the block length is not
24838 constant, at most @var{num} bytes will be compared before @code{memcmp}
24839 is called to compare the remainder of the block. The default value is
24840 target-specific.
24841
24842 @item -mstring-compare-inline-limit=@var{num}
24843 @opindex mstring-compare-inline-limit
24844 Compare at most @var{num} string bytes with inline code.
24845 If the difference or end of string is not found at the
24846 end of the inline compare a call to @code{strcmp} or @code{strncmp} will
24847 take care of the rest of the comparison. The default is 64 bytes.
24848
24849 @item -G @var{num}
24850 @opindex G
24851 @cindex smaller data references (PowerPC)
24852 @cindex .sdata/.sdata2 references (PowerPC)
24853 On embedded PowerPC systems, put global and static items less than or
24854 equal to @var{num} bytes into the small data or BSS sections instead of
24855 the normal data or BSS section. By default, @var{num} is 8. The
24856 @option{-G @var{num}} switch is also passed to the linker.
24857 All modules should be compiled with the same @option{-G @var{num}} value.
24858
24859 @item -mregnames
24860 @itemx -mno-regnames
24861 @opindex mregnames
24862 @opindex mno-regnames
24863 On System V.4 and embedded PowerPC systems do (do not) emit register
24864 names in the assembly language output using symbolic forms.
24865
24866 @item -mlongcall
24867 @itemx -mno-longcall
24868 @opindex mlongcall
24869 @opindex mno-longcall
24870 By default assume that all calls are far away so that a longer and more
24871 expensive calling sequence is required. This is required for calls
24872 farther than 32 megabytes (33,554,432 bytes) from the current location.
24873 A short call is generated if the compiler knows
24874 the call cannot be that far away. This setting can be overridden by
24875 the @code{shortcall} function attribute, or by @code{#pragma
24876 longcall(0)}.
24877
24878 Some linkers are capable of detecting out-of-range calls and generating
24879 glue code on the fly. On these systems, long calls are unnecessary and
24880 generate slower code. As of this writing, the AIX linker can do this,
24881 as can the GNU linker for PowerPC/64. It is planned to add this feature
24882 to the GNU linker for 32-bit PowerPC systems as well.
24883
24884 On PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU linkers,
24885 GCC can generate long calls using an inline PLT call sequence (see
24886 @option{-mpltseq}). PowerPC with @option{-mbss-plt} and PowerPC64
24887 ELFv1 (big-endian) do not support inline PLT calls.
24888
24889 On Darwin/PPC systems, @code{#pragma longcall} generates @code{jbsr
24890 callee, L42}, plus a @dfn{branch island} (glue code). The two target
24891 addresses represent the callee and the branch island. The
24892 Darwin/PPC linker prefers the first address and generates a @code{bl
24893 callee} if the PPC @code{bl} instruction reaches the callee directly;
24894 otherwise, the linker generates @code{bl L42} to call the branch
24895 island. The branch island is appended to the body of the
24896 calling function; it computes the full 32-bit address of the callee
24897 and jumps to it.
24898
24899 On Mach-O (Darwin) systems, this option directs the compiler emit to
24900 the glue for every direct call, and the Darwin linker decides whether
24901 to use or discard it.
24902
24903 In the future, GCC may ignore all longcall specifications
24904 when the linker is known to generate glue.
24905
24906 @item -mpltseq
24907 @itemx -mno-pltseq
24908 @opindex mpltseq
24909 @opindex mno-pltseq
24910 Implement (do not implement) -fno-plt and long calls using an inline
24911 PLT call sequence that supports lazy linking and long calls to
24912 functions in dlopen'd shared libraries. Inline PLT calls are only
24913 supported on PowerPC64 ELFv2 and 32-bit PowerPC systems with newer GNU
24914 linkers, and are enabled by default if the support is detected when
24915 configuring GCC, and, in the case of 32-bit PowerPC, if GCC is
24916 configured with @option{--enable-secureplt}. @option{-mpltseq} code
24917 and @option{-mbss-plt} 32-bit PowerPC relocatable objects may not be
24918 linked together.
24919
24920 @item -mtls-markers
24921 @itemx -mno-tls-markers
24922 @opindex mtls-markers
24923 @opindex mno-tls-markers
24924 Mark (do not mark) calls to @code{__tls_get_addr} with a relocation
24925 specifying the function argument. The relocation allows the linker to
24926 reliably associate function call with argument setup instructions for
24927 TLS optimization, which in turn allows GCC to better schedule the
24928 sequence.
24929
24930 @item -mrecip
24931 @itemx -mno-recip
24932 @opindex mrecip
24933 This option enables use of the reciprocal estimate and
24934 reciprocal square root estimate instructions with additional
24935 Newton-Raphson steps to increase precision instead of doing a divide or
24936 square root and divide for floating-point arguments. You should use
24937 the @option{-ffast-math} option when using @option{-mrecip} (or at
24938 least @option{-funsafe-math-optimizations},
24939 @option{-ffinite-math-only}, @option{-freciprocal-math} and
24940 @option{-fno-trapping-math}). Note that while the throughput of the
24941 sequence is generally higher than the throughput of the non-reciprocal
24942 instruction, the precision of the sequence can be decreased by up to 2
24943 ulp (i.e.@: the inverse of 1.0 equals 0.99999994) for reciprocal square
24944 roots.
24945
24946 @item -mrecip=@var{opt}
24947 @opindex mrecip=opt
24948 This option controls which reciprocal estimate instructions
24949 may be used. @var{opt} is a comma-separated list of options, which may
24950 be preceded by a @code{!} to invert the option:
24951
24952 @table @samp
24953
24954 @item all
24955 Enable all estimate instructions.
24956
24957 @item default
24958 Enable the default instructions, equivalent to @option{-mrecip}.
24959
24960 @item none
24961 Disable all estimate instructions, equivalent to @option{-mno-recip}.
24962
24963 @item div
24964 Enable the reciprocal approximation instructions for both
24965 single and double precision.
24966
24967 @item divf
24968 Enable the single-precision reciprocal approximation instructions.
24969
24970 @item divd
24971 Enable the double-precision reciprocal approximation instructions.
24972
24973 @item rsqrt
24974 Enable the reciprocal square root approximation instructions for both
24975 single and double precision.
24976
24977 @item rsqrtf
24978 Enable the single-precision reciprocal square root approximation instructions.
24979
24980 @item rsqrtd
24981 Enable the double-precision reciprocal square root approximation instructions.
24982
24983 @end table
24984
24985 So, for example, @option{-mrecip=all,!rsqrtd} enables
24986 all of the reciprocal estimate instructions, except for the
24987 @code{FRSQRTE}, @code{XSRSQRTEDP}, and @code{XVRSQRTEDP} instructions
24988 which handle the double-precision reciprocal square root calculations.
24989
24990 @item -mrecip-precision
24991 @itemx -mno-recip-precision
24992 @opindex mrecip-precision
24993 Assume (do not assume) that the reciprocal estimate instructions
24994 provide higher-precision estimates than is mandated by the PowerPC
24995 ABI. Selecting @option{-mcpu=power6}, @option{-mcpu=power7} or
24996 @option{-mcpu=power8} automatically selects @option{-mrecip-precision}.
24997 The double-precision square root estimate instructions are not generated by
24998 default on low-precision machines, since they do not provide an
24999 estimate that converges after three steps.
25000
25001 @item -mveclibabi=@var{type}
25002 @opindex mveclibabi
25003 Specifies the ABI type to use for vectorizing intrinsics using an
25004 external library. The only type supported at present is @samp{mass},
25005 which specifies to use IBM's Mathematical Acceleration Subsystem
25006 (MASS) libraries for vectorizing intrinsics using external libraries.
25007 GCC currently emits calls to @code{acosd2}, @code{acosf4},
25008 @code{acoshd2}, @code{acoshf4}, @code{asind2}, @code{asinf4},
25009 @code{asinhd2}, @code{asinhf4}, @code{atan2d2}, @code{atan2f4},
25010 @code{atand2}, @code{atanf4}, @code{atanhd2}, @code{atanhf4},
25011 @code{cbrtd2}, @code{cbrtf4}, @code{cosd2}, @code{cosf4},
25012 @code{coshd2}, @code{coshf4}, @code{erfcd2}, @code{erfcf4},
25013 @code{erfd2}, @code{erff4}, @code{exp2d2}, @code{exp2f4},
25014 @code{expd2}, @code{expf4}, @code{expm1d2}, @code{expm1f4},
25015 @code{hypotd2}, @code{hypotf4}, @code{lgammad2}, @code{lgammaf4},
25016 @code{log10d2}, @code{log10f4}, @code{log1pd2}, @code{log1pf4},
25017 @code{log2d2}, @code{log2f4}, @code{logd2}, @code{logf4},
25018 @code{powd2}, @code{powf4}, @code{sind2}, @code{sinf4}, @code{sinhd2},
25019 @code{sinhf4}, @code{sqrtd2}, @code{sqrtf4}, @code{tand2},
25020 @code{tanf4}, @code{tanhd2}, and @code{tanhf4} when generating code
25021 for power7. Both @option{-ftree-vectorize} and
25022 @option{-funsafe-math-optimizations} must also be enabled. The MASS
25023 libraries must be specified at link time.
25024
25025 @item -mfriz
25026 @itemx -mno-friz
25027 @opindex mfriz
25028 Generate (do not generate) the @code{friz} instruction when the
25029 @option{-funsafe-math-optimizations} option is used to optimize
25030 rounding of floating-point values to 64-bit integer and back to floating
25031 point. The @code{friz} instruction does not return the same value if
25032 the floating-point number is too large to fit in an integer.
25033
25034 @item -mpointers-to-nested-functions
25035 @itemx -mno-pointers-to-nested-functions
25036 @opindex mpointers-to-nested-functions
25037 Generate (do not generate) code to load up the static chain register
25038 (@code{r11}) when calling through a pointer on AIX and 64-bit Linux
25039 systems where a function pointer points to a 3-word descriptor giving
25040 the function address, TOC value to be loaded in register @code{r2}, and
25041 static chain value to be loaded in register @code{r11}. The
25042 @option{-mpointers-to-nested-functions} is on by default. You cannot
25043 call through pointers to nested functions or pointers
25044 to functions compiled in other languages that use the static chain if
25045 you use @option{-mno-pointers-to-nested-functions}.
25046
25047 @item -msave-toc-indirect
25048 @itemx -mno-save-toc-indirect
25049 @opindex msave-toc-indirect
25050 Generate (do not generate) code to save the TOC value in the reserved
25051 stack location in the function prologue if the function calls through
25052 a pointer on AIX and 64-bit Linux systems. If the TOC value is not
25053 saved in the prologue, it is saved just before the call through the
25054 pointer. The @option{-mno-save-toc-indirect} option is the default.
25055
25056 @item -mcompat-align-parm
25057 @itemx -mno-compat-align-parm
25058 @opindex mcompat-align-parm
25059 Generate (do not generate) code to pass structure parameters with a
25060 maximum alignment of 64 bits, for compatibility with older versions
25061 of GCC.
25062
25063 Older versions of GCC (prior to 4.9.0) incorrectly did not align a
25064 structure parameter on a 128-bit boundary when that structure contained
25065 a member requiring 128-bit alignment. This is corrected in more
25066 recent versions of GCC. This option may be used to generate code
25067 that is compatible with functions compiled with older versions of
25068 GCC.
25069
25070 The @option{-mno-compat-align-parm} option is the default.
25071
25072 @item -mstack-protector-guard=@var{guard}
25073 @itemx -mstack-protector-guard-reg=@var{reg}
25074 @itemx -mstack-protector-guard-offset=@var{offset}
25075 @itemx -mstack-protector-guard-symbol=@var{symbol}
25076 @opindex mstack-protector-guard
25077 @opindex mstack-protector-guard-reg
25078 @opindex mstack-protector-guard-offset
25079 @opindex mstack-protector-guard-symbol
25080 Generate stack protection code using canary at @var{guard}. Supported
25081 locations are @samp{global} for global canary or @samp{tls} for per-thread
25082 canary in the TLS block (the default with GNU libc version 2.4 or later).
25083
25084 With the latter choice the options
25085 @option{-mstack-protector-guard-reg=@var{reg}} and
25086 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
25087 which register to use as base register for reading the canary, and from what
25088 offset from that base register. The default for those is as specified in the
25089 relevant ABI. @option{-mstack-protector-guard-symbol=@var{symbol}} overrides
25090 the offset with a symbol reference to a canary in the TLS block.
25091
25092 @item -mpcrel
25093 @itemx -mno-pcrel
25094 @opindex mpcrel
25095 @opindex mno-pcrel
25096 Generate (do not generate) pc-relative addressing when the option
25097 @option{-mcpu=future} is used.
25098 @end table
25099
25100 @node RX Options
25101 @subsection RX Options
25102 @cindex RX Options
25103
25104 These command-line options are defined for RX targets:
25105
25106 @table @gcctabopt
25107 @item -m64bit-doubles
25108 @itemx -m32bit-doubles
25109 @opindex m64bit-doubles
25110 @opindex m32bit-doubles
25111 Make the @code{double} data type be 64 bits (@option{-m64bit-doubles})
25112 or 32 bits (@option{-m32bit-doubles}) in size. The default is
25113 @option{-m32bit-doubles}. @emph{Note} RX floating-point hardware only
25114 works on 32-bit values, which is why the default is
25115 @option{-m32bit-doubles}.
25116
25117 @item -fpu
25118 @itemx -nofpu
25119 @opindex fpu
25120 @opindex nofpu
25121 Enables (@option{-fpu}) or disables (@option{-nofpu}) the use of RX
25122 floating-point hardware. The default is enabled for the RX600
25123 series and disabled for the RX200 series.
25124
25125 Floating-point instructions are only generated for 32-bit floating-point
25126 values, however, so the FPU hardware is not used for doubles if the
25127 @option{-m64bit-doubles} option is used.
25128
25129 @emph{Note} If the @option{-fpu} option is enabled then
25130 @option{-funsafe-math-optimizations} is also enabled automatically.
25131 This is because the RX FPU instructions are themselves unsafe.
25132
25133 @item -mcpu=@var{name}
25134 @opindex mcpu
25135 Selects the type of RX CPU to be targeted. Currently three types are
25136 supported, the generic @samp{RX600} and @samp{RX200} series hardware and
25137 the specific @samp{RX610} CPU. The default is @samp{RX600}.
25138
25139 The only difference between @samp{RX600} and @samp{RX610} is that the
25140 @samp{RX610} does not support the @code{MVTIPL} instruction.
25141
25142 The @samp{RX200} series does not have a hardware floating-point unit
25143 and so @option{-nofpu} is enabled by default when this type is
25144 selected.
25145
25146 @item -mbig-endian-data
25147 @itemx -mlittle-endian-data
25148 @opindex mbig-endian-data
25149 @opindex mlittle-endian-data
25150 Store data (but not code) in the big-endian format. The default is
25151 @option{-mlittle-endian-data}, i.e.@: to store data in the little-endian
25152 format.
25153
25154 @item -msmall-data-limit=@var{N}
25155 @opindex msmall-data-limit
25156 Specifies the maximum size in bytes of global and static variables
25157 which can be placed into the small data area. Using the small data
25158 area can lead to smaller and faster code, but the size of area is
25159 limited and it is up to the programmer to ensure that the area does
25160 not overflow. Also when the small data area is used one of the RX's
25161 registers (usually @code{r13}) is reserved for use pointing to this
25162 area, so it is no longer available for use by the compiler. This
25163 could result in slower and/or larger code if variables are pushed onto
25164 the stack instead of being held in this register.
25165
25166 Note, common variables (variables that have not been initialized) and
25167 constants are not placed into the small data area as they are assigned
25168 to other sections in the output executable.
25169
25170 The default value is zero, which disables this feature. Note, this
25171 feature is not enabled by default with higher optimization levels
25172 (@option{-O2} etc) because of the potentially detrimental effects of
25173 reserving a register. It is up to the programmer to experiment and
25174 discover whether this feature is of benefit to their program. See the
25175 description of the @option{-mpid} option for a description of how the
25176 actual register to hold the small data area pointer is chosen.
25177
25178 @item -msim
25179 @itemx -mno-sim
25180 @opindex msim
25181 @opindex mno-sim
25182 Use the simulator runtime. The default is to use the libgloss
25183 board-specific runtime.
25184
25185 @item -mas100-syntax
25186 @itemx -mno-as100-syntax
25187 @opindex mas100-syntax
25188 @opindex mno-as100-syntax
25189 When generating assembler output use a syntax that is compatible with
25190 Renesas's AS100 assembler. This syntax can also be handled by the GAS
25191 assembler, but it has some restrictions so it is not generated by default.
25192
25193 @item -mmax-constant-size=@var{N}
25194 @opindex mmax-constant-size
25195 Specifies the maximum size, in bytes, of a constant that can be used as
25196 an operand in a RX instruction. Although the RX instruction set does
25197 allow constants of up to 4 bytes in length to be used in instructions,
25198 a longer value equates to a longer instruction. Thus in some
25199 circumstances it can be beneficial to restrict the size of constants
25200 that are used in instructions. Constants that are too big are instead
25201 placed into a constant pool and referenced via register indirection.
25202
25203 The value @var{N} can be between 0 and 4. A value of 0 (the default)
25204 or 4 means that constants of any size are allowed.
25205
25206 @item -mrelax
25207 @opindex mrelax
25208 Enable linker relaxation. Linker relaxation is a process whereby the
25209 linker attempts to reduce the size of a program by finding shorter
25210 versions of various instructions. Disabled by default.
25211
25212 @item -mint-register=@var{N}
25213 @opindex mint-register
25214 Specify the number of registers to reserve for fast interrupt handler
25215 functions. The value @var{N} can be between 0 and 4. A value of 1
25216 means that register @code{r13} is reserved for the exclusive use
25217 of fast interrupt handlers. A value of 2 reserves @code{r13} and
25218 @code{r12}. A value of 3 reserves @code{r13}, @code{r12} and
25219 @code{r11}, and a value of 4 reserves @code{r13} through @code{r10}.
25220 A value of 0, the default, does not reserve any registers.
25221
25222 @item -msave-acc-in-interrupts
25223 @opindex msave-acc-in-interrupts
25224 Specifies that interrupt handler functions should preserve the
25225 accumulator register. This is only necessary if normal code might use
25226 the accumulator register, for example because it performs 64-bit
25227 multiplications. The default is to ignore the accumulator as this
25228 makes the interrupt handlers faster.
25229
25230 @item -mpid
25231 @itemx -mno-pid
25232 @opindex mpid
25233 @opindex mno-pid
25234 Enables the generation of position independent data. When enabled any
25235 access to constant data is done via an offset from a base address
25236 held in a register. This allows the location of constant data to be
25237 determined at run time without requiring the executable to be
25238 relocated, which is a benefit to embedded applications with tight
25239 memory constraints. Data that can be modified is not affected by this
25240 option.
25241
25242 Note, using this feature reserves a register, usually @code{r13}, for
25243 the constant data base address. This can result in slower and/or
25244 larger code, especially in complicated functions.
25245
25246 The actual register chosen to hold the constant data base address
25247 depends upon whether the @option{-msmall-data-limit} and/or the
25248 @option{-mint-register} command-line options are enabled. Starting
25249 with register @code{r13} and proceeding downwards, registers are
25250 allocated first to satisfy the requirements of @option{-mint-register},
25251 then @option{-mpid} and finally @option{-msmall-data-limit}. Thus it
25252 is possible for the small data area register to be @code{r8} if both
25253 @option{-mint-register=4} and @option{-mpid} are specified on the
25254 command line.
25255
25256 By default this feature is not enabled. The default can be restored
25257 via the @option{-mno-pid} command-line option.
25258
25259 @item -mno-warn-multiple-fast-interrupts
25260 @itemx -mwarn-multiple-fast-interrupts
25261 @opindex mno-warn-multiple-fast-interrupts
25262 @opindex mwarn-multiple-fast-interrupts
25263 Prevents GCC from issuing a warning message if it finds more than one
25264 fast interrupt handler when it is compiling a file. The default is to
25265 issue a warning for each extra fast interrupt handler found, as the RX
25266 only supports one such interrupt.
25267
25268 @item -mallow-string-insns
25269 @itemx -mno-allow-string-insns
25270 @opindex mallow-string-insns
25271 @opindex mno-allow-string-insns
25272 Enables or disables the use of the string manipulation instructions
25273 @code{SMOVF}, @code{SCMPU}, @code{SMOVB}, @code{SMOVU}, @code{SUNTIL}
25274 @code{SWHILE} and also the @code{RMPA} instruction. These
25275 instructions may prefetch data, which is not safe to do if accessing
25276 an I/O register. (See section 12.2.7 of the RX62N Group User's Manual
25277 for more information).
25278
25279 The default is to allow these instructions, but it is not possible for
25280 GCC to reliably detect all circumstances where a string instruction
25281 might be used to access an I/O register, so their use cannot be
25282 disabled automatically. Instead it is reliant upon the programmer to
25283 use the @option{-mno-allow-string-insns} option if their program
25284 accesses I/O space.
25285
25286 When the instructions are enabled GCC defines the C preprocessor
25287 symbol @code{__RX_ALLOW_STRING_INSNS__}, otherwise it defines the
25288 symbol @code{__RX_DISALLOW_STRING_INSNS__}.
25289
25290 @item -mjsr
25291 @itemx -mno-jsr
25292 @opindex mjsr
25293 @opindex mno-jsr
25294 Use only (or not only) @code{JSR} instructions to access functions.
25295 This option can be used when code size exceeds the range of @code{BSR}
25296 instructions. Note that @option{-mno-jsr} does not mean to not use
25297 @code{JSR} but instead means that any type of branch may be used.
25298 @end table
25299
25300 @emph{Note:} The generic GCC command-line option @option{-ffixed-@var{reg}}
25301 has special significance to the RX port when used with the
25302 @code{interrupt} function attribute. This attribute indicates a
25303 function intended to process fast interrupts. GCC ensures
25304 that it only uses the registers @code{r10}, @code{r11}, @code{r12}
25305 and/or @code{r13} and only provided that the normal use of the
25306 corresponding registers have been restricted via the
25307 @option{-ffixed-@var{reg}} or @option{-mint-register} command-line
25308 options.
25309
25310 @node S/390 and zSeries Options
25311 @subsection S/390 and zSeries Options
25312 @cindex S/390 and zSeries Options
25313
25314 These are the @samp{-m} options defined for the S/390 and zSeries architecture.
25315
25316 @table @gcctabopt
25317 @item -mhard-float
25318 @itemx -msoft-float
25319 @opindex mhard-float
25320 @opindex msoft-float
25321 Use (do not use) the hardware floating-point instructions and registers
25322 for floating-point operations. When @option{-msoft-float} is specified,
25323 functions in @file{libgcc.a} are used to perform floating-point
25324 operations. When @option{-mhard-float} is specified, the compiler
25325 generates IEEE floating-point instructions. This is the default.
25326
25327 @item -mhard-dfp
25328 @itemx -mno-hard-dfp
25329 @opindex mhard-dfp
25330 @opindex mno-hard-dfp
25331 Use (do not use) the hardware decimal-floating-point instructions for
25332 decimal-floating-point operations. When @option{-mno-hard-dfp} is
25333 specified, functions in @file{libgcc.a} are used to perform
25334 decimal-floating-point operations. When @option{-mhard-dfp} is
25335 specified, the compiler generates decimal-floating-point hardware
25336 instructions. This is the default for @option{-march=z9-ec} or higher.
25337
25338 @item -mlong-double-64
25339 @itemx -mlong-double-128
25340 @opindex mlong-double-64
25341 @opindex mlong-double-128
25342 These switches control the size of @code{long double} type. A size
25343 of 64 bits makes the @code{long double} type equivalent to the @code{double}
25344 type. This is the default.
25345
25346 @item -mbackchain
25347 @itemx -mno-backchain
25348 @opindex mbackchain
25349 @opindex mno-backchain
25350 Store (do not store) the address of the caller's frame as backchain pointer
25351 into the callee's stack frame.
25352 A backchain may be needed to allow debugging using tools that do not understand
25353 DWARF call frame information.
25354 When @option{-mno-packed-stack} is in effect, the backchain pointer is stored
25355 at the bottom of the stack frame; when @option{-mpacked-stack} is in effect,
25356 the backchain is placed into the topmost word of the 96/160 byte register
25357 save area.
25358
25359 In general, code compiled with @option{-mbackchain} is call-compatible with
25360 code compiled with @option{-mmo-backchain}; however, use of the backchain
25361 for debugging purposes usually requires that the whole binary is built with
25362 @option{-mbackchain}. Note that the combination of @option{-mbackchain},
25363 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25364 to build a linux kernel use @option{-msoft-float}.
25365
25366 The default is to not maintain the backchain.
25367
25368 @item -mpacked-stack
25369 @itemx -mno-packed-stack
25370 @opindex mpacked-stack
25371 @opindex mno-packed-stack
25372 Use (do not use) the packed stack layout. When @option{-mno-packed-stack} is
25373 specified, the compiler uses the all fields of the 96/160 byte register save
25374 area only for their default purpose; unused fields still take up stack space.
25375 When @option{-mpacked-stack} is specified, register save slots are densely
25376 packed at the top of the register save area; unused space is reused for other
25377 purposes, allowing for more efficient use of the available stack space.
25378 However, when @option{-mbackchain} is also in effect, the topmost word of
25379 the save area is always used to store the backchain, and the return address
25380 register is always saved two words below the backchain.
25381
25382 As long as the stack frame backchain is not used, code generated with
25383 @option{-mpacked-stack} is call-compatible with code generated with
25384 @option{-mno-packed-stack}. Note that some non-FSF releases of GCC 2.95 for
25385 S/390 or zSeries generated code that uses the stack frame backchain at run
25386 time, not just for debugging purposes. Such code is not call-compatible
25387 with code compiled with @option{-mpacked-stack}. Also, note that the
25388 combination of @option{-mbackchain},
25389 @option{-mpacked-stack} and @option{-mhard-float} is not supported. In order
25390 to build a linux kernel use @option{-msoft-float}.
25391
25392 The default is to not use the packed stack layout.
25393
25394 @item -msmall-exec
25395 @itemx -mno-small-exec
25396 @opindex msmall-exec
25397 @opindex mno-small-exec
25398 Generate (or do not generate) code using the @code{bras} instruction
25399 to do subroutine calls.
25400 This only works reliably if the total executable size does not
25401 exceed 64k. The default is to use the @code{basr} instruction instead,
25402 which does not have this limitation.
25403
25404 @item -m64
25405 @itemx -m31
25406 @opindex m64
25407 @opindex m31
25408 When @option{-m31} is specified, generate code compliant to the
25409 GNU/Linux for S/390 ABI@. When @option{-m64} is specified, generate
25410 code compliant to the GNU/Linux for zSeries ABI@. This allows GCC in
25411 particular to generate 64-bit instructions. For the @samp{s390}
25412 targets, the default is @option{-m31}, while the @samp{s390x}
25413 targets default to @option{-m64}.
25414
25415 @item -mzarch
25416 @itemx -mesa
25417 @opindex mzarch
25418 @opindex mesa
25419 When @option{-mzarch} is specified, generate code using the
25420 instructions available on z/Architecture.
25421 When @option{-mesa} is specified, generate code using the
25422 instructions available on ESA/390. Note that @option{-mesa} is
25423 not possible with @option{-m64}.
25424 When generating code compliant to the GNU/Linux for S/390 ABI,
25425 the default is @option{-mesa}. When generating code compliant
25426 to the GNU/Linux for zSeries ABI, the default is @option{-mzarch}.
25427
25428 @item -mhtm
25429 @itemx -mno-htm
25430 @opindex mhtm
25431 @opindex mno-htm
25432 The @option{-mhtm} option enables a set of builtins making use of
25433 instructions available with the transactional execution facility
25434 introduced with the IBM zEnterprise EC12 machine generation
25435 @ref{S/390 System z Built-in Functions}.
25436 @option{-mhtm} is enabled by default when using @option{-march=zEC12}.
25437
25438 @item -mvx
25439 @itemx -mno-vx
25440 @opindex mvx
25441 @opindex mno-vx
25442 When @option{-mvx} is specified, generate code using the instructions
25443 available with the vector extension facility introduced with the IBM
25444 z13 machine generation.
25445 This option changes the ABI for some vector type values with regard to
25446 alignment and calling conventions. In case vector type values are
25447 being used in an ABI-relevant context a GAS @samp{.gnu_attribute}
25448 command will be added to mark the resulting binary with the ABI used.
25449 @option{-mvx} is enabled by default when using @option{-march=z13}.
25450
25451 @item -mzvector
25452 @itemx -mno-zvector
25453 @opindex mzvector
25454 @opindex mno-zvector
25455 The @option{-mzvector} option enables vector language extensions and
25456 builtins using instructions available with the vector extension
25457 facility introduced with the IBM z13 machine generation.
25458 This option adds support for @samp{vector} to be used as a keyword to
25459 define vector type variables and arguments. @samp{vector} is only
25460 available when GNU extensions are enabled. It will not be expanded
25461 when requesting strict standard compliance e.g.@: with @option{-std=c99}.
25462 In addition to the GCC low-level builtins @option{-mzvector} enables
25463 a set of builtins added for compatibility with AltiVec-style
25464 implementations like Power and Cell. In order to make use of these
25465 builtins the header file @file{vecintrin.h} needs to be included.
25466 @option{-mzvector} is disabled by default.
25467
25468 @item -mmvcle
25469 @itemx -mno-mvcle
25470 @opindex mmvcle
25471 @opindex mno-mvcle
25472 Generate (or do not generate) code using the @code{mvcle} instruction
25473 to perform block moves. When @option{-mno-mvcle} is specified,
25474 use a @code{mvc} loop instead. This is the default unless optimizing for
25475 size.
25476
25477 @item -mdebug
25478 @itemx -mno-debug
25479 @opindex mdebug
25480 @opindex mno-debug
25481 Print (or do not print) additional debug information when compiling.
25482 The default is to not print debug information.
25483
25484 @item -march=@var{cpu-type}
25485 @opindex march
25486 Generate code that runs on @var{cpu-type}, which is the name of a
25487 system representing a certain processor type. Possible values for
25488 @var{cpu-type} are @samp{z900}/@samp{arch5}, @samp{z990}/@samp{arch6},
25489 @samp{z9-109}, @samp{z9-ec}/@samp{arch7}, @samp{z10}/@samp{arch8},
25490 @samp{z196}/@samp{arch9}, @samp{zEC12}, @samp{z13}/@samp{arch11},
25491 @samp{z14}/@samp{arch12}, and @samp{native}.
25492
25493 The default is @option{-march=z900}.
25494
25495 Specifying @samp{native} as cpu type can be used to select the best
25496 architecture option for the host processor.
25497 @option{-march=native} has no effect if GCC does not recognize the
25498 processor.
25499
25500 @item -mtune=@var{cpu-type}
25501 @opindex mtune
25502 Tune to @var{cpu-type} everything applicable about the generated code,
25503 except for the ABI and the set of available instructions.
25504 The list of @var{cpu-type} values is the same as for @option{-march}.
25505 The default is the value used for @option{-march}.
25506
25507 @item -mtpf-trace
25508 @itemx -mno-tpf-trace
25509 @opindex mtpf-trace
25510 @opindex mno-tpf-trace
25511 Generate code that adds (does not add) in TPF OS specific branches to trace
25512 routines in the operating system. This option is off by default, even
25513 when compiling for the TPF OS@.
25514
25515 @item -mfused-madd
25516 @itemx -mno-fused-madd
25517 @opindex mfused-madd
25518 @opindex mno-fused-madd
25519 Generate code that uses (does not use) the floating-point multiply and
25520 accumulate instructions. These instructions are generated by default if
25521 hardware floating point is used.
25522
25523 @item -mwarn-framesize=@var{framesize}
25524 @opindex mwarn-framesize
25525 Emit a warning if the current function exceeds the given frame size. Because
25526 this is a compile-time check it doesn't need to be a real problem when the program
25527 runs. It is intended to identify functions that most probably cause
25528 a stack overflow. It is useful to be used in an environment with limited stack
25529 size e.g.@: the linux kernel.
25530
25531 @item -mwarn-dynamicstack
25532 @opindex mwarn-dynamicstack
25533 Emit a warning if the function calls @code{alloca} or uses dynamically-sized
25534 arrays. This is generally a bad idea with a limited stack size.
25535
25536 @item -mstack-guard=@var{stack-guard}
25537 @itemx -mstack-size=@var{stack-size}
25538 @opindex mstack-guard
25539 @opindex mstack-size
25540 If these options are provided the S/390 back end emits additional instructions in
25541 the function prologue that trigger a trap if the stack size is @var{stack-guard}
25542 bytes above the @var{stack-size} (remember that the stack on S/390 grows downward).
25543 If the @var{stack-guard} option is omitted the smallest power of 2 larger than
25544 the frame size of the compiled function is chosen.
25545 These options are intended to be used to help debugging stack overflow problems.
25546 The additionally emitted code causes only little overhead and hence can also be
25547 used in production-like systems without greater performance degradation. The given
25548 values have to be exact powers of 2 and @var{stack-size} has to be greater than
25549 @var{stack-guard} without exceeding 64k.
25550 In order to be efficient the extra code makes the assumption that the stack starts
25551 at an address aligned to the value given by @var{stack-size}.
25552 The @var{stack-guard} option can only be used in conjunction with @var{stack-size}.
25553
25554 @item -mhotpatch=@var{pre-halfwords},@var{post-halfwords}
25555 @opindex mhotpatch
25556 If the hotpatch option is enabled, a ``hot-patching'' function
25557 prologue is generated for all functions in the compilation unit.
25558 The funtion label is prepended with the given number of two-byte
25559 NOP instructions (@var{pre-halfwords}, maximum 1000000). After
25560 the label, 2 * @var{post-halfwords} bytes are appended, using the
25561 largest NOP like instructions the architecture allows (maximum
25562 1000000).
25563
25564 If both arguments are zero, hotpatching is disabled.
25565
25566 This option can be overridden for individual functions with the
25567 @code{hotpatch} attribute.
25568 @end table
25569
25570 @node Score Options
25571 @subsection Score Options
25572 @cindex Score Options
25573
25574 These options are defined for Score implementations:
25575
25576 @table @gcctabopt
25577 @item -meb
25578 @opindex meb
25579 Compile code for big-endian mode. This is the default.
25580
25581 @item -mel
25582 @opindex mel
25583 Compile code for little-endian mode.
25584
25585 @item -mnhwloop
25586 @opindex mnhwloop
25587 Disable generation of @code{bcnz} instructions.
25588
25589 @item -muls
25590 @opindex muls
25591 Enable generation of unaligned load and store instructions.
25592
25593 @item -mmac
25594 @opindex mmac
25595 Enable the use of multiply-accumulate instructions. Disabled by default.
25596
25597 @item -mscore5
25598 @opindex mscore5
25599 Specify the SCORE5 as the target architecture.
25600
25601 @item -mscore5u
25602 @opindex mscore5u
25603 Specify the SCORE5U of the target architecture.
25604
25605 @item -mscore7
25606 @opindex mscore7
25607 Specify the SCORE7 as the target architecture. This is the default.
25608
25609 @item -mscore7d
25610 @opindex mscore7d
25611 Specify the SCORE7D as the target architecture.
25612 @end table
25613
25614 @node SH Options
25615 @subsection SH Options
25616
25617 These @samp{-m} options are defined for the SH implementations:
25618
25619 @table @gcctabopt
25620 @item -m1
25621 @opindex m1
25622 Generate code for the SH1.
25623
25624 @item -m2
25625 @opindex m2
25626 Generate code for the SH2.
25627
25628 @item -m2e
25629 Generate code for the SH2e.
25630
25631 @item -m2a-nofpu
25632 @opindex m2a-nofpu
25633 Generate code for the SH2a without FPU, or for a SH2a-FPU in such a way
25634 that the floating-point unit is not used.
25635
25636 @item -m2a-single-only
25637 @opindex m2a-single-only
25638 Generate code for the SH2a-FPU, in such a way that no double-precision
25639 floating-point operations are used.
25640
25641 @item -m2a-single
25642 @opindex m2a-single
25643 Generate code for the SH2a-FPU assuming the floating-point unit is in
25644 single-precision mode by default.
25645
25646 @item -m2a
25647 @opindex m2a
25648 Generate code for the SH2a-FPU assuming the floating-point unit is in
25649 double-precision mode by default.
25650
25651 @item -m3
25652 @opindex m3
25653 Generate code for the SH3.
25654
25655 @item -m3e
25656 @opindex m3e
25657 Generate code for the SH3e.
25658
25659 @item -m4-nofpu
25660 @opindex m4-nofpu
25661 Generate code for the SH4 without a floating-point unit.
25662
25663 @item -m4-single-only
25664 @opindex m4-single-only
25665 Generate code for the SH4 with a floating-point unit that only
25666 supports single-precision arithmetic.
25667
25668 @item -m4-single
25669 @opindex m4-single
25670 Generate code for the SH4 assuming the floating-point unit is in
25671 single-precision mode by default.
25672
25673 @item -m4
25674 @opindex m4
25675 Generate code for the SH4.
25676
25677 @item -m4-100
25678 @opindex m4-100
25679 Generate code for SH4-100.
25680
25681 @item -m4-100-nofpu
25682 @opindex m4-100-nofpu
25683 Generate code for SH4-100 in such a way that the
25684 floating-point unit is not used.
25685
25686 @item -m4-100-single
25687 @opindex m4-100-single
25688 Generate code for SH4-100 assuming the floating-point unit is in
25689 single-precision mode by default.
25690
25691 @item -m4-100-single-only
25692 @opindex m4-100-single-only
25693 Generate code for SH4-100 in such a way that no double-precision
25694 floating-point operations are used.
25695
25696 @item -m4-200
25697 @opindex m4-200
25698 Generate code for SH4-200.
25699
25700 @item -m4-200-nofpu
25701 @opindex m4-200-nofpu
25702 Generate code for SH4-200 without in such a way that the
25703 floating-point unit is not used.
25704
25705 @item -m4-200-single
25706 @opindex m4-200-single
25707 Generate code for SH4-200 assuming the floating-point unit is in
25708 single-precision mode by default.
25709
25710 @item -m4-200-single-only
25711 @opindex m4-200-single-only
25712 Generate code for SH4-200 in such a way that no double-precision
25713 floating-point operations are used.
25714
25715 @item -m4-300
25716 @opindex m4-300
25717 Generate code for SH4-300.
25718
25719 @item -m4-300-nofpu
25720 @opindex m4-300-nofpu
25721 Generate code for SH4-300 without in such a way that the
25722 floating-point unit is not used.
25723
25724 @item -m4-300-single
25725 @opindex m4-300-single
25726 Generate code for SH4-300 in such a way that no double-precision
25727 floating-point operations are used.
25728
25729 @item -m4-300-single-only
25730 @opindex m4-300-single-only
25731 Generate code for SH4-300 in such a way that no double-precision
25732 floating-point operations are used.
25733
25734 @item -m4-340
25735 @opindex m4-340
25736 Generate code for SH4-340 (no MMU, no FPU).
25737
25738 @item -m4-500
25739 @opindex m4-500
25740 Generate code for SH4-500 (no FPU). Passes @option{-isa=sh4-nofpu} to the
25741 assembler.
25742
25743 @item -m4a-nofpu
25744 @opindex m4a-nofpu
25745 Generate code for the SH4al-dsp, or for a SH4a in such a way that the
25746 floating-point unit is not used.
25747
25748 @item -m4a-single-only
25749 @opindex m4a-single-only
25750 Generate code for the SH4a, in such a way that no double-precision
25751 floating-point operations are used.
25752
25753 @item -m4a-single
25754 @opindex m4a-single
25755 Generate code for the SH4a assuming the floating-point unit is in
25756 single-precision mode by default.
25757
25758 @item -m4a
25759 @opindex m4a
25760 Generate code for the SH4a.
25761
25762 @item -m4al
25763 @opindex m4al
25764 Same as @option{-m4a-nofpu}, except that it implicitly passes
25765 @option{-dsp} to the assembler. GCC doesn't generate any DSP
25766 instructions at the moment.
25767
25768 @item -mb
25769 @opindex mb
25770 Compile code for the processor in big-endian mode.
25771
25772 @item -ml
25773 @opindex ml
25774 Compile code for the processor in little-endian mode.
25775
25776 @item -mdalign
25777 @opindex mdalign
25778 Align doubles at 64-bit boundaries. Note that this changes the calling
25779 conventions, and thus some functions from the standard C library do
25780 not work unless you recompile it first with @option{-mdalign}.
25781
25782 @item -mrelax
25783 @opindex mrelax
25784 Shorten some address references at link time, when possible; uses the
25785 linker option @option{-relax}.
25786
25787 @item -mbigtable
25788 @opindex mbigtable
25789 Use 32-bit offsets in @code{switch} tables. The default is to use
25790 16-bit offsets.
25791
25792 @item -mbitops
25793 @opindex mbitops
25794 Enable the use of bit manipulation instructions on SH2A.
25795
25796 @item -mfmovd
25797 @opindex mfmovd
25798 Enable the use of the instruction @code{fmovd}. Check @option{-mdalign} for
25799 alignment constraints.
25800
25801 @item -mrenesas
25802 @opindex mrenesas
25803 Comply with the calling conventions defined by Renesas.
25804
25805 @item -mno-renesas
25806 @opindex mno-renesas
25807 Comply with the calling conventions defined for GCC before the Renesas
25808 conventions were available. This option is the default for all
25809 targets of the SH toolchain.
25810
25811 @item -mnomacsave
25812 @opindex mnomacsave
25813 Mark the @code{MAC} register as call-clobbered, even if
25814 @option{-mrenesas} is given.
25815
25816 @item -mieee
25817 @itemx -mno-ieee
25818 @opindex mieee
25819 @opindex mno-ieee
25820 Control the IEEE compliance of floating-point comparisons, which affects the
25821 handling of cases where the result of a comparison is unordered. By default
25822 @option{-mieee} is implicitly enabled. If @option{-ffinite-math-only} is
25823 enabled @option{-mno-ieee} is implicitly set, which results in faster
25824 floating-point greater-equal and less-equal comparisons. The implicit settings
25825 can be overridden by specifying either @option{-mieee} or @option{-mno-ieee}.
25826
25827 @item -minline-ic_invalidate
25828 @opindex minline-ic_invalidate
25829 Inline code to invalidate instruction cache entries after setting up
25830 nested function trampolines.
25831 This option has no effect if @option{-musermode} is in effect and the selected
25832 code generation option (e.g.@: @option{-m4}) does not allow the use of the @code{icbi}
25833 instruction.
25834 If the selected code generation option does not allow the use of the @code{icbi}
25835 instruction, and @option{-musermode} is not in effect, the inlined code
25836 manipulates the instruction cache address array directly with an associative
25837 write. This not only requires privileged mode at run time, but it also
25838 fails if the cache line had been mapped via the TLB and has become unmapped.
25839
25840 @item -misize
25841 @opindex misize
25842 Dump instruction size and location in the assembly code.
25843
25844 @item -mpadstruct
25845 @opindex mpadstruct
25846 This option is deprecated. It pads structures to multiple of 4 bytes,
25847 which is incompatible with the SH ABI@.
25848
25849 @item -matomic-model=@var{model}
25850 @opindex matomic-model=@var{model}
25851 Sets the model of atomic operations and additional parameters as a comma
25852 separated list. For details on the atomic built-in functions see
25853 @ref{__atomic Builtins}. The following models and parameters are supported:
25854
25855 @table @samp
25856
25857 @item none
25858 Disable compiler generated atomic sequences and emit library calls for atomic
25859 operations. This is the default if the target is not @code{sh*-*-linux*}.
25860
25861 @item soft-gusa
25862 Generate GNU/Linux compatible gUSA software atomic sequences for the atomic
25863 built-in functions. The generated atomic sequences require additional support
25864 from the interrupt/exception handling code of the system and are only suitable
25865 for SH3* and SH4* single-core systems. This option is enabled by default when
25866 the target is @code{sh*-*-linux*} and SH3* or SH4*. When the target is SH4A,
25867 this option also partially utilizes the hardware atomic instructions
25868 @code{movli.l} and @code{movco.l} to create more efficient code, unless
25869 @samp{strict} is specified.
25870
25871 @item soft-tcb
25872 Generate software atomic sequences that use a variable in the thread control
25873 block. This is a variation of the gUSA sequences which can also be used on
25874 SH1* and SH2* targets. The generated atomic sequences require additional
25875 support from the interrupt/exception handling code of the system and are only
25876 suitable for single-core systems. When using this model, the @samp{gbr-offset=}
25877 parameter has to be specified as well.
25878
25879 @item soft-imask
25880 Generate software atomic sequences that temporarily disable interrupts by
25881 setting @code{SR.IMASK = 1111}. This model works only when the program runs
25882 in privileged mode and is only suitable for single-core systems. Additional
25883 support from the interrupt/exception handling code of the system is not
25884 required. This model is enabled by default when the target is
25885 @code{sh*-*-linux*} and SH1* or SH2*.
25886
25887 @item hard-llcs
25888 Generate hardware atomic sequences using the @code{movli.l} and @code{movco.l}
25889 instructions only. This is only available on SH4A and is suitable for
25890 multi-core systems. Since the hardware instructions support only 32 bit atomic
25891 variables access to 8 or 16 bit variables is emulated with 32 bit accesses.
25892 Code compiled with this option is also compatible with other software
25893 atomic model interrupt/exception handling systems if executed on an SH4A
25894 system. Additional support from the interrupt/exception handling code of the
25895 system is not required for this model.
25896
25897 @item gbr-offset=
25898 This parameter specifies the offset in bytes of the variable in the thread
25899 control block structure that should be used by the generated atomic sequences
25900 when the @samp{soft-tcb} model has been selected. For other models this
25901 parameter is ignored. The specified value must be an integer multiple of four
25902 and in the range 0-1020.
25903
25904 @item strict
25905 This parameter prevents mixed usage of multiple atomic models, even if they
25906 are compatible, and makes the compiler generate atomic sequences of the
25907 specified model only.
25908
25909 @end table
25910
25911 @item -mtas
25912 @opindex mtas
25913 Generate the @code{tas.b} opcode for @code{__atomic_test_and_set}.
25914 Notice that depending on the particular hardware and software configuration
25915 this can degrade overall performance due to the operand cache line flushes
25916 that are implied by the @code{tas.b} instruction. On multi-core SH4A
25917 processors the @code{tas.b} instruction must be used with caution since it
25918 can result in data corruption for certain cache configurations.
25919
25920 @item -mprefergot
25921 @opindex mprefergot
25922 When generating position-independent code, emit function calls using
25923 the Global Offset Table instead of the Procedure Linkage Table.
25924
25925 @item -musermode
25926 @itemx -mno-usermode
25927 @opindex musermode
25928 @opindex mno-usermode
25929 Don't allow (allow) the compiler generating privileged mode code. Specifying
25930 @option{-musermode} also implies @option{-mno-inline-ic_invalidate} if the
25931 inlined code would not work in user mode. @option{-musermode} is the default
25932 when the target is @code{sh*-*-linux*}. If the target is SH1* or SH2*
25933 @option{-musermode} has no effect, since there is no user mode.
25934
25935 @item -multcost=@var{number}
25936 @opindex multcost=@var{number}
25937 Set the cost to assume for a multiply insn.
25938
25939 @item -mdiv=@var{strategy}
25940 @opindex mdiv=@var{strategy}
25941 Set the division strategy to be used for integer division operations.
25942 @var{strategy} can be one of:
25943
25944 @table @samp
25945
25946 @item call-div1
25947 Calls a library function that uses the single-step division instruction
25948 @code{div1} to perform the operation. Division by zero calculates an
25949 unspecified result and does not trap. This is the default except for SH4,
25950 SH2A and SHcompact.
25951
25952 @item call-fp
25953 Calls a library function that performs the operation in double precision
25954 floating point. Division by zero causes a floating-point exception. This is
25955 the default for SHcompact with FPU. Specifying this for targets that do not
25956 have a double precision FPU defaults to @code{call-div1}.
25957
25958 @item call-table
25959 Calls a library function that uses a lookup table for small divisors and
25960 the @code{div1} instruction with case distinction for larger divisors. Division
25961 by zero calculates an unspecified result and does not trap. This is the default
25962 for SH4. Specifying this for targets that do not have dynamic shift
25963 instructions defaults to @code{call-div1}.
25964
25965 @end table
25966
25967 When a division strategy has not been specified the default strategy is
25968 selected based on the current target. For SH2A the default strategy is to
25969 use the @code{divs} and @code{divu} instructions instead of library function
25970 calls.
25971
25972 @item -maccumulate-outgoing-args
25973 @opindex maccumulate-outgoing-args
25974 Reserve space once for outgoing arguments in the function prologue rather
25975 than around each call. Generally beneficial for performance and size. Also
25976 needed for unwinding to avoid changing the stack frame around conditional code.
25977
25978 @item -mdivsi3_libfunc=@var{name}
25979 @opindex mdivsi3_libfunc=@var{name}
25980 Set the name of the library function used for 32-bit signed division to
25981 @var{name}.
25982 This only affects the name used in the @samp{call} division strategies, and
25983 the compiler still expects the same sets of input/output/clobbered registers as
25984 if this option were not present.
25985
25986 @item -mfixed-range=@var{register-range}
25987 @opindex mfixed-range
25988 Generate code treating the given register range as fixed registers.
25989 A fixed register is one that the register allocator cannot use. This is
25990 useful when compiling kernel code. A register range is specified as
25991 two registers separated by a dash. Multiple register ranges can be
25992 specified separated by a comma.
25993
25994 @item -mbranch-cost=@var{num}
25995 @opindex mbranch-cost=@var{num}
25996 Assume @var{num} to be the cost for a branch instruction. Higher numbers
25997 make the compiler try to generate more branch-free code if possible.
25998 If not specified the value is selected depending on the processor type that
25999 is being compiled for.
26000
26001 @item -mzdcbranch
26002 @itemx -mno-zdcbranch
26003 @opindex mzdcbranch
26004 @opindex mno-zdcbranch
26005 Assume (do not assume) that zero displacement conditional branch instructions
26006 @code{bt} and @code{bf} are fast. If @option{-mzdcbranch} is specified, the
26007 compiler prefers zero displacement branch code sequences. This is
26008 enabled by default when generating code for SH4 and SH4A. It can be explicitly
26009 disabled by specifying @option{-mno-zdcbranch}.
26010
26011 @item -mcbranch-force-delay-slot
26012 @opindex mcbranch-force-delay-slot
26013 Force the usage of delay slots for conditional branches, which stuffs the delay
26014 slot with a @code{nop} if a suitable instruction cannot be found. By default
26015 this option is disabled. It can be enabled to work around hardware bugs as
26016 found in the original SH7055.
26017
26018 @item -mfused-madd
26019 @itemx -mno-fused-madd
26020 @opindex mfused-madd
26021 @opindex mno-fused-madd
26022 Generate code that uses (does not use) the floating-point multiply and
26023 accumulate instructions. These instructions are generated by default
26024 if hardware floating point is used. The machine-dependent
26025 @option{-mfused-madd} option is now mapped to the machine-independent
26026 @option{-ffp-contract=fast} option, and @option{-mno-fused-madd} is
26027 mapped to @option{-ffp-contract=off}.
26028
26029 @item -mfsca
26030 @itemx -mno-fsca
26031 @opindex mfsca
26032 @opindex mno-fsca
26033 Allow or disallow the compiler to emit the @code{fsca} instruction for sine
26034 and cosine approximations. The option @option{-mfsca} must be used in
26035 combination with @option{-funsafe-math-optimizations}. It is enabled by default
26036 when generating code for SH4A. Using @option{-mno-fsca} disables sine and cosine
26037 approximations even if @option{-funsafe-math-optimizations} is in effect.
26038
26039 @item -mfsrra
26040 @itemx -mno-fsrra
26041 @opindex mfsrra
26042 @opindex mno-fsrra
26043 Allow or disallow the compiler to emit the @code{fsrra} instruction for
26044 reciprocal square root approximations. The option @option{-mfsrra} must be used
26045 in combination with @option{-funsafe-math-optimizations} and
26046 @option{-ffinite-math-only}. It is enabled by default when generating code for
26047 SH4A. Using @option{-mno-fsrra} disables reciprocal square root approximations
26048 even if @option{-funsafe-math-optimizations} and @option{-ffinite-math-only} are
26049 in effect.
26050
26051 @item -mpretend-cmove
26052 @opindex mpretend-cmove
26053 Prefer zero-displacement conditional branches for conditional move instruction
26054 patterns. This can result in faster code on the SH4 processor.
26055
26056 @item -mfdpic
26057 @opindex fdpic
26058 Generate code using the FDPIC ABI.
26059
26060 @end table
26061
26062 @node Solaris 2 Options
26063 @subsection Solaris 2 Options
26064 @cindex Solaris 2 options
26065
26066 These @samp{-m} options are supported on Solaris 2:
26067
26068 @table @gcctabopt
26069 @item -mclear-hwcap
26070 @opindex mclear-hwcap
26071 @option{-mclear-hwcap} tells the compiler to remove the hardware
26072 capabilities generated by the Solaris assembler. This is only necessary
26073 when object files use ISA extensions not supported by the current
26074 machine, but check at runtime whether or not to use them.
26075
26076 @item -mimpure-text
26077 @opindex mimpure-text
26078 @option{-mimpure-text}, used in addition to @option{-shared}, tells
26079 the compiler to not pass @option{-z text} to the linker when linking a
26080 shared object. Using this option, you can link position-dependent
26081 code into a shared object.
26082
26083 @option{-mimpure-text} suppresses the ``relocations remain against
26084 allocatable but non-writable sections'' linker error message.
26085 However, the necessary relocations trigger copy-on-write, and the
26086 shared object is not actually shared across processes. Instead of
26087 using @option{-mimpure-text}, you should compile all source code with
26088 @option{-fpic} or @option{-fPIC}.
26089
26090 @end table
26091
26092 These switches are supported in addition to the above on Solaris 2:
26093
26094 @table @gcctabopt
26095 @item -pthreads
26096 @opindex pthreads
26097 This is a synonym for @option{-pthread}.
26098 @end table
26099
26100 @node SPARC Options
26101 @subsection SPARC Options
26102 @cindex SPARC options
26103
26104 These @samp{-m} options are supported on the SPARC:
26105
26106 @table @gcctabopt
26107 @item -mno-app-regs
26108 @itemx -mapp-regs
26109 @opindex mno-app-regs
26110 @opindex mapp-regs
26111 Specify @option{-mapp-regs} to generate output using the global registers
26112 2 through 4, which the SPARC SVR4 ABI reserves for applications. Like the
26113 global register 1, each global register 2 through 4 is then treated as an
26114 allocable register that is clobbered by function calls. This is the default.
26115
26116 To be fully SVR4 ABI-compliant at the cost of some performance loss,
26117 specify @option{-mno-app-regs}. You should compile libraries and system
26118 software with this option.
26119
26120 @item -mflat
26121 @itemx -mno-flat
26122 @opindex mflat
26123 @opindex mno-flat
26124 With @option{-mflat}, the compiler does not generate save/restore instructions
26125 and uses a ``flat'' or single register window model. This model is compatible
26126 with the regular register window model. The local registers and the input
26127 registers (0--5) are still treated as ``call-saved'' registers and are
26128 saved on the stack as needed.
26129
26130 With @option{-mno-flat} (the default), the compiler generates save/restore
26131 instructions (except for leaf functions). This is the normal operating mode.
26132
26133 @item -mfpu
26134 @itemx -mhard-float
26135 @opindex mfpu
26136 @opindex mhard-float
26137 Generate output containing floating-point instructions. This is the
26138 default.
26139
26140 @item -mno-fpu
26141 @itemx -msoft-float
26142 @opindex mno-fpu
26143 @opindex msoft-float
26144 Generate output containing library calls for floating point.
26145 @strong{Warning:} the requisite libraries are not available for all SPARC
26146 targets. Normally the facilities of the machine's usual C compiler are
26147 used, but this cannot be done directly in cross-compilation. You must make
26148 your own arrangements to provide suitable library functions for
26149 cross-compilation. The embedded targets @samp{sparc-*-aout} and
26150 @samp{sparclite-*-*} do provide software floating-point support.
26151
26152 @option{-msoft-float} changes the calling convention in the output file;
26153 therefore, it is only useful if you compile @emph{all} of a program with
26154 this option. In particular, you need to compile @file{libgcc.a}, the
26155 library that comes with GCC, with @option{-msoft-float} in order for
26156 this to work.
26157
26158 @item -mhard-quad-float
26159 @opindex mhard-quad-float
26160 Generate output containing quad-word (long double) floating-point
26161 instructions.
26162
26163 @item -msoft-quad-float
26164 @opindex msoft-quad-float
26165 Generate output containing library calls for quad-word (long double)
26166 floating-point instructions. The functions called are those specified
26167 in the SPARC ABI@. This is the default.
26168
26169 As of this writing, there are no SPARC implementations that have hardware
26170 support for the quad-word floating-point instructions. They all invoke
26171 a trap handler for one of these instructions, and then the trap handler
26172 emulates the effect of the instruction. Because of the trap handler overhead,
26173 this is much slower than calling the ABI library routines. Thus the
26174 @option{-msoft-quad-float} option is the default.
26175
26176 @item -mno-unaligned-doubles
26177 @itemx -munaligned-doubles
26178 @opindex mno-unaligned-doubles
26179 @opindex munaligned-doubles
26180 Assume that doubles have 8-byte alignment. This is the default.
26181
26182 With @option{-munaligned-doubles}, GCC assumes that doubles have 8-byte
26183 alignment only if they are contained in another type, or if they have an
26184 absolute address. Otherwise, it assumes they have 4-byte alignment.
26185 Specifying this option avoids some rare compatibility problems with code
26186 generated by other compilers. It is not the default because it results
26187 in a performance loss, especially for floating-point code.
26188
26189 @item -muser-mode
26190 @itemx -mno-user-mode
26191 @opindex muser-mode
26192 @opindex mno-user-mode
26193 Do not generate code that can only run in supervisor mode. This is relevant
26194 only for the @code{casa} instruction emitted for the LEON3 processor. This
26195 is the default.
26196
26197 @item -mfaster-structs
26198 @itemx -mno-faster-structs
26199 @opindex mfaster-structs
26200 @opindex mno-faster-structs
26201 With @option{-mfaster-structs}, the compiler assumes that structures
26202 should have 8-byte alignment. This enables the use of pairs of
26203 @code{ldd} and @code{std} instructions for copies in structure
26204 assignment, in place of twice as many @code{ld} and @code{st} pairs.
26205 However, the use of this changed alignment directly violates the SPARC
26206 ABI@. Thus, it's intended only for use on targets where the developer
26207 acknowledges that their resulting code is not directly in line with
26208 the rules of the ABI@.
26209
26210 @item -mstd-struct-return
26211 @itemx -mno-std-struct-return
26212 @opindex mstd-struct-return
26213 @opindex mno-std-struct-return
26214 With @option{-mstd-struct-return}, the compiler generates checking code
26215 in functions returning structures or unions to detect size mismatches
26216 between the two sides of function calls, as per the 32-bit ABI@.
26217
26218 The default is @option{-mno-std-struct-return}. This option has no effect
26219 in 64-bit mode.
26220
26221 @item -mlra
26222 @itemx -mno-lra
26223 @opindex mlra
26224 @opindex mno-lra
26225 Enable Local Register Allocation. This is the default for SPARC since GCC 7
26226 so @option{-mno-lra} needs to be passed to get old Reload.
26227
26228 @item -mcpu=@var{cpu_type}
26229 @opindex mcpu
26230 Set the instruction set, register set, and instruction scheduling parameters
26231 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
26232 @samp{v7}, @samp{cypress}, @samp{v8}, @samp{supersparc}, @samp{hypersparc},
26233 @samp{leon}, @samp{leon3}, @samp{leon3v7}, @samp{sparclite}, @samp{f930},
26234 @samp{f934}, @samp{sparclite86x}, @samp{sparclet}, @samp{tsc701}, @samp{v9},
26235 @samp{ultrasparc}, @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2},
26236 @samp{niagara3}, @samp{niagara4}, @samp{niagara7} and @samp{m8}.
26237
26238 Native Solaris and GNU/Linux toolchains also support the value @samp{native},
26239 which selects the best architecture option for the host processor.
26240 @option{-mcpu=native} has no effect if GCC does not recognize
26241 the processor.
26242
26243 Default instruction scheduling parameters are used for values that select
26244 an architecture and not an implementation. These are @samp{v7}, @samp{v8},
26245 @samp{sparclite}, @samp{sparclet}, @samp{v9}.
26246
26247 Here is a list of each supported architecture and their supported
26248 implementations.
26249
26250 @table @asis
26251 @item v7
26252 cypress, leon3v7
26253
26254 @item v8
26255 supersparc, hypersparc, leon, leon3
26256
26257 @item sparclite
26258 f930, f934, sparclite86x
26259
26260 @item sparclet
26261 tsc701
26262
26263 @item v9
26264 ultrasparc, ultrasparc3, niagara, niagara2, niagara3, niagara4,
26265 niagara7, m8
26266 @end table
26267
26268 By default (unless configured otherwise), GCC generates code for the V7
26269 variant of the SPARC architecture. With @option{-mcpu=cypress}, the compiler
26270 additionally optimizes it for the Cypress CY7C602 chip, as used in the
26271 SPARCStation/SPARCServer 3xx series. This is also appropriate for the older
26272 SPARCStation 1, 2, IPX etc.
26273
26274 With @option{-mcpu=v8}, GCC generates code for the V8 variant of the SPARC
26275 architecture. The only difference from V7 code is that the compiler emits
26276 the integer multiply and integer divide instructions which exist in SPARC-V8
26277 but not in SPARC-V7. With @option{-mcpu=supersparc}, the compiler additionally
26278 optimizes it for the SuperSPARC chip, as used in the SPARCStation 10, 1000 and
26279 2000 series.
26280
26281 With @option{-mcpu=sparclite}, GCC generates code for the SPARClite variant of
26282 the SPARC architecture. This adds the integer multiply, integer divide step
26283 and scan (@code{ffs}) instructions which exist in SPARClite but not in SPARC-V7.
26284 With @option{-mcpu=f930}, the compiler additionally optimizes it for the
26285 Fujitsu MB86930 chip, which is the original SPARClite, with no FPU@. With
26286 @option{-mcpu=f934}, the compiler additionally optimizes it for the Fujitsu
26287 MB86934 chip, which is the more recent SPARClite with FPU@.
26288
26289 With @option{-mcpu=sparclet}, GCC generates code for the SPARClet variant of
26290 the SPARC architecture. This adds the integer multiply, multiply/accumulate,
26291 integer divide step and scan (@code{ffs}) instructions which exist in SPARClet
26292 but not in SPARC-V7. With @option{-mcpu=tsc701}, the compiler additionally
26293 optimizes it for the TEMIC SPARClet chip.
26294
26295 With @option{-mcpu=v9}, GCC generates code for the V9 variant of the SPARC
26296 architecture. This adds 64-bit integer and floating-point move instructions,
26297 3 additional floating-point condition code registers and conditional move
26298 instructions. With @option{-mcpu=ultrasparc}, the compiler additionally
26299 optimizes it for the Sun UltraSPARC I/II/IIi chips. With
26300 @option{-mcpu=ultrasparc3}, the compiler additionally optimizes it for the
26301 Sun UltraSPARC III/III+/IIIi/IIIi+/IV/IV+ chips. With
26302 @option{-mcpu=niagara}, the compiler additionally optimizes it for
26303 Sun UltraSPARC T1 chips. With @option{-mcpu=niagara2}, the compiler
26304 additionally optimizes it for Sun UltraSPARC T2 chips. With
26305 @option{-mcpu=niagara3}, the compiler additionally optimizes it for Sun
26306 UltraSPARC T3 chips. With @option{-mcpu=niagara4}, the compiler
26307 additionally optimizes it for Sun UltraSPARC T4 chips. With
26308 @option{-mcpu=niagara7}, the compiler additionally optimizes it for
26309 Oracle SPARC M7 chips. With @option{-mcpu=m8}, the compiler
26310 additionally optimizes it for Oracle M8 chips.
26311
26312 @item -mtune=@var{cpu_type}
26313 @opindex mtune
26314 Set the instruction scheduling parameters for machine type
26315 @var{cpu_type}, but do not set the instruction set or register set that the
26316 option @option{-mcpu=@var{cpu_type}} does.
26317
26318 The same values for @option{-mcpu=@var{cpu_type}} can be used for
26319 @option{-mtune=@var{cpu_type}}, but the only useful values are those
26320 that select a particular CPU implementation. Those are
26321 @samp{cypress}, @samp{supersparc}, @samp{hypersparc}, @samp{leon},
26322 @samp{leon3}, @samp{leon3v7}, @samp{f930}, @samp{f934},
26323 @samp{sparclite86x}, @samp{tsc701}, @samp{ultrasparc},
26324 @samp{ultrasparc3}, @samp{niagara}, @samp{niagara2}, @samp{niagara3},
26325 @samp{niagara4}, @samp{niagara7} and @samp{m8}. With native Solaris
26326 and GNU/Linux toolchains, @samp{native} can also be used.
26327
26328 @item -mv8plus
26329 @itemx -mno-v8plus
26330 @opindex mv8plus
26331 @opindex mno-v8plus
26332 With @option{-mv8plus}, GCC generates code for the SPARC-V8+ ABI@. The
26333 difference from the V8 ABI is that the global and out registers are
26334 considered 64 bits wide. This is enabled by default on Solaris in 32-bit
26335 mode for all SPARC-V9 processors.
26336
26337 @item -mvis
26338 @itemx -mno-vis
26339 @opindex mvis
26340 @opindex mno-vis
26341 With @option{-mvis}, GCC generates code that takes advantage of the UltraSPARC
26342 Visual Instruction Set extensions. The default is @option{-mno-vis}.
26343
26344 @item -mvis2
26345 @itemx -mno-vis2
26346 @opindex mvis2
26347 @opindex mno-vis2
26348 With @option{-mvis2}, GCC generates code that takes advantage of
26349 version 2.0 of the UltraSPARC Visual Instruction Set extensions. The
26350 default is @option{-mvis2} when targeting a cpu that supports such
26351 instructions, such as UltraSPARC-III and later. Setting @option{-mvis2}
26352 also sets @option{-mvis}.
26353
26354 @item -mvis3
26355 @itemx -mno-vis3
26356 @opindex mvis3
26357 @opindex mno-vis3
26358 With @option{-mvis3}, GCC generates code that takes advantage of
26359 version 3.0 of the UltraSPARC Visual Instruction Set extensions. The
26360 default is @option{-mvis3} when targeting a cpu that supports such
26361 instructions, such as niagara-3 and later. Setting @option{-mvis3}
26362 also sets @option{-mvis2} and @option{-mvis}.
26363
26364 @item -mvis4
26365 @itemx -mno-vis4
26366 @opindex mvis4
26367 @opindex mno-vis4
26368 With @option{-mvis4}, GCC generates code that takes advantage of
26369 version 4.0 of the UltraSPARC Visual Instruction Set extensions. The
26370 default is @option{-mvis4} when targeting a cpu that supports such
26371 instructions, such as niagara-7 and later. Setting @option{-mvis4}
26372 also sets @option{-mvis3}, @option{-mvis2} and @option{-mvis}.
26373
26374 @item -mvis4b
26375 @itemx -mno-vis4b
26376 @opindex mvis4b
26377 @opindex mno-vis4b
26378 With @option{-mvis4b}, GCC generates code that takes advantage of
26379 version 4.0 of the UltraSPARC Visual Instruction Set extensions, plus
26380 the additional VIS instructions introduced in the Oracle SPARC
26381 Architecture 2017. The default is @option{-mvis4b} when targeting a
26382 cpu that supports such instructions, such as m8 and later. Setting
26383 @option{-mvis4b} also sets @option{-mvis4}, @option{-mvis3},
26384 @option{-mvis2} and @option{-mvis}.
26385
26386 @item -mcbcond
26387 @itemx -mno-cbcond
26388 @opindex mcbcond
26389 @opindex mno-cbcond
26390 With @option{-mcbcond}, GCC generates code that takes advantage of the UltraSPARC
26391 Compare-and-Branch-on-Condition instructions. The default is @option{-mcbcond}
26392 when targeting a CPU that supports such instructions, such as Niagara-4 and
26393 later.
26394
26395 @item -mfmaf
26396 @itemx -mno-fmaf
26397 @opindex mfmaf
26398 @opindex mno-fmaf
26399 With @option{-mfmaf}, GCC generates code that takes advantage of the UltraSPARC
26400 Fused Multiply-Add Floating-point instructions. The default is @option{-mfmaf}
26401 when targeting a CPU that supports such instructions, such as Niagara-3 and
26402 later.
26403
26404 @item -mfsmuld
26405 @itemx -mno-fsmuld
26406 @opindex mfsmuld
26407 @opindex mno-fsmuld
26408 With @option{-mfsmuld}, GCC generates code that takes advantage of the
26409 Floating-point Multiply Single to Double (FsMULd) instruction. The default is
26410 @option{-mfsmuld} when targeting a CPU supporting the architecture versions V8
26411 or V9 with FPU except @option{-mcpu=leon}.
26412
26413 @item -mpopc
26414 @itemx -mno-popc
26415 @opindex mpopc
26416 @opindex mno-popc
26417 With @option{-mpopc}, GCC generates code that takes advantage of the UltraSPARC
26418 Population Count instruction. The default is @option{-mpopc}
26419 when targeting a CPU that supports such an instruction, such as Niagara-2 and
26420 later.
26421
26422 @item -msubxc
26423 @itemx -mno-subxc
26424 @opindex msubxc
26425 @opindex mno-subxc
26426 With @option{-msubxc}, GCC generates code that takes advantage of the UltraSPARC
26427 Subtract-Extended-with-Carry instruction. The default is @option{-msubxc}
26428 when targeting a CPU that supports such an instruction, such as Niagara-7 and
26429 later.
26430
26431 @item -mfix-at697f
26432 @opindex mfix-at697f
26433 Enable the documented workaround for the single erratum of the Atmel AT697F
26434 processor (which corresponds to erratum #13 of the AT697E processor).
26435
26436 @item -mfix-ut699
26437 @opindex mfix-ut699
26438 Enable the documented workarounds for the floating-point errata and the data
26439 cache nullify errata of the UT699 processor.
26440
26441 @item -mfix-ut700
26442 @opindex mfix-ut700
26443 Enable the documented workaround for the back-to-back store errata of
26444 the UT699E/UT700 processor.
26445
26446 @item -mfix-gr712rc
26447 @opindex mfix-gr712rc
26448 Enable the documented workaround for the back-to-back store errata of
26449 the GR712RC processor.
26450 @end table
26451
26452 These @samp{-m} options are supported in addition to the above
26453 on SPARC-V9 processors in 64-bit environments:
26454
26455 @table @gcctabopt
26456 @item -m32
26457 @itemx -m64
26458 @opindex m32
26459 @opindex m64
26460 Generate code for a 32-bit or 64-bit environment.
26461 The 32-bit environment sets int, long and pointer to 32 bits.
26462 The 64-bit environment sets int to 32 bits and long and pointer
26463 to 64 bits.
26464
26465 @item -mcmodel=@var{which}
26466 @opindex mcmodel
26467 Set the code model to one of
26468
26469 @table @samp
26470 @item medlow
26471 The Medium/Low code model: 64-bit addresses, programs
26472 must be linked in the low 32 bits of memory. Programs can be statically
26473 or dynamically linked.
26474
26475 @item medmid
26476 The Medium/Middle code model: 64-bit addresses, programs
26477 must be linked in the low 44 bits of memory, the text and data segments must
26478 be less than 2GB in size and the data segment must be located within 2GB of
26479 the text segment.
26480
26481 @item medany
26482 The Medium/Anywhere code model: 64-bit addresses, programs
26483 may be linked anywhere in memory, the text and data segments must be less
26484 than 2GB in size and the data segment must be located within 2GB of the
26485 text segment.
26486
26487 @item embmedany
26488 The Medium/Anywhere code model for embedded systems:
26489 64-bit addresses, the text and data segments must be less than 2GB in
26490 size, both starting anywhere in memory (determined at link time). The
26491 global register %g4 points to the base of the data segment. Programs
26492 are statically linked and PIC is not supported.
26493 @end table
26494
26495 @item -mmemory-model=@var{mem-model}
26496 @opindex mmemory-model
26497 Set the memory model in force on the processor to one of
26498
26499 @table @samp
26500 @item default
26501 The default memory model for the processor and operating system.
26502
26503 @item rmo
26504 Relaxed Memory Order
26505
26506 @item pso
26507 Partial Store Order
26508
26509 @item tso
26510 Total Store Order
26511
26512 @item sc
26513 Sequential Consistency
26514 @end table
26515
26516 These memory models are formally defined in Appendix D of the SPARC-V9
26517 architecture manual, as set in the processor's @code{PSTATE.MM} field.
26518
26519 @item -mstack-bias
26520 @itemx -mno-stack-bias
26521 @opindex mstack-bias
26522 @opindex mno-stack-bias
26523 With @option{-mstack-bias}, GCC assumes that the stack pointer, and
26524 frame pointer if present, are offset by @minus{}2047 which must be added back
26525 when making stack frame references. This is the default in 64-bit mode.
26526 Otherwise, assume no such offset is present.
26527 @end table
26528
26529 @node SPU Options
26530 @subsection SPU Options
26531 @cindex SPU options
26532
26533 These @samp{-m} options are supported on the SPU:
26534
26535 @table @gcctabopt
26536 @item -mwarn-reloc
26537 @itemx -merror-reloc
26538 @opindex mwarn-reloc
26539 @opindex merror-reloc
26540
26541 The loader for SPU does not handle dynamic relocations. By default, GCC
26542 gives an error when it generates code that requires a dynamic
26543 relocation. @option{-mno-error-reloc} disables the error,
26544 @option{-mwarn-reloc} generates a warning instead.
26545
26546 @item -msafe-dma
26547 @itemx -munsafe-dma
26548 @opindex msafe-dma
26549 @opindex munsafe-dma
26550
26551 Instructions that initiate or test completion of DMA must not be
26552 reordered with respect to loads and stores of the memory that is being
26553 accessed.
26554 With @option{-munsafe-dma} you must use the @code{volatile} keyword to protect
26555 memory accesses, but that can lead to inefficient code in places where the
26556 memory is known to not change. Rather than mark the memory as volatile,
26557 you can use @option{-msafe-dma} to tell the compiler to treat
26558 the DMA instructions as potentially affecting all memory.
26559
26560 @item -mbranch-hints
26561 @opindex mbranch-hints
26562
26563 By default, GCC generates a branch hint instruction to avoid
26564 pipeline stalls for always-taken or probably-taken branches. A hint
26565 is not generated closer than 8 instructions away from its branch.
26566 There is little reason to disable them, except for debugging purposes,
26567 or to make an object a little bit smaller.
26568
26569 @item -msmall-mem
26570 @itemx -mlarge-mem
26571 @opindex msmall-mem
26572 @opindex mlarge-mem
26573
26574 By default, GCC generates code assuming that addresses are never larger
26575 than 18 bits. With @option{-mlarge-mem} code is generated that assumes
26576 a full 32-bit address.
26577
26578 @item -mstdmain
26579 @opindex mstdmain
26580
26581 By default, GCC links against startup code that assumes the SPU-style
26582 main function interface (which has an unconventional parameter list).
26583 With @option{-mstdmain}, GCC links your program against startup
26584 code that assumes a C99-style interface to @code{main}, including a
26585 local copy of @code{argv} strings.
26586
26587 @item -mfixed-range=@var{register-range}
26588 @opindex mfixed-range
26589 Generate code treating the given register range as fixed registers.
26590 A fixed register is one that the register allocator cannot use. This is
26591 useful when compiling kernel code. A register range is specified as
26592 two registers separated by a dash. Multiple register ranges can be
26593 specified separated by a comma.
26594
26595 @item -mea32
26596 @itemx -mea64
26597 @opindex mea32
26598 @opindex mea64
26599 Compile code assuming that pointers to the PPU address space accessed
26600 via the @code{__ea} named address space qualifier are either 32 or 64
26601 bits wide. The default is 32 bits. As this is an ABI-changing option,
26602 all object code in an executable must be compiled with the same setting.
26603
26604 @item -maddress-space-conversion
26605 @itemx -mno-address-space-conversion
26606 @opindex maddress-space-conversion
26607 @opindex mno-address-space-conversion
26608 Allow/disallow treating the @code{__ea} address space as superset
26609 of the generic address space. This enables explicit type casts
26610 between @code{__ea} and generic pointer as well as implicit
26611 conversions of generic pointers to @code{__ea} pointers. The
26612 default is to allow address space pointer conversions.
26613
26614 @item -mcache-size=@var{cache-size}
26615 @opindex mcache-size
26616 This option controls the version of libgcc that the compiler links to an
26617 executable and selects a software-managed cache for accessing variables
26618 in the @code{__ea} address space with a particular cache size. Possible
26619 options for @var{cache-size} are @samp{8}, @samp{16}, @samp{32}, @samp{64}
26620 and @samp{128}. The default cache size is 64KB.
26621
26622 @item -matomic-updates
26623 @itemx -mno-atomic-updates
26624 @opindex matomic-updates
26625 @opindex mno-atomic-updates
26626 This option controls the version of libgcc that the compiler links to an
26627 executable and selects whether atomic updates to the software-managed
26628 cache of PPU-side variables are used. If you use atomic updates, changes
26629 to a PPU variable from SPU code using the @code{__ea} named address space
26630 qualifier do not interfere with changes to other PPU variables residing
26631 in the same cache line from PPU code. If you do not use atomic updates,
26632 such interference may occur; however, writing back cache lines is
26633 more efficient. The default behavior is to use atomic updates.
26634
26635 @item -mdual-nops
26636 @itemx -mdual-nops=@var{n}
26637 @opindex mdual-nops
26638 By default, GCC inserts NOPs to increase dual issue when it expects
26639 it to increase performance. @var{n} can be a value from 0 to 10. A
26640 smaller @var{n} inserts fewer NOPs. 10 is the default, 0 is the
26641 same as @option{-mno-dual-nops}. Disabled with @option{-Os}.
26642
26643 @item -mhint-max-nops=@var{n}
26644 @opindex mhint-max-nops
26645 Maximum number of NOPs to insert for a branch hint. A branch hint must
26646 be at least 8 instructions away from the branch it is affecting. GCC
26647 inserts up to @var{n} NOPs to enforce this, otherwise it does not
26648 generate the branch hint.
26649
26650 @item -mhint-max-distance=@var{n}
26651 @opindex mhint-max-distance
26652 The encoding of the branch hint instruction limits the hint to be within
26653 256 instructions of the branch it is affecting. By default, GCC makes
26654 sure it is within 125.
26655
26656 @item -msafe-hints
26657 @opindex msafe-hints
26658 Work around a hardware bug that causes the SPU to stall indefinitely.
26659 By default, GCC inserts the @code{hbrp} instruction to make sure
26660 this stall won't happen.
26661
26662 @end table
26663
26664 @node System V Options
26665 @subsection Options for System V
26666
26667 These additional options are available on System V Release 4 for
26668 compatibility with other compilers on those systems:
26669
26670 @table @gcctabopt
26671 @item -G
26672 @opindex G
26673 Create a shared object.
26674 It is recommended that @option{-symbolic} or @option{-shared} be used instead.
26675
26676 @item -Qy
26677 @opindex Qy
26678 Identify the versions of each tool used by the compiler, in a
26679 @code{.ident} assembler directive in the output.
26680
26681 @item -Qn
26682 @opindex Qn
26683 Refrain from adding @code{.ident} directives to the output file (this is
26684 the default).
26685
26686 @item -YP,@var{dirs}
26687 @opindex YP
26688 Search the directories @var{dirs}, and no others, for libraries
26689 specified with @option{-l}.
26690
26691 @item -Ym,@var{dir}
26692 @opindex Ym
26693 Look in the directory @var{dir} to find the M4 preprocessor.
26694 The assembler uses this option.
26695 @c This is supposed to go with a -Yd for predefined M4 macro files, but
26696 @c the generic assembler that comes with Solaris takes just -Ym.
26697 @end table
26698
26699 @node TILE-Gx Options
26700 @subsection TILE-Gx Options
26701 @cindex TILE-Gx options
26702
26703 These @samp{-m} options are supported on the TILE-Gx:
26704
26705 @table @gcctabopt
26706 @item -mcmodel=small
26707 @opindex mcmodel=small
26708 Generate code for the small model. The distance for direct calls is
26709 limited to 500M in either direction. PC-relative addresses are 32
26710 bits. Absolute addresses support the full address range.
26711
26712 @item -mcmodel=large
26713 @opindex mcmodel=large
26714 Generate code for the large model. There is no limitation on call
26715 distance, pc-relative addresses, or absolute addresses.
26716
26717 @item -mcpu=@var{name}
26718 @opindex mcpu
26719 Selects the type of CPU to be targeted. Currently the only supported
26720 type is @samp{tilegx}.
26721
26722 @item -m32
26723 @itemx -m64
26724 @opindex m32
26725 @opindex m64
26726 Generate code for a 32-bit or 64-bit environment. The 32-bit
26727 environment sets int, long, and pointer to 32 bits. The 64-bit
26728 environment sets int to 32 bits and long and pointer to 64 bits.
26729
26730 @item -mbig-endian
26731 @itemx -mlittle-endian
26732 @opindex mbig-endian
26733 @opindex mlittle-endian
26734 Generate code in big/little endian mode, respectively.
26735 @end table
26736
26737 @node TILEPro Options
26738 @subsection TILEPro Options
26739 @cindex TILEPro options
26740
26741 These @samp{-m} options are supported on the TILEPro:
26742
26743 @table @gcctabopt
26744 @item -mcpu=@var{name}
26745 @opindex mcpu
26746 Selects the type of CPU to be targeted. Currently the only supported
26747 type is @samp{tilepro}.
26748
26749 @item -m32
26750 @opindex m32
26751 Generate code for a 32-bit environment, which sets int, long, and
26752 pointer to 32 bits. This is the only supported behavior so the flag
26753 is essentially ignored.
26754 @end table
26755
26756 @node V850 Options
26757 @subsection V850 Options
26758 @cindex V850 Options
26759
26760 These @samp{-m} options are defined for V850 implementations:
26761
26762 @table @gcctabopt
26763 @item -mlong-calls
26764 @itemx -mno-long-calls
26765 @opindex mlong-calls
26766 @opindex mno-long-calls
26767 Treat all calls as being far away (near). If calls are assumed to be
26768 far away, the compiler always loads the function's address into a
26769 register, and calls indirect through the pointer.
26770
26771 @item -mno-ep
26772 @itemx -mep
26773 @opindex mno-ep
26774 @opindex mep
26775 Do not optimize (do optimize) basic blocks that use the same index
26776 pointer 4 or more times to copy pointer into the @code{ep} register, and
26777 use the shorter @code{sld} and @code{sst} instructions. The @option{-mep}
26778 option is on by default if you optimize.
26779
26780 @item -mno-prolog-function
26781 @itemx -mprolog-function
26782 @opindex mno-prolog-function
26783 @opindex mprolog-function
26784 Do not use (do use) external functions to save and restore registers
26785 at the prologue and epilogue of a function. The external functions
26786 are slower, but use less code space if more than one function saves
26787 the same number of registers. The @option{-mprolog-function} option
26788 is on by default if you optimize.
26789
26790 @item -mspace
26791 @opindex mspace
26792 Try to make the code as small as possible. At present, this just turns
26793 on the @option{-mep} and @option{-mprolog-function} options.
26794
26795 @item -mtda=@var{n}
26796 @opindex mtda
26797 Put static or global variables whose size is @var{n} bytes or less into
26798 the tiny data area that register @code{ep} points to. The tiny data
26799 area can hold up to 256 bytes in total (128 bytes for byte references).
26800
26801 @item -msda=@var{n}
26802 @opindex msda
26803 Put static or global variables whose size is @var{n} bytes or less into
26804 the small data area that register @code{gp} points to. The small data
26805 area can hold up to 64 kilobytes.
26806
26807 @item -mzda=@var{n}
26808 @opindex mzda
26809 Put static or global variables whose size is @var{n} bytes or less into
26810 the first 32 kilobytes of memory.
26811
26812 @item -mv850
26813 @opindex mv850
26814 Specify that the target processor is the V850.
26815
26816 @item -mv850e3v5
26817 @opindex mv850e3v5
26818 Specify that the target processor is the V850E3V5. The preprocessor
26819 constant @code{__v850e3v5__} is defined if this option is used.
26820
26821 @item -mv850e2v4
26822 @opindex mv850e2v4
26823 Specify that the target processor is the V850E3V5. This is an alias for
26824 the @option{-mv850e3v5} option.
26825
26826 @item -mv850e2v3
26827 @opindex mv850e2v3
26828 Specify that the target processor is the V850E2V3. The preprocessor
26829 constant @code{__v850e2v3__} is defined if this option is used.
26830
26831 @item -mv850e2
26832 @opindex mv850e2
26833 Specify that the target processor is the V850E2. The preprocessor
26834 constant @code{__v850e2__} is defined if this option is used.
26835
26836 @item -mv850e1
26837 @opindex mv850e1
26838 Specify that the target processor is the V850E1. The preprocessor
26839 constants @code{__v850e1__} and @code{__v850e__} are defined if
26840 this option is used.
26841
26842 @item -mv850es
26843 @opindex mv850es
26844 Specify that the target processor is the V850ES. This is an alias for
26845 the @option{-mv850e1} option.
26846
26847 @item -mv850e
26848 @opindex mv850e
26849 Specify that the target processor is the V850E@. The preprocessor
26850 constant @code{__v850e__} is defined if this option is used.
26851
26852 If neither @option{-mv850} nor @option{-mv850e} nor @option{-mv850e1}
26853 nor @option{-mv850e2} nor @option{-mv850e2v3} nor @option{-mv850e3v5}
26854 are defined then a default target processor is chosen and the
26855 relevant @samp{__v850*__} preprocessor constant is defined.
26856
26857 The preprocessor constants @code{__v850} and @code{__v851__} are always
26858 defined, regardless of which processor variant is the target.
26859
26860 @item -mdisable-callt
26861 @itemx -mno-disable-callt
26862 @opindex mdisable-callt
26863 @opindex mno-disable-callt
26864 This option suppresses generation of the @code{CALLT} instruction for the
26865 v850e, v850e1, v850e2, v850e2v3 and v850e3v5 flavors of the v850
26866 architecture.
26867
26868 This option is enabled by default when the RH850 ABI is
26869 in use (see @option{-mrh850-abi}), and disabled by default when the
26870 GCC ABI is in use. If @code{CALLT} instructions are being generated
26871 then the C preprocessor symbol @code{__V850_CALLT__} is defined.
26872
26873 @item -mrelax
26874 @itemx -mno-relax
26875 @opindex mrelax
26876 @opindex mno-relax
26877 Pass on (or do not pass on) the @option{-mrelax} command-line option
26878 to the assembler.
26879
26880 @item -mlong-jumps
26881 @itemx -mno-long-jumps
26882 @opindex mlong-jumps
26883 @opindex mno-long-jumps
26884 Disable (or re-enable) the generation of PC-relative jump instructions.
26885
26886 @item -msoft-float
26887 @itemx -mhard-float
26888 @opindex msoft-float
26889 @opindex mhard-float
26890 Disable (or re-enable) the generation of hardware floating point
26891 instructions. This option is only significant when the target
26892 architecture is @samp{V850E2V3} or higher. If hardware floating point
26893 instructions are being generated then the C preprocessor symbol
26894 @code{__FPU_OK__} is defined, otherwise the symbol
26895 @code{__NO_FPU__} is defined.
26896
26897 @item -mloop
26898 @opindex mloop
26899 Enables the use of the e3v5 LOOP instruction. The use of this
26900 instruction is not enabled by default when the e3v5 architecture is
26901 selected because its use is still experimental.
26902
26903 @item -mrh850-abi
26904 @itemx -mghs
26905 @opindex mrh850-abi
26906 @opindex mghs
26907 Enables support for the RH850 version of the V850 ABI. This is the
26908 default. With this version of the ABI the following rules apply:
26909
26910 @itemize
26911 @item
26912 Integer sized structures and unions are returned via a memory pointer
26913 rather than a register.
26914
26915 @item
26916 Large structures and unions (more than 8 bytes in size) are passed by
26917 value.
26918
26919 @item
26920 Functions are aligned to 16-bit boundaries.
26921
26922 @item
26923 The @option{-m8byte-align} command-line option is supported.
26924
26925 @item
26926 The @option{-mdisable-callt} command-line option is enabled by
26927 default. The @option{-mno-disable-callt} command-line option is not
26928 supported.
26929 @end itemize
26930
26931 When this version of the ABI is enabled the C preprocessor symbol
26932 @code{__V850_RH850_ABI__} is defined.
26933
26934 @item -mgcc-abi
26935 @opindex mgcc-abi
26936 Enables support for the old GCC version of the V850 ABI. With this
26937 version of the ABI the following rules apply:
26938
26939 @itemize
26940 @item
26941 Integer sized structures and unions are returned in register @code{r10}.
26942
26943 @item
26944 Large structures and unions (more than 8 bytes in size) are passed by
26945 reference.
26946
26947 @item
26948 Functions are aligned to 32-bit boundaries, unless optimizing for
26949 size.
26950
26951 @item
26952 The @option{-m8byte-align} command-line option is not supported.
26953
26954 @item
26955 The @option{-mdisable-callt} command-line option is supported but not
26956 enabled by default.
26957 @end itemize
26958
26959 When this version of the ABI is enabled the C preprocessor symbol
26960 @code{__V850_GCC_ABI__} is defined.
26961
26962 @item -m8byte-align
26963 @itemx -mno-8byte-align
26964 @opindex m8byte-align
26965 @opindex mno-8byte-align
26966 Enables support for @code{double} and @code{long long} types to be
26967 aligned on 8-byte boundaries. The default is to restrict the
26968 alignment of all objects to at most 4-bytes. When
26969 @option{-m8byte-align} is in effect the C preprocessor symbol
26970 @code{__V850_8BYTE_ALIGN__} is defined.
26971
26972 @item -mbig-switch
26973 @opindex mbig-switch
26974 Generate code suitable for big switch tables. Use this option only if
26975 the assembler/linker complain about out of range branches within a switch
26976 table.
26977
26978 @item -mapp-regs
26979 @opindex mapp-regs
26980 This option causes r2 and r5 to be used in the code generated by
26981 the compiler. This setting is the default.
26982
26983 @item -mno-app-regs
26984 @opindex mno-app-regs
26985 This option causes r2 and r5 to be treated as fixed registers.
26986
26987 @end table
26988
26989 @node VAX Options
26990 @subsection VAX Options
26991 @cindex VAX options
26992
26993 These @samp{-m} options are defined for the VAX:
26994
26995 @table @gcctabopt
26996 @item -munix
26997 @opindex munix
26998 Do not output certain jump instructions (@code{aobleq} and so on)
26999 that the Unix assembler for the VAX cannot handle across long
27000 ranges.
27001
27002 @item -mgnu
27003 @opindex mgnu
27004 Do output those jump instructions, on the assumption that the
27005 GNU assembler is being used.
27006
27007 @item -mg
27008 @opindex mg
27009 Output code for G-format floating-point numbers instead of D-format.
27010 @end table
27011
27012 @node Visium Options
27013 @subsection Visium Options
27014 @cindex Visium options
27015
27016 @table @gcctabopt
27017
27018 @item -mdebug
27019 @opindex mdebug
27020 A program which performs file I/O and is destined to run on an MCM target
27021 should be linked with this option. It causes the libraries libc.a and
27022 libdebug.a to be linked. The program should be run on the target under
27023 the control of the GDB remote debugging stub.
27024
27025 @item -msim
27026 @opindex msim
27027 A program which performs file I/O and is destined to run on the simulator
27028 should be linked with option. This causes libraries libc.a and libsim.a to
27029 be linked.
27030
27031 @item -mfpu
27032 @itemx -mhard-float
27033 @opindex mfpu
27034 @opindex mhard-float
27035 Generate code containing floating-point instructions. This is the
27036 default.
27037
27038 @item -mno-fpu
27039 @itemx -msoft-float
27040 @opindex mno-fpu
27041 @opindex msoft-float
27042 Generate code containing library calls for floating-point.
27043
27044 @option{-msoft-float} changes the calling convention in the output file;
27045 therefore, it is only useful if you compile @emph{all} of a program with
27046 this option. In particular, you need to compile @file{libgcc.a}, the
27047 library that comes with GCC, with @option{-msoft-float} in order for
27048 this to work.
27049
27050 @item -mcpu=@var{cpu_type}
27051 @opindex mcpu
27052 Set the instruction set, register set, and instruction scheduling parameters
27053 for machine type @var{cpu_type}. Supported values for @var{cpu_type} are
27054 @samp{mcm}, @samp{gr5} and @samp{gr6}.
27055
27056 @samp{mcm} is a synonym of @samp{gr5} present for backward compatibility.
27057
27058 By default (unless configured otherwise), GCC generates code for the GR5
27059 variant of the Visium architecture.
27060
27061 With @option{-mcpu=gr6}, GCC generates code for the GR6 variant of the Visium
27062 architecture. The only difference from GR5 code is that the compiler will
27063 generate block move instructions.
27064
27065 @item -mtune=@var{cpu_type}
27066 @opindex mtune
27067 Set the instruction scheduling parameters for machine type @var{cpu_type},
27068 but do not set the instruction set or register set that the option
27069 @option{-mcpu=@var{cpu_type}} would.
27070
27071 @item -msv-mode
27072 @opindex msv-mode
27073 Generate code for the supervisor mode, where there are no restrictions on
27074 the access to general registers. This is the default.
27075
27076 @item -muser-mode
27077 @opindex muser-mode
27078 Generate code for the user mode, where the access to some general registers
27079 is forbidden: on the GR5, registers r24 to r31 cannot be accessed in this
27080 mode; on the GR6, only registers r29 to r31 are affected.
27081 @end table
27082
27083 @node VMS Options
27084 @subsection VMS Options
27085
27086 These @samp{-m} options are defined for the VMS implementations:
27087
27088 @table @gcctabopt
27089 @item -mvms-return-codes
27090 @opindex mvms-return-codes
27091 Return VMS condition codes from @code{main}. The default is to return POSIX-style
27092 condition (e.g.@: error) codes.
27093
27094 @item -mdebug-main=@var{prefix}
27095 @opindex mdebug-main=@var{prefix}
27096 Flag the first routine whose name starts with @var{prefix} as the main
27097 routine for the debugger.
27098
27099 @item -mmalloc64
27100 @opindex mmalloc64
27101 Default to 64-bit memory allocation routines.
27102
27103 @item -mpointer-size=@var{size}
27104 @opindex mpointer-size=@var{size}
27105 Set the default size of pointers. Possible options for @var{size} are
27106 @samp{32} or @samp{short} for 32 bit pointers, @samp{64} or @samp{long}
27107 for 64 bit pointers, and @samp{no} for supporting only 32 bit pointers.
27108 The later option disables @code{pragma pointer_size}.
27109 @end table
27110
27111 @node VxWorks Options
27112 @subsection VxWorks Options
27113 @cindex VxWorks Options
27114
27115 The options in this section are defined for all VxWorks targets.
27116 Options specific to the target hardware are listed with the other
27117 options for that target.
27118
27119 @table @gcctabopt
27120 @item -mrtp
27121 @opindex mrtp
27122 GCC can generate code for both VxWorks kernels and real time processes
27123 (RTPs). This option switches from the former to the latter. It also
27124 defines the preprocessor macro @code{__RTP__}.
27125
27126 @item -non-static
27127 @opindex non-static
27128 Link an RTP executable against shared libraries rather than static
27129 libraries. The options @option{-static} and @option{-shared} can
27130 also be used for RTPs (@pxref{Link Options}); @option{-static}
27131 is the default.
27132
27133 @item -Bstatic
27134 @itemx -Bdynamic
27135 @opindex Bstatic
27136 @opindex Bdynamic
27137 These options are passed down to the linker. They are defined for
27138 compatibility with Diab.
27139
27140 @item -Xbind-lazy
27141 @opindex Xbind-lazy
27142 Enable lazy binding of function calls. This option is equivalent to
27143 @option{-Wl,-z,now} and is defined for compatibility with Diab.
27144
27145 @item -Xbind-now
27146 @opindex Xbind-now
27147 Disable lazy binding of function calls. This option is the default and
27148 is defined for compatibility with Diab.
27149 @end table
27150
27151 @node x86 Options
27152 @subsection x86 Options
27153 @cindex x86 Options
27154
27155 These @samp{-m} options are defined for the x86 family of computers.
27156
27157 @table @gcctabopt
27158
27159 @item -march=@var{cpu-type}
27160 @opindex march
27161 Generate instructions for the machine type @var{cpu-type}. In contrast to
27162 @option{-mtune=@var{cpu-type}}, which merely tunes the generated code
27163 for the specified @var{cpu-type}, @option{-march=@var{cpu-type}} allows GCC
27164 to generate code that may not run at all on processors other than the one
27165 indicated. Specifying @option{-march=@var{cpu-type}} implies
27166 @option{-mtune=@var{cpu-type}}.
27167
27168 The choices for @var{cpu-type} are:
27169
27170 @table @samp
27171 @item native
27172 This selects the CPU to generate code for at compilation time by determining
27173 the processor type of the compiling machine. Using @option{-march=native}
27174 enables all instruction subsets supported by the local machine (hence
27175 the result might not run on different machines). Using @option{-mtune=native}
27176 produces code optimized for the local machine under the constraints
27177 of the selected instruction set.
27178
27179 @item x86-64
27180 A generic CPU with 64-bit extensions.
27181
27182 @item i386
27183 Original Intel i386 CPU@.
27184
27185 @item i486
27186 Intel i486 CPU@. (No scheduling is implemented for this chip.)
27187
27188 @item i586
27189 @itemx pentium
27190 Intel Pentium CPU with no MMX support.
27191
27192 @item lakemont
27193 Intel Lakemont MCU, based on Intel Pentium CPU.
27194
27195 @item pentium-mmx
27196 Intel Pentium MMX CPU, based on Pentium core with MMX instruction set support.
27197
27198 @item pentiumpro
27199 Intel Pentium Pro CPU@.
27200
27201 @item i686
27202 When used with @option{-march}, the Pentium Pro
27203 instruction set is used, so the code runs on all i686 family chips.
27204 When used with @option{-mtune}, it has the same meaning as @samp{generic}.
27205
27206 @item pentium2
27207 Intel Pentium II CPU, based on Pentium Pro core with MMX instruction set
27208 support.
27209
27210 @item pentium3
27211 @itemx pentium3m
27212 Intel Pentium III CPU, based on Pentium Pro core with MMX and SSE instruction
27213 set support.
27214
27215 @item pentium-m
27216 Intel Pentium M; low-power version of Intel Pentium III CPU
27217 with MMX, SSE and SSE2 instruction set support. Used by Centrino notebooks.
27218
27219 @item pentium4
27220 @itemx pentium4m
27221 Intel Pentium 4 CPU with MMX, SSE and SSE2 instruction set support.
27222
27223 @item prescott
27224 Improved version of Intel Pentium 4 CPU with MMX, SSE, SSE2 and SSE3 instruction
27225 set support.
27226
27227 @item nocona
27228 Improved version of Intel Pentium 4 CPU with 64-bit extensions, MMX, SSE,
27229 SSE2 and SSE3 instruction set support.
27230
27231 @item core2
27232 Intel Core 2 CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3 and SSSE3
27233 instruction set support.
27234
27235 @item nehalem
27236 Intel Nehalem CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27237 SSE4.1, SSE4.2 and POPCNT instruction set support.
27238
27239 @item westmere
27240 Intel Westmere CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27241 SSE4.1, SSE4.2, POPCNT, AES and PCLMUL instruction set support.
27242
27243 @item sandybridge
27244 Intel Sandy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27245 SSE4.1, SSE4.2, POPCNT, AVX, AES and PCLMUL instruction set support.
27246
27247 @item ivybridge
27248 Intel Ivy Bridge CPU with 64-bit extensions, MMX, SSE, SSE2, SSE3, SSSE3,
27249 SSE4.1, SSE4.2, POPCNT, AVX, AES, PCLMUL, FSGSBASE, RDRND and F16C
27250 instruction set support.
27251
27252 @item haswell
27253 Intel Haswell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27254 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27255 BMI, BMI2 and F16C instruction set support.
27256
27257 @item broadwell
27258 Intel Broadwell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27259 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27260 BMI, BMI2, F16C, RDSEED, ADCX and PREFETCHW instruction set support.
27261
27262 @item skylake
27263 Intel Skylake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27264 SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27265 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC and
27266 XSAVES instruction set support.
27267
27268 @item bonnell
27269 Intel Bonnell CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3 and SSSE3
27270 instruction set support.
27271
27272 @item silvermont
27273 Intel Silvermont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27274 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL and RDRND instruction set support.
27275
27276 @item goldmont
27277 Intel Goldmont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27278 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT and FSGSBASE
27279 instruction set support.
27280
27281 @item goldmont-plus
27282 Intel Goldmont Plus CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27283 SSSE3, SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE,
27284 PTWRITE, RDPID, SGX and UMIP instruction set support.
27285
27286 @item tremont
27287 Intel Tremont CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27288 SSE4.1, SSE4.2, POPCNT, AES, PCLMUL, RDRND, XSAVE, XSAVEOPT, FSGSBASE, PTWRITE,
27289 RDPID, SGX, UMIP, GFNI-SSE, CLWB and ENCLV instruction set support.
27290
27291 @item knl
27292 Intel Knight's Landing CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27293 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27294 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER and
27295 AVX512CD instruction set support.
27296
27297 @item knm
27298 Intel Knights Mill CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27299 SSSE3, SSE4.1, SSE4.2, POPCNT, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27300 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, AVX512F, AVX512PF, AVX512ER, AVX512CD,
27301 AVX5124VNNIW, AVX5124FMAPS and AVX512VPOPCNTDQ instruction set support.
27302
27303 @item skylake-avx512
27304 Intel Skylake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3,
27305 SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA,
27306 BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F,
27307 CLWB, AVX512VL, AVX512BW, AVX512DQ and AVX512CD instruction set support.
27308
27309 @item cannonlake
27310 Intel Cannonlake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27311 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27312 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27313 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27314 AVX512IFMA, SHA and UMIP instruction set support.
27315
27316 @item icelake-client
27317 Intel Icelake Client CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27318 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27319 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27320 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27321 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27322 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES instruction set support.
27323
27324 @item icelake-server
27325 Intel Icelake Server CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2,
27326 SSE3, SSSE3, SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE,
27327 RDRND, FMA, BMI, BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC,
27328 XSAVES, AVX512F, AVX512VL, AVX512BW, AVX512DQ, AVX512CD, AVX512VBMI,
27329 AVX512IFMA, SHA, CLWB, UMIP, RDPID, GFNI, AVX512VBMI2, AVX512VPOPCNTDQ,
27330 AVX512BITALG, AVX512VNNI, VPCLMULQDQ, VAES, PCONFIG and WBNOINVD instruction
27331 set support.
27332
27333 @item cascadelake
27334 Intel Cascadelake CPU with 64-bit extensions, MOVBE, MMX, SSE, SSE2, SSE3, SSSE3,
27335 SSE4.1, SSE4.2, POPCNT, PKU, AVX, AVX2, AES, PCLMUL, FSGSBASE, RDRND, FMA, BMI,
27336 BMI2, F16C, RDSEED, ADCX, PREFETCHW, CLFLUSHOPT, XSAVEC, XSAVES, AVX512F, CLWB,
27337 AVX512VL, AVX512BW, AVX512DQ, AVX512CD and AVX512VNNI instruction set support.
27338
27339 @item k6
27340 AMD K6 CPU with MMX instruction set support.
27341
27342 @item k6-2
27343 @itemx k6-3
27344 Improved versions of AMD K6 CPU with MMX and 3DNow!@: instruction set support.
27345
27346 @item athlon
27347 @itemx athlon-tbird
27348 AMD Athlon CPU with MMX, 3dNOW!, enhanced 3DNow!@: and SSE prefetch instructions
27349 support.
27350
27351 @item athlon-4
27352 @itemx athlon-xp
27353 @itemx athlon-mp
27354 Improved AMD Athlon CPU with MMX, 3DNow!, enhanced 3DNow!@: and full SSE
27355 instruction set support.
27356
27357 @item k8
27358 @itemx opteron
27359 @itemx athlon64
27360 @itemx athlon-fx
27361 Processors based on the AMD K8 core with x86-64 instruction set support,
27362 including the AMD Opteron, Athlon 64, and Athlon 64 FX processors.
27363 (This supersets MMX, SSE, SSE2, 3DNow!, enhanced 3DNow!@: and 64-bit
27364 instruction set extensions.)
27365
27366 @item k8-sse3
27367 @itemx opteron-sse3
27368 @itemx athlon64-sse3
27369 Improved versions of AMD K8 cores with SSE3 instruction set support.
27370
27371 @item amdfam10
27372 @itemx barcelona
27373 CPUs based on AMD Family 10h cores with x86-64 instruction set support. (This
27374 supersets MMX, SSE, SSE2, SSE3, SSE4A, 3DNow!, enhanced 3DNow!, ABM and 64-bit
27375 instruction set extensions.)
27376
27377 @item bdver1
27378 CPUs based on AMD Family 15h cores with x86-64 instruction set support. (This
27379 supersets FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A,
27380 SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set extensions.)
27381 @item bdver2
27382 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27383 supersets BMI, TBM, F16C, FMA, FMA4, AVX, XOP, LWP, AES, PCL_MUL, CX16, MMX,
27384 SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and 64-bit instruction set
27385 extensions.)
27386 @item bdver3
27387 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27388 supersets BMI, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, XOP, LWP, AES,
27389 PCL_MUL, CX16, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1, SSE4.2, ABM and
27390 64-bit instruction set extensions.
27391 @item bdver4
27392 AMD Family 15h core based CPUs with x86-64 instruction set support. (This
27393 supersets BMI, BMI2, TBM, F16C, FMA, FMA4, FSGSBASE, AVX, AVX2, XOP, LWP,
27394 AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3, SSE4.1,
27395 SSE4.2, ABM and 64-bit instruction set extensions.
27396
27397 @item znver1
27398 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27399 supersets BMI, BMI2, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED, MWAITX,
27400 SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A, SSSE3,
27401 SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27402 instruction set extensions.
27403 @item znver2
27404 AMD Family 17h core based CPUs with x86-64 instruction set support. (This
27405 supersets BMI, BMI2, ,CLWB, F16C, FMA, FSGSBASE, AVX, AVX2, ADCX, RDSEED,
27406 MWAITX, SHA, CLZERO, AES, PCL_MUL, CX16, MOVBE, MMX, SSE, SSE2, SSE3, SSE4A,
27407 SSSE3, SSE4.1, SSE4.2, ABM, XSAVEC, XSAVES, CLFLUSHOPT, POPCNT, and 64-bit
27408 instruction set extensions.)
27409
27410
27411 @item btver1
27412 CPUs based on AMD Family 14h cores with x86-64 instruction set support. (This
27413 supersets MMX, SSE, SSE2, SSE3, SSSE3, SSE4A, CX16, ABM and 64-bit
27414 instruction set extensions.)
27415
27416 @item btver2
27417 CPUs based on AMD Family 16h cores with x86-64 instruction set support. This
27418 includes MOVBE, F16C, BMI, AVX, PCL_MUL, AES, SSE4.2, SSE4.1, CX16, ABM,
27419 SSE4A, SSSE3, SSE3, SSE2, SSE, MMX and 64-bit instruction set extensions.
27420
27421 @item winchip-c6
27422 IDT WinChip C6 CPU, dealt in same way as i486 with additional MMX instruction
27423 set support.
27424
27425 @item winchip2
27426 IDT WinChip 2 CPU, dealt in same way as i486 with additional MMX and 3DNow!@:
27427 instruction set support.
27428
27429 @item c3
27430 VIA C3 CPU with MMX and 3DNow!@: instruction set support.
27431 (No scheduling is implemented for this chip.)
27432
27433 @item c3-2
27434 VIA C3-2 (Nehemiah/C5XL) CPU with MMX and SSE instruction set support.
27435 (No scheduling is implemented for this chip.)
27436
27437 @item c7
27438 VIA C7 (Esther) CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27439 (No scheduling is implemented for this chip.)
27440
27441 @item samuel-2
27442 VIA Eden Samuel 2 CPU with MMX and 3DNow!@: instruction set support.
27443 (No scheduling is implemented for this chip.)
27444
27445 @item nehemiah
27446 VIA Eden Nehemiah CPU with MMX and SSE instruction set support.
27447 (No scheduling is implemented for this chip.)
27448
27449 @item esther
27450 VIA Eden Esther CPU with MMX, SSE, SSE2 and SSE3 instruction set support.
27451 (No scheduling is implemented for this chip.)
27452
27453 @item eden-x2
27454 VIA Eden X2 CPU with x86-64, MMX, SSE, SSE2 and SSE3 instruction set support.
27455 (No scheduling is implemented for this chip.)
27456
27457 @item eden-x4
27458 VIA Eden X4 CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2,
27459 AVX and AVX2 instruction set support.
27460 (No scheduling is implemented for this chip.)
27461
27462 @item nano
27463 Generic VIA Nano CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27464 instruction set support.
27465 (No scheduling is implemented for this chip.)
27466
27467 @item nano-1000
27468 VIA Nano 1xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27469 instruction set support.
27470 (No scheduling is implemented for this chip.)
27471
27472 @item nano-2000
27473 VIA Nano 2xxx CPU with x86-64, MMX, SSE, SSE2, SSE3 and SSSE3
27474 instruction set support.
27475 (No scheduling is implemented for this chip.)
27476
27477 @item nano-3000
27478 VIA Nano 3xxx CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27479 instruction set support.
27480 (No scheduling is implemented for this chip.)
27481
27482 @item nano-x2
27483 VIA Nano Dual Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27484 instruction set support.
27485 (No scheduling is implemented for this chip.)
27486
27487 @item nano-x4
27488 VIA Nano Quad Core CPU with x86-64, MMX, SSE, SSE2, SSE3, SSSE3 and SSE4.1
27489 instruction set support.
27490 (No scheduling is implemented for this chip.)
27491
27492 @item geode
27493 AMD Geode embedded processor with MMX and 3DNow!@: instruction set support.
27494 @end table
27495
27496 @item -mtune=@var{cpu-type}
27497 @opindex mtune
27498 Tune to @var{cpu-type} everything applicable about the generated code, except
27499 for the ABI and the set of available instructions.
27500 While picking a specific @var{cpu-type} schedules things appropriately
27501 for that particular chip, the compiler does not generate any code that
27502 cannot run on the default machine type unless you use a
27503 @option{-march=@var{cpu-type}} option.
27504 For example, if GCC is configured for i686-pc-linux-gnu
27505 then @option{-mtune=pentium4} generates code that is tuned for Pentium 4
27506 but still runs on i686 machines.
27507
27508 The choices for @var{cpu-type} are the same as for @option{-march}.
27509 In addition, @option{-mtune} supports 2 extra choices for @var{cpu-type}:
27510
27511 @table @samp
27512 @item generic
27513 Produce code optimized for the most common IA32/@/AMD64/@/EM64T processors.
27514 If you know the CPU on which your code will run, then you should use
27515 the corresponding @option{-mtune} or @option{-march} option instead of
27516 @option{-mtune=generic}. But, if you do not know exactly what CPU users
27517 of your application will have, then you should use this option.
27518
27519 As new processors are deployed in the marketplace, the behavior of this
27520 option will change. Therefore, if you upgrade to a newer version of
27521 GCC, code generation controlled by this option will change to reflect
27522 the processors
27523 that are most common at the time that version of GCC is released.
27524
27525 There is no @option{-march=generic} option because @option{-march}
27526 indicates the instruction set the compiler can use, and there is no
27527 generic instruction set applicable to all processors. In contrast,
27528 @option{-mtune} indicates the processor (or, in this case, collection of
27529 processors) for which the code is optimized.
27530
27531 @item intel
27532 Produce code optimized for the most current Intel processors, which are
27533 Haswell and Silvermont for this version of GCC. If you know the CPU
27534 on which your code will run, then you should use the corresponding
27535 @option{-mtune} or @option{-march} option instead of @option{-mtune=intel}.
27536 But, if you want your application performs better on both Haswell and
27537 Silvermont, then you should use this option.
27538
27539 As new Intel processors are deployed in the marketplace, the behavior of
27540 this option will change. Therefore, if you upgrade to a newer version of
27541 GCC, code generation controlled by this option will change to reflect
27542 the most current Intel processors at the time that version of GCC is
27543 released.
27544
27545 There is no @option{-march=intel} option because @option{-march} indicates
27546 the instruction set the compiler can use, and there is no common
27547 instruction set applicable to all processors. In contrast,
27548 @option{-mtune} indicates the processor (or, in this case, collection of
27549 processors) for which the code is optimized.
27550 @end table
27551
27552 @item -mcpu=@var{cpu-type}
27553 @opindex mcpu
27554 A deprecated synonym for @option{-mtune}.
27555
27556 @item -mfpmath=@var{unit}
27557 @opindex mfpmath
27558 Generate floating-point arithmetic for selected unit @var{unit}. The choices
27559 for @var{unit} are:
27560
27561 @table @samp
27562 @item 387
27563 Use the standard 387 floating-point coprocessor present on the majority of chips and
27564 emulated otherwise. Code compiled with this option runs almost everywhere.
27565 The temporary results are computed in 80-bit precision instead of the precision
27566 specified by the type, resulting in slightly different results compared to most
27567 of other chips. See @option{-ffloat-store} for more detailed description.
27568
27569 This is the default choice for non-Darwin x86-32 targets.
27570
27571 @item sse
27572 Use scalar floating-point instructions present in the SSE instruction set.
27573 This instruction set is supported by Pentium III and newer chips,
27574 and in the AMD line
27575 by Athlon-4, Athlon XP and Athlon MP chips. The earlier version of the SSE
27576 instruction set supports only single-precision arithmetic, thus the double and
27577 extended-precision arithmetic are still done using 387. A later version, present
27578 only in Pentium 4 and AMD x86-64 chips, supports double-precision
27579 arithmetic too.
27580
27581 For the x86-32 compiler, you must use @option{-march=@var{cpu-type}}, @option{-msse}
27582 or @option{-msse2} switches to enable SSE extensions and make this option
27583 effective. For the x86-64 compiler, these extensions are enabled by default.
27584
27585 The resulting code should be considerably faster in the majority of cases and avoid
27586 the numerical instability problems of 387 code, but may break some existing
27587 code that expects temporaries to be 80 bits.
27588
27589 This is the default choice for the x86-64 compiler, Darwin x86-32 targets,
27590 and the default choice for x86-32 targets with the SSE2 instruction set
27591 when @option{-ffast-math} is enabled.
27592
27593 @item sse,387
27594 @itemx sse+387
27595 @itemx both
27596 Attempt to utilize both instruction sets at once. This effectively doubles the
27597 amount of available registers, and on chips with separate execution units for
27598 387 and SSE the execution resources too. Use this option with care, as it is
27599 still experimental, because the GCC register allocator does not model separate
27600 functional units well, resulting in unstable performance.
27601 @end table
27602
27603 @item -masm=@var{dialect}
27604 @opindex masm=@var{dialect}
27605 Output assembly instructions using selected @var{dialect}. Also affects
27606 which dialect is used for basic @code{asm} (@pxref{Basic Asm}) and
27607 extended @code{asm} (@pxref{Extended Asm}). Supported choices (in dialect
27608 order) are @samp{att} or @samp{intel}. The default is @samp{att}. Darwin does
27609 not support @samp{intel}.
27610
27611 @item -mieee-fp
27612 @itemx -mno-ieee-fp
27613 @opindex mieee-fp
27614 @opindex mno-ieee-fp
27615 Control whether or not the compiler uses IEEE floating-point
27616 comparisons. These correctly handle the case where the result of a
27617 comparison is unordered.
27618
27619 @item -m80387
27620 @itemx -mhard-float
27621 @opindex 80387
27622 @opindex mhard-float
27623 Generate output containing 80387 instructions for floating point.
27624
27625 @item -mno-80387
27626 @itemx -msoft-float
27627 @opindex no-80387
27628 @opindex msoft-float
27629 Generate output containing library calls for floating point.
27630
27631 @strong{Warning:} the requisite libraries are not part of GCC@.
27632 Normally the facilities of the machine's usual C compiler are used, but
27633 this cannot be done directly in cross-compilation. You must make your
27634 own arrangements to provide suitable library functions for
27635 cross-compilation.
27636
27637 On machines where a function returns floating-point results in the 80387
27638 register stack, some floating-point opcodes may be emitted even if
27639 @option{-msoft-float} is used.
27640
27641 @item -mno-fp-ret-in-387
27642 @opindex mno-fp-ret-in-387
27643 @opindex mfp-ret-in-387
27644 Do not use the FPU registers for return values of functions.
27645
27646 The usual calling convention has functions return values of types
27647 @code{float} and @code{double} in an FPU register, even if there
27648 is no FPU@. The idea is that the operating system should emulate
27649 an FPU@.
27650
27651 The option @option{-mno-fp-ret-in-387} causes such values to be returned
27652 in ordinary CPU registers instead.
27653
27654 @item -mno-fancy-math-387
27655 @opindex mno-fancy-math-387
27656 @opindex mfancy-math-387
27657 Some 387 emulators do not support the @code{sin}, @code{cos} and
27658 @code{sqrt} instructions for the 387. Specify this option to avoid
27659 generating those instructions.
27660 This option is overridden when @option{-march}
27661 indicates that the target CPU always has an FPU and so the
27662 instruction does not need emulation. These
27663 instructions are not generated unless you also use the
27664 @option{-funsafe-math-optimizations} switch.
27665
27666 @item -malign-double
27667 @itemx -mno-align-double
27668 @opindex malign-double
27669 @opindex mno-align-double
27670 Control whether GCC aligns @code{double}, @code{long double}, and
27671 @code{long long} variables on a two-word boundary or a one-word
27672 boundary. Aligning @code{double} variables on a two-word boundary
27673 produces code that runs somewhat faster on a Pentium at the
27674 expense of more memory.
27675
27676 On x86-64, @option{-malign-double} is enabled by default.
27677
27678 @strong{Warning:} if you use the @option{-malign-double} switch,
27679 structures containing the above types are aligned differently than
27680 the published application binary interface specifications for the x86-32
27681 and are not binary compatible with structures in code compiled
27682 without that switch.
27683
27684 @item -m96bit-long-double
27685 @itemx -m128bit-long-double
27686 @opindex m96bit-long-double
27687 @opindex m128bit-long-double
27688 These switches control the size of @code{long double} type. The x86-32
27689 application binary interface specifies the size to be 96 bits,
27690 so @option{-m96bit-long-double} is the default in 32-bit mode.
27691
27692 Modern architectures (Pentium and newer) prefer @code{long double}
27693 to be aligned to an 8- or 16-byte boundary. In arrays or structures
27694 conforming to the ABI, this is not possible. So specifying
27695 @option{-m128bit-long-double} aligns @code{long double}
27696 to a 16-byte boundary by padding the @code{long double} with an additional
27697 32-bit zero.
27698
27699 In the x86-64 compiler, @option{-m128bit-long-double} is the default choice as
27700 its ABI specifies that @code{long double} is aligned on 16-byte boundary.
27701
27702 Notice that neither of these options enable any extra precision over the x87
27703 standard of 80 bits for a @code{long double}.
27704
27705 @strong{Warning:} if you override the default value for your target ABI, this
27706 changes the size of
27707 structures and arrays containing @code{long double} variables,
27708 as well as modifying the function calling convention for functions taking
27709 @code{long double}. Hence they are not binary-compatible
27710 with code compiled without that switch.
27711
27712 @item -mlong-double-64
27713 @itemx -mlong-double-80
27714 @itemx -mlong-double-128
27715 @opindex mlong-double-64
27716 @opindex mlong-double-80
27717 @opindex mlong-double-128
27718 These switches control the size of @code{long double} type. A size
27719 of 64 bits makes the @code{long double} type equivalent to the @code{double}
27720 type. This is the default for 32-bit Bionic C library. A size
27721 of 128 bits makes the @code{long double} type equivalent to the
27722 @code{__float128} type. This is the default for 64-bit Bionic C library.
27723
27724 @strong{Warning:} if you override the default value for your target ABI, this
27725 changes the size of
27726 structures and arrays containing @code{long double} variables,
27727 as well as modifying the function calling convention for functions taking
27728 @code{long double}. Hence they are not binary-compatible
27729 with code compiled without that switch.
27730
27731 @item -malign-data=@var{type}
27732 @opindex malign-data
27733 Control how GCC aligns variables. Supported values for @var{type} are
27734 @samp{compat} uses increased alignment value compatible uses GCC 4.8
27735 and earlier, @samp{abi} uses alignment value as specified by the
27736 psABI, and @samp{cacheline} uses increased alignment value to match
27737 the cache line size. @samp{compat} is the default.
27738
27739 @item -mlarge-data-threshold=@var{threshold}
27740 @opindex mlarge-data-threshold
27741 When @option{-mcmodel=medium} is specified, data objects larger than
27742 @var{threshold} are placed in the large data section. This value must be the
27743 same across all objects linked into the binary, and defaults to 65535.
27744
27745 @item -mrtd
27746 @opindex mrtd
27747 Use a different function-calling convention, in which functions that
27748 take a fixed number of arguments return with the @code{ret @var{num}}
27749 instruction, which pops their arguments while returning. This saves one
27750 instruction in the caller since there is no need to pop the arguments
27751 there.
27752
27753 You can specify that an individual function is called with this calling
27754 sequence with the function attribute @code{stdcall}. You can also
27755 override the @option{-mrtd} option by using the function attribute
27756 @code{cdecl}. @xref{Function Attributes}.
27757
27758 @strong{Warning:} this calling convention is incompatible with the one
27759 normally used on Unix, so you cannot use it if you need to call
27760 libraries compiled with the Unix compiler.
27761
27762 Also, you must provide function prototypes for all functions that
27763 take variable numbers of arguments (including @code{printf});
27764 otherwise incorrect code is generated for calls to those
27765 functions.
27766
27767 In addition, seriously incorrect code results if you call a
27768 function with too many arguments. (Normally, extra arguments are
27769 harmlessly ignored.)
27770
27771 @item -mregparm=@var{num}
27772 @opindex mregparm
27773 Control how many registers are used to pass integer arguments. By
27774 default, no registers are used to pass arguments, and at most 3
27775 registers can be used. You can control this behavior for a specific
27776 function by using the function attribute @code{regparm}.
27777 @xref{Function Attributes}.
27778
27779 @strong{Warning:} if you use this switch, and
27780 @var{num} is nonzero, then you must build all modules with the same
27781 value, including any libraries. This includes the system libraries and
27782 startup modules.
27783
27784 @item -msseregparm
27785 @opindex msseregparm
27786 Use SSE register passing conventions for float and double arguments
27787 and return values. You can control this behavior for a specific
27788 function by using the function attribute @code{sseregparm}.
27789 @xref{Function Attributes}.
27790
27791 @strong{Warning:} if you use this switch then you must build all
27792 modules with the same value, including any libraries. This includes
27793 the system libraries and startup modules.
27794
27795 @item -mvect8-ret-in-mem
27796 @opindex mvect8-ret-in-mem
27797 Return 8-byte vectors in memory instead of MMX registers. This is the
27798 default on VxWorks to match the ABI of the Sun Studio compilers until
27799 version 12. @emph{Only} use this option if you need to remain
27800 compatible with existing code produced by those previous compiler
27801 versions or older versions of GCC@.
27802
27803 @item -mpc32
27804 @itemx -mpc64
27805 @itemx -mpc80
27806 @opindex mpc32
27807 @opindex mpc64
27808 @opindex mpc80
27809
27810 Set 80387 floating-point precision to 32, 64 or 80 bits. When @option{-mpc32}
27811 is specified, the significands of results of floating-point operations are
27812 rounded to 24 bits (single precision); @option{-mpc64} rounds the
27813 significands of results of floating-point operations to 53 bits (double
27814 precision) and @option{-mpc80} rounds the significands of results of
27815 floating-point operations to 64 bits (extended double precision), which is
27816 the default. When this option is used, floating-point operations in higher
27817 precisions are not available to the programmer without setting the FPU
27818 control word explicitly.
27819
27820 Setting the rounding of floating-point operations to less than the default
27821 80 bits can speed some programs by 2% or more. Note that some mathematical
27822 libraries assume that extended-precision (80-bit) floating-point operations
27823 are enabled by default; routines in such libraries could suffer significant
27824 loss of accuracy, typically through so-called ``catastrophic cancellation'',
27825 when this option is used to set the precision to less than extended precision.
27826
27827 @item -mstackrealign
27828 @opindex mstackrealign
27829 Realign the stack at entry. On the x86, the @option{-mstackrealign}
27830 option generates an alternate prologue and epilogue that realigns the
27831 run-time stack if necessary. This supports mixing legacy codes that keep
27832 4-byte stack alignment with modern codes that keep 16-byte stack alignment for
27833 SSE compatibility. See also the attribute @code{force_align_arg_pointer},
27834 applicable to individual functions.
27835
27836 @item -mpreferred-stack-boundary=@var{num}
27837 @opindex mpreferred-stack-boundary
27838 Attempt to keep the stack boundary aligned to a 2 raised to @var{num}
27839 byte boundary. If @option{-mpreferred-stack-boundary} is not specified,
27840 the default is 4 (16 bytes or 128 bits).
27841
27842 @strong{Warning:} When generating code for the x86-64 architecture with
27843 SSE extensions disabled, @option{-mpreferred-stack-boundary=3} can be
27844 used to keep the stack boundary aligned to 8 byte boundary. Since
27845 x86-64 ABI require 16 byte stack alignment, this is ABI incompatible and
27846 intended to be used in controlled environment where stack space is
27847 important limitation. This option leads to wrong code when functions
27848 compiled with 16 byte stack alignment (such as functions from a standard
27849 library) are called with misaligned stack. In this case, SSE
27850 instructions may lead to misaligned memory access traps. In addition,
27851 variable arguments are handled incorrectly for 16 byte aligned
27852 objects (including x87 long double and __int128), leading to wrong
27853 results. You must build all modules with
27854 @option{-mpreferred-stack-boundary=3}, including any libraries. This
27855 includes the system libraries and startup modules.
27856
27857 @item -mincoming-stack-boundary=@var{num}
27858 @opindex mincoming-stack-boundary
27859 Assume the incoming stack is aligned to a 2 raised to @var{num} byte
27860 boundary. If @option{-mincoming-stack-boundary} is not specified,
27861 the one specified by @option{-mpreferred-stack-boundary} is used.
27862
27863 On Pentium and Pentium Pro, @code{double} and @code{long double} values
27864 should be aligned to an 8-byte boundary (see @option{-malign-double}) or
27865 suffer significant run time performance penalties. On Pentium III, the
27866 Streaming SIMD Extension (SSE) data type @code{__m128} may not work
27867 properly if it is not 16-byte aligned.
27868
27869 To ensure proper alignment of this values on the stack, the stack boundary
27870 must be as aligned as that required by any value stored on the stack.
27871 Further, every function must be generated such that it keeps the stack
27872 aligned. Thus calling a function compiled with a higher preferred
27873 stack boundary from a function compiled with a lower preferred stack
27874 boundary most likely misaligns the stack. It is recommended that
27875 libraries that use callbacks always use the default setting.
27876
27877 This extra alignment does consume extra stack space, and generally
27878 increases code size. Code that is sensitive to stack space usage, such
27879 as embedded systems and operating system kernels, may want to reduce the
27880 preferred alignment to @option{-mpreferred-stack-boundary=2}.
27881
27882 @need 200
27883 @item -mmmx
27884 @opindex mmmx
27885 @need 200
27886 @itemx -msse
27887 @opindex msse
27888 @need 200
27889 @itemx -msse2
27890 @opindex msse2
27891 @need 200
27892 @itemx -msse3
27893 @opindex msse3
27894 @need 200
27895 @itemx -mssse3
27896 @opindex mssse3
27897 @need 200
27898 @itemx -msse4
27899 @opindex msse4
27900 @need 200
27901 @itemx -msse4a
27902 @opindex msse4a
27903 @need 200
27904 @itemx -msse4.1
27905 @opindex msse4.1
27906 @need 200
27907 @itemx -msse4.2
27908 @opindex msse4.2
27909 @need 200
27910 @itemx -mavx
27911 @opindex mavx
27912 @need 200
27913 @itemx -mavx2
27914 @opindex mavx2
27915 @need 200
27916 @itemx -mavx512f
27917 @opindex mavx512f
27918 @need 200
27919 @itemx -mavx512pf
27920 @opindex mavx512pf
27921 @need 200
27922 @itemx -mavx512er
27923 @opindex mavx512er
27924 @need 200
27925 @itemx -mavx512cd
27926 @opindex mavx512cd
27927 @need 200
27928 @itemx -mavx512vl
27929 @opindex mavx512vl
27930 @need 200
27931 @itemx -mavx512bw
27932 @opindex mavx512bw
27933 @need 200
27934 @itemx -mavx512dq
27935 @opindex mavx512dq
27936 @need 200
27937 @itemx -mavx512ifma
27938 @opindex mavx512ifma
27939 @need 200
27940 @itemx -mavx512vbmi
27941 @opindex mavx512vbmi
27942 @need 200
27943 @itemx -msha
27944 @opindex msha
27945 @need 200
27946 @itemx -maes
27947 @opindex maes
27948 @need 200
27949 @itemx -mpclmul
27950 @opindex mpclmul
27951 @need 200
27952 @itemx -mclflushopt
27953 @opindex mclflushopt
27954 @need 200
27955 @itemx -mclwb
27956 @opindex mclwb
27957 @need 200
27958 @itemx -mfsgsbase
27959 @opindex mfsgsbase
27960 @need 200
27961 @itemx -mptwrite
27962 @opindex mptwrite
27963 @need 200
27964 @itemx -mrdrnd
27965 @opindex mrdrnd
27966 @need 200
27967 @itemx -mf16c
27968 @opindex mf16c
27969 @need 200
27970 @itemx -mfma
27971 @opindex mfma
27972 @need 200
27973 @itemx -mpconfig
27974 @opindex mpconfig
27975 @need 200
27976 @itemx -mwbnoinvd
27977 @opindex mwbnoinvd
27978 @need 200
27979 @itemx -mfma4
27980 @opindex mfma4
27981 @need 200
27982 @itemx -mprfchw
27983 @opindex mprfchw
27984 @need 200
27985 @itemx -mrdpid
27986 @opindex mrdpid
27987 @need 200
27988 @itemx -mprefetchwt1
27989 @opindex mprefetchwt1
27990 @need 200
27991 @itemx -mrdseed
27992 @opindex mrdseed
27993 @need 200
27994 @itemx -msgx
27995 @opindex msgx
27996 @need 200
27997 @itemx -mxop
27998 @opindex mxop
27999 @need 200
28000 @itemx -mlwp
28001 @opindex mlwp
28002 @need 200
28003 @itemx -m3dnow
28004 @opindex m3dnow
28005 @need 200
28006 @itemx -m3dnowa
28007 @opindex m3dnowa
28008 @need 200
28009 @itemx -mpopcnt
28010 @opindex mpopcnt
28011 @need 200
28012 @itemx -mabm
28013 @opindex mabm
28014 @need 200
28015 @itemx -madx
28016 @opindex madx
28017 @need 200
28018 @itemx -mbmi
28019 @opindex mbmi
28020 @need 200
28021 @itemx -mbmi2
28022 @opindex mbmi2
28023 @need 200
28024 @itemx -mlzcnt
28025 @opindex mlzcnt
28026 @need 200
28027 @itemx -mfxsr
28028 @opindex mfxsr
28029 @need 200
28030 @itemx -mxsave
28031 @opindex mxsave
28032 @need 200
28033 @itemx -mxsaveopt
28034 @opindex mxsaveopt
28035 @need 200
28036 @itemx -mxsavec
28037 @opindex mxsavec
28038 @need 200
28039 @itemx -mxsaves
28040 @opindex mxsaves
28041 @need 200
28042 @itemx -mrtm
28043 @opindex mrtm
28044 @need 200
28045 @itemx -mhle
28046 @opindex mhle
28047 @need 200
28048 @itemx -mtbm
28049 @opindex mtbm
28050 @need 200
28051 @itemx -mmwaitx
28052 @opindex mmwaitx
28053 @need 200
28054 @itemx -mclzero
28055 @opindex mclzero
28056 @need 200
28057 @itemx -mpku
28058 @opindex mpku
28059 @need 200
28060 @itemx -mavx512vbmi2
28061 @opindex mavx512vbmi2
28062 @need 200
28063 @itemx -mavx512bf16
28064 @opindex mavx512bf16
28065 @need 200
28066 @itemx -mgfni
28067 @opindex mgfni
28068 @need 200
28069 @itemx -mvaes
28070 @opindex mvaes
28071 @need 200
28072 @itemx -mwaitpkg
28073 @opindex mwaitpkg
28074 @need 200
28075 @itemx -mvpclmulqdq
28076 @opindex mvpclmulqdq
28077 @need 200
28078 @itemx -mavx512bitalg
28079 @opindex mavx512bitalg
28080 @need 200
28081 @itemx -mmovdiri
28082 @opindex mmovdiri
28083 @need 200
28084 @itemx -mmovdir64b
28085 @opindex mmovdir64b
28086 @need 200
28087 @itemx -menqcmd
28088 @opindex menqcmd
28089 @need 200
28090 @itemx -mavx512vpopcntdq
28091 @opindex mavx512vpopcntdq
28092 @need 200
28093 @itemx -mavx5124fmaps
28094 @opindex mavx5124fmaps
28095 @need 200
28096 @itemx -mavx512vnni
28097 @opindex mavx512vnni
28098 @need 200
28099 @itemx -mavx5124vnniw
28100 @opindex mavx5124vnniw
28101 @need 200
28102 @itemx -mcldemote
28103 @opindex mcldemote
28104 These switches enable the use of instructions in the MMX, SSE,
28105 SSE2, SSE3, SSSE3, SSE4, SSE4A, SSE4.1, SSE4.2, AVX, AVX2, AVX512F, AVX512PF,
28106 AVX512ER, AVX512CD, AVX512VL, AVX512BW, AVX512DQ, AVX512IFMA, AVX512VBMI, SHA,
28107 AES, PCLMUL, CLFLUSHOPT, CLWB, FSGSBASE, PTWRITE, RDRND, F16C, FMA, PCONFIG,
28108 WBNOINVD, FMA4, PREFETCHW, RDPID, PREFETCHWT1, RDSEED, SGX, XOP, LWP,
28109 3DNow!@:, enhanced 3DNow!@:, POPCNT, ABM, ADX, BMI, BMI2, LZCNT, FXSR, XSAVE,
28110 XSAVEOPT, XSAVEC, XSAVES, RTM, HLE, TBM, MWAITX, CLZERO, PKU, AVX512VBMI2,
28111 GFNI, VAES, WAITPKG, VPCLMULQDQ, AVX512BITALG, MOVDIRI, MOVDIR64B, AVX512BF16,
28112 ENQCMD, AVX512VPOPCNTDQ, AVX5124FMAPS, AVX512VNNI, AVX5124VNNIW, or CLDEMOTE
28113 extended instruction sets. Each has a corresponding @option{-mno-} option to
28114 disable use of these instructions.
28115
28116 These extensions are also available as built-in functions: see
28117 @ref{x86 Built-in Functions}, for details of the functions enabled and
28118 disabled by these switches.
28119
28120 To generate SSE/SSE2 instructions automatically from floating-point
28121 code (as opposed to 387 instructions), see @option{-mfpmath=sse}.
28122
28123 GCC depresses SSEx instructions when @option{-mavx} is used. Instead, it
28124 generates new AVX instructions or AVX equivalence for all SSEx instructions
28125 when needed.
28126
28127 These options enable GCC to use these extended instructions in
28128 generated code, even without @option{-mfpmath=sse}. Applications that
28129 perform run-time CPU detection must compile separate files for each
28130 supported architecture, using the appropriate flags. In particular,
28131 the file containing the CPU detection code should be compiled without
28132 these options.
28133
28134 @item -mdump-tune-features
28135 @opindex mdump-tune-features
28136 This option instructs GCC to dump the names of the x86 performance
28137 tuning features and default settings. The names can be used in
28138 @option{-mtune-ctrl=@var{feature-list}}.
28139
28140 @item -mtune-ctrl=@var{feature-list}
28141 @opindex mtune-ctrl=@var{feature-list}
28142 This option is used to do fine grain control of x86 code generation features.
28143 @var{feature-list} is a comma separated list of @var{feature} names. See also
28144 @option{-mdump-tune-features}. When specified, the @var{feature} is turned
28145 on if it is not preceded with @samp{^}, otherwise, it is turned off.
28146 @option{-mtune-ctrl=@var{feature-list}} is intended to be used by GCC
28147 developers. Using it may lead to code paths not covered by testing and can
28148 potentially result in compiler ICEs or runtime errors.
28149
28150 @item -mno-default
28151 @opindex mno-default
28152 This option instructs GCC to turn off all tunable features. See also
28153 @option{-mtune-ctrl=@var{feature-list}} and @option{-mdump-tune-features}.
28154
28155 @item -mcld
28156 @opindex mcld
28157 This option instructs GCC to emit a @code{cld} instruction in the prologue
28158 of functions that use string instructions. String instructions depend on
28159 the DF flag to select between autoincrement or autodecrement mode. While the
28160 ABI specifies the DF flag to be cleared on function entry, some operating
28161 systems violate this specification by not clearing the DF flag in their
28162 exception dispatchers. The exception handler can be invoked with the DF flag
28163 set, which leads to wrong direction mode when string instructions are used.
28164 This option can be enabled by default on 32-bit x86 targets by configuring
28165 GCC with the @option{--enable-cld} configure option. Generation of @code{cld}
28166 instructions can be suppressed with the @option{-mno-cld} compiler option
28167 in this case.
28168
28169 @item -mvzeroupper
28170 @opindex mvzeroupper
28171 This option instructs GCC to emit a @code{vzeroupper} instruction
28172 before a transfer of control flow out of the function to minimize
28173 the AVX to SSE transition penalty as well as remove unnecessary @code{zeroupper}
28174 intrinsics.
28175
28176 @item -mprefer-avx128
28177 @opindex mprefer-avx128
28178 This option instructs GCC to use 128-bit AVX instructions instead of
28179 256-bit AVX instructions in the auto-vectorizer.
28180
28181 @item -mprefer-vector-width=@var{opt}
28182 @opindex mprefer-vector-width
28183 This option instructs GCC to use @var{opt}-bit vector width in instructions
28184 instead of default on the selected platform.
28185
28186 @table @samp
28187 @item none
28188 No extra limitations applied to GCC other than defined by the selected platform.
28189
28190 @item 128
28191 Prefer 128-bit vector width for instructions.
28192
28193 @item 256
28194 Prefer 256-bit vector width for instructions.
28195
28196 @item 512
28197 Prefer 512-bit vector width for instructions.
28198 @end table
28199
28200 @item -mcx16
28201 @opindex mcx16
28202 This option enables GCC to generate @code{CMPXCHG16B} instructions in 64-bit
28203 code to implement compare-and-exchange operations on 16-byte aligned 128-bit
28204 objects. This is useful for atomic updates of data structures exceeding one
28205 machine word in size. The compiler uses this instruction to implement
28206 @ref{__sync Builtins}. However, for @ref{__atomic Builtins} operating on
28207 128-bit integers, a library call is always used.
28208
28209 @item -msahf
28210 @opindex msahf
28211 This option enables generation of @code{SAHF} instructions in 64-bit code.
28212 Early Intel Pentium 4 CPUs with Intel 64 support,
28213 prior to the introduction of Pentium 4 G1 step in December 2005,
28214 lacked the @code{LAHF} and @code{SAHF} instructions
28215 which are supported by AMD64.
28216 These are load and store instructions, respectively, for certain status flags.
28217 In 64-bit mode, the @code{SAHF} instruction is used to optimize @code{fmod},
28218 @code{drem}, and @code{remainder} built-in functions;
28219 see @ref{Other Builtins} for details.
28220
28221 @item -mmovbe
28222 @opindex mmovbe
28223 This option enables use of the @code{movbe} instruction to implement
28224 @code{__builtin_bswap32} and @code{__builtin_bswap64}.
28225
28226 @item -mshstk
28227 @opindex mshstk
28228 The @option{-mshstk} option enables shadow stack built-in functions
28229 from x86 Control-flow Enforcement Technology (CET).
28230
28231 @item -mcrc32
28232 @opindex mcrc32
28233 This option enables built-in functions @code{__builtin_ia32_crc32qi},
28234 @code{__builtin_ia32_crc32hi}, @code{__builtin_ia32_crc32si} and
28235 @code{__builtin_ia32_crc32di} to generate the @code{crc32} machine instruction.
28236
28237 @item -mrecip
28238 @opindex mrecip
28239 This option enables use of @code{RCPSS} and @code{RSQRTSS} instructions
28240 (and their vectorized variants @code{RCPPS} and @code{RSQRTPS})
28241 with an additional Newton-Raphson step
28242 to increase precision instead of @code{DIVSS} and @code{SQRTSS}
28243 (and their vectorized
28244 variants) for single-precision floating-point arguments. These instructions
28245 are generated only when @option{-funsafe-math-optimizations} is enabled
28246 together with @option{-ffinite-math-only} and @option{-fno-trapping-math}.
28247 Note that while the throughput of the sequence is higher than the throughput
28248 of the non-reciprocal instruction, the precision of the sequence can be
28249 decreased by up to 2 ulp (i.e.@: the inverse of 1.0 equals 0.99999994).
28250
28251 Note that GCC implements @code{1.0f/sqrtf(@var{x})} in terms of @code{RSQRTSS}
28252 (or @code{RSQRTPS}) already with @option{-ffast-math} (or the above option
28253 combination), and doesn't need @option{-mrecip}.
28254
28255 Also note that GCC emits the above sequence with additional Newton-Raphson step
28256 for vectorized single-float division and vectorized @code{sqrtf(@var{x})}
28257 already with @option{-ffast-math} (or the above option combination), and
28258 doesn't need @option{-mrecip}.
28259
28260 @item -mrecip=@var{opt}
28261 @opindex mrecip=opt
28262 This option controls which reciprocal estimate instructions
28263 may be used. @var{opt} is a comma-separated list of options, which may
28264 be preceded by a @samp{!} to invert the option:
28265
28266 @table @samp
28267 @item all
28268 Enable all estimate instructions.
28269
28270 @item default
28271 Enable the default instructions, equivalent to @option{-mrecip}.
28272
28273 @item none
28274 Disable all estimate instructions, equivalent to @option{-mno-recip}.
28275
28276 @item div
28277 Enable the approximation for scalar division.
28278
28279 @item vec-div
28280 Enable the approximation for vectorized division.
28281
28282 @item sqrt
28283 Enable the approximation for scalar square root.
28284
28285 @item vec-sqrt
28286 Enable the approximation for vectorized square root.
28287 @end table
28288
28289 So, for example, @option{-mrecip=all,!sqrt} enables
28290 all of the reciprocal approximations, except for square root.
28291
28292 @item -mveclibabi=@var{type}
28293 @opindex mveclibabi
28294 Specifies the ABI type to use for vectorizing intrinsics using an
28295 external library. Supported values for @var{type} are @samp{svml}
28296 for the Intel short
28297 vector math library and @samp{acml} for the AMD math core library.
28298 To use this option, both @option{-ftree-vectorize} and
28299 @option{-funsafe-math-optimizations} have to be enabled, and an SVML or ACML
28300 ABI-compatible library must be specified at link time.
28301
28302 GCC currently emits calls to @code{vmldExp2},
28303 @code{vmldLn2}, @code{vmldLog102}, @code{vmldPow2},
28304 @code{vmldTanh2}, @code{vmldTan2}, @code{vmldAtan2}, @code{vmldAtanh2},
28305 @code{vmldCbrt2}, @code{vmldSinh2}, @code{vmldSin2}, @code{vmldAsinh2},
28306 @code{vmldAsin2}, @code{vmldCosh2}, @code{vmldCos2}, @code{vmldAcosh2},
28307 @code{vmldAcos2}, @code{vmlsExp4}, @code{vmlsLn4},
28308 @code{vmlsLog104}, @code{vmlsPow4}, @code{vmlsTanh4}, @code{vmlsTan4},
28309 @code{vmlsAtan4}, @code{vmlsAtanh4}, @code{vmlsCbrt4}, @code{vmlsSinh4},
28310 @code{vmlsSin4}, @code{vmlsAsinh4}, @code{vmlsAsin4}, @code{vmlsCosh4},
28311 @code{vmlsCos4}, @code{vmlsAcosh4} and @code{vmlsAcos4} for corresponding
28312 function type when @option{-mveclibabi=svml} is used, and @code{__vrd2_sin},
28313 @code{__vrd2_cos}, @code{__vrd2_exp}, @code{__vrd2_log}, @code{__vrd2_log2},
28314 @code{__vrd2_log10}, @code{__vrs4_sinf}, @code{__vrs4_cosf},
28315 @code{__vrs4_expf}, @code{__vrs4_logf}, @code{__vrs4_log2f},
28316 @code{__vrs4_log10f} and @code{__vrs4_powf} for the corresponding function type
28317 when @option{-mveclibabi=acml} is used.
28318
28319 @item -mabi=@var{name}
28320 @opindex mabi
28321 Generate code for the specified calling convention. Permissible values
28322 are @samp{sysv} for the ABI used on GNU/Linux and other systems, and
28323 @samp{ms} for the Microsoft ABI. The default is to use the Microsoft
28324 ABI when targeting Microsoft Windows and the SysV ABI on all other systems.
28325 You can control this behavior for specific functions by
28326 using the function attributes @code{ms_abi} and @code{sysv_abi}.
28327 @xref{Function Attributes}.
28328
28329 @item -mforce-indirect-call
28330 @opindex mforce-indirect-call
28331 Force all calls to functions to be indirect. This is useful
28332 when using Intel Processor Trace where it generates more precise timing
28333 information for function calls.
28334
28335 @item -mmanual-endbr
28336 @opindex mmanual-endbr
28337 Insert ENDBR instruction at function entry only via the @code{cf_check}
28338 function attribute. This is useful when used with the option
28339 @option{-fcf-protection=branch} to control ENDBR insertion at the
28340 function entry.
28341
28342 @item -mcall-ms2sysv-xlogues
28343 @opindex mcall-ms2sysv-xlogues
28344 @opindex mno-call-ms2sysv-xlogues
28345 Due to differences in 64-bit ABIs, any Microsoft ABI function that calls a
28346 System V ABI function must consider RSI, RDI and XMM6-15 as clobbered. By
28347 default, the code for saving and restoring these registers is emitted inline,
28348 resulting in fairly lengthy prologues and epilogues. Using
28349 @option{-mcall-ms2sysv-xlogues} emits prologues and epilogues that
28350 use stubs in the static portion of libgcc to perform these saves and restores,
28351 thus reducing function size at the cost of a few extra instructions.
28352
28353 @item -mtls-dialect=@var{type}
28354 @opindex mtls-dialect
28355 Generate code to access thread-local storage using the @samp{gnu} or
28356 @samp{gnu2} conventions. @samp{gnu} is the conservative default;
28357 @samp{gnu2} is more efficient, but it may add compile- and run-time
28358 requirements that cannot be satisfied on all systems.
28359
28360 @item -mpush-args
28361 @itemx -mno-push-args
28362 @opindex mpush-args
28363 @opindex mno-push-args
28364 Use PUSH operations to store outgoing parameters. This method is shorter
28365 and usually equally fast as method using SUB/MOV operations and is enabled
28366 by default. In some cases disabling it may improve performance because of
28367 improved scheduling and reduced dependencies.
28368
28369 @item -maccumulate-outgoing-args
28370 @opindex maccumulate-outgoing-args
28371 If enabled, the maximum amount of space required for outgoing arguments is
28372 computed in the function prologue. This is faster on most modern CPUs
28373 because of reduced dependencies, improved scheduling and reduced stack usage
28374 when the preferred stack boundary is not equal to 2. The drawback is a notable
28375 increase in code size. This switch implies @option{-mno-push-args}.
28376
28377 @item -mthreads
28378 @opindex mthreads
28379 Support thread-safe exception handling on MinGW. Programs that rely
28380 on thread-safe exception handling must compile and link all code with the
28381 @option{-mthreads} option. When compiling, @option{-mthreads} defines
28382 @option{-D_MT}; when linking, it links in a special thread helper library
28383 @option{-lmingwthrd} which cleans up per-thread exception-handling data.
28384
28385 @item -mms-bitfields
28386 @itemx -mno-ms-bitfields
28387 @opindex mms-bitfields
28388 @opindex mno-ms-bitfields
28389
28390 Enable/disable bit-field layout compatible with the native Microsoft
28391 Windows compiler.
28392
28393 If @code{packed} is used on a structure, or if bit-fields are used,
28394 it may be that the Microsoft ABI lays out the structure differently
28395 than the way GCC normally does. Particularly when moving packed
28396 data between functions compiled with GCC and the native Microsoft compiler
28397 (either via function call or as data in a file), it may be necessary to access
28398 either format.
28399
28400 This option is enabled by default for Microsoft Windows
28401 targets. This behavior can also be controlled locally by use of variable
28402 or type attributes. For more information, see @ref{x86 Variable Attributes}
28403 and @ref{x86 Type Attributes}.
28404
28405 The Microsoft structure layout algorithm is fairly simple with the exception
28406 of the bit-field packing.
28407 The padding and alignment of members of structures and whether a bit-field
28408 can straddle a storage-unit boundary are determine by these rules:
28409
28410 @enumerate
28411 @item Structure members are stored sequentially in the order in which they are
28412 declared: the first member has the lowest memory address and the last member
28413 the highest.
28414
28415 @item Every data object has an alignment requirement. The alignment requirement
28416 for all data except structures, unions, and arrays is either the size of the
28417 object or the current packing size (specified with either the
28418 @code{aligned} attribute or the @code{pack} pragma),
28419 whichever is less. For structures, unions, and arrays,
28420 the alignment requirement is the largest alignment requirement of its members.
28421 Every object is allocated an offset so that:
28422
28423 @smallexample
28424 offset % alignment_requirement == 0
28425 @end smallexample
28426
28427 @item Adjacent bit-fields are packed into the same 1-, 2-, or 4-byte allocation
28428 unit if the integral types are the same size and if the next bit-field fits
28429 into the current allocation unit without crossing the boundary imposed by the
28430 common alignment requirements of the bit-fields.
28431 @end enumerate
28432
28433 MSVC interprets zero-length bit-fields in the following ways:
28434
28435 @enumerate
28436 @item If a zero-length bit-field is inserted between two bit-fields that
28437 are normally coalesced, the bit-fields are not coalesced.
28438
28439 For example:
28440
28441 @smallexample
28442 struct
28443 @{
28444 unsigned long bf_1 : 12;
28445 unsigned long : 0;
28446 unsigned long bf_2 : 12;
28447 @} t1;
28448 @end smallexample
28449
28450 @noindent
28451 The size of @code{t1} is 8 bytes with the zero-length bit-field. If the
28452 zero-length bit-field were removed, @code{t1}'s size would be 4 bytes.
28453
28454 @item If a zero-length bit-field is inserted after a bit-field, @code{foo}, and the
28455 alignment of the zero-length bit-field is greater than the member that follows it,
28456 @code{bar}, @code{bar} is aligned as the type of the zero-length bit-field.
28457
28458 For example:
28459
28460 @smallexample
28461 struct
28462 @{
28463 char foo : 4;
28464 short : 0;
28465 char bar;
28466 @} t2;
28467
28468 struct
28469 @{
28470 char foo : 4;
28471 short : 0;
28472 double bar;
28473 @} t3;
28474 @end smallexample
28475
28476 @noindent
28477 For @code{t2}, @code{bar} is placed at offset 2, rather than offset 1.
28478 Accordingly, the size of @code{t2} is 4. For @code{t3}, the zero-length
28479 bit-field does not affect the alignment of @code{bar} or, as a result, the size
28480 of the structure.
28481
28482 Taking this into account, it is important to note the following:
28483
28484 @enumerate
28485 @item If a zero-length bit-field follows a normal bit-field, the type of the
28486 zero-length bit-field may affect the alignment of the structure as whole. For
28487 example, @code{t2} has a size of 4 bytes, since the zero-length bit-field follows a
28488 normal bit-field, and is of type short.
28489
28490 @item Even if a zero-length bit-field is not followed by a normal bit-field, it may
28491 still affect the alignment of the structure:
28492
28493 @smallexample
28494 struct
28495 @{
28496 char foo : 6;
28497 long : 0;
28498 @} t4;
28499 @end smallexample
28500
28501 @noindent
28502 Here, @code{t4} takes up 4 bytes.
28503 @end enumerate
28504
28505 @item Zero-length bit-fields following non-bit-field members are ignored:
28506
28507 @smallexample
28508 struct
28509 @{
28510 char foo;
28511 long : 0;
28512 char bar;
28513 @} t5;
28514 @end smallexample
28515
28516 @noindent
28517 Here, @code{t5} takes up 2 bytes.
28518 @end enumerate
28519
28520
28521 @item -mno-align-stringops
28522 @opindex mno-align-stringops
28523 @opindex malign-stringops
28524 Do not align the destination of inlined string operations. This switch reduces
28525 code size and improves performance in case the destination is already aligned,
28526 but GCC doesn't know about it.
28527
28528 @item -minline-all-stringops
28529 @opindex minline-all-stringops
28530 By default GCC inlines string operations only when the destination is
28531 known to be aligned to least a 4-byte boundary.
28532 This enables more inlining and increases code
28533 size, but may improve performance of code that depends on fast
28534 @code{memcpy} and @code{memset} for short lengths.
28535 The option enables inline expansion of @code{strlen} for all
28536 pointer alignments.
28537
28538 @item -minline-stringops-dynamically
28539 @opindex minline-stringops-dynamically
28540 For string operations of unknown size, use run-time checks with
28541 inline code for small blocks and a library call for large blocks.
28542
28543 @item -mstringop-strategy=@var{alg}
28544 @opindex mstringop-strategy=@var{alg}
28545 Override the internal decision heuristic for the particular algorithm to use
28546 for inlining string operations. The allowed values for @var{alg} are:
28547
28548 @table @samp
28549 @item rep_byte
28550 @itemx rep_4byte
28551 @itemx rep_8byte
28552 Expand using i386 @code{rep} prefix of the specified size.
28553
28554 @item byte_loop
28555 @itemx loop
28556 @itemx unrolled_loop
28557 Expand into an inline loop.
28558
28559 @item libcall
28560 Always use a library call.
28561 @end table
28562
28563 @item -mmemcpy-strategy=@var{strategy}
28564 @opindex mmemcpy-strategy=@var{strategy}
28565 Override the internal decision heuristic to decide if @code{__builtin_memcpy}
28566 should be inlined and what inline algorithm to use when the expected size
28567 of the copy operation is known. @var{strategy}
28568 is a comma-separated list of @var{alg}:@var{max_size}:@var{dest_align} triplets.
28569 @var{alg} is specified in @option{-mstringop-strategy}, @var{max_size} specifies
28570 the max byte size with which inline algorithm @var{alg} is allowed. For the last
28571 triplet, the @var{max_size} must be @code{-1}. The @var{max_size} of the triplets
28572 in the list must be specified in increasing order. The minimal byte size for
28573 @var{alg} is @code{0} for the first triplet and @code{@var{max_size} + 1} of the
28574 preceding range.
28575
28576 @item -mmemset-strategy=@var{strategy}
28577 @opindex mmemset-strategy=@var{strategy}
28578 The option is similar to @option{-mmemcpy-strategy=} except that it is to control
28579 @code{__builtin_memset} expansion.
28580
28581 @item -momit-leaf-frame-pointer
28582 @opindex momit-leaf-frame-pointer
28583 Don't keep the frame pointer in a register for leaf functions. This
28584 avoids the instructions to save, set up, and restore frame pointers and
28585 makes an extra register available in leaf functions. The option
28586 @option{-fomit-leaf-frame-pointer} removes the frame pointer for leaf functions,
28587 which might make debugging harder.
28588
28589 @item -mtls-direct-seg-refs
28590 @itemx -mno-tls-direct-seg-refs
28591 @opindex mtls-direct-seg-refs
28592 Controls whether TLS variables may be accessed with offsets from the
28593 TLS segment register (@code{%gs} for 32-bit, @code{%fs} for 64-bit),
28594 or whether the thread base pointer must be added. Whether or not this
28595 is valid depends on the operating system, and whether it maps the
28596 segment to cover the entire TLS area.
28597
28598 For systems that use the GNU C Library, the default is on.
28599
28600 @item -msse2avx
28601 @itemx -mno-sse2avx
28602 @opindex msse2avx
28603 Specify that the assembler should encode SSE instructions with VEX
28604 prefix. The option @option{-mavx} turns this on by default.
28605
28606 @item -mfentry
28607 @itemx -mno-fentry
28608 @opindex mfentry
28609 If profiling is active (@option{-pg}), put the profiling
28610 counter call before the prologue.
28611 Note: On x86 architectures the attribute @code{ms_hook_prologue}
28612 isn't possible at the moment for @option{-mfentry} and @option{-pg}.
28613
28614 @item -mrecord-mcount
28615 @itemx -mno-record-mcount
28616 @opindex mrecord-mcount
28617 If profiling is active (@option{-pg}), generate a __mcount_loc section
28618 that contains pointers to each profiling call. This is useful for
28619 automatically patching and out calls.
28620
28621 @item -mnop-mcount
28622 @itemx -mno-nop-mcount
28623 @opindex mnop-mcount
28624 If profiling is active (@option{-pg}), generate the calls to
28625 the profiling functions as NOPs. This is useful when they
28626 should be patched in later dynamically. This is likely only
28627 useful together with @option{-mrecord-mcount}.
28628
28629 @item -minstrument-return=@var{type}
28630 @opindex minstrument-return
28631 Instrument function exit in -pg -mfentry instrumented functions with
28632 call to specified function. This only instruments true returns ending
28633 with ret, but not sibling calls ending with jump. Valid types
28634 are @var{none} to not instrument, @var{call} to generate a call to __return__,
28635 or @var{nop5} to generate a 5 byte nop.
28636
28637 @item -mrecord-return
28638 @itemx -mno-record-return
28639 @opindex mrecord-return
28640 Generate a __return_loc section pointing to all return instrumentation code.
28641
28642 @item -mfentry-name=@var{name}
28643 @opindex mfentry-name
28644 Set name of __fentry__ symbol called at function entry for -pg -mfentry functions.
28645
28646 @item -mfentry-section=@var{name}
28647 @opindex mfentry-section
28648 Set name of section to record -mrecord-mcount calls (default __mcount_loc).
28649
28650 @item -mskip-rax-setup
28651 @itemx -mno-skip-rax-setup
28652 @opindex mskip-rax-setup
28653 When generating code for the x86-64 architecture with SSE extensions
28654 disabled, @option{-mskip-rax-setup} can be used to skip setting up RAX
28655 register when there are no variable arguments passed in vector registers.
28656
28657 @strong{Warning:} Since RAX register is used to avoid unnecessarily
28658 saving vector registers on stack when passing variable arguments, the
28659 impacts of this option are callees may waste some stack space,
28660 misbehave or jump to a random location. GCC 4.4 or newer don't have
28661 those issues, regardless the RAX register value.
28662
28663 @item -m8bit-idiv
28664 @itemx -mno-8bit-idiv
28665 @opindex m8bit-idiv
28666 On some processors, like Intel Atom, 8-bit unsigned integer divide is
28667 much faster than 32-bit/64-bit integer divide. This option generates a
28668 run-time check. If both dividend and divisor are within range of 0
28669 to 255, 8-bit unsigned integer divide is used instead of
28670 32-bit/64-bit integer divide.
28671
28672 @item -mavx256-split-unaligned-load
28673 @itemx -mavx256-split-unaligned-store
28674 @opindex mavx256-split-unaligned-load
28675 @opindex mavx256-split-unaligned-store
28676 Split 32-byte AVX unaligned load and store.
28677
28678 @item -mstack-protector-guard=@var{guard}
28679 @itemx -mstack-protector-guard-reg=@var{reg}
28680 @itemx -mstack-protector-guard-offset=@var{offset}
28681 @opindex mstack-protector-guard
28682 @opindex mstack-protector-guard-reg
28683 @opindex mstack-protector-guard-offset
28684 Generate stack protection code using canary at @var{guard}. Supported
28685 locations are @samp{global} for global canary or @samp{tls} for per-thread
28686 canary in the TLS block (the default). This option has effect only when
28687 @option{-fstack-protector} or @option{-fstack-protector-all} is specified.
28688
28689 With the latter choice the options
28690 @option{-mstack-protector-guard-reg=@var{reg}} and
28691 @option{-mstack-protector-guard-offset=@var{offset}} furthermore specify
28692 which segment register (@code{%fs} or @code{%gs}) to use as base register
28693 for reading the canary, and from what offset from that base register.
28694 The default for those is as specified in the relevant ABI.
28695
28696 @item -mgeneral-regs-only
28697 @opindex mgeneral-regs-only
28698 Generate code that uses only the general-purpose registers. This
28699 prevents the compiler from using floating-point, vector, mask and bound
28700 registers.
28701
28702 @item -mindirect-branch=@var{choice}
28703 @opindex mindirect-branch
28704 Convert indirect call and jump with @var{choice}. The default is
28705 @samp{keep}, which keeps indirect call and jump unmodified.
28706 @samp{thunk} converts indirect call and jump to call and return thunk.
28707 @samp{thunk-inline} converts indirect call and jump to inlined call
28708 and return thunk. @samp{thunk-extern} converts indirect call and jump
28709 to external call and return thunk provided in a separate object file.
28710 You can control this behavior for a specific function by using the
28711 function attribute @code{indirect_branch}. @xref{Function Attributes}.
28712
28713 Note that @option{-mcmodel=large} is incompatible with
28714 @option{-mindirect-branch=thunk} and
28715 @option{-mindirect-branch=thunk-extern} since the thunk function may
28716 not be reachable in the large code model.
28717
28718 Note that @option{-mindirect-branch=thunk-extern} is incompatible with
28719 @option{-fcf-protection=branch} since the external thunk cannot be modified
28720 to disable control-flow check.
28721
28722 @item -mfunction-return=@var{choice}
28723 @opindex mfunction-return
28724 Convert function return with @var{choice}. The default is @samp{keep},
28725 which keeps function return unmodified. @samp{thunk} converts function
28726 return to call and return thunk. @samp{thunk-inline} converts function
28727 return to inlined call and return thunk. @samp{thunk-extern} converts
28728 function return to external call and return thunk provided in a separate
28729 object file. You can control this behavior for a specific function by
28730 using the function attribute @code{function_return}.
28731 @xref{Function Attributes}.
28732
28733 Note that @option{-mcmodel=large} is incompatible with
28734 @option{-mfunction-return=thunk} and
28735 @option{-mfunction-return=thunk-extern} since the thunk function may
28736 not be reachable in the large code model.
28737
28738
28739 @item -mindirect-branch-register
28740 @opindex mindirect-branch-register
28741 Force indirect call and jump via register.
28742
28743 @end table
28744
28745 These @samp{-m} switches are supported in addition to the above
28746 on x86-64 processors in 64-bit environments.
28747
28748 @table @gcctabopt
28749 @item -m32
28750 @itemx -m64
28751 @itemx -mx32
28752 @itemx -m16
28753 @itemx -miamcu
28754 @opindex m32
28755 @opindex m64
28756 @opindex mx32
28757 @opindex m16
28758 @opindex miamcu
28759 Generate code for a 16-bit, 32-bit or 64-bit environment.
28760 The @option{-m32} option sets @code{int}, @code{long}, and pointer types
28761 to 32 bits, and
28762 generates code that runs on any i386 system.
28763
28764 The @option{-m64} option sets @code{int} to 32 bits and @code{long} and pointer
28765 types to 64 bits, and generates code for the x86-64 architecture.
28766 For Darwin only the @option{-m64} option also turns off the @option{-fno-pic}
28767 and @option{-mdynamic-no-pic} options.
28768
28769 The @option{-mx32} option sets @code{int}, @code{long}, and pointer types
28770 to 32 bits, and
28771 generates code for the x86-64 architecture.
28772
28773 The @option{-m16} option is the same as @option{-m32}, except for that
28774 it outputs the @code{.code16gcc} assembly directive at the beginning of
28775 the assembly output so that the binary can run in 16-bit mode.
28776
28777 The @option{-miamcu} option generates code which conforms to Intel MCU
28778 psABI. It requires the @option{-m32} option to be turned on.
28779
28780 @item -mno-red-zone
28781 @opindex mno-red-zone
28782 @opindex mred-zone
28783 Do not use a so-called ``red zone'' for x86-64 code. The red zone is mandated
28784 by the x86-64 ABI; it is a 128-byte area beyond the location of the
28785 stack pointer that is not modified by signal or interrupt handlers
28786 and therefore can be used for temporary data without adjusting the stack
28787 pointer. The flag @option{-mno-red-zone} disables this red zone.
28788
28789 @item -mcmodel=small
28790 @opindex mcmodel=small
28791 Generate code for the small code model: the program and its symbols must
28792 be linked in the lower 2 GB of the address space. Pointers are 64 bits.
28793 Programs can be statically or dynamically linked. This is the default
28794 code model.
28795
28796 @item -mcmodel=kernel
28797 @opindex mcmodel=kernel
28798 Generate code for the kernel code model. The kernel runs in the
28799 negative 2 GB of the address space.
28800 This model has to be used for Linux kernel code.
28801
28802 @item -mcmodel=medium
28803 @opindex mcmodel=medium
28804 Generate code for the medium model: the program is linked in the lower 2
28805 GB of the address space. Small symbols are also placed there. Symbols
28806 with sizes larger than @option{-mlarge-data-threshold} are put into
28807 large data or BSS sections and can be located above 2GB. Programs can
28808 be statically or dynamically linked.
28809
28810 @item -mcmodel=large
28811 @opindex mcmodel=large
28812 Generate code for the large model. This model makes no assumptions
28813 about addresses and sizes of sections.
28814
28815 @item -maddress-mode=long
28816 @opindex maddress-mode=long
28817 Generate code for long address mode. This is only supported for 64-bit
28818 and x32 environments. It is the default address mode for 64-bit
28819 environments.
28820
28821 @item -maddress-mode=short
28822 @opindex maddress-mode=short
28823 Generate code for short address mode. This is only supported for 32-bit
28824 and x32 environments. It is the default address mode for 32-bit and
28825 x32 environments.
28826 @end table
28827
28828 @node x86 Windows Options
28829 @subsection x86 Windows Options
28830 @cindex x86 Windows Options
28831 @cindex Windows Options for x86
28832
28833 These additional options are available for Microsoft Windows targets:
28834
28835 @table @gcctabopt
28836 @item -mconsole
28837 @opindex mconsole
28838 This option
28839 specifies that a console application is to be generated, by
28840 instructing the linker to set the PE header subsystem type
28841 required for console applications.
28842 This option is available for Cygwin and MinGW targets and is
28843 enabled by default on those targets.
28844
28845 @item -mdll
28846 @opindex mdll
28847 This option is available for Cygwin and MinGW targets. It
28848 specifies that a DLL---a dynamic link library---is to be
28849 generated, enabling the selection of the required runtime
28850 startup object and entry point.
28851
28852 @item -mnop-fun-dllimport
28853 @opindex mnop-fun-dllimport
28854 This option is available for Cygwin and MinGW targets. It
28855 specifies that the @code{dllimport} attribute should be ignored.
28856
28857 @item -mthread
28858 @opindex mthread
28859 This option is available for MinGW targets. It specifies
28860 that MinGW-specific thread support is to be used.
28861
28862 @item -municode
28863 @opindex municode
28864 This option is available for MinGW-w64 targets. It causes
28865 the @code{UNICODE} preprocessor macro to be predefined, and
28866 chooses Unicode-capable runtime startup code.
28867
28868 @item -mwin32
28869 @opindex mwin32
28870 This option is available for Cygwin and MinGW targets. It
28871 specifies that the typical Microsoft Windows predefined macros are to
28872 be set in the pre-processor, but does not influence the choice
28873 of runtime library/startup code.
28874
28875 @item -mwindows
28876 @opindex mwindows
28877 This option is available for Cygwin and MinGW targets. It
28878 specifies that a GUI application is to be generated by
28879 instructing the linker to set the PE header subsystem type
28880 appropriately.
28881
28882 @item -fno-set-stack-executable
28883 @opindex fno-set-stack-executable
28884 @opindex fset-stack-executable
28885 This option is available for MinGW targets. It specifies that
28886 the executable flag for the stack used by nested functions isn't
28887 set. This is necessary for binaries running in kernel mode of
28888 Microsoft Windows, as there the User32 API, which is used to set executable
28889 privileges, isn't available.
28890
28891 @item -fwritable-relocated-rdata
28892 @opindex fno-writable-relocated-rdata
28893 @opindex fwritable-relocated-rdata
28894 This option is available for MinGW and Cygwin targets. It specifies
28895 that relocated-data in read-only section is put into the @code{.data}
28896 section. This is a necessary for older runtimes not supporting
28897 modification of @code{.rdata} sections for pseudo-relocation.
28898
28899 @item -mpe-aligned-commons
28900 @opindex mpe-aligned-commons
28901 This option is available for Cygwin and MinGW targets. It
28902 specifies that the GNU extension to the PE file format that
28903 permits the correct alignment of COMMON variables should be
28904 used when generating code. It is enabled by default if
28905 GCC detects that the target assembler found during configuration
28906 supports the feature.
28907 @end table
28908
28909 See also under @ref{x86 Options} for standard options.
28910
28911 @node Xstormy16 Options
28912 @subsection Xstormy16 Options
28913 @cindex Xstormy16 Options
28914
28915 These options are defined for Xstormy16:
28916
28917 @table @gcctabopt
28918 @item -msim
28919 @opindex msim
28920 Choose startup files and linker script suitable for the simulator.
28921 @end table
28922
28923 @node Xtensa Options
28924 @subsection Xtensa Options
28925 @cindex Xtensa Options
28926
28927 These options are supported for Xtensa targets:
28928
28929 @table @gcctabopt
28930 @item -mconst16
28931 @itemx -mno-const16
28932 @opindex mconst16
28933 @opindex mno-const16
28934 Enable or disable use of @code{CONST16} instructions for loading
28935 constant values. The @code{CONST16} instruction is currently not a
28936 standard option from Tensilica. When enabled, @code{CONST16}
28937 instructions are always used in place of the standard @code{L32R}
28938 instructions. The use of @code{CONST16} is enabled by default only if
28939 the @code{L32R} instruction is not available.
28940
28941 @item -mfused-madd
28942 @itemx -mno-fused-madd
28943 @opindex mfused-madd
28944 @opindex mno-fused-madd
28945 Enable or disable use of fused multiply/add and multiply/subtract
28946 instructions in the floating-point option. This has no effect if the
28947 floating-point option is not also enabled. Disabling fused multiply/add
28948 and multiply/subtract instructions forces the compiler to use separate
28949 instructions for the multiply and add/subtract operations. This may be
28950 desirable in some cases where strict IEEE 754-compliant results are
28951 required: the fused multiply add/subtract instructions do not round the
28952 intermediate result, thereby producing results with @emph{more} bits of
28953 precision than specified by the IEEE standard. Disabling fused multiply
28954 add/subtract instructions also ensures that the program output is not
28955 sensitive to the compiler's ability to combine multiply and add/subtract
28956 operations.
28957
28958 @item -mserialize-volatile
28959 @itemx -mno-serialize-volatile
28960 @opindex mserialize-volatile
28961 @opindex mno-serialize-volatile
28962 When this option is enabled, GCC inserts @code{MEMW} instructions before
28963 @code{volatile} memory references to guarantee sequential consistency.
28964 The default is @option{-mserialize-volatile}. Use
28965 @option{-mno-serialize-volatile} to omit the @code{MEMW} instructions.
28966
28967 @item -mforce-no-pic
28968 @opindex mforce-no-pic
28969 For targets, like GNU/Linux, where all user-mode Xtensa code must be
28970 position-independent code (PIC), this option disables PIC for compiling
28971 kernel code.
28972
28973 @item -mtext-section-literals
28974 @itemx -mno-text-section-literals
28975 @opindex mtext-section-literals
28976 @opindex mno-text-section-literals
28977 These options control the treatment of literal pools. The default is
28978 @option{-mno-text-section-literals}, which places literals in a separate
28979 section in the output file. This allows the literal pool to be placed
28980 in a data RAM/ROM, and it also allows the linker to combine literal
28981 pools from separate object files to remove redundant literals and
28982 improve code size. With @option{-mtext-section-literals}, the literals
28983 are interspersed in the text section in order to keep them as close as
28984 possible to their references. This may be necessary for large assembly
28985 files. Literals for each function are placed right before that function.
28986
28987 @item -mauto-litpools
28988 @itemx -mno-auto-litpools
28989 @opindex mauto-litpools
28990 @opindex mno-auto-litpools
28991 These options control the treatment of literal pools. The default is
28992 @option{-mno-auto-litpools}, which places literals in a separate
28993 section in the output file unless @option{-mtext-section-literals} is
28994 used. With @option{-mauto-litpools} the literals are interspersed in
28995 the text section by the assembler. Compiler does not produce explicit
28996 @code{.literal} directives and loads literals into registers with
28997 @code{MOVI} instructions instead of @code{L32R} to let the assembler
28998 do relaxation and place literals as necessary. This option allows
28999 assembler to create several literal pools per function and assemble
29000 very big functions, which may not be possible with
29001 @option{-mtext-section-literals}.
29002
29003 @item -mtarget-align
29004 @itemx -mno-target-align
29005 @opindex mtarget-align
29006 @opindex mno-target-align
29007 When this option is enabled, GCC instructs the assembler to
29008 automatically align instructions to reduce branch penalties at the
29009 expense of some code density. The assembler attempts to widen density
29010 instructions to align branch targets and the instructions following call
29011 instructions. If there are not enough preceding safe density
29012 instructions to align a target, no widening is performed. The
29013 default is @option{-mtarget-align}. These options do not affect the
29014 treatment of auto-aligned instructions like @code{LOOP}, which the
29015 assembler always aligns, either by widening density instructions or
29016 by inserting NOP instructions.
29017
29018 @item -mlongcalls
29019 @itemx -mno-longcalls
29020 @opindex mlongcalls
29021 @opindex mno-longcalls
29022 When this option is enabled, GCC instructs the assembler to translate
29023 direct calls to indirect calls unless it can determine that the target
29024 of a direct call is in the range allowed by the call instruction. This
29025 translation typically occurs for calls to functions in other source
29026 files. Specifically, the assembler translates a direct @code{CALL}
29027 instruction into an @code{L32R} followed by a @code{CALLX} instruction.
29028 The default is @option{-mno-longcalls}. This option should be used in
29029 programs where the call target can potentially be out of range. This
29030 option is implemented in the assembler, not the compiler, so the
29031 assembly code generated by GCC still shows direct call
29032 instructions---look at the disassembled object code to see the actual
29033 instructions. Note that the assembler uses an indirect call for
29034 every cross-file call, not just those that really are out of range.
29035 @end table
29036
29037 @node zSeries Options
29038 @subsection zSeries Options
29039 @cindex zSeries options
29040
29041 These are listed under @xref{S/390 and zSeries Options}.
29042
29043
29044 @c man end
29045
29046 @node Spec Files
29047 @section Specifying Subprocesses and the Switches to Pass to Them
29048 @cindex Spec Files
29049
29050 @command{gcc} is a driver program. It performs its job by invoking a
29051 sequence of other programs to do the work of compiling, assembling and
29052 linking. GCC interprets its command-line parameters and uses these to
29053 deduce which programs it should invoke, and which command-line options
29054 it ought to place on their command lines. This behavior is controlled
29055 by @dfn{spec strings}. In most cases there is one spec string for each
29056 program that GCC can invoke, but a few programs have multiple spec
29057 strings to control their behavior. The spec strings built into GCC can
29058 be overridden by using the @option{-specs=} command-line switch to specify
29059 a spec file.
29060
29061 @dfn{Spec files} are plain-text files that are used to construct spec
29062 strings. They consist of a sequence of directives separated by blank
29063 lines. The type of directive is determined by the first non-whitespace
29064 character on the line, which can be one of the following:
29065
29066 @table @code
29067 @item %@var{command}
29068 Issues a @var{command} to the spec file processor. The commands that can
29069 appear here are:
29070
29071 @table @code
29072 @item %include <@var{file}>
29073 @cindex @code{%include}
29074 Search for @var{file} and insert its text at the current point in the
29075 specs file.
29076
29077 @item %include_noerr <@var{file}>
29078 @cindex @code{%include_noerr}
29079 Just like @samp{%include}, but do not generate an error message if the include
29080 file cannot be found.
29081
29082 @item %rename @var{old_name} @var{new_name}
29083 @cindex @code{%rename}
29084 Rename the spec string @var{old_name} to @var{new_name}.
29085
29086 @end table
29087
29088 @item *[@var{spec_name}]:
29089 This tells the compiler to create, override or delete the named spec
29090 string. All lines after this directive up to the next directive or
29091 blank line are considered to be the text for the spec string. If this
29092 results in an empty string then the spec is deleted. (Or, if the
29093 spec did not exist, then nothing happens.) Otherwise, if the spec
29094 does not currently exist a new spec is created. If the spec does
29095 exist then its contents are overridden by the text of this
29096 directive, unless the first character of that text is the @samp{+}
29097 character, in which case the text is appended to the spec.
29098
29099 @item [@var{suffix}]:
29100 Creates a new @samp{[@var{suffix}] spec} pair. All lines after this directive
29101 and up to the next directive or blank line are considered to make up the
29102 spec string for the indicated suffix. When the compiler encounters an
29103 input file with the named suffix, it processes the spec string in
29104 order to work out how to compile that file. For example:
29105
29106 @smallexample
29107 .ZZ:
29108 z-compile -input %i
29109 @end smallexample
29110
29111 This says that any input file whose name ends in @samp{.ZZ} should be
29112 passed to the program @samp{z-compile}, which should be invoked with the
29113 command-line switch @option{-input} and with the result of performing the
29114 @samp{%i} substitution. (See below.)
29115
29116 As an alternative to providing a spec string, the text following a
29117 suffix directive can be one of the following:
29118
29119 @table @code
29120 @item @@@var{language}
29121 This says that the suffix is an alias for a known @var{language}. This is
29122 similar to using the @option{-x} command-line switch to GCC to specify a
29123 language explicitly. For example:
29124
29125 @smallexample
29126 .ZZ:
29127 @@c++
29128 @end smallexample
29129
29130 Says that .ZZ files are, in fact, C++ source files.
29131
29132 @item #@var{name}
29133 This causes an error messages saying:
29134
29135 @smallexample
29136 @var{name} compiler not installed on this system.
29137 @end smallexample
29138 @end table
29139
29140 GCC already has an extensive list of suffixes built into it.
29141 This directive adds an entry to the end of the list of suffixes, but
29142 since the list is searched from the end backwards, it is effectively
29143 possible to override earlier entries using this technique.
29144
29145 @end table
29146
29147 GCC has the following spec strings built into it. Spec files can
29148 override these strings or create their own. Note that individual
29149 targets can also add their own spec strings to this list.
29150
29151 @smallexample
29152 asm Options to pass to the assembler
29153 asm_final Options to pass to the assembler post-processor
29154 cpp Options to pass to the C preprocessor
29155 cc1 Options to pass to the C compiler
29156 cc1plus Options to pass to the C++ compiler
29157 endfile Object files to include at the end of the link
29158 link Options to pass to the linker
29159 lib Libraries to include on the command line to the linker
29160 libgcc Decides which GCC support library to pass to the linker
29161 linker Sets the name of the linker
29162 predefines Defines to be passed to the C preprocessor
29163 signed_char Defines to pass to CPP to say whether @code{char} is signed
29164 by default
29165 startfile Object files to include at the start of the link
29166 @end smallexample
29167
29168 Here is a small example of a spec file:
29169
29170 @smallexample
29171 %rename lib old_lib
29172
29173 *lib:
29174 --start-group -lgcc -lc -leval1 --end-group %(old_lib)
29175 @end smallexample
29176
29177 This example renames the spec called @samp{lib} to @samp{old_lib} and
29178 then overrides the previous definition of @samp{lib} with a new one.
29179 The new definition adds in some extra command-line options before
29180 including the text of the old definition.
29181
29182 @dfn{Spec strings} are a list of command-line options to be passed to their
29183 corresponding program. In addition, the spec strings can contain
29184 @samp{%}-prefixed sequences to substitute variable text or to
29185 conditionally insert text into the command line. Using these constructs
29186 it is possible to generate quite complex command lines.
29187
29188 Here is a table of all defined @samp{%}-sequences for spec
29189 strings. Note that spaces are not generated automatically around the
29190 results of expanding these sequences. Therefore you can concatenate them
29191 together or combine them with constant text in a single argument.
29192
29193 @table @code
29194 @item %%
29195 Substitute one @samp{%} into the program name or argument.
29196
29197 @item %i
29198 Substitute the name of the input file being processed.
29199
29200 @item %b
29201 Substitute the basename of the input file being processed.
29202 This is the substring up to (and not including) the last period
29203 and not including the directory.
29204
29205 @item %B
29206 This is the same as @samp{%b}, but include the file suffix (text after
29207 the last period).
29208
29209 @item %d
29210 Marks the argument containing or following the @samp{%d} as a
29211 temporary file name, so that that file is deleted if GCC exits
29212 successfully. Unlike @samp{%g}, this contributes no text to the
29213 argument.
29214
29215 @item %g@var{suffix}
29216 Substitute a file name that has suffix @var{suffix} and is chosen
29217 once per compilation, and mark the argument in the same way as
29218 @samp{%d}. To reduce exposure to denial-of-service attacks, the file
29219 name is now chosen in a way that is hard to predict even when previously
29220 chosen file names are known. For example, @samp{%g.s @dots{} %g.o @dots{} %g.s}
29221 might turn into @samp{ccUVUUAU.s ccXYAXZ12.o ccUVUUAU.s}. @var{suffix} matches
29222 the regexp @samp{[.A-Za-z]*} or the special string @samp{%O}, which is
29223 treated exactly as if @samp{%O} had been preprocessed. Previously, @samp{%g}
29224 was simply substituted with a file name chosen once per compilation,
29225 without regard to any appended suffix (which was therefore treated
29226 just like ordinary text), making such attacks more likely to succeed.
29227
29228 @item %u@var{suffix}
29229 Like @samp{%g}, but generates a new temporary file name
29230 each time it appears instead of once per compilation.
29231
29232 @item %U@var{suffix}
29233 Substitutes the last file name generated with @samp{%u@var{suffix}}, generating a
29234 new one if there is no such last file name. In the absence of any
29235 @samp{%u@var{suffix}}, this is just like @samp{%g@var{suffix}}, except they don't share
29236 the same suffix @emph{space}, so @samp{%g.s @dots{} %U.s @dots{} %g.s @dots{} %U.s}
29237 involves the generation of two distinct file names, one
29238 for each @samp{%g.s} and another for each @samp{%U.s}. Previously, @samp{%U} was
29239 simply substituted with a file name chosen for the previous @samp{%u},
29240 without regard to any appended suffix.
29241
29242 @item %j@var{suffix}
29243 Substitutes the name of the @code{HOST_BIT_BUCKET}, if any, and if it is
29244 writable, and if @option{-save-temps} is not used;
29245 otherwise, substitute the name
29246 of a temporary file, just like @samp{%u}. This temporary file is not
29247 meant for communication between processes, but rather as a junk
29248 disposal mechanism.
29249
29250 @item %|@var{suffix}
29251 @itemx %m@var{suffix}
29252 Like @samp{%g}, except if @option{-pipe} is in effect. In that case
29253 @samp{%|} substitutes a single dash and @samp{%m} substitutes nothing at
29254 all. These are the two most common ways to instruct a program that it
29255 should read from standard input or write to standard output. If you
29256 need something more elaborate you can use an @samp{%@{pipe:@code{X}@}}
29257 construct: see for example @file{f/lang-specs.h}.
29258
29259 @item %.@var{SUFFIX}
29260 Substitutes @var{.SUFFIX} for the suffixes of a matched switch's args
29261 when it is subsequently output with @samp{%*}. @var{SUFFIX} is
29262 terminated by the next space or %.
29263
29264 @item %w
29265 Marks the argument containing or following the @samp{%w} as the
29266 designated output file of this compilation. This puts the argument
29267 into the sequence of arguments that @samp{%o} substitutes.
29268
29269 @item %o
29270 Substitutes the names of all the output files, with spaces
29271 automatically placed around them. You should write spaces
29272 around the @samp{%o} as well or the results are undefined.
29273 @samp{%o} is for use in the specs for running the linker.
29274 Input files whose names have no recognized suffix are not compiled
29275 at all, but they are included among the output files, so they are
29276 linked.
29277
29278 @item %O
29279 Substitutes the suffix for object files. Note that this is
29280 handled specially when it immediately follows @samp{%g, %u, or %U},
29281 because of the need for those to form complete file names. The
29282 handling is such that @samp{%O} is treated exactly as if it had already
29283 been substituted, except that @samp{%g, %u, and %U} do not currently
29284 support additional @var{suffix} characters following @samp{%O} as they do
29285 following, for example, @samp{.o}.
29286
29287 @item %p
29288 Substitutes the standard macro predefinitions for the
29289 current target machine. Use this when running @command{cpp}.
29290
29291 @item %P
29292 Like @samp{%p}, but puts @samp{__} before and after the name of each
29293 predefined macro, except for macros that start with @samp{__} or with
29294 @samp{_@var{L}}, where @var{L} is an uppercase letter. This is for ISO
29295 C@.
29296
29297 @item %I
29298 Substitute any of @option{-iprefix} (made from @env{GCC_EXEC_PREFIX}),
29299 @option{-isysroot} (made from @env{TARGET_SYSTEM_ROOT}),
29300 @option{-isystem} (made from @env{COMPILER_PATH} and @option{-B} options)
29301 and @option{-imultilib} as necessary.
29302
29303 @item %s
29304 Current argument is the name of a library or startup file of some sort.
29305 Search for that file in a standard list of directories and substitute
29306 the full name found. The current working directory is included in the
29307 list of directories scanned.
29308
29309 @item %T
29310 Current argument is the name of a linker script. Search for that file
29311 in the current list of directories to scan for libraries. If the file
29312 is located insert a @option{--script} option into the command line
29313 followed by the full path name found. If the file is not found then
29314 generate an error message. Note: the current working directory is not
29315 searched.
29316
29317 @item %e@var{str}
29318 Print @var{str} as an error message. @var{str} is terminated by a newline.
29319 Use this when inconsistent options are detected.
29320
29321 @item %(@var{name})
29322 Substitute the contents of spec string @var{name} at this point.
29323
29324 @item %x@{@var{option}@}
29325 Accumulate an option for @samp{%X}.
29326
29327 @item %X
29328 Output the accumulated linker options specified by @option{-Wl} or a @samp{%x}
29329 spec string.
29330
29331 @item %Y
29332 Output the accumulated assembler options specified by @option{-Wa}.
29333
29334 @item %Z
29335 Output the accumulated preprocessor options specified by @option{-Wp}.
29336
29337 @item %a
29338 Process the @code{asm} spec. This is used to compute the
29339 switches to be passed to the assembler.
29340
29341 @item %A
29342 Process the @code{asm_final} spec. This is a spec string for
29343 passing switches to an assembler post-processor, if such a program is
29344 needed.
29345
29346 @item %l
29347 Process the @code{link} spec. This is the spec for computing the
29348 command line passed to the linker. Typically it makes use of the
29349 @samp{%L %G %S %D and %E} sequences.
29350
29351 @item %D
29352 Dump out a @option{-L} option for each directory that GCC believes might
29353 contain startup files. If the target supports multilibs then the
29354 current multilib directory is prepended to each of these paths.
29355
29356 @item %L
29357 Process the @code{lib} spec. This is a spec string for deciding which
29358 libraries are included on the command line to the linker.
29359
29360 @item %G
29361 Process the @code{libgcc} spec. This is a spec string for deciding
29362 which GCC support library is included on the command line to the linker.
29363
29364 @item %S
29365 Process the @code{startfile} spec. This is a spec for deciding which
29366 object files are the first ones passed to the linker. Typically
29367 this might be a file named @file{crt0.o}.
29368
29369 @item %E
29370 Process the @code{endfile} spec. This is a spec string that specifies
29371 the last object files that are passed to the linker.
29372
29373 @item %C
29374 Process the @code{cpp} spec. This is used to construct the arguments
29375 to be passed to the C preprocessor.
29376
29377 @item %1
29378 Process the @code{cc1} spec. This is used to construct the options to be
29379 passed to the actual C compiler (@command{cc1}).
29380
29381 @item %2
29382 Process the @code{cc1plus} spec. This is used to construct the options to be
29383 passed to the actual C++ compiler (@command{cc1plus}).
29384
29385 @item %*
29386 Substitute the variable part of a matched option. See below.
29387 Note that each comma in the substituted string is replaced by
29388 a single space.
29389
29390 @item %<S
29391 Remove all occurrences of @code{-S} from the command line. Note---this
29392 command is position dependent. @samp{%} commands in the spec string
29393 before this one see @code{-S}, @samp{%} commands in the spec string
29394 after this one do not.
29395
29396 @item %:@var{function}(@var{args})
29397 Call the named function @var{function}, passing it @var{args}.
29398 @var{args} is first processed as a nested spec string, then split
29399 into an argument vector in the usual fashion. The function returns
29400 a string which is processed as if it had appeared literally as part
29401 of the current spec.
29402
29403 The following built-in spec functions are provided:
29404
29405 @table @code
29406 @item @code{getenv}
29407 The @code{getenv} spec function takes two arguments: an environment
29408 variable name and a string. If the environment variable is not
29409 defined, a fatal error is issued. Otherwise, the return value is the
29410 value of the environment variable concatenated with the string. For
29411 example, if @env{TOPDIR} is defined as @file{/path/to/top}, then:
29412
29413 @smallexample
29414 %:getenv(TOPDIR /include)
29415 @end smallexample
29416
29417 expands to @file{/path/to/top/include}.
29418
29419 @item @code{if-exists}
29420 The @code{if-exists} spec function takes one argument, an absolute
29421 pathname to a file. If the file exists, @code{if-exists} returns the
29422 pathname. Here is a small example of its usage:
29423
29424 @smallexample
29425 *startfile:
29426 crt0%O%s %:if-exists(crti%O%s) crtbegin%O%s
29427 @end smallexample
29428
29429 @item @code{if-exists-else}
29430 The @code{if-exists-else} spec function is similar to the @code{if-exists}
29431 spec function, except that it takes two arguments. The first argument is
29432 an absolute pathname to a file. If the file exists, @code{if-exists-else}
29433 returns the pathname. If it does not exist, it returns the second argument.
29434 This way, @code{if-exists-else} can be used to select one file or another,
29435 based on the existence of the first. Here is a small example of its usage:
29436
29437 @smallexample
29438 *startfile:
29439 crt0%O%s %:if-exists(crti%O%s) \
29440 %:if-exists-else(crtbeginT%O%s crtbegin%O%s)
29441 @end smallexample
29442
29443 @item @code{replace-outfile}
29444 The @code{replace-outfile} spec function takes two arguments. It looks for the
29445 first argument in the outfiles array and replaces it with the second argument. Here
29446 is a small example of its usage:
29447
29448 @smallexample
29449 %@{fgnu-runtime:%:replace-outfile(-lobjc -lobjc-gnu)@}
29450 @end smallexample
29451
29452 @item @code{remove-outfile}
29453 The @code{remove-outfile} spec function takes one argument. It looks for the
29454 first argument in the outfiles array and removes it. Here is a small example
29455 its usage:
29456
29457 @smallexample
29458 %:remove-outfile(-lm)
29459 @end smallexample
29460
29461 @item @code{pass-through-libs}
29462 The @code{pass-through-libs} spec function takes any number of arguments. It
29463 finds any @option{-l} options and any non-options ending in @file{.a} (which it
29464 assumes are the names of linker input library archive files) and returns a
29465 result containing all the found arguments each prepended by
29466 @option{-plugin-opt=-pass-through=} and joined by spaces. This list is
29467 intended to be passed to the LTO linker plugin.
29468
29469 @smallexample
29470 %:pass-through-libs(%G %L %G)
29471 @end smallexample
29472
29473 @item @code{print-asm-header}
29474 The @code{print-asm-header} function takes no arguments and simply
29475 prints a banner like:
29476
29477 @smallexample
29478 Assembler options
29479 =================
29480
29481 Use "-Wa,OPTION" to pass "OPTION" to the assembler.
29482 @end smallexample
29483
29484 It is used to separate compiler options from assembler options
29485 in the @option{--target-help} output.
29486 @end table
29487
29488 @item %@{S@}
29489 Substitutes the @code{-S} switch, if that switch is given to GCC@.
29490 If that switch is not specified, this substitutes nothing. Note that
29491 the leading dash is omitted when specifying this option, and it is
29492 automatically inserted if the substitution is performed. Thus the spec
29493 string @samp{%@{foo@}} matches the command-line option @option{-foo}
29494 and outputs the command-line option @option{-foo}.
29495
29496 @item %W@{S@}
29497 Like %@{@code{S}@} but mark last argument supplied within as a file to be
29498 deleted on failure.
29499
29500 @item %@{S*@}
29501 Substitutes all the switches specified to GCC whose names start
29502 with @code{-S}, but which also take an argument. This is used for
29503 switches like @option{-o}, @option{-D}, @option{-I}, etc.
29504 GCC considers @option{-o foo} as being
29505 one switch whose name starts with @samp{o}. %@{o*@} substitutes this
29506 text, including the space. Thus two arguments are generated.
29507
29508 @item %@{S*&T*@}
29509 Like %@{@code{S}*@}, but preserve order of @code{S} and @code{T} options
29510 (the order of @code{S} and @code{T} in the spec is not significant).
29511 There can be any number of ampersand-separated variables; for each the
29512 wild card is optional. Useful for CPP as @samp{%@{D*&U*&A*@}}.
29513
29514 @item %@{S:X@}
29515 Substitutes @code{X}, if the @option{-S} switch is given to GCC@.
29516
29517 @item %@{!S:X@}
29518 Substitutes @code{X}, if the @option{-S} switch is @emph{not} given to GCC@.
29519
29520 @item %@{S*:X@}
29521 Substitutes @code{X} if one or more switches whose names start with
29522 @code{-S} are specified to GCC@. Normally @code{X} is substituted only
29523 once, no matter how many such switches appeared. However, if @code{%*}
29524 appears somewhere in @code{X}, then @code{X} is substituted once
29525 for each matching switch, with the @code{%*} replaced by the part of
29526 that switch matching the @code{*}.
29527
29528 If @code{%*} appears as the last part of a spec sequence then a space
29529 is added after the end of the last substitution. If there is more
29530 text in the sequence, however, then a space is not generated. This
29531 allows the @code{%*} substitution to be used as part of a larger
29532 string. For example, a spec string like this:
29533
29534 @smallexample
29535 %@{mcu=*:--script=%*/memory.ld@}
29536 @end smallexample
29537
29538 @noindent
29539 when matching an option like @option{-mcu=newchip} produces:
29540
29541 @smallexample
29542 --script=newchip/memory.ld
29543 @end smallexample
29544
29545 @item %@{.S:X@}
29546 Substitutes @code{X}, if processing a file with suffix @code{S}.
29547
29548 @item %@{!.S:X@}
29549 Substitutes @code{X}, if @emph{not} processing a file with suffix @code{S}.
29550
29551 @item %@{,S:X@}
29552 Substitutes @code{X}, if processing a file for language @code{S}.
29553
29554 @item %@{!,S:X@}
29555 Substitutes @code{X}, if not processing a file for language @code{S}.
29556
29557 @item %@{S|P:X@}
29558 Substitutes @code{X} if either @code{-S} or @code{-P} is given to
29559 GCC@. This may be combined with @samp{!}, @samp{.}, @samp{,}, and
29560 @code{*} sequences as well, although they have a stronger binding than
29561 the @samp{|}. If @code{%*} appears in @code{X}, all of the
29562 alternatives must be starred, and only the first matching alternative
29563 is substituted.
29564
29565 For example, a spec string like this:
29566
29567 @smallexample
29568 %@{.c:-foo@} %@{!.c:-bar@} %@{.c|d:-baz@} %@{!.c|d:-boggle@}
29569 @end smallexample
29570
29571 @noindent
29572 outputs the following command-line options from the following input
29573 command-line options:
29574
29575 @smallexample
29576 fred.c -foo -baz
29577 jim.d -bar -boggle
29578 -d fred.c -foo -baz -boggle
29579 -d jim.d -bar -baz -boggle
29580 @end smallexample
29581
29582 @item %@{S:X; T:Y; :D@}
29583
29584 If @code{S} is given to GCC, substitutes @code{X}; else if @code{T} is
29585 given to GCC, substitutes @code{Y}; else substitutes @code{D}. There can
29586 be as many clauses as you need. This may be combined with @code{.},
29587 @code{,}, @code{!}, @code{|}, and @code{*} as needed.
29588
29589
29590 @end table
29591
29592 The switch matching text @code{S} in a @samp{%@{S@}}, @samp{%@{S:X@}}
29593 or similar construct can use a backslash to ignore the special meaning
29594 of the character following it, thus allowing literal matching of a
29595 character that is otherwise specially treated. For example,
29596 @samp{%@{std=iso9899\:1999:X@}} substitutes @code{X} if the
29597 @option{-std=iso9899:1999} option is given.
29598
29599 The conditional text @code{X} in a @samp{%@{S:X@}} or similar
29600 construct may contain other nested @samp{%} constructs or spaces, or
29601 even newlines. They are processed as usual, as described above.
29602 Trailing white space in @code{X} is ignored. White space may also
29603 appear anywhere on the left side of the colon in these constructs,
29604 except between @code{.} or @code{*} and the corresponding word.
29605
29606 The @option{-O}, @option{-f}, @option{-m}, and @option{-W} switches are
29607 handled specifically in these constructs. If another value of
29608 @option{-O} or the negated form of a @option{-f}, @option{-m}, or
29609 @option{-W} switch is found later in the command line, the earlier
29610 switch value is ignored, except with @{@code{S}*@} where @code{S} is
29611 just one letter, which passes all matching options.
29612
29613 The character @samp{|} at the beginning of the predicate text is used to
29614 indicate that a command should be piped to the following command, but
29615 only if @option{-pipe} is specified.
29616
29617 It is built into GCC which switches take arguments and which do not.
29618 (You might think it would be useful to generalize this to allow each
29619 compiler's spec to say which switches take arguments. But this cannot
29620 be done in a consistent fashion. GCC cannot even decide which input
29621 files have been specified without knowing which switches take arguments,
29622 and it must know which input files to compile in order to tell which
29623 compilers to run).
29624
29625 GCC also knows implicitly that arguments starting in @option{-l} are to be
29626 treated as compiler output files, and passed to the linker in their
29627 proper position among the other output files.
29628
29629 @node Environment Variables
29630 @section Environment Variables Affecting GCC
29631 @cindex environment variables
29632
29633 @c man begin ENVIRONMENT
29634 This section describes several environment variables that affect how GCC
29635 operates. Some of them work by specifying directories or prefixes to use
29636 when searching for various kinds of files. Some are used to specify other
29637 aspects of the compilation environment.
29638
29639 Note that you can also specify places to search using options such as
29640 @option{-B}, @option{-I} and @option{-L} (@pxref{Directory Options}). These
29641 take precedence over places specified using environment variables, which
29642 in turn take precedence over those specified by the configuration of GCC@.
29643 @xref{Driver,, Controlling the Compilation Driver @file{gcc}, gccint,
29644 GNU Compiler Collection (GCC) Internals}.
29645
29646 @table @env
29647 @item LANG
29648 @itemx LC_CTYPE
29649 @c @itemx LC_COLLATE
29650 @itemx LC_MESSAGES
29651 @c @itemx LC_MONETARY
29652 @c @itemx LC_NUMERIC
29653 @c @itemx LC_TIME
29654 @itemx LC_ALL
29655 @findex LANG
29656 @findex LC_CTYPE
29657 @c @findex LC_COLLATE
29658 @findex LC_MESSAGES
29659 @c @findex LC_MONETARY
29660 @c @findex LC_NUMERIC
29661 @c @findex LC_TIME
29662 @findex LC_ALL
29663 @cindex locale
29664 These environment variables control the way that GCC uses
29665 localization information which allows GCC to work with different
29666 national conventions. GCC inspects the locale categories
29667 @env{LC_CTYPE} and @env{LC_MESSAGES} if it has been configured to do
29668 so. These locale categories can be set to any value supported by your
29669 installation. A typical value is @samp{en_GB.UTF-8} for English in the United
29670 Kingdom encoded in UTF-8.
29671
29672 The @env{LC_CTYPE} environment variable specifies character
29673 classification. GCC uses it to determine the character boundaries in
29674 a string; this is needed for some multibyte encodings that contain quote
29675 and escape characters that are otherwise interpreted as a string
29676 end or escape.
29677
29678 The @env{LC_MESSAGES} environment variable specifies the language to
29679 use in diagnostic messages.
29680
29681 If the @env{LC_ALL} environment variable is set, it overrides the value
29682 of @env{LC_CTYPE} and @env{LC_MESSAGES}; otherwise, @env{LC_CTYPE}
29683 and @env{LC_MESSAGES} default to the value of the @env{LANG}
29684 environment variable. If none of these variables are set, GCC
29685 defaults to traditional C English behavior.
29686
29687 @item TMPDIR
29688 @findex TMPDIR
29689 If @env{TMPDIR} is set, it specifies the directory to use for temporary
29690 files. GCC uses temporary files to hold the output of one stage of
29691 compilation which is to be used as input to the next stage: for example,
29692 the output of the preprocessor, which is the input to the compiler
29693 proper.
29694
29695 @item GCC_COMPARE_DEBUG
29696 @findex GCC_COMPARE_DEBUG
29697 Setting @env{GCC_COMPARE_DEBUG} is nearly equivalent to passing
29698 @option{-fcompare-debug} to the compiler driver. See the documentation
29699 of this option for more details.
29700
29701 @item GCC_EXEC_PREFIX
29702 @findex GCC_EXEC_PREFIX
29703 If @env{GCC_EXEC_PREFIX} is set, it specifies a prefix to use in the
29704 names of the subprograms executed by the compiler. No slash is added
29705 when this prefix is combined with the name of a subprogram, but you can
29706 specify a prefix that ends with a slash if you wish.
29707
29708 If @env{GCC_EXEC_PREFIX} is not set, GCC attempts to figure out
29709 an appropriate prefix to use based on the pathname it is invoked with.
29710
29711 If GCC cannot find the subprogram using the specified prefix, it
29712 tries looking in the usual places for the subprogram.
29713
29714 The default value of @env{GCC_EXEC_PREFIX} is
29715 @file{@var{prefix}/lib/gcc/} where @var{prefix} is the prefix to
29716 the installed compiler. In many cases @var{prefix} is the value
29717 of @code{prefix} when you ran the @file{configure} script.
29718
29719 Other prefixes specified with @option{-B} take precedence over this prefix.
29720
29721 This prefix is also used for finding files such as @file{crt0.o} that are
29722 used for linking.
29723
29724 In addition, the prefix is used in an unusual way in finding the
29725 directories to search for header files. For each of the standard
29726 directories whose name normally begins with @samp{/usr/local/lib/gcc}
29727 (more precisely, with the value of @env{GCC_INCLUDE_DIR}), GCC tries
29728 replacing that beginning with the specified prefix to produce an
29729 alternate directory name. Thus, with @option{-Bfoo/}, GCC searches
29730 @file{foo/bar} just before it searches the standard directory
29731 @file{/usr/local/lib/bar}.
29732 If a standard directory begins with the configured
29733 @var{prefix} then the value of @var{prefix} is replaced by
29734 @env{GCC_EXEC_PREFIX} when looking for header files.
29735
29736 @item COMPILER_PATH
29737 @findex COMPILER_PATH
29738 The value of @env{COMPILER_PATH} is a colon-separated list of
29739 directories, much like @env{PATH}. GCC tries the directories thus
29740 specified when searching for subprograms, if it cannot find the
29741 subprograms using @env{GCC_EXEC_PREFIX}.
29742
29743 @item LIBRARY_PATH
29744 @findex LIBRARY_PATH
29745 The value of @env{LIBRARY_PATH} is a colon-separated list of
29746 directories, much like @env{PATH}. When configured as a native compiler,
29747 GCC tries the directories thus specified when searching for special
29748 linker files, if it cannot find them using @env{GCC_EXEC_PREFIX}. Linking
29749 using GCC also uses these directories when searching for ordinary
29750 libraries for the @option{-l} option (but directories specified with
29751 @option{-L} come first).
29752
29753 @item LANG
29754 @findex LANG
29755 @cindex locale definition
29756 This variable is used to pass locale information to the compiler. One way in
29757 which this information is used is to determine the character set to be used
29758 when character literals, string literals and comments are parsed in C and C++.
29759 When the compiler is configured to allow multibyte characters,
29760 the following values for @env{LANG} are recognized:
29761
29762 @table @samp
29763 @item C-JIS
29764 Recognize JIS characters.
29765 @item C-SJIS
29766 Recognize SJIS characters.
29767 @item C-EUCJP
29768 Recognize EUCJP characters.
29769 @end table
29770
29771 If @env{LANG} is not defined, or if it has some other value, then the
29772 compiler uses @code{mblen} and @code{mbtowc} as defined by the default locale to
29773 recognize and translate multibyte characters.
29774 @end table
29775
29776 @noindent
29777 Some additional environment variables affect the behavior of the
29778 preprocessor.
29779
29780 @include cppenv.texi
29781
29782 @c man end
29783
29784 @node Precompiled Headers
29785 @section Using Precompiled Headers
29786 @cindex precompiled headers
29787 @cindex speed of compilation
29788
29789 Often large projects have many header files that are included in every
29790 source file. The time the compiler takes to process these header files
29791 over and over again can account for nearly all of the time required to
29792 build the project. To make builds faster, GCC allows you to
29793 @dfn{precompile} a header file.
29794
29795 To create a precompiled header file, simply compile it as you would any
29796 other file, if necessary using the @option{-x} option to make the driver
29797 treat it as a C or C++ header file. You may want to use a
29798 tool like @command{make} to keep the precompiled header up-to-date when
29799 the headers it contains change.
29800
29801 A precompiled header file is searched for when @code{#include} is
29802 seen in the compilation. As it searches for the included file
29803 (@pxref{Search Path,,Search Path,cpp,The C Preprocessor}) the
29804 compiler looks for a precompiled header in each directory just before it
29805 looks for the include file in that directory. The name searched for is
29806 the name specified in the @code{#include} with @samp{.gch} appended. If
29807 the precompiled header file cannot be used, it is ignored.
29808
29809 For instance, if you have @code{#include "all.h"}, and you have
29810 @file{all.h.gch} in the same directory as @file{all.h}, then the
29811 precompiled header file is used if possible, and the original
29812 header is used otherwise.
29813
29814 Alternatively, you might decide to put the precompiled header file in a
29815 directory and use @option{-I} to ensure that directory is searched
29816 before (or instead of) the directory containing the original header.
29817 Then, if you want to check that the precompiled header file is always
29818 used, you can put a file of the same name as the original header in this
29819 directory containing an @code{#error} command.
29820
29821 This also works with @option{-include}. So yet another way to use
29822 precompiled headers, good for projects not designed with precompiled
29823 header files in mind, is to simply take most of the header files used by
29824 a project, include them from another header file, precompile that header
29825 file, and @option{-include} the precompiled header. If the header files
29826 have guards against multiple inclusion, they are skipped because
29827 they've already been included (in the precompiled header).
29828
29829 If you need to precompile the same header file for different
29830 languages, targets, or compiler options, you can instead make a
29831 @emph{directory} named like @file{all.h.gch}, and put each precompiled
29832 header in the directory, perhaps using @option{-o}. It doesn't matter
29833 what you call the files in the directory; every precompiled header in
29834 the directory is considered. The first precompiled header
29835 encountered in the directory that is valid for this compilation is
29836 used; they're searched in no particular order.
29837
29838 There are many other possibilities, limited only by your imagination,
29839 good sense, and the constraints of your build system.
29840
29841 A precompiled header file can be used only when these conditions apply:
29842
29843 @itemize
29844 @item
29845 Only one precompiled header can be used in a particular compilation.
29846
29847 @item
29848 A precompiled header cannot be used once the first C token is seen. You
29849 can have preprocessor directives before a precompiled header; you cannot
29850 include a precompiled header from inside another header.
29851
29852 @item
29853 The precompiled header file must be produced for the same language as
29854 the current compilation. You cannot use a C precompiled header for a C++
29855 compilation.
29856
29857 @item
29858 The precompiled header file must have been produced by the same compiler
29859 binary as the current compilation is using.
29860
29861 @item
29862 Any macros defined before the precompiled header is included must
29863 either be defined in the same way as when the precompiled header was
29864 generated, or must not affect the precompiled header, which usually
29865 means that they don't appear in the precompiled header at all.
29866
29867 The @option{-D} option is one way to define a macro before a
29868 precompiled header is included; using a @code{#define} can also do it.
29869 There are also some options that define macros implicitly, like
29870 @option{-O} and @option{-Wdeprecated}; the same rule applies to macros
29871 defined this way.
29872
29873 @item If debugging information is output when using the precompiled
29874 header, using @option{-g} or similar, the same kind of debugging information
29875 must have been output when building the precompiled header. However,
29876 a precompiled header built using @option{-g} can be used in a compilation
29877 when no debugging information is being output.
29878
29879 @item The same @option{-m} options must generally be used when building
29880 and using the precompiled header. @xref{Submodel Options},
29881 for any cases where this rule is relaxed.
29882
29883 @item Each of the following options must be the same when building and using
29884 the precompiled header:
29885
29886 @gccoptlist{-fexceptions}
29887
29888 @item
29889 Some other command-line options starting with @option{-f},
29890 @option{-p}, or @option{-O} must be defined in the same way as when
29891 the precompiled header was generated. At present, it's not clear
29892 which options are safe to change and which are not; the safest choice
29893 is to use exactly the same options when generating and using the
29894 precompiled header. The following are known to be safe:
29895
29896 @gccoptlist{-fmessage-length= -fpreprocessed -fsched-interblock @gol
29897 -fsched-spec -fsched-spec-load -fsched-spec-load-dangerous @gol
29898 -fsched-verbose=@var{number} -fschedule-insns -fvisibility= @gol
29899 -pedantic-errors}
29900
29901 @end itemize
29902
29903 For all of these except the last, the compiler automatically
29904 ignores the precompiled header if the conditions aren't met. If you
29905 find an option combination that doesn't work and doesn't cause the
29906 precompiled header to be ignored, please consider filing a bug report,
29907 see @ref{Bugs}.
29908
29909 If you do use differing options when generating and using the
29910 precompiled header, the actual behavior is a mixture of the
29911 behavior for the options. For instance, if you use @option{-g} to
29912 generate the precompiled header but not when using it, you may or may
29913 not get debugging information for routines in the precompiled header.