]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dse.c
Remove a layer of indirection from hash_table
[thirdparty/gcc.git] / gcc / dse.c
1 /* RTL dead store elimination.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3
4 Contributed by Richard Sandiford <rsandifor@codesourcery.com>
5 and Kenneth Zadeck <zadeck@naturalbridge.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #undef BASELINE
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "hash-table.h"
29 #include "tm.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "stor-layout.h"
33 #include "tm_p.h"
34 #include "regs.h"
35 #include "hard-reg-set.h"
36 #include "regset.h"
37 #include "flags.h"
38 #include "df.h"
39 #include "cselib.h"
40 #include "tree-pass.h"
41 #include "alloc-pool.h"
42 #include "alias.h"
43 #include "insn-config.h"
44 #include "expr.h"
45 #include "recog.h"
46 #include "optabs.h"
47 #include "dbgcnt.h"
48 #include "target.h"
49 #include "params.h"
50 #include "pointer-set.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
57
58 /* This file contains three techniques for performing Dead Store
59 Elimination (dse).
60
61 * The first technique performs dse locally on any base address. It
62 is based on the cselib which is a local value numbering technique.
63 This technique is local to a basic block but deals with a fairly
64 general addresses.
65
66 * The second technique performs dse globally but is restricted to
67 base addresses that are either constant or are relative to the
68 frame_pointer.
69
70 * The third technique, (which is only done after register allocation)
71 processes the spill spill slots. This differs from the second
72 technique because it takes advantage of the fact that spilling is
73 completely free from the effects of aliasing.
74
75 Logically, dse is a backwards dataflow problem. A store can be
76 deleted if it if cannot be reached in the backward direction by any
77 use of the value being stored. However, the local technique uses a
78 forwards scan of the basic block because cselib requires that the
79 block be processed in that order.
80
81 The pass is logically broken into 7 steps:
82
83 0) Initialization.
84
85 1) The local algorithm, as well as scanning the insns for the two
86 global algorithms.
87
88 2) Analysis to see if the global algs are necessary. In the case
89 of stores base on a constant address, there must be at least two
90 stores to that address, to make it possible to delete some of the
91 stores. In the case of stores off of the frame or spill related
92 stores, only one store to an address is necessary because those
93 stores die at the end of the function.
94
95 3) Set up the global dataflow equations based on processing the
96 info parsed in the first step.
97
98 4) Solve the dataflow equations.
99
100 5) Delete the insns that the global analysis has indicated are
101 unnecessary.
102
103 6) Delete insns that store the same value as preceding store
104 where the earlier store couldn't be eliminated.
105
106 7) Cleanup.
107
108 This step uses cselib and canon_rtx to build the largest expression
109 possible for each address. This pass is a forwards pass through
110 each basic block. From the point of view of the global technique,
111 the first pass could examine a block in either direction. The
112 forwards ordering is to accommodate cselib.
113
114 We make a simplifying assumption: addresses fall into four broad
115 categories:
116
117 1) base has rtx_varies_p == false, offset is constant.
118 2) base has rtx_varies_p == false, offset variable.
119 3) base has rtx_varies_p == true, offset constant.
120 4) base has rtx_varies_p == true, offset variable.
121
122 The local passes are able to process all 4 kinds of addresses. The
123 global pass only handles 1).
124
125 The global problem is formulated as follows:
126
127 A store, S1, to address A, where A is not relative to the stack
128 frame, can be eliminated if all paths from S1 to the end of the
129 function contain another store to A before a read to A.
130
131 If the address A is relative to the stack frame, a store S2 to A
132 can be eliminated if there are no paths from S2 that reach the
133 end of the function that read A before another store to A. In
134 this case S2 can be deleted if there are paths from S2 to the
135 end of the function that have no reads or writes to A. This
136 second case allows stores to the stack frame to be deleted that
137 would otherwise die when the function returns. This cannot be
138 done if stores_off_frame_dead_at_return is not true. See the doc
139 for that variable for when this variable is false.
140
141 The global problem is formulated as a backwards set union
142 dataflow problem where the stores are the gens and reads are the
143 kills. Set union problems are rare and require some special
144 handling given our representation of bitmaps. A straightforward
145 implementation requires a lot of bitmaps filled with 1s.
146 These are expensive and cumbersome in our bitmap formulation so
147 care has been taken to avoid large vectors filled with 1s. See
148 the comments in bb_info and in the dataflow confluence functions
149 for details.
150
151 There are two places for further enhancements to this algorithm:
152
153 1) The original dse which was embedded in a pass called flow also
154 did local address forwarding. For example in
155
156 A <- r100
157 ... <- A
158
159 flow would replace the right hand side of the second insn with a
160 reference to r100. Most of the information is available to add this
161 to this pass. It has not done it because it is a lot of work in
162 the case that either r100 is assigned to between the first and
163 second insn and/or the second insn is a load of part of the value
164 stored by the first insn.
165
166 insn 5 in gcc.c-torture/compile/990203-1.c simple case.
167 insn 15 in gcc.c-torture/execute/20001017-2.c simple case.
168 insn 25 in gcc.c-torture/execute/20001026-1.c simple case.
169 insn 44 in gcc.c-torture/execute/20010910-1.c simple case.
170
171 2) The cleaning up of spill code is quite profitable. It currently
172 depends on reading tea leaves and chicken entrails left by reload.
173 This pass depends on reload creating a singleton alias set for each
174 spill slot and telling the next dse pass which of these alias sets
175 are the singletons. Rather than analyze the addresses of the
176 spills, dse's spill processing just does analysis of the loads and
177 stores that use those alias sets. There are three cases where this
178 falls short:
179
180 a) Reload sometimes creates the slot for one mode of access, and
181 then inserts loads and/or stores for a smaller mode. In this
182 case, the current code just punts on the slot. The proper thing
183 to do is to back out and use one bit vector position for each
184 byte of the entity associated with the slot. This depends on
185 KNOWING that reload always generates the accesses for each of the
186 bytes in some canonical (read that easy to understand several
187 passes after reload happens) way.
188
189 b) Reload sometimes decides that spill slot it allocated was not
190 large enough for the mode and goes back and allocates more slots
191 with the same mode and alias set. The backout in this case is a
192 little more graceful than (a). In this case the slot is unmarked
193 as being a spill slot and if final address comes out to be based
194 off the frame pointer, the global algorithm handles this slot.
195
196 c) For any pass that may prespill, there is currently no
197 mechanism to tell the dse pass that the slot being used has the
198 special properties that reload uses. It may be that all that is
199 required is to have those passes make the same calls that reload
200 does, assuming that the alias sets can be manipulated in the same
201 way. */
202
203 /* There are limits to the size of constant offsets we model for the
204 global problem. There are certainly test cases, that exceed this
205 limit, however, it is unlikely that there are important programs
206 that really have constant offsets this size. */
207 #define MAX_OFFSET (64 * 1024)
208
209 /* Obstack for the DSE dataflow bitmaps. We don't want to put these
210 on the default obstack because these bitmaps can grow quite large
211 (~2GB for the small (!) test case of PR54146) and we'll hold on to
212 all that memory until the end of the compiler run.
213 As a bonus, delete_tree_live_info can destroy all the bitmaps by just
214 releasing the whole obstack. */
215 static bitmap_obstack dse_bitmap_obstack;
216
217 /* Obstack for other data. As for above: Kinda nice to be able to
218 throw it all away at the end in one big sweep. */
219 static struct obstack dse_obstack;
220
221 /* Scratch bitmap for cselib's cselib_expand_value_rtx. */
222 static bitmap scratch = NULL;
223
224 struct insn_info;
225
226 /* This structure holds information about a candidate store. */
227 struct store_info
228 {
229
230 /* False means this is a clobber. */
231 bool is_set;
232
233 /* False if a single HOST_WIDE_INT bitmap is used for positions_needed. */
234 bool is_large;
235
236 /* The id of the mem group of the base address. If rtx_varies_p is
237 true, this is -1. Otherwise, it is the index into the group
238 table. */
239 int group_id;
240
241 /* This is the cselib value. */
242 cselib_val *cse_base;
243
244 /* This canonized mem. */
245 rtx mem;
246
247 /* Canonized MEM address for use by canon_true_dependence. */
248 rtx mem_addr;
249
250 /* If this is non-zero, it is the alias set of a spill location. */
251 alias_set_type alias_set;
252
253 /* The offset of the first and byte before the last byte associated
254 with the operation. */
255 HOST_WIDE_INT begin, end;
256
257 union
258 {
259 /* A bitmask as wide as the number of bytes in the word that
260 contains a 1 if the byte may be needed. The store is unused if
261 all of the bits are 0. This is used if IS_LARGE is false. */
262 unsigned HOST_WIDE_INT small_bitmask;
263
264 struct
265 {
266 /* A bitmap with one bit per byte. Cleared bit means the position
267 is needed. Used if IS_LARGE is false. */
268 bitmap bmap;
269
270 /* Number of set bits (i.e. unneeded bytes) in BITMAP. If it is
271 equal to END - BEGIN, the whole store is unused. */
272 int count;
273 } large;
274 } positions_needed;
275
276 /* The next store info for this insn. */
277 struct store_info *next;
278
279 /* The right hand side of the store. This is used if there is a
280 subsequent reload of the mems address somewhere later in the
281 basic block. */
282 rtx rhs;
283
284 /* If rhs is or holds a constant, this contains that constant,
285 otherwise NULL. */
286 rtx const_rhs;
287
288 /* Set if this store stores the same constant value as REDUNDANT_REASON
289 insn stored. These aren't eliminated early, because doing that
290 might prevent the earlier larger store to be eliminated. */
291 struct insn_info *redundant_reason;
292 };
293
294 /* Return a bitmask with the first N low bits set. */
295
296 static unsigned HOST_WIDE_INT
297 lowpart_bitmask (int n)
298 {
299 unsigned HOST_WIDE_INT mask = ~(unsigned HOST_WIDE_INT) 0;
300 return mask >> (HOST_BITS_PER_WIDE_INT - n);
301 }
302
303 typedef struct store_info *store_info_t;
304 static alloc_pool cse_store_info_pool;
305 static alloc_pool rtx_store_info_pool;
306
307 /* This structure holds information about a load. These are only
308 built for rtx bases. */
309 struct read_info
310 {
311 /* The id of the mem group of the base address. */
312 int group_id;
313
314 /* If this is non-zero, it is the alias set of a spill location. */
315 alias_set_type alias_set;
316
317 /* The offset of the first and byte after the last byte associated
318 with the operation. If begin == end == 0, the read did not have
319 a constant offset. */
320 int begin, end;
321
322 /* The mem being read. */
323 rtx mem;
324
325 /* The next read_info for this insn. */
326 struct read_info *next;
327 };
328 typedef struct read_info *read_info_t;
329 static alloc_pool read_info_pool;
330
331
332 /* One of these records is created for each insn. */
333
334 struct insn_info
335 {
336 /* Set true if the insn contains a store but the insn itself cannot
337 be deleted. This is set if the insn is a parallel and there is
338 more than one non dead output or if the insn is in some way
339 volatile. */
340 bool cannot_delete;
341
342 /* This field is only used by the global algorithm. It is set true
343 if the insn contains any read of mem except for a (1). This is
344 also set if the insn is a call or has a clobber mem. If the insn
345 contains a wild read, the use_rec will be null. */
346 bool wild_read;
347
348 /* This is true only for CALL instructions which could potentially read
349 any non-frame memory location. This field is used by the global
350 algorithm. */
351 bool non_frame_wild_read;
352
353 /* This field is only used for the processing of const functions.
354 These functions cannot read memory, but they can read the stack
355 because that is where they may get their parms. We need to be
356 this conservative because, like the store motion pass, we don't
357 consider CALL_INSN_FUNCTION_USAGE when processing call insns.
358 Moreover, we need to distinguish two cases:
359 1. Before reload (register elimination), the stores related to
360 outgoing arguments are stack pointer based and thus deemed
361 of non-constant base in this pass. This requires special
362 handling but also means that the frame pointer based stores
363 need not be killed upon encountering a const function call.
364 2. After reload, the stores related to outgoing arguments can be
365 either stack pointer or hard frame pointer based. This means
366 that we have no other choice than also killing all the frame
367 pointer based stores upon encountering a const function call.
368 This field is set after reload for const function calls. Having
369 this set is less severe than a wild read, it just means that all
370 the frame related stores are killed rather than all the stores. */
371 bool frame_read;
372
373 /* This field is only used for the processing of const functions.
374 It is set if the insn may contain a stack pointer based store. */
375 bool stack_pointer_based;
376
377 /* This is true if any of the sets within the store contains a
378 cselib base. Such stores can only be deleted by the local
379 algorithm. */
380 bool contains_cselib_groups;
381
382 /* The insn. */
383 rtx insn;
384
385 /* The list of mem sets or mem clobbers that are contained in this
386 insn. If the insn is deletable, it contains only one mem set.
387 But it could also contain clobbers. Insns that contain more than
388 one mem set are not deletable, but each of those mems are here in
389 order to provide info to delete other insns. */
390 store_info_t store_rec;
391
392 /* The linked list of mem uses in this insn. Only the reads from
393 rtx bases are listed here. The reads to cselib bases are
394 completely processed during the first scan and so are never
395 created. */
396 read_info_t read_rec;
397
398 /* The live fixed registers. We assume only fixed registers can
399 cause trouble by being clobbered from an expanded pattern;
400 storing only the live fixed registers (rather than all registers)
401 means less memory needs to be allocated / copied for the individual
402 stores. */
403 regset fixed_regs_live;
404
405 /* The prev insn in the basic block. */
406 struct insn_info * prev_insn;
407
408 /* The linked list of insns that are in consideration for removal in
409 the forwards pass through the basic block. This pointer may be
410 trash as it is not cleared when a wild read occurs. The only
411 time it is guaranteed to be correct is when the traversal starts
412 at active_local_stores. */
413 struct insn_info * next_local_store;
414 };
415
416 typedef struct insn_info *insn_info_t;
417 static alloc_pool insn_info_pool;
418
419 /* The linked list of stores that are under consideration in this
420 basic block. */
421 static insn_info_t active_local_stores;
422 static int active_local_stores_len;
423
424 struct bb_info
425 {
426
427 /* Pointer to the insn info for the last insn in the block. These
428 are linked so this is how all of the insns are reached. During
429 scanning this is the current insn being scanned. */
430 insn_info_t last_insn;
431
432 /* The info for the global dataflow problem. */
433
434
435 /* This is set if the transfer function should and in the wild_read
436 bitmap before applying the kill and gen sets. That vector knocks
437 out most of the bits in the bitmap and thus speeds up the
438 operations. */
439 bool apply_wild_read;
440
441 /* The following 4 bitvectors hold information about which positions
442 of which stores are live or dead. They are indexed by
443 get_bitmap_index. */
444
445 /* The set of store positions that exist in this block before a wild read. */
446 bitmap gen;
447
448 /* The set of load positions that exist in this block above the
449 same position of a store. */
450 bitmap kill;
451
452 /* The set of stores that reach the top of the block without being
453 killed by a read.
454
455 Do not represent the in if it is all ones. Note that this is
456 what the bitvector should logically be initialized to for a set
457 intersection problem. However, like the kill set, this is too
458 expensive. So initially, the in set will only be created for the
459 exit block and any block that contains a wild read. */
460 bitmap in;
461
462 /* The set of stores that reach the bottom of the block from it's
463 successors.
464
465 Do not represent the in if it is all ones. Note that this is
466 what the bitvector should logically be initialized to for a set
467 intersection problem. However, like the kill and in set, this is
468 too expensive. So what is done is that the confluence operator
469 just initializes the vector from one of the out sets of the
470 successors of the block. */
471 bitmap out;
472
473 /* The following bitvector is indexed by the reg number. It
474 contains the set of regs that are live at the current instruction
475 being processed. While it contains info for all of the
476 registers, only the hard registers are actually examined. It is used
477 to assure that shift and/or add sequences that are inserted do not
478 accidentally clobber live hard regs. */
479 bitmap regs_live;
480 };
481
482 typedef struct bb_info *bb_info_t;
483 static alloc_pool bb_info_pool;
484
485 /* Table to hold all bb_infos. */
486 static bb_info_t *bb_table;
487
488 /* There is a group_info for each rtx base that is used to reference
489 memory. There are also not many of the rtx bases because they are
490 very limited in scope. */
491
492 struct group_info
493 {
494 /* The actual base of the address. */
495 rtx rtx_base;
496
497 /* The sequential id of the base. This allows us to have a
498 canonical ordering of these that is not based on addresses. */
499 int id;
500
501 /* True if there are any positions that are to be processed
502 globally. */
503 bool process_globally;
504
505 /* True if the base of this group is either the frame_pointer or
506 hard_frame_pointer. */
507 bool frame_related;
508
509 /* A mem wrapped around the base pointer for the group in order to do
510 read dependency. It must be given BLKmode in order to encompass all
511 the possible offsets from the base. */
512 rtx base_mem;
513
514 /* Canonized version of base_mem's address. */
515 rtx canon_base_addr;
516
517 /* These two sets of two bitmaps are used to keep track of how many
518 stores are actually referencing that position from this base. We
519 only do this for rtx bases as this will be used to assign
520 positions in the bitmaps for the global problem. Bit N is set in
521 store1 on the first store for offset N. Bit N is set in store2
522 for the second store to offset N. This is all we need since we
523 only care about offsets that have two or more stores for them.
524
525 The "_n" suffix is for offsets less than 0 and the "_p" suffix is
526 for 0 and greater offsets.
527
528 There is one special case here, for stores into the stack frame,
529 we will or store1 into store2 before deciding which stores look
530 at globally. This is because stores to the stack frame that have
531 no other reads before the end of the function can also be
532 deleted. */
533 bitmap store1_n, store1_p, store2_n, store2_p;
534
535 /* These bitmaps keep track of offsets in this group escape this function.
536 An offset escapes if it corresponds to a named variable whose
537 addressable flag is set. */
538 bitmap escaped_n, escaped_p;
539
540 /* The positions in this bitmap have the same assignments as the in,
541 out, gen and kill bitmaps. This bitmap is all zeros except for
542 the positions that are occupied by stores for this group. */
543 bitmap group_kill;
544
545 /* The offset_map is used to map the offsets from this base into
546 positions in the global bitmaps. It is only created after all of
547 the all of stores have been scanned and we know which ones we
548 care about. */
549 int *offset_map_n, *offset_map_p;
550 int offset_map_size_n, offset_map_size_p;
551 };
552 typedef struct group_info *group_info_t;
553 typedef const struct group_info *const_group_info_t;
554 static alloc_pool rtx_group_info_pool;
555
556 /* Index into the rtx_group_vec. */
557 static int rtx_group_next_id;
558
559
560 static vec<group_info_t> rtx_group_vec;
561
562
563 /* This structure holds the set of changes that are being deferred
564 when removing read operation. See replace_read. */
565 struct deferred_change
566 {
567
568 /* The mem that is being replaced. */
569 rtx *loc;
570
571 /* The reg it is being replaced with. */
572 rtx reg;
573
574 struct deferred_change *next;
575 };
576
577 typedef struct deferred_change *deferred_change_t;
578 static alloc_pool deferred_change_pool;
579
580 static deferred_change_t deferred_change_list = NULL;
581
582 /* The group that holds all of the clear_alias_sets. */
583 static group_info_t clear_alias_group;
584
585 /* The modes of the clear_alias_sets. */
586 static htab_t clear_alias_mode_table;
587
588 /* Hash table element to look up the mode for an alias set. */
589 struct clear_alias_mode_holder
590 {
591 alias_set_type alias_set;
592 enum machine_mode mode;
593 };
594
595 /* This is true except if cfun->stdarg -- i.e. we cannot do
596 this for vararg functions because they play games with the frame. */
597 static bool stores_off_frame_dead_at_return;
598
599 /* Counter for stats. */
600 static int globally_deleted;
601 static int locally_deleted;
602 static int spill_deleted;
603
604 static bitmap all_blocks;
605
606 /* Locations that are killed by calls in the global phase. */
607 static bitmap kill_on_calls;
608
609 /* The number of bits used in the global bitmaps. */
610 static unsigned int current_position;
611 \f
612 /*----------------------------------------------------------------------------
613 Zeroth step.
614
615 Initialization.
616 ----------------------------------------------------------------------------*/
617
618
619 /* Find the entry associated with ALIAS_SET. */
620
621 static struct clear_alias_mode_holder *
622 clear_alias_set_lookup (alias_set_type alias_set)
623 {
624 struct clear_alias_mode_holder tmp_holder;
625 void **slot;
626
627 tmp_holder.alias_set = alias_set;
628 slot = htab_find_slot (clear_alias_mode_table, &tmp_holder, NO_INSERT);
629 gcc_assert (*slot);
630
631 return (struct clear_alias_mode_holder *) *slot;
632 }
633
634
635 /* Hashtable callbacks for maintaining the "bases" field of
636 store_group_info, given that the addresses are function invariants. */
637
638 struct invariant_group_base_hasher : typed_noop_remove <group_info>
639 {
640 typedef group_info value_type;
641 typedef group_info compare_type;
642 static inline hashval_t hash (const value_type *);
643 static inline bool equal (const value_type *, const compare_type *);
644 };
645
646 inline bool
647 invariant_group_base_hasher::equal (const value_type *gi1,
648 const compare_type *gi2)
649 {
650 return rtx_equal_p (gi1->rtx_base, gi2->rtx_base);
651 }
652
653 inline hashval_t
654 invariant_group_base_hasher::hash (const value_type *gi)
655 {
656 int do_not_record;
657 return hash_rtx (gi->rtx_base, Pmode, &do_not_record, NULL, false);
658 }
659
660 /* Tables of group_info structures, hashed by base value. */
661 static hash_table<invariant_group_base_hasher> *rtx_group_table;
662
663
664 /* Get the GROUP for BASE. Add a new group if it is not there. */
665
666 static group_info_t
667 get_group_info (rtx base)
668 {
669 struct group_info tmp_gi;
670 group_info_t gi;
671 group_info **slot;
672
673 if (base)
674 {
675 /* Find the store_base_info structure for BASE, creating a new one
676 if necessary. */
677 tmp_gi.rtx_base = base;
678 slot = rtx_group_table->find_slot (&tmp_gi, INSERT);
679 gi = (group_info_t) *slot;
680 }
681 else
682 {
683 if (!clear_alias_group)
684 {
685 clear_alias_group = gi =
686 (group_info_t) pool_alloc (rtx_group_info_pool);
687 memset (gi, 0, sizeof (struct group_info));
688 gi->id = rtx_group_next_id++;
689 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
690 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
691 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
692 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
693 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
694 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
695 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
696 gi->process_globally = false;
697 gi->offset_map_size_n = 0;
698 gi->offset_map_size_p = 0;
699 gi->offset_map_n = NULL;
700 gi->offset_map_p = NULL;
701 rtx_group_vec.safe_push (gi);
702 }
703 return clear_alias_group;
704 }
705
706 if (gi == NULL)
707 {
708 *slot = gi = (group_info_t) pool_alloc (rtx_group_info_pool);
709 gi->rtx_base = base;
710 gi->id = rtx_group_next_id++;
711 gi->base_mem = gen_rtx_MEM (BLKmode, base);
712 gi->canon_base_addr = canon_rtx (base);
713 gi->store1_n = BITMAP_ALLOC (&dse_bitmap_obstack);
714 gi->store1_p = BITMAP_ALLOC (&dse_bitmap_obstack);
715 gi->store2_n = BITMAP_ALLOC (&dse_bitmap_obstack);
716 gi->store2_p = BITMAP_ALLOC (&dse_bitmap_obstack);
717 gi->escaped_p = BITMAP_ALLOC (&dse_bitmap_obstack);
718 gi->escaped_n = BITMAP_ALLOC (&dse_bitmap_obstack);
719 gi->group_kill = BITMAP_ALLOC (&dse_bitmap_obstack);
720 gi->process_globally = false;
721 gi->frame_related =
722 (base == frame_pointer_rtx) || (base == hard_frame_pointer_rtx);
723 gi->offset_map_size_n = 0;
724 gi->offset_map_size_p = 0;
725 gi->offset_map_n = NULL;
726 gi->offset_map_p = NULL;
727 rtx_group_vec.safe_push (gi);
728 }
729
730 return gi;
731 }
732
733
734 /* Initialization of data structures. */
735
736 static void
737 dse_step0 (void)
738 {
739 locally_deleted = 0;
740 globally_deleted = 0;
741 spill_deleted = 0;
742
743 bitmap_obstack_initialize (&dse_bitmap_obstack);
744 gcc_obstack_init (&dse_obstack);
745
746 scratch = BITMAP_ALLOC (&reg_obstack);
747 kill_on_calls = BITMAP_ALLOC (&dse_bitmap_obstack);
748
749 rtx_store_info_pool
750 = create_alloc_pool ("rtx_store_info_pool",
751 sizeof (struct store_info), 100);
752 read_info_pool
753 = create_alloc_pool ("read_info_pool",
754 sizeof (struct read_info), 100);
755 insn_info_pool
756 = create_alloc_pool ("insn_info_pool",
757 sizeof (struct insn_info), 100);
758 bb_info_pool
759 = create_alloc_pool ("bb_info_pool",
760 sizeof (struct bb_info), 100);
761 rtx_group_info_pool
762 = create_alloc_pool ("rtx_group_info_pool",
763 sizeof (struct group_info), 100);
764 deferred_change_pool
765 = create_alloc_pool ("deferred_change_pool",
766 sizeof (struct deferred_change), 10);
767
768 rtx_group_table = new hash_table<invariant_group_base_hasher> (11);
769
770 bb_table = XNEWVEC (bb_info_t, last_basic_block_for_fn (cfun));
771 rtx_group_next_id = 0;
772
773 stores_off_frame_dead_at_return = !cfun->stdarg;
774
775 init_alias_analysis ();
776
777 clear_alias_group = NULL;
778 }
779
780
781 \f
782 /*----------------------------------------------------------------------------
783 First step.
784
785 Scan all of the insns. Any random ordering of the blocks is fine.
786 Each block is scanned in forward order to accommodate cselib which
787 is used to remove stores with non-constant bases.
788 ----------------------------------------------------------------------------*/
789
790 /* Delete all of the store_info recs from INSN_INFO. */
791
792 static void
793 free_store_info (insn_info_t insn_info)
794 {
795 store_info_t store_info = insn_info->store_rec;
796 while (store_info)
797 {
798 store_info_t next = store_info->next;
799 if (store_info->is_large)
800 BITMAP_FREE (store_info->positions_needed.large.bmap);
801 if (store_info->cse_base)
802 pool_free (cse_store_info_pool, store_info);
803 else
804 pool_free (rtx_store_info_pool, store_info);
805 store_info = next;
806 }
807
808 insn_info->cannot_delete = true;
809 insn_info->contains_cselib_groups = false;
810 insn_info->store_rec = NULL;
811 }
812
813 typedef struct
814 {
815 rtx first, current;
816 regset fixed_regs_live;
817 bool failure;
818 } note_add_store_info;
819
820 /* Callback for emit_inc_dec_insn_before via note_stores.
821 Check if a register is clobbered which is live afterwards. */
822
823 static void
824 note_add_store (rtx loc, const_rtx expr ATTRIBUTE_UNUSED, void *data)
825 {
826 rtx insn;
827 note_add_store_info *info = (note_add_store_info *) data;
828 int r, n;
829
830 if (!REG_P (loc))
831 return;
832
833 /* If this register is referenced by the current or an earlier insn,
834 that's OK. E.g. this applies to the register that is being incremented
835 with this addition. */
836 for (insn = info->first;
837 insn != NEXT_INSN (info->current);
838 insn = NEXT_INSN (insn))
839 if (reg_referenced_p (loc, PATTERN (insn)))
840 return;
841
842 /* If we come here, we have a clobber of a register that's only OK
843 if that register is not live. If we don't have liveness information
844 available, fail now. */
845 if (!info->fixed_regs_live)
846 {
847 info->failure = true;
848 return;
849 }
850 /* Now check if this is a live fixed register. */
851 r = REGNO (loc);
852 n = hard_regno_nregs[r][GET_MODE (loc)];
853 while (--n >= 0)
854 if (REGNO_REG_SET_P (info->fixed_regs_live, r+n))
855 info->failure = true;
856 }
857
858 /* Callback for for_each_inc_dec that emits an INSN that sets DEST to
859 SRC + SRCOFF before insn ARG. */
860
861 static int
862 emit_inc_dec_insn_before (rtx mem ATTRIBUTE_UNUSED,
863 rtx op ATTRIBUTE_UNUSED,
864 rtx dest, rtx src, rtx srcoff, void *arg)
865 {
866 insn_info_t insn_info = (insn_info_t) arg;
867 rtx insn = insn_info->insn, new_insn, cur;
868 note_add_store_info info;
869
870 /* We can reuse all operands without copying, because we are about
871 to delete the insn that contained it. */
872 if (srcoff)
873 {
874 start_sequence ();
875 emit_insn (gen_add3_insn (dest, src, srcoff));
876 new_insn = get_insns ();
877 end_sequence ();
878 }
879 else
880 new_insn = gen_move_insn (dest, src);
881 info.first = new_insn;
882 info.fixed_regs_live = insn_info->fixed_regs_live;
883 info.failure = false;
884 for (cur = new_insn; cur; cur = NEXT_INSN (cur))
885 {
886 info.current = cur;
887 note_stores (PATTERN (cur), note_add_store, &info);
888 }
889
890 /* If a failure was flagged above, return 1 so that for_each_inc_dec will
891 return it immediately, communicating the failure to its caller. */
892 if (info.failure)
893 return 1;
894
895 emit_insn_before (new_insn, insn);
896
897 return -1;
898 }
899
900 /* Before we delete INSN_INFO->INSN, make sure that the auto inc/dec, if it
901 is there, is split into a separate insn.
902 Return true on success (or if there was nothing to do), false on failure. */
903
904 static bool
905 check_for_inc_dec_1 (insn_info_t insn_info)
906 {
907 rtx insn = insn_info->insn;
908 rtx note = find_reg_note (insn, REG_INC, NULL_RTX);
909 if (note)
910 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, insn_info) == 0;
911 return true;
912 }
913
914
915 /* Entry point for postreload. If you work on reload_cse, or you need this
916 anywhere else, consider if you can provide register liveness information
917 and add a parameter to this function so that it can be passed down in
918 insn_info.fixed_regs_live. */
919 bool
920 check_for_inc_dec (rtx insn)
921 {
922 struct insn_info insn_info;
923 rtx note;
924
925 insn_info.insn = insn;
926 insn_info.fixed_regs_live = NULL;
927 note = find_reg_note (insn, REG_INC, NULL_RTX);
928 if (note)
929 return for_each_inc_dec (&insn, emit_inc_dec_insn_before, &insn_info) == 0;
930 return true;
931 }
932
933 /* Delete the insn and free all of the fields inside INSN_INFO. */
934
935 static void
936 delete_dead_store_insn (insn_info_t insn_info)
937 {
938 read_info_t read_info;
939
940 if (!dbg_cnt (dse))
941 return;
942
943 if (!check_for_inc_dec_1 (insn_info))
944 return;
945 if (dump_file && (dump_flags & TDF_DETAILS))
946 {
947 fprintf (dump_file, "Locally deleting insn %d ",
948 INSN_UID (insn_info->insn));
949 if (insn_info->store_rec->alias_set)
950 fprintf (dump_file, "alias set %d\n",
951 (int) insn_info->store_rec->alias_set);
952 else
953 fprintf (dump_file, "\n");
954 }
955
956 free_store_info (insn_info);
957 read_info = insn_info->read_rec;
958
959 while (read_info)
960 {
961 read_info_t next = read_info->next;
962 pool_free (read_info_pool, read_info);
963 read_info = next;
964 }
965 insn_info->read_rec = NULL;
966
967 delete_insn (insn_info->insn);
968 locally_deleted++;
969 insn_info->insn = NULL;
970
971 insn_info->wild_read = false;
972 }
973
974 /* Return whether DECL, a local variable, can possibly escape the current
975 function scope. */
976
977 static bool
978 local_variable_can_escape (tree decl)
979 {
980 if (TREE_ADDRESSABLE (decl))
981 return true;
982
983 /* If this is a partitioned variable, we need to consider all the variables
984 in the partition. This is necessary because a store into one of them can
985 be replaced with a store into another and this may not change the outcome
986 of the escape analysis. */
987 if (cfun->gimple_df->decls_to_pointers != NULL)
988 {
989 void *namep
990 = pointer_map_contains (cfun->gimple_df->decls_to_pointers, decl);
991 if (namep)
992 return TREE_ADDRESSABLE (*(tree *)namep);
993 }
994
995 return false;
996 }
997
998 /* Return whether EXPR can possibly escape the current function scope. */
999
1000 static bool
1001 can_escape (tree expr)
1002 {
1003 tree base;
1004 if (!expr)
1005 return true;
1006 base = get_base_address (expr);
1007 if (DECL_P (base)
1008 && !may_be_aliased (base)
1009 && !(TREE_CODE (base) == VAR_DECL
1010 && !DECL_EXTERNAL (base)
1011 && !TREE_STATIC (base)
1012 && local_variable_can_escape (base)))
1013 return false;
1014 return true;
1015 }
1016
1017 /* Set the store* bitmaps offset_map_size* fields in GROUP based on
1018 OFFSET and WIDTH. */
1019
1020 static void
1021 set_usage_bits (group_info_t group, HOST_WIDE_INT offset, HOST_WIDE_INT width,
1022 tree expr)
1023 {
1024 HOST_WIDE_INT i;
1025 bool expr_escapes = can_escape (expr);
1026 if (offset > -MAX_OFFSET && offset + width < MAX_OFFSET)
1027 for (i=offset; i<offset+width; i++)
1028 {
1029 bitmap store1;
1030 bitmap store2;
1031 bitmap escaped;
1032 int ai;
1033 if (i < 0)
1034 {
1035 store1 = group->store1_n;
1036 store2 = group->store2_n;
1037 escaped = group->escaped_n;
1038 ai = -i;
1039 }
1040 else
1041 {
1042 store1 = group->store1_p;
1043 store2 = group->store2_p;
1044 escaped = group->escaped_p;
1045 ai = i;
1046 }
1047
1048 if (!bitmap_set_bit (store1, ai))
1049 bitmap_set_bit (store2, ai);
1050 else
1051 {
1052 if (i < 0)
1053 {
1054 if (group->offset_map_size_n < ai)
1055 group->offset_map_size_n = ai;
1056 }
1057 else
1058 {
1059 if (group->offset_map_size_p < ai)
1060 group->offset_map_size_p = ai;
1061 }
1062 }
1063 if (expr_escapes)
1064 bitmap_set_bit (escaped, ai);
1065 }
1066 }
1067
1068 static void
1069 reset_active_stores (void)
1070 {
1071 active_local_stores = NULL;
1072 active_local_stores_len = 0;
1073 }
1074
1075 /* Free all READ_REC of the LAST_INSN of BB_INFO. */
1076
1077 static void
1078 free_read_records (bb_info_t bb_info)
1079 {
1080 insn_info_t insn_info = bb_info->last_insn;
1081 read_info_t *ptr = &insn_info->read_rec;
1082 while (*ptr)
1083 {
1084 read_info_t next = (*ptr)->next;
1085 if ((*ptr)->alias_set == 0)
1086 {
1087 pool_free (read_info_pool, *ptr);
1088 *ptr = next;
1089 }
1090 else
1091 ptr = &(*ptr)->next;
1092 }
1093 }
1094
1095 /* Set the BB_INFO so that the last insn is marked as a wild read. */
1096
1097 static void
1098 add_wild_read (bb_info_t bb_info)
1099 {
1100 insn_info_t insn_info = bb_info->last_insn;
1101 insn_info->wild_read = true;
1102 free_read_records (bb_info);
1103 reset_active_stores ();
1104 }
1105
1106 /* Set the BB_INFO so that the last insn is marked as a wild read of
1107 non-frame locations. */
1108
1109 static void
1110 add_non_frame_wild_read (bb_info_t bb_info)
1111 {
1112 insn_info_t insn_info = bb_info->last_insn;
1113 insn_info->non_frame_wild_read = true;
1114 free_read_records (bb_info);
1115 reset_active_stores ();
1116 }
1117
1118 /* Return true if X is a constant or one of the registers that behave
1119 as a constant over the life of a function. This is equivalent to
1120 !rtx_varies_p for memory addresses. */
1121
1122 static bool
1123 const_or_frame_p (rtx x)
1124 {
1125 if (CONSTANT_P (x))
1126 return true;
1127
1128 if (GET_CODE (x) == REG)
1129 {
1130 /* Note that we have to test for the actual rtx used for the frame
1131 and arg pointers and not just the register number in case we have
1132 eliminated the frame and/or arg pointer and are using it
1133 for pseudos. */
1134 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
1135 /* The arg pointer varies if it is not a fixed register. */
1136 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
1137 || x == pic_offset_table_rtx)
1138 return true;
1139 return false;
1140 }
1141
1142 return false;
1143 }
1144
1145 /* Take all reasonable action to put the address of MEM into the form
1146 that we can do analysis on.
1147
1148 The gold standard is to get the address into the form: address +
1149 OFFSET where address is something that rtx_varies_p considers a
1150 constant. When we can get the address in this form, we can do
1151 global analysis on it. Note that for constant bases, address is
1152 not actually returned, only the group_id. The address can be
1153 obtained from that.
1154
1155 If that fails, we try cselib to get a value we can at least use
1156 locally. If that fails we return false.
1157
1158 The GROUP_ID is set to -1 for cselib bases and the index of the
1159 group for non_varying bases.
1160
1161 FOR_READ is true if this is a mem read and false if not. */
1162
1163 static bool
1164 canon_address (rtx mem,
1165 alias_set_type *alias_set_out,
1166 int *group_id,
1167 HOST_WIDE_INT *offset,
1168 cselib_val **base)
1169 {
1170 enum machine_mode address_mode = get_address_mode (mem);
1171 rtx mem_address = XEXP (mem, 0);
1172 rtx expanded_address, address;
1173 int expanded;
1174
1175 *alias_set_out = 0;
1176
1177 cselib_lookup (mem_address, address_mode, 1, GET_MODE (mem));
1178
1179 if (dump_file && (dump_flags & TDF_DETAILS))
1180 {
1181 fprintf (dump_file, " mem: ");
1182 print_inline_rtx (dump_file, mem_address, 0);
1183 fprintf (dump_file, "\n");
1184 }
1185
1186 /* First see if just canon_rtx (mem_address) is const or frame,
1187 if not, try cselib_expand_value_rtx and call canon_rtx on that. */
1188 address = NULL_RTX;
1189 for (expanded = 0; expanded < 2; expanded++)
1190 {
1191 if (expanded)
1192 {
1193 /* Use cselib to replace all of the reg references with the full
1194 expression. This will take care of the case where we have
1195
1196 r_x = base + offset;
1197 val = *r_x;
1198
1199 by making it into
1200
1201 val = *(base + offset); */
1202
1203 expanded_address = cselib_expand_value_rtx (mem_address,
1204 scratch, 5);
1205
1206 /* If this fails, just go with the address from first
1207 iteration. */
1208 if (!expanded_address)
1209 break;
1210 }
1211 else
1212 expanded_address = mem_address;
1213
1214 /* Split the address into canonical BASE + OFFSET terms. */
1215 address = canon_rtx (expanded_address);
1216
1217 *offset = 0;
1218
1219 if (dump_file && (dump_flags & TDF_DETAILS))
1220 {
1221 if (expanded)
1222 {
1223 fprintf (dump_file, "\n after cselib_expand address: ");
1224 print_inline_rtx (dump_file, expanded_address, 0);
1225 fprintf (dump_file, "\n");
1226 }
1227
1228 fprintf (dump_file, "\n after canon_rtx address: ");
1229 print_inline_rtx (dump_file, address, 0);
1230 fprintf (dump_file, "\n");
1231 }
1232
1233 if (GET_CODE (address) == CONST)
1234 address = XEXP (address, 0);
1235
1236 if (GET_CODE (address) == PLUS
1237 && CONST_INT_P (XEXP (address, 1)))
1238 {
1239 *offset = INTVAL (XEXP (address, 1));
1240 address = XEXP (address, 0);
1241 }
1242
1243 if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (mem))
1244 && const_or_frame_p (address))
1245 {
1246 group_info_t group = get_group_info (address);
1247
1248 if (dump_file && (dump_flags & TDF_DETAILS))
1249 fprintf (dump_file, " gid=%d offset=%d \n",
1250 group->id, (int)*offset);
1251 *base = NULL;
1252 *group_id = group->id;
1253 return true;
1254 }
1255 }
1256
1257 *base = cselib_lookup (address, address_mode, true, GET_MODE (mem));
1258 *group_id = -1;
1259
1260 if (*base == NULL)
1261 {
1262 if (dump_file && (dump_flags & TDF_DETAILS))
1263 fprintf (dump_file, " no cselib val - should be a wild read.\n");
1264 return false;
1265 }
1266 if (dump_file && (dump_flags & TDF_DETAILS))
1267 fprintf (dump_file, " varying cselib base=%u:%u offset = %d\n",
1268 (*base)->uid, (*base)->hash, (int)*offset);
1269 return true;
1270 }
1271
1272
1273 /* Clear the rhs field from the active_local_stores array. */
1274
1275 static void
1276 clear_rhs_from_active_local_stores (void)
1277 {
1278 insn_info_t ptr = active_local_stores;
1279
1280 while (ptr)
1281 {
1282 store_info_t store_info = ptr->store_rec;
1283 /* Skip the clobbers. */
1284 while (!store_info->is_set)
1285 store_info = store_info->next;
1286
1287 store_info->rhs = NULL;
1288 store_info->const_rhs = NULL;
1289
1290 ptr = ptr->next_local_store;
1291 }
1292 }
1293
1294
1295 /* Mark byte POS bytes from the beginning of store S_INFO as unneeded. */
1296
1297 static inline void
1298 set_position_unneeded (store_info_t s_info, int pos)
1299 {
1300 if (__builtin_expect (s_info->is_large, false))
1301 {
1302 if (bitmap_set_bit (s_info->positions_needed.large.bmap, pos))
1303 s_info->positions_needed.large.count++;
1304 }
1305 else
1306 s_info->positions_needed.small_bitmask
1307 &= ~(((unsigned HOST_WIDE_INT) 1) << pos);
1308 }
1309
1310 /* Mark the whole store S_INFO as unneeded. */
1311
1312 static inline void
1313 set_all_positions_unneeded (store_info_t s_info)
1314 {
1315 if (__builtin_expect (s_info->is_large, false))
1316 {
1317 int pos, end = s_info->end - s_info->begin;
1318 for (pos = 0; pos < end; pos++)
1319 bitmap_set_bit (s_info->positions_needed.large.bmap, pos);
1320 s_info->positions_needed.large.count = end;
1321 }
1322 else
1323 s_info->positions_needed.small_bitmask = (unsigned HOST_WIDE_INT) 0;
1324 }
1325
1326 /* Return TRUE if any bytes from S_INFO store are needed. */
1327
1328 static inline bool
1329 any_positions_needed_p (store_info_t s_info)
1330 {
1331 if (__builtin_expect (s_info->is_large, false))
1332 return (s_info->positions_needed.large.count
1333 < s_info->end - s_info->begin);
1334 else
1335 return (s_info->positions_needed.small_bitmask
1336 != (unsigned HOST_WIDE_INT) 0);
1337 }
1338
1339 /* Return TRUE if all bytes START through START+WIDTH-1 from S_INFO
1340 store are needed. */
1341
1342 static inline bool
1343 all_positions_needed_p (store_info_t s_info, int start, int width)
1344 {
1345 if (__builtin_expect (s_info->is_large, false))
1346 {
1347 int end = start + width;
1348 while (start < end)
1349 if (bitmap_bit_p (s_info->positions_needed.large.bmap, start++))
1350 return false;
1351 return true;
1352 }
1353 else
1354 {
1355 unsigned HOST_WIDE_INT mask = lowpart_bitmask (width) << start;
1356 return (s_info->positions_needed.small_bitmask & mask) == mask;
1357 }
1358 }
1359
1360
1361 static rtx get_stored_val (store_info_t, enum machine_mode, HOST_WIDE_INT,
1362 HOST_WIDE_INT, basic_block, bool);
1363
1364
1365 /* BODY is an instruction pattern that belongs to INSN. Return 1 if
1366 there is a candidate store, after adding it to the appropriate
1367 local store group if so. */
1368
1369 static int
1370 record_store (rtx body, bb_info_t bb_info)
1371 {
1372 rtx mem, rhs, const_rhs, mem_addr;
1373 HOST_WIDE_INT offset = 0;
1374 HOST_WIDE_INT width = 0;
1375 alias_set_type spill_alias_set;
1376 insn_info_t insn_info = bb_info->last_insn;
1377 store_info_t store_info = NULL;
1378 int group_id;
1379 cselib_val *base = NULL;
1380 insn_info_t ptr, last, redundant_reason;
1381 bool store_is_unused;
1382
1383 if (GET_CODE (body) != SET && GET_CODE (body) != CLOBBER)
1384 return 0;
1385
1386 mem = SET_DEST (body);
1387
1388 /* If this is not used, then this cannot be used to keep the insn
1389 from being deleted. On the other hand, it does provide something
1390 that can be used to prove that another store is dead. */
1391 store_is_unused
1392 = (find_reg_note (insn_info->insn, REG_UNUSED, mem) != NULL);
1393
1394 /* Check whether that value is a suitable memory location. */
1395 if (!MEM_P (mem))
1396 {
1397 /* If the set or clobber is unused, then it does not effect our
1398 ability to get rid of the entire insn. */
1399 if (!store_is_unused)
1400 insn_info->cannot_delete = true;
1401 return 0;
1402 }
1403
1404 /* At this point we know mem is a mem. */
1405 if (GET_MODE (mem) == BLKmode)
1406 {
1407 if (GET_CODE (XEXP (mem, 0)) == SCRATCH)
1408 {
1409 if (dump_file && (dump_flags & TDF_DETAILS))
1410 fprintf (dump_file, " adding wild read for (clobber (mem:BLK (scratch))\n");
1411 add_wild_read (bb_info);
1412 insn_info->cannot_delete = true;
1413 return 0;
1414 }
1415 /* Handle (set (mem:BLK (addr) [... S36 ...]) (const_int 0))
1416 as memset (addr, 0, 36); */
1417 else if (!MEM_SIZE_KNOWN_P (mem)
1418 || MEM_SIZE (mem) <= 0
1419 || MEM_SIZE (mem) > MAX_OFFSET
1420 || GET_CODE (body) != SET
1421 || !CONST_INT_P (SET_SRC (body)))
1422 {
1423 if (!store_is_unused)
1424 {
1425 /* If the set or clobber is unused, then it does not effect our
1426 ability to get rid of the entire insn. */
1427 insn_info->cannot_delete = true;
1428 clear_rhs_from_active_local_stores ();
1429 }
1430 return 0;
1431 }
1432 }
1433
1434 /* We can still process a volatile mem, we just cannot delete it. */
1435 if (MEM_VOLATILE_P (mem))
1436 insn_info->cannot_delete = true;
1437
1438 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
1439 {
1440 clear_rhs_from_active_local_stores ();
1441 return 0;
1442 }
1443
1444 if (GET_MODE (mem) == BLKmode)
1445 width = MEM_SIZE (mem);
1446 else
1447 width = GET_MODE_SIZE (GET_MODE (mem));
1448
1449 if (spill_alias_set)
1450 {
1451 bitmap store1 = clear_alias_group->store1_p;
1452 bitmap store2 = clear_alias_group->store2_p;
1453
1454 gcc_assert (GET_MODE (mem) != BLKmode);
1455
1456 if (!bitmap_set_bit (store1, spill_alias_set))
1457 bitmap_set_bit (store2, spill_alias_set);
1458
1459 if (clear_alias_group->offset_map_size_p < spill_alias_set)
1460 clear_alias_group->offset_map_size_p = spill_alias_set;
1461
1462 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1463
1464 if (dump_file && (dump_flags & TDF_DETAILS))
1465 fprintf (dump_file, " processing spill store %d(%s)\n",
1466 (int) spill_alias_set, GET_MODE_NAME (GET_MODE (mem)));
1467 }
1468 else if (group_id >= 0)
1469 {
1470 /* In the restrictive case where the base is a constant or the
1471 frame pointer we can do global analysis. */
1472
1473 group_info_t group
1474 = rtx_group_vec[group_id];
1475 tree expr = MEM_EXPR (mem);
1476
1477 store_info = (store_info_t) pool_alloc (rtx_store_info_pool);
1478 set_usage_bits (group, offset, width, expr);
1479
1480 if (dump_file && (dump_flags & TDF_DETAILS))
1481 fprintf (dump_file, " processing const base store gid=%d[%d..%d)\n",
1482 group_id, (int)offset, (int)(offset+width));
1483 }
1484 else
1485 {
1486 if (may_be_sp_based_p (XEXP (mem, 0)))
1487 insn_info->stack_pointer_based = true;
1488 insn_info->contains_cselib_groups = true;
1489
1490 store_info = (store_info_t) pool_alloc (cse_store_info_pool);
1491 group_id = -1;
1492
1493 if (dump_file && (dump_flags & TDF_DETAILS))
1494 fprintf (dump_file, " processing cselib store [%d..%d)\n",
1495 (int)offset, (int)(offset+width));
1496 }
1497
1498 const_rhs = rhs = NULL_RTX;
1499 if (GET_CODE (body) == SET
1500 /* No place to keep the value after ra. */
1501 && !reload_completed
1502 && (REG_P (SET_SRC (body))
1503 || GET_CODE (SET_SRC (body)) == SUBREG
1504 || CONSTANT_P (SET_SRC (body)))
1505 && !MEM_VOLATILE_P (mem)
1506 /* Sometimes the store and reload is used for truncation and
1507 rounding. */
1508 && !(FLOAT_MODE_P (GET_MODE (mem)) && (flag_float_store)))
1509 {
1510 rhs = SET_SRC (body);
1511 if (CONSTANT_P (rhs))
1512 const_rhs = rhs;
1513 else if (body == PATTERN (insn_info->insn))
1514 {
1515 rtx tem = find_reg_note (insn_info->insn, REG_EQUAL, NULL_RTX);
1516 if (tem && CONSTANT_P (XEXP (tem, 0)))
1517 const_rhs = XEXP (tem, 0);
1518 }
1519 if (const_rhs == NULL_RTX && REG_P (rhs))
1520 {
1521 rtx tem = cselib_expand_value_rtx (rhs, scratch, 5);
1522
1523 if (tem && CONSTANT_P (tem))
1524 const_rhs = tem;
1525 }
1526 }
1527
1528 /* Check to see if this stores causes some other stores to be
1529 dead. */
1530 ptr = active_local_stores;
1531 last = NULL;
1532 redundant_reason = NULL;
1533 mem = canon_rtx (mem);
1534 /* For alias_set != 0 canon_true_dependence should be never called. */
1535 if (spill_alias_set)
1536 mem_addr = NULL_RTX;
1537 else
1538 {
1539 if (group_id < 0)
1540 mem_addr = base->val_rtx;
1541 else
1542 {
1543 group_info_t group
1544 = rtx_group_vec[group_id];
1545 mem_addr = group->canon_base_addr;
1546 }
1547 if (offset)
1548 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
1549 }
1550
1551 while (ptr)
1552 {
1553 insn_info_t next = ptr->next_local_store;
1554 store_info_t s_info = ptr->store_rec;
1555 bool del = true;
1556
1557 /* Skip the clobbers. We delete the active insn if this insn
1558 shadows the set. To have been put on the active list, it
1559 has exactly on set. */
1560 while (!s_info->is_set)
1561 s_info = s_info->next;
1562
1563 if (s_info->alias_set != spill_alias_set)
1564 del = false;
1565 else if (s_info->alias_set)
1566 {
1567 struct clear_alias_mode_holder *entry
1568 = clear_alias_set_lookup (s_info->alias_set);
1569 /* Generally, spills cannot be processed if and of the
1570 references to the slot have a different mode. But if
1571 we are in the same block and mode is exactly the same
1572 between this store and one before in the same block,
1573 we can still delete it. */
1574 if ((GET_MODE (mem) == GET_MODE (s_info->mem))
1575 && (GET_MODE (mem) == entry->mode))
1576 {
1577 del = true;
1578 set_all_positions_unneeded (s_info);
1579 }
1580 if (dump_file && (dump_flags & TDF_DETAILS))
1581 fprintf (dump_file, " trying spill store in insn=%d alias_set=%d\n",
1582 INSN_UID (ptr->insn), (int) s_info->alias_set);
1583 }
1584 else if ((s_info->group_id == group_id)
1585 && (s_info->cse_base == base))
1586 {
1587 HOST_WIDE_INT i;
1588 if (dump_file && (dump_flags & TDF_DETAILS))
1589 fprintf (dump_file, " trying store in insn=%d gid=%d[%d..%d)\n",
1590 INSN_UID (ptr->insn), s_info->group_id,
1591 (int)s_info->begin, (int)s_info->end);
1592
1593 /* Even if PTR won't be eliminated as unneeded, if both
1594 PTR and this insn store the same constant value, we might
1595 eliminate this insn instead. */
1596 if (s_info->const_rhs
1597 && const_rhs
1598 && offset >= s_info->begin
1599 && offset + width <= s_info->end
1600 && all_positions_needed_p (s_info, offset - s_info->begin,
1601 width))
1602 {
1603 if (GET_MODE (mem) == BLKmode)
1604 {
1605 if (GET_MODE (s_info->mem) == BLKmode
1606 && s_info->const_rhs == const_rhs)
1607 redundant_reason = ptr;
1608 }
1609 else if (s_info->const_rhs == const0_rtx
1610 && const_rhs == const0_rtx)
1611 redundant_reason = ptr;
1612 else
1613 {
1614 rtx val;
1615 start_sequence ();
1616 val = get_stored_val (s_info, GET_MODE (mem),
1617 offset, offset + width,
1618 BLOCK_FOR_INSN (insn_info->insn),
1619 true);
1620 if (get_insns () != NULL)
1621 val = NULL_RTX;
1622 end_sequence ();
1623 if (val && rtx_equal_p (val, const_rhs))
1624 redundant_reason = ptr;
1625 }
1626 }
1627
1628 for (i = MAX (offset, s_info->begin);
1629 i < offset + width && i < s_info->end;
1630 i++)
1631 set_position_unneeded (s_info, i - s_info->begin);
1632 }
1633 else if (s_info->rhs)
1634 /* Need to see if it is possible for this store to overwrite
1635 the value of store_info. If it is, set the rhs to NULL to
1636 keep it from being used to remove a load. */
1637 {
1638 if (canon_true_dependence (s_info->mem,
1639 GET_MODE (s_info->mem),
1640 s_info->mem_addr,
1641 mem, mem_addr))
1642 {
1643 s_info->rhs = NULL;
1644 s_info->const_rhs = NULL;
1645 }
1646 }
1647
1648 /* An insn can be deleted if every position of every one of
1649 its s_infos is zero. */
1650 if (any_positions_needed_p (s_info))
1651 del = false;
1652
1653 if (del)
1654 {
1655 insn_info_t insn_to_delete = ptr;
1656
1657 active_local_stores_len--;
1658 if (last)
1659 last->next_local_store = ptr->next_local_store;
1660 else
1661 active_local_stores = ptr->next_local_store;
1662
1663 if (!insn_to_delete->cannot_delete)
1664 delete_dead_store_insn (insn_to_delete);
1665 }
1666 else
1667 last = ptr;
1668
1669 ptr = next;
1670 }
1671
1672 /* Finish filling in the store_info. */
1673 store_info->next = insn_info->store_rec;
1674 insn_info->store_rec = store_info;
1675 store_info->mem = mem;
1676 store_info->alias_set = spill_alias_set;
1677 store_info->mem_addr = mem_addr;
1678 store_info->cse_base = base;
1679 if (width > HOST_BITS_PER_WIDE_INT)
1680 {
1681 store_info->is_large = true;
1682 store_info->positions_needed.large.count = 0;
1683 store_info->positions_needed.large.bmap = BITMAP_ALLOC (&dse_bitmap_obstack);
1684 }
1685 else
1686 {
1687 store_info->is_large = false;
1688 store_info->positions_needed.small_bitmask = lowpart_bitmask (width);
1689 }
1690 store_info->group_id = group_id;
1691 store_info->begin = offset;
1692 store_info->end = offset + width;
1693 store_info->is_set = GET_CODE (body) == SET;
1694 store_info->rhs = rhs;
1695 store_info->const_rhs = const_rhs;
1696 store_info->redundant_reason = redundant_reason;
1697
1698 /* If this is a clobber, we return 0. We will only be able to
1699 delete this insn if there is only one store USED store, but we
1700 can use the clobber to delete other stores earlier. */
1701 return store_info->is_set ? 1 : 0;
1702 }
1703
1704
1705 static void
1706 dump_insn_info (const char * start, insn_info_t insn_info)
1707 {
1708 fprintf (dump_file, "%s insn=%d %s\n", start,
1709 INSN_UID (insn_info->insn),
1710 insn_info->store_rec ? "has store" : "naked");
1711 }
1712
1713
1714 /* If the modes are different and the value's source and target do not
1715 line up, we need to extract the value from lower part of the rhs of
1716 the store, shift it, and then put it into a form that can be shoved
1717 into the read_insn. This function generates a right SHIFT of a
1718 value that is at least ACCESS_SIZE bytes wide of READ_MODE. The
1719 shift sequence is returned or NULL if we failed to find a
1720 shift. */
1721
1722 static rtx
1723 find_shift_sequence (int access_size,
1724 store_info_t store_info,
1725 enum machine_mode read_mode,
1726 int shift, bool speed, bool require_cst)
1727 {
1728 enum machine_mode store_mode = GET_MODE (store_info->mem);
1729 enum machine_mode new_mode;
1730 rtx read_reg = NULL;
1731
1732 /* Some machines like the x86 have shift insns for each size of
1733 operand. Other machines like the ppc or the ia-64 may only have
1734 shift insns that shift values within 32 or 64 bit registers.
1735 This loop tries to find the smallest shift insn that will right
1736 justify the value we want to read but is available in one insn on
1737 the machine. */
1738
1739 for (new_mode = smallest_mode_for_size (access_size * BITS_PER_UNIT,
1740 MODE_INT);
1741 GET_MODE_BITSIZE (new_mode) <= BITS_PER_WORD;
1742 new_mode = GET_MODE_WIDER_MODE (new_mode))
1743 {
1744 rtx target, new_reg, shift_seq, insn, new_lhs;
1745 int cost;
1746
1747 /* If a constant was stored into memory, try to simplify it here,
1748 otherwise the cost of the shift might preclude this optimization
1749 e.g. at -Os, even when no actual shift will be needed. */
1750 if (store_info->const_rhs)
1751 {
1752 unsigned int byte = subreg_lowpart_offset (new_mode, store_mode);
1753 rtx ret = simplify_subreg (new_mode, store_info->const_rhs,
1754 store_mode, byte);
1755 if (ret && CONSTANT_P (ret))
1756 {
1757 ret = simplify_const_binary_operation (LSHIFTRT, new_mode,
1758 ret, GEN_INT (shift));
1759 if (ret && CONSTANT_P (ret))
1760 {
1761 byte = subreg_lowpart_offset (read_mode, new_mode);
1762 ret = simplify_subreg (read_mode, ret, new_mode, byte);
1763 if (ret && CONSTANT_P (ret)
1764 && set_src_cost (ret, speed) <= COSTS_N_INSNS (1))
1765 return ret;
1766 }
1767 }
1768 }
1769
1770 if (require_cst)
1771 return NULL_RTX;
1772
1773 /* Try a wider mode if truncating the store mode to NEW_MODE
1774 requires a real instruction. */
1775 if (GET_MODE_BITSIZE (new_mode) < GET_MODE_BITSIZE (store_mode)
1776 && !TRULY_NOOP_TRUNCATION_MODES_P (new_mode, store_mode))
1777 continue;
1778
1779 /* Also try a wider mode if the necessary punning is either not
1780 desirable or not possible. */
1781 if (!CONSTANT_P (store_info->rhs)
1782 && !MODES_TIEABLE_P (new_mode, store_mode))
1783 continue;
1784
1785 new_reg = gen_reg_rtx (new_mode);
1786
1787 start_sequence ();
1788
1789 /* In theory we could also check for an ashr. Ian Taylor knows
1790 of one dsp where the cost of these two was not the same. But
1791 this really is a rare case anyway. */
1792 target = expand_binop (new_mode, lshr_optab, new_reg,
1793 GEN_INT (shift), new_reg, 1, OPTAB_DIRECT);
1794
1795 shift_seq = get_insns ();
1796 end_sequence ();
1797
1798 if (target != new_reg || shift_seq == NULL)
1799 continue;
1800
1801 cost = 0;
1802 for (insn = shift_seq; insn != NULL_RTX; insn = NEXT_INSN (insn))
1803 if (INSN_P (insn))
1804 cost += insn_rtx_cost (PATTERN (insn), speed);
1805
1806 /* The computation up to here is essentially independent
1807 of the arguments and could be precomputed. It may
1808 not be worth doing so. We could precompute if
1809 worthwhile or at least cache the results. The result
1810 technically depends on both SHIFT and ACCESS_SIZE,
1811 but in practice the answer will depend only on ACCESS_SIZE. */
1812
1813 if (cost > COSTS_N_INSNS (1))
1814 continue;
1815
1816 new_lhs = extract_low_bits (new_mode, store_mode,
1817 copy_rtx (store_info->rhs));
1818 if (new_lhs == NULL_RTX)
1819 continue;
1820
1821 /* We found an acceptable shift. Generate a move to
1822 take the value from the store and put it into the
1823 shift pseudo, then shift it, then generate another
1824 move to put in into the target of the read. */
1825 emit_move_insn (new_reg, new_lhs);
1826 emit_insn (shift_seq);
1827 read_reg = extract_low_bits (read_mode, new_mode, new_reg);
1828 break;
1829 }
1830
1831 return read_reg;
1832 }
1833
1834
1835 /* Call back for note_stores to find the hard regs set or clobbered by
1836 insn. Data is a bitmap of the hardregs set so far. */
1837
1838 static void
1839 look_for_hardregs (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1840 {
1841 bitmap regs_set = (bitmap) data;
1842
1843 if (REG_P (x)
1844 && HARD_REGISTER_P (x))
1845 {
1846 unsigned int regno = REGNO (x);
1847 bitmap_set_range (regs_set, regno,
1848 hard_regno_nregs[regno][GET_MODE (x)]);
1849 }
1850 }
1851
1852 /* Helper function for replace_read and record_store.
1853 Attempt to return a value stored in STORE_INFO, from READ_BEGIN
1854 to one before READ_END bytes read in READ_MODE. Return NULL
1855 if not successful. If REQUIRE_CST is true, return always constant. */
1856
1857 static rtx
1858 get_stored_val (store_info_t store_info, enum machine_mode read_mode,
1859 HOST_WIDE_INT read_begin, HOST_WIDE_INT read_end,
1860 basic_block bb, bool require_cst)
1861 {
1862 enum machine_mode store_mode = GET_MODE (store_info->mem);
1863 int shift;
1864 int access_size; /* In bytes. */
1865 rtx read_reg;
1866
1867 /* To get here the read is within the boundaries of the write so
1868 shift will never be negative. Start out with the shift being in
1869 bytes. */
1870 if (store_mode == BLKmode)
1871 shift = 0;
1872 else if (BYTES_BIG_ENDIAN)
1873 shift = store_info->end - read_end;
1874 else
1875 shift = read_begin - store_info->begin;
1876
1877 access_size = shift + GET_MODE_SIZE (read_mode);
1878
1879 /* From now on it is bits. */
1880 shift *= BITS_PER_UNIT;
1881
1882 if (shift)
1883 read_reg = find_shift_sequence (access_size, store_info, read_mode, shift,
1884 optimize_bb_for_speed_p (bb),
1885 require_cst);
1886 else if (store_mode == BLKmode)
1887 {
1888 /* The store is a memset (addr, const_val, const_size). */
1889 gcc_assert (CONST_INT_P (store_info->rhs));
1890 store_mode = int_mode_for_mode (read_mode);
1891 if (store_mode == BLKmode)
1892 read_reg = NULL_RTX;
1893 else if (store_info->rhs == const0_rtx)
1894 read_reg = extract_low_bits (read_mode, store_mode, const0_rtx);
1895 else if (GET_MODE_BITSIZE (store_mode) > HOST_BITS_PER_WIDE_INT
1896 || BITS_PER_UNIT >= HOST_BITS_PER_WIDE_INT)
1897 read_reg = NULL_RTX;
1898 else
1899 {
1900 unsigned HOST_WIDE_INT c
1901 = INTVAL (store_info->rhs)
1902 & (((HOST_WIDE_INT) 1 << BITS_PER_UNIT) - 1);
1903 int shift = BITS_PER_UNIT;
1904 while (shift < HOST_BITS_PER_WIDE_INT)
1905 {
1906 c |= (c << shift);
1907 shift <<= 1;
1908 }
1909 read_reg = gen_int_mode (c, store_mode);
1910 read_reg = extract_low_bits (read_mode, store_mode, read_reg);
1911 }
1912 }
1913 else if (store_info->const_rhs
1914 && (require_cst
1915 || GET_MODE_CLASS (read_mode) != GET_MODE_CLASS (store_mode)))
1916 read_reg = extract_low_bits (read_mode, store_mode,
1917 copy_rtx (store_info->const_rhs));
1918 else
1919 read_reg = extract_low_bits (read_mode, store_mode,
1920 copy_rtx (store_info->rhs));
1921 if (require_cst && read_reg && !CONSTANT_P (read_reg))
1922 read_reg = NULL_RTX;
1923 return read_reg;
1924 }
1925
1926 /* Take a sequence of:
1927 A <- r1
1928 ...
1929 ... <- A
1930
1931 and change it into
1932 r2 <- r1
1933 A <- r1
1934 ...
1935 ... <- r2
1936
1937 or
1938
1939 r3 <- extract (r1)
1940 r3 <- r3 >> shift
1941 r2 <- extract (r3)
1942 ... <- r2
1943
1944 or
1945
1946 r2 <- extract (r1)
1947 ... <- r2
1948
1949 Depending on the alignment and the mode of the store and
1950 subsequent load.
1951
1952
1953 The STORE_INFO and STORE_INSN are for the store and READ_INFO
1954 and READ_INSN are for the read. Return true if the replacement
1955 went ok. */
1956
1957 static bool
1958 replace_read (store_info_t store_info, insn_info_t store_insn,
1959 read_info_t read_info, insn_info_t read_insn, rtx *loc,
1960 bitmap regs_live)
1961 {
1962 enum machine_mode store_mode = GET_MODE (store_info->mem);
1963 enum machine_mode read_mode = GET_MODE (read_info->mem);
1964 rtx insns, this_insn, read_reg;
1965 basic_block bb;
1966
1967 if (!dbg_cnt (dse))
1968 return false;
1969
1970 /* Create a sequence of instructions to set up the read register.
1971 This sequence goes immediately before the store and its result
1972 is read by the load.
1973
1974 We need to keep this in perspective. We are replacing a read
1975 with a sequence of insns, but the read will almost certainly be
1976 in cache, so it is not going to be an expensive one. Thus, we
1977 are not willing to do a multi insn shift or worse a subroutine
1978 call to get rid of the read. */
1979 if (dump_file && (dump_flags & TDF_DETAILS))
1980 fprintf (dump_file, "trying to replace %smode load in insn %d"
1981 " from %smode store in insn %d\n",
1982 GET_MODE_NAME (read_mode), INSN_UID (read_insn->insn),
1983 GET_MODE_NAME (store_mode), INSN_UID (store_insn->insn));
1984 start_sequence ();
1985 bb = BLOCK_FOR_INSN (read_insn->insn);
1986 read_reg = get_stored_val (store_info,
1987 read_mode, read_info->begin, read_info->end,
1988 bb, false);
1989 if (read_reg == NULL_RTX)
1990 {
1991 end_sequence ();
1992 if (dump_file && (dump_flags & TDF_DETAILS))
1993 fprintf (dump_file, " -- could not extract bits of stored value\n");
1994 return false;
1995 }
1996 /* Force the value into a new register so that it won't be clobbered
1997 between the store and the load. */
1998 read_reg = copy_to_mode_reg (read_mode, read_reg);
1999 insns = get_insns ();
2000 end_sequence ();
2001
2002 if (insns != NULL_RTX)
2003 {
2004 /* Now we have to scan the set of new instructions to see if the
2005 sequence contains and sets of hardregs that happened to be
2006 live at this point. For instance, this can happen if one of
2007 the insns sets the CC and the CC happened to be live at that
2008 point. This does occasionally happen, see PR 37922. */
2009 bitmap regs_set = BITMAP_ALLOC (&reg_obstack);
2010
2011 for (this_insn = insns; this_insn != NULL_RTX; this_insn = NEXT_INSN (this_insn))
2012 note_stores (PATTERN (this_insn), look_for_hardregs, regs_set);
2013
2014 bitmap_and_into (regs_set, regs_live);
2015 if (!bitmap_empty_p (regs_set))
2016 {
2017 if (dump_file && (dump_flags & TDF_DETAILS))
2018 {
2019 fprintf (dump_file,
2020 "abandoning replacement because sequence clobbers live hardregs:");
2021 df_print_regset (dump_file, regs_set);
2022 }
2023
2024 BITMAP_FREE (regs_set);
2025 return false;
2026 }
2027 BITMAP_FREE (regs_set);
2028 }
2029
2030 if (validate_change (read_insn->insn, loc, read_reg, 0))
2031 {
2032 deferred_change_t deferred_change =
2033 (deferred_change_t) pool_alloc (deferred_change_pool);
2034
2035 /* Insert this right before the store insn where it will be safe
2036 from later insns that might change it before the read. */
2037 emit_insn_before (insns, store_insn->insn);
2038
2039 /* And now for the kludge part: cselib croaks if you just
2040 return at this point. There are two reasons for this:
2041
2042 1) Cselib has an idea of how many pseudos there are and
2043 that does not include the new ones we just added.
2044
2045 2) Cselib does not know about the move insn we added
2046 above the store_info, and there is no way to tell it
2047 about it, because it has "moved on".
2048
2049 Problem (1) is fixable with a certain amount of engineering.
2050 Problem (2) is requires starting the bb from scratch. This
2051 could be expensive.
2052
2053 So we are just going to have to lie. The move/extraction
2054 insns are not really an issue, cselib did not see them. But
2055 the use of the new pseudo read_insn is a real problem because
2056 cselib has not scanned this insn. The way that we solve this
2057 problem is that we are just going to put the mem back for now
2058 and when we are finished with the block, we undo this. We
2059 keep a table of mems to get rid of. At the end of the basic
2060 block we can put them back. */
2061
2062 *loc = read_info->mem;
2063 deferred_change->next = deferred_change_list;
2064 deferred_change_list = deferred_change;
2065 deferred_change->loc = loc;
2066 deferred_change->reg = read_reg;
2067
2068 /* Get rid of the read_info, from the point of view of the
2069 rest of dse, play like this read never happened. */
2070 read_insn->read_rec = read_info->next;
2071 pool_free (read_info_pool, read_info);
2072 if (dump_file && (dump_flags & TDF_DETAILS))
2073 {
2074 fprintf (dump_file, " -- replaced the loaded MEM with ");
2075 print_simple_rtl (dump_file, read_reg);
2076 fprintf (dump_file, "\n");
2077 }
2078 return true;
2079 }
2080 else
2081 {
2082 if (dump_file && (dump_flags & TDF_DETAILS))
2083 {
2084 fprintf (dump_file, " -- replacing the loaded MEM with ");
2085 print_simple_rtl (dump_file, read_reg);
2086 fprintf (dump_file, " led to an invalid instruction\n");
2087 }
2088 return false;
2089 }
2090 }
2091
2092 /* A for_each_rtx callback in which DATA is the bb_info. Check to see
2093 if LOC is a mem and if it is look at the address and kill any
2094 appropriate stores that may be active. */
2095
2096 static int
2097 check_mem_read_rtx (rtx *loc, void *data)
2098 {
2099 rtx mem = *loc, mem_addr;
2100 bb_info_t bb_info;
2101 insn_info_t insn_info;
2102 HOST_WIDE_INT offset = 0;
2103 HOST_WIDE_INT width = 0;
2104 alias_set_type spill_alias_set = 0;
2105 cselib_val *base = NULL;
2106 int group_id;
2107 read_info_t read_info;
2108
2109 if (!mem || !MEM_P (mem))
2110 return 0;
2111
2112 bb_info = (bb_info_t) data;
2113 insn_info = bb_info->last_insn;
2114
2115 if ((MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2116 || (MEM_VOLATILE_P (mem)))
2117 {
2118 if (dump_file && (dump_flags & TDF_DETAILS))
2119 fprintf (dump_file, " adding wild read, volatile or barrier.\n");
2120 add_wild_read (bb_info);
2121 insn_info->cannot_delete = true;
2122 return 0;
2123 }
2124
2125 /* If it is reading readonly mem, then there can be no conflict with
2126 another write. */
2127 if (MEM_READONLY_P (mem))
2128 return 0;
2129
2130 if (!canon_address (mem, &spill_alias_set, &group_id, &offset, &base))
2131 {
2132 if (dump_file && (dump_flags & TDF_DETAILS))
2133 fprintf (dump_file, " adding wild read, canon_address failure.\n");
2134 add_wild_read (bb_info);
2135 return 0;
2136 }
2137
2138 if (GET_MODE (mem) == BLKmode)
2139 width = -1;
2140 else
2141 width = GET_MODE_SIZE (GET_MODE (mem));
2142
2143 read_info = (read_info_t) pool_alloc (read_info_pool);
2144 read_info->group_id = group_id;
2145 read_info->mem = mem;
2146 read_info->alias_set = spill_alias_set;
2147 read_info->begin = offset;
2148 read_info->end = offset + width;
2149 read_info->next = insn_info->read_rec;
2150 insn_info->read_rec = read_info;
2151 /* For alias_set != 0 canon_true_dependence should be never called. */
2152 if (spill_alias_set)
2153 mem_addr = NULL_RTX;
2154 else
2155 {
2156 if (group_id < 0)
2157 mem_addr = base->val_rtx;
2158 else
2159 {
2160 group_info_t group
2161 = rtx_group_vec[group_id];
2162 mem_addr = group->canon_base_addr;
2163 }
2164 if (offset)
2165 mem_addr = plus_constant (get_address_mode (mem), mem_addr, offset);
2166 }
2167
2168 /* We ignore the clobbers in store_info. The is mildly aggressive,
2169 but there really should not be a clobber followed by a read. */
2170
2171 if (spill_alias_set)
2172 {
2173 insn_info_t i_ptr = active_local_stores;
2174 insn_info_t last = NULL;
2175
2176 if (dump_file && (dump_flags & TDF_DETAILS))
2177 fprintf (dump_file, " processing spill load %d\n",
2178 (int) spill_alias_set);
2179
2180 while (i_ptr)
2181 {
2182 store_info_t store_info = i_ptr->store_rec;
2183
2184 /* Skip the clobbers. */
2185 while (!store_info->is_set)
2186 store_info = store_info->next;
2187
2188 if (store_info->alias_set == spill_alias_set)
2189 {
2190 if (dump_file && (dump_flags & TDF_DETAILS))
2191 dump_insn_info ("removing from active", i_ptr);
2192
2193 active_local_stores_len--;
2194 if (last)
2195 last->next_local_store = i_ptr->next_local_store;
2196 else
2197 active_local_stores = i_ptr->next_local_store;
2198 }
2199 else
2200 last = i_ptr;
2201 i_ptr = i_ptr->next_local_store;
2202 }
2203 }
2204 else if (group_id >= 0)
2205 {
2206 /* This is the restricted case where the base is a constant or
2207 the frame pointer and offset is a constant. */
2208 insn_info_t i_ptr = active_local_stores;
2209 insn_info_t last = NULL;
2210
2211 if (dump_file && (dump_flags & TDF_DETAILS))
2212 {
2213 if (width == -1)
2214 fprintf (dump_file, " processing const load gid=%d[BLK]\n",
2215 group_id);
2216 else
2217 fprintf (dump_file, " processing const load gid=%d[%d..%d)\n",
2218 group_id, (int)offset, (int)(offset+width));
2219 }
2220
2221 while (i_ptr)
2222 {
2223 bool remove = false;
2224 store_info_t store_info = i_ptr->store_rec;
2225
2226 /* Skip the clobbers. */
2227 while (!store_info->is_set)
2228 store_info = store_info->next;
2229
2230 /* There are three cases here. */
2231 if (store_info->group_id < 0)
2232 /* We have a cselib store followed by a read from a
2233 const base. */
2234 remove
2235 = canon_true_dependence (store_info->mem,
2236 GET_MODE (store_info->mem),
2237 store_info->mem_addr,
2238 mem, mem_addr);
2239
2240 else if (group_id == store_info->group_id)
2241 {
2242 /* This is a block mode load. We may get lucky and
2243 canon_true_dependence may save the day. */
2244 if (width == -1)
2245 remove
2246 = canon_true_dependence (store_info->mem,
2247 GET_MODE (store_info->mem),
2248 store_info->mem_addr,
2249 mem, mem_addr);
2250
2251 /* If this read is just reading back something that we just
2252 stored, rewrite the read. */
2253 else
2254 {
2255 if (store_info->rhs
2256 && offset >= store_info->begin
2257 && offset + width <= store_info->end
2258 && all_positions_needed_p (store_info,
2259 offset - store_info->begin,
2260 width)
2261 && replace_read (store_info, i_ptr, read_info,
2262 insn_info, loc, bb_info->regs_live))
2263 return 0;
2264
2265 /* The bases are the same, just see if the offsets
2266 overlap. */
2267 if ((offset < store_info->end)
2268 && (offset + width > store_info->begin))
2269 remove = true;
2270 }
2271 }
2272
2273 /* else
2274 The else case that is missing here is that the
2275 bases are constant but different. There is nothing
2276 to do here because there is no overlap. */
2277
2278 if (remove)
2279 {
2280 if (dump_file && (dump_flags & TDF_DETAILS))
2281 dump_insn_info ("removing from active", i_ptr);
2282
2283 active_local_stores_len--;
2284 if (last)
2285 last->next_local_store = i_ptr->next_local_store;
2286 else
2287 active_local_stores = i_ptr->next_local_store;
2288 }
2289 else
2290 last = i_ptr;
2291 i_ptr = i_ptr->next_local_store;
2292 }
2293 }
2294 else
2295 {
2296 insn_info_t i_ptr = active_local_stores;
2297 insn_info_t last = NULL;
2298 if (dump_file && (dump_flags & TDF_DETAILS))
2299 {
2300 fprintf (dump_file, " processing cselib load mem:");
2301 print_inline_rtx (dump_file, mem, 0);
2302 fprintf (dump_file, "\n");
2303 }
2304
2305 while (i_ptr)
2306 {
2307 bool remove = false;
2308 store_info_t store_info = i_ptr->store_rec;
2309
2310 if (dump_file && (dump_flags & TDF_DETAILS))
2311 fprintf (dump_file, " processing cselib load against insn %d\n",
2312 INSN_UID (i_ptr->insn));
2313
2314 /* Skip the clobbers. */
2315 while (!store_info->is_set)
2316 store_info = store_info->next;
2317
2318 /* If this read is just reading back something that we just
2319 stored, rewrite the read. */
2320 if (store_info->rhs
2321 && store_info->group_id == -1
2322 && store_info->cse_base == base
2323 && width != -1
2324 && offset >= store_info->begin
2325 && offset + width <= store_info->end
2326 && all_positions_needed_p (store_info,
2327 offset - store_info->begin, width)
2328 && replace_read (store_info, i_ptr, read_info, insn_info, loc,
2329 bb_info->regs_live))
2330 return 0;
2331
2332 if (!store_info->alias_set)
2333 remove = canon_true_dependence (store_info->mem,
2334 GET_MODE (store_info->mem),
2335 store_info->mem_addr,
2336 mem, mem_addr);
2337
2338 if (remove)
2339 {
2340 if (dump_file && (dump_flags & TDF_DETAILS))
2341 dump_insn_info ("removing from active", i_ptr);
2342
2343 active_local_stores_len--;
2344 if (last)
2345 last->next_local_store = i_ptr->next_local_store;
2346 else
2347 active_local_stores = i_ptr->next_local_store;
2348 }
2349 else
2350 last = i_ptr;
2351 i_ptr = i_ptr->next_local_store;
2352 }
2353 }
2354 return 0;
2355 }
2356
2357 /* A for_each_rtx callback in which DATA points the INSN_INFO for
2358 as check_mem_read_rtx. Nullify the pointer if i_m_r_m_r returns
2359 true for any part of *LOC. */
2360
2361 static void
2362 check_mem_read_use (rtx *loc, void *data)
2363 {
2364 for_each_rtx (loc, check_mem_read_rtx, data);
2365 }
2366
2367
2368 /* Get arguments passed to CALL_INSN. Return TRUE if successful.
2369 So far it only handles arguments passed in registers. */
2370
2371 static bool
2372 get_call_args (rtx call_insn, tree fn, rtx *args, int nargs)
2373 {
2374 CUMULATIVE_ARGS args_so_far_v;
2375 cumulative_args_t args_so_far;
2376 tree arg;
2377 int idx;
2378
2379 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
2380 args_so_far = pack_cumulative_args (&args_so_far_v);
2381
2382 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
2383 for (idx = 0;
2384 arg != void_list_node && idx < nargs;
2385 arg = TREE_CHAIN (arg), idx++)
2386 {
2387 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
2388 rtx reg, link, tmp;
2389 reg = targetm.calls.function_arg (args_so_far, mode, NULL_TREE, true);
2390 if (!reg || !REG_P (reg) || GET_MODE (reg) != mode
2391 || GET_MODE_CLASS (mode) != MODE_INT)
2392 return false;
2393
2394 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
2395 link;
2396 link = XEXP (link, 1))
2397 if (GET_CODE (XEXP (link, 0)) == USE)
2398 {
2399 args[idx] = XEXP (XEXP (link, 0), 0);
2400 if (REG_P (args[idx])
2401 && REGNO (args[idx]) == REGNO (reg)
2402 && (GET_MODE (args[idx]) == mode
2403 || (GET_MODE_CLASS (GET_MODE (args[idx])) == MODE_INT
2404 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2405 <= UNITS_PER_WORD)
2406 && (GET_MODE_SIZE (GET_MODE (args[idx]))
2407 > GET_MODE_SIZE (mode)))))
2408 break;
2409 }
2410 if (!link)
2411 return false;
2412
2413 tmp = cselib_expand_value_rtx (args[idx], scratch, 5);
2414 if (GET_MODE (args[idx]) != mode)
2415 {
2416 if (!tmp || !CONST_INT_P (tmp))
2417 return false;
2418 tmp = gen_int_mode (INTVAL (tmp), mode);
2419 }
2420 if (tmp)
2421 args[idx] = tmp;
2422
2423 targetm.calls.function_arg_advance (args_so_far, mode, NULL_TREE, true);
2424 }
2425 if (arg != void_list_node || idx != nargs)
2426 return false;
2427 return true;
2428 }
2429
2430 /* Return a bitmap of the fixed registers contained in IN. */
2431
2432 static bitmap
2433 copy_fixed_regs (const_bitmap in)
2434 {
2435 bitmap ret;
2436
2437 ret = ALLOC_REG_SET (NULL);
2438 bitmap_and (ret, in, fixed_reg_set_regset);
2439 return ret;
2440 }
2441
2442 /* Apply record_store to all candidate stores in INSN. Mark INSN
2443 if some part of it is not a candidate store and assigns to a
2444 non-register target. */
2445
2446 static void
2447 scan_insn (bb_info_t bb_info, rtx insn)
2448 {
2449 rtx body;
2450 insn_info_t insn_info = (insn_info_t) pool_alloc (insn_info_pool);
2451 int mems_found = 0;
2452 memset (insn_info, 0, sizeof (struct insn_info));
2453
2454 if (dump_file && (dump_flags & TDF_DETAILS))
2455 fprintf (dump_file, "\n**scanning insn=%d\n",
2456 INSN_UID (insn));
2457
2458 insn_info->prev_insn = bb_info->last_insn;
2459 insn_info->insn = insn;
2460 bb_info->last_insn = insn_info;
2461
2462 if (DEBUG_INSN_P (insn))
2463 {
2464 insn_info->cannot_delete = true;
2465 return;
2466 }
2467
2468 /* Look at all of the uses in the insn. */
2469 note_uses (&PATTERN (insn), check_mem_read_use, bb_info);
2470
2471 if (CALL_P (insn))
2472 {
2473 bool const_call;
2474 tree memset_call = NULL_TREE;
2475
2476 insn_info->cannot_delete = true;
2477
2478 /* Const functions cannot do anything bad i.e. read memory,
2479 however, they can read their parameters which may have
2480 been pushed onto the stack.
2481 memset and bzero don't read memory either. */
2482 const_call = RTL_CONST_CALL_P (insn);
2483 if (!const_call)
2484 {
2485 rtx call = get_call_rtx_from (insn);
2486 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
2487 {
2488 rtx symbol = XEXP (XEXP (call, 0), 0);
2489 if (SYMBOL_REF_DECL (symbol)
2490 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
2491 {
2492 if ((DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
2493 == BUILT_IN_NORMAL
2494 && (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol))
2495 == BUILT_IN_MEMSET))
2496 || SYMBOL_REF_DECL (symbol) == block_clear_fn)
2497 memset_call = SYMBOL_REF_DECL (symbol);
2498 }
2499 }
2500 }
2501 if (const_call || memset_call)
2502 {
2503 insn_info_t i_ptr = active_local_stores;
2504 insn_info_t last = NULL;
2505
2506 if (dump_file && (dump_flags & TDF_DETAILS))
2507 fprintf (dump_file, "%s call %d\n",
2508 const_call ? "const" : "memset", INSN_UID (insn));
2509
2510 /* See the head comment of the frame_read field. */
2511 if (reload_completed)
2512 insn_info->frame_read = true;
2513
2514 /* Loop over the active stores and remove those which are
2515 killed by the const function call. */
2516 while (i_ptr)
2517 {
2518 bool remove_store = false;
2519
2520 /* The stack pointer based stores are always killed. */
2521 if (i_ptr->stack_pointer_based)
2522 remove_store = true;
2523
2524 /* If the frame is read, the frame related stores are killed. */
2525 else if (insn_info->frame_read)
2526 {
2527 store_info_t store_info = i_ptr->store_rec;
2528
2529 /* Skip the clobbers. */
2530 while (!store_info->is_set)
2531 store_info = store_info->next;
2532
2533 if (store_info->group_id >= 0
2534 && rtx_group_vec[store_info->group_id]->frame_related)
2535 remove_store = true;
2536 }
2537
2538 if (remove_store)
2539 {
2540 if (dump_file && (dump_flags & TDF_DETAILS))
2541 dump_insn_info ("removing from active", i_ptr);
2542
2543 active_local_stores_len--;
2544 if (last)
2545 last->next_local_store = i_ptr->next_local_store;
2546 else
2547 active_local_stores = i_ptr->next_local_store;
2548 }
2549 else
2550 last = i_ptr;
2551
2552 i_ptr = i_ptr->next_local_store;
2553 }
2554
2555 if (memset_call)
2556 {
2557 rtx args[3];
2558 if (get_call_args (insn, memset_call, args, 3)
2559 && CONST_INT_P (args[1])
2560 && CONST_INT_P (args[2])
2561 && INTVAL (args[2]) > 0)
2562 {
2563 rtx mem = gen_rtx_MEM (BLKmode, args[0]);
2564 set_mem_size (mem, INTVAL (args[2]));
2565 body = gen_rtx_SET (VOIDmode, mem, args[1]);
2566 mems_found += record_store (body, bb_info);
2567 if (dump_file && (dump_flags & TDF_DETAILS))
2568 fprintf (dump_file, "handling memset as BLKmode store\n");
2569 if (mems_found == 1)
2570 {
2571 if (active_local_stores_len++
2572 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2573 {
2574 active_local_stores_len = 1;
2575 active_local_stores = NULL;
2576 }
2577 insn_info->fixed_regs_live
2578 = copy_fixed_regs (bb_info->regs_live);
2579 insn_info->next_local_store = active_local_stores;
2580 active_local_stores = insn_info;
2581 }
2582 }
2583 }
2584 }
2585
2586 else
2587 /* Every other call, including pure functions, may read any memory
2588 that is not relative to the frame. */
2589 add_non_frame_wild_read (bb_info);
2590
2591 return;
2592 }
2593
2594 /* Assuming that there are sets in these insns, we cannot delete
2595 them. */
2596 if ((GET_CODE (PATTERN (insn)) == CLOBBER)
2597 || volatile_refs_p (PATTERN (insn))
2598 || (!cfun->can_delete_dead_exceptions && !insn_nothrow_p (insn))
2599 || (RTX_FRAME_RELATED_P (insn))
2600 || find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX))
2601 insn_info->cannot_delete = true;
2602
2603 body = PATTERN (insn);
2604 if (GET_CODE (body) == PARALLEL)
2605 {
2606 int i;
2607 for (i = 0; i < XVECLEN (body, 0); i++)
2608 mems_found += record_store (XVECEXP (body, 0, i), bb_info);
2609 }
2610 else
2611 mems_found += record_store (body, bb_info);
2612
2613 if (dump_file && (dump_flags & TDF_DETAILS))
2614 fprintf (dump_file, "mems_found = %d, cannot_delete = %s\n",
2615 mems_found, insn_info->cannot_delete ? "true" : "false");
2616
2617 /* If we found some sets of mems, add it into the active_local_stores so
2618 that it can be locally deleted if found dead or used for
2619 replace_read and redundant constant store elimination. Otherwise mark
2620 it as cannot delete. This simplifies the processing later. */
2621 if (mems_found == 1)
2622 {
2623 if (active_local_stores_len++
2624 >= PARAM_VALUE (PARAM_MAX_DSE_ACTIVE_LOCAL_STORES))
2625 {
2626 active_local_stores_len = 1;
2627 active_local_stores = NULL;
2628 }
2629 insn_info->fixed_regs_live = copy_fixed_regs (bb_info->regs_live);
2630 insn_info->next_local_store = active_local_stores;
2631 active_local_stores = insn_info;
2632 }
2633 else
2634 insn_info->cannot_delete = true;
2635 }
2636
2637
2638 /* Remove BASE from the set of active_local_stores. This is a
2639 callback from cselib that is used to get rid of the stores in
2640 active_local_stores. */
2641
2642 static void
2643 remove_useless_values (cselib_val *base)
2644 {
2645 insn_info_t insn_info = active_local_stores;
2646 insn_info_t last = NULL;
2647
2648 while (insn_info)
2649 {
2650 store_info_t store_info = insn_info->store_rec;
2651 bool del = false;
2652
2653 /* If ANY of the store_infos match the cselib group that is
2654 being deleted, then the insn can not be deleted. */
2655 while (store_info)
2656 {
2657 if ((store_info->group_id == -1)
2658 && (store_info->cse_base == base))
2659 {
2660 del = true;
2661 break;
2662 }
2663 store_info = store_info->next;
2664 }
2665
2666 if (del)
2667 {
2668 active_local_stores_len--;
2669 if (last)
2670 last->next_local_store = insn_info->next_local_store;
2671 else
2672 active_local_stores = insn_info->next_local_store;
2673 free_store_info (insn_info);
2674 }
2675 else
2676 last = insn_info;
2677
2678 insn_info = insn_info->next_local_store;
2679 }
2680 }
2681
2682
2683 /* Do all of step 1. */
2684
2685 static void
2686 dse_step1 (void)
2687 {
2688 basic_block bb;
2689 bitmap regs_live = BITMAP_ALLOC (&reg_obstack);
2690
2691 cselib_init (0);
2692 all_blocks = BITMAP_ALLOC (NULL);
2693 bitmap_set_bit (all_blocks, ENTRY_BLOCK);
2694 bitmap_set_bit (all_blocks, EXIT_BLOCK);
2695
2696 FOR_ALL_BB_FN (bb, cfun)
2697 {
2698 insn_info_t ptr;
2699 bb_info_t bb_info = (bb_info_t) pool_alloc (bb_info_pool);
2700
2701 memset (bb_info, 0, sizeof (struct bb_info));
2702 bitmap_set_bit (all_blocks, bb->index);
2703 bb_info->regs_live = regs_live;
2704
2705 bitmap_copy (regs_live, DF_LR_IN (bb));
2706 df_simulate_initialize_forwards (bb, regs_live);
2707
2708 bb_table[bb->index] = bb_info;
2709 cselib_discard_hook = remove_useless_values;
2710
2711 if (bb->index >= NUM_FIXED_BLOCKS)
2712 {
2713 rtx insn;
2714
2715 cse_store_info_pool
2716 = create_alloc_pool ("cse_store_info_pool",
2717 sizeof (struct store_info), 100);
2718 active_local_stores = NULL;
2719 active_local_stores_len = 0;
2720 cselib_clear_table ();
2721
2722 /* Scan the insns. */
2723 FOR_BB_INSNS (bb, insn)
2724 {
2725 if (INSN_P (insn))
2726 scan_insn (bb_info, insn);
2727 cselib_process_insn (insn);
2728 if (INSN_P (insn))
2729 df_simulate_one_insn_forwards (bb, insn, regs_live);
2730 }
2731
2732 /* This is something of a hack, because the global algorithm
2733 is supposed to take care of the case where stores go dead
2734 at the end of the function. However, the global
2735 algorithm must take a more conservative view of block
2736 mode reads than the local alg does. So to get the case
2737 where you have a store to the frame followed by a non
2738 overlapping block more read, we look at the active local
2739 stores at the end of the function and delete all of the
2740 frame and spill based ones. */
2741 if (stores_off_frame_dead_at_return
2742 && (EDGE_COUNT (bb->succs) == 0
2743 || (single_succ_p (bb)
2744 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
2745 && ! crtl->calls_eh_return)))
2746 {
2747 insn_info_t i_ptr = active_local_stores;
2748 while (i_ptr)
2749 {
2750 store_info_t store_info = i_ptr->store_rec;
2751
2752 /* Skip the clobbers. */
2753 while (!store_info->is_set)
2754 store_info = store_info->next;
2755 if (store_info->alias_set && !i_ptr->cannot_delete)
2756 delete_dead_store_insn (i_ptr);
2757 else
2758 if (store_info->group_id >= 0)
2759 {
2760 group_info_t group
2761 = rtx_group_vec[store_info->group_id];
2762 if (group->frame_related && !i_ptr->cannot_delete)
2763 delete_dead_store_insn (i_ptr);
2764 }
2765
2766 i_ptr = i_ptr->next_local_store;
2767 }
2768 }
2769
2770 /* Get rid of the loads that were discovered in
2771 replace_read. Cselib is finished with this block. */
2772 while (deferred_change_list)
2773 {
2774 deferred_change_t next = deferred_change_list->next;
2775
2776 /* There is no reason to validate this change. That was
2777 done earlier. */
2778 *deferred_change_list->loc = deferred_change_list->reg;
2779 pool_free (deferred_change_pool, deferred_change_list);
2780 deferred_change_list = next;
2781 }
2782
2783 /* Get rid of all of the cselib based store_infos in this
2784 block and mark the containing insns as not being
2785 deletable. */
2786 ptr = bb_info->last_insn;
2787 while (ptr)
2788 {
2789 if (ptr->contains_cselib_groups)
2790 {
2791 store_info_t s_info = ptr->store_rec;
2792 while (s_info && !s_info->is_set)
2793 s_info = s_info->next;
2794 if (s_info
2795 && s_info->redundant_reason
2796 && s_info->redundant_reason->insn
2797 && !ptr->cannot_delete)
2798 {
2799 if (dump_file && (dump_flags & TDF_DETAILS))
2800 fprintf (dump_file, "Locally deleting insn %d "
2801 "because insn %d stores the "
2802 "same value and couldn't be "
2803 "eliminated\n",
2804 INSN_UID (ptr->insn),
2805 INSN_UID (s_info->redundant_reason->insn));
2806 delete_dead_store_insn (ptr);
2807 }
2808 free_store_info (ptr);
2809 }
2810 else
2811 {
2812 store_info_t s_info;
2813
2814 /* Free at least positions_needed bitmaps. */
2815 for (s_info = ptr->store_rec; s_info; s_info = s_info->next)
2816 if (s_info->is_large)
2817 {
2818 BITMAP_FREE (s_info->positions_needed.large.bmap);
2819 s_info->is_large = false;
2820 }
2821 }
2822 ptr = ptr->prev_insn;
2823 }
2824
2825 free_alloc_pool (cse_store_info_pool);
2826 }
2827 bb_info->regs_live = NULL;
2828 }
2829
2830 BITMAP_FREE (regs_live);
2831 cselib_finish ();
2832 rtx_group_table->empty ();
2833 }
2834
2835 \f
2836 /*----------------------------------------------------------------------------
2837 Second step.
2838
2839 Assign each byte position in the stores that we are going to
2840 analyze globally to a position in the bitmaps. Returns true if
2841 there are any bit positions assigned.
2842 ----------------------------------------------------------------------------*/
2843
2844 static void
2845 dse_step2_init (void)
2846 {
2847 unsigned int i;
2848 group_info_t group;
2849
2850 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2851 {
2852 /* For all non stack related bases, we only consider a store to
2853 be deletable if there are two or more stores for that
2854 position. This is because it takes one store to make the
2855 other store redundant. However, for the stores that are
2856 stack related, we consider them if there is only one store
2857 for the position. We do this because the stack related
2858 stores can be deleted if their is no read between them and
2859 the end of the function.
2860
2861 To make this work in the current framework, we take the stack
2862 related bases add all of the bits from store1 into store2.
2863 This has the effect of making the eligible even if there is
2864 only one store. */
2865
2866 if (stores_off_frame_dead_at_return && group->frame_related)
2867 {
2868 bitmap_ior_into (group->store2_n, group->store1_n);
2869 bitmap_ior_into (group->store2_p, group->store1_p);
2870 if (dump_file && (dump_flags & TDF_DETAILS))
2871 fprintf (dump_file, "group %d is frame related ", i);
2872 }
2873
2874 group->offset_map_size_n++;
2875 group->offset_map_n = XOBNEWVEC (&dse_obstack, int,
2876 group->offset_map_size_n);
2877 group->offset_map_size_p++;
2878 group->offset_map_p = XOBNEWVEC (&dse_obstack, int,
2879 group->offset_map_size_p);
2880 group->process_globally = false;
2881 if (dump_file && (dump_flags & TDF_DETAILS))
2882 {
2883 fprintf (dump_file, "group %d(%d+%d): ", i,
2884 (int)bitmap_count_bits (group->store2_n),
2885 (int)bitmap_count_bits (group->store2_p));
2886 bitmap_print (dump_file, group->store2_n, "n ", " ");
2887 bitmap_print (dump_file, group->store2_p, "p ", "\n");
2888 }
2889 }
2890 }
2891
2892
2893 /* Init the offset tables for the normal case. */
2894
2895 static bool
2896 dse_step2_nospill (void)
2897 {
2898 unsigned int i;
2899 group_info_t group;
2900 /* Position 0 is unused because 0 is used in the maps to mean
2901 unused. */
2902 current_position = 1;
2903 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
2904 {
2905 bitmap_iterator bi;
2906 unsigned int j;
2907
2908 if (group == clear_alias_group)
2909 continue;
2910
2911 memset (group->offset_map_n, 0, sizeof (int) * group->offset_map_size_n);
2912 memset (group->offset_map_p, 0, sizeof (int) * group->offset_map_size_p);
2913 bitmap_clear (group->group_kill);
2914
2915 EXECUTE_IF_SET_IN_BITMAP (group->store2_n, 0, j, bi)
2916 {
2917 bitmap_set_bit (group->group_kill, current_position);
2918 if (bitmap_bit_p (group->escaped_n, j))
2919 bitmap_set_bit (kill_on_calls, current_position);
2920 group->offset_map_n[j] = current_position++;
2921 group->process_globally = true;
2922 }
2923 EXECUTE_IF_SET_IN_BITMAP (group->store2_p, 0, j, bi)
2924 {
2925 bitmap_set_bit (group->group_kill, current_position);
2926 if (bitmap_bit_p (group->escaped_p, j))
2927 bitmap_set_bit (kill_on_calls, current_position);
2928 group->offset_map_p[j] = current_position++;
2929 group->process_globally = true;
2930 }
2931 }
2932 return current_position != 1;
2933 }
2934
2935
2936 \f
2937 /*----------------------------------------------------------------------------
2938 Third step.
2939
2940 Build the bit vectors for the transfer functions.
2941 ----------------------------------------------------------------------------*/
2942
2943
2944 /* Look up the bitmap index for OFFSET in GROUP_INFO. If it is not
2945 there, return 0. */
2946
2947 static int
2948 get_bitmap_index (group_info_t group_info, HOST_WIDE_INT offset)
2949 {
2950 if (offset < 0)
2951 {
2952 HOST_WIDE_INT offset_p = -offset;
2953 if (offset_p >= group_info->offset_map_size_n)
2954 return 0;
2955 return group_info->offset_map_n[offset_p];
2956 }
2957 else
2958 {
2959 if (offset >= group_info->offset_map_size_p)
2960 return 0;
2961 return group_info->offset_map_p[offset];
2962 }
2963 }
2964
2965
2966 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2967 may be NULL. */
2968
2969 static void
2970 scan_stores_nospill (store_info_t store_info, bitmap gen, bitmap kill)
2971 {
2972 while (store_info)
2973 {
2974 HOST_WIDE_INT i;
2975 group_info_t group_info
2976 = rtx_group_vec[store_info->group_id];
2977 if (group_info->process_globally)
2978 for (i = store_info->begin; i < store_info->end; i++)
2979 {
2980 int index = get_bitmap_index (group_info, i);
2981 if (index != 0)
2982 {
2983 bitmap_set_bit (gen, index);
2984 if (kill)
2985 bitmap_clear_bit (kill, index);
2986 }
2987 }
2988 store_info = store_info->next;
2989 }
2990 }
2991
2992
2993 /* Process the STORE_INFOs into the bitmaps into GEN and KILL. KILL
2994 may be NULL. */
2995
2996 static void
2997 scan_stores_spill (store_info_t store_info, bitmap gen, bitmap kill)
2998 {
2999 while (store_info)
3000 {
3001 if (store_info->alias_set)
3002 {
3003 int index = get_bitmap_index (clear_alias_group,
3004 store_info->alias_set);
3005 if (index != 0)
3006 {
3007 bitmap_set_bit (gen, index);
3008 if (kill)
3009 bitmap_clear_bit (kill, index);
3010 }
3011 }
3012 store_info = store_info->next;
3013 }
3014 }
3015
3016
3017 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3018 may be NULL. */
3019
3020 static void
3021 scan_reads_nospill (insn_info_t insn_info, bitmap gen, bitmap kill)
3022 {
3023 read_info_t read_info = insn_info->read_rec;
3024 int i;
3025 group_info_t group;
3026
3027 /* If this insn reads the frame, kill all the frame related stores. */
3028 if (insn_info->frame_read)
3029 {
3030 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3031 if (group->process_globally && group->frame_related)
3032 {
3033 if (kill)
3034 bitmap_ior_into (kill, group->group_kill);
3035 bitmap_and_compl_into (gen, group->group_kill);
3036 }
3037 }
3038 if (insn_info->non_frame_wild_read)
3039 {
3040 /* Kill all non-frame related stores. Kill all stores of variables that
3041 escape. */
3042 if (kill)
3043 bitmap_ior_into (kill, kill_on_calls);
3044 bitmap_and_compl_into (gen, kill_on_calls);
3045 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3046 if (group->process_globally && !group->frame_related)
3047 {
3048 if (kill)
3049 bitmap_ior_into (kill, group->group_kill);
3050 bitmap_and_compl_into (gen, group->group_kill);
3051 }
3052 }
3053 while (read_info)
3054 {
3055 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3056 {
3057 if (group->process_globally)
3058 {
3059 if (i == read_info->group_id)
3060 {
3061 if (read_info->begin > read_info->end)
3062 {
3063 /* Begin > end for block mode reads. */
3064 if (kill)
3065 bitmap_ior_into (kill, group->group_kill);
3066 bitmap_and_compl_into (gen, group->group_kill);
3067 }
3068 else
3069 {
3070 /* The groups are the same, just process the
3071 offsets. */
3072 HOST_WIDE_INT j;
3073 for (j = read_info->begin; j < read_info->end; j++)
3074 {
3075 int index = get_bitmap_index (group, j);
3076 if (index != 0)
3077 {
3078 if (kill)
3079 bitmap_set_bit (kill, index);
3080 bitmap_clear_bit (gen, index);
3081 }
3082 }
3083 }
3084 }
3085 else
3086 {
3087 /* The groups are different, if the alias sets
3088 conflict, clear the entire group. We only need
3089 to apply this test if the read_info is a cselib
3090 read. Anything with a constant base cannot alias
3091 something else with a different constant
3092 base. */
3093 if ((read_info->group_id < 0)
3094 && canon_true_dependence (group->base_mem,
3095 GET_MODE (group->base_mem),
3096 group->canon_base_addr,
3097 read_info->mem, NULL_RTX))
3098 {
3099 if (kill)
3100 bitmap_ior_into (kill, group->group_kill);
3101 bitmap_and_compl_into (gen, group->group_kill);
3102 }
3103 }
3104 }
3105 }
3106
3107 read_info = read_info->next;
3108 }
3109 }
3110
3111 /* Process the READ_INFOs into the bitmaps into GEN and KILL. KILL
3112 may be NULL. */
3113
3114 static void
3115 scan_reads_spill (read_info_t read_info, bitmap gen, bitmap kill)
3116 {
3117 while (read_info)
3118 {
3119 if (read_info->alias_set)
3120 {
3121 int index = get_bitmap_index (clear_alias_group,
3122 read_info->alias_set);
3123 if (index != 0)
3124 {
3125 if (kill)
3126 bitmap_set_bit (kill, index);
3127 bitmap_clear_bit (gen, index);
3128 }
3129 }
3130
3131 read_info = read_info->next;
3132 }
3133 }
3134
3135
3136 /* Return the insn in BB_INFO before the first wild read or if there
3137 are no wild reads in the block, return the last insn. */
3138
3139 static insn_info_t
3140 find_insn_before_first_wild_read (bb_info_t bb_info)
3141 {
3142 insn_info_t insn_info = bb_info->last_insn;
3143 insn_info_t last_wild_read = NULL;
3144
3145 while (insn_info)
3146 {
3147 if (insn_info->wild_read)
3148 {
3149 last_wild_read = insn_info->prev_insn;
3150 /* Block starts with wild read. */
3151 if (!last_wild_read)
3152 return NULL;
3153 }
3154
3155 insn_info = insn_info->prev_insn;
3156 }
3157
3158 if (last_wild_read)
3159 return last_wild_read;
3160 else
3161 return bb_info->last_insn;
3162 }
3163
3164
3165 /* Scan the insns in BB_INFO starting at PTR and going to the top of
3166 the block in order to build the gen and kill sets for the block.
3167 We start at ptr which may be the last insn in the block or may be
3168 the first insn with a wild read. In the latter case we are able to
3169 skip the rest of the block because it just does not matter:
3170 anything that happens is hidden by the wild read. */
3171
3172 static void
3173 dse_step3_scan (bool for_spills, basic_block bb)
3174 {
3175 bb_info_t bb_info = bb_table[bb->index];
3176 insn_info_t insn_info;
3177
3178 if (for_spills)
3179 /* There are no wild reads in the spill case. */
3180 insn_info = bb_info->last_insn;
3181 else
3182 insn_info = find_insn_before_first_wild_read (bb_info);
3183
3184 /* In the spill case or in the no_spill case if there is no wild
3185 read in the block, we will need a kill set. */
3186 if (insn_info == bb_info->last_insn)
3187 {
3188 if (bb_info->kill)
3189 bitmap_clear (bb_info->kill);
3190 else
3191 bb_info->kill = BITMAP_ALLOC (&dse_bitmap_obstack);
3192 }
3193 else
3194 if (bb_info->kill)
3195 BITMAP_FREE (bb_info->kill);
3196
3197 while (insn_info)
3198 {
3199 /* There may have been code deleted by the dce pass run before
3200 this phase. */
3201 if (insn_info->insn && INSN_P (insn_info->insn))
3202 {
3203 /* Process the read(s) last. */
3204 if (for_spills)
3205 {
3206 scan_stores_spill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3207 scan_reads_spill (insn_info->read_rec, bb_info->gen, bb_info->kill);
3208 }
3209 else
3210 {
3211 scan_stores_nospill (insn_info->store_rec, bb_info->gen, bb_info->kill);
3212 scan_reads_nospill (insn_info, bb_info->gen, bb_info->kill);
3213 }
3214 }
3215
3216 insn_info = insn_info->prev_insn;
3217 }
3218 }
3219
3220
3221 /* Set the gen set of the exit block, and also any block with no
3222 successors that does not have a wild read. */
3223
3224 static void
3225 dse_step3_exit_block_scan (bb_info_t bb_info)
3226 {
3227 /* The gen set is all 0's for the exit block except for the
3228 frame_pointer_group. */
3229
3230 if (stores_off_frame_dead_at_return)
3231 {
3232 unsigned int i;
3233 group_info_t group;
3234
3235 FOR_EACH_VEC_ELT (rtx_group_vec, i, group)
3236 {
3237 if (group->process_globally && group->frame_related)
3238 bitmap_ior_into (bb_info->gen, group->group_kill);
3239 }
3240 }
3241 }
3242
3243
3244 /* Find all of the blocks that are not backwards reachable from the
3245 exit block or any block with no successors (BB). These are the
3246 infinite loops or infinite self loops. These blocks will still
3247 have their bits set in UNREACHABLE_BLOCKS. */
3248
3249 static void
3250 mark_reachable_blocks (sbitmap unreachable_blocks, basic_block bb)
3251 {
3252 edge e;
3253 edge_iterator ei;
3254
3255 if (bitmap_bit_p (unreachable_blocks, bb->index))
3256 {
3257 bitmap_clear_bit (unreachable_blocks, bb->index);
3258 FOR_EACH_EDGE (e, ei, bb->preds)
3259 {
3260 mark_reachable_blocks (unreachable_blocks, e->src);
3261 }
3262 }
3263 }
3264
3265 /* Build the transfer functions for the function. */
3266
3267 static void
3268 dse_step3 (bool for_spills)
3269 {
3270 basic_block bb;
3271 sbitmap unreachable_blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
3272 sbitmap_iterator sbi;
3273 bitmap all_ones = NULL;
3274 unsigned int i;
3275
3276 bitmap_ones (unreachable_blocks);
3277
3278 FOR_ALL_BB_FN (bb, cfun)
3279 {
3280 bb_info_t bb_info = bb_table[bb->index];
3281 if (bb_info->gen)
3282 bitmap_clear (bb_info->gen);
3283 else
3284 bb_info->gen = BITMAP_ALLOC (&dse_bitmap_obstack);
3285
3286 if (bb->index == ENTRY_BLOCK)
3287 ;
3288 else if (bb->index == EXIT_BLOCK)
3289 dse_step3_exit_block_scan (bb_info);
3290 else
3291 dse_step3_scan (for_spills, bb);
3292 if (EDGE_COUNT (bb->succs) == 0)
3293 mark_reachable_blocks (unreachable_blocks, bb);
3294
3295 /* If this is the second time dataflow is run, delete the old
3296 sets. */
3297 if (bb_info->in)
3298 BITMAP_FREE (bb_info->in);
3299 if (bb_info->out)
3300 BITMAP_FREE (bb_info->out);
3301 }
3302
3303 /* For any block in an infinite loop, we must initialize the out set
3304 to all ones. This could be expensive, but almost never occurs in
3305 practice. However, it is common in regression tests. */
3306 EXECUTE_IF_SET_IN_BITMAP (unreachable_blocks, 0, i, sbi)
3307 {
3308 if (bitmap_bit_p (all_blocks, i))
3309 {
3310 bb_info_t bb_info = bb_table[i];
3311 if (!all_ones)
3312 {
3313 unsigned int j;
3314 group_info_t group;
3315
3316 all_ones = BITMAP_ALLOC (&dse_bitmap_obstack);
3317 FOR_EACH_VEC_ELT (rtx_group_vec, j, group)
3318 bitmap_ior_into (all_ones, group->group_kill);
3319 }
3320 if (!bb_info->out)
3321 {
3322 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3323 bitmap_copy (bb_info->out, all_ones);
3324 }
3325 }
3326 }
3327
3328 if (all_ones)
3329 BITMAP_FREE (all_ones);
3330 sbitmap_free (unreachable_blocks);
3331 }
3332
3333
3334 \f
3335 /*----------------------------------------------------------------------------
3336 Fourth step.
3337
3338 Solve the bitvector equations.
3339 ----------------------------------------------------------------------------*/
3340
3341
3342 /* Confluence function for blocks with no successors. Create an out
3343 set from the gen set of the exit block. This block logically has
3344 the exit block as a successor. */
3345
3346
3347
3348 static void
3349 dse_confluence_0 (basic_block bb)
3350 {
3351 bb_info_t bb_info = bb_table[bb->index];
3352
3353 if (bb->index == EXIT_BLOCK)
3354 return;
3355
3356 if (!bb_info->out)
3357 {
3358 bb_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3359 bitmap_copy (bb_info->out, bb_table[EXIT_BLOCK]->gen);
3360 }
3361 }
3362
3363 /* Propagate the information from the in set of the dest of E to the
3364 out set of the src of E. If the various in or out sets are not
3365 there, that means they are all ones. */
3366
3367 static bool
3368 dse_confluence_n (edge e)
3369 {
3370 bb_info_t src_info = bb_table[e->src->index];
3371 bb_info_t dest_info = bb_table[e->dest->index];
3372
3373 if (dest_info->in)
3374 {
3375 if (src_info->out)
3376 bitmap_and_into (src_info->out, dest_info->in);
3377 else
3378 {
3379 src_info->out = BITMAP_ALLOC (&dse_bitmap_obstack);
3380 bitmap_copy (src_info->out, dest_info->in);
3381 }
3382 }
3383 return true;
3384 }
3385
3386
3387 /* Propagate the info from the out to the in set of BB_INDEX's basic
3388 block. There are three cases:
3389
3390 1) The block has no kill set. In this case the kill set is all
3391 ones. It does not matter what the out set of the block is, none of
3392 the info can reach the top. The only thing that reaches the top is
3393 the gen set and we just copy the set.
3394
3395 2) There is a kill set but no out set and bb has successors. In
3396 this case we just return. Eventually an out set will be created and
3397 it is better to wait than to create a set of ones.
3398
3399 3) There is both a kill and out set. We apply the obvious transfer
3400 function.
3401 */
3402
3403 static bool
3404 dse_transfer_function (int bb_index)
3405 {
3406 bb_info_t bb_info = bb_table[bb_index];
3407
3408 if (bb_info->kill)
3409 {
3410 if (bb_info->out)
3411 {
3412 /* Case 3 above. */
3413 if (bb_info->in)
3414 return bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3415 bb_info->out, bb_info->kill);
3416 else
3417 {
3418 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3419 bitmap_ior_and_compl (bb_info->in, bb_info->gen,
3420 bb_info->out, bb_info->kill);
3421 return true;
3422 }
3423 }
3424 else
3425 /* Case 2 above. */
3426 return false;
3427 }
3428 else
3429 {
3430 /* Case 1 above. If there is already an in set, nothing
3431 happens. */
3432 if (bb_info->in)
3433 return false;
3434 else
3435 {
3436 bb_info->in = BITMAP_ALLOC (&dse_bitmap_obstack);
3437 bitmap_copy (bb_info->in, bb_info->gen);
3438 return true;
3439 }
3440 }
3441 }
3442
3443 /* Solve the dataflow equations. */
3444
3445 static void
3446 dse_step4 (void)
3447 {
3448 df_simple_dataflow (DF_BACKWARD, NULL, dse_confluence_0,
3449 dse_confluence_n, dse_transfer_function,
3450 all_blocks, df_get_postorder (DF_BACKWARD),
3451 df_get_n_blocks (DF_BACKWARD));
3452 if (dump_file && (dump_flags & TDF_DETAILS))
3453 {
3454 basic_block bb;
3455
3456 fprintf (dump_file, "\n\n*** Global dataflow info after analysis.\n");
3457 FOR_ALL_BB_FN (bb, cfun)
3458 {
3459 bb_info_t bb_info = bb_table[bb->index];
3460
3461 df_print_bb_index (bb, dump_file);
3462 if (bb_info->in)
3463 bitmap_print (dump_file, bb_info->in, " in: ", "\n");
3464 else
3465 fprintf (dump_file, " in: *MISSING*\n");
3466 if (bb_info->gen)
3467 bitmap_print (dump_file, bb_info->gen, " gen: ", "\n");
3468 else
3469 fprintf (dump_file, " gen: *MISSING*\n");
3470 if (bb_info->kill)
3471 bitmap_print (dump_file, bb_info->kill, " kill: ", "\n");
3472 else
3473 fprintf (dump_file, " kill: *MISSING*\n");
3474 if (bb_info->out)
3475 bitmap_print (dump_file, bb_info->out, " out: ", "\n");
3476 else
3477 fprintf (dump_file, " out: *MISSING*\n\n");
3478 }
3479 }
3480 }
3481
3482
3483 \f
3484 /*----------------------------------------------------------------------------
3485 Fifth step.
3486
3487 Delete the stores that can only be deleted using the global information.
3488 ----------------------------------------------------------------------------*/
3489
3490
3491 static void
3492 dse_step5_nospill (void)
3493 {
3494 basic_block bb;
3495 FOR_EACH_BB_FN (bb, cfun)
3496 {
3497 bb_info_t bb_info = bb_table[bb->index];
3498 insn_info_t insn_info = bb_info->last_insn;
3499 bitmap v = bb_info->out;
3500
3501 while (insn_info)
3502 {
3503 bool deleted = false;
3504 if (dump_file && insn_info->insn)
3505 {
3506 fprintf (dump_file, "starting to process insn %d\n",
3507 INSN_UID (insn_info->insn));
3508 bitmap_print (dump_file, v, " v: ", "\n");
3509 }
3510
3511 /* There may have been code deleted by the dce pass run before
3512 this phase. */
3513 if (insn_info->insn
3514 && INSN_P (insn_info->insn)
3515 && (!insn_info->cannot_delete)
3516 && (!bitmap_empty_p (v)))
3517 {
3518 store_info_t store_info = insn_info->store_rec;
3519
3520 /* Try to delete the current insn. */
3521 deleted = true;
3522
3523 /* Skip the clobbers. */
3524 while (!store_info->is_set)
3525 store_info = store_info->next;
3526
3527 if (store_info->alias_set)
3528 deleted = false;
3529 else
3530 {
3531 HOST_WIDE_INT i;
3532 group_info_t group_info
3533 = rtx_group_vec[store_info->group_id];
3534
3535 for (i = store_info->begin; i < store_info->end; i++)
3536 {
3537 int index = get_bitmap_index (group_info, i);
3538
3539 if (dump_file && (dump_flags & TDF_DETAILS))
3540 fprintf (dump_file, "i = %d, index = %d\n", (int)i, index);
3541 if (index == 0 || !bitmap_bit_p (v, index))
3542 {
3543 if (dump_file && (dump_flags & TDF_DETAILS))
3544 fprintf (dump_file, "failing at i = %d\n", (int)i);
3545 deleted = false;
3546 break;
3547 }
3548 }
3549 }
3550 if (deleted)
3551 {
3552 if (dbg_cnt (dse)
3553 && check_for_inc_dec_1 (insn_info))
3554 {
3555 delete_insn (insn_info->insn);
3556 insn_info->insn = NULL;
3557 globally_deleted++;
3558 }
3559 }
3560 }
3561 /* We do want to process the local info if the insn was
3562 deleted. For instance, if the insn did a wild read, we
3563 no longer need to trash the info. */
3564 if (insn_info->insn
3565 && INSN_P (insn_info->insn)
3566 && (!deleted))
3567 {
3568 scan_stores_nospill (insn_info->store_rec, v, NULL);
3569 if (insn_info->wild_read)
3570 {
3571 if (dump_file && (dump_flags & TDF_DETAILS))
3572 fprintf (dump_file, "wild read\n");
3573 bitmap_clear (v);
3574 }
3575 else if (insn_info->read_rec
3576 || insn_info->non_frame_wild_read)
3577 {
3578 if (dump_file && !insn_info->non_frame_wild_read)
3579 fprintf (dump_file, "regular read\n");
3580 else if (dump_file && (dump_flags & TDF_DETAILS))
3581 fprintf (dump_file, "non-frame wild read\n");
3582 scan_reads_nospill (insn_info, v, NULL);
3583 }
3584 }
3585
3586 insn_info = insn_info->prev_insn;
3587 }
3588 }
3589 }
3590
3591
3592 \f
3593 /*----------------------------------------------------------------------------
3594 Sixth step.
3595
3596 Delete stores made redundant by earlier stores (which store the same
3597 value) that couldn't be eliminated.
3598 ----------------------------------------------------------------------------*/
3599
3600 static void
3601 dse_step6 (void)
3602 {
3603 basic_block bb;
3604
3605 FOR_ALL_BB_FN (bb, cfun)
3606 {
3607 bb_info_t bb_info = bb_table[bb->index];
3608 insn_info_t insn_info = bb_info->last_insn;
3609
3610 while (insn_info)
3611 {
3612 /* There may have been code deleted by the dce pass run before
3613 this phase. */
3614 if (insn_info->insn
3615 && INSN_P (insn_info->insn)
3616 && !insn_info->cannot_delete)
3617 {
3618 store_info_t s_info = insn_info->store_rec;
3619
3620 while (s_info && !s_info->is_set)
3621 s_info = s_info->next;
3622 if (s_info
3623 && s_info->redundant_reason
3624 && s_info->redundant_reason->insn
3625 && INSN_P (s_info->redundant_reason->insn))
3626 {
3627 rtx rinsn = s_info->redundant_reason->insn;
3628 if (dump_file && (dump_flags & TDF_DETAILS))
3629 fprintf (dump_file, "Locally deleting insn %d "
3630 "because insn %d stores the "
3631 "same value and couldn't be "
3632 "eliminated\n",
3633 INSN_UID (insn_info->insn),
3634 INSN_UID (rinsn));
3635 delete_dead_store_insn (insn_info);
3636 }
3637 }
3638 insn_info = insn_info->prev_insn;
3639 }
3640 }
3641 }
3642 \f
3643 /*----------------------------------------------------------------------------
3644 Seventh step.
3645
3646 Destroy everything left standing.
3647 ----------------------------------------------------------------------------*/
3648
3649 static void
3650 dse_step7 (void)
3651 {
3652 bitmap_obstack_release (&dse_bitmap_obstack);
3653 obstack_free (&dse_obstack, NULL);
3654
3655 end_alias_analysis ();
3656 free (bb_table);
3657 delete rtx_group_table;
3658 rtx_group_table = NULL;
3659 rtx_group_vec.release ();
3660 BITMAP_FREE (all_blocks);
3661 BITMAP_FREE (scratch);
3662
3663 free_alloc_pool (rtx_store_info_pool);
3664 free_alloc_pool (read_info_pool);
3665 free_alloc_pool (insn_info_pool);
3666 free_alloc_pool (bb_info_pool);
3667 free_alloc_pool (rtx_group_info_pool);
3668 free_alloc_pool (deferred_change_pool);
3669 }
3670
3671
3672 /* -------------------------------------------------------------------------
3673 DSE
3674 ------------------------------------------------------------------------- */
3675
3676 /* Callback for running pass_rtl_dse. */
3677
3678 static unsigned int
3679 rest_of_handle_dse (void)
3680 {
3681 df_set_flags (DF_DEFER_INSN_RESCAN);
3682
3683 /* Need the notes since we must track live hardregs in the forwards
3684 direction. */
3685 df_note_add_problem ();
3686 df_analyze ();
3687
3688 dse_step0 ();
3689 dse_step1 ();
3690 dse_step2_init ();
3691 if (dse_step2_nospill ())
3692 {
3693 df_set_flags (DF_LR_RUN_DCE);
3694 df_analyze ();
3695 if (dump_file && (dump_flags & TDF_DETAILS))
3696 fprintf (dump_file, "doing global processing\n");
3697 dse_step3 (false);
3698 dse_step4 ();
3699 dse_step5_nospill ();
3700 }
3701
3702 dse_step6 ();
3703 dse_step7 ();
3704
3705 if (dump_file)
3706 fprintf (dump_file, "dse: local deletions = %d, global deletions = %d, spill deletions = %d\n",
3707 locally_deleted, globally_deleted, spill_deleted);
3708 return 0;
3709 }
3710
3711 namespace {
3712
3713 const pass_data pass_data_rtl_dse1 =
3714 {
3715 RTL_PASS, /* type */
3716 "dse1", /* name */
3717 OPTGROUP_NONE, /* optinfo_flags */
3718 true, /* has_execute */
3719 TV_DSE1, /* tv_id */
3720 0, /* properties_required */
3721 0, /* properties_provided */
3722 0, /* properties_destroyed */
3723 0, /* todo_flags_start */
3724 TODO_df_finish, /* todo_flags_finish */
3725 };
3726
3727 class pass_rtl_dse1 : public rtl_opt_pass
3728 {
3729 public:
3730 pass_rtl_dse1 (gcc::context *ctxt)
3731 : rtl_opt_pass (pass_data_rtl_dse1, ctxt)
3732 {}
3733
3734 /* opt_pass methods: */
3735 virtual bool gate (function *)
3736 {
3737 return optimize > 0 && flag_dse && dbg_cnt (dse1);
3738 }
3739
3740 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3741
3742 }; // class pass_rtl_dse1
3743
3744 } // anon namespace
3745
3746 rtl_opt_pass *
3747 make_pass_rtl_dse1 (gcc::context *ctxt)
3748 {
3749 return new pass_rtl_dse1 (ctxt);
3750 }
3751
3752 namespace {
3753
3754 const pass_data pass_data_rtl_dse2 =
3755 {
3756 RTL_PASS, /* type */
3757 "dse2", /* name */
3758 OPTGROUP_NONE, /* optinfo_flags */
3759 true, /* has_execute */
3760 TV_DSE2, /* tv_id */
3761 0, /* properties_required */
3762 0, /* properties_provided */
3763 0, /* properties_destroyed */
3764 0, /* todo_flags_start */
3765 TODO_df_finish, /* todo_flags_finish */
3766 };
3767
3768 class pass_rtl_dse2 : public rtl_opt_pass
3769 {
3770 public:
3771 pass_rtl_dse2 (gcc::context *ctxt)
3772 : rtl_opt_pass (pass_data_rtl_dse2, ctxt)
3773 {}
3774
3775 /* opt_pass methods: */
3776 virtual bool gate (function *)
3777 {
3778 return optimize > 0 && flag_dse && dbg_cnt (dse2);
3779 }
3780
3781 virtual unsigned int execute (function *) { return rest_of_handle_dse (); }
3782
3783 }; // class pass_rtl_dse2
3784
3785 } // anon namespace
3786
3787 rtl_opt_pass *
3788 make_pass_rtl_dse2 (gcc::context *ctxt)
3789 {
3790 return new pass_rtl_dse2 (ctxt);
3791 }