]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/dwarf2out.c
dwarf2out.c (output_cfi): Use HOST_WIDE_INT_PRINT.
[thirdparty/gcc.git] / gcc / dwarf2out.c
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
30
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "real.h"
44 #include "rtl.h"
45 #include "hard-reg-set.h"
46 #include "regs.h"
47 #include "insn-config.h"
48 #include "reload.h"
49 #include "function.h"
50 #include "output.h"
51 #include "expr.h"
52 #include "libfuncs.h"
53 #include "except.h"
54 #include "dwarf2.h"
55 #include "dwarf2out.h"
56 #include "dwarf2asm.h"
57 #include "toplev.h"
58 #include "varray.h"
59 #include "ggc.h"
60 #include "md5.h"
61 #include "tm_p.h"
62 #include "diagnostic.h"
63 #include "debug.h"
64 #include "target.h"
65 #include "langhooks.h"
66 #include "hashtab.h"
67 #include "cgraph.h"
68
69 #ifdef DWARF2_DEBUGGING_INFO
70 static void dwarf2out_source_line (unsigned int, const char *);
71 #endif
72
73 /* DWARF2 Abbreviation Glossary:
74 CFA = Canonical Frame Address
75 a fixed address on the stack which identifies a call frame.
76 We define it to be the value of SP just before the call insn.
77 The CFA register and offset, which may change during the course
78 of the function, are used to calculate its value at runtime.
79 CFI = Call Frame Instruction
80 an instruction for the DWARF2 abstract machine
81 CIE = Common Information Entry
82 information describing information common to one or more FDEs
83 DIE = Debugging Information Entry
84 FDE = Frame Description Entry
85 information describing the stack call frame, in particular,
86 how to restore registers
87
88 DW_CFA_... = DWARF2 CFA call frame instruction
89 DW_TAG_... = DWARF2 DIE tag */
90
91 /* Decide whether we want to emit frame unwind information for the current
92 translation unit. */
93
94 int
95 dwarf2out_do_frame (void)
96 {
97 return (write_symbols == DWARF2_DEBUG
98 || write_symbols == VMS_AND_DWARF2_DEBUG
99 #ifdef DWARF2_FRAME_INFO
100 || DWARF2_FRAME_INFO
101 #endif
102 #ifdef DWARF2_UNWIND_INFO
103 || flag_unwind_tables
104 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
105 #endif
106 );
107 }
108
109 /* The size of the target's pointer type. */
110 #ifndef PTR_SIZE
111 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
112 #endif
113
114 /* Various versions of targetm.eh_frame_section. Note these must appear
115 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
116
117 /* Version of targetm.eh_frame_section for systems with named sections. */
118 void
119 named_section_eh_frame_section (void)
120 {
121 #ifdef EH_FRAME_SECTION_NAME
122 #ifdef HAVE_LD_RO_RW_SECTION_MIXING
123 int fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
124 int per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
125 int lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
126 int flags;
127
128 flags = (! flag_pic
129 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
130 && (fde_encoding & 0x70) != DW_EH_PE_aligned
131 && (per_encoding & 0x70) != DW_EH_PE_absptr
132 && (per_encoding & 0x70) != DW_EH_PE_aligned
133 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
134 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
135 ? 0 : SECTION_WRITE;
136 named_section_flags (EH_FRAME_SECTION_NAME, flags);
137 #else
138 named_section_flags (EH_FRAME_SECTION_NAME, SECTION_WRITE);
139 #endif
140 #endif
141 }
142
143 /* Version of targetm.eh_frame_section for systems using collect2. */
144 void
145 collect2_eh_frame_section (void)
146 {
147 tree label = get_file_function_name ('F');
148
149 data_section ();
150 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
151 (*targetm.asm_out.globalize_label) (asm_out_file, IDENTIFIER_POINTER (label));
152 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
153 }
154
155 /* Default version of targetm.eh_frame_section. */
156 void
157 default_eh_frame_section (void)
158 {
159 #ifdef EH_FRAME_SECTION_NAME
160 named_section_eh_frame_section ();
161 #else
162 collect2_eh_frame_section ();
163 #endif
164 }
165
166 /* Array of RTXes referenced by the debugging information, which therefore
167 must be kept around forever. */
168 static GTY(()) varray_type used_rtx_varray;
169
170 /* A pointer to the base of a list of incomplete types which might be
171 completed at some later time. incomplete_types_list needs to be a VARRAY
172 because we want to tell the garbage collector about it. */
173 static GTY(()) varray_type incomplete_types;
174
175 /* A pointer to the base of a table of references to declaration
176 scopes. This table is a display which tracks the nesting
177 of declaration scopes at the current scope and containing
178 scopes. This table is used to find the proper place to
179 define type declaration DIE's. */
180 static GTY(()) varray_type decl_scope_table;
181
182 /* How to start an assembler comment. */
183 #ifndef ASM_COMMENT_START
184 #define ASM_COMMENT_START ";#"
185 #endif
186
187 typedef struct dw_cfi_struct *dw_cfi_ref;
188 typedef struct dw_fde_struct *dw_fde_ref;
189 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
190
191 /* Call frames are described using a sequence of Call Frame
192 Information instructions. The register number, offset
193 and address fields are provided as possible operands;
194 their use is selected by the opcode field. */
195
196 enum dw_cfi_oprnd_type {
197 dw_cfi_oprnd_unused,
198 dw_cfi_oprnd_reg_num,
199 dw_cfi_oprnd_offset,
200 dw_cfi_oprnd_addr,
201 dw_cfi_oprnd_loc
202 };
203
204 typedef union dw_cfi_oprnd_struct GTY(())
205 {
206 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
207 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
208 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
209 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
210 }
211 dw_cfi_oprnd;
212
213 typedef struct dw_cfi_struct GTY(())
214 {
215 dw_cfi_ref dw_cfi_next;
216 enum dwarf_call_frame_info dw_cfi_opc;
217 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
218 dw_cfi_oprnd1;
219 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
220 dw_cfi_oprnd2;
221 }
222 dw_cfi_node;
223
224 /* This is how we define the location of the CFA. We use to handle it
225 as REG + OFFSET all the time, but now it can be more complex.
226 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
227 Instead of passing around REG and OFFSET, we pass a copy
228 of this structure. */
229 typedef struct cfa_loc GTY(())
230 {
231 unsigned long reg;
232 HOST_WIDE_INT offset;
233 HOST_WIDE_INT base_offset;
234 int indirect; /* 1 if CFA is accessed via a dereference. */
235 } dw_cfa_location;
236
237 /* All call frame descriptions (FDE's) in the GCC generated DWARF
238 refer to a single Common Information Entry (CIE), defined at
239 the beginning of the .debug_frame section. This use of a single
240 CIE obviates the need to keep track of multiple CIE's
241 in the DWARF generation routines below. */
242
243 typedef struct dw_fde_struct GTY(())
244 {
245 const char *dw_fde_begin;
246 const char *dw_fde_current_label;
247 const char *dw_fde_end;
248 dw_cfi_ref dw_fde_cfi;
249 unsigned funcdef_number;
250 unsigned all_throwers_are_sibcalls : 1;
251 unsigned nothrow : 1;
252 unsigned uses_eh_lsda : 1;
253 }
254 dw_fde_node;
255
256 /* Maximum size (in bytes) of an artificially generated label. */
257 #define MAX_ARTIFICIAL_LABEL_BYTES 30
258
259 /* The size of addresses as they appear in the Dwarf 2 data.
260 Some architectures use word addresses to refer to code locations,
261 but Dwarf 2 info always uses byte addresses. On such machines,
262 Dwarf 2 addresses need to be larger than the architecture's
263 pointers. */
264 #ifndef DWARF2_ADDR_SIZE
265 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
266 #endif
267
268 /* The size in bytes of a DWARF field indicating an offset or length
269 relative to a debug info section, specified to be 4 bytes in the
270 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
271 as PTR_SIZE. */
272
273 #ifndef DWARF_OFFSET_SIZE
274 #define DWARF_OFFSET_SIZE 4
275 #endif
276
277 /* According to the (draft) DWARF 3 specification, the initial length
278 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
279 bytes are 0xffffffff, followed by the length stored in the next 8
280 bytes.
281
282 However, the SGI/MIPS ABI uses an initial length which is equal to
283 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
284
285 #ifndef DWARF_INITIAL_LENGTH_SIZE
286 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
287 #endif
288
289 #define DWARF_VERSION 2
290
291 /* Round SIZE up to the nearest BOUNDARY. */
292 #define DWARF_ROUND(SIZE,BOUNDARY) \
293 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
294
295 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
296 #ifndef DWARF_CIE_DATA_ALIGNMENT
297 #ifdef STACK_GROWS_DOWNWARD
298 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
299 #else
300 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
301 #endif
302 #endif
303
304 /* A pointer to the base of a table that contains frame description
305 information for each routine. */
306 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
307
308 /* Number of elements currently allocated for fde_table. */
309 static GTY(()) unsigned fde_table_allocated;
310
311 /* Number of elements in fde_table currently in use. */
312 static GTY(()) unsigned fde_table_in_use;
313
314 /* Size (in elements) of increments by which we may expand the
315 fde_table. */
316 #define FDE_TABLE_INCREMENT 256
317
318 /* A list of call frame insns for the CIE. */
319 static GTY(()) dw_cfi_ref cie_cfi_head;
320
321 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
322 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
323 attribute that accelerates the lookup of the FDE associated
324 with the subprogram. This variable holds the table index of the FDE
325 associated with the current function (body) definition. */
326 static unsigned current_funcdef_fde;
327 #endif
328
329 struct indirect_string_node GTY(())
330 {
331 const char *str;
332 unsigned int refcount;
333 unsigned int form;
334 char *label;
335 };
336
337 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
338
339 static GTY(()) int dw2_string_counter;
340 static GTY(()) unsigned long dwarf2out_cfi_label_num;
341
342 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
343
344 /* Forward declarations for functions defined in this file. */
345
346 static char *stripattributes (const char *);
347 static const char *dwarf_cfi_name (unsigned);
348 static dw_cfi_ref new_cfi (void);
349 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
350 static void add_fde_cfi (const char *, dw_cfi_ref);
351 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
352 static void lookup_cfa (dw_cfa_location *);
353 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
354 static void initial_return_save (rtx);
355 static HOST_WIDE_INT stack_adjust_offset (rtx);
356 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
357 static void output_call_frame_info (int);
358 static void dwarf2out_stack_adjust (rtx);
359 static void queue_reg_save (const char *, rtx, HOST_WIDE_INT);
360 static void flush_queued_reg_saves (void);
361 static bool clobbers_queued_reg_save (rtx);
362 static void dwarf2out_frame_debug_expr (rtx, const char *);
363
364 /* Support for complex CFA locations. */
365 static void output_cfa_loc (dw_cfi_ref);
366 static void get_cfa_from_loc_descr (dw_cfa_location *,
367 struct dw_loc_descr_struct *);
368 static struct dw_loc_descr_struct *build_cfa_loc
369 (dw_cfa_location *);
370 static void def_cfa_1 (const char *, dw_cfa_location *);
371
372 /* How to start an assembler comment. */
373 #ifndef ASM_COMMENT_START
374 #define ASM_COMMENT_START ";#"
375 #endif
376
377 /* Data and reference forms for relocatable data. */
378 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
379 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
380
381 #ifndef DEBUG_FRAME_SECTION
382 #define DEBUG_FRAME_SECTION ".debug_frame"
383 #endif
384
385 #ifndef FUNC_BEGIN_LABEL
386 #define FUNC_BEGIN_LABEL "LFB"
387 #endif
388
389 #ifndef FUNC_END_LABEL
390 #define FUNC_END_LABEL "LFE"
391 #endif
392
393 #define FRAME_BEGIN_LABEL "Lframe"
394 #define CIE_AFTER_SIZE_LABEL "LSCIE"
395 #define CIE_END_LABEL "LECIE"
396 #define FDE_LABEL "LSFDE"
397 #define FDE_AFTER_SIZE_LABEL "LASFDE"
398 #define FDE_END_LABEL "LEFDE"
399 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
400 #define LINE_NUMBER_END_LABEL "LELT"
401 #define LN_PROLOG_AS_LABEL "LASLTP"
402 #define LN_PROLOG_END_LABEL "LELTP"
403 #define DIE_LABEL_PREFIX "DW"
404
405 /* The DWARF 2 CFA column which tracks the return address. Normally this
406 is the column for PC, or the first column after all of the hard
407 registers. */
408 #ifndef DWARF_FRAME_RETURN_COLUMN
409 #ifdef PC_REGNUM
410 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
411 #else
412 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
413 #endif
414 #endif
415
416 /* The mapping from gcc register number to DWARF 2 CFA column number. By
417 default, we just provide columns for all registers. */
418 #ifndef DWARF_FRAME_REGNUM
419 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
420 #endif
421
422 /* The offset from the incoming value of %sp to the top of the stack frame
423 for the current function. */
424 #ifndef INCOMING_FRAME_SP_OFFSET
425 #define INCOMING_FRAME_SP_OFFSET 0
426 #endif
427 \f
428 /* Hook used by __throw. */
429
430 rtx
431 expand_builtin_dwarf_sp_column (void)
432 {
433 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
434 }
435
436 /* Return a pointer to a copy of the section string name S with all
437 attributes stripped off, and an asterisk prepended (for assemble_name). */
438
439 static inline char *
440 stripattributes (const char *s)
441 {
442 char *stripped = xmalloc (strlen (s) + 2);
443 char *p = stripped;
444
445 *p++ = '*';
446
447 while (*s && *s != ',')
448 *p++ = *s++;
449
450 *p = '\0';
451 return stripped;
452 }
453
454 /* Generate code to initialize the register size table. */
455
456 void
457 expand_builtin_init_dwarf_reg_sizes (tree address)
458 {
459 int i;
460 enum machine_mode mode = TYPE_MODE (char_type_node);
461 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
462 rtx mem = gen_rtx_MEM (BLKmode, addr);
463 bool wrote_return_column = false;
464
465 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
466 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
467 {
468 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
469 enum machine_mode save_mode = reg_raw_mode[i];
470 HOST_WIDE_INT size;
471
472 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
473 save_mode = choose_hard_reg_mode (i, 1, true);
474 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
475 {
476 if (save_mode == VOIDmode)
477 continue;
478 wrote_return_column = true;
479 }
480 size = GET_MODE_SIZE (save_mode);
481 if (offset < 0)
482 continue;
483
484 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
485 }
486
487 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
488 if (! wrote_return_column)
489 abort ();
490 i = DWARF_ALT_FRAME_RETURN_COLUMN;
491 wrote_return_column = false;
492 #else
493 i = DWARF_FRAME_RETURN_COLUMN;
494 #endif
495
496 if (! wrote_return_column)
497 {
498 enum machine_mode save_mode = Pmode;
499 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
500 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
501 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
502 }
503 }
504
505 /* Convert a DWARF call frame info. operation to its string name */
506
507 static const char *
508 dwarf_cfi_name (unsigned int cfi_opc)
509 {
510 switch (cfi_opc)
511 {
512 case DW_CFA_advance_loc:
513 return "DW_CFA_advance_loc";
514 case DW_CFA_offset:
515 return "DW_CFA_offset";
516 case DW_CFA_restore:
517 return "DW_CFA_restore";
518 case DW_CFA_nop:
519 return "DW_CFA_nop";
520 case DW_CFA_set_loc:
521 return "DW_CFA_set_loc";
522 case DW_CFA_advance_loc1:
523 return "DW_CFA_advance_loc1";
524 case DW_CFA_advance_loc2:
525 return "DW_CFA_advance_loc2";
526 case DW_CFA_advance_loc4:
527 return "DW_CFA_advance_loc4";
528 case DW_CFA_offset_extended:
529 return "DW_CFA_offset_extended";
530 case DW_CFA_restore_extended:
531 return "DW_CFA_restore_extended";
532 case DW_CFA_undefined:
533 return "DW_CFA_undefined";
534 case DW_CFA_same_value:
535 return "DW_CFA_same_value";
536 case DW_CFA_register:
537 return "DW_CFA_register";
538 case DW_CFA_remember_state:
539 return "DW_CFA_remember_state";
540 case DW_CFA_restore_state:
541 return "DW_CFA_restore_state";
542 case DW_CFA_def_cfa:
543 return "DW_CFA_def_cfa";
544 case DW_CFA_def_cfa_register:
545 return "DW_CFA_def_cfa_register";
546 case DW_CFA_def_cfa_offset:
547 return "DW_CFA_def_cfa_offset";
548
549 /* DWARF 3 */
550 case DW_CFA_def_cfa_expression:
551 return "DW_CFA_def_cfa_expression";
552 case DW_CFA_expression:
553 return "DW_CFA_expression";
554 case DW_CFA_offset_extended_sf:
555 return "DW_CFA_offset_extended_sf";
556 case DW_CFA_def_cfa_sf:
557 return "DW_CFA_def_cfa_sf";
558 case DW_CFA_def_cfa_offset_sf:
559 return "DW_CFA_def_cfa_offset_sf";
560
561 /* SGI/MIPS specific */
562 case DW_CFA_MIPS_advance_loc8:
563 return "DW_CFA_MIPS_advance_loc8";
564
565 /* GNU extensions */
566 case DW_CFA_GNU_window_save:
567 return "DW_CFA_GNU_window_save";
568 case DW_CFA_GNU_args_size:
569 return "DW_CFA_GNU_args_size";
570 case DW_CFA_GNU_negative_offset_extended:
571 return "DW_CFA_GNU_negative_offset_extended";
572
573 default:
574 return "DW_CFA_<unknown>";
575 }
576 }
577
578 /* Return a pointer to a newly allocated Call Frame Instruction. */
579
580 static inline dw_cfi_ref
581 new_cfi (void)
582 {
583 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
584
585 cfi->dw_cfi_next = NULL;
586 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
587 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
588
589 return cfi;
590 }
591
592 /* Add a Call Frame Instruction to list of instructions. */
593
594 static inline void
595 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
596 {
597 dw_cfi_ref *p;
598
599 /* Find the end of the chain. */
600 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
601 ;
602
603 *p = cfi;
604 }
605
606 /* Generate a new label for the CFI info to refer to. */
607
608 char *
609 dwarf2out_cfi_label (void)
610 {
611 static char label[20];
612
613 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
614 ASM_OUTPUT_LABEL (asm_out_file, label);
615 return label;
616 }
617
618 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
619 or to the CIE if LABEL is NULL. */
620
621 static void
622 add_fde_cfi (const char *label, dw_cfi_ref cfi)
623 {
624 if (label)
625 {
626 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
627
628 if (*label == 0)
629 label = dwarf2out_cfi_label ();
630
631 if (fde->dw_fde_current_label == NULL
632 || strcmp (label, fde->dw_fde_current_label) != 0)
633 {
634 dw_cfi_ref xcfi;
635
636 fde->dw_fde_current_label = label = xstrdup (label);
637
638 /* Set the location counter to the new label. */
639 xcfi = new_cfi ();
640 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
641 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
642 add_cfi (&fde->dw_fde_cfi, xcfi);
643 }
644
645 add_cfi (&fde->dw_fde_cfi, cfi);
646 }
647
648 else
649 add_cfi (&cie_cfi_head, cfi);
650 }
651
652 /* Subroutine of lookup_cfa. */
653
654 static inline void
655 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
656 {
657 switch (cfi->dw_cfi_opc)
658 {
659 case DW_CFA_def_cfa_offset:
660 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
661 break;
662 case DW_CFA_def_cfa_register:
663 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
664 break;
665 case DW_CFA_def_cfa:
666 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
667 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
668 break;
669 case DW_CFA_def_cfa_expression:
670 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
671 break;
672 default:
673 break;
674 }
675 }
676
677 /* Find the previous value for the CFA. */
678
679 static void
680 lookup_cfa (dw_cfa_location *loc)
681 {
682 dw_cfi_ref cfi;
683
684 loc->reg = (unsigned long) -1;
685 loc->offset = 0;
686 loc->indirect = 0;
687 loc->base_offset = 0;
688
689 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
690 lookup_cfa_1 (cfi, loc);
691
692 if (fde_table_in_use)
693 {
694 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
695 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
696 lookup_cfa_1 (cfi, loc);
697 }
698 }
699
700 /* The current rule for calculating the DWARF2 canonical frame address. */
701 static dw_cfa_location cfa;
702
703 /* The register used for saving registers to the stack, and its offset
704 from the CFA. */
705 static dw_cfa_location cfa_store;
706
707 /* The running total of the size of arguments pushed onto the stack. */
708 static HOST_WIDE_INT args_size;
709
710 /* The last args_size we actually output. */
711 static HOST_WIDE_INT old_args_size;
712
713 /* Entry point to update the canonical frame address (CFA).
714 LABEL is passed to add_fde_cfi. The value of CFA is now to be
715 calculated from REG+OFFSET. */
716
717 void
718 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
719 {
720 dw_cfa_location loc;
721 loc.indirect = 0;
722 loc.base_offset = 0;
723 loc.reg = reg;
724 loc.offset = offset;
725 def_cfa_1 (label, &loc);
726 }
727
728 /* This routine does the actual work. The CFA is now calculated from
729 the dw_cfa_location structure. */
730
731 static void
732 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
733 {
734 dw_cfi_ref cfi;
735 dw_cfa_location old_cfa, loc;
736
737 cfa = *loc_p;
738 loc = *loc_p;
739
740 if (cfa_store.reg == loc.reg && loc.indirect == 0)
741 cfa_store.offset = loc.offset;
742
743 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
744 lookup_cfa (&old_cfa);
745
746 /* If nothing changed, no need to issue any call frame instructions. */
747 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
748 && loc.indirect == old_cfa.indirect
749 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
750 return;
751
752 cfi = new_cfi ();
753
754 if (loc.reg == old_cfa.reg && !loc.indirect)
755 {
756 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
757 indicating the CFA register did not change but the offset
758 did. */
759 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
760 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
761 }
762
763 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
764 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
765 && !loc.indirect)
766 {
767 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
768 indicating the CFA register has changed to <register> but the
769 offset has not changed. */
770 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
771 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
772 }
773 #endif
774
775 else if (loc.indirect == 0)
776 {
777 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
778 indicating the CFA register has changed to <register> with
779 the specified offset. */
780 cfi->dw_cfi_opc = DW_CFA_def_cfa;
781 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
782 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
783 }
784 else
785 {
786 /* Construct a DW_CFA_def_cfa_expression instruction to
787 calculate the CFA using a full location expression since no
788 register-offset pair is available. */
789 struct dw_loc_descr_struct *loc_list;
790
791 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
792 loc_list = build_cfa_loc (&loc);
793 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
794 }
795
796 add_fde_cfi (label, cfi);
797 }
798
799 /* Add the CFI for saving a register. REG is the CFA column number.
800 LABEL is passed to add_fde_cfi.
801 If SREG is -1, the register is saved at OFFSET from the CFA;
802 otherwise it is saved in SREG. */
803
804 static void
805 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
806 {
807 dw_cfi_ref cfi = new_cfi ();
808
809 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
810
811 /* The following comparison is correct. -1 is used to indicate that
812 the value isn't a register number. */
813 if (sreg == (unsigned int) -1)
814 {
815 if (reg & ~0x3f)
816 /* The register number won't fit in 6 bits, so we have to use
817 the long form. */
818 cfi->dw_cfi_opc = DW_CFA_offset_extended;
819 else
820 cfi->dw_cfi_opc = DW_CFA_offset;
821
822 #ifdef ENABLE_CHECKING
823 {
824 /* If we get an offset that is not a multiple of
825 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
826 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
827 description. */
828 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
829
830 if (check_offset * DWARF_CIE_DATA_ALIGNMENT != offset)
831 abort ();
832 }
833 #endif
834 offset /= DWARF_CIE_DATA_ALIGNMENT;
835 if (offset < 0)
836 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
837
838 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
839 }
840 else if (sreg == reg)
841 /* We could emit a DW_CFA_same_value in this case, but don't bother. */
842 return;
843 else
844 {
845 cfi->dw_cfi_opc = DW_CFA_register;
846 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
847 }
848
849 add_fde_cfi (label, cfi);
850 }
851
852 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
853 This CFI tells the unwinder that it needs to restore the window registers
854 from the previous frame's window save area.
855
856 ??? Perhaps we should note in the CIE where windows are saved (instead of
857 assuming 0(cfa)) and what registers are in the window. */
858
859 void
860 dwarf2out_window_save (const char *label)
861 {
862 dw_cfi_ref cfi = new_cfi ();
863
864 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
865 add_fde_cfi (label, cfi);
866 }
867
868 /* Add a CFI to update the running total of the size of arguments
869 pushed onto the stack. */
870
871 void
872 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
873 {
874 dw_cfi_ref cfi;
875
876 if (size == old_args_size)
877 return;
878
879 old_args_size = size;
880
881 cfi = new_cfi ();
882 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
883 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
884 add_fde_cfi (label, cfi);
885 }
886
887 /* Entry point for saving a register to the stack. REG is the GCC register
888 number. LABEL and OFFSET are passed to reg_save. */
889
890 void
891 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
892 {
893 reg_save (label, DWARF_FRAME_REGNUM (reg), -1, offset);
894 }
895
896 /* Entry point for saving the return address in the stack.
897 LABEL and OFFSET are passed to reg_save. */
898
899 void
900 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
901 {
902 reg_save (label, DWARF_FRAME_RETURN_COLUMN, -1, offset);
903 }
904
905 /* Entry point for saving the return address in a register.
906 LABEL and SREG are passed to reg_save. */
907
908 void
909 dwarf2out_return_reg (const char *label, unsigned int sreg)
910 {
911 reg_save (label, DWARF_FRAME_RETURN_COLUMN, sreg, 0);
912 }
913
914 /* Record the initial position of the return address. RTL is
915 INCOMING_RETURN_ADDR_RTX. */
916
917 static void
918 initial_return_save (rtx rtl)
919 {
920 unsigned int reg = (unsigned int) -1;
921 HOST_WIDE_INT offset = 0;
922
923 switch (GET_CODE (rtl))
924 {
925 case REG:
926 /* RA is in a register. */
927 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
928 break;
929
930 case MEM:
931 /* RA is on the stack. */
932 rtl = XEXP (rtl, 0);
933 switch (GET_CODE (rtl))
934 {
935 case REG:
936 if (REGNO (rtl) != STACK_POINTER_REGNUM)
937 abort ();
938 offset = 0;
939 break;
940
941 case PLUS:
942 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
943 abort ();
944 offset = INTVAL (XEXP (rtl, 1));
945 break;
946
947 case MINUS:
948 if (REGNO (XEXP (rtl, 0)) != STACK_POINTER_REGNUM)
949 abort ();
950 offset = -INTVAL (XEXP (rtl, 1));
951 break;
952
953 default:
954 abort ();
955 }
956
957 break;
958
959 case PLUS:
960 /* The return address is at some offset from any value we can
961 actually load. For instance, on the SPARC it is in %i7+8. Just
962 ignore the offset for now; it doesn't matter for unwinding frames. */
963 if (GET_CODE (XEXP (rtl, 1)) != CONST_INT)
964 abort ();
965 initial_return_save (XEXP (rtl, 0));
966 return;
967
968 default:
969 abort ();
970 }
971
972 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
973 }
974
975 /* Given a SET, calculate the amount of stack adjustment it
976 contains. */
977
978 static HOST_WIDE_INT
979 stack_adjust_offset (rtx pattern)
980 {
981 rtx src = SET_SRC (pattern);
982 rtx dest = SET_DEST (pattern);
983 HOST_WIDE_INT offset = 0;
984 enum rtx_code code;
985
986 if (dest == stack_pointer_rtx)
987 {
988 /* (set (reg sp) (plus (reg sp) (const_int))) */
989 code = GET_CODE (src);
990 if (! (code == PLUS || code == MINUS)
991 || XEXP (src, 0) != stack_pointer_rtx
992 || GET_CODE (XEXP (src, 1)) != CONST_INT)
993 return 0;
994
995 offset = INTVAL (XEXP (src, 1));
996 if (code == PLUS)
997 offset = -offset;
998 }
999 else if (GET_CODE (dest) == MEM)
1000 {
1001 /* (set (mem (pre_dec (reg sp))) (foo)) */
1002 src = XEXP (dest, 0);
1003 code = GET_CODE (src);
1004
1005 switch (code)
1006 {
1007 case PRE_MODIFY:
1008 case POST_MODIFY:
1009 if (XEXP (src, 0) == stack_pointer_rtx)
1010 {
1011 rtx val = XEXP (XEXP (src, 1), 1);
1012 /* We handle only adjustments by constant amount. */
1013 if (GET_CODE (XEXP (src, 1)) != PLUS ||
1014 GET_CODE (val) != CONST_INT)
1015 abort ();
1016 offset = -INTVAL (val);
1017 break;
1018 }
1019 return 0;
1020
1021 case PRE_DEC:
1022 case POST_DEC:
1023 if (XEXP (src, 0) == stack_pointer_rtx)
1024 {
1025 offset = GET_MODE_SIZE (GET_MODE (dest));
1026 break;
1027 }
1028 return 0;
1029
1030 case PRE_INC:
1031 case POST_INC:
1032 if (XEXP (src, 0) == stack_pointer_rtx)
1033 {
1034 offset = -GET_MODE_SIZE (GET_MODE (dest));
1035 break;
1036 }
1037 return 0;
1038
1039 default:
1040 return 0;
1041 }
1042 }
1043 else
1044 return 0;
1045
1046 return offset;
1047 }
1048
1049 /* Check INSN to see if it looks like a push or a stack adjustment, and
1050 make a note of it if it does. EH uses this information to find out how
1051 much extra space it needs to pop off the stack. */
1052
1053 static void
1054 dwarf2out_stack_adjust (rtx insn)
1055 {
1056 HOST_WIDE_INT offset;
1057 const char *label;
1058 int i;
1059
1060 if (!flag_asynchronous_unwind_tables && GET_CODE (insn) == CALL_INSN)
1061 {
1062 /* Extract the size of the args from the CALL rtx itself. */
1063 insn = PATTERN (insn);
1064 if (GET_CODE (insn) == PARALLEL)
1065 insn = XVECEXP (insn, 0, 0);
1066 if (GET_CODE (insn) == SET)
1067 insn = SET_SRC (insn);
1068 if (GET_CODE (insn) != CALL)
1069 abort ();
1070
1071 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1072 return;
1073 }
1074
1075 /* If only calls can throw, and we have a frame pointer,
1076 save up adjustments until we see the CALL_INSN. */
1077 else if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1078 return;
1079
1080 if (GET_CODE (insn) == BARRIER)
1081 {
1082 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1083 the compiler will have already emitted a stack adjustment, but
1084 doesn't bother for calls to noreturn functions. */
1085 #ifdef STACK_GROWS_DOWNWARD
1086 offset = -args_size;
1087 #else
1088 offset = args_size;
1089 #endif
1090 }
1091 else if (GET_CODE (PATTERN (insn)) == SET)
1092 offset = stack_adjust_offset (PATTERN (insn));
1093 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1094 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1095 {
1096 /* There may be stack adjustments inside compound insns. Search
1097 for them. */
1098 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1099 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1100 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1101 }
1102 else
1103 return;
1104
1105 if (offset == 0)
1106 return;
1107
1108 if (cfa.reg == STACK_POINTER_REGNUM)
1109 cfa.offset += offset;
1110
1111 #ifndef STACK_GROWS_DOWNWARD
1112 offset = -offset;
1113 #endif
1114
1115 args_size += offset;
1116 if (args_size < 0)
1117 args_size = 0;
1118
1119 label = dwarf2out_cfi_label ();
1120 def_cfa_1 (label, &cfa);
1121 dwarf2out_args_size (label, args_size);
1122 }
1123
1124 #endif
1125
1126 /* We delay emitting a register save until either (a) we reach the end
1127 of the prologue or (b) the register is clobbered. This clusters
1128 register saves so that there are fewer pc advances. */
1129
1130 struct queued_reg_save GTY(())
1131 {
1132 struct queued_reg_save *next;
1133 rtx reg;
1134 HOST_WIDE_INT cfa_offset;
1135 };
1136
1137 static GTY(()) struct queued_reg_save *queued_reg_saves;
1138
1139 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1140 static const char *last_reg_save_label;
1141
1142 static void
1143 queue_reg_save (const char *label, rtx reg, HOST_WIDE_INT offset)
1144 {
1145 struct queued_reg_save *q = ggc_alloc (sizeof (*q));
1146
1147 q->next = queued_reg_saves;
1148 q->reg = reg;
1149 q->cfa_offset = offset;
1150 queued_reg_saves = q;
1151
1152 last_reg_save_label = label;
1153 }
1154
1155 static void
1156 flush_queued_reg_saves (void)
1157 {
1158 struct queued_reg_save *q, *next;
1159
1160 for (q = queued_reg_saves; q; q = next)
1161 {
1162 dwarf2out_reg_save (last_reg_save_label, REGNO (q->reg), q->cfa_offset);
1163 next = q->next;
1164 }
1165
1166 queued_reg_saves = NULL;
1167 last_reg_save_label = NULL;
1168 }
1169
1170 static bool
1171 clobbers_queued_reg_save (rtx insn)
1172 {
1173 struct queued_reg_save *q;
1174
1175 for (q = queued_reg_saves; q; q = q->next)
1176 if (modified_in_p (q->reg, insn))
1177 return true;
1178
1179 return false;
1180 }
1181
1182
1183 /* A temporary register holding an integral value used in adjusting SP
1184 or setting up the store_reg. The "offset" field holds the integer
1185 value, not an offset. */
1186 static dw_cfa_location cfa_temp;
1187
1188 /* Record call frame debugging information for an expression EXPR,
1189 which either sets SP or FP (adjusting how we calculate the frame
1190 address) or saves a register to the stack. LABEL indicates the
1191 address of EXPR.
1192
1193 This function encodes a state machine mapping rtxes to actions on
1194 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1195 users need not read the source code.
1196
1197 The High-Level Picture
1198
1199 Changes in the register we use to calculate the CFA: Currently we
1200 assume that if you copy the CFA register into another register, we
1201 should take the other one as the new CFA register; this seems to
1202 work pretty well. If it's wrong for some target, it's simple
1203 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1204
1205 Changes in the register we use for saving registers to the stack:
1206 This is usually SP, but not always. Again, we deduce that if you
1207 copy SP into another register (and SP is not the CFA register),
1208 then the new register is the one we will be using for register
1209 saves. This also seems to work.
1210
1211 Register saves: There's not much guesswork about this one; if
1212 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1213 register save, and the register used to calculate the destination
1214 had better be the one we think we're using for this purpose.
1215
1216 Except: If the register being saved is the CFA register, and the
1217 offset is nonzero, we are saving the CFA, so we assume we have to
1218 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1219 the intent is to save the value of SP from the previous frame.
1220
1221 Invariants / Summaries of Rules
1222
1223 cfa current rule for calculating the CFA. It usually
1224 consists of a register and an offset.
1225 cfa_store register used by prologue code to save things to the stack
1226 cfa_store.offset is the offset from the value of
1227 cfa_store.reg to the actual CFA
1228 cfa_temp register holding an integral value. cfa_temp.offset
1229 stores the value, which will be used to adjust the
1230 stack pointer. cfa_temp is also used like cfa_store,
1231 to track stores to the stack via fp or a temp reg.
1232
1233 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1234 with cfa.reg as the first operand changes the cfa.reg and its
1235 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1236 cfa_temp.offset.
1237
1238 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1239 expression yielding a constant. This sets cfa_temp.reg
1240 and cfa_temp.offset.
1241
1242 Rule 5: Create a new register cfa_store used to save items to the
1243 stack.
1244
1245 Rules 10-14: Save a register to the stack. Define offset as the
1246 difference of the original location and cfa_store's
1247 location (or cfa_temp's location if cfa_temp is used).
1248
1249 The Rules
1250
1251 "{a,b}" indicates a choice of a xor b.
1252 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1253
1254 Rule 1:
1255 (set <reg1> <reg2>:cfa.reg)
1256 effects: cfa.reg = <reg1>
1257 cfa.offset unchanged
1258 cfa_temp.reg = <reg1>
1259 cfa_temp.offset = cfa.offset
1260
1261 Rule 2:
1262 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1263 {<const_int>,<reg>:cfa_temp.reg}))
1264 effects: cfa.reg = sp if fp used
1265 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1266 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1267 if cfa_store.reg==sp
1268
1269 Rule 3:
1270 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1271 effects: cfa.reg = fp
1272 cfa_offset += +/- <const_int>
1273
1274 Rule 4:
1275 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1276 constraints: <reg1> != fp
1277 <reg1> != sp
1278 effects: cfa.reg = <reg1>
1279 cfa_temp.reg = <reg1>
1280 cfa_temp.offset = cfa.offset
1281
1282 Rule 5:
1283 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1284 constraints: <reg1> != fp
1285 <reg1> != sp
1286 effects: cfa_store.reg = <reg1>
1287 cfa_store.offset = cfa.offset - cfa_temp.offset
1288
1289 Rule 6:
1290 (set <reg> <const_int>)
1291 effects: cfa_temp.reg = <reg>
1292 cfa_temp.offset = <const_int>
1293
1294 Rule 7:
1295 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1296 effects: cfa_temp.reg = <reg1>
1297 cfa_temp.offset |= <const_int>
1298
1299 Rule 8:
1300 (set <reg> (high <exp>))
1301 effects: none
1302
1303 Rule 9:
1304 (set <reg> (lo_sum <exp> <const_int>))
1305 effects: cfa_temp.reg = <reg>
1306 cfa_temp.offset = <const_int>
1307
1308 Rule 10:
1309 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1310 effects: cfa_store.offset -= <const_int>
1311 cfa.offset = cfa_store.offset if cfa.reg == sp
1312 cfa.reg = sp
1313 cfa.base_offset = -cfa_store.offset
1314
1315 Rule 11:
1316 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1317 effects: cfa_store.offset += -/+ mode_size(mem)
1318 cfa.offset = cfa_store.offset if cfa.reg == sp
1319 cfa.reg = sp
1320 cfa.base_offset = -cfa_store.offset
1321
1322 Rule 12:
1323 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1324
1325 <reg2>)
1326 effects: cfa.reg = <reg1>
1327 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1328
1329 Rule 13:
1330 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1331 effects: cfa.reg = <reg1>
1332 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1333
1334 Rule 14:
1335 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1336 effects: cfa.reg = <reg1>
1337 cfa.base_offset = -cfa_temp.offset
1338 cfa_temp.offset -= mode_size(mem) */
1339
1340 static void
1341 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1342 {
1343 rtx src, dest;
1344 HOST_WIDE_INT offset;
1345
1346 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1347 the PARALLEL independently. The first element is always processed if
1348 it is a SET. This is for backward compatibility. Other elements
1349 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1350 flag is set in them. */
1351 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1352 {
1353 int par_index;
1354 int limit = XVECLEN (expr, 0);
1355
1356 for (par_index = 0; par_index < limit; par_index++)
1357 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1358 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1359 || par_index == 0))
1360 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1361
1362 return;
1363 }
1364
1365 if (GET_CODE (expr) != SET)
1366 abort ();
1367
1368 src = SET_SRC (expr);
1369 dest = SET_DEST (expr);
1370
1371 switch (GET_CODE (dest))
1372 {
1373 case REG:
1374 /* Rule 1 */
1375 /* Update the CFA rule wrt SP or FP. Make sure src is
1376 relative to the current CFA register. */
1377 switch (GET_CODE (src))
1378 {
1379 /* Setting FP from SP. */
1380 case REG:
1381 if (cfa.reg == (unsigned) REGNO (src))
1382 /* OK. */
1383 ;
1384 else
1385 abort ();
1386
1387 /* We used to require that dest be either SP or FP, but the
1388 ARM copies SP to a temporary register, and from there to
1389 FP. So we just rely on the backends to only set
1390 RTX_FRAME_RELATED_P on appropriate insns. */
1391 cfa.reg = REGNO (dest);
1392 cfa_temp.reg = cfa.reg;
1393 cfa_temp.offset = cfa.offset;
1394 break;
1395
1396 case PLUS:
1397 case MINUS:
1398 case LO_SUM:
1399 if (dest == stack_pointer_rtx)
1400 {
1401 /* Rule 2 */
1402 /* Adjusting SP. */
1403 switch (GET_CODE (XEXP (src, 1)))
1404 {
1405 case CONST_INT:
1406 offset = INTVAL (XEXP (src, 1));
1407 break;
1408 case REG:
1409 if ((unsigned) REGNO (XEXP (src, 1)) != cfa_temp.reg)
1410 abort ();
1411 offset = cfa_temp.offset;
1412 break;
1413 default:
1414 abort ();
1415 }
1416
1417 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1418 {
1419 /* Restoring SP from FP in the epilogue. */
1420 if (cfa.reg != (unsigned) HARD_FRAME_POINTER_REGNUM)
1421 abort ();
1422 cfa.reg = STACK_POINTER_REGNUM;
1423 }
1424 else if (GET_CODE (src) == LO_SUM)
1425 /* Assume we've set the source reg of the LO_SUM from sp. */
1426 ;
1427 else if (XEXP (src, 0) != stack_pointer_rtx)
1428 abort ();
1429
1430 if (GET_CODE (src) != MINUS)
1431 offset = -offset;
1432 if (cfa.reg == STACK_POINTER_REGNUM)
1433 cfa.offset += offset;
1434 if (cfa_store.reg == STACK_POINTER_REGNUM)
1435 cfa_store.offset += offset;
1436 }
1437 else if (dest == hard_frame_pointer_rtx)
1438 {
1439 /* Rule 3 */
1440 /* Either setting the FP from an offset of the SP,
1441 or adjusting the FP */
1442 if (! frame_pointer_needed)
1443 abort ();
1444
1445 if (GET_CODE (XEXP (src, 0)) == REG
1446 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1447 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1448 {
1449 offset = INTVAL (XEXP (src, 1));
1450 if (GET_CODE (src) != MINUS)
1451 offset = -offset;
1452 cfa.offset += offset;
1453 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1454 }
1455 else
1456 abort ();
1457 }
1458 else
1459 {
1460 if (GET_CODE (src) == MINUS)
1461 abort ();
1462
1463 /* Rule 4 */
1464 if (GET_CODE (XEXP (src, 0)) == REG
1465 && REGNO (XEXP (src, 0)) == cfa.reg
1466 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1467 {
1468 /* Setting a temporary CFA register that will be copied
1469 into the FP later on. */
1470 offset = - INTVAL (XEXP (src, 1));
1471 cfa.offset += offset;
1472 cfa.reg = REGNO (dest);
1473 /* Or used to save regs to the stack. */
1474 cfa_temp.reg = cfa.reg;
1475 cfa_temp.offset = cfa.offset;
1476 }
1477
1478 /* Rule 5 */
1479 else if (GET_CODE (XEXP (src, 0)) == REG
1480 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1481 && XEXP (src, 1) == stack_pointer_rtx)
1482 {
1483 /* Setting a scratch register that we will use instead
1484 of SP for saving registers to the stack. */
1485 if (cfa.reg != STACK_POINTER_REGNUM)
1486 abort ();
1487 cfa_store.reg = REGNO (dest);
1488 cfa_store.offset = cfa.offset - cfa_temp.offset;
1489 }
1490
1491 /* Rule 9 */
1492 else if (GET_CODE (src) == LO_SUM
1493 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1494 {
1495 cfa_temp.reg = REGNO (dest);
1496 cfa_temp.offset = INTVAL (XEXP (src, 1));
1497 }
1498 else
1499 abort ();
1500 }
1501 break;
1502
1503 /* Rule 6 */
1504 case CONST_INT:
1505 cfa_temp.reg = REGNO (dest);
1506 cfa_temp.offset = INTVAL (src);
1507 break;
1508
1509 /* Rule 7 */
1510 case IOR:
1511 if (GET_CODE (XEXP (src, 0)) != REG
1512 || (unsigned) REGNO (XEXP (src, 0)) != cfa_temp.reg
1513 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1514 abort ();
1515
1516 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1517 cfa_temp.reg = REGNO (dest);
1518 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1519 break;
1520
1521 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1522 which will fill in all of the bits. */
1523 /* Rule 8 */
1524 case HIGH:
1525 break;
1526
1527 default:
1528 abort ();
1529 }
1530
1531 def_cfa_1 (label, &cfa);
1532 break;
1533
1534 case MEM:
1535 if (GET_CODE (src) != REG)
1536 abort ();
1537
1538 /* Saving a register to the stack. Make sure dest is relative to the
1539 CFA register. */
1540 switch (GET_CODE (XEXP (dest, 0)))
1541 {
1542 /* Rule 10 */
1543 /* With a push. */
1544 case PRE_MODIFY:
1545 /* We can't handle variable size modifications. */
1546 if (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1)) != CONST_INT)
1547 abort ();
1548 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1549
1550 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1551 || cfa_store.reg != STACK_POINTER_REGNUM)
1552 abort ();
1553
1554 cfa_store.offset += offset;
1555 if (cfa.reg == STACK_POINTER_REGNUM)
1556 cfa.offset = cfa_store.offset;
1557
1558 offset = -cfa_store.offset;
1559 break;
1560
1561 /* Rule 11 */
1562 case PRE_INC:
1563 case PRE_DEC:
1564 offset = GET_MODE_SIZE (GET_MODE (dest));
1565 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1566 offset = -offset;
1567
1568 if (REGNO (XEXP (XEXP (dest, 0), 0)) != STACK_POINTER_REGNUM
1569 || cfa_store.reg != STACK_POINTER_REGNUM)
1570 abort ();
1571
1572 cfa_store.offset += offset;
1573 if (cfa.reg == STACK_POINTER_REGNUM)
1574 cfa.offset = cfa_store.offset;
1575
1576 offset = -cfa_store.offset;
1577 break;
1578
1579 /* Rule 12 */
1580 /* With an offset. */
1581 case PLUS:
1582 case MINUS:
1583 case LO_SUM:
1584 if (GET_CODE (XEXP (XEXP (dest, 0), 1)) != CONST_INT)
1585 abort ();
1586 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1587 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1588 offset = -offset;
1589
1590 if (cfa_store.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1591 offset -= cfa_store.offset;
1592 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1593 offset -= cfa_temp.offset;
1594 else
1595 abort ();
1596 break;
1597
1598 /* Rule 13 */
1599 /* Without an offset. */
1600 case REG:
1601 if (cfa_store.reg == (unsigned) REGNO (XEXP (dest, 0)))
1602 offset = -cfa_store.offset;
1603 else if (cfa_temp.reg == (unsigned) REGNO (XEXP (dest, 0)))
1604 offset = -cfa_temp.offset;
1605 else
1606 abort ();
1607 break;
1608
1609 /* Rule 14 */
1610 case POST_INC:
1611 if (cfa_temp.reg != (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)))
1612 abort ();
1613 offset = -cfa_temp.offset;
1614 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1615 break;
1616
1617 default:
1618 abort ();
1619 }
1620
1621 if (REGNO (src) != STACK_POINTER_REGNUM
1622 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1623 && (unsigned) REGNO (src) == cfa.reg)
1624 {
1625 /* We're storing the current CFA reg into the stack. */
1626
1627 if (cfa.offset == 0)
1628 {
1629 /* If the source register is exactly the CFA, assume
1630 we're saving SP like any other register; this happens
1631 on the ARM. */
1632 def_cfa_1 (label, &cfa);
1633 queue_reg_save (label, stack_pointer_rtx, offset);
1634 break;
1635 }
1636 else
1637 {
1638 /* Otherwise, we'll need to look in the stack to
1639 calculate the CFA. */
1640 rtx x = XEXP (dest, 0);
1641
1642 if (GET_CODE (x) != REG)
1643 x = XEXP (x, 0);
1644 if (GET_CODE (x) != REG)
1645 abort ();
1646
1647 cfa.reg = REGNO (x);
1648 cfa.base_offset = offset;
1649 cfa.indirect = 1;
1650 def_cfa_1 (label, &cfa);
1651 break;
1652 }
1653 }
1654
1655 def_cfa_1 (label, &cfa);
1656 queue_reg_save (label, src, offset);
1657 break;
1658
1659 default:
1660 abort ();
1661 }
1662 }
1663
1664 /* Record call frame debugging information for INSN, which either
1665 sets SP or FP (adjusting how we calculate the frame address) or saves a
1666 register to the stack. If INSN is NULL_RTX, initialize our state. */
1667
1668 void
1669 dwarf2out_frame_debug (rtx insn)
1670 {
1671 const char *label;
1672 rtx src;
1673
1674 if (insn == NULL_RTX)
1675 {
1676 /* Flush any queued register saves. */
1677 flush_queued_reg_saves ();
1678
1679 /* Set up state for generating call frame debug info. */
1680 lookup_cfa (&cfa);
1681 if (cfa.reg != (unsigned long) DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM))
1682 abort ();
1683
1684 cfa.reg = STACK_POINTER_REGNUM;
1685 cfa_store = cfa;
1686 cfa_temp.reg = -1;
1687 cfa_temp.offset = 0;
1688 return;
1689 }
1690
1691 if (GET_CODE (insn) != INSN || clobbers_queued_reg_save (insn))
1692 flush_queued_reg_saves ();
1693
1694 if (! RTX_FRAME_RELATED_P (insn))
1695 {
1696 if (!ACCUMULATE_OUTGOING_ARGS)
1697 dwarf2out_stack_adjust (insn);
1698
1699 return;
1700 }
1701
1702 label = dwarf2out_cfi_label ();
1703 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1704 if (src)
1705 insn = XEXP (src, 0);
1706 else
1707 insn = PATTERN (insn);
1708
1709 dwarf2out_frame_debug_expr (insn, label);
1710 }
1711
1712 #endif
1713
1714 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1715 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1716 (enum dwarf_call_frame_info cfi);
1717
1718 static enum dw_cfi_oprnd_type
1719 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1720 {
1721 switch (cfi)
1722 {
1723 case DW_CFA_nop:
1724 case DW_CFA_GNU_window_save:
1725 return dw_cfi_oprnd_unused;
1726
1727 case DW_CFA_set_loc:
1728 case DW_CFA_advance_loc1:
1729 case DW_CFA_advance_loc2:
1730 case DW_CFA_advance_loc4:
1731 case DW_CFA_MIPS_advance_loc8:
1732 return dw_cfi_oprnd_addr;
1733
1734 case DW_CFA_offset:
1735 case DW_CFA_offset_extended:
1736 case DW_CFA_def_cfa:
1737 case DW_CFA_offset_extended_sf:
1738 case DW_CFA_def_cfa_sf:
1739 case DW_CFA_restore_extended:
1740 case DW_CFA_undefined:
1741 case DW_CFA_same_value:
1742 case DW_CFA_def_cfa_register:
1743 case DW_CFA_register:
1744 return dw_cfi_oprnd_reg_num;
1745
1746 case DW_CFA_def_cfa_offset:
1747 case DW_CFA_GNU_args_size:
1748 case DW_CFA_def_cfa_offset_sf:
1749 return dw_cfi_oprnd_offset;
1750
1751 case DW_CFA_def_cfa_expression:
1752 case DW_CFA_expression:
1753 return dw_cfi_oprnd_loc;
1754
1755 default:
1756 abort ();
1757 }
1758 }
1759
1760 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1761 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1762 (enum dwarf_call_frame_info cfi);
1763
1764 static enum dw_cfi_oprnd_type
1765 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1766 {
1767 switch (cfi)
1768 {
1769 case DW_CFA_def_cfa:
1770 case DW_CFA_def_cfa_sf:
1771 case DW_CFA_offset:
1772 case DW_CFA_offset_extended_sf:
1773 case DW_CFA_offset_extended:
1774 return dw_cfi_oprnd_offset;
1775
1776 case DW_CFA_register:
1777 return dw_cfi_oprnd_reg_num;
1778
1779 default:
1780 return dw_cfi_oprnd_unused;
1781 }
1782 }
1783
1784 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1785
1786 /* Output a Call Frame Information opcode and its operand(s). */
1787
1788 static void
1789 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1790 {
1791 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1792 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1793 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1794 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1795 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1796 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1797 {
1798 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1799 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1800 "DW_CFA_offset, column 0x%lx",
1801 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1802 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1803 }
1804 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1805 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1806 | (cfi->dw_cfi_oprnd1.dw_cfi_reg_num & 0x3f)),
1807 "DW_CFA_restore, column 0x%lx",
1808 cfi->dw_cfi_oprnd1.dw_cfi_reg_num);
1809 else
1810 {
1811 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1812 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1813
1814 switch (cfi->dw_cfi_opc)
1815 {
1816 case DW_CFA_set_loc:
1817 if (for_eh)
1818 dw2_asm_output_encoded_addr_rtx (
1819 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1820 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1821 NULL);
1822 else
1823 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1824 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1825 break;
1826
1827 case DW_CFA_advance_loc1:
1828 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1829 fde->dw_fde_current_label, NULL);
1830 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1831 break;
1832
1833 case DW_CFA_advance_loc2:
1834 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1835 fde->dw_fde_current_label, NULL);
1836 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1837 break;
1838
1839 case DW_CFA_advance_loc4:
1840 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1841 fde->dw_fde_current_label, NULL);
1842 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1843 break;
1844
1845 case DW_CFA_MIPS_advance_loc8:
1846 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1847 fde->dw_fde_current_label, NULL);
1848 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1849 break;
1850
1851 case DW_CFA_offset_extended:
1852 case DW_CFA_def_cfa:
1853 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1854 NULL);
1855 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1856 break;
1857
1858 case DW_CFA_offset_extended_sf:
1859 case DW_CFA_def_cfa_sf:
1860 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1861 NULL);
1862 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1863 break;
1864
1865 case DW_CFA_restore_extended:
1866 case DW_CFA_undefined:
1867 case DW_CFA_same_value:
1868 case DW_CFA_def_cfa_register:
1869 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1870 NULL);
1871 break;
1872
1873 case DW_CFA_register:
1874 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_reg_num,
1875 NULL);
1876 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_reg_num,
1877 NULL);
1878 break;
1879
1880 case DW_CFA_def_cfa_offset:
1881 case DW_CFA_GNU_args_size:
1882 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1883 break;
1884
1885 case DW_CFA_def_cfa_offset_sf:
1886 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
1887 break;
1888
1889 case DW_CFA_GNU_window_save:
1890 break;
1891
1892 case DW_CFA_def_cfa_expression:
1893 case DW_CFA_expression:
1894 output_cfa_loc (cfi);
1895 break;
1896
1897 case DW_CFA_GNU_negative_offset_extended:
1898 /* Obsoleted by DW_CFA_offset_extended_sf. */
1899 abort ();
1900
1901 default:
1902 break;
1903 }
1904 }
1905 }
1906
1907 /* Output the call frame information used to used to record information
1908 that relates to calculating the frame pointer, and records the
1909 location of saved registers. */
1910
1911 static void
1912 output_call_frame_info (int for_eh)
1913 {
1914 unsigned int i;
1915 dw_fde_ref fde;
1916 dw_cfi_ref cfi;
1917 char l1[20], l2[20], section_start_label[20];
1918 bool any_lsda_needed = false;
1919 char augmentation[6];
1920 int augmentation_size;
1921 int fde_encoding = DW_EH_PE_absptr;
1922 int per_encoding = DW_EH_PE_absptr;
1923 int lsda_encoding = DW_EH_PE_absptr;
1924
1925 /* Don't emit a CIE if there won't be any FDEs. */
1926 if (fde_table_in_use == 0)
1927 return;
1928
1929 /* If we don't have any functions we'll want to unwind out of, don't
1930 emit any EH unwind information. Note that if exceptions aren't
1931 enabled, we won't have collected nothrow information, and if we
1932 asked for asynchronous tables, we always want this info. */
1933 if (for_eh)
1934 {
1935 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
1936
1937 for (i = 0; i < fde_table_in_use; i++)
1938 if (fde_table[i].uses_eh_lsda)
1939 any_eh_needed = any_lsda_needed = true;
1940 else if (! fde_table[i].nothrow
1941 && ! fde_table[i].all_throwers_are_sibcalls)
1942 any_eh_needed = true;
1943
1944 if (! any_eh_needed)
1945 return;
1946 }
1947
1948 /* We're going to be generating comments, so turn on app. */
1949 if (flag_debug_asm)
1950 app_enable ();
1951
1952 if (for_eh)
1953 (*targetm.asm_out.eh_frame_section) ();
1954 else
1955 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
1956
1957 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
1958 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
1959
1960 /* Output the CIE. */
1961 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
1962 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
1963 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
1964 "Length of Common Information Entry");
1965 ASM_OUTPUT_LABEL (asm_out_file, l1);
1966
1967 /* Now that the CIE pointer is PC-relative for EH,
1968 use 0 to identify the CIE. */
1969 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
1970 (for_eh ? 0 : DW_CIE_ID),
1971 "CIE Identifier Tag");
1972
1973 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
1974
1975 augmentation[0] = 0;
1976 augmentation_size = 0;
1977 if (for_eh)
1978 {
1979 char *p;
1980
1981 /* Augmentation:
1982 z Indicates that a uleb128 is present to size the
1983 augmentation section.
1984 L Indicates the encoding (and thus presence) of
1985 an LSDA pointer in the FDE augmentation.
1986 R Indicates a non-default pointer encoding for
1987 FDE code pointers.
1988 P Indicates the presence of an encoding + language
1989 personality routine in the CIE augmentation. */
1990
1991 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
1992 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
1993 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
1994
1995 p = augmentation + 1;
1996 if (eh_personality_libfunc)
1997 {
1998 *p++ = 'P';
1999 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2000 }
2001 if (any_lsda_needed)
2002 {
2003 *p++ = 'L';
2004 augmentation_size += 1;
2005 }
2006 if (fde_encoding != DW_EH_PE_absptr)
2007 {
2008 *p++ = 'R';
2009 augmentation_size += 1;
2010 }
2011 if (p > augmentation + 1)
2012 {
2013 augmentation[0] = 'z';
2014 *p = '\0';
2015 }
2016
2017 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2018 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2019 {
2020 int offset = ( 4 /* Length */
2021 + 4 /* CIE Id */
2022 + 1 /* CIE version */
2023 + strlen (augmentation) + 1 /* Augmentation */
2024 + size_of_uleb128 (1) /* Code alignment */
2025 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2026 + 1 /* RA column */
2027 + 1 /* Augmentation size */
2028 + 1 /* Personality encoding */ );
2029 int pad = -offset & (PTR_SIZE - 1);
2030
2031 augmentation_size += pad;
2032
2033 /* Augmentations should be small, so there's scarce need to
2034 iterate for a solution. Die if we exceed one uleb128 byte. */
2035 if (size_of_uleb128 (augmentation_size) != 1)
2036 abort ();
2037 }
2038 }
2039
2040 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2041 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2042 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2043 "CIE Data Alignment Factor");
2044 dw2_asm_output_data (1, DWARF_FRAME_RETURN_COLUMN, "CIE RA Column");
2045
2046 if (augmentation[0])
2047 {
2048 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2049 if (eh_personality_libfunc)
2050 {
2051 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2052 eh_data_format_name (per_encoding));
2053 dw2_asm_output_encoded_addr_rtx (per_encoding,
2054 eh_personality_libfunc, NULL);
2055 }
2056
2057 if (any_lsda_needed)
2058 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2059 eh_data_format_name (lsda_encoding));
2060
2061 if (fde_encoding != DW_EH_PE_absptr)
2062 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2063 eh_data_format_name (fde_encoding));
2064 }
2065
2066 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2067 output_cfi (cfi, NULL, for_eh);
2068
2069 /* Pad the CIE out to an address sized boundary. */
2070 ASM_OUTPUT_ALIGN (asm_out_file,
2071 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2072 ASM_OUTPUT_LABEL (asm_out_file, l2);
2073
2074 /* Loop through all of the FDE's. */
2075 for (i = 0; i < fde_table_in_use; i++)
2076 {
2077 fde = &fde_table[i];
2078
2079 /* Don't emit EH unwind info for leaf functions that don't need it. */
2080 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2081 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2082 && !fde->uses_eh_lsda)
2083 continue;
2084
2085 (*targetm.asm_out.internal_label) (asm_out_file, FDE_LABEL, for_eh + i * 2);
2086 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2087 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2088 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2089 "FDE Length");
2090 ASM_OUTPUT_LABEL (asm_out_file, l1);
2091
2092 if (for_eh)
2093 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2094 else
2095 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2096 "FDE CIE offset");
2097
2098 if (for_eh)
2099 {
2100 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2101 gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin),
2102 "FDE initial location");
2103 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2104 fde->dw_fde_end, fde->dw_fde_begin,
2105 "FDE address range");
2106 }
2107 else
2108 {
2109 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2110 "FDE initial location");
2111 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2112 fde->dw_fde_end, fde->dw_fde_begin,
2113 "FDE address range");
2114 }
2115
2116 if (augmentation[0])
2117 {
2118 if (any_lsda_needed)
2119 {
2120 int size = size_of_encoded_value (lsda_encoding);
2121
2122 if (lsda_encoding == DW_EH_PE_aligned)
2123 {
2124 int offset = ( 4 /* Length */
2125 + 4 /* CIE offset */
2126 + 2 * size_of_encoded_value (fde_encoding)
2127 + 1 /* Augmentation size */ );
2128 int pad = -offset & (PTR_SIZE - 1);
2129
2130 size += pad;
2131 if (size_of_uleb128 (size) != 1)
2132 abort ();
2133 }
2134
2135 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2136
2137 if (fde->uses_eh_lsda)
2138 {
2139 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2140 fde->funcdef_number);
2141 dw2_asm_output_encoded_addr_rtx (
2142 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2143 "Language Specific Data Area");
2144 }
2145 else
2146 {
2147 if (lsda_encoding == DW_EH_PE_aligned)
2148 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2149 dw2_asm_output_data
2150 (size_of_encoded_value (lsda_encoding), 0,
2151 "Language Specific Data Area (none)");
2152 }
2153 }
2154 else
2155 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2156 }
2157
2158 /* Loop through the Call Frame Instructions associated with
2159 this FDE. */
2160 fde->dw_fde_current_label = fde->dw_fde_begin;
2161 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2162 output_cfi (cfi, fde, for_eh);
2163
2164 /* Pad the FDE out to an address sized boundary. */
2165 ASM_OUTPUT_ALIGN (asm_out_file,
2166 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2167 ASM_OUTPUT_LABEL (asm_out_file, l2);
2168 }
2169
2170 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2171 dw2_asm_output_data (4, 0, "End of Table");
2172 #ifdef MIPS_DEBUGGING_INFO
2173 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2174 get a value of 0. Putting .align 0 after the label fixes it. */
2175 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2176 #endif
2177
2178 /* Turn off app to make assembly quicker. */
2179 if (flag_debug_asm)
2180 app_disable ();
2181 }
2182
2183 /* Output a marker (i.e. a label) for the beginning of a function, before
2184 the prologue. */
2185
2186 void
2187 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2188 const char *file ATTRIBUTE_UNUSED)
2189 {
2190 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2191 dw_fde_ref fde;
2192
2193 current_function_func_begin_label = 0;
2194
2195 #ifdef IA64_UNWIND_INFO
2196 /* ??? current_function_func_begin_label is also used by except.c
2197 for call-site information. We must emit this label if it might
2198 be used. */
2199 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2200 && ! dwarf2out_do_frame ())
2201 return;
2202 #else
2203 if (! dwarf2out_do_frame ())
2204 return;
2205 #endif
2206
2207 function_section (current_function_decl);
2208 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2209 current_function_funcdef_no);
2210 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2211 current_function_funcdef_no);
2212 current_function_func_begin_label = get_identifier (label);
2213
2214 #ifdef IA64_UNWIND_INFO
2215 /* We can elide the fde allocation if we're not emitting debug info. */
2216 if (! dwarf2out_do_frame ())
2217 return;
2218 #endif
2219
2220 /* Expand the fde table if necessary. */
2221 if (fde_table_in_use == fde_table_allocated)
2222 {
2223 fde_table_allocated += FDE_TABLE_INCREMENT;
2224 fde_table = ggc_realloc (fde_table,
2225 fde_table_allocated * sizeof (dw_fde_node));
2226 memset (fde_table + fde_table_in_use, 0,
2227 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2228 }
2229
2230 /* Record the FDE associated with this function. */
2231 current_funcdef_fde = fde_table_in_use;
2232
2233 /* Add the new FDE at the end of the fde_table. */
2234 fde = &fde_table[fde_table_in_use++];
2235 fde->dw_fde_begin = xstrdup (label);
2236 fde->dw_fde_current_label = NULL;
2237 fde->dw_fde_end = NULL;
2238 fde->dw_fde_cfi = NULL;
2239 fde->funcdef_number = current_function_funcdef_no;
2240 fde->nothrow = current_function_nothrow;
2241 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2242 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2243
2244 args_size = old_args_size = 0;
2245
2246 /* We only want to output line number information for the genuine dwarf2
2247 prologue case, not the eh frame case. */
2248 #ifdef DWARF2_DEBUGGING_INFO
2249 if (file)
2250 dwarf2out_source_line (line, file);
2251 #endif
2252 }
2253
2254 /* Output a marker (i.e. a label) for the absolute end of the generated code
2255 for a function definition. This gets called *after* the epilogue code has
2256 been generated. */
2257
2258 void
2259 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2260 const char *file ATTRIBUTE_UNUSED)
2261 {
2262 dw_fde_ref fde;
2263 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2264
2265 /* Output a label to mark the endpoint of the code generated for this
2266 function. */
2267 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2268 current_function_funcdef_no);
2269 ASM_OUTPUT_LABEL (asm_out_file, label);
2270 fde = &fde_table[fde_table_in_use - 1];
2271 fde->dw_fde_end = xstrdup (label);
2272 }
2273
2274 void
2275 dwarf2out_frame_init (void)
2276 {
2277 /* Allocate the initial hunk of the fde_table. */
2278 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2279 fde_table_allocated = FDE_TABLE_INCREMENT;
2280 fde_table_in_use = 0;
2281
2282 /* Generate the CFA instructions common to all FDE's. Do it now for the
2283 sake of lookup_cfa. */
2284
2285 #ifdef DWARF2_UNWIND_INFO
2286 /* On entry, the Canonical Frame Address is at SP. */
2287 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2288 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2289 #endif
2290 }
2291
2292 void
2293 dwarf2out_frame_finish (void)
2294 {
2295 /* Output call frame information. */
2296 if (write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
2297 output_call_frame_info (0);
2298
2299 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2300 output_call_frame_info (1);
2301 }
2302 #endif
2303 \f
2304 /* And now, the subset of the debugging information support code necessary
2305 for emitting location expressions. */
2306
2307 /* We need some way to distinguish DW_OP_addr with a direct symbol
2308 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2309 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2310
2311
2312 typedef struct dw_val_struct *dw_val_ref;
2313 typedef struct die_struct *dw_die_ref;
2314 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2315 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2316
2317 /* Each DIE may have a series of attribute/value pairs. Values
2318 can take on several forms. The forms that are used in this
2319 implementation are listed below. */
2320
2321 enum dw_val_class
2322 {
2323 dw_val_class_addr,
2324 dw_val_class_offset,
2325 dw_val_class_loc,
2326 dw_val_class_loc_list,
2327 dw_val_class_range_list,
2328 dw_val_class_const,
2329 dw_val_class_unsigned_const,
2330 dw_val_class_long_long,
2331 dw_val_class_float,
2332 dw_val_class_flag,
2333 dw_val_class_die_ref,
2334 dw_val_class_fde_ref,
2335 dw_val_class_lbl_id,
2336 dw_val_class_lbl_offset,
2337 dw_val_class_str
2338 };
2339
2340 /* Describe a double word constant value. */
2341 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2342
2343 typedef struct dw_long_long_struct GTY(())
2344 {
2345 unsigned long hi;
2346 unsigned long low;
2347 }
2348 dw_long_long_const;
2349
2350 /* Describe a floating point constant value. */
2351
2352 typedef struct dw_fp_struct GTY(())
2353 {
2354 long * GTY((length ("%h.length"))) array;
2355 unsigned length;
2356 }
2357 dw_float_const;
2358
2359 /* The dw_val_node describes an attribute's value, as it is
2360 represented internally. */
2361
2362 typedef struct dw_val_struct GTY(())
2363 {
2364 enum dw_val_class val_class;
2365 union dw_val_struct_union
2366 {
2367 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2368 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2369 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2370 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2371 HOST_WIDE_INT GTY ((default (""))) val_int;
2372 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2373 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2374 dw_float_const GTY ((tag ("dw_val_class_float"))) val_float;
2375 struct dw_val_die_union
2376 {
2377 dw_die_ref die;
2378 int external;
2379 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2380 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2381 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2382 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2383 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2384 }
2385 GTY ((desc ("%1.val_class"))) v;
2386 }
2387 dw_val_node;
2388
2389 /* Locations in memory are described using a sequence of stack machine
2390 operations. */
2391
2392 typedef struct dw_loc_descr_struct GTY(())
2393 {
2394 dw_loc_descr_ref dw_loc_next;
2395 enum dwarf_location_atom dw_loc_opc;
2396 dw_val_node dw_loc_oprnd1;
2397 dw_val_node dw_loc_oprnd2;
2398 int dw_loc_addr;
2399 }
2400 dw_loc_descr_node;
2401
2402 /* Location lists are ranges + location descriptions for that range,
2403 so you can track variables that are in different places over
2404 their entire life. */
2405 typedef struct dw_loc_list_struct GTY(())
2406 {
2407 dw_loc_list_ref dw_loc_next;
2408 const char *begin; /* Label for begin address of range */
2409 const char *end; /* Label for end address of range */
2410 char *ll_symbol; /* Label for beginning of location list.
2411 Only on head of list */
2412 const char *section; /* Section this loclist is relative to */
2413 dw_loc_descr_ref expr;
2414 } dw_loc_list_node;
2415
2416 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2417
2418 static const char *dwarf_stack_op_name (unsigned);
2419 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2420 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2421 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2422 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2423 static unsigned long size_of_locs (dw_loc_descr_ref);
2424 static void output_loc_operands (dw_loc_descr_ref);
2425 static void output_loc_sequence (dw_loc_descr_ref);
2426
2427 /* Convert a DWARF stack opcode into its string name. */
2428
2429 static const char *
2430 dwarf_stack_op_name (unsigned int op)
2431 {
2432 switch (op)
2433 {
2434 case DW_OP_addr:
2435 case INTERNAL_DW_OP_tls_addr:
2436 return "DW_OP_addr";
2437 case DW_OP_deref:
2438 return "DW_OP_deref";
2439 case DW_OP_const1u:
2440 return "DW_OP_const1u";
2441 case DW_OP_const1s:
2442 return "DW_OP_const1s";
2443 case DW_OP_const2u:
2444 return "DW_OP_const2u";
2445 case DW_OP_const2s:
2446 return "DW_OP_const2s";
2447 case DW_OP_const4u:
2448 return "DW_OP_const4u";
2449 case DW_OP_const4s:
2450 return "DW_OP_const4s";
2451 case DW_OP_const8u:
2452 return "DW_OP_const8u";
2453 case DW_OP_const8s:
2454 return "DW_OP_const8s";
2455 case DW_OP_constu:
2456 return "DW_OP_constu";
2457 case DW_OP_consts:
2458 return "DW_OP_consts";
2459 case DW_OP_dup:
2460 return "DW_OP_dup";
2461 case DW_OP_drop:
2462 return "DW_OP_drop";
2463 case DW_OP_over:
2464 return "DW_OP_over";
2465 case DW_OP_pick:
2466 return "DW_OP_pick";
2467 case DW_OP_swap:
2468 return "DW_OP_swap";
2469 case DW_OP_rot:
2470 return "DW_OP_rot";
2471 case DW_OP_xderef:
2472 return "DW_OP_xderef";
2473 case DW_OP_abs:
2474 return "DW_OP_abs";
2475 case DW_OP_and:
2476 return "DW_OP_and";
2477 case DW_OP_div:
2478 return "DW_OP_div";
2479 case DW_OP_minus:
2480 return "DW_OP_minus";
2481 case DW_OP_mod:
2482 return "DW_OP_mod";
2483 case DW_OP_mul:
2484 return "DW_OP_mul";
2485 case DW_OP_neg:
2486 return "DW_OP_neg";
2487 case DW_OP_not:
2488 return "DW_OP_not";
2489 case DW_OP_or:
2490 return "DW_OP_or";
2491 case DW_OP_plus:
2492 return "DW_OP_plus";
2493 case DW_OP_plus_uconst:
2494 return "DW_OP_plus_uconst";
2495 case DW_OP_shl:
2496 return "DW_OP_shl";
2497 case DW_OP_shr:
2498 return "DW_OP_shr";
2499 case DW_OP_shra:
2500 return "DW_OP_shra";
2501 case DW_OP_xor:
2502 return "DW_OP_xor";
2503 case DW_OP_bra:
2504 return "DW_OP_bra";
2505 case DW_OP_eq:
2506 return "DW_OP_eq";
2507 case DW_OP_ge:
2508 return "DW_OP_ge";
2509 case DW_OP_gt:
2510 return "DW_OP_gt";
2511 case DW_OP_le:
2512 return "DW_OP_le";
2513 case DW_OP_lt:
2514 return "DW_OP_lt";
2515 case DW_OP_ne:
2516 return "DW_OP_ne";
2517 case DW_OP_skip:
2518 return "DW_OP_skip";
2519 case DW_OP_lit0:
2520 return "DW_OP_lit0";
2521 case DW_OP_lit1:
2522 return "DW_OP_lit1";
2523 case DW_OP_lit2:
2524 return "DW_OP_lit2";
2525 case DW_OP_lit3:
2526 return "DW_OP_lit3";
2527 case DW_OP_lit4:
2528 return "DW_OP_lit4";
2529 case DW_OP_lit5:
2530 return "DW_OP_lit5";
2531 case DW_OP_lit6:
2532 return "DW_OP_lit6";
2533 case DW_OP_lit7:
2534 return "DW_OP_lit7";
2535 case DW_OP_lit8:
2536 return "DW_OP_lit8";
2537 case DW_OP_lit9:
2538 return "DW_OP_lit9";
2539 case DW_OP_lit10:
2540 return "DW_OP_lit10";
2541 case DW_OP_lit11:
2542 return "DW_OP_lit11";
2543 case DW_OP_lit12:
2544 return "DW_OP_lit12";
2545 case DW_OP_lit13:
2546 return "DW_OP_lit13";
2547 case DW_OP_lit14:
2548 return "DW_OP_lit14";
2549 case DW_OP_lit15:
2550 return "DW_OP_lit15";
2551 case DW_OP_lit16:
2552 return "DW_OP_lit16";
2553 case DW_OP_lit17:
2554 return "DW_OP_lit17";
2555 case DW_OP_lit18:
2556 return "DW_OP_lit18";
2557 case DW_OP_lit19:
2558 return "DW_OP_lit19";
2559 case DW_OP_lit20:
2560 return "DW_OP_lit20";
2561 case DW_OP_lit21:
2562 return "DW_OP_lit21";
2563 case DW_OP_lit22:
2564 return "DW_OP_lit22";
2565 case DW_OP_lit23:
2566 return "DW_OP_lit23";
2567 case DW_OP_lit24:
2568 return "DW_OP_lit24";
2569 case DW_OP_lit25:
2570 return "DW_OP_lit25";
2571 case DW_OP_lit26:
2572 return "DW_OP_lit26";
2573 case DW_OP_lit27:
2574 return "DW_OP_lit27";
2575 case DW_OP_lit28:
2576 return "DW_OP_lit28";
2577 case DW_OP_lit29:
2578 return "DW_OP_lit29";
2579 case DW_OP_lit30:
2580 return "DW_OP_lit30";
2581 case DW_OP_lit31:
2582 return "DW_OP_lit31";
2583 case DW_OP_reg0:
2584 return "DW_OP_reg0";
2585 case DW_OP_reg1:
2586 return "DW_OP_reg1";
2587 case DW_OP_reg2:
2588 return "DW_OP_reg2";
2589 case DW_OP_reg3:
2590 return "DW_OP_reg3";
2591 case DW_OP_reg4:
2592 return "DW_OP_reg4";
2593 case DW_OP_reg5:
2594 return "DW_OP_reg5";
2595 case DW_OP_reg6:
2596 return "DW_OP_reg6";
2597 case DW_OP_reg7:
2598 return "DW_OP_reg7";
2599 case DW_OP_reg8:
2600 return "DW_OP_reg8";
2601 case DW_OP_reg9:
2602 return "DW_OP_reg9";
2603 case DW_OP_reg10:
2604 return "DW_OP_reg10";
2605 case DW_OP_reg11:
2606 return "DW_OP_reg11";
2607 case DW_OP_reg12:
2608 return "DW_OP_reg12";
2609 case DW_OP_reg13:
2610 return "DW_OP_reg13";
2611 case DW_OP_reg14:
2612 return "DW_OP_reg14";
2613 case DW_OP_reg15:
2614 return "DW_OP_reg15";
2615 case DW_OP_reg16:
2616 return "DW_OP_reg16";
2617 case DW_OP_reg17:
2618 return "DW_OP_reg17";
2619 case DW_OP_reg18:
2620 return "DW_OP_reg18";
2621 case DW_OP_reg19:
2622 return "DW_OP_reg19";
2623 case DW_OP_reg20:
2624 return "DW_OP_reg20";
2625 case DW_OP_reg21:
2626 return "DW_OP_reg21";
2627 case DW_OP_reg22:
2628 return "DW_OP_reg22";
2629 case DW_OP_reg23:
2630 return "DW_OP_reg23";
2631 case DW_OP_reg24:
2632 return "DW_OP_reg24";
2633 case DW_OP_reg25:
2634 return "DW_OP_reg25";
2635 case DW_OP_reg26:
2636 return "DW_OP_reg26";
2637 case DW_OP_reg27:
2638 return "DW_OP_reg27";
2639 case DW_OP_reg28:
2640 return "DW_OP_reg28";
2641 case DW_OP_reg29:
2642 return "DW_OP_reg29";
2643 case DW_OP_reg30:
2644 return "DW_OP_reg30";
2645 case DW_OP_reg31:
2646 return "DW_OP_reg31";
2647 case DW_OP_breg0:
2648 return "DW_OP_breg0";
2649 case DW_OP_breg1:
2650 return "DW_OP_breg1";
2651 case DW_OP_breg2:
2652 return "DW_OP_breg2";
2653 case DW_OP_breg3:
2654 return "DW_OP_breg3";
2655 case DW_OP_breg4:
2656 return "DW_OP_breg4";
2657 case DW_OP_breg5:
2658 return "DW_OP_breg5";
2659 case DW_OP_breg6:
2660 return "DW_OP_breg6";
2661 case DW_OP_breg7:
2662 return "DW_OP_breg7";
2663 case DW_OP_breg8:
2664 return "DW_OP_breg8";
2665 case DW_OP_breg9:
2666 return "DW_OP_breg9";
2667 case DW_OP_breg10:
2668 return "DW_OP_breg10";
2669 case DW_OP_breg11:
2670 return "DW_OP_breg11";
2671 case DW_OP_breg12:
2672 return "DW_OP_breg12";
2673 case DW_OP_breg13:
2674 return "DW_OP_breg13";
2675 case DW_OP_breg14:
2676 return "DW_OP_breg14";
2677 case DW_OP_breg15:
2678 return "DW_OP_breg15";
2679 case DW_OP_breg16:
2680 return "DW_OP_breg16";
2681 case DW_OP_breg17:
2682 return "DW_OP_breg17";
2683 case DW_OP_breg18:
2684 return "DW_OP_breg18";
2685 case DW_OP_breg19:
2686 return "DW_OP_breg19";
2687 case DW_OP_breg20:
2688 return "DW_OP_breg20";
2689 case DW_OP_breg21:
2690 return "DW_OP_breg21";
2691 case DW_OP_breg22:
2692 return "DW_OP_breg22";
2693 case DW_OP_breg23:
2694 return "DW_OP_breg23";
2695 case DW_OP_breg24:
2696 return "DW_OP_breg24";
2697 case DW_OP_breg25:
2698 return "DW_OP_breg25";
2699 case DW_OP_breg26:
2700 return "DW_OP_breg26";
2701 case DW_OP_breg27:
2702 return "DW_OP_breg27";
2703 case DW_OP_breg28:
2704 return "DW_OP_breg28";
2705 case DW_OP_breg29:
2706 return "DW_OP_breg29";
2707 case DW_OP_breg30:
2708 return "DW_OP_breg30";
2709 case DW_OP_breg31:
2710 return "DW_OP_breg31";
2711 case DW_OP_regx:
2712 return "DW_OP_regx";
2713 case DW_OP_fbreg:
2714 return "DW_OP_fbreg";
2715 case DW_OP_bregx:
2716 return "DW_OP_bregx";
2717 case DW_OP_piece:
2718 return "DW_OP_piece";
2719 case DW_OP_deref_size:
2720 return "DW_OP_deref_size";
2721 case DW_OP_xderef_size:
2722 return "DW_OP_xderef_size";
2723 case DW_OP_nop:
2724 return "DW_OP_nop";
2725 case DW_OP_push_object_address:
2726 return "DW_OP_push_object_address";
2727 case DW_OP_call2:
2728 return "DW_OP_call2";
2729 case DW_OP_call4:
2730 return "DW_OP_call4";
2731 case DW_OP_call_ref:
2732 return "DW_OP_call_ref";
2733 case DW_OP_GNU_push_tls_address:
2734 return "DW_OP_GNU_push_tls_address";
2735 default:
2736 return "OP_<unknown>";
2737 }
2738 }
2739
2740 /* Return a pointer to a newly allocated location description. Location
2741 descriptions are simple expression terms that can be strung
2742 together to form more complicated location (address) descriptions. */
2743
2744 static inline dw_loc_descr_ref
2745 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2746 unsigned HOST_WIDE_INT oprnd2)
2747 {
2748 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2749
2750 descr->dw_loc_opc = op;
2751 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2752 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2753 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2754 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2755
2756 return descr;
2757 }
2758
2759
2760 /* Add a location description term to a location description expression. */
2761
2762 static inline void
2763 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
2764 {
2765 dw_loc_descr_ref *d;
2766
2767 /* Find the end of the chain. */
2768 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
2769 ;
2770
2771 *d = descr;
2772 }
2773
2774 /* Return the size of a location descriptor. */
2775
2776 static unsigned long
2777 size_of_loc_descr (dw_loc_descr_ref loc)
2778 {
2779 unsigned long size = 1;
2780
2781 switch (loc->dw_loc_opc)
2782 {
2783 case DW_OP_addr:
2784 case INTERNAL_DW_OP_tls_addr:
2785 size += DWARF2_ADDR_SIZE;
2786 break;
2787 case DW_OP_const1u:
2788 case DW_OP_const1s:
2789 size += 1;
2790 break;
2791 case DW_OP_const2u:
2792 case DW_OP_const2s:
2793 size += 2;
2794 break;
2795 case DW_OP_const4u:
2796 case DW_OP_const4s:
2797 size += 4;
2798 break;
2799 case DW_OP_const8u:
2800 case DW_OP_const8s:
2801 size += 8;
2802 break;
2803 case DW_OP_constu:
2804 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2805 break;
2806 case DW_OP_consts:
2807 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2808 break;
2809 case DW_OP_pick:
2810 size += 1;
2811 break;
2812 case DW_OP_plus_uconst:
2813 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2814 break;
2815 case DW_OP_skip:
2816 case DW_OP_bra:
2817 size += 2;
2818 break;
2819 case DW_OP_breg0:
2820 case DW_OP_breg1:
2821 case DW_OP_breg2:
2822 case DW_OP_breg3:
2823 case DW_OP_breg4:
2824 case DW_OP_breg5:
2825 case DW_OP_breg6:
2826 case DW_OP_breg7:
2827 case DW_OP_breg8:
2828 case DW_OP_breg9:
2829 case DW_OP_breg10:
2830 case DW_OP_breg11:
2831 case DW_OP_breg12:
2832 case DW_OP_breg13:
2833 case DW_OP_breg14:
2834 case DW_OP_breg15:
2835 case DW_OP_breg16:
2836 case DW_OP_breg17:
2837 case DW_OP_breg18:
2838 case DW_OP_breg19:
2839 case DW_OP_breg20:
2840 case DW_OP_breg21:
2841 case DW_OP_breg22:
2842 case DW_OP_breg23:
2843 case DW_OP_breg24:
2844 case DW_OP_breg25:
2845 case DW_OP_breg26:
2846 case DW_OP_breg27:
2847 case DW_OP_breg28:
2848 case DW_OP_breg29:
2849 case DW_OP_breg30:
2850 case DW_OP_breg31:
2851 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2852 break;
2853 case DW_OP_regx:
2854 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2855 break;
2856 case DW_OP_fbreg:
2857 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
2858 break;
2859 case DW_OP_bregx:
2860 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2861 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
2862 break;
2863 case DW_OP_piece:
2864 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
2865 break;
2866 case DW_OP_deref_size:
2867 case DW_OP_xderef_size:
2868 size += 1;
2869 break;
2870 case DW_OP_call2:
2871 size += 2;
2872 break;
2873 case DW_OP_call4:
2874 size += 4;
2875 break;
2876 case DW_OP_call_ref:
2877 size += DWARF2_ADDR_SIZE;
2878 break;
2879 default:
2880 break;
2881 }
2882
2883 return size;
2884 }
2885
2886 /* Return the size of a series of location descriptors. */
2887
2888 static unsigned long
2889 size_of_locs (dw_loc_descr_ref loc)
2890 {
2891 unsigned long size;
2892
2893 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
2894 {
2895 loc->dw_loc_addr = size;
2896 size += size_of_loc_descr (loc);
2897 }
2898
2899 return size;
2900 }
2901
2902 /* Output location description stack opcode's operands (if any). */
2903
2904 static void
2905 output_loc_operands (dw_loc_descr_ref loc)
2906 {
2907 dw_val_ref val1 = &loc->dw_loc_oprnd1;
2908 dw_val_ref val2 = &loc->dw_loc_oprnd2;
2909
2910 switch (loc->dw_loc_opc)
2911 {
2912 #ifdef DWARF2_DEBUGGING_INFO
2913 case DW_OP_addr:
2914 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
2915 break;
2916 case DW_OP_const2u:
2917 case DW_OP_const2s:
2918 dw2_asm_output_data (2, val1->v.val_int, NULL);
2919 break;
2920 case DW_OP_const4u:
2921 case DW_OP_const4s:
2922 dw2_asm_output_data (4, val1->v.val_int, NULL);
2923 break;
2924 case DW_OP_const8u:
2925 case DW_OP_const8s:
2926 if (HOST_BITS_PER_LONG < 64)
2927 abort ();
2928 dw2_asm_output_data (8, val1->v.val_int, NULL);
2929 break;
2930 case DW_OP_skip:
2931 case DW_OP_bra:
2932 {
2933 int offset;
2934
2935 if (val1->val_class == dw_val_class_loc)
2936 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
2937 else
2938 abort ();
2939
2940 dw2_asm_output_data (2, offset, NULL);
2941 }
2942 break;
2943 #else
2944 case DW_OP_addr:
2945 case DW_OP_const2u:
2946 case DW_OP_const2s:
2947 case DW_OP_const4u:
2948 case DW_OP_const4s:
2949 case DW_OP_const8u:
2950 case DW_OP_const8s:
2951 case DW_OP_skip:
2952 case DW_OP_bra:
2953 /* We currently don't make any attempt to make sure these are
2954 aligned properly like we do for the main unwind info, so
2955 don't support emitting things larger than a byte if we're
2956 only doing unwinding. */
2957 abort ();
2958 #endif
2959 case DW_OP_const1u:
2960 case DW_OP_const1s:
2961 dw2_asm_output_data (1, val1->v.val_int, NULL);
2962 break;
2963 case DW_OP_constu:
2964 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2965 break;
2966 case DW_OP_consts:
2967 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
2968 break;
2969 case DW_OP_pick:
2970 dw2_asm_output_data (1, val1->v.val_int, NULL);
2971 break;
2972 case DW_OP_plus_uconst:
2973 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
2974 break;
2975 case DW_OP_breg0:
2976 case DW_OP_breg1:
2977 case DW_OP_breg2:
2978 case DW_OP_breg3:
2979 case DW_OP_breg4:
2980 case DW_OP_breg5:
2981 case DW_OP_breg6:
2982 case DW_OP_breg7:
2983 case DW_OP_breg8:
2984 case DW_OP_breg9:
2985 case DW_OP_breg10:
2986 case DW_OP_breg11:
2987 case DW_OP_breg12:
2988 case DW_OP_breg13:
2989 case DW_OP_breg14:
2990 case DW_OP_breg15:
2991 case DW_OP_breg16:
2992 case DW_OP_breg17:
2993 case DW_OP_breg18:
2994 case DW_OP_breg19:
2995 case DW_OP_breg20:
2996 case DW_OP_breg21:
2997 case DW_OP_breg22:
2998 case DW_OP_breg23:
2999 case DW_OP_breg24:
3000 case DW_OP_breg25:
3001 case DW_OP_breg26:
3002 case DW_OP_breg27:
3003 case DW_OP_breg28:
3004 case DW_OP_breg29:
3005 case DW_OP_breg30:
3006 case DW_OP_breg31:
3007 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3008 break;
3009 case DW_OP_regx:
3010 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3011 break;
3012 case DW_OP_fbreg:
3013 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3014 break;
3015 case DW_OP_bregx:
3016 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3017 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3018 break;
3019 case DW_OP_piece:
3020 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3021 break;
3022 case DW_OP_deref_size:
3023 case DW_OP_xderef_size:
3024 dw2_asm_output_data (1, val1->v.val_int, NULL);
3025 break;
3026
3027 case INTERNAL_DW_OP_tls_addr:
3028 #ifdef ASM_OUTPUT_DWARF_DTPREL
3029 ASM_OUTPUT_DWARF_DTPREL (asm_out_file, DWARF2_ADDR_SIZE,
3030 val1->v.val_addr);
3031 fputc ('\n', asm_out_file);
3032 #else
3033 abort ();
3034 #endif
3035 break;
3036
3037 default:
3038 /* Other codes have no operands. */
3039 break;
3040 }
3041 }
3042
3043 /* Output a sequence of location operations. */
3044
3045 static void
3046 output_loc_sequence (dw_loc_descr_ref loc)
3047 {
3048 for (; loc != NULL; loc = loc->dw_loc_next)
3049 {
3050 /* Output the opcode. */
3051 dw2_asm_output_data (1, loc->dw_loc_opc,
3052 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3053
3054 /* Output the operand(s) (if any). */
3055 output_loc_operands (loc);
3056 }
3057 }
3058
3059 /* This routine will generate the correct assembly data for a location
3060 description based on a cfi entry with a complex address. */
3061
3062 static void
3063 output_cfa_loc (dw_cfi_ref cfi)
3064 {
3065 dw_loc_descr_ref loc;
3066 unsigned long size;
3067
3068 /* Output the size of the block. */
3069 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3070 size = size_of_locs (loc);
3071 dw2_asm_output_data_uleb128 (size, NULL);
3072
3073 /* Now output the operations themselves. */
3074 output_loc_sequence (loc);
3075 }
3076
3077 /* This function builds a dwarf location descriptor sequence from
3078 a dw_cfa_location. */
3079
3080 static struct dw_loc_descr_struct *
3081 build_cfa_loc (dw_cfa_location *cfa)
3082 {
3083 struct dw_loc_descr_struct *head, *tmp;
3084
3085 if (cfa->indirect == 0)
3086 abort ();
3087
3088 if (cfa->base_offset)
3089 {
3090 if (cfa->reg <= 31)
3091 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3092 else
3093 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3094 }
3095 else if (cfa->reg <= 31)
3096 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3097 else
3098 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3099
3100 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3101 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3102 add_loc_descr (&head, tmp);
3103 if (cfa->offset != 0)
3104 {
3105 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3106 add_loc_descr (&head, tmp);
3107 }
3108
3109 return head;
3110 }
3111
3112 /* This function fills in aa dw_cfa_location structure from a dwarf location
3113 descriptor sequence. */
3114
3115 static void
3116 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3117 {
3118 struct dw_loc_descr_struct *ptr;
3119 cfa->offset = 0;
3120 cfa->base_offset = 0;
3121 cfa->indirect = 0;
3122 cfa->reg = -1;
3123
3124 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3125 {
3126 enum dwarf_location_atom op = ptr->dw_loc_opc;
3127
3128 switch (op)
3129 {
3130 case DW_OP_reg0:
3131 case DW_OP_reg1:
3132 case DW_OP_reg2:
3133 case DW_OP_reg3:
3134 case DW_OP_reg4:
3135 case DW_OP_reg5:
3136 case DW_OP_reg6:
3137 case DW_OP_reg7:
3138 case DW_OP_reg8:
3139 case DW_OP_reg9:
3140 case DW_OP_reg10:
3141 case DW_OP_reg11:
3142 case DW_OP_reg12:
3143 case DW_OP_reg13:
3144 case DW_OP_reg14:
3145 case DW_OP_reg15:
3146 case DW_OP_reg16:
3147 case DW_OP_reg17:
3148 case DW_OP_reg18:
3149 case DW_OP_reg19:
3150 case DW_OP_reg20:
3151 case DW_OP_reg21:
3152 case DW_OP_reg22:
3153 case DW_OP_reg23:
3154 case DW_OP_reg24:
3155 case DW_OP_reg25:
3156 case DW_OP_reg26:
3157 case DW_OP_reg27:
3158 case DW_OP_reg28:
3159 case DW_OP_reg29:
3160 case DW_OP_reg30:
3161 case DW_OP_reg31:
3162 cfa->reg = op - DW_OP_reg0;
3163 break;
3164 case DW_OP_regx:
3165 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3166 break;
3167 case DW_OP_breg0:
3168 case DW_OP_breg1:
3169 case DW_OP_breg2:
3170 case DW_OP_breg3:
3171 case DW_OP_breg4:
3172 case DW_OP_breg5:
3173 case DW_OP_breg6:
3174 case DW_OP_breg7:
3175 case DW_OP_breg8:
3176 case DW_OP_breg9:
3177 case DW_OP_breg10:
3178 case DW_OP_breg11:
3179 case DW_OP_breg12:
3180 case DW_OP_breg13:
3181 case DW_OP_breg14:
3182 case DW_OP_breg15:
3183 case DW_OP_breg16:
3184 case DW_OP_breg17:
3185 case DW_OP_breg18:
3186 case DW_OP_breg19:
3187 case DW_OP_breg20:
3188 case DW_OP_breg21:
3189 case DW_OP_breg22:
3190 case DW_OP_breg23:
3191 case DW_OP_breg24:
3192 case DW_OP_breg25:
3193 case DW_OP_breg26:
3194 case DW_OP_breg27:
3195 case DW_OP_breg28:
3196 case DW_OP_breg29:
3197 case DW_OP_breg30:
3198 case DW_OP_breg31:
3199 cfa->reg = op - DW_OP_breg0;
3200 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3201 break;
3202 case DW_OP_bregx:
3203 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3204 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3205 break;
3206 case DW_OP_deref:
3207 cfa->indirect = 1;
3208 break;
3209 case DW_OP_plus_uconst:
3210 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3211 break;
3212 default:
3213 internal_error ("DW_LOC_OP %s not implemented\n",
3214 dwarf_stack_op_name (ptr->dw_loc_opc));
3215 }
3216 }
3217 }
3218 #endif /* .debug_frame support */
3219 \f
3220 /* And now, the support for symbolic debugging information. */
3221 #ifdef DWARF2_DEBUGGING_INFO
3222
3223 /* .debug_str support. */
3224 static int output_indirect_string (void **, void *);
3225
3226 static void dwarf2out_init (const char *);
3227 static void dwarf2out_finish (const char *);
3228 static void dwarf2out_define (unsigned int, const char *);
3229 static void dwarf2out_undef (unsigned int, const char *);
3230 static void dwarf2out_start_source_file (unsigned, const char *);
3231 static void dwarf2out_end_source_file (unsigned);
3232 static void dwarf2out_begin_block (unsigned, unsigned);
3233 static void dwarf2out_end_block (unsigned, unsigned);
3234 static bool dwarf2out_ignore_block (tree);
3235 static void dwarf2out_global_decl (tree);
3236 static void dwarf2out_abstract_function (tree);
3237
3238 /* The debug hooks structure. */
3239
3240 const struct gcc_debug_hooks dwarf2_debug_hooks =
3241 {
3242 dwarf2out_init,
3243 dwarf2out_finish,
3244 dwarf2out_define,
3245 dwarf2out_undef,
3246 dwarf2out_start_source_file,
3247 dwarf2out_end_source_file,
3248 dwarf2out_begin_block,
3249 dwarf2out_end_block,
3250 dwarf2out_ignore_block,
3251 dwarf2out_source_line,
3252 dwarf2out_begin_prologue,
3253 debug_nothing_int_charstar, /* end_prologue */
3254 dwarf2out_end_epilogue,
3255 debug_nothing_tree, /* begin_function */
3256 debug_nothing_int, /* end_function */
3257 dwarf2out_decl, /* function_decl */
3258 dwarf2out_global_decl,
3259 debug_nothing_tree, /* deferred_inline_function */
3260 /* The DWARF 2 backend tries to reduce debugging bloat by not
3261 emitting the abstract description of inline functions until
3262 something tries to reference them. */
3263 dwarf2out_abstract_function, /* outlining_inline_function */
3264 debug_nothing_rtx, /* label */
3265 debug_nothing_int /* handle_pch */
3266 };
3267 #endif
3268 \f
3269 /* NOTE: In the comments in this file, many references are made to
3270 "Debugging Information Entries". This term is abbreviated as `DIE'
3271 throughout the remainder of this file. */
3272
3273 /* An internal representation of the DWARF output is built, and then
3274 walked to generate the DWARF debugging info. The walk of the internal
3275 representation is done after the entire program has been compiled.
3276 The types below are used to describe the internal representation. */
3277
3278 /* Various DIE's use offsets relative to the beginning of the
3279 .debug_info section to refer to each other. */
3280
3281 typedef long int dw_offset;
3282
3283 /* Define typedefs here to avoid circular dependencies. */
3284
3285 typedef struct dw_attr_struct *dw_attr_ref;
3286 typedef struct dw_line_info_struct *dw_line_info_ref;
3287 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3288 typedef struct pubname_struct *pubname_ref;
3289 typedef struct dw_ranges_struct *dw_ranges_ref;
3290
3291 /* Each entry in the line_info_table maintains the file and
3292 line number associated with the label generated for that
3293 entry. The label gives the PC value associated with
3294 the line number entry. */
3295
3296 typedef struct dw_line_info_struct GTY(())
3297 {
3298 unsigned long dw_file_num;
3299 unsigned long dw_line_num;
3300 }
3301 dw_line_info_entry;
3302
3303 /* Line information for functions in separate sections; each one gets its
3304 own sequence. */
3305 typedef struct dw_separate_line_info_struct GTY(())
3306 {
3307 unsigned long dw_file_num;
3308 unsigned long dw_line_num;
3309 unsigned long function;
3310 }
3311 dw_separate_line_info_entry;
3312
3313 /* Each DIE attribute has a field specifying the attribute kind,
3314 a link to the next attribute in the chain, and an attribute value.
3315 Attributes are typically linked below the DIE they modify. */
3316
3317 typedef struct dw_attr_struct GTY(())
3318 {
3319 enum dwarf_attribute dw_attr;
3320 dw_attr_ref dw_attr_next;
3321 dw_val_node dw_attr_val;
3322 }
3323 dw_attr_node;
3324
3325 /* The Debugging Information Entry (DIE) structure */
3326
3327 typedef struct die_struct GTY(())
3328 {
3329 enum dwarf_tag die_tag;
3330 char *die_symbol;
3331 dw_attr_ref die_attr;
3332 dw_die_ref die_parent;
3333 dw_die_ref die_child;
3334 dw_die_ref die_sib;
3335 dw_offset die_offset;
3336 unsigned long die_abbrev;
3337 int die_mark;
3338 }
3339 die_node;
3340
3341 /* The pubname structure */
3342
3343 typedef struct pubname_struct GTY(())
3344 {
3345 dw_die_ref die;
3346 char *name;
3347 }
3348 pubname_entry;
3349
3350 struct dw_ranges_struct GTY(())
3351 {
3352 int block_num;
3353 };
3354
3355 /* The limbo die list structure. */
3356 typedef struct limbo_die_struct GTY(())
3357 {
3358 dw_die_ref die;
3359 tree created_for;
3360 struct limbo_die_struct *next;
3361 }
3362 limbo_die_node;
3363
3364 /* How to start an assembler comment. */
3365 #ifndef ASM_COMMENT_START
3366 #define ASM_COMMENT_START ";#"
3367 #endif
3368
3369 /* Define a macro which returns nonzero for a TYPE_DECL which was
3370 implicitly generated for a tagged type.
3371
3372 Note that unlike the gcc front end (which generates a NULL named
3373 TYPE_DECL node for each complete tagged type, each array type, and
3374 each function type node created) the g++ front end generates a
3375 _named_ TYPE_DECL node for each tagged type node created.
3376 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3377 generate a DW_TAG_typedef DIE for them. */
3378
3379 #define TYPE_DECL_IS_STUB(decl) \
3380 (DECL_NAME (decl) == NULL_TREE \
3381 || (DECL_ARTIFICIAL (decl) \
3382 && is_tagged_type (TREE_TYPE (decl)) \
3383 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3384 /* This is necessary for stub decls that \
3385 appear in nested inline functions. */ \
3386 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3387 && (decl_ultimate_origin (decl) \
3388 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3389
3390 /* Information concerning the compilation unit's programming
3391 language, and compiler version. */
3392
3393 /* Fixed size portion of the DWARF compilation unit header. */
3394 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3395 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3396
3397 /* Fixed size portion of public names info. */
3398 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3399
3400 /* Fixed size portion of the address range info. */
3401 #define DWARF_ARANGES_HEADER_SIZE \
3402 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3403 DWARF2_ADDR_SIZE * 2) \
3404 - DWARF_INITIAL_LENGTH_SIZE)
3405
3406 /* Size of padding portion in the address range info. It must be
3407 aligned to twice the pointer size. */
3408 #define DWARF_ARANGES_PAD_SIZE \
3409 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3410 DWARF2_ADDR_SIZE * 2) \
3411 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3412
3413 /* Use assembler line directives if available. */
3414 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3415 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3416 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3417 #else
3418 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3419 #endif
3420 #endif
3421
3422 /* Minimum line offset in a special line info. opcode.
3423 This value was chosen to give a reasonable range of values. */
3424 #define DWARF_LINE_BASE -10
3425
3426 /* First special line opcode - leave room for the standard opcodes. */
3427 #define DWARF_LINE_OPCODE_BASE 10
3428
3429 /* Range of line offsets in a special line info. opcode. */
3430 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3431
3432 /* Flag that indicates the initial value of the is_stmt_start flag.
3433 In the present implementation, we do not mark any lines as
3434 the beginning of a source statement, because that information
3435 is not made available by the GCC front-end. */
3436 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3437
3438 #ifdef DWARF2_DEBUGGING_INFO
3439 /* This location is used by calc_die_sizes() to keep track
3440 the offset of each DIE within the .debug_info section. */
3441 static unsigned long next_die_offset;
3442 #endif
3443
3444 /* Record the root of the DIE's built for the current compilation unit. */
3445 static GTY(()) dw_die_ref comp_unit_die;
3446
3447 /* A list of DIEs with a NULL parent waiting to be relocated. */
3448 static GTY(()) limbo_die_node *limbo_die_list;
3449
3450 /* Filenames referenced by this compilation unit. */
3451 static GTY(()) varray_type file_table;
3452 static GTY(()) varray_type file_table_emitted;
3453 static GTY(()) size_t file_table_last_lookup_index;
3454
3455 /* A pointer to the base of a table of references to DIE's that describe
3456 declarations. The table is indexed by DECL_UID() which is a unique
3457 number identifying each decl. */
3458 static GTY((length ("decl_die_table_allocated"))) dw_die_ref *decl_die_table;
3459
3460 /* Number of elements currently allocated for the decl_die_table. */
3461 static GTY(()) unsigned decl_die_table_allocated;
3462
3463 /* Number of elements in decl_die_table currently in use. */
3464 static GTY(()) unsigned decl_die_table_in_use;
3465
3466 /* Size (in elements) of increments by which we may expand the
3467 decl_die_table. */
3468 #define DECL_DIE_TABLE_INCREMENT 256
3469
3470 /* A pointer to the base of a list of references to DIE's that
3471 are uniquely identified by their tag, presence/absence of
3472 children DIE's, and list of attribute/value pairs. */
3473 static GTY((length ("abbrev_die_table_allocated")))
3474 dw_die_ref *abbrev_die_table;
3475
3476 /* Number of elements currently allocated for abbrev_die_table. */
3477 static GTY(()) unsigned abbrev_die_table_allocated;
3478
3479 /* Number of elements in type_die_table currently in use. */
3480 static GTY(()) unsigned abbrev_die_table_in_use;
3481
3482 /* Size (in elements) of increments by which we may expand the
3483 abbrev_die_table. */
3484 #define ABBREV_DIE_TABLE_INCREMENT 256
3485
3486 /* A pointer to the base of a table that contains line information
3487 for each source code line in .text in the compilation unit. */
3488 static GTY((length ("line_info_table_allocated")))
3489 dw_line_info_ref line_info_table;
3490
3491 /* Number of elements currently allocated for line_info_table. */
3492 static GTY(()) unsigned line_info_table_allocated;
3493
3494 /* Number of elements in line_info_table currently in use. */
3495 static GTY(()) unsigned line_info_table_in_use;
3496
3497 /* A pointer to the base of a table that contains line information
3498 for each source code line outside of .text in the compilation unit. */
3499 static GTY ((length ("separate_line_info_table_allocated")))
3500 dw_separate_line_info_ref separate_line_info_table;
3501
3502 /* Number of elements currently allocated for separate_line_info_table. */
3503 static GTY(()) unsigned separate_line_info_table_allocated;
3504
3505 /* Number of elements in separate_line_info_table currently in use. */
3506 static GTY(()) unsigned separate_line_info_table_in_use;
3507
3508 /* Size (in elements) of increments by which we may expand the
3509 line_info_table. */
3510 #define LINE_INFO_TABLE_INCREMENT 1024
3511
3512 /* A pointer to the base of a table that contains a list of publicly
3513 accessible names. */
3514 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3515
3516 /* Number of elements currently allocated for pubname_table. */
3517 static GTY(()) unsigned pubname_table_allocated;
3518
3519 /* Number of elements in pubname_table currently in use. */
3520 static GTY(()) unsigned pubname_table_in_use;
3521
3522 /* Size (in elements) of increments by which we may expand the
3523 pubname_table. */
3524 #define PUBNAME_TABLE_INCREMENT 64
3525
3526 /* Array of dies for which we should generate .debug_arange info. */
3527 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3528
3529 /* Number of elements currently allocated for arange_table. */
3530 static GTY(()) unsigned arange_table_allocated;
3531
3532 /* Number of elements in arange_table currently in use. */
3533 static GTY(()) unsigned arange_table_in_use;
3534
3535 /* Size (in elements) of increments by which we may expand the
3536 arange_table. */
3537 #define ARANGE_TABLE_INCREMENT 64
3538
3539 /* Array of dies for which we should generate .debug_ranges info. */
3540 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3541
3542 /* Number of elements currently allocated for ranges_table. */
3543 static GTY(()) unsigned ranges_table_allocated;
3544
3545 /* Number of elements in ranges_table currently in use. */
3546 static GTY(()) unsigned ranges_table_in_use;
3547
3548 /* Size (in elements) of increments by which we may expand the
3549 ranges_table. */
3550 #define RANGES_TABLE_INCREMENT 64
3551
3552 /* Whether we have location lists that need outputting */
3553 static GTY(()) unsigned have_location_lists;
3554
3555 #ifdef DWARF2_DEBUGGING_INFO
3556 /* Record whether the function being analyzed contains inlined functions. */
3557 static int current_function_has_inlines;
3558 #endif
3559 #if 0 && defined (MIPS_DEBUGGING_INFO)
3560 static int comp_unit_has_inlines;
3561 #endif
3562
3563 /* Number of file tables emitted in maybe_emit_file(). */
3564 static GTY(()) int emitcount = 0;
3565
3566 /* Number of internal labels generated by gen_internal_sym(). */
3567 static GTY(()) int label_num;
3568
3569 #ifdef DWARF2_DEBUGGING_INFO
3570
3571 /* Forward declarations for functions defined in this file. */
3572
3573 static int is_pseudo_reg (rtx);
3574 static tree type_main_variant (tree);
3575 static int is_tagged_type (tree);
3576 static const char *dwarf_tag_name (unsigned);
3577 static const char *dwarf_attr_name (unsigned);
3578 static const char *dwarf_form_name (unsigned);
3579 #if 0
3580 static const char *dwarf_type_encoding_name (unsigned);
3581 #endif
3582 static tree decl_ultimate_origin (tree);
3583 static tree block_ultimate_origin (tree);
3584 static tree decl_class_context (tree);
3585 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3586 static inline enum dw_val_class AT_class (dw_attr_ref);
3587 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3588 static inline unsigned AT_flag (dw_attr_ref);
3589 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3590 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3591 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3592 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3593 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3594 unsigned long);
3595 static void add_AT_float (dw_die_ref, enum dwarf_attribute, unsigned, long *);
3596 static hashval_t debug_str_do_hash (const void *);
3597 static int debug_str_eq (const void *, const void *);
3598 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3599 static inline const char *AT_string (dw_attr_ref);
3600 static int AT_string_form (dw_attr_ref);
3601 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3602 static inline dw_die_ref AT_ref (dw_attr_ref);
3603 static inline int AT_ref_external (dw_attr_ref);
3604 static inline void set_AT_ref_external (dw_attr_ref, int);
3605 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3606 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3607 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3608 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3609 dw_loc_list_ref);
3610 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3611 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3612 static inline rtx AT_addr (dw_attr_ref);
3613 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3614 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3615 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3616 unsigned HOST_WIDE_INT);
3617 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3618 unsigned long);
3619 static inline const char *AT_lbl (dw_attr_ref);
3620 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3621 static const char *get_AT_low_pc (dw_die_ref);
3622 static const char *get_AT_hi_pc (dw_die_ref);
3623 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3624 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3625 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3626 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3627 static bool is_c_family (void);
3628 static bool is_cxx (void);
3629 static bool is_java (void);
3630 static bool is_fortran (void);
3631 static bool is_ada (void);
3632 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3633 static inline void free_die (dw_die_ref);
3634 static void remove_children (dw_die_ref);
3635 static void add_child_die (dw_die_ref, dw_die_ref);
3636 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3637 static dw_die_ref lookup_type_die (tree);
3638 static void equate_type_number_to_die (tree, dw_die_ref);
3639 static dw_die_ref lookup_decl_die (tree);
3640 static void equate_decl_number_to_die (tree, dw_die_ref);
3641 static void print_spaces (FILE *);
3642 static void print_die (dw_die_ref, FILE *);
3643 static void print_dwarf_line_table (FILE *);
3644 static void reverse_die_lists (dw_die_ref);
3645 static void reverse_all_dies (dw_die_ref);
3646 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3647 static dw_die_ref pop_compile_unit (dw_die_ref);
3648 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3649 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3650 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3651 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3652 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3653 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3654 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3655 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3656 static void compute_section_prefix (dw_die_ref);
3657 static int is_type_die (dw_die_ref);
3658 static int is_comdat_die (dw_die_ref);
3659 static int is_symbol_die (dw_die_ref);
3660 static void assign_symbol_names (dw_die_ref);
3661 static void break_out_includes (dw_die_ref);
3662 static hashval_t htab_cu_hash (const void *);
3663 static int htab_cu_eq (const void *, const void *);
3664 static void htab_cu_del (void *);
3665 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3666 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3667 static void add_sibling_attributes (dw_die_ref);
3668 static void build_abbrev_table (dw_die_ref);
3669 static void output_location_lists (dw_die_ref);
3670 static int constant_size (long unsigned);
3671 static unsigned long size_of_die (dw_die_ref);
3672 static void calc_die_sizes (dw_die_ref);
3673 static void mark_dies (dw_die_ref);
3674 static void unmark_dies (dw_die_ref);
3675 static void unmark_all_dies (dw_die_ref);
3676 static unsigned long size_of_pubnames (void);
3677 static unsigned long size_of_aranges (void);
3678 static enum dwarf_form value_format (dw_attr_ref);
3679 static void output_value_format (dw_attr_ref);
3680 static void output_abbrev_section (void);
3681 static void output_die_symbol (dw_die_ref);
3682 static void output_die (dw_die_ref);
3683 static void output_compilation_unit_header (void);
3684 static void output_comp_unit (dw_die_ref, int);
3685 static const char *dwarf2_name (tree, int);
3686 static void add_pubname (tree, dw_die_ref);
3687 static void output_pubnames (void);
3688 static void add_arange (tree, dw_die_ref);
3689 static void output_aranges (void);
3690 static unsigned int add_ranges (tree);
3691 static void output_ranges (void);
3692 static void output_line_info (void);
3693 static void output_file_names (void);
3694 static dw_die_ref base_type_die (tree);
3695 static tree root_type (tree);
3696 static int is_base_type (tree);
3697 static bool is_ada_subrange_type (tree);
3698 static dw_die_ref subrange_type_die (tree);
3699 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3700 static int type_is_enum (tree);
3701 static unsigned int reg_number (rtx);
3702 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3703 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3704 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3705 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3706 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT);
3707 static int is_based_loc (rtx);
3708 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode);
3709 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3710 static dw_loc_descr_ref loc_descriptor (rtx);
3711 static dw_loc_descr_ref loc_descriptor_from_tree (tree, int);
3712 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3713 static tree field_type (tree);
3714 static unsigned int simple_type_align_in_bits (tree);
3715 static unsigned int simple_decl_align_in_bits (tree);
3716 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3717 static HOST_WIDE_INT field_byte_offset (tree);
3718 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3719 dw_loc_descr_ref);
3720 static void add_data_member_location_attribute (dw_die_ref, tree);
3721 static void add_const_value_attribute (dw_die_ref, rtx);
3722 static rtx rtl_for_decl_location (tree);
3723 static void add_location_or_const_value_attribute (dw_die_ref, tree);
3724 static void tree_add_const_value_attribute (dw_die_ref, tree);
3725 static void add_name_attribute (dw_die_ref, const char *);
3726 static void add_comp_dir_attribute (dw_die_ref);
3727 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
3728 static void add_subscript_info (dw_die_ref, tree);
3729 static void add_byte_size_attribute (dw_die_ref, tree);
3730 static void add_bit_offset_attribute (dw_die_ref, tree);
3731 static void add_bit_size_attribute (dw_die_ref, tree);
3732 static void add_prototyped_attribute (dw_die_ref, tree);
3733 static void add_abstract_origin_attribute (dw_die_ref, tree);
3734 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
3735 static void add_src_coords_attributes (dw_die_ref, tree);
3736 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
3737 static void push_decl_scope (tree);
3738 static void pop_decl_scope (void);
3739 static dw_die_ref scope_die_for (tree, dw_die_ref);
3740 static inline int local_scope_p (dw_die_ref);
3741 static inline int class_scope_p (dw_die_ref);
3742 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
3743 static const char *type_tag (tree);
3744 static tree member_declared_type (tree);
3745 #if 0
3746 static const char *decl_start_label (tree);
3747 #endif
3748 static void gen_array_type_die (tree, dw_die_ref);
3749 static void gen_set_type_die (tree, dw_die_ref);
3750 #if 0
3751 static void gen_entry_point_die (tree, dw_die_ref);
3752 #endif
3753 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
3754 static void gen_inlined_structure_type_die (tree, dw_die_ref);
3755 static void gen_inlined_union_type_die (tree, dw_die_ref);
3756 static void gen_enumeration_type_die (tree, dw_die_ref);
3757 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
3758 static void gen_unspecified_parameters_die (tree, dw_die_ref);
3759 static void gen_formal_types_die (tree, dw_die_ref);
3760 static void gen_subprogram_die (tree, dw_die_ref);
3761 static void gen_variable_die (tree, dw_die_ref);
3762 static void gen_label_die (tree, dw_die_ref);
3763 static void gen_lexical_block_die (tree, dw_die_ref, int);
3764 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
3765 static void gen_field_die (tree, dw_die_ref);
3766 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
3767 static dw_die_ref gen_compile_unit_die (const char *);
3768 static void gen_string_type_die (tree, dw_die_ref);
3769 static void gen_inheritance_die (tree, tree, dw_die_ref);
3770 static void gen_member_die (tree, dw_die_ref);
3771 static void gen_struct_or_union_type_die (tree, dw_die_ref);
3772 static void gen_subroutine_type_die (tree, dw_die_ref);
3773 static void gen_typedef_die (tree, dw_die_ref);
3774 static void gen_type_die (tree, dw_die_ref);
3775 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
3776 static void gen_block_die (tree, dw_die_ref, int);
3777 static void decls_for_scope (tree, dw_die_ref, int);
3778 static int is_redundant_typedef (tree);
3779 static void gen_decl_die (tree, dw_die_ref);
3780 static unsigned lookup_filename (const char *);
3781 static void init_file_table (void);
3782 static void retry_incomplete_types (void);
3783 static void gen_type_die_for_member (tree, tree, dw_die_ref);
3784 static void splice_child_die (dw_die_ref, dw_die_ref);
3785 static int file_info_cmp (const void *, const void *);
3786 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
3787 const char *, const char *, unsigned);
3788 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
3789 const char *, const char *,
3790 const char *);
3791 static void output_loc_list (dw_loc_list_ref);
3792 static char *gen_internal_sym (const char *);
3793
3794 static void prune_unmark_dies (dw_die_ref);
3795 static void prune_unused_types_mark (dw_die_ref, int);
3796 static void prune_unused_types_walk (dw_die_ref);
3797 static void prune_unused_types_walk_attribs (dw_die_ref);
3798 static void prune_unused_types_prune (dw_die_ref);
3799 static void prune_unused_types (void);
3800 static int maybe_emit_file (int);
3801
3802 /* Section names used to hold DWARF debugging information. */
3803 #ifndef DEBUG_INFO_SECTION
3804 #define DEBUG_INFO_SECTION ".debug_info"
3805 #endif
3806 #ifndef DEBUG_ABBREV_SECTION
3807 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
3808 #endif
3809 #ifndef DEBUG_ARANGES_SECTION
3810 #define DEBUG_ARANGES_SECTION ".debug_aranges"
3811 #endif
3812 #ifndef DEBUG_MACINFO_SECTION
3813 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
3814 #endif
3815 #ifndef DEBUG_LINE_SECTION
3816 #define DEBUG_LINE_SECTION ".debug_line"
3817 #endif
3818 #ifndef DEBUG_LOC_SECTION
3819 #define DEBUG_LOC_SECTION ".debug_loc"
3820 #endif
3821 #ifndef DEBUG_PUBNAMES_SECTION
3822 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
3823 #endif
3824 #ifndef DEBUG_STR_SECTION
3825 #define DEBUG_STR_SECTION ".debug_str"
3826 #endif
3827 #ifndef DEBUG_RANGES_SECTION
3828 #define DEBUG_RANGES_SECTION ".debug_ranges"
3829 #endif
3830
3831 /* Standard ELF section names for compiled code and data. */
3832 #ifndef TEXT_SECTION_NAME
3833 #define TEXT_SECTION_NAME ".text"
3834 #endif
3835
3836 /* Section flags for .debug_str section. */
3837 #define DEBUG_STR_SECTION_FLAGS \
3838 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
3839 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
3840 : SECTION_DEBUG)
3841
3842 /* Labels we insert at beginning sections we can reference instead of
3843 the section names themselves. */
3844
3845 #ifndef TEXT_SECTION_LABEL
3846 #define TEXT_SECTION_LABEL "Ltext"
3847 #endif
3848 #ifndef DEBUG_LINE_SECTION_LABEL
3849 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
3850 #endif
3851 #ifndef DEBUG_INFO_SECTION_LABEL
3852 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
3853 #endif
3854 #ifndef DEBUG_ABBREV_SECTION_LABEL
3855 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
3856 #endif
3857 #ifndef DEBUG_LOC_SECTION_LABEL
3858 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
3859 #endif
3860 #ifndef DEBUG_RANGES_SECTION_LABEL
3861 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
3862 #endif
3863 #ifndef DEBUG_MACINFO_SECTION_LABEL
3864 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
3865 #endif
3866
3867 /* Definitions of defaults for formats and names of various special
3868 (artificial) labels which may be generated within this file (when the -g
3869 options is used and DWARF_DEBUGGING_INFO is in effect.
3870 If necessary, these may be overridden from within the tm.h file, but
3871 typically, overriding these defaults is unnecessary. */
3872
3873 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3874 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3875 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3876 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3877 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3878 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3879 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
3880 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
3881
3882 #ifndef TEXT_END_LABEL
3883 #define TEXT_END_LABEL "Letext"
3884 #endif
3885 #ifndef BLOCK_BEGIN_LABEL
3886 #define BLOCK_BEGIN_LABEL "LBB"
3887 #endif
3888 #ifndef BLOCK_END_LABEL
3889 #define BLOCK_END_LABEL "LBE"
3890 #endif
3891 #ifndef LINE_CODE_LABEL
3892 #define LINE_CODE_LABEL "LM"
3893 #endif
3894 #ifndef SEPARATE_LINE_CODE_LABEL
3895 #define SEPARATE_LINE_CODE_LABEL "LSM"
3896 #endif
3897 \f
3898 /* We allow a language front-end to designate a function that is to be
3899 called to "demangle" any name before it it put into a DIE. */
3900
3901 static const char *(*demangle_name_func) (const char *);
3902
3903 void
3904 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
3905 {
3906 demangle_name_func = func;
3907 }
3908
3909 /* Test if rtl node points to a pseudo register. */
3910
3911 static inline int
3912 is_pseudo_reg (rtx rtl)
3913 {
3914 return ((GET_CODE (rtl) == REG && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
3915 || (GET_CODE (rtl) == SUBREG
3916 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
3917 }
3918
3919 /* Return a reference to a type, with its const and volatile qualifiers
3920 removed. */
3921
3922 static inline tree
3923 type_main_variant (tree type)
3924 {
3925 type = TYPE_MAIN_VARIANT (type);
3926
3927 /* ??? There really should be only one main variant among any group of
3928 variants of a given type (and all of the MAIN_VARIANT values for all
3929 members of the group should point to that one type) but sometimes the C
3930 front-end messes this up for array types, so we work around that bug
3931 here. */
3932 if (TREE_CODE (type) == ARRAY_TYPE)
3933 while (type != TYPE_MAIN_VARIANT (type))
3934 type = TYPE_MAIN_VARIANT (type);
3935
3936 return type;
3937 }
3938
3939 /* Return nonzero if the given type node represents a tagged type. */
3940
3941 static inline int
3942 is_tagged_type (tree type)
3943 {
3944 enum tree_code code = TREE_CODE (type);
3945
3946 return (code == RECORD_TYPE || code == UNION_TYPE
3947 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
3948 }
3949
3950 /* Convert a DIE tag into its string name. */
3951
3952 static const char *
3953 dwarf_tag_name (unsigned int tag)
3954 {
3955 switch (tag)
3956 {
3957 case DW_TAG_padding:
3958 return "DW_TAG_padding";
3959 case DW_TAG_array_type:
3960 return "DW_TAG_array_type";
3961 case DW_TAG_class_type:
3962 return "DW_TAG_class_type";
3963 case DW_TAG_entry_point:
3964 return "DW_TAG_entry_point";
3965 case DW_TAG_enumeration_type:
3966 return "DW_TAG_enumeration_type";
3967 case DW_TAG_formal_parameter:
3968 return "DW_TAG_formal_parameter";
3969 case DW_TAG_imported_declaration:
3970 return "DW_TAG_imported_declaration";
3971 case DW_TAG_label:
3972 return "DW_TAG_label";
3973 case DW_TAG_lexical_block:
3974 return "DW_TAG_lexical_block";
3975 case DW_TAG_member:
3976 return "DW_TAG_member";
3977 case DW_TAG_pointer_type:
3978 return "DW_TAG_pointer_type";
3979 case DW_TAG_reference_type:
3980 return "DW_TAG_reference_type";
3981 case DW_TAG_compile_unit:
3982 return "DW_TAG_compile_unit";
3983 case DW_TAG_string_type:
3984 return "DW_TAG_string_type";
3985 case DW_TAG_structure_type:
3986 return "DW_TAG_structure_type";
3987 case DW_TAG_subroutine_type:
3988 return "DW_TAG_subroutine_type";
3989 case DW_TAG_typedef:
3990 return "DW_TAG_typedef";
3991 case DW_TAG_union_type:
3992 return "DW_TAG_union_type";
3993 case DW_TAG_unspecified_parameters:
3994 return "DW_TAG_unspecified_parameters";
3995 case DW_TAG_variant:
3996 return "DW_TAG_variant";
3997 case DW_TAG_common_block:
3998 return "DW_TAG_common_block";
3999 case DW_TAG_common_inclusion:
4000 return "DW_TAG_common_inclusion";
4001 case DW_TAG_inheritance:
4002 return "DW_TAG_inheritance";
4003 case DW_TAG_inlined_subroutine:
4004 return "DW_TAG_inlined_subroutine";
4005 case DW_TAG_module:
4006 return "DW_TAG_module";
4007 case DW_TAG_ptr_to_member_type:
4008 return "DW_TAG_ptr_to_member_type";
4009 case DW_TAG_set_type:
4010 return "DW_TAG_set_type";
4011 case DW_TAG_subrange_type:
4012 return "DW_TAG_subrange_type";
4013 case DW_TAG_with_stmt:
4014 return "DW_TAG_with_stmt";
4015 case DW_TAG_access_declaration:
4016 return "DW_TAG_access_declaration";
4017 case DW_TAG_base_type:
4018 return "DW_TAG_base_type";
4019 case DW_TAG_catch_block:
4020 return "DW_TAG_catch_block";
4021 case DW_TAG_const_type:
4022 return "DW_TAG_const_type";
4023 case DW_TAG_constant:
4024 return "DW_TAG_constant";
4025 case DW_TAG_enumerator:
4026 return "DW_TAG_enumerator";
4027 case DW_TAG_file_type:
4028 return "DW_TAG_file_type";
4029 case DW_TAG_friend:
4030 return "DW_TAG_friend";
4031 case DW_TAG_namelist:
4032 return "DW_TAG_namelist";
4033 case DW_TAG_namelist_item:
4034 return "DW_TAG_namelist_item";
4035 case DW_TAG_packed_type:
4036 return "DW_TAG_packed_type";
4037 case DW_TAG_subprogram:
4038 return "DW_TAG_subprogram";
4039 case DW_TAG_template_type_param:
4040 return "DW_TAG_template_type_param";
4041 case DW_TAG_template_value_param:
4042 return "DW_TAG_template_value_param";
4043 case DW_TAG_thrown_type:
4044 return "DW_TAG_thrown_type";
4045 case DW_TAG_try_block:
4046 return "DW_TAG_try_block";
4047 case DW_TAG_variant_part:
4048 return "DW_TAG_variant_part";
4049 case DW_TAG_variable:
4050 return "DW_TAG_variable";
4051 case DW_TAG_volatile_type:
4052 return "DW_TAG_volatile_type";
4053 case DW_TAG_MIPS_loop:
4054 return "DW_TAG_MIPS_loop";
4055 case DW_TAG_format_label:
4056 return "DW_TAG_format_label";
4057 case DW_TAG_function_template:
4058 return "DW_TAG_function_template";
4059 case DW_TAG_class_template:
4060 return "DW_TAG_class_template";
4061 case DW_TAG_GNU_BINCL:
4062 return "DW_TAG_GNU_BINCL";
4063 case DW_TAG_GNU_EINCL:
4064 return "DW_TAG_GNU_EINCL";
4065 default:
4066 return "DW_TAG_<unknown>";
4067 }
4068 }
4069
4070 /* Convert a DWARF attribute code into its string name. */
4071
4072 static const char *
4073 dwarf_attr_name (unsigned int attr)
4074 {
4075 switch (attr)
4076 {
4077 case DW_AT_sibling:
4078 return "DW_AT_sibling";
4079 case DW_AT_location:
4080 return "DW_AT_location";
4081 case DW_AT_name:
4082 return "DW_AT_name";
4083 case DW_AT_ordering:
4084 return "DW_AT_ordering";
4085 case DW_AT_subscr_data:
4086 return "DW_AT_subscr_data";
4087 case DW_AT_byte_size:
4088 return "DW_AT_byte_size";
4089 case DW_AT_bit_offset:
4090 return "DW_AT_bit_offset";
4091 case DW_AT_bit_size:
4092 return "DW_AT_bit_size";
4093 case DW_AT_element_list:
4094 return "DW_AT_element_list";
4095 case DW_AT_stmt_list:
4096 return "DW_AT_stmt_list";
4097 case DW_AT_low_pc:
4098 return "DW_AT_low_pc";
4099 case DW_AT_high_pc:
4100 return "DW_AT_high_pc";
4101 case DW_AT_language:
4102 return "DW_AT_language";
4103 case DW_AT_member:
4104 return "DW_AT_member";
4105 case DW_AT_discr:
4106 return "DW_AT_discr";
4107 case DW_AT_discr_value:
4108 return "DW_AT_discr_value";
4109 case DW_AT_visibility:
4110 return "DW_AT_visibility";
4111 case DW_AT_import:
4112 return "DW_AT_import";
4113 case DW_AT_string_length:
4114 return "DW_AT_string_length";
4115 case DW_AT_common_reference:
4116 return "DW_AT_common_reference";
4117 case DW_AT_comp_dir:
4118 return "DW_AT_comp_dir";
4119 case DW_AT_const_value:
4120 return "DW_AT_const_value";
4121 case DW_AT_containing_type:
4122 return "DW_AT_containing_type";
4123 case DW_AT_default_value:
4124 return "DW_AT_default_value";
4125 case DW_AT_inline:
4126 return "DW_AT_inline";
4127 case DW_AT_is_optional:
4128 return "DW_AT_is_optional";
4129 case DW_AT_lower_bound:
4130 return "DW_AT_lower_bound";
4131 case DW_AT_producer:
4132 return "DW_AT_producer";
4133 case DW_AT_prototyped:
4134 return "DW_AT_prototyped";
4135 case DW_AT_return_addr:
4136 return "DW_AT_return_addr";
4137 case DW_AT_start_scope:
4138 return "DW_AT_start_scope";
4139 case DW_AT_stride_size:
4140 return "DW_AT_stride_size";
4141 case DW_AT_upper_bound:
4142 return "DW_AT_upper_bound";
4143 case DW_AT_abstract_origin:
4144 return "DW_AT_abstract_origin";
4145 case DW_AT_accessibility:
4146 return "DW_AT_accessibility";
4147 case DW_AT_address_class:
4148 return "DW_AT_address_class";
4149 case DW_AT_artificial:
4150 return "DW_AT_artificial";
4151 case DW_AT_base_types:
4152 return "DW_AT_base_types";
4153 case DW_AT_calling_convention:
4154 return "DW_AT_calling_convention";
4155 case DW_AT_count:
4156 return "DW_AT_count";
4157 case DW_AT_data_member_location:
4158 return "DW_AT_data_member_location";
4159 case DW_AT_decl_column:
4160 return "DW_AT_decl_column";
4161 case DW_AT_decl_file:
4162 return "DW_AT_decl_file";
4163 case DW_AT_decl_line:
4164 return "DW_AT_decl_line";
4165 case DW_AT_declaration:
4166 return "DW_AT_declaration";
4167 case DW_AT_discr_list:
4168 return "DW_AT_discr_list";
4169 case DW_AT_encoding:
4170 return "DW_AT_encoding";
4171 case DW_AT_external:
4172 return "DW_AT_external";
4173 case DW_AT_frame_base:
4174 return "DW_AT_frame_base";
4175 case DW_AT_friend:
4176 return "DW_AT_friend";
4177 case DW_AT_identifier_case:
4178 return "DW_AT_identifier_case";
4179 case DW_AT_macro_info:
4180 return "DW_AT_macro_info";
4181 case DW_AT_namelist_items:
4182 return "DW_AT_namelist_items";
4183 case DW_AT_priority:
4184 return "DW_AT_priority";
4185 case DW_AT_segment:
4186 return "DW_AT_segment";
4187 case DW_AT_specification:
4188 return "DW_AT_specification";
4189 case DW_AT_static_link:
4190 return "DW_AT_static_link";
4191 case DW_AT_type:
4192 return "DW_AT_type";
4193 case DW_AT_use_location:
4194 return "DW_AT_use_location";
4195 case DW_AT_variable_parameter:
4196 return "DW_AT_variable_parameter";
4197 case DW_AT_virtuality:
4198 return "DW_AT_virtuality";
4199 case DW_AT_vtable_elem_location:
4200 return "DW_AT_vtable_elem_location";
4201
4202 case DW_AT_allocated:
4203 return "DW_AT_allocated";
4204 case DW_AT_associated:
4205 return "DW_AT_associated";
4206 case DW_AT_data_location:
4207 return "DW_AT_data_location";
4208 case DW_AT_stride:
4209 return "DW_AT_stride";
4210 case DW_AT_entry_pc:
4211 return "DW_AT_entry_pc";
4212 case DW_AT_use_UTF8:
4213 return "DW_AT_use_UTF8";
4214 case DW_AT_extension:
4215 return "DW_AT_extension";
4216 case DW_AT_ranges:
4217 return "DW_AT_ranges";
4218 case DW_AT_trampoline:
4219 return "DW_AT_trampoline";
4220 case DW_AT_call_column:
4221 return "DW_AT_call_column";
4222 case DW_AT_call_file:
4223 return "DW_AT_call_file";
4224 case DW_AT_call_line:
4225 return "DW_AT_call_line";
4226
4227 case DW_AT_MIPS_fde:
4228 return "DW_AT_MIPS_fde";
4229 case DW_AT_MIPS_loop_begin:
4230 return "DW_AT_MIPS_loop_begin";
4231 case DW_AT_MIPS_tail_loop_begin:
4232 return "DW_AT_MIPS_tail_loop_begin";
4233 case DW_AT_MIPS_epilog_begin:
4234 return "DW_AT_MIPS_epilog_begin";
4235 case DW_AT_MIPS_loop_unroll_factor:
4236 return "DW_AT_MIPS_loop_unroll_factor";
4237 case DW_AT_MIPS_software_pipeline_depth:
4238 return "DW_AT_MIPS_software_pipeline_depth";
4239 case DW_AT_MIPS_linkage_name:
4240 return "DW_AT_MIPS_linkage_name";
4241 case DW_AT_MIPS_stride:
4242 return "DW_AT_MIPS_stride";
4243 case DW_AT_MIPS_abstract_name:
4244 return "DW_AT_MIPS_abstract_name";
4245 case DW_AT_MIPS_clone_origin:
4246 return "DW_AT_MIPS_clone_origin";
4247 case DW_AT_MIPS_has_inlines:
4248 return "DW_AT_MIPS_has_inlines";
4249
4250 case DW_AT_sf_names:
4251 return "DW_AT_sf_names";
4252 case DW_AT_src_info:
4253 return "DW_AT_src_info";
4254 case DW_AT_mac_info:
4255 return "DW_AT_mac_info";
4256 case DW_AT_src_coords:
4257 return "DW_AT_src_coords";
4258 case DW_AT_body_begin:
4259 return "DW_AT_body_begin";
4260 case DW_AT_body_end:
4261 return "DW_AT_body_end";
4262 case DW_AT_GNU_vector:
4263 return "DW_AT_GNU_vector";
4264
4265 case DW_AT_VMS_rtnbeg_pd_address:
4266 return "DW_AT_VMS_rtnbeg_pd_address";
4267
4268 default:
4269 return "DW_AT_<unknown>";
4270 }
4271 }
4272
4273 /* Convert a DWARF value form code into its string name. */
4274
4275 static const char *
4276 dwarf_form_name (unsigned int form)
4277 {
4278 switch (form)
4279 {
4280 case DW_FORM_addr:
4281 return "DW_FORM_addr";
4282 case DW_FORM_block2:
4283 return "DW_FORM_block2";
4284 case DW_FORM_block4:
4285 return "DW_FORM_block4";
4286 case DW_FORM_data2:
4287 return "DW_FORM_data2";
4288 case DW_FORM_data4:
4289 return "DW_FORM_data4";
4290 case DW_FORM_data8:
4291 return "DW_FORM_data8";
4292 case DW_FORM_string:
4293 return "DW_FORM_string";
4294 case DW_FORM_block:
4295 return "DW_FORM_block";
4296 case DW_FORM_block1:
4297 return "DW_FORM_block1";
4298 case DW_FORM_data1:
4299 return "DW_FORM_data1";
4300 case DW_FORM_flag:
4301 return "DW_FORM_flag";
4302 case DW_FORM_sdata:
4303 return "DW_FORM_sdata";
4304 case DW_FORM_strp:
4305 return "DW_FORM_strp";
4306 case DW_FORM_udata:
4307 return "DW_FORM_udata";
4308 case DW_FORM_ref_addr:
4309 return "DW_FORM_ref_addr";
4310 case DW_FORM_ref1:
4311 return "DW_FORM_ref1";
4312 case DW_FORM_ref2:
4313 return "DW_FORM_ref2";
4314 case DW_FORM_ref4:
4315 return "DW_FORM_ref4";
4316 case DW_FORM_ref8:
4317 return "DW_FORM_ref8";
4318 case DW_FORM_ref_udata:
4319 return "DW_FORM_ref_udata";
4320 case DW_FORM_indirect:
4321 return "DW_FORM_indirect";
4322 default:
4323 return "DW_FORM_<unknown>";
4324 }
4325 }
4326
4327 /* Convert a DWARF type code into its string name. */
4328
4329 #if 0
4330 static const char *
4331 dwarf_type_encoding_name (unsigned enc)
4332 {
4333 switch (enc)
4334 {
4335 case DW_ATE_address:
4336 return "DW_ATE_address";
4337 case DW_ATE_boolean:
4338 return "DW_ATE_boolean";
4339 case DW_ATE_complex_float:
4340 return "DW_ATE_complex_float";
4341 case DW_ATE_float:
4342 return "DW_ATE_float";
4343 case DW_ATE_signed:
4344 return "DW_ATE_signed";
4345 case DW_ATE_signed_char:
4346 return "DW_ATE_signed_char";
4347 case DW_ATE_unsigned:
4348 return "DW_ATE_unsigned";
4349 case DW_ATE_unsigned_char:
4350 return "DW_ATE_unsigned_char";
4351 default:
4352 return "DW_ATE_<unknown>";
4353 }
4354 }
4355 #endif
4356 \f
4357 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4358 instance of an inlined instance of a decl which is local to an inline
4359 function, so we have to trace all of the way back through the origin chain
4360 to find out what sort of node actually served as the original seed for the
4361 given block. */
4362
4363 static tree
4364 decl_ultimate_origin (tree decl)
4365 {
4366 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4367 nodes in the function to point to themselves; ignore that if
4368 we're trying to output the abstract instance of this function. */
4369 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4370 return NULL_TREE;
4371
4372 #ifdef ENABLE_CHECKING
4373 if (DECL_FROM_INLINE (DECL_ORIGIN (decl)))
4374 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4375 most distant ancestor, this should never happen. */
4376 abort ();
4377 #endif
4378
4379 return DECL_ABSTRACT_ORIGIN (decl);
4380 }
4381
4382 /* Determine the "ultimate origin" of a block. The block may be an inlined
4383 instance of an inlined instance of a block which is local to an inline
4384 function, so we have to trace all of the way back through the origin chain
4385 to find out what sort of node actually served as the original seed for the
4386 given block. */
4387
4388 static tree
4389 block_ultimate_origin (tree block)
4390 {
4391 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4392
4393 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4394 nodes in the function to point to themselves; ignore that if
4395 we're trying to output the abstract instance of this function. */
4396 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4397 return NULL_TREE;
4398
4399 if (immediate_origin == NULL_TREE)
4400 return NULL_TREE;
4401 else
4402 {
4403 tree ret_val;
4404 tree lookahead = immediate_origin;
4405
4406 do
4407 {
4408 ret_val = lookahead;
4409 lookahead = (TREE_CODE (ret_val) == BLOCK
4410 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4411 }
4412 while (lookahead != NULL && lookahead != ret_val);
4413
4414 return ret_val;
4415 }
4416 }
4417
4418 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4419 of a virtual function may refer to a base class, so we check the 'this'
4420 parameter. */
4421
4422 static tree
4423 decl_class_context (tree decl)
4424 {
4425 tree context = NULL_TREE;
4426
4427 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4428 context = DECL_CONTEXT (decl);
4429 else
4430 context = TYPE_MAIN_VARIANT
4431 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4432
4433 if (context && !TYPE_P (context))
4434 context = NULL_TREE;
4435
4436 return context;
4437 }
4438 \f
4439 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4440 addition order, and correct that in reverse_all_dies. */
4441
4442 static inline void
4443 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4444 {
4445 if (die != NULL && attr != NULL)
4446 {
4447 attr->dw_attr_next = die->die_attr;
4448 die->die_attr = attr;
4449 }
4450 }
4451
4452 static inline enum dw_val_class
4453 AT_class (dw_attr_ref a)
4454 {
4455 return a->dw_attr_val.val_class;
4456 }
4457
4458 /* Add a flag value attribute to a DIE. */
4459
4460 static inline void
4461 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4462 {
4463 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4464
4465 attr->dw_attr_next = NULL;
4466 attr->dw_attr = attr_kind;
4467 attr->dw_attr_val.val_class = dw_val_class_flag;
4468 attr->dw_attr_val.v.val_flag = flag;
4469 add_dwarf_attr (die, attr);
4470 }
4471
4472 static inline unsigned
4473 AT_flag (dw_attr_ref a)
4474 {
4475 if (a && AT_class (a) == dw_val_class_flag)
4476 return a->dw_attr_val.v.val_flag;
4477
4478 abort ();
4479 }
4480
4481 /* Add a signed integer attribute value to a DIE. */
4482
4483 static inline void
4484 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4485 {
4486 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4487
4488 attr->dw_attr_next = NULL;
4489 attr->dw_attr = attr_kind;
4490 attr->dw_attr_val.val_class = dw_val_class_const;
4491 attr->dw_attr_val.v.val_int = int_val;
4492 add_dwarf_attr (die, attr);
4493 }
4494
4495 static inline HOST_WIDE_INT
4496 AT_int (dw_attr_ref a)
4497 {
4498 if (a && AT_class (a) == dw_val_class_const)
4499 return a->dw_attr_val.v.val_int;
4500
4501 abort ();
4502 }
4503
4504 /* Add an unsigned integer attribute value to a DIE. */
4505
4506 static inline void
4507 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4508 unsigned HOST_WIDE_INT unsigned_val)
4509 {
4510 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4511
4512 attr->dw_attr_next = NULL;
4513 attr->dw_attr = attr_kind;
4514 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4515 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4516 add_dwarf_attr (die, attr);
4517 }
4518
4519 static inline unsigned HOST_WIDE_INT
4520 AT_unsigned (dw_attr_ref a)
4521 {
4522 if (a && AT_class (a) == dw_val_class_unsigned_const)
4523 return a->dw_attr_val.v.val_unsigned;
4524
4525 abort ();
4526 }
4527
4528 /* Add an unsigned double integer attribute value to a DIE. */
4529
4530 static inline void
4531 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4532 long unsigned int val_hi, long unsigned int val_low)
4533 {
4534 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4535
4536 attr->dw_attr_next = NULL;
4537 attr->dw_attr = attr_kind;
4538 attr->dw_attr_val.val_class = dw_val_class_long_long;
4539 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4540 attr->dw_attr_val.v.val_long_long.low = val_low;
4541 add_dwarf_attr (die, attr);
4542 }
4543
4544 /* Add a floating point attribute value to a DIE and return it. */
4545
4546 static inline void
4547 add_AT_float (dw_die_ref die, enum dwarf_attribute attr_kind,
4548 unsigned int length, long int *array)
4549 {
4550 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4551
4552 attr->dw_attr_next = NULL;
4553 attr->dw_attr = attr_kind;
4554 attr->dw_attr_val.val_class = dw_val_class_float;
4555 attr->dw_attr_val.v.val_float.length = length;
4556 attr->dw_attr_val.v.val_float.array = array;
4557 add_dwarf_attr (die, attr);
4558 }
4559
4560 /* Hash and equality functions for debug_str_hash. */
4561
4562 static hashval_t
4563 debug_str_do_hash (const void *x)
4564 {
4565 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4566 }
4567
4568 static int
4569 debug_str_eq (const void *x1, const void *x2)
4570 {
4571 return strcmp ((((const struct indirect_string_node *)x1)->str),
4572 (const char *)x2) == 0;
4573 }
4574
4575 /* Add a string attribute value to a DIE. */
4576
4577 static inline void
4578 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4579 {
4580 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4581 struct indirect_string_node *node;
4582 void **slot;
4583
4584 if (! debug_str_hash)
4585 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4586 debug_str_eq, NULL);
4587
4588 slot = htab_find_slot_with_hash (debug_str_hash, str,
4589 htab_hash_string (str), INSERT);
4590 if (*slot == NULL)
4591 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4592 node = (struct indirect_string_node *) *slot;
4593 node->str = ggc_strdup (str);
4594 node->refcount++;
4595
4596 attr->dw_attr_next = NULL;
4597 attr->dw_attr = attr_kind;
4598 attr->dw_attr_val.val_class = dw_val_class_str;
4599 attr->dw_attr_val.v.val_str = node;
4600 add_dwarf_attr (die, attr);
4601 }
4602
4603 static inline const char *
4604 AT_string (dw_attr_ref a)
4605 {
4606 if (a && AT_class (a) == dw_val_class_str)
4607 return a->dw_attr_val.v.val_str->str;
4608
4609 abort ();
4610 }
4611
4612 /* Find out whether a string should be output inline in DIE
4613 or out-of-line in .debug_str section. */
4614
4615 static int
4616 AT_string_form (dw_attr_ref a)
4617 {
4618 if (a && AT_class (a) == dw_val_class_str)
4619 {
4620 struct indirect_string_node *node;
4621 unsigned int len;
4622 char label[32];
4623
4624 node = a->dw_attr_val.v.val_str;
4625 if (node->form)
4626 return node->form;
4627
4628 len = strlen (node->str) + 1;
4629
4630 /* If the string is shorter or equal to the size of the reference, it is
4631 always better to put it inline. */
4632 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4633 return node->form = DW_FORM_string;
4634
4635 /* If we cannot expect the linker to merge strings in .debug_str
4636 section, only put it into .debug_str if it is worth even in this
4637 single module. */
4638 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4639 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4640 return node->form = DW_FORM_string;
4641
4642 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4643 ++dw2_string_counter;
4644 node->label = xstrdup (label);
4645
4646 return node->form = DW_FORM_strp;
4647 }
4648
4649 abort ();
4650 }
4651
4652 /* Add a DIE reference attribute value to a DIE. */
4653
4654 static inline void
4655 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4656 {
4657 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4658
4659 attr->dw_attr_next = NULL;
4660 attr->dw_attr = attr_kind;
4661 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4662 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4663 attr->dw_attr_val.v.val_die_ref.external = 0;
4664 add_dwarf_attr (die, attr);
4665 }
4666
4667 static inline dw_die_ref
4668 AT_ref (dw_attr_ref a)
4669 {
4670 if (a && AT_class (a) == dw_val_class_die_ref)
4671 return a->dw_attr_val.v.val_die_ref.die;
4672
4673 abort ();
4674 }
4675
4676 static inline int
4677 AT_ref_external (dw_attr_ref a)
4678 {
4679 if (a && AT_class (a) == dw_val_class_die_ref)
4680 return a->dw_attr_val.v.val_die_ref.external;
4681
4682 return 0;
4683 }
4684
4685 static inline void
4686 set_AT_ref_external (dw_attr_ref a, int i)
4687 {
4688 if (a && AT_class (a) == dw_val_class_die_ref)
4689 a->dw_attr_val.v.val_die_ref.external = i;
4690 else
4691 abort ();
4692 }
4693
4694 /* Add an FDE reference attribute value to a DIE. */
4695
4696 static inline void
4697 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4698 {
4699 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4700
4701 attr->dw_attr_next = NULL;
4702 attr->dw_attr = attr_kind;
4703 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4704 attr->dw_attr_val.v.val_fde_index = targ_fde;
4705 add_dwarf_attr (die, attr);
4706 }
4707
4708 /* Add a location description attribute value to a DIE. */
4709
4710 static inline void
4711 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4712 {
4713 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4714
4715 attr->dw_attr_next = NULL;
4716 attr->dw_attr = attr_kind;
4717 attr->dw_attr_val.val_class = dw_val_class_loc;
4718 attr->dw_attr_val.v.val_loc = loc;
4719 add_dwarf_attr (die, attr);
4720 }
4721
4722 static inline dw_loc_descr_ref
4723 AT_loc (dw_attr_ref a)
4724 {
4725 if (a && AT_class (a) == dw_val_class_loc)
4726 return a->dw_attr_val.v.val_loc;
4727
4728 abort ();
4729 }
4730
4731 static inline void
4732 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
4733 {
4734 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4735
4736 attr->dw_attr_next = NULL;
4737 attr->dw_attr = attr_kind;
4738 attr->dw_attr_val.val_class = dw_val_class_loc_list;
4739 attr->dw_attr_val.v.val_loc_list = loc_list;
4740 add_dwarf_attr (die, attr);
4741 have_location_lists = 1;
4742 }
4743
4744 static inline dw_loc_list_ref
4745 AT_loc_list (dw_attr_ref a)
4746 {
4747 if (a && AT_class (a) == dw_val_class_loc_list)
4748 return a->dw_attr_val.v.val_loc_list;
4749
4750 abort ();
4751 }
4752
4753 /* Add an address constant attribute value to a DIE. */
4754
4755 static inline void
4756 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
4757 {
4758 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4759
4760 attr->dw_attr_next = NULL;
4761 attr->dw_attr = attr_kind;
4762 attr->dw_attr_val.val_class = dw_val_class_addr;
4763 attr->dw_attr_val.v.val_addr = addr;
4764 add_dwarf_attr (die, attr);
4765 }
4766
4767 static inline rtx
4768 AT_addr (dw_attr_ref a)
4769 {
4770 if (a && AT_class (a) == dw_val_class_addr)
4771 return a->dw_attr_val.v.val_addr;
4772
4773 abort ();
4774 }
4775
4776 /* Add a label identifier attribute value to a DIE. */
4777
4778 static inline void
4779 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
4780 {
4781 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4782
4783 attr->dw_attr_next = NULL;
4784 attr->dw_attr = attr_kind;
4785 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
4786 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
4787 add_dwarf_attr (die, attr);
4788 }
4789
4790 /* Add a section offset attribute value to a DIE. */
4791
4792 static inline void
4793 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
4794 {
4795 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4796
4797 attr->dw_attr_next = NULL;
4798 attr->dw_attr = attr_kind;
4799 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
4800 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
4801 add_dwarf_attr (die, attr);
4802 }
4803
4804 /* Add an offset attribute value to a DIE. */
4805
4806 static inline void
4807 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
4808 unsigned HOST_WIDE_INT offset)
4809 {
4810 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4811
4812 attr->dw_attr_next = NULL;
4813 attr->dw_attr = attr_kind;
4814 attr->dw_attr_val.val_class = dw_val_class_offset;
4815 attr->dw_attr_val.v.val_offset = offset;
4816 add_dwarf_attr (die, attr);
4817 }
4818
4819 /* Add an range_list attribute value to a DIE. */
4820
4821 static void
4822 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
4823 long unsigned int offset)
4824 {
4825 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4826
4827 attr->dw_attr_next = NULL;
4828 attr->dw_attr = attr_kind;
4829 attr->dw_attr_val.val_class = dw_val_class_range_list;
4830 attr->dw_attr_val.v.val_offset = offset;
4831 add_dwarf_attr (die, attr);
4832 }
4833
4834 static inline const char *
4835 AT_lbl (dw_attr_ref a)
4836 {
4837 if (a && (AT_class (a) == dw_val_class_lbl_id
4838 || AT_class (a) == dw_val_class_lbl_offset))
4839 return a->dw_attr_val.v.val_lbl_id;
4840
4841 abort ();
4842 }
4843
4844 /* Get the attribute of type attr_kind. */
4845
4846 static inline dw_attr_ref
4847 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4848 {
4849 dw_attr_ref a;
4850 dw_die_ref spec = NULL;
4851
4852 if (die != NULL)
4853 {
4854 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
4855 if (a->dw_attr == attr_kind)
4856 return a;
4857 else if (a->dw_attr == DW_AT_specification
4858 || a->dw_attr == DW_AT_abstract_origin)
4859 spec = AT_ref (a);
4860
4861 if (spec)
4862 return get_AT (spec, attr_kind);
4863 }
4864
4865 return NULL;
4866 }
4867
4868 /* Return the "low pc" attribute value, typically associated with a subprogram
4869 DIE. Return null if the "low pc" attribute is either not present, or if it
4870 cannot be represented as an assembler label identifier. */
4871
4872 static inline const char *
4873 get_AT_low_pc (dw_die_ref die)
4874 {
4875 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
4876
4877 return a ? AT_lbl (a) : NULL;
4878 }
4879
4880 /* Return the "high pc" attribute value, typically associated with a subprogram
4881 DIE. Return null if the "high pc" attribute is either not present, or if it
4882 cannot be represented as an assembler label identifier. */
4883
4884 static inline const char *
4885 get_AT_hi_pc (dw_die_ref die)
4886 {
4887 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
4888
4889 return a ? AT_lbl (a) : NULL;
4890 }
4891
4892 /* Return the value of the string attribute designated by ATTR_KIND, or
4893 NULL if it is not present. */
4894
4895 static inline const char *
4896 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
4897 {
4898 dw_attr_ref a = get_AT (die, attr_kind);
4899
4900 return a ? AT_string (a) : NULL;
4901 }
4902
4903 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
4904 if it is not present. */
4905
4906 static inline int
4907 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
4908 {
4909 dw_attr_ref a = get_AT (die, attr_kind);
4910
4911 return a ? AT_flag (a) : 0;
4912 }
4913
4914 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
4915 if it is not present. */
4916
4917 static inline unsigned
4918 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
4919 {
4920 dw_attr_ref a = get_AT (die, attr_kind);
4921
4922 return a ? AT_unsigned (a) : 0;
4923 }
4924
4925 static inline dw_die_ref
4926 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
4927 {
4928 dw_attr_ref a = get_AT (die, attr_kind);
4929
4930 return a ? AT_ref (a) : NULL;
4931 }
4932
4933 /* Return TRUE if the language is C or C++. */
4934
4935 static inline bool
4936 is_c_family (void)
4937 {
4938 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4939
4940 return (lang == DW_LANG_C || lang == DW_LANG_C89
4941 || lang == DW_LANG_C_plus_plus);
4942 }
4943
4944 /* Return TRUE if the language is C++. */
4945
4946 static inline bool
4947 is_cxx (void)
4948 {
4949 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
4950 == DW_LANG_C_plus_plus);
4951 }
4952
4953 /* Return TRUE if the language is Fortran. */
4954
4955 static inline bool
4956 is_fortran (void)
4957 {
4958 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4959
4960 return lang == DW_LANG_Fortran77 || lang == DW_LANG_Fortran90;
4961 }
4962
4963 /* Return TRUE if the language is Java. */
4964
4965 static inline bool
4966 is_java (void)
4967 {
4968 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4969
4970 return lang == DW_LANG_Java;
4971 }
4972
4973 /* Return TRUE if the language is Ada. */
4974
4975 static inline bool
4976 is_ada (void)
4977 {
4978 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
4979
4980 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
4981 }
4982
4983 /* Free up the memory used by A. */
4984
4985 static inline void free_AT (dw_attr_ref);
4986 static inline void
4987 free_AT (dw_attr_ref a)
4988 {
4989 if (AT_class (a) == dw_val_class_str)
4990 if (a->dw_attr_val.v.val_str->refcount)
4991 a->dw_attr_val.v.val_str->refcount--;
4992 }
4993
4994 /* Remove the specified attribute if present. */
4995
4996 static void
4997 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
4998 {
4999 dw_attr_ref *p;
5000 dw_attr_ref removed = NULL;
5001
5002 if (die != NULL)
5003 {
5004 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5005 if ((*p)->dw_attr == attr_kind)
5006 {
5007 removed = *p;
5008 *p = (*p)->dw_attr_next;
5009 break;
5010 }
5011
5012 if (removed != 0)
5013 free_AT (removed);
5014 }
5015 }
5016
5017 /* Free up the memory used by DIE. */
5018
5019 static inline void
5020 free_die (dw_die_ref die)
5021 {
5022 remove_children (die);
5023 }
5024
5025 /* Discard the children of this DIE. */
5026
5027 static void
5028 remove_children (dw_die_ref die)
5029 {
5030 dw_die_ref child_die = die->die_child;
5031
5032 die->die_child = NULL;
5033
5034 while (child_die != NULL)
5035 {
5036 dw_die_ref tmp_die = child_die;
5037 dw_attr_ref a;
5038
5039 child_die = child_die->die_sib;
5040
5041 for (a = tmp_die->die_attr; a != NULL;)
5042 {
5043 dw_attr_ref tmp_a = a;
5044
5045 a = a->dw_attr_next;
5046 free_AT (tmp_a);
5047 }
5048
5049 free_die (tmp_die);
5050 }
5051 }
5052
5053 /* Add a child DIE below its parent. We build the lists up in reverse
5054 addition order, and correct that in reverse_all_dies. */
5055
5056 static inline void
5057 add_child_die (dw_die_ref die, dw_die_ref child_die)
5058 {
5059 if (die != NULL && child_die != NULL)
5060 {
5061 if (die == child_die)
5062 abort ();
5063
5064 child_die->die_parent = die;
5065 child_die->die_sib = die->die_child;
5066 die->die_child = child_die;
5067 }
5068 }
5069
5070 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5071 is the specification, to the front of PARENT's list of children. */
5072
5073 static void
5074 splice_child_die (dw_die_ref parent, dw_die_ref child)
5075 {
5076 dw_die_ref *p;
5077
5078 /* We want the declaration DIE from inside the class, not the
5079 specification DIE at toplevel. */
5080 if (child->die_parent != parent)
5081 {
5082 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5083
5084 if (tmp)
5085 child = tmp;
5086 }
5087
5088 if (child->die_parent != parent
5089 && child->die_parent != get_AT_ref (parent, DW_AT_specification))
5090 abort ();
5091
5092 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5093 if (*p == child)
5094 {
5095 *p = child->die_sib;
5096 break;
5097 }
5098
5099 child->die_parent = parent;
5100 child->die_sib = parent->die_child;
5101 parent->die_child = child;
5102 }
5103
5104 /* Return a pointer to a newly created DIE node. */
5105
5106 static inline dw_die_ref
5107 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5108 {
5109 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5110
5111 die->die_tag = tag_value;
5112
5113 if (parent_die != NULL)
5114 add_child_die (parent_die, die);
5115 else
5116 {
5117 limbo_die_node *limbo_node;
5118
5119 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5120 limbo_node->die = die;
5121 limbo_node->created_for = t;
5122 limbo_node->next = limbo_die_list;
5123 limbo_die_list = limbo_node;
5124 }
5125
5126 return die;
5127 }
5128
5129 /* Return the DIE associated with the given type specifier. */
5130
5131 static inline dw_die_ref
5132 lookup_type_die (tree type)
5133 {
5134 return TYPE_SYMTAB_DIE (type);
5135 }
5136
5137 /* Equate a DIE to a given type specifier. */
5138
5139 static inline void
5140 equate_type_number_to_die (tree type, dw_die_ref type_die)
5141 {
5142 TYPE_SYMTAB_DIE (type) = type_die;
5143 }
5144
5145 /* Return the DIE associated with a given declaration. */
5146
5147 static inline dw_die_ref
5148 lookup_decl_die (tree decl)
5149 {
5150 unsigned decl_id = DECL_UID (decl);
5151
5152 return (decl_id < decl_die_table_in_use ? decl_die_table[decl_id] : NULL);
5153 }
5154
5155 /* Equate a DIE to a particular declaration. */
5156
5157 static void
5158 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5159 {
5160 unsigned int decl_id = DECL_UID (decl);
5161 unsigned int num_allocated;
5162
5163 if (decl_id >= decl_die_table_allocated)
5164 {
5165 num_allocated
5166 = ((decl_id + 1 + DECL_DIE_TABLE_INCREMENT - 1)
5167 / DECL_DIE_TABLE_INCREMENT)
5168 * DECL_DIE_TABLE_INCREMENT;
5169
5170 decl_die_table = ggc_realloc (decl_die_table,
5171 sizeof (dw_die_ref) * num_allocated);
5172
5173 memset (&decl_die_table[decl_die_table_allocated], 0,
5174 (num_allocated - decl_die_table_allocated) * sizeof (dw_die_ref));
5175 decl_die_table_allocated = num_allocated;
5176 }
5177
5178 if (decl_id >= decl_die_table_in_use)
5179 decl_die_table_in_use = (decl_id + 1);
5180
5181 decl_die_table[decl_id] = decl_die;
5182 }
5183 \f
5184 /* Keep track of the number of spaces used to indent the
5185 output of the debugging routines that print the structure of
5186 the DIE internal representation. */
5187 static int print_indent;
5188
5189 /* Indent the line the number of spaces given by print_indent. */
5190
5191 static inline void
5192 print_spaces (FILE *outfile)
5193 {
5194 fprintf (outfile, "%*s", print_indent, "");
5195 }
5196
5197 /* Print the information associated with a given DIE, and its children.
5198 This routine is a debugging aid only. */
5199
5200 static void
5201 print_die (dw_die_ref die, FILE *outfile)
5202 {
5203 dw_attr_ref a;
5204 dw_die_ref c;
5205
5206 print_spaces (outfile);
5207 fprintf (outfile, "DIE %4lu: %s\n",
5208 die->die_offset, dwarf_tag_name (die->die_tag));
5209 print_spaces (outfile);
5210 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5211 fprintf (outfile, " offset: %lu\n", die->die_offset);
5212
5213 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5214 {
5215 print_spaces (outfile);
5216 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5217
5218 switch (AT_class (a))
5219 {
5220 case dw_val_class_addr:
5221 fprintf (outfile, "address");
5222 break;
5223 case dw_val_class_offset:
5224 fprintf (outfile, "offset");
5225 break;
5226 case dw_val_class_loc:
5227 fprintf (outfile, "location descriptor");
5228 break;
5229 case dw_val_class_loc_list:
5230 fprintf (outfile, "location list -> label:%s",
5231 AT_loc_list (a)->ll_symbol);
5232 break;
5233 case dw_val_class_range_list:
5234 fprintf (outfile, "range list");
5235 break;
5236 case dw_val_class_const:
5237 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5238 break;
5239 case dw_val_class_unsigned_const:
5240 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5241 break;
5242 case dw_val_class_long_long:
5243 fprintf (outfile, "constant (%lu,%lu)",
5244 a->dw_attr_val.v.val_long_long.hi,
5245 a->dw_attr_val.v.val_long_long.low);
5246 break;
5247 case dw_val_class_float:
5248 fprintf (outfile, "floating-point constant");
5249 break;
5250 case dw_val_class_flag:
5251 fprintf (outfile, "%u", AT_flag (a));
5252 break;
5253 case dw_val_class_die_ref:
5254 if (AT_ref (a) != NULL)
5255 {
5256 if (AT_ref (a)->die_symbol)
5257 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5258 else
5259 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5260 }
5261 else
5262 fprintf (outfile, "die -> <null>");
5263 break;
5264 case dw_val_class_lbl_id:
5265 case dw_val_class_lbl_offset:
5266 fprintf (outfile, "label: %s", AT_lbl (a));
5267 break;
5268 case dw_val_class_str:
5269 if (AT_string (a) != NULL)
5270 fprintf (outfile, "\"%s\"", AT_string (a));
5271 else
5272 fprintf (outfile, "<null>");
5273 break;
5274 default:
5275 break;
5276 }
5277
5278 fprintf (outfile, "\n");
5279 }
5280
5281 if (die->die_child != NULL)
5282 {
5283 print_indent += 4;
5284 for (c = die->die_child; c != NULL; c = c->die_sib)
5285 print_die (c, outfile);
5286
5287 print_indent -= 4;
5288 }
5289 if (print_indent == 0)
5290 fprintf (outfile, "\n");
5291 }
5292
5293 /* Print the contents of the source code line number correspondence table.
5294 This routine is a debugging aid only. */
5295
5296 static void
5297 print_dwarf_line_table (FILE *outfile)
5298 {
5299 unsigned i;
5300 dw_line_info_ref line_info;
5301
5302 fprintf (outfile, "\n\nDWARF source line information\n");
5303 for (i = 1; i < line_info_table_in_use; i++)
5304 {
5305 line_info = &line_info_table[i];
5306 fprintf (outfile, "%5d: ", i);
5307 fprintf (outfile, "%-20s",
5308 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5309 fprintf (outfile, "%6ld", line_info->dw_line_num);
5310 fprintf (outfile, "\n");
5311 }
5312
5313 fprintf (outfile, "\n\n");
5314 }
5315
5316 /* Print the information collected for a given DIE. */
5317
5318 void
5319 debug_dwarf_die (dw_die_ref die)
5320 {
5321 print_die (die, stderr);
5322 }
5323
5324 /* Print all DWARF information collected for the compilation unit.
5325 This routine is a debugging aid only. */
5326
5327 void
5328 debug_dwarf (void)
5329 {
5330 print_indent = 0;
5331 print_die (comp_unit_die, stderr);
5332 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5333 print_dwarf_line_table (stderr);
5334 }
5335 \f
5336 /* We build up the lists of children and attributes by pushing new ones
5337 onto the beginning of the list. Reverse the lists for DIE so that
5338 they are in order of addition. */
5339
5340 static void
5341 reverse_die_lists (dw_die_ref die)
5342 {
5343 dw_die_ref c, cp, cn;
5344 dw_attr_ref a, ap, an;
5345
5346 for (a = die->die_attr, ap = 0; a; a = an)
5347 {
5348 an = a->dw_attr_next;
5349 a->dw_attr_next = ap;
5350 ap = a;
5351 }
5352
5353 die->die_attr = ap;
5354
5355 for (c = die->die_child, cp = 0; c; c = cn)
5356 {
5357 cn = c->die_sib;
5358 c->die_sib = cp;
5359 cp = c;
5360 }
5361
5362 die->die_child = cp;
5363 }
5364
5365 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5366 reverse all dies in add_sibling_attributes, which runs through all the dies,
5367 it would reverse all the dies. Now, however, since we don't call
5368 reverse_die_lists in add_sibling_attributes, we need a routine to
5369 recursively reverse all the dies. This is that routine. */
5370
5371 static void
5372 reverse_all_dies (dw_die_ref die)
5373 {
5374 dw_die_ref c;
5375
5376 reverse_die_lists (die);
5377
5378 for (c = die->die_child; c; c = c->die_sib)
5379 reverse_all_dies (c);
5380 }
5381
5382 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5383 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5384 DIE that marks the start of the DIEs for this include file. */
5385
5386 static dw_die_ref
5387 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5388 {
5389 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5390 dw_die_ref new_unit = gen_compile_unit_die (filename);
5391
5392 new_unit->die_sib = old_unit;
5393 return new_unit;
5394 }
5395
5396 /* Close an include-file CU and reopen the enclosing one. */
5397
5398 static dw_die_ref
5399 pop_compile_unit (dw_die_ref old_unit)
5400 {
5401 dw_die_ref new_unit = old_unit->die_sib;
5402
5403 old_unit->die_sib = NULL;
5404 return new_unit;
5405 }
5406
5407 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5408 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5409
5410 /* Calculate the checksum of a location expression. */
5411
5412 static inline void
5413 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5414 {
5415 CHECKSUM (loc->dw_loc_opc);
5416 CHECKSUM (loc->dw_loc_oprnd1);
5417 CHECKSUM (loc->dw_loc_oprnd2);
5418 }
5419
5420 /* Calculate the checksum of an attribute. */
5421
5422 static void
5423 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5424 {
5425 dw_loc_descr_ref loc;
5426 rtx r;
5427
5428 CHECKSUM (at->dw_attr);
5429
5430 /* We don't care about differences in file numbering. */
5431 if (at->dw_attr == DW_AT_decl_file
5432 /* Or that this was compiled with a different compiler snapshot; if
5433 the output is the same, that's what matters. */
5434 || at->dw_attr == DW_AT_producer)
5435 return;
5436
5437 switch (AT_class (at))
5438 {
5439 case dw_val_class_const:
5440 CHECKSUM (at->dw_attr_val.v.val_int);
5441 break;
5442 case dw_val_class_unsigned_const:
5443 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5444 break;
5445 case dw_val_class_long_long:
5446 CHECKSUM (at->dw_attr_val.v.val_long_long);
5447 break;
5448 case dw_val_class_float:
5449 CHECKSUM (at->dw_attr_val.v.val_float);
5450 break;
5451 case dw_val_class_flag:
5452 CHECKSUM (at->dw_attr_val.v.val_flag);
5453 break;
5454 case dw_val_class_str:
5455 CHECKSUM_STRING (AT_string (at));
5456 break;
5457
5458 case dw_val_class_addr:
5459 r = AT_addr (at);
5460 switch (GET_CODE (r))
5461 {
5462 case SYMBOL_REF:
5463 CHECKSUM_STRING (XSTR (r, 0));
5464 break;
5465
5466 default:
5467 abort ();
5468 }
5469 break;
5470
5471 case dw_val_class_offset:
5472 CHECKSUM (at->dw_attr_val.v.val_offset);
5473 break;
5474
5475 case dw_val_class_loc:
5476 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5477 loc_checksum (loc, ctx);
5478 break;
5479
5480 case dw_val_class_die_ref:
5481 die_checksum (AT_ref (at), ctx, mark);
5482 break;
5483
5484 case dw_val_class_fde_ref:
5485 case dw_val_class_lbl_id:
5486 case dw_val_class_lbl_offset:
5487 break;
5488
5489 default:
5490 break;
5491 }
5492 }
5493
5494 /* Calculate the checksum of a DIE. */
5495
5496 static void
5497 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5498 {
5499 dw_die_ref c;
5500 dw_attr_ref a;
5501
5502 /* To avoid infinite recursion. */
5503 if (die->die_mark)
5504 {
5505 CHECKSUM (die->die_mark);
5506 return;
5507 }
5508 die->die_mark = ++(*mark);
5509
5510 CHECKSUM (die->die_tag);
5511
5512 for (a = die->die_attr; a; a = a->dw_attr_next)
5513 attr_checksum (a, ctx, mark);
5514
5515 for (c = die->die_child; c; c = c->die_sib)
5516 die_checksum (c, ctx, mark);
5517 }
5518
5519 #undef CHECKSUM
5520 #undef CHECKSUM_STRING
5521
5522 /* Do the location expressions look same? */
5523 static inline int
5524 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5525 {
5526 return loc1->dw_loc_opc == loc2->dw_loc_opc
5527 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5528 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5529 }
5530
5531 /* Do the values look the same? */
5532 static int
5533 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5534 {
5535 dw_loc_descr_ref loc1, loc2;
5536 rtx r1, r2;
5537 unsigned i;
5538
5539 if (v1->val_class != v2->val_class)
5540 return 0;
5541
5542 switch (v1->val_class)
5543 {
5544 case dw_val_class_const:
5545 return v1->v.val_int == v2->v.val_int;
5546 case dw_val_class_unsigned_const:
5547 return v1->v.val_unsigned == v2->v.val_unsigned;
5548 case dw_val_class_long_long:
5549 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5550 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5551 case dw_val_class_float:
5552 if (v1->v.val_float.length != v2->v.val_float.length)
5553 return 0;
5554 for (i = 0; i < v1->v.val_float.length; i++)
5555 if (v1->v.val_float.array[i] != v2->v.val_float.array[i])
5556 return 0;
5557 return 1;
5558 case dw_val_class_flag:
5559 return v1->v.val_flag == v2->v.val_flag;
5560 case dw_val_class_str:
5561 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5562
5563 case dw_val_class_addr:
5564 r1 = v1->v.val_addr;
5565 r2 = v2->v.val_addr;
5566 if (GET_CODE (r1) != GET_CODE (r2))
5567 return 0;
5568 switch (GET_CODE (r1))
5569 {
5570 case SYMBOL_REF:
5571 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5572
5573 default:
5574 abort ();
5575 }
5576
5577 case dw_val_class_offset:
5578 return v1->v.val_offset == v2->v.val_offset;
5579
5580 case dw_val_class_loc:
5581 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5582 loc1 && loc2;
5583 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5584 if (!same_loc_p (loc1, loc2, mark))
5585 return 0;
5586 return !loc1 && !loc2;
5587
5588 case dw_val_class_die_ref:
5589 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5590
5591 case dw_val_class_fde_ref:
5592 case dw_val_class_lbl_id:
5593 case dw_val_class_lbl_offset:
5594 return 1;
5595
5596 default:
5597 return 1;
5598 }
5599 }
5600
5601 /* Do the attributes look the same? */
5602
5603 static int
5604 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5605 {
5606 if (at1->dw_attr != at2->dw_attr)
5607 return 0;
5608
5609 /* We don't care about differences in file numbering. */
5610 if (at1->dw_attr == DW_AT_decl_file
5611 /* Or that this was compiled with a different compiler snapshot; if
5612 the output is the same, that's what matters. */
5613 || at1->dw_attr == DW_AT_producer)
5614 return 1;
5615
5616 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5617 }
5618
5619 /* Do the dies look the same? */
5620
5621 static int
5622 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5623 {
5624 dw_die_ref c1, c2;
5625 dw_attr_ref a1, a2;
5626
5627 /* To avoid infinite recursion. */
5628 if (die1->die_mark)
5629 return die1->die_mark == die2->die_mark;
5630 die1->die_mark = die2->die_mark = ++(*mark);
5631
5632 if (die1->die_tag != die2->die_tag)
5633 return 0;
5634
5635 for (a1 = die1->die_attr, a2 = die2->die_attr;
5636 a1 && a2;
5637 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5638 if (!same_attr_p (a1, a2, mark))
5639 return 0;
5640 if (a1 || a2)
5641 return 0;
5642
5643 for (c1 = die1->die_child, c2 = die2->die_child;
5644 c1 && c2;
5645 c1 = c1->die_sib, c2 = c2->die_sib)
5646 if (!same_die_p (c1, c2, mark))
5647 return 0;
5648 if (c1 || c2)
5649 return 0;
5650
5651 return 1;
5652 }
5653
5654 /* Do the dies look the same? Wrapper around same_die_p. */
5655
5656 static int
5657 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
5658 {
5659 int mark = 0;
5660 int ret = same_die_p (die1, die2, &mark);
5661
5662 unmark_all_dies (die1);
5663 unmark_all_dies (die2);
5664
5665 return ret;
5666 }
5667
5668 /* The prefix to attach to symbols on DIEs in the current comdat debug
5669 info section. */
5670 static char *comdat_symbol_id;
5671
5672 /* The index of the current symbol within the current comdat CU. */
5673 static unsigned int comdat_symbol_number;
5674
5675 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
5676 children, and set comdat_symbol_id accordingly. */
5677
5678 static void
5679 compute_section_prefix (dw_die_ref unit_die)
5680 {
5681 const char *die_name = get_AT_string (unit_die, DW_AT_name);
5682 const char *base = die_name ? lbasename (die_name) : "anonymous";
5683 char *name = alloca (strlen (base) + 64);
5684 char *p;
5685 int i, mark;
5686 unsigned char checksum[16];
5687 struct md5_ctx ctx;
5688
5689 /* Compute the checksum of the DIE, then append part of it as hex digits to
5690 the name filename of the unit. */
5691
5692 md5_init_ctx (&ctx);
5693 mark = 0;
5694 die_checksum (unit_die, &ctx, &mark);
5695 unmark_all_dies (unit_die);
5696 md5_finish_ctx (&ctx, checksum);
5697
5698 sprintf (name, "%s.", base);
5699 clean_symbol_name (name);
5700
5701 p = name + strlen (name);
5702 for (i = 0; i < 4; i++)
5703 {
5704 sprintf (p, "%.2x", checksum[i]);
5705 p += 2;
5706 }
5707
5708 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
5709 comdat_symbol_number = 0;
5710 }
5711
5712 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
5713
5714 static int
5715 is_type_die (dw_die_ref die)
5716 {
5717 switch (die->die_tag)
5718 {
5719 case DW_TAG_array_type:
5720 case DW_TAG_class_type:
5721 case DW_TAG_enumeration_type:
5722 case DW_TAG_pointer_type:
5723 case DW_TAG_reference_type:
5724 case DW_TAG_string_type:
5725 case DW_TAG_structure_type:
5726 case DW_TAG_subroutine_type:
5727 case DW_TAG_union_type:
5728 case DW_TAG_ptr_to_member_type:
5729 case DW_TAG_set_type:
5730 case DW_TAG_subrange_type:
5731 case DW_TAG_base_type:
5732 case DW_TAG_const_type:
5733 case DW_TAG_file_type:
5734 case DW_TAG_packed_type:
5735 case DW_TAG_volatile_type:
5736 case DW_TAG_typedef:
5737 return 1;
5738 default:
5739 return 0;
5740 }
5741 }
5742
5743 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
5744 Basically, we want to choose the bits that are likely to be shared between
5745 compilations (types) and leave out the bits that are specific to individual
5746 compilations (functions). */
5747
5748 static int
5749 is_comdat_die (dw_die_ref c)
5750 {
5751 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
5752 we do for stabs. The advantage is a greater likelihood of sharing between
5753 objects that don't include headers in the same order (and therefore would
5754 put the base types in a different comdat). jason 8/28/00 */
5755
5756 if (c->die_tag == DW_TAG_base_type)
5757 return 0;
5758
5759 if (c->die_tag == DW_TAG_pointer_type
5760 || c->die_tag == DW_TAG_reference_type
5761 || c->die_tag == DW_TAG_const_type
5762 || c->die_tag == DW_TAG_volatile_type)
5763 {
5764 dw_die_ref t = get_AT_ref (c, DW_AT_type);
5765
5766 return t ? is_comdat_die (t) : 0;
5767 }
5768
5769 return is_type_die (c);
5770 }
5771
5772 /* Returns 1 iff C is the sort of DIE that might be referred to from another
5773 compilation unit. */
5774
5775 static int
5776 is_symbol_die (dw_die_ref c)
5777 {
5778 return (is_type_die (c)
5779 || (get_AT (c, DW_AT_declaration)
5780 && !get_AT (c, DW_AT_specification)));
5781 }
5782
5783 static char *
5784 gen_internal_sym (const char *prefix)
5785 {
5786 char buf[256];
5787
5788 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
5789 return xstrdup (buf);
5790 }
5791
5792 /* Assign symbols to all worthy DIEs under DIE. */
5793
5794 static void
5795 assign_symbol_names (dw_die_ref die)
5796 {
5797 dw_die_ref c;
5798
5799 if (is_symbol_die (die))
5800 {
5801 if (comdat_symbol_id)
5802 {
5803 char *p = alloca (strlen (comdat_symbol_id) + 64);
5804
5805 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
5806 comdat_symbol_id, comdat_symbol_number++);
5807 die->die_symbol = xstrdup (p);
5808 }
5809 else
5810 die->die_symbol = gen_internal_sym ("LDIE");
5811 }
5812
5813 for (c = die->die_child; c != NULL; c = c->die_sib)
5814 assign_symbol_names (c);
5815 }
5816
5817 struct cu_hash_table_entry
5818 {
5819 dw_die_ref cu;
5820 unsigned min_comdat_num, max_comdat_num;
5821 struct cu_hash_table_entry *next;
5822 };
5823
5824 /* Routines to manipulate hash table of CUs. */
5825 static hashval_t
5826 htab_cu_hash (const void *of)
5827 {
5828 const struct cu_hash_table_entry *entry = of;
5829
5830 return htab_hash_string (entry->cu->die_symbol);
5831 }
5832
5833 static int
5834 htab_cu_eq (const void *of1, const void *of2)
5835 {
5836 const struct cu_hash_table_entry *entry1 = of1;
5837 const struct die_struct *entry2 = of2;
5838
5839 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
5840 }
5841
5842 static void
5843 htab_cu_del (void *what)
5844 {
5845 struct cu_hash_table_entry *next, *entry = what;
5846
5847 while (entry)
5848 {
5849 next = entry->next;
5850 free (entry);
5851 entry = next;
5852 }
5853 }
5854
5855 /* Check whether we have already seen this CU and set up SYM_NUM
5856 accordingly. */
5857 static int
5858 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
5859 {
5860 struct cu_hash_table_entry dummy;
5861 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
5862
5863 dummy.max_comdat_num = 0;
5864
5865 slot = (struct cu_hash_table_entry **)
5866 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5867 INSERT);
5868 entry = *slot;
5869
5870 for (; entry; last = entry, entry = entry->next)
5871 {
5872 if (same_die_p_wrap (cu, entry->cu))
5873 break;
5874 }
5875
5876 if (entry)
5877 {
5878 *sym_num = entry->min_comdat_num;
5879 return 1;
5880 }
5881
5882 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
5883 entry->cu = cu;
5884 entry->min_comdat_num = *sym_num = last->max_comdat_num;
5885 entry->next = *slot;
5886 *slot = entry;
5887
5888 return 0;
5889 }
5890
5891 /* Record SYM_NUM to record of CU in HTABLE. */
5892 static void
5893 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
5894 {
5895 struct cu_hash_table_entry **slot, *entry;
5896
5897 slot = (struct cu_hash_table_entry **)
5898 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
5899 NO_INSERT);
5900 entry = *slot;
5901
5902 entry->max_comdat_num = sym_num;
5903 }
5904
5905 /* Traverse the DIE (which is always comp_unit_die), and set up
5906 additional compilation units for each of the include files we see
5907 bracketed by BINCL/EINCL. */
5908
5909 static void
5910 break_out_includes (dw_die_ref die)
5911 {
5912 dw_die_ref *ptr;
5913 dw_die_ref unit = NULL;
5914 limbo_die_node *node, **pnode;
5915 htab_t cu_hash_table;
5916
5917 for (ptr = &(die->die_child); *ptr;)
5918 {
5919 dw_die_ref c = *ptr;
5920
5921 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
5922 || (unit && is_comdat_die (c)))
5923 {
5924 /* This DIE is for a secondary CU; remove it from the main one. */
5925 *ptr = c->die_sib;
5926
5927 if (c->die_tag == DW_TAG_GNU_BINCL)
5928 {
5929 unit = push_new_compile_unit (unit, c);
5930 free_die (c);
5931 }
5932 else if (c->die_tag == DW_TAG_GNU_EINCL)
5933 {
5934 unit = pop_compile_unit (unit);
5935 free_die (c);
5936 }
5937 else
5938 add_child_die (unit, c);
5939 }
5940 else
5941 {
5942 /* Leave this DIE in the main CU. */
5943 ptr = &(c->die_sib);
5944 continue;
5945 }
5946 }
5947
5948 #if 0
5949 /* We can only use this in debugging, since the frontend doesn't check
5950 to make sure that we leave every include file we enter. */
5951 if (unit != NULL)
5952 abort ();
5953 #endif
5954
5955 assign_symbol_names (die);
5956 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
5957 for (node = limbo_die_list, pnode = &limbo_die_list;
5958 node;
5959 node = node->next)
5960 {
5961 int is_dupl;
5962
5963 compute_section_prefix (node->die);
5964 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
5965 &comdat_symbol_number);
5966 assign_symbol_names (node->die);
5967 if (is_dupl)
5968 *pnode = node->next;
5969 else
5970 {
5971 pnode = &node->next;
5972 record_comdat_symbol_number (node->die, cu_hash_table,
5973 comdat_symbol_number);
5974 }
5975 }
5976 htab_delete (cu_hash_table);
5977 }
5978
5979 /* Traverse the DIE and add a sibling attribute if it may have the
5980 effect of speeding up access to siblings. To save some space,
5981 avoid generating sibling attributes for DIE's without children. */
5982
5983 static void
5984 add_sibling_attributes (dw_die_ref die)
5985 {
5986 dw_die_ref c;
5987
5988 if (die->die_tag != DW_TAG_compile_unit
5989 && die->die_sib && die->die_child != NULL)
5990 /* Add the sibling link to the front of the attribute list. */
5991 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
5992
5993 for (c = die->die_child; c != NULL; c = c->die_sib)
5994 add_sibling_attributes (c);
5995 }
5996
5997 /* Output all location lists for the DIE and its children. */
5998
5999 static void
6000 output_location_lists (dw_die_ref die)
6001 {
6002 dw_die_ref c;
6003 dw_attr_ref d_attr;
6004
6005 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6006 if (AT_class (d_attr) == dw_val_class_loc_list)
6007 output_loc_list (AT_loc_list (d_attr));
6008
6009 for (c = die->die_child; c != NULL; c = c->die_sib)
6010 output_location_lists (c);
6011
6012 }
6013
6014 /* The format of each DIE (and its attribute value pairs) is encoded in an
6015 abbreviation table. This routine builds the abbreviation table and assigns
6016 a unique abbreviation id for each abbreviation entry. The children of each
6017 die are visited recursively. */
6018
6019 static void
6020 build_abbrev_table (dw_die_ref die)
6021 {
6022 unsigned long abbrev_id;
6023 unsigned int n_alloc;
6024 dw_die_ref c;
6025 dw_attr_ref d_attr, a_attr;
6026
6027 /* Scan the DIE references, and mark as external any that refer to
6028 DIEs from other CUs (i.e. those which are not marked). */
6029 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6030 if (AT_class (d_attr) == dw_val_class_die_ref
6031 && AT_ref (d_attr)->die_mark == 0)
6032 {
6033 if (AT_ref (d_attr)->die_symbol == 0)
6034 abort ();
6035
6036 set_AT_ref_external (d_attr, 1);
6037 }
6038
6039 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6040 {
6041 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6042
6043 if (abbrev->die_tag == die->die_tag)
6044 {
6045 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6046 {
6047 a_attr = abbrev->die_attr;
6048 d_attr = die->die_attr;
6049
6050 while (a_attr != NULL && d_attr != NULL)
6051 {
6052 if ((a_attr->dw_attr != d_attr->dw_attr)
6053 || (value_format (a_attr) != value_format (d_attr)))
6054 break;
6055
6056 a_attr = a_attr->dw_attr_next;
6057 d_attr = d_attr->dw_attr_next;
6058 }
6059
6060 if (a_attr == NULL && d_attr == NULL)
6061 break;
6062 }
6063 }
6064 }
6065
6066 if (abbrev_id >= abbrev_die_table_in_use)
6067 {
6068 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6069 {
6070 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6071 abbrev_die_table = ggc_realloc (abbrev_die_table,
6072 sizeof (dw_die_ref) * n_alloc);
6073
6074 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6075 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6076 abbrev_die_table_allocated = n_alloc;
6077 }
6078
6079 ++abbrev_die_table_in_use;
6080 abbrev_die_table[abbrev_id] = die;
6081 }
6082
6083 die->die_abbrev = abbrev_id;
6084 for (c = die->die_child; c != NULL; c = c->die_sib)
6085 build_abbrev_table (c);
6086 }
6087 \f
6088 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6089
6090 static int
6091 constant_size (long unsigned int value)
6092 {
6093 int log;
6094
6095 if (value == 0)
6096 log = 0;
6097 else
6098 log = floor_log2 (value);
6099
6100 log = log / 8;
6101 log = 1 << (floor_log2 (log) + 1);
6102
6103 return log;
6104 }
6105
6106 /* Return the size of a DIE as it is represented in the
6107 .debug_info section. */
6108
6109 static unsigned long
6110 size_of_die (dw_die_ref die)
6111 {
6112 unsigned long size = 0;
6113 dw_attr_ref a;
6114
6115 size += size_of_uleb128 (die->die_abbrev);
6116 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6117 {
6118 switch (AT_class (a))
6119 {
6120 case dw_val_class_addr:
6121 size += DWARF2_ADDR_SIZE;
6122 break;
6123 case dw_val_class_offset:
6124 size += DWARF_OFFSET_SIZE;
6125 break;
6126 case dw_val_class_loc:
6127 {
6128 unsigned long lsize = size_of_locs (AT_loc (a));
6129
6130 /* Block length. */
6131 size += constant_size (lsize);
6132 size += lsize;
6133 }
6134 break;
6135 case dw_val_class_loc_list:
6136 size += DWARF_OFFSET_SIZE;
6137 break;
6138 case dw_val_class_range_list:
6139 size += DWARF_OFFSET_SIZE;
6140 break;
6141 case dw_val_class_const:
6142 size += size_of_sleb128 (AT_int (a));
6143 break;
6144 case dw_val_class_unsigned_const:
6145 size += constant_size (AT_unsigned (a));
6146 break;
6147 case dw_val_class_long_long:
6148 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6149 break;
6150 case dw_val_class_float:
6151 size += 1 + a->dw_attr_val.v.val_float.length * 4; /* block */
6152 break;
6153 case dw_val_class_flag:
6154 size += 1;
6155 break;
6156 case dw_val_class_die_ref:
6157 if (AT_ref_external (a))
6158 size += DWARF2_ADDR_SIZE;
6159 else
6160 size += DWARF_OFFSET_SIZE;
6161 break;
6162 case dw_val_class_fde_ref:
6163 size += DWARF_OFFSET_SIZE;
6164 break;
6165 case dw_val_class_lbl_id:
6166 size += DWARF2_ADDR_SIZE;
6167 break;
6168 case dw_val_class_lbl_offset:
6169 size += DWARF_OFFSET_SIZE;
6170 break;
6171 case dw_val_class_str:
6172 if (AT_string_form (a) == DW_FORM_strp)
6173 size += DWARF_OFFSET_SIZE;
6174 else
6175 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6176 break;
6177 default:
6178 abort ();
6179 }
6180 }
6181
6182 return size;
6183 }
6184
6185 /* Size the debugging information associated with a given DIE. Visits the
6186 DIE's children recursively. Updates the global variable next_die_offset, on
6187 each time through. Uses the current value of next_die_offset to update the
6188 die_offset field in each DIE. */
6189
6190 static void
6191 calc_die_sizes (dw_die_ref die)
6192 {
6193 dw_die_ref c;
6194
6195 die->die_offset = next_die_offset;
6196 next_die_offset += size_of_die (die);
6197
6198 for (c = die->die_child; c != NULL; c = c->die_sib)
6199 calc_die_sizes (c);
6200
6201 if (die->die_child != NULL)
6202 /* Count the null byte used to terminate sibling lists. */
6203 next_die_offset += 1;
6204 }
6205
6206 /* Set the marks for a die and its children. We do this so
6207 that we know whether or not a reference needs to use FORM_ref_addr; only
6208 DIEs in the same CU will be marked. We used to clear out the offset
6209 and use that as the flag, but ran into ordering problems. */
6210
6211 static void
6212 mark_dies (dw_die_ref die)
6213 {
6214 dw_die_ref c;
6215
6216 if (die->die_mark)
6217 abort ();
6218
6219 die->die_mark = 1;
6220 for (c = die->die_child; c; c = c->die_sib)
6221 mark_dies (c);
6222 }
6223
6224 /* Clear the marks for a die and its children. */
6225
6226 static void
6227 unmark_dies (dw_die_ref die)
6228 {
6229 dw_die_ref c;
6230
6231 if (!die->die_mark)
6232 abort ();
6233
6234 die->die_mark = 0;
6235 for (c = die->die_child; c; c = c->die_sib)
6236 unmark_dies (c);
6237 }
6238
6239 /* Clear the marks for a die, its children and referred dies. */
6240
6241 static void
6242 unmark_all_dies (dw_die_ref die)
6243 {
6244 dw_die_ref c;
6245 dw_attr_ref a;
6246
6247 if (!die->die_mark)
6248 return;
6249 die->die_mark = 0;
6250
6251 for (c = die->die_child; c; c = c->die_sib)
6252 unmark_all_dies (c);
6253
6254 for (a = die->die_attr; a; a = a->dw_attr_next)
6255 if (AT_class (a) == dw_val_class_die_ref)
6256 unmark_all_dies (AT_ref (a));
6257 }
6258
6259 /* Return the size of the .debug_pubnames table generated for the
6260 compilation unit. */
6261
6262 static unsigned long
6263 size_of_pubnames (void)
6264 {
6265 unsigned long size;
6266 unsigned i;
6267
6268 size = DWARF_PUBNAMES_HEADER_SIZE;
6269 for (i = 0; i < pubname_table_in_use; i++)
6270 {
6271 pubname_ref p = &pubname_table[i];
6272 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6273 }
6274
6275 size += DWARF_OFFSET_SIZE;
6276 return size;
6277 }
6278
6279 /* Return the size of the information in the .debug_aranges section. */
6280
6281 static unsigned long
6282 size_of_aranges (void)
6283 {
6284 unsigned long size;
6285
6286 size = DWARF_ARANGES_HEADER_SIZE;
6287
6288 /* Count the address/length pair for this compilation unit. */
6289 size += 2 * DWARF2_ADDR_SIZE;
6290 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6291
6292 /* Count the two zero words used to terminated the address range table. */
6293 size += 2 * DWARF2_ADDR_SIZE;
6294 return size;
6295 }
6296 \f
6297 /* Select the encoding of an attribute value. */
6298
6299 static enum dwarf_form
6300 value_format (dw_attr_ref a)
6301 {
6302 switch (a->dw_attr_val.val_class)
6303 {
6304 case dw_val_class_addr:
6305 return DW_FORM_addr;
6306 case dw_val_class_range_list:
6307 case dw_val_class_offset:
6308 if (DWARF_OFFSET_SIZE == 4)
6309 return DW_FORM_data4;
6310 if (DWARF_OFFSET_SIZE == 8)
6311 return DW_FORM_data8;
6312 abort ();
6313 case dw_val_class_loc_list:
6314 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6315 .debug_loc section */
6316 return DW_FORM_data4;
6317 case dw_val_class_loc:
6318 switch (constant_size (size_of_locs (AT_loc (a))))
6319 {
6320 case 1:
6321 return DW_FORM_block1;
6322 case 2:
6323 return DW_FORM_block2;
6324 default:
6325 abort ();
6326 }
6327 case dw_val_class_const:
6328 return DW_FORM_sdata;
6329 case dw_val_class_unsigned_const:
6330 switch (constant_size (AT_unsigned (a)))
6331 {
6332 case 1:
6333 return DW_FORM_data1;
6334 case 2:
6335 return DW_FORM_data2;
6336 case 4:
6337 return DW_FORM_data4;
6338 case 8:
6339 return DW_FORM_data8;
6340 default:
6341 abort ();
6342 }
6343 case dw_val_class_long_long:
6344 return DW_FORM_block1;
6345 case dw_val_class_float:
6346 return DW_FORM_block1;
6347 case dw_val_class_flag:
6348 return DW_FORM_flag;
6349 case dw_val_class_die_ref:
6350 if (AT_ref_external (a))
6351 return DW_FORM_ref_addr;
6352 else
6353 return DW_FORM_ref;
6354 case dw_val_class_fde_ref:
6355 return DW_FORM_data;
6356 case dw_val_class_lbl_id:
6357 return DW_FORM_addr;
6358 case dw_val_class_lbl_offset:
6359 return DW_FORM_data;
6360 case dw_val_class_str:
6361 return AT_string_form (a);
6362
6363 default:
6364 abort ();
6365 }
6366 }
6367
6368 /* Output the encoding of an attribute value. */
6369
6370 static void
6371 output_value_format (dw_attr_ref a)
6372 {
6373 enum dwarf_form form = value_format (a);
6374
6375 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6376 }
6377
6378 /* Output the .debug_abbrev section which defines the DIE abbreviation
6379 table. */
6380
6381 static void
6382 output_abbrev_section (void)
6383 {
6384 unsigned long abbrev_id;
6385
6386 dw_attr_ref a_attr;
6387
6388 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6389 {
6390 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6391
6392 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6393 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6394 dwarf_tag_name (abbrev->die_tag));
6395
6396 if (abbrev->die_child != NULL)
6397 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6398 else
6399 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6400
6401 for (a_attr = abbrev->die_attr; a_attr != NULL;
6402 a_attr = a_attr->dw_attr_next)
6403 {
6404 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6405 dwarf_attr_name (a_attr->dw_attr));
6406 output_value_format (a_attr);
6407 }
6408
6409 dw2_asm_output_data (1, 0, NULL);
6410 dw2_asm_output_data (1, 0, NULL);
6411 }
6412
6413 /* Terminate the table. */
6414 dw2_asm_output_data (1, 0, NULL);
6415 }
6416
6417 /* Output a symbol we can use to refer to this DIE from another CU. */
6418
6419 static inline void
6420 output_die_symbol (dw_die_ref die)
6421 {
6422 char *sym = die->die_symbol;
6423
6424 if (sym == 0)
6425 return;
6426
6427 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6428 /* We make these global, not weak; if the target doesn't support
6429 .linkonce, it doesn't support combining the sections, so debugging
6430 will break. */
6431 (*targetm.asm_out.globalize_label) (asm_out_file, sym);
6432
6433 ASM_OUTPUT_LABEL (asm_out_file, sym);
6434 }
6435
6436 /* Return a new location list, given the begin and end range, and the
6437 expression. gensym tells us whether to generate a new internal symbol for
6438 this location list node, which is done for the head of the list only. */
6439
6440 static inline dw_loc_list_ref
6441 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6442 const char *section, unsigned int gensym)
6443 {
6444 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6445
6446 retlist->begin = begin;
6447 retlist->end = end;
6448 retlist->expr = expr;
6449 retlist->section = section;
6450 if (gensym)
6451 retlist->ll_symbol = gen_internal_sym ("LLST");
6452
6453 return retlist;
6454 }
6455
6456 /* Add a location description expression to a location list. */
6457
6458 static inline void
6459 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6460 const char *begin, const char *end,
6461 const char *section)
6462 {
6463 dw_loc_list_ref *d;
6464
6465 /* Find the end of the chain. */
6466 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6467 ;
6468
6469 /* Add a new location list node to the list. */
6470 *d = new_loc_list (descr, begin, end, section, 0);
6471 }
6472
6473 /* Output the location list given to us. */
6474
6475 static void
6476 output_loc_list (dw_loc_list_ref list_head)
6477 {
6478 dw_loc_list_ref curr = list_head;
6479
6480 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6481
6482 /* ??? This shouldn't be needed now that we've forced the
6483 compilation unit base address to zero when there is code
6484 in more than one section. */
6485 if (strcmp (curr->section, ".text") == 0)
6486 {
6487 /* dw2_asm_output_data will mask off any extra bits in the ~0. */
6488 dw2_asm_output_data (DWARF2_ADDR_SIZE, ~(unsigned HOST_WIDE_INT) 0,
6489 "Location list base address specifier fake entry");
6490 dw2_asm_output_offset (DWARF2_ADDR_SIZE, curr->section,
6491 "Location list base address specifier base");
6492 }
6493
6494 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6495 {
6496 unsigned long size;
6497
6498 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6499 "Location list begin address (%s)",
6500 list_head->ll_symbol);
6501 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6502 "Location list end address (%s)",
6503 list_head->ll_symbol);
6504 size = size_of_locs (curr->expr);
6505
6506 /* Output the block length for this list of location operations. */
6507 if (size > 0xffff)
6508 abort ();
6509 dw2_asm_output_data (2, size, "%s", "Location expression size");
6510
6511 output_loc_sequence (curr->expr);
6512 }
6513
6514 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6515 "Location list terminator begin (%s)",
6516 list_head->ll_symbol);
6517 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0,
6518 "Location list terminator end (%s)",
6519 list_head->ll_symbol);
6520 }
6521
6522 /* Output the DIE and its attributes. Called recursively to generate
6523 the definitions of each child DIE. */
6524
6525 static void
6526 output_die (dw_die_ref die)
6527 {
6528 dw_attr_ref a;
6529 dw_die_ref c;
6530 unsigned long size;
6531
6532 /* If someone in another CU might refer to us, set up a symbol for
6533 them to point to. */
6534 if (die->die_symbol)
6535 output_die_symbol (die);
6536
6537 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6538 die->die_offset, dwarf_tag_name (die->die_tag));
6539
6540 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6541 {
6542 const char *name = dwarf_attr_name (a->dw_attr);
6543
6544 switch (AT_class (a))
6545 {
6546 case dw_val_class_addr:
6547 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6548 break;
6549
6550 case dw_val_class_offset:
6551 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6552 "%s", name);
6553 break;
6554
6555 case dw_val_class_range_list:
6556 {
6557 char *p = strchr (ranges_section_label, '\0');
6558
6559 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6560 a->dw_attr_val.v.val_offset);
6561 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6562 "%s", name);
6563 *p = '\0';
6564 }
6565 break;
6566
6567 case dw_val_class_loc:
6568 size = size_of_locs (AT_loc (a));
6569
6570 /* Output the block length for this list of location operations. */
6571 dw2_asm_output_data (constant_size (size), size, "%s", name);
6572
6573 output_loc_sequence (AT_loc (a));
6574 break;
6575
6576 case dw_val_class_const:
6577 /* ??? It would be slightly more efficient to use a scheme like is
6578 used for unsigned constants below, but gdb 4.x does not sign
6579 extend. Gdb 5.x does sign extend. */
6580 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6581 break;
6582
6583 case dw_val_class_unsigned_const:
6584 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6585 AT_unsigned (a), "%s", name);
6586 break;
6587
6588 case dw_val_class_long_long:
6589 {
6590 unsigned HOST_WIDE_INT first, second;
6591
6592 dw2_asm_output_data (1,
6593 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6594 "%s", name);
6595
6596 if (WORDS_BIG_ENDIAN)
6597 {
6598 first = a->dw_attr_val.v.val_long_long.hi;
6599 second = a->dw_attr_val.v.val_long_long.low;
6600 }
6601 else
6602 {
6603 first = a->dw_attr_val.v.val_long_long.low;
6604 second = a->dw_attr_val.v.val_long_long.hi;
6605 }
6606
6607 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6608 first, "long long constant");
6609 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6610 second, NULL);
6611 }
6612 break;
6613
6614 case dw_val_class_float:
6615 {
6616 unsigned int i;
6617
6618 dw2_asm_output_data (1, a->dw_attr_val.v.val_float.length * 4,
6619 "%s", name);
6620
6621 for (i = 0; i < a->dw_attr_val.v.val_float.length; i++)
6622 dw2_asm_output_data (4, a->dw_attr_val.v.val_float.array[i],
6623 "fp constant word %u", i);
6624 break;
6625 }
6626
6627 case dw_val_class_flag:
6628 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6629 break;
6630
6631 case dw_val_class_loc_list:
6632 {
6633 char *sym = AT_loc_list (a)->ll_symbol;
6634
6635 if (sym == 0)
6636 abort ();
6637 dw2_asm_output_delta (DWARF_OFFSET_SIZE, sym,
6638 loc_section_label, "%s", name);
6639 }
6640 break;
6641
6642 case dw_val_class_die_ref:
6643 if (AT_ref_external (a))
6644 {
6645 char *sym = AT_ref (a)->die_symbol;
6646
6647 if (sym == 0)
6648 abort ();
6649 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
6650 }
6651 else if (AT_ref (a)->die_offset == 0)
6652 abort ();
6653 else
6654 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
6655 "%s", name);
6656 break;
6657
6658 case dw_val_class_fde_ref:
6659 {
6660 char l1[20];
6661
6662 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
6663 a->dw_attr_val.v.val_fde_index * 2);
6664 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
6665 }
6666 break;
6667
6668 case dw_val_class_lbl_id:
6669 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
6670 break;
6671
6672 case dw_val_class_lbl_offset:
6673 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
6674 break;
6675
6676 case dw_val_class_str:
6677 if (AT_string_form (a) == DW_FORM_strp)
6678 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
6679 a->dw_attr_val.v.val_str->label,
6680 "%s: \"%s\"", name, AT_string (a));
6681 else
6682 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
6683 break;
6684
6685 default:
6686 abort ();
6687 }
6688 }
6689
6690 for (c = die->die_child; c != NULL; c = c->die_sib)
6691 output_die (c);
6692
6693 /* Add null byte to terminate sibling list. */
6694 if (die->die_child != NULL)
6695 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
6696 die->die_offset);
6697 }
6698
6699 /* Output the compilation unit that appears at the beginning of the
6700 .debug_info section, and precedes the DIE descriptions. */
6701
6702 static void
6703 output_compilation_unit_header (void)
6704 {
6705 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6706 dw2_asm_output_data (4, 0xffffffff,
6707 "Initial length escape value indicating 64-bit DWARF extension");
6708 dw2_asm_output_data (DWARF_OFFSET_SIZE,
6709 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
6710 "Length of Compilation Unit Info");
6711 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
6712 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
6713 "Offset Into Abbrev. Section");
6714 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
6715 }
6716
6717 /* Output the compilation unit DIE and its children. */
6718
6719 static void
6720 output_comp_unit (dw_die_ref die, int output_if_empty)
6721 {
6722 const char *secname;
6723 char *oldsym, *tmp;
6724
6725 /* Unless we are outputting main CU, we may throw away empty ones. */
6726 if (!output_if_empty && die->die_child == NULL)
6727 return;
6728
6729 /* Even if there are no children of this DIE, we must output the information
6730 about the compilation unit. Otherwise, on an empty translation unit, we
6731 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
6732 will then complain when examining the file. First mark all the DIEs in
6733 this CU so we know which get local refs. */
6734 mark_dies (die);
6735
6736 build_abbrev_table (die);
6737
6738 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
6739 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
6740 calc_die_sizes (die);
6741
6742 oldsym = die->die_symbol;
6743 if (oldsym)
6744 {
6745 tmp = alloca (strlen (oldsym) + 24);
6746
6747 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
6748 secname = tmp;
6749 die->die_symbol = NULL;
6750 }
6751 else
6752 secname = (const char *) DEBUG_INFO_SECTION;
6753
6754 /* Output debugging information. */
6755 named_section_flags (secname, SECTION_DEBUG);
6756 output_compilation_unit_header ();
6757 output_die (die);
6758
6759 /* Leave the marks on the main CU, so we can check them in
6760 output_pubnames. */
6761 if (oldsym)
6762 {
6763 unmark_dies (die);
6764 die->die_symbol = oldsym;
6765 }
6766 }
6767
6768 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
6769 output of lang_hooks.decl_printable_name for C++ looks like
6770 "A::f(int)". Let's drop the argument list, and maybe the scope. */
6771
6772 static const char *
6773 dwarf2_name (tree decl, int scope)
6774 {
6775 return (*lang_hooks.decl_printable_name) (decl, scope ? 1 : 0);
6776 }
6777
6778 /* Add a new entry to .debug_pubnames if appropriate. */
6779
6780 static void
6781 add_pubname (tree decl, dw_die_ref die)
6782 {
6783 pubname_ref p;
6784
6785 if (! TREE_PUBLIC (decl))
6786 return;
6787
6788 if (pubname_table_in_use == pubname_table_allocated)
6789 {
6790 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
6791 pubname_table
6792 = ggc_realloc (pubname_table,
6793 (pubname_table_allocated * sizeof (pubname_entry)));
6794 memset (pubname_table + pubname_table_in_use, 0,
6795 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
6796 }
6797
6798 p = &pubname_table[pubname_table_in_use++];
6799 p->die = die;
6800 p->name = xstrdup (dwarf2_name (decl, 1));
6801 }
6802
6803 /* Output the public names table used to speed up access to externally
6804 visible names. For now, only generate entries for externally
6805 visible procedures. */
6806
6807 static void
6808 output_pubnames (void)
6809 {
6810 unsigned i;
6811 unsigned long pubnames_length = size_of_pubnames ();
6812
6813 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6814 dw2_asm_output_data (4, 0xffffffff,
6815 "Initial length escape value indicating 64-bit DWARF extension");
6816 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
6817 "Length of Public Names Info");
6818 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6819 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6820 "Offset of Compilation Unit Info");
6821 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
6822 "Compilation Unit Length");
6823
6824 for (i = 0; i < pubname_table_in_use; i++)
6825 {
6826 pubname_ref pub = &pubname_table[i];
6827
6828 /* We shouldn't see pubnames for DIEs outside of the main CU. */
6829 if (pub->die->die_mark == 0)
6830 abort ();
6831
6832 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
6833 "DIE offset");
6834
6835 dw2_asm_output_nstring (pub->name, -1, "external name");
6836 }
6837
6838 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
6839 }
6840
6841 /* Add a new entry to .debug_aranges if appropriate. */
6842
6843 static void
6844 add_arange (tree decl, dw_die_ref die)
6845 {
6846 if (! DECL_SECTION_NAME (decl))
6847 return;
6848
6849 if (arange_table_in_use == arange_table_allocated)
6850 {
6851 arange_table_allocated += ARANGE_TABLE_INCREMENT;
6852 arange_table = ggc_realloc (arange_table,
6853 (arange_table_allocated
6854 * sizeof (dw_die_ref)));
6855 memset (arange_table + arange_table_in_use, 0,
6856 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
6857 }
6858
6859 arange_table[arange_table_in_use++] = die;
6860 }
6861
6862 /* Output the information that goes into the .debug_aranges table.
6863 Namely, define the beginning and ending address range of the
6864 text section generated for this compilation unit. */
6865
6866 static void
6867 output_aranges (void)
6868 {
6869 unsigned i;
6870 unsigned long aranges_length = size_of_aranges ();
6871
6872 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
6873 dw2_asm_output_data (4, 0xffffffff,
6874 "Initial length escape value indicating 64-bit DWARF extension");
6875 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
6876 "Length of Address Ranges Info");
6877 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
6878 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
6879 "Offset of Compilation Unit Info");
6880 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
6881 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
6882
6883 /* We need to align to twice the pointer size here. */
6884 if (DWARF_ARANGES_PAD_SIZE)
6885 {
6886 /* Pad using a 2 byte words so that padding is correct for any
6887 pointer size. */
6888 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
6889 2 * DWARF2_ADDR_SIZE);
6890 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
6891 dw2_asm_output_data (2, 0, NULL);
6892 }
6893
6894 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
6895 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
6896 text_section_label, "Length");
6897
6898 for (i = 0; i < arange_table_in_use; i++)
6899 {
6900 dw_die_ref die = arange_table[i];
6901
6902 /* We shouldn't see aranges for DIEs outside of the main CU. */
6903 if (die->die_mark == 0)
6904 abort ();
6905
6906 if (die->die_tag == DW_TAG_subprogram)
6907 {
6908 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
6909 "Address");
6910 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
6911 get_AT_low_pc (die), "Length");
6912 }
6913 else
6914 {
6915 /* A static variable; extract the symbol from DW_AT_location.
6916 Note that this code isn't currently hit, as we only emit
6917 aranges for functions (jason 9/23/99). */
6918 dw_attr_ref a = get_AT (die, DW_AT_location);
6919 dw_loc_descr_ref loc;
6920
6921 if (! a || AT_class (a) != dw_val_class_loc)
6922 abort ();
6923
6924 loc = AT_loc (a);
6925 if (loc->dw_loc_opc != DW_OP_addr)
6926 abort ();
6927
6928 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
6929 loc->dw_loc_oprnd1.v.val_addr, "Address");
6930 dw2_asm_output_data (DWARF2_ADDR_SIZE,
6931 get_AT_unsigned (die, DW_AT_byte_size),
6932 "Length");
6933 }
6934 }
6935
6936 /* Output the terminator words. */
6937 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6938 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
6939 }
6940
6941 /* Add a new entry to .debug_ranges. Return the offset at which it
6942 was placed. */
6943
6944 static unsigned int
6945 add_ranges (tree block)
6946 {
6947 unsigned int in_use = ranges_table_in_use;
6948
6949 if (in_use == ranges_table_allocated)
6950 {
6951 ranges_table_allocated += RANGES_TABLE_INCREMENT;
6952 ranges_table
6953 = ggc_realloc (ranges_table, (ranges_table_allocated
6954 * sizeof (struct dw_ranges_struct)));
6955 memset (ranges_table + ranges_table_in_use, 0,
6956 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
6957 }
6958
6959 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
6960 ranges_table_in_use = in_use + 1;
6961
6962 return in_use * 2 * DWARF2_ADDR_SIZE;
6963 }
6964
6965 static void
6966 output_ranges (void)
6967 {
6968 unsigned i;
6969 static const char *const start_fmt = "Offset 0x%x";
6970 const char *fmt = start_fmt;
6971
6972 for (i = 0; i < ranges_table_in_use; i++)
6973 {
6974 int block_num = ranges_table[i].block_num;
6975
6976 if (block_num)
6977 {
6978 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
6979 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
6980
6981 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
6982 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
6983
6984 /* If all code is in the text section, then the compilation
6985 unit base address defaults to DW_AT_low_pc, which is the
6986 base of the text section. */
6987 if (separate_line_info_table_in_use == 0)
6988 {
6989 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
6990 text_section_label,
6991 fmt, i * 2 * DWARF2_ADDR_SIZE);
6992 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
6993 text_section_label, NULL);
6994 }
6995
6996 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
6997 compilation unit base address to zero, which allows us to
6998 use absolute addresses, and not worry about whether the
6999 target supports cross-section arithmetic. */
7000 else
7001 {
7002 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7003 fmt, i * 2 * DWARF2_ADDR_SIZE);
7004 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7005 }
7006
7007 fmt = NULL;
7008 }
7009 else
7010 {
7011 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7012 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7013 fmt = start_fmt;
7014 }
7015 }
7016 }
7017
7018 /* Data structure containing information about input files. */
7019 struct file_info
7020 {
7021 char *path; /* Complete file name. */
7022 char *fname; /* File name part. */
7023 int length; /* Length of entire string. */
7024 int file_idx; /* Index in input file table. */
7025 int dir_idx; /* Index in directory table. */
7026 };
7027
7028 /* Data structure containing information about directories with source
7029 files. */
7030 struct dir_info
7031 {
7032 char *path; /* Path including directory name. */
7033 int length; /* Path length. */
7034 int prefix; /* Index of directory entry which is a prefix. */
7035 int count; /* Number of files in this directory. */
7036 int dir_idx; /* Index of directory used as base. */
7037 int used; /* Used in the end? */
7038 };
7039
7040 /* Callback function for file_info comparison. We sort by looking at
7041 the directories in the path. */
7042
7043 static int
7044 file_info_cmp (const void *p1, const void *p2)
7045 {
7046 const struct file_info *s1 = p1;
7047 const struct file_info *s2 = p2;
7048 unsigned char *cp1;
7049 unsigned char *cp2;
7050
7051 /* Take care of file names without directories. We need to make sure that
7052 we return consistent values to qsort since some will get confused if
7053 we return the same value when identical operands are passed in opposite
7054 orders. So if neither has a directory, return 0 and otherwise return
7055 1 or -1 depending on which one has the directory. */
7056 if ((s1->path == s1->fname || s2->path == s2->fname))
7057 return (s2->path == s2->fname) - (s1->path == s1->fname);
7058
7059 cp1 = (unsigned char *) s1->path;
7060 cp2 = (unsigned char *) s2->path;
7061
7062 while (1)
7063 {
7064 ++cp1;
7065 ++cp2;
7066 /* Reached the end of the first path? If so, handle like above. */
7067 if ((cp1 == (unsigned char *) s1->fname)
7068 || (cp2 == (unsigned char *) s2->fname))
7069 return ((cp2 == (unsigned char *) s2->fname)
7070 - (cp1 == (unsigned char *) s1->fname));
7071
7072 /* Character of current path component the same? */
7073 else if (*cp1 != *cp2)
7074 return *cp1 - *cp2;
7075 }
7076 }
7077
7078 /* Output the directory table and the file name table. We try to minimize
7079 the total amount of memory needed. A heuristic is used to avoid large
7080 slowdowns with many input files. */
7081
7082 static void
7083 output_file_names (void)
7084 {
7085 struct file_info *files;
7086 struct dir_info *dirs;
7087 int *saved;
7088 int *savehere;
7089 int *backmap;
7090 size_t ndirs;
7091 int idx_offset;
7092 size_t i;
7093 int idx;
7094
7095 /* Handle the case where file_table is empty. */
7096 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7097 {
7098 dw2_asm_output_data (1, 0, "End directory table");
7099 dw2_asm_output_data (1, 0, "End file name table");
7100 return;
7101 }
7102
7103 /* Allocate the various arrays we need. */
7104 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7105 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7106
7107 /* Sort the file names. */
7108 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7109 {
7110 char *f;
7111
7112 /* Skip all leading "./". */
7113 f = VARRAY_CHAR_PTR (file_table, i);
7114 while (f[0] == '.' && f[1] == '/')
7115 f += 2;
7116
7117 /* Create a new array entry. */
7118 files[i].path = f;
7119 files[i].length = strlen (f);
7120 files[i].file_idx = i;
7121
7122 /* Search for the file name part. */
7123 f = strrchr (f, '/');
7124 files[i].fname = f == NULL ? files[i].path : f + 1;
7125 }
7126
7127 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7128 sizeof (files[0]), file_info_cmp);
7129
7130 /* Find all the different directories used. */
7131 dirs[0].path = files[1].path;
7132 dirs[0].length = files[1].fname - files[1].path;
7133 dirs[0].prefix = -1;
7134 dirs[0].count = 1;
7135 dirs[0].dir_idx = 0;
7136 dirs[0].used = 0;
7137 files[1].dir_idx = 0;
7138 ndirs = 1;
7139
7140 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7141 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7142 && memcmp (dirs[ndirs - 1].path, files[i].path,
7143 dirs[ndirs - 1].length) == 0)
7144 {
7145 /* Same directory as last entry. */
7146 files[i].dir_idx = ndirs - 1;
7147 ++dirs[ndirs - 1].count;
7148 }
7149 else
7150 {
7151 size_t j;
7152
7153 /* This is a new directory. */
7154 dirs[ndirs].path = files[i].path;
7155 dirs[ndirs].length = files[i].fname - files[i].path;
7156 dirs[ndirs].count = 1;
7157 dirs[ndirs].dir_idx = ndirs;
7158 dirs[ndirs].used = 0;
7159 files[i].dir_idx = ndirs;
7160
7161 /* Search for a prefix. */
7162 dirs[ndirs].prefix = -1;
7163 for (j = 0; j < ndirs; j++)
7164 if (dirs[j].length < dirs[ndirs].length
7165 && dirs[j].length > 1
7166 && (dirs[ndirs].prefix == -1
7167 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7168 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7169 dirs[ndirs].prefix = j;
7170
7171 ++ndirs;
7172 }
7173
7174 /* Now to the actual work. We have to find a subset of the directories which
7175 allow expressing the file name using references to the directory table
7176 with the least amount of characters. We do not do an exhaustive search
7177 where we would have to check out every combination of every single
7178 possible prefix. Instead we use a heuristic which provides nearly optimal
7179 results in most cases and never is much off. */
7180 saved = alloca (ndirs * sizeof (int));
7181 savehere = alloca (ndirs * sizeof (int));
7182
7183 memset (saved, '\0', ndirs * sizeof (saved[0]));
7184 for (i = 0; i < ndirs; i++)
7185 {
7186 size_t j;
7187 int total;
7188
7189 /* We can always save some space for the current directory. But this
7190 does not mean it will be enough to justify adding the directory. */
7191 savehere[i] = dirs[i].length;
7192 total = (savehere[i] - saved[i]) * dirs[i].count;
7193
7194 for (j = i + 1; j < ndirs; j++)
7195 {
7196 savehere[j] = 0;
7197 if (saved[j] < dirs[i].length)
7198 {
7199 /* Determine whether the dirs[i] path is a prefix of the
7200 dirs[j] path. */
7201 int k;
7202
7203 k = dirs[j].prefix;
7204 while (k != -1 && k != (int) i)
7205 k = dirs[k].prefix;
7206
7207 if (k == (int) i)
7208 {
7209 /* Yes it is. We can possibly safe some memory but
7210 writing the filenames in dirs[j] relative to
7211 dirs[i]. */
7212 savehere[j] = dirs[i].length;
7213 total += (savehere[j] - saved[j]) * dirs[j].count;
7214 }
7215 }
7216 }
7217
7218 /* Check whether we can safe enough to justify adding the dirs[i]
7219 directory. */
7220 if (total > dirs[i].length + 1)
7221 {
7222 /* It's worthwhile adding. */
7223 for (j = i; j < ndirs; j++)
7224 if (savehere[j] > 0)
7225 {
7226 /* Remember how much we saved for this directory so far. */
7227 saved[j] = savehere[j];
7228
7229 /* Remember the prefix directory. */
7230 dirs[j].dir_idx = i;
7231 }
7232 }
7233 }
7234
7235 /* We have to emit them in the order they appear in the file_table array
7236 since the index is used in the debug info generation. To do this
7237 efficiently we generate a back-mapping of the indices first. */
7238 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7239 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7240 {
7241 backmap[files[i].file_idx] = i;
7242
7243 /* Mark this directory as used. */
7244 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7245 }
7246
7247 /* That was it. We are ready to emit the information. First emit the
7248 directory name table. We have to make sure the first actually emitted
7249 directory name has index one; zero is reserved for the current working
7250 directory. Make sure we do not confuse these indices with the one for the
7251 constructed table (even though most of the time they are identical). */
7252 idx = 1;
7253 idx_offset = dirs[0].length > 0 ? 1 : 0;
7254 for (i = 1 - idx_offset; i < ndirs; i++)
7255 if (dirs[i].used != 0)
7256 {
7257 dirs[i].used = idx++;
7258 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7259 "Directory Entry: 0x%x", dirs[i].used);
7260 }
7261
7262 dw2_asm_output_data (1, 0, "End directory table");
7263
7264 /* Correct the index for the current working directory entry if it
7265 exists. */
7266 if (idx_offset == 0)
7267 dirs[0].used = 0;
7268
7269 /* Now write all the file names. */
7270 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7271 {
7272 int file_idx = backmap[i];
7273 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7274
7275 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7276 "File Entry: 0x%lx", (unsigned long) i);
7277
7278 /* Include directory index. */
7279 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7280
7281 /* Modification time. */
7282 dw2_asm_output_data_uleb128 (0, NULL);
7283
7284 /* File length in bytes. */
7285 dw2_asm_output_data_uleb128 (0, NULL);
7286 }
7287
7288 dw2_asm_output_data (1, 0, "End file name table");
7289 }
7290
7291
7292 /* Output the source line number correspondence information. This
7293 information goes into the .debug_line section. */
7294
7295 static void
7296 output_line_info (void)
7297 {
7298 char l1[20], l2[20], p1[20], p2[20];
7299 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7300 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7301 unsigned opc;
7302 unsigned n_op_args;
7303 unsigned long lt_index;
7304 unsigned long current_line;
7305 long line_offset;
7306 long line_delta;
7307 unsigned long current_file;
7308 unsigned long function;
7309
7310 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7311 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7312 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7313 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7314
7315 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7316 dw2_asm_output_data (4, 0xffffffff,
7317 "Initial length escape value indicating 64-bit DWARF extension");
7318 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7319 "Length of Source Line Info");
7320 ASM_OUTPUT_LABEL (asm_out_file, l1);
7321
7322 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7323 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7324 ASM_OUTPUT_LABEL (asm_out_file, p1);
7325
7326 /* Define the architecture-dependent minimum instruction length (in
7327 bytes). In this implementation of DWARF, this field is used for
7328 information purposes only. Since GCC generates assembly language,
7329 we have no a priori knowledge of how many instruction bytes are
7330 generated for each source line, and therefore can use only the
7331 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7332 commands. Accordingly, we fix this as `1', which is "correct
7333 enough" for all architectures, and don't let the target override. */
7334 dw2_asm_output_data (1, 1,
7335 "Minimum Instruction Length");
7336
7337 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7338 "Default is_stmt_start flag");
7339 dw2_asm_output_data (1, DWARF_LINE_BASE,
7340 "Line Base Value (Special Opcodes)");
7341 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7342 "Line Range Value (Special Opcodes)");
7343 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7344 "Special Opcode Base");
7345
7346 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7347 {
7348 switch (opc)
7349 {
7350 case DW_LNS_advance_pc:
7351 case DW_LNS_advance_line:
7352 case DW_LNS_set_file:
7353 case DW_LNS_set_column:
7354 case DW_LNS_fixed_advance_pc:
7355 n_op_args = 1;
7356 break;
7357 default:
7358 n_op_args = 0;
7359 break;
7360 }
7361
7362 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7363 opc, n_op_args);
7364 }
7365
7366 /* Write out the information about the files we use. */
7367 output_file_names ();
7368 ASM_OUTPUT_LABEL (asm_out_file, p2);
7369
7370 /* We used to set the address register to the first location in the text
7371 section here, but that didn't accomplish anything since we already
7372 have a line note for the opening brace of the first function. */
7373
7374 /* Generate the line number to PC correspondence table, encoded as
7375 a series of state machine operations. */
7376 current_file = 1;
7377 current_line = 1;
7378 strcpy (prev_line_label, text_section_label);
7379 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7380 {
7381 dw_line_info_ref line_info = &line_info_table[lt_index];
7382
7383 #if 0
7384 /* Disable this optimization for now; GDB wants to see two line notes
7385 at the beginning of a function so it can find the end of the
7386 prologue. */
7387
7388 /* Don't emit anything for redundant notes. Just updating the
7389 address doesn't accomplish anything, because we already assume
7390 that anything after the last address is this line. */
7391 if (line_info->dw_line_num == current_line
7392 && line_info->dw_file_num == current_file)
7393 continue;
7394 #endif
7395
7396 /* Emit debug info for the address of the current line.
7397
7398 Unfortunately, we have little choice here currently, and must always
7399 use the most general form. GCC does not know the address delta
7400 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7401 attributes which will give an upper bound on the address range. We
7402 could perhaps use length attributes to determine when it is safe to
7403 use DW_LNS_fixed_advance_pc. */
7404
7405 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7406 if (0)
7407 {
7408 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7409 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7410 "DW_LNS_fixed_advance_pc");
7411 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7412 }
7413 else
7414 {
7415 /* This can handle any delta. This takes
7416 4+DWARF2_ADDR_SIZE bytes. */
7417 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7418 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7419 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7420 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7421 }
7422
7423 strcpy (prev_line_label, line_label);
7424
7425 /* Emit debug info for the source file of the current line, if
7426 different from the previous line. */
7427 if (line_info->dw_file_num != current_file)
7428 {
7429 current_file = line_info->dw_file_num;
7430 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7431 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7432 VARRAY_CHAR_PTR (file_table,
7433 current_file));
7434 }
7435
7436 /* Emit debug info for the current line number, choosing the encoding
7437 that uses the least amount of space. */
7438 if (line_info->dw_line_num != current_line)
7439 {
7440 line_offset = line_info->dw_line_num - current_line;
7441 line_delta = line_offset - DWARF_LINE_BASE;
7442 current_line = line_info->dw_line_num;
7443 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7444 /* This can handle deltas from -10 to 234, using the current
7445 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7446 takes 1 byte. */
7447 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7448 "line %lu", current_line);
7449 else
7450 {
7451 /* This can handle any delta. This takes at least 4 bytes,
7452 depending on the value being encoded. */
7453 dw2_asm_output_data (1, DW_LNS_advance_line,
7454 "advance to line %lu", current_line);
7455 dw2_asm_output_data_sleb128 (line_offset, NULL);
7456 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7457 }
7458 }
7459 else
7460 /* We still need to start a new row, so output a copy insn. */
7461 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7462 }
7463
7464 /* Emit debug info for the address of the end of the function. */
7465 if (0)
7466 {
7467 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7468 "DW_LNS_fixed_advance_pc");
7469 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7470 }
7471 else
7472 {
7473 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7474 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7475 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7476 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7477 }
7478
7479 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7480 dw2_asm_output_data_uleb128 (1, NULL);
7481 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7482
7483 function = 0;
7484 current_file = 1;
7485 current_line = 1;
7486 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7487 {
7488 dw_separate_line_info_ref line_info
7489 = &separate_line_info_table[lt_index];
7490
7491 #if 0
7492 /* Don't emit anything for redundant notes. */
7493 if (line_info->dw_line_num == current_line
7494 && line_info->dw_file_num == current_file
7495 && line_info->function == function)
7496 goto cont;
7497 #endif
7498
7499 /* Emit debug info for the address of the current line. If this is
7500 a new function, or the first line of a function, then we need
7501 to handle it differently. */
7502 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7503 lt_index);
7504 if (function != line_info->function)
7505 {
7506 function = line_info->function;
7507
7508 /* Set the address register to the first line in the function. */
7509 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7510 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7511 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7512 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7513 }
7514 else
7515 {
7516 /* ??? See the DW_LNS_advance_pc comment above. */
7517 if (0)
7518 {
7519 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7520 "DW_LNS_fixed_advance_pc");
7521 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7522 }
7523 else
7524 {
7525 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7526 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7527 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7528 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7529 }
7530 }
7531
7532 strcpy (prev_line_label, line_label);
7533
7534 /* Emit debug info for the source file of the current line, if
7535 different from the previous line. */
7536 if (line_info->dw_file_num != current_file)
7537 {
7538 current_file = line_info->dw_file_num;
7539 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7540 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7541 VARRAY_CHAR_PTR (file_table,
7542 current_file));
7543 }
7544
7545 /* Emit debug info for the current line number, choosing the encoding
7546 that uses the least amount of space. */
7547 if (line_info->dw_line_num != current_line)
7548 {
7549 line_offset = line_info->dw_line_num - current_line;
7550 line_delta = line_offset - DWARF_LINE_BASE;
7551 current_line = line_info->dw_line_num;
7552 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7553 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7554 "line %lu", current_line);
7555 else
7556 {
7557 dw2_asm_output_data (1, DW_LNS_advance_line,
7558 "advance to line %lu", current_line);
7559 dw2_asm_output_data_sleb128 (line_offset, NULL);
7560 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7561 }
7562 }
7563 else
7564 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7565
7566 #if 0
7567 cont:
7568 #endif
7569
7570 lt_index++;
7571
7572 /* If we're done with a function, end its sequence. */
7573 if (lt_index == separate_line_info_table_in_use
7574 || separate_line_info_table[lt_index].function != function)
7575 {
7576 current_file = 1;
7577 current_line = 1;
7578
7579 /* Emit debug info for the address of the end of the function. */
7580 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7581 if (0)
7582 {
7583 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7584 "DW_LNS_fixed_advance_pc");
7585 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7586 }
7587 else
7588 {
7589 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7590 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7591 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7592 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7593 }
7594
7595 /* Output the marker for the end of this sequence. */
7596 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7597 dw2_asm_output_data_uleb128 (1, NULL);
7598 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7599 }
7600 }
7601
7602 /* Output the marker for the end of the line number info. */
7603 ASM_OUTPUT_LABEL (asm_out_file, l2);
7604 }
7605 \f
7606 /* Given a pointer to a tree node for some base type, return a pointer to
7607 a DIE that describes the given type.
7608
7609 This routine must only be called for GCC type nodes that correspond to
7610 Dwarf base (fundamental) types. */
7611
7612 static dw_die_ref
7613 base_type_die (tree type)
7614 {
7615 dw_die_ref base_type_result;
7616 const char *type_name;
7617 enum dwarf_type encoding;
7618 tree name = TYPE_NAME (type);
7619
7620 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7621 return 0;
7622
7623 if (name)
7624 {
7625 if (TREE_CODE (name) == TYPE_DECL)
7626 name = DECL_NAME (name);
7627
7628 type_name = IDENTIFIER_POINTER (name);
7629 }
7630 else
7631 type_name = "__unknown__";
7632
7633 switch (TREE_CODE (type))
7634 {
7635 case INTEGER_TYPE:
7636 /* Carefully distinguish the C character types, without messing
7637 up if the language is not C. Note that we check only for the names
7638 that contain spaces; other names might occur by coincidence in other
7639 languages. */
7640 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
7641 && (type == char_type_node
7642 || ! strcmp (type_name, "signed char")
7643 || ! strcmp (type_name, "unsigned char"))))
7644 {
7645 if (TREE_UNSIGNED (type))
7646 encoding = DW_ATE_unsigned;
7647 else
7648 encoding = DW_ATE_signed;
7649 break;
7650 }
7651 /* else fall through. */
7652
7653 case CHAR_TYPE:
7654 /* GNU Pascal/Ada CHAR type. Not used in C. */
7655 if (TREE_UNSIGNED (type))
7656 encoding = DW_ATE_unsigned_char;
7657 else
7658 encoding = DW_ATE_signed_char;
7659 break;
7660
7661 case REAL_TYPE:
7662 encoding = DW_ATE_float;
7663 break;
7664
7665 /* Dwarf2 doesn't know anything about complex ints, so use
7666 a user defined type for it. */
7667 case COMPLEX_TYPE:
7668 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
7669 encoding = DW_ATE_complex_float;
7670 else
7671 encoding = DW_ATE_lo_user;
7672 break;
7673
7674 case BOOLEAN_TYPE:
7675 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
7676 encoding = DW_ATE_boolean;
7677 break;
7678
7679 default:
7680 /* No other TREE_CODEs are Dwarf fundamental types. */
7681 abort ();
7682 }
7683
7684 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
7685 if (demangle_name_func)
7686 type_name = (*demangle_name_func) (type_name);
7687
7688 add_AT_string (base_type_result, DW_AT_name, type_name);
7689 add_AT_unsigned (base_type_result, DW_AT_byte_size,
7690 int_size_in_bytes (type));
7691 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
7692
7693 return base_type_result;
7694 }
7695
7696 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
7697 the Dwarf "root" type for the given input type. The Dwarf "root" type of
7698 a given type is generally the same as the given type, except that if the
7699 given type is a pointer or reference type, then the root type of the given
7700 type is the root type of the "basis" type for the pointer or reference
7701 type. (This definition of the "root" type is recursive.) Also, the root
7702 type of a `const' qualified type or a `volatile' qualified type is the
7703 root type of the given type without the qualifiers. */
7704
7705 static tree
7706 root_type (tree type)
7707 {
7708 if (TREE_CODE (type) == ERROR_MARK)
7709 return error_mark_node;
7710
7711 switch (TREE_CODE (type))
7712 {
7713 case ERROR_MARK:
7714 return error_mark_node;
7715
7716 case POINTER_TYPE:
7717 case REFERENCE_TYPE:
7718 return type_main_variant (root_type (TREE_TYPE (type)));
7719
7720 default:
7721 return type_main_variant (type);
7722 }
7723 }
7724
7725 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
7726 given input type is a Dwarf "fundamental" type. Otherwise return null. */
7727
7728 static inline int
7729 is_base_type (tree type)
7730 {
7731 switch (TREE_CODE (type))
7732 {
7733 case ERROR_MARK:
7734 case VOID_TYPE:
7735 case INTEGER_TYPE:
7736 case REAL_TYPE:
7737 case COMPLEX_TYPE:
7738 case BOOLEAN_TYPE:
7739 case CHAR_TYPE:
7740 return 1;
7741
7742 case SET_TYPE:
7743 case ARRAY_TYPE:
7744 case RECORD_TYPE:
7745 case UNION_TYPE:
7746 case QUAL_UNION_TYPE:
7747 case ENUMERAL_TYPE:
7748 case FUNCTION_TYPE:
7749 case METHOD_TYPE:
7750 case POINTER_TYPE:
7751 case REFERENCE_TYPE:
7752 case FILE_TYPE:
7753 case OFFSET_TYPE:
7754 case LANG_TYPE:
7755 case VECTOR_TYPE:
7756 return 0;
7757
7758 default:
7759 abort ();
7760 }
7761
7762 return 0;
7763 }
7764
7765 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
7766 node, return the size in bits for the type if it is a constant, or else
7767 return the alignment for the type if the type's size is not constant, or
7768 else return BITS_PER_WORD if the type actually turns out to be an
7769 ERROR_MARK node. */
7770
7771 static inline unsigned HOST_WIDE_INT
7772 simple_type_size_in_bits (tree type)
7773 {
7774 if (TREE_CODE (type) == ERROR_MARK)
7775 return BITS_PER_WORD;
7776 else if (TYPE_SIZE (type) == NULL_TREE)
7777 return 0;
7778 else if (host_integerp (TYPE_SIZE (type), 1))
7779 return tree_low_cst (TYPE_SIZE (type), 1);
7780 else
7781 return TYPE_ALIGN (type);
7782 }
7783
7784 /* Return true if the debug information for the given type should be
7785 emitted as a subrange type. */
7786
7787 static inline bool
7788 is_ada_subrange_type (tree type)
7789 {
7790 /* We do this for INTEGER_TYPEs that have names, parent types, and when
7791 we are compiling Ada code. */
7792 return (TREE_CODE (type) == INTEGER_TYPE
7793 && TYPE_NAME (type) != 0 && TREE_TYPE (type) != 0
7794 && TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE
7795 && TREE_UNSIGNED (TREE_TYPE (type)) && is_ada ());
7796 }
7797
7798 /* Given a pointer to a tree node for a subrange type, return a pointer
7799 to a DIE that describes the given type. */
7800
7801 static dw_die_ref
7802 subrange_type_die (tree type)
7803 {
7804 dw_die_ref subtype_die;
7805 dw_die_ref subrange_die;
7806 tree name = TYPE_NAME (type);
7807
7808 subtype_die = base_type_die (TREE_TYPE (type));
7809
7810 if (TREE_CODE (name) == TYPE_DECL)
7811 name = DECL_NAME (name);
7812
7813 subrange_die = new_die (DW_TAG_subrange_type, comp_unit_die, type);
7814 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
7815 if (TYPE_MIN_VALUE (type) != NULL)
7816 add_bound_info (subrange_die, DW_AT_lower_bound,
7817 TYPE_MIN_VALUE (type));
7818 if (TYPE_MAX_VALUE (type) != NULL)
7819 add_bound_info (subrange_die, DW_AT_upper_bound,
7820 TYPE_MAX_VALUE (type));
7821 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
7822
7823 return subrange_die;
7824 }
7825
7826 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
7827 entry that chains various modifiers in front of the given type. */
7828
7829 static dw_die_ref
7830 modified_type_die (tree type, int is_const_type, int is_volatile_type,
7831 dw_die_ref context_die)
7832 {
7833 enum tree_code code = TREE_CODE (type);
7834 dw_die_ref mod_type_die = NULL;
7835 dw_die_ref sub_die = NULL;
7836 tree item_type = NULL;
7837
7838 if (code != ERROR_MARK)
7839 {
7840 tree qualified_type;
7841
7842 /* See if we already have the appropriately qualified variant of
7843 this type. */
7844 qualified_type
7845 = get_qualified_type (type,
7846 ((is_const_type ? TYPE_QUAL_CONST : 0)
7847 | (is_volatile_type
7848 ? TYPE_QUAL_VOLATILE : 0)));
7849
7850 /* If we do, then we can just use its DIE, if it exists. */
7851 if (qualified_type)
7852 {
7853 mod_type_die = lookup_type_die (qualified_type);
7854 if (mod_type_die)
7855 return mod_type_die;
7856 }
7857
7858 /* Handle C typedef types. */
7859 if (qualified_type && TYPE_NAME (qualified_type)
7860 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
7861 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
7862 {
7863 tree type_name = TYPE_NAME (qualified_type);
7864 tree dtype = TREE_TYPE (type_name);
7865
7866 if (qualified_type == dtype)
7867 {
7868 /* For a named type, use the typedef. */
7869 gen_type_die (qualified_type, context_die);
7870 mod_type_die = lookup_type_die (qualified_type);
7871 }
7872 else if (is_const_type < TYPE_READONLY (dtype)
7873 || is_volatile_type < TYPE_VOLATILE (dtype))
7874 /* cv-unqualified version of named type. Just use the unnamed
7875 type to which it refers. */
7876 mod_type_die
7877 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
7878 is_const_type, is_volatile_type,
7879 context_die);
7880
7881 /* Else cv-qualified version of named type; fall through. */
7882 }
7883
7884 if (mod_type_die)
7885 /* OK. */
7886 ;
7887 else if (is_const_type)
7888 {
7889 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
7890 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
7891 }
7892 else if (is_volatile_type)
7893 {
7894 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
7895 sub_die = modified_type_die (type, 0, 0, context_die);
7896 }
7897 else if (code == POINTER_TYPE)
7898 {
7899 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
7900 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7901 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7902 #if 0
7903 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7904 #endif
7905 item_type = TREE_TYPE (type);
7906 }
7907 else if (code == REFERENCE_TYPE)
7908 {
7909 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
7910 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
7911 simple_type_size_in_bits (type) / BITS_PER_UNIT);
7912 #if 0
7913 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
7914 #endif
7915 item_type = TREE_TYPE (type);
7916 }
7917 else if (is_ada_subrange_type (type))
7918 mod_type_die = subrange_type_die (type);
7919 else if (is_base_type (type))
7920 mod_type_die = base_type_die (type);
7921 else
7922 {
7923 gen_type_die (type, context_die);
7924
7925 /* We have to get the type_main_variant here (and pass that to the
7926 `lookup_type_die' routine) because the ..._TYPE node we have
7927 might simply be a *copy* of some original type node (where the
7928 copy was created to help us keep track of typedef names) and
7929 that copy might have a different TYPE_UID from the original
7930 ..._TYPE node. */
7931 if (TREE_CODE (type) != VECTOR_TYPE)
7932 mod_type_die = lookup_type_die (type_main_variant (type));
7933 else
7934 /* Vectors have the debugging information in the type,
7935 not the main variant. */
7936 mod_type_die = lookup_type_die (type);
7937 if (mod_type_die == NULL)
7938 abort ();
7939 }
7940
7941 /* We want to equate the qualified type to the die below. */
7942 type = qualified_type;
7943 }
7944
7945 if (type)
7946 equate_type_number_to_die (type, mod_type_die);
7947 if (item_type)
7948 /* We must do this after the equate_type_number_to_die call, in case
7949 this is a recursive type. This ensures that the modified_type_die
7950 recursion will terminate even if the type is recursive. Recursive
7951 types are possible in Ada. */
7952 sub_die = modified_type_die (item_type,
7953 TYPE_READONLY (item_type),
7954 TYPE_VOLATILE (item_type),
7955 context_die);
7956
7957 if (sub_die != NULL)
7958 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
7959
7960 return mod_type_die;
7961 }
7962
7963 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
7964 an enumerated type. */
7965
7966 static inline int
7967 type_is_enum (tree type)
7968 {
7969 return TREE_CODE (type) == ENUMERAL_TYPE;
7970 }
7971
7972 /* Return the register number described by a given RTL node. */
7973
7974 static unsigned int
7975 reg_number (rtx rtl)
7976 {
7977 unsigned regno = REGNO (rtl);
7978
7979 if (regno >= FIRST_PSEUDO_REGISTER)
7980 abort ();
7981
7982 return DBX_REGISTER_NUMBER (regno);
7983 }
7984
7985 /* Return a location descriptor that designates a machine register or
7986 zero if there is none. */
7987
7988 static dw_loc_descr_ref
7989 reg_loc_descriptor (rtx rtl)
7990 {
7991 unsigned reg;
7992 rtx regs;
7993
7994 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
7995 return 0;
7996
7997 reg = reg_number (rtl);
7998 regs = (*targetm.dwarf_register_span) (rtl);
7999
8000 if (HARD_REGNO_NREGS (reg, GET_MODE (rtl)) > 1
8001 || regs)
8002 return multiple_reg_loc_descriptor (rtl, regs);
8003 else
8004 return one_reg_loc_descriptor (reg);
8005 }
8006
8007 /* Return a location descriptor that designates a machine register for
8008 a given hard register number. */
8009
8010 static dw_loc_descr_ref
8011 one_reg_loc_descriptor (unsigned int regno)
8012 {
8013 if (regno <= 31)
8014 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8015 else
8016 return new_loc_descr (DW_OP_regx, regno, 0);
8017 }
8018
8019 /* Given an RTL of a register, return a location descriptor that
8020 designates a value that spans more than one register. */
8021
8022 static dw_loc_descr_ref
8023 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8024 {
8025 int nregs, size, i;
8026 unsigned reg;
8027 dw_loc_descr_ref loc_result = NULL;
8028
8029 reg = reg_number (rtl);
8030 nregs = HARD_REGNO_NREGS (reg, GET_MODE (rtl));
8031
8032 /* Simple, contiguous registers. */
8033 if (regs == NULL_RTX)
8034 {
8035 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8036
8037 loc_result = NULL;
8038 while (nregs--)
8039 {
8040 dw_loc_descr_ref t;
8041
8042 t = one_reg_loc_descriptor (reg);
8043 add_loc_descr (&loc_result, t);
8044 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8045 ++reg;
8046 }
8047 return loc_result;
8048 }
8049
8050 /* Now onto stupid register sets in non contiguous locations. */
8051
8052 if (GET_CODE (regs) != PARALLEL)
8053 abort ();
8054
8055 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8056 loc_result = NULL;
8057
8058 for (i = 0; i < XVECLEN (regs, 0); ++i)
8059 {
8060 dw_loc_descr_ref t;
8061
8062 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8063 add_loc_descr (&loc_result, t);
8064 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8065 add_loc_descr (&loc_result, new_loc_descr (DW_OP_piece, size, 0));
8066 }
8067 return loc_result;
8068 }
8069
8070 /* Return a location descriptor that designates a constant. */
8071
8072 static dw_loc_descr_ref
8073 int_loc_descriptor (HOST_WIDE_INT i)
8074 {
8075 enum dwarf_location_atom op;
8076
8077 /* Pick the smallest representation of a constant, rather than just
8078 defaulting to the LEB encoding. */
8079 if (i >= 0)
8080 {
8081 if (i <= 31)
8082 op = DW_OP_lit0 + i;
8083 else if (i <= 0xff)
8084 op = DW_OP_const1u;
8085 else if (i <= 0xffff)
8086 op = DW_OP_const2u;
8087 else if (HOST_BITS_PER_WIDE_INT == 32
8088 || i <= 0xffffffff)
8089 op = DW_OP_const4u;
8090 else
8091 op = DW_OP_constu;
8092 }
8093 else
8094 {
8095 if (i >= -0x80)
8096 op = DW_OP_const1s;
8097 else if (i >= -0x8000)
8098 op = DW_OP_const2s;
8099 else if (HOST_BITS_PER_WIDE_INT == 32
8100 || i >= -0x80000000)
8101 op = DW_OP_const4s;
8102 else
8103 op = DW_OP_consts;
8104 }
8105
8106 return new_loc_descr (op, i, 0);
8107 }
8108
8109 /* Return a location descriptor that designates a base+offset location. */
8110
8111 static dw_loc_descr_ref
8112 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset)
8113 {
8114 dw_loc_descr_ref loc_result;
8115 /* For the "frame base", we use the frame pointer or stack pointer
8116 registers, since the RTL for local variables is relative to one of
8117 them. */
8118 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8119 ? HARD_FRAME_POINTER_REGNUM
8120 : STACK_POINTER_REGNUM);
8121
8122 if (reg == fp_reg)
8123 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8124 else if (reg <= 31)
8125 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8126 else
8127 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8128
8129 return loc_result;
8130 }
8131
8132 /* Return true if this RTL expression describes a base+offset calculation. */
8133
8134 static inline int
8135 is_based_loc (rtx rtl)
8136 {
8137 return (GET_CODE (rtl) == PLUS
8138 && ((GET_CODE (XEXP (rtl, 0)) == REG
8139 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8140 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8141 }
8142
8143 /* The following routine converts the RTL for a variable or parameter
8144 (resident in memory) into an equivalent Dwarf representation of a
8145 mechanism for getting the address of that same variable onto the top of a
8146 hypothetical "address evaluation" stack.
8147
8148 When creating memory location descriptors, we are effectively transforming
8149 the RTL for a memory-resident object into its Dwarf postfix expression
8150 equivalent. This routine recursively descends an RTL tree, turning
8151 it into Dwarf postfix code as it goes.
8152
8153 MODE is the mode of the memory reference, needed to handle some
8154 autoincrement addressing modes.
8155
8156 Return 0 if we can't represent the location. */
8157
8158 static dw_loc_descr_ref
8159 mem_loc_descriptor (rtx rtl, enum machine_mode mode)
8160 {
8161 dw_loc_descr_ref mem_loc_result = NULL;
8162
8163 /* Note that for a dynamically sized array, the location we will generate a
8164 description of here will be the lowest numbered location which is
8165 actually within the array. That's *not* necessarily the same as the
8166 zeroth element of the array. */
8167
8168 rtl = (*targetm.delegitimize_address) (rtl);
8169
8170 switch (GET_CODE (rtl))
8171 {
8172 case POST_INC:
8173 case POST_DEC:
8174 case POST_MODIFY:
8175 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8176 just fall into the SUBREG code. */
8177
8178 /* ... fall through ... */
8179
8180 case SUBREG:
8181 /* The case of a subreg may arise when we have a local (register)
8182 variable or a formal (register) parameter which doesn't quite fill
8183 up an entire register. For now, just assume that it is
8184 legitimate to make the Dwarf info refer to the whole register which
8185 contains the given subreg. */
8186 rtl = SUBREG_REG (rtl);
8187
8188 /* ... fall through ... */
8189
8190 case REG:
8191 /* Whenever a register number forms a part of the description of the
8192 method for calculating the (dynamic) address of a memory resident
8193 object, DWARF rules require the register number be referred to as
8194 a "base register". This distinction is not based in any way upon
8195 what category of register the hardware believes the given register
8196 belongs to. This is strictly DWARF terminology we're dealing with
8197 here. Note that in cases where the location of a memory-resident
8198 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8199 OP_CONST (0)) the actual DWARF location descriptor that we generate
8200 may just be OP_BASEREG (basereg). This may look deceptively like
8201 the object in question was allocated to a register (rather than in
8202 memory) so DWARF consumers need to be aware of the subtle
8203 distinction between OP_REG and OP_BASEREG. */
8204 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8205 mem_loc_result = based_loc_descr (reg_number (rtl), 0);
8206 break;
8207
8208 case MEM:
8209 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8210 if (mem_loc_result != 0)
8211 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8212 break;
8213
8214 case LO_SUM:
8215 rtl = XEXP (rtl, 1);
8216
8217 /* ... fall through ... */
8218
8219 case LABEL_REF:
8220 /* Some ports can transform a symbol ref into a label ref, because
8221 the symbol ref is too far away and has to be dumped into a constant
8222 pool. */
8223 case CONST:
8224 case SYMBOL_REF:
8225 /* Alternatively, the symbol in the constant pool might be referenced
8226 by a different symbol. */
8227 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8228 {
8229 bool marked;
8230 rtx tmp = get_pool_constant_mark (rtl, &marked);
8231
8232 if (GET_CODE (tmp) == SYMBOL_REF)
8233 {
8234 rtl = tmp;
8235 if (CONSTANT_POOL_ADDRESS_P (tmp))
8236 get_pool_constant_mark (tmp, &marked);
8237 else
8238 marked = true;
8239 }
8240
8241 /* If all references to this pool constant were optimized away,
8242 it was not output and thus we can't represent it.
8243 FIXME: might try to use DW_OP_const_value here, though
8244 DW_OP_piece complicates it. */
8245 if (!marked)
8246 return 0;
8247 }
8248
8249 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8250 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8251 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8252 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
8253 break;
8254
8255 case PRE_MODIFY:
8256 /* Extract the PLUS expression nested inside and fall into
8257 PLUS code below. */
8258 rtl = XEXP (rtl, 1);
8259 goto plus;
8260
8261 case PRE_INC:
8262 case PRE_DEC:
8263 /* Turn these into a PLUS expression and fall into the PLUS code
8264 below. */
8265 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8266 GEN_INT (GET_CODE (rtl) == PRE_INC
8267 ? GET_MODE_UNIT_SIZE (mode)
8268 : -GET_MODE_UNIT_SIZE (mode)));
8269
8270 /* ... fall through ... */
8271
8272 case PLUS:
8273 plus:
8274 if (is_based_loc (rtl))
8275 mem_loc_result = based_loc_descr (reg_number (XEXP (rtl, 0)),
8276 INTVAL (XEXP (rtl, 1)));
8277 else
8278 {
8279 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode);
8280 if (mem_loc_result == 0)
8281 break;
8282
8283 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8284 && INTVAL (XEXP (rtl, 1)) >= 0)
8285 add_loc_descr (&mem_loc_result,
8286 new_loc_descr (DW_OP_plus_uconst,
8287 INTVAL (XEXP (rtl, 1)), 0));
8288 else
8289 {
8290 add_loc_descr (&mem_loc_result,
8291 mem_loc_descriptor (XEXP (rtl, 1), mode));
8292 add_loc_descr (&mem_loc_result,
8293 new_loc_descr (DW_OP_plus, 0, 0));
8294 }
8295 }
8296 break;
8297
8298 case MULT:
8299 {
8300 /* If a pseudo-reg is optimized away, it is possible for it to
8301 be replaced with a MEM containing a multiply. */
8302 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode);
8303 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode);
8304
8305 if (op0 == 0 || op1 == 0)
8306 break;
8307
8308 mem_loc_result = op0;
8309 add_loc_descr (&mem_loc_result, op1);
8310 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_mul, 0, 0));
8311 break;
8312 }
8313
8314 case CONST_INT:
8315 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8316 break;
8317
8318 case ADDRESSOF:
8319 /* If this is a MEM, return its address. Otherwise, we can't
8320 represent this. */
8321 if (GET_CODE (XEXP (rtl, 0)) == MEM)
8322 return mem_loc_descriptor (XEXP (XEXP (rtl, 0), 0), mode);
8323 else
8324 return 0;
8325
8326 default:
8327 abort ();
8328 }
8329
8330 return mem_loc_result;
8331 }
8332
8333 /* Return a descriptor that describes the concatenation of two locations.
8334 This is typically a complex variable. */
8335
8336 static dw_loc_descr_ref
8337 concat_loc_descriptor (rtx x0, rtx x1)
8338 {
8339 dw_loc_descr_ref cc_loc_result = NULL;
8340 dw_loc_descr_ref x0_ref = loc_descriptor (x0);
8341 dw_loc_descr_ref x1_ref = loc_descriptor (x1);
8342
8343 if (x0_ref == 0 || x1_ref == 0)
8344 return 0;
8345
8346 cc_loc_result = x0_ref;
8347 add_loc_descr (&cc_loc_result,
8348 new_loc_descr (DW_OP_piece,
8349 GET_MODE_SIZE (GET_MODE (x0)), 0));
8350
8351 add_loc_descr (&cc_loc_result, x1_ref);
8352 add_loc_descr (&cc_loc_result,
8353 new_loc_descr (DW_OP_piece,
8354 GET_MODE_SIZE (GET_MODE (x1)), 0));
8355
8356 return cc_loc_result;
8357 }
8358
8359 /* Output a proper Dwarf location descriptor for a variable or parameter
8360 which is either allocated in a register or in a memory location. For a
8361 register, we just generate an OP_REG and the register number. For a
8362 memory location we provide a Dwarf postfix expression describing how to
8363 generate the (dynamic) address of the object onto the address stack.
8364
8365 If we don't know how to describe it, return 0. */
8366
8367 static dw_loc_descr_ref
8368 loc_descriptor (rtx rtl)
8369 {
8370 dw_loc_descr_ref loc_result = NULL;
8371
8372 switch (GET_CODE (rtl))
8373 {
8374 case SUBREG:
8375 /* The case of a subreg may arise when we have a local (register)
8376 variable or a formal (register) parameter which doesn't quite fill
8377 up an entire register. For now, just assume that it is
8378 legitimate to make the Dwarf info refer to the whole register which
8379 contains the given subreg. */
8380 rtl = SUBREG_REG (rtl);
8381
8382 /* ... fall through ... */
8383
8384 case REG:
8385 loc_result = reg_loc_descriptor (rtl);
8386 break;
8387
8388 case MEM:
8389 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl));
8390 break;
8391
8392 case CONCAT:
8393 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8394 break;
8395
8396 default:
8397 abort ();
8398 }
8399
8400 return loc_result;
8401 }
8402
8403 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8404 up particularly with variable length arrays. If ADDRESSP is nonzero, we are
8405 looking for an address. Otherwise, we return a value. If we can't make a
8406 descriptor, return 0. */
8407
8408 static dw_loc_descr_ref
8409 loc_descriptor_from_tree (tree loc, int addressp)
8410 {
8411 dw_loc_descr_ref ret, ret1;
8412 int indirect_p = 0;
8413 int unsignedp = TREE_UNSIGNED (TREE_TYPE (loc));
8414 enum dwarf_location_atom op;
8415
8416 /* ??? Most of the time we do not take proper care for sign/zero
8417 extending the values properly. Hopefully this won't be a real
8418 problem... */
8419
8420 switch (TREE_CODE (loc))
8421 {
8422 case ERROR_MARK:
8423 return 0;
8424
8425 case WITH_RECORD_EXPR:
8426 case PLACEHOLDER_EXPR:
8427 /* This case involves extracting fields from an object to determine the
8428 position of other fields. We don't try to encode this here. The
8429 only user of this is Ada, which encodes the needed information using
8430 the names of types. */
8431 return 0;
8432
8433 case CALL_EXPR:
8434 return 0;
8435
8436 case ADDR_EXPR:
8437 /* We can support this only if we can look through conversions and
8438 find an INDIRECT_EXPR. */
8439 for (loc = TREE_OPERAND (loc, 0);
8440 TREE_CODE (loc) == CONVERT_EXPR || TREE_CODE (loc) == NOP_EXPR
8441 || TREE_CODE (loc) == NON_LVALUE_EXPR
8442 || TREE_CODE (loc) == VIEW_CONVERT_EXPR
8443 || TREE_CODE (loc) == SAVE_EXPR;
8444 loc = TREE_OPERAND (loc, 0))
8445 ;
8446
8447 return (TREE_CODE (loc) == INDIRECT_REF
8448 ? loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp)
8449 : 0);
8450
8451 case VAR_DECL:
8452 if (DECL_THREAD_LOCAL (loc))
8453 {
8454 rtx rtl;
8455
8456 #ifndef ASM_OUTPUT_DWARF_DTPREL
8457 /* If this is not defined, we have no way to emit the data. */
8458 return 0;
8459 #endif
8460
8461 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8462 look up addresses of objects in the current module. */
8463 if (DECL_EXTERNAL (loc))
8464 return 0;
8465
8466 rtl = rtl_for_decl_location (loc);
8467 if (rtl == NULL_RTX)
8468 return 0;
8469
8470 if (GET_CODE (rtl) != MEM)
8471 return 0;
8472 rtl = XEXP (rtl, 0);
8473 if (! CONSTANT_P (rtl))
8474 return 0;
8475
8476 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8477 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8478 ret->dw_loc_oprnd1.v.val_addr = rtl;
8479
8480 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8481 add_loc_descr (&ret, ret1);
8482
8483 indirect_p = 1;
8484 break;
8485 }
8486 /* FALLTHRU */
8487
8488 case PARM_DECL:
8489 {
8490 rtx rtl = rtl_for_decl_location (loc);
8491
8492 if (rtl == NULL_RTX)
8493 return 0;
8494 else if (CONSTANT_P (rtl))
8495 {
8496 ret = new_loc_descr (DW_OP_addr, 0, 0);
8497 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8498 ret->dw_loc_oprnd1.v.val_addr = rtl;
8499 indirect_p = 1;
8500 }
8501 else
8502 {
8503 enum machine_mode mode = GET_MODE (rtl);
8504
8505 if (GET_CODE (rtl) == MEM)
8506 {
8507 indirect_p = 1;
8508 rtl = XEXP (rtl, 0);
8509 }
8510
8511 ret = mem_loc_descriptor (rtl, mode);
8512 }
8513 }
8514 break;
8515
8516 case INDIRECT_REF:
8517 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8518 indirect_p = 1;
8519 break;
8520
8521 case COMPOUND_EXPR:
8522 return loc_descriptor_from_tree (TREE_OPERAND (loc, 1), addressp);
8523
8524 case NOP_EXPR:
8525 case CONVERT_EXPR:
8526 case NON_LVALUE_EXPR:
8527 case VIEW_CONVERT_EXPR:
8528 case SAVE_EXPR:
8529 case MODIFY_EXPR:
8530 return loc_descriptor_from_tree (TREE_OPERAND (loc, 0), addressp);
8531
8532 case COMPONENT_REF:
8533 case BIT_FIELD_REF:
8534 case ARRAY_REF:
8535 case ARRAY_RANGE_REF:
8536 {
8537 tree obj, offset;
8538 HOST_WIDE_INT bitsize, bitpos, bytepos;
8539 enum machine_mode mode;
8540 int volatilep;
8541
8542 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
8543 &unsignedp, &volatilep);
8544
8545 if (obj == loc)
8546 return 0;
8547
8548 ret = loc_descriptor_from_tree (obj, 1);
8549 if (ret == 0
8550 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
8551 return 0;
8552
8553 if (offset != NULL_TREE)
8554 {
8555 /* Variable offset. */
8556 add_loc_descr (&ret, loc_descriptor_from_tree (offset, 0));
8557 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8558 }
8559
8560 if (!addressp)
8561 indirect_p = 1;
8562
8563 bytepos = bitpos / BITS_PER_UNIT;
8564 if (bytepos > 0)
8565 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
8566 else if (bytepos < 0)
8567 {
8568 add_loc_descr (&ret, int_loc_descriptor (bytepos));
8569 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
8570 }
8571 break;
8572 }
8573
8574 case INTEGER_CST:
8575 if (host_integerp (loc, 0))
8576 ret = int_loc_descriptor (tree_low_cst (loc, 0));
8577 else
8578 return 0;
8579 break;
8580
8581 case CONSTRUCTOR:
8582 {
8583 /* Get an RTL for this, if something has been emitted. */
8584 rtx rtl = lookup_constant_def (loc);
8585 enum machine_mode mode;
8586
8587 if (GET_CODE (rtl) != MEM)
8588 return 0;
8589 mode = GET_MODE (rtl);
8590 rtl = XEXP (rtl, 0);
8591
8592 rtl = (*targetm.delegitimize_address) (rtl);
8593
8594 indirect_p = 1;
8595 ret = mem_loc_descriptor (rtl, mode);
8596 break;
8597 }
8598
8599 case TRUTH_AND_EXPR:
8600 case TRUTH_ANDIF_EXPR:
8601 case BIT_AND_EXPR:
8602 op = DW_OP_and;
8603 goto do_binop;
8604
8605 case TRUTH_XOR_EXPR:
8606 case BIT_XOR_EXPR:
8607 op = DW_OP_xor;
8608 goto do_binop;
8609
8610 case TRUTH_OR_EXPR:
8611 case TRUTH_ORIF_EXPR:
8612 case BIT_IOR_EXPR:
8613 op = DW_OP_or;
8614 goto do_binop;
8615
8616 case FLOOR_DIV_EXPR:
8617 case CEIL_DIV_EXPR:
8618 case ROUND_DIV_EXPR:
8619 case TRUNC_DIV_EXPR:
8620 op = DW_OP_div;
8621 goto do_binop;
8622
8623 case MINUS_EXPR:
8624 op = DW_OP_minus;
8625 goto do_binop;
8626
8627 case FLOOR_MOD_EXPR:
8628 case CEIL_MOD_EXPR:
8629 case ROUND_MOD_EXPR:
8630 case TRUNC_MOD_EXPR:
8631 op = DW_OP_mod;
8632 goto do_binop;
8633
8634 case MULT_EXPR:
8635 op = DW_OP_mul;
8636 goto do_binop;
8637
8638 case LSHIFT_EXPR:
8639 op = DW_OP_shl;
8640 goto do_binop;
8641
8642 case RSHIFT_EXPR:
8643 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
8644 goto do_binop;
8645
8646 case PLUS_EXPR:
8647 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
8648 && host_integerp (TREE_OPERAND (loc, 1), 0))
8649 {
8650 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8651 if (ret == 0)
8652 return 0;
8653
8654 add_loc_descr (&ret,
8655 new_loc_descr (DW_OP_plus_uconst,
8656 tree_low_cst (TREE_OPERAND (loc, 1),
8657 0),
8658 0));
8659 break;
8660 }
8661
8662 op = DW_OP_plus;
8663 goto do_binop;
8664
8665 case LE_EXPR:
8666 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8667 return 0;
8668
8669 op = DW_OP_le;
8670 goto do_binop;
8671
8672 case GE_EXPR:
8673 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8674 return 0;
8675
8676 op = DW_OP_ge;
8677 goto do_binop;
8678
8679 case LT_EXPR:
8680 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8681 return 0;
8682
8683 op = DW_OP_lt;
8684 goto do_binop;
8685
8686 case GT_EXPR:
8687 if (TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
8688 return 0;
8689
8690 op = DW_OP_gt;
8691 goto do_binop;
8692
8693 case EQ_EXPR:
8694 op = DW_OP_eq;
8695 goto do_binop;
8696
8697 case NE_EXPR:
8698 op = DW_OP_ne;
8699 goto do_binop;
8700
8701 do_binop:
8702 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8703 ret1 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8704 if (ret == 0 || ret1 == 0)
8705 return 0;
8706
8707 add_loc_descr (&ret, ret1);
8708 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8709 break;
8710
8711 case TRUTH_NOT_EXPR:
8712 case BIT_NOT_EXPR:
8713 op = DW_OP_not;
8714 goto do_unop;
8715
8716 case ABS_EXPR:
8717 op = DW_OP_abs;
8718 goto do_unop;
8719
8720 case NEGATE_EXPR:
8721 op = DW_OP_neg;
8722 goto do_unop;
8723
8724 do_unop:
8725 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8726 if (ret == 0)
8727 return 0;
8728
8729 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
8730 break;
8731
8732 case MAX_EXPR:
8733 loc = build (COND_EXPR, TREE_TYPE (loc),
8734 build (LT_EXPR, integer_type_node,
8735 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
8736 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
8737
8738 /* ... fall through ... */
8739
8740 case COND_EXPR:
8741 {
8742 dw_loc_descr_ref lhs
8743 = loc_descriptor_from_tree (TREE_OPERAND (loc, 1), 0);
8744 dw_loc_descr_ref rhs
8745 = loc_descriptor_from_tree (TREE_OPERAND (loc, 2), 0);
8746 dw_loc_descr_ref bra_node, jump_node, tmp;
8747
8748 ret = loc_descriptor_from_tree (TREE_OPERAND (loc, 0), 0);
8749 if (ret == 0 || lhs == 0 || rhs == 0)
8750 return 0;
8751
8752 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
8753 add_loc_descr (&ret, bra_node);
8754
8755 add_loc_descr (&ret, rhs);
8756 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
8757 add_loc_descr (&ret, jump_node);
8758
8759 add_loc_descr (&ret, lhs);
8760 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8761 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
8762
8763 /* ??? Need a node to point the skip at. Use a nop. */
8764 tmp = new_loc_descr (DW_OP_nop, 0, 0);
8765 add_loc_descr (&ret, tmp);
8766 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
8767 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
8768 }
8769 break;
8770
8771 default:
8772 /* Leave front-end specific codes as simply unknown. This comes
8773 up, for instance, with the C STMT_EXPR. */
8774 if ((unsigned int) TREE_CODE (loc)
8775 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
8776 return 0;
8777
8778 /* Otherwise this is a generic code; we should just lists all of
8779 these explicitly. Aborting means we forgot one. */
8780 abort ();
8781 }
8782
8783 /* Show if we can't fill the request for an address. */
8784 if (addressp && indirect_p == 0)
8785 return 0;
8786
8787 /* If we've got an address and don't want one, dereference. */
8788 if (!addressp && indirect_p > 0)
8789 {
8790 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
8791
8792 if (size > DWARF2_ADDR_SIZE || size == -1)
8793 return 0;
8794 else if (size == DWARF2_ADDR_SIZE)
8795 op = DW_OP_deref;
8796 else
8797 op = DW_OP_deref_size;
8798
8799 add_loc_descr (&ret, new_loc_descr (op, size, 0));
8800 }
8801
8802 return ret;
8803 }
8804
8805 /* Given a value, round it up to the lowest multiple of `boundary'
8806 which is not less than the value itself. */
8807
8808 static inline HOST_WIDE_INT
8809 ceiling (HOST_WIDE_INT value, unsigned int boundary)
8810 {
8811 return (((value + boundary - 1) / boundary) * boundary);
8812 }
8813
8814 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
8815 pointer to the declared type for the relevant field variable, or return
8816 `integer_type_node' if the given node turns out to be an
8817 ERROR_MARK node. */
8818
8819 static inline tree
8820 field_type (tree decl)
8821 {
8822 tree type;
8823
8824 if (TREE_CODE (decl) == ERROR_MARK)
8825 return integer_type_node;
8826
8827 type = DECL_BIT_FIELD_TYPE (decl);
8828 if (type == NULL_TREE)
8829 type = TREE_TYPE (decl);
8830
8831 return type;
8832 }
8833
8834 /* Given a pointer to a tree node, return the alignment in bits for
8835 it, or else return BITS_PER_WORD if the node actually turns out to
8836 be an ERROR_MARK node. */
8837
8838 static inline unsigned
8839 simple_type_align_in_bits (tree type)
8840 {
8841 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
8842 }
8843
8844 static inline unsigned
8845 simple_decl_align_in_bits (tree decl)
8846 {
8847 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
8848 }
8849
8850 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
8851 lowest addressed byte of the "containing object" for the given FIELD_DECL,
8852 or return 0 if we are unable to determine what that offset is, either
8853 because the argument turns out to be a pointer to an ERROR_MARK node, or
8854 because the offset is actually variable. (We can't handle the latter case
8855 just yet). */
8856
8857 static HOST_WIDE_INT
8858 field_byte_offset (tree decl)
8859 {
8860 unsigned int type_align_in_bits;
8861 unsigned int decl_align_in_bits;
8862 unsigned HOST_WIDE_INT type_size_in_bits;
8863 HOST_WIDE_INT object_offset_in_bits;
8864 tree type;
8865 tree field_size_tree;
8866 HOST_WIDE_INT bitpos_int;
8867 HOST_WIDE_INT deepest_bitpos;
8868 unsigned HOST_WIDE_INT field_size_in_bits;
8869
8870 if (TREE_CODE (decl) == ERROR_MARK)
8871 return 0;
8872 else if (TREE_CODE (decl) != FIELD_DECL)
8873 abort ();
8874
8875 type = field_type (decl);
8876 field_size_tree = DECL_SIZE (decl);
8877
8878 /* The size could be unspecified if there was an error, or for
8879 a flexible array member. */
8880 if (! field_size_tree)
8881 field_size_tree = bitsize_zero_node;
8882
8883 /* We cannot yet cope with fields whose positions are variable, so
8884 for now, when we see such things, we simply return 0. Someday, we may
8885 be able to handle such cases, but it will be damn difficult. */
8886 if (! host_integerp (bit_position (decl), 0))
8887 return 0;
8888
8889 bitpos_int = int_bit_position (decl);
8890
8891 /* If we don't know the size of the field, pretend it's a full word. */
8892 if (host_integerp (field_size_tree, 1))
8893 field_size_in_bits = tree_low_cst (field_size_tree, 1);
8894 else
8895 field_size_in_bits = BITS_PER_WORD;
8896
8897 type_size_in_bits = simple_type_size_in_bits (type);
8898 type_align_in_bits = simple_type_align_in_bits (type);
8899 decl_align_in_bits = simple_decl_align_in_bits (decl);
8900
8901 /* The GCC front-end doesn't make any attempt to keep track of the starting
8902 bit offset (relative to the start of the containing structure type) of the
8903 hypothetical "containing object" for a bit-field. Thus, when computing
8904 the byte offset value for the start of the "containing object" of a
8905 bit-field, we must deduce this information on our own. This can be rather
8906 tricky to do in some cases. For example, handling the following structure
8907 type definition when compiling for an i386/i486 target (which only aligns
8908 long long's to 32-bit boundaries) can be very tricky:
8909
8910 struct S { int field1; long long field2:31; };
8911
8912 Fortunately, there is a simple rule-of-thumb which can be used in such
8913 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
8914 structure shown above. It decides to do this based upon one simple rule
8915 for bit-field allocation. GCC allocates each "containing object" for each
8916 bit-field at the first (i.e. lowest addressed) legitimate alignment
8917 boundary (based upon the required minimum alignment for the declared type
8918 of the field) which it can possibly use, subject to the condition that
8919 there is still enough available space remaining in the containing object
8920 (when allocated at the selected point) to fully accommodate all of the
8921 bits of the bit-field itself.
8922
8923 This simple rule makes it obvious why GCC allocates 8 bytes for each
8924 object of the structure type shown above. When looking for a place to
8925 allocate the "containing object" for `field2', the compiler simply tries
8926 to allocate a 64-bit "containing object" at each successive 32-bit
8927 boundary (starting at zero) until it finds a place to allocate that 64-
8928 bit field such that at least 31 contiguous (and previously unallocated)
8929 bits remain within that selected 64 bit field. (As it turns out, for the
8930 example above, the compiler finds it is OK to allocate the "containing
8931 object" 64-bit field at bit-offset zero within the structure type.)
8932
8933 Here we attempt to work backwards from the limited set of facts we're
8934 given, and we try to deduce from those facts, where GCC must have believed
8935 that the containing object started (within the structure type). The value
8936 we deduce is then used (by the callers of this routine) to generate
8937 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
8938 and, in the case of DW_AT_location, regular fields as well). */
8939
8940 /* Figure out the bit-distance from the start of the structure to the
8941 "deepest" bit of the bit-field. */
8942 deepest_bitpos = bitpos_int + field_size_in_bits;
8943
8944 /* This is the tricky part. Use some fancy footwork to deduce where the
8945 lowest addressed bit of the containing object must be. */
8946 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8947
8948 /* Round up to type_align by default. This works best for bitfields. */
8949 object_offset_in_bits += type_align_in_bits - 1;
8950 object_offset_in_bits /= type_align_in_bits;
8951 object_offset_in_bits *= type_align_in_bits;
8952
8953 if (object_offset_in_bits > bitpos_int)
8954 {
8955 /* Sigh, the decl must be packed. */
8956 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
8957
8958 /* Round up to decl_align instead. */
8959 object_offset_in_bits += decl_align_in_bits - 1;
8960 object_offset_in_bits /= decl_align_in_bits;
8961 object_offset_in_bits *= decl_align_in_bits;
8962 }
8963
8964 return object_offset_in_bits / BITS_PER_UNIT;
8965 }
8966 \f
8967 /* The following routines define various Dwarf attributes and any data
8968 associated with them. */
8969
8970 /* Add a location description attribute value to a DIE.
8971
8972 This emits location attributes suitable for whole variables and
8973 whole parameters. Note that the location attributes for struct fields are
8974 generated by the routine `data_member_location_attribute' below. */
8975
8976 static inline void
8977 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
8978 dw_loc_descr_ref descr)
8979 {
8980 if (descr != 0)
8981 add_AT_loc (die, attr_kind, descr);
8982 }
8983
8984 /* Attach the specialized form of location attribute used for data members of
8985 struct and union types. In the special case of a FIELD_DECL node which
8986 represents a bit-field, the "offset" part of this special location
8987 descriptor must indicate the distance in bytes from the lowest-addressed
8988 byte of the containing struct or union type to the lowest-addressed byte of
8989 the "containing object" for the bit-field. (See the `field_byte_offset'
8990 function above).
8991
8992 For any given bit-field, the "containing object" is a hypothetical object
8993 (of some integral or enum type) within which the given bit-field lives. The
8994 type of this hypothetical "containing object" is always the same as the
8995 declared type of the individual bit-field itself (for GCC anyway... the
8996 DWARF spec doesn't actually mandate this). Note that it is the size (in
8997 bytes) of the hypothetical "containing object" which will be given in the
8998 DW_AT_byte_size attribute for this bit-field. (See the
8999 `byte_size_attribute' function below.) It is also used when calculating the
9000 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9001 function below.) */
9002
9003 static void
9004 add_data_member_location_attribute (dw_die_ref die, tree decl)
9005 {
9006 HOST_WIDE_INT offset;
9007 dw_loc_descr_ref loc_descr = 0;
9008
9009 if (TREE_CODE (decl) == TREE_VEC)
9010 {
9011 /* We're working on the TAG_inheritance for a base class. */
9012 if (TREE_VIA_VIRTUAL (decl) && is_cxx ())
9013 {
9014 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9015 aren't at a fixed offset from all (sub)objects of the same
9016 type. We need to extract the appropriate offset from our
9017 vtable. The following dwarf expression means
9018
9019 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9020
9021 This is specific to the V3 ABI, of course. */
9022
9023 dw_loc_descr_ref tmp;
9024
9025 /* Make a copy of the object address. */
9026 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9027 add_loc_descr (&loc_descr, tmp);
9028
9029 /* Extract the vtable address. */
9030 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9031 add_loc_descr (&loc_descr, tmp);
9032
9033 /* Calculate the address of the offset. */
9034 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9035 if (offset >= 0)
9036 abort ();
9037
9038 tmp = int_loc_descriptor (-offset);
9039 add_loc_descr (&loc_descr, tmp);
9040 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9041 add_loc_descr (&loc_descr, tmp);
9042
9043 /* Extract the offset. */
9044 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9045 add_loc_descr (&loc_descr, tmp);
9046
9047 /* Add it to the object address. */
9048 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9049 add_loc_descr (&loc_descr, tmp);
9050 }
9051 else
9052 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9053 }
9054 else
9055 offset = field_byte_offset (decl);
9056
9057 if (! loc_descr)
9058 {
9059 enum dwarf_location_atom op;
9060
9061 /* The DWARF2 standard says that we should assume that the structure
9062 address is already on the stack, so we can specify a structure field
9063 address by using DW_OP_plus_uconst. */
9064
9065 #ifdef MIPS_DEBUGGING_INFO
9066 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9067 operator correctly. It works only if we leave the offset on the
9068 stack. */
9069 op = DW_OP_constu;
9070 #else
9071 op = DW_OP_plus_uconst;
9072 #endif
9073
9074 loc_descr = new_loc_descr (op, offset, 0);
9075 }
9076
9077 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9078 }
9079
9080 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9081 does not have a "location" either in memory or in a register. These
9082 things can arise in GNU C when a constant is passed as an actual parameter
9083 to an inlined function. They can also arise in C++ where declared
9084 constants do not necessarily get memory "homes". */
9085
9086 static void
9087 add_const_value_attribute (dw_die_ref die, rtx rtl)
9088 {
9089 switch (GET_CODE (rtl))
9090 {
9091 case CONST_INT:
9092 /* Note that a CONST_INT rtx could represent either an integer
9093 or a floating-point constant. A CONST_INT is used whenever
9094 the constant will fit into a single word. In all such
9095 cases, the original mode of the constant value is wiped
9096 out, and the CONST_INT rtx is assigned VOIDmode. */
9097 {
9098 HOST_WIDE_INT val = INTVAL (rtl);
9099
9100 if (val < 0)
9101 add_AT_int (die, DW_AT_const_value, val);
9102 else
9103 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9104 }
9105 break;
9106
9107 case CONST_DOUBLE:
9108 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9109 floating-point constant. A CONST_DOUBLE is used whenever the
9110 constant requires more than one word in order to be adequately
9111 represented. We output CONST_DOUBLEs as blocks. */
9112 {
9113 enum machine_mode mode = GET_MODE (rtl);
9114
9115 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9116 {
9117 unsigned length = GET_MODE_SIZE (mode) / 4;
9118 long *array = ggc_alloc (sizeof (long) * length);
9119 REAL_VALUE_TYPE rv;
9120
9121 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9122 real_to_target (array, &rv, mode);
9123
9124 add_AT_float (die, DW_AT_const_value, length, array);
9125 }
9126 else
9127 {
9128 /* ??? We really should be using HOST_WIDE_INT throughout. */
9129 if (HOST_BITS_PER_LONG != HOST_BITS_PER_WIDE_INT)
9130 abort ();
9131
9132 add_AT_long_long (die, DW_AT_const_value,
9133 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9134 }
9135 }
9136 break;
9137
9138 case CONST_STRING:
9139 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9140 break;
9141
9142 case SYMBOL_REF:
9143 case LABEL_REF:
9144 case CONST:
9145 add_AT_addr (die, DW_AT_const_value, rtl);
9146 VARRAY_PUSH_RTX (used_rtx_varray, rtl);
9147 break;
9148
9149 case PLUS:
9150 /* In cases where an inlined instance of an inline function is passed
9151 the address of an `auto' variable (which is local to the caller) we
9152 can get a situation where the DECL_RTL of the artificial local
9153 variable (for the inlining) which acts as a stand-in for the
9154 corresponding formal parameter (of the inline function) will look
9155 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9156 exactly a compile-time constant expression, but it isn't the address
9157 of the (artificial) local variable either. Rather, it represents the
9158 *value* which the artificial local variable always has during its
9159 lifetime. We currently have no way to represent such quasi-constant
9160 values in Dwarf, so for now we just punt and generate nothing. */
9161 break;
9162
9163 default:
9164 /* No other kinds of rtx should be possible here. */
9165 abort ();
9166 }
9167
9168 }
9169
9170 static rtx
9171 rtl_for_decl_location (tree decl)
9172 {
9173 rtx rtl;
9174
9175 /* Here we have to decide where we are going to say the parameter "lives"
9176 (as far as the debugger is concerned). We only have a couple of
9177 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9178
9179 DECL_RTL normally indicates where the parameter lives during most of the
9180 activation of the function. If optimization is enabled however, this
9181 could be either NULL or else a pseudo-reg. Both of those cases indicate
9182 that the parameter doesn't really live anywhere (as far as the code
9183 generation parts of GCC are concerned) during most of the function's
9184 activation. That will happen (for example) if the parameter is never
9185 referenced within the function.
9186
9187 We could just generate a location descriptor here for all non-NULL
9188 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9189 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9190 where DECL_RTL is NULL or is a pseudo-reg.
9191
9192 Note however that we can only get away with using DECL_INCOMING_RTL as
9193 a backup substitute for DECL_RTL in certain limited cases. In cases
9194 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9195 we can be sure that the parameter was passed using the same type as it is
9196 declared to have within the function, and that its DECL_INCOMING_RTL
9197 points us to a place where a value of that type is passed.
9198
9199 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9200 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9201 because in these cases DECL_INCOMING_RTL points us to a value of some
9202 type which is *different* from the type of the parameter itself. Thus,
9203 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9204 such cases, the debugger would end up (for example) trying to fetch a
9205 `float' from a place which actually contains the first part of a
9206 `double'. That would lead to really incorrect and confusing
9207 output at debug-time.
9208
9209 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9210 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9211 are a couple of exceptions however. On little-endian machines we can
9212 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9213 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9214 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9215 when (on a little-endian machine) a non-prototyped function has a
9216 parameter declared to be of type `short' or `char'. In such cases,
9217 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9218 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9219 passed `int' value. If the debugger then uses that address to fetch
9220 a `short' or a `char' (on a little-endian machine) the result will be
9221 the correct data, so we allow for such exceptional cases below.
9222
9223 Note that our goal here is to describe the place where the given formal
9224 parameter lives during most of the function's activation (i.e. between the
9225 end of the prologue and the start of the epilogue). We'll do that as best
9226 as we can. Note however that if the given formal parameter is modified
9227 sometime during the execution of the function, then a stack backtrace (at
9228 debug-time) will show the function as having been called with the *new*
9229 value rather than the value which was originally passed in. This happens
9230 rarely enough that it is not a major problem, but it *is* a problem, and
9231 I'd like to fix it.
9232
9233 A future version of dwarf2out.c may generate two additional attributes for
9234 any given DW_TAG_formal_parameter DIE which will describe the "passed
9235 type" and the "passed location" for the given formal parameter in addition
9236 to the attributes we now generate to indicate the "declared type" and the
9237 "active location" for each parameter. This additional set of attributes
9238 could be used by debuggers for stack backtraces. Separately, note that
9239 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9240 This happens (for example) for inlined-instances of inline function formal
9241 parameters which are never referenced. This really shouldn't be
9242 happening. All PARM_DECL nodes should get valid non-NULL
9243 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate these
9244 values for inlined instances of inline function parameters, so when we see
9245 such cases, we are just out-of-luck for the time being (until integrate.c
9246 gets fixed). */
9247
9248 /* Use DECL_RTL as the "location" unless we find something better. */
9249 rtl = DECL_RTL_IF_SET (decl);
9250
9251 /* When generating abstract instances, ignore everything except
9252 constants, symbols living in memory, and symbols living in
9253 fixed registers. */
9254 if (! reload_completed)
9255 {
9256 if (rtl
9257 && (CONSTANT_P (rtl)
9258 || (GET_CODE (rtl) == MEM
9259 && CONSTANT_P (XEXP (rtl, 0)))
9260 || (GET_CODE (rtl) == REG
9261 && TREE_CODE (decl) == VAR_DECL
9262 && TREE_STATIC (decl))))
9263 {
9264 rtl = (*targetm.delegitimize_address) (rtl);
9265 return rtl;
9266 }
9267 rtl = NULL_RTX;
9268 }
9269 else if (TREE_CODE (decl) == PARM_DECL)
9270 {
9271 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9272 {
9273 tree declared_type = type_main_variant (TREE_TYPE (decl));
9274 tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
9275
9276 /* This decl represents a formal parameter which was optimized out.
9277 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9278 all cases where (rtl == NULL_RTX) just below. */
9279 if (declared_type == passed_type)
9280 rtl = DECL_INCOMING_RTL (decl);
9281 else if (! BYTES_BIG_ENDIAN
9282 && TREE_CODE (declared_type) == INTEGER_TYPE
9283 && (GET_MODE_SIZE (TYPE_MODE (declared_type))
9284 <= GET_MODE_SIZE (TYPE_MODE (passed_type))))
9285 rtl = DECL_INCOMING_RTL (decl);
9286 }
9287
9288 /* If the parm was passed in registers, but lives on the stack, then
9289 make a big endian correction if the mode of the type of the
9290 parameter is not the same as the mode of the rtl. */
9291 /* ??? This is the same series of checks that are made in dbxout.c before
9292 we reach the big endian correction code there. It isn't clear if all
9293 of these checks are necessary here, but keeping them all is the safe
9294 thing to do. */
9295 else if (GET_CODE (rtl) == MEM
9296 && XEXP (rtl, 0) != const0_rtx
9297 && ! CONSTANT_P (XEXP (rtl, 0))
9298 /* Not passed in memory. */
9299 && GET_CODE (DECL_INCOMING_RTL (decl)) != MEM
9300 /* Not passed by invisible reference. */
9301 && (GET_CODE (XEXP (rtl, 0)) != REG
9302 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
9303 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
9304 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
9305 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
9306 #endif
9307 )
9308 /* Big endian correction check. */
9309 && BYTES_BIG_ENDIAN
9310 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
9311 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
9312 < UNITS_PER_WORD))
9313 {
9314 int offset = (UNITS_PER_WORD
9315 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
9316
9317 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
9318 plus_constant (XEXP (rtl, 0), offset));
9319 }
9320 }
9321
9322 if (rtl != NULL_RTX)
9323 {
9324 rtl = eliminate_regs (rtl, 0, NULL_RTX);
9325 #ifdef LEAF_REG_REMAP
9326 if (current_function_uses_only_leaf_regs)
9327 leaf_renumber_regs_insn (rtl);
9328 #endif
9329 }
9330
9331 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
9332 and will have been substituted directly into all expressions that use it.
9333 C does not have such a concept, but C++ and other languages do. */
9334 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
9335 {
9336 /* If a variable is initialized with a string constant without embedded
9337 zeros, build CONST_STRING. */
9338 if (TREE_CODE (DECL_INITIAL (decl)) == STRING_CST
9339 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE)
9340 {
9341 tree arrtype = TREE_TYPE (decl);
9342 tree enttype = TREE_TYPE (arrtype);
9343 tree domain = TYPE_DOMAIN (arrtype);
9344 tree init = DECL_INITIAL (decl);
9345 enum machine_mode mode = TYPE_MODE (enttype);
9346
9347 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9348 && domain
9349 && integer_zerop (TYPE_MIN_VALUE (domain))
9350 && compare_tree_int (TYPE_MAX_VALUE (domain),
9351 TREE_STRING_LENGTH (init) - 1) == 0
9352 && ((size_t) TREE_STRING_LENGTH (init)
9353 == strlen (TREE_STRING_POINTER (init)) + 1))
9354 rtl = gen_rtx_CONST_STRING (VOIDmode, TREE_STRING_POINTER (init));
9355 }
9356 /* If the initializer is something that we know will expand into an
9357 immediate RTL constant, expand it now. Expanding anything else
9358 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9359 else if (TREE_CODE (DECL_INITIAL (decl)) == INTEGER_CST
9360 || TREE_CODE (DECL_INITIAL (decl)) == REAL_CST)
9361 {
9362 rtl = expand_expr (DECL_INITIAL (decl), NULL_RTX, VOIDmode,
9363 EXPAND_INITIALIZER);
9364 /* If expand_expr returns a MEM, it wasn't immediate. */
9365 if (rtl && GET_CODE (rtl) == MEM)
9366 abort ();
9367 }
9368 }
9369
9370 if (rtl)
9371 rtl = (*targetm.delegitimize_address) (rtl);
9372
9373 /* If we don't look past the constant pool, we risk emitting a
9374 reference to a constant pool entry that isn't referenced from
9375 code, and thus is not emitted. */
9376 if (rtl)
9377 rtl = avoid_constant_pool_reference (rtl);
9378
9379 return rtl;
9380 }
9381
9382 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
9383 data attribute for a variable or a parameter. We generate the
9384 DW_AT_const_value attribute only in those cases where the given variable
9385 or parameter does not have a true "location" either in memory or in a
9386 register. This can happen (for example) when a constant is passed as an
9387 actual argument in a call to an inline function. (It's possible that
9388 these things can crop up in other ways also.) Note that one type of
9389 constant value which can be passed into an inlined function is a constant
9390 pointer. This can happen for example if an actual argument in an inlined
9391 function call evaluates to a compile-time constant address. */
9392
9393 static void
9394 add_location_or_const_value_attribute (dw_die_ref die, tree decl)
9395 {
9396 rtx rtl;
9397 dw_loc_descr_ref descr;
9398
9399 if (TREE_CODE (decl) == ERROR_MARK)
9400 return;
9401 else if (TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != PARM_DECL)
9402 abort ();
9403
9404 rtl = rtl_for_decl_location (decl);
9405 if (rtl == NULL_RTX)
9406 return;
9407
9408 switch (GET_CODE (rtl))
9409 {
9410 case ADDRESSOF:
9411 /* The address of a variable that was optimized away;
9412 don't emit anything. */
9413 break;
9414
9415 case CONST_INT:
9416 case CONST_DOUBLE:
9417 case CONST_STRING:
9418 case SYMBOL_REF:
9419 case LABEL_REF:
9420 case CONST:
9421 case PLUS:
9422 /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
9423 add_const_value_attribute (die, rtl);
9424 break;
9425
9426 case MEM:
9427 if (TREE_CODE (decl) == VAR_DECL && DECL_THREAD_LOCAL (decl))
9428 {
9429 /* Need loc_descriptor_from_tree since that's where we know
9430 how to handle TLS variables. Want the object's address
9431 since the top-level DW_AT_location assumes such. See
9432 the confusion in loc_descriptor for reference. */
9433 descr = loc_descriptor_from_tree (decl, 1);
9434 }
9435 else
9436 {
9437 case REG:
9438 case SUBREG:
9439 case CONCAT:
9440 descr = loc_descriptor (rtl);
9441 }
9442 add_AT_location_description (die, DW_AT_location, descr);
9443 break;
9444
9445 default:
9446 abort ();
9447 }
9448 }
9449
9450 /* If we don't have a copy of this variable in memory for some reason (such
9451 as a C++ member constant that doesn't have an out-of-line definition),
9452 we should tell the debugger about the constant value. */
9453
9454 static void
9455 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
9456 {
9457 tree init = DECL_INITIAL (decl);
9458 tree type = TREE_TYPE (decl);
9459
9460 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init
9461 && initializer_constant_valid_p (init, type) == null_pointer_node)
9462 /* OK */;
9463 else
9464 return;
9465
9466 switch (TREE_CODE (type))
9467 {
9468 case INTEGER_TYPE:
9469 if (host_integerp (init, 0))
9470 add_AT_unsigned (var_die, DW_AT_const_value,
9471 tree_low_cst (init, 0));
9472 else
9473 add_AT_long_long (var_die, DW_AT_const_value,
9474 TREE_INT_CST_HIGH (init),
9475 TREE_INT_CST_LOW (init));
9476 break;
9477
9478 default:;
9479 }
9480 }
9481
9482 /* Generate a DW_AT_name attribute given some string value to be included as
9483 the value of the attribute. */
9484
9485 static void
9486 add_name_attribute (dw_die_ref die, const char *name_string)
9487 {
9488 if (name_string != NULL && *name_string != 0)
9489 {
9490 if (demangle_name_func)
9491 name_string = (*demangle_name_func) (name_string);
9492
9493 add_AT_string (die, DW_AT_name, name_string);
9494 }
9495 }
9496
9497 /* Generate a DW_AT_comp_dir attribute for DIE. */
9498
9499 static void
9500 add_comp_dir_attribute (dw_die_ref die)
9501 {
9502 const char *wd = get_src_pwd ();
9503 if (wd != NULL)
9504 add_AT_string (die, DW_AT_comp_dir, wd);
9505 }
9506
9507 /* Given a tree node describing an array bound (either lower or upper) output
9508 a representation for that bound. */
9509
9510 static void
9511 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
9512 {
9513 switch (TREE_CODE (bound))
9514 {
9515 case ERROR_MARK:
9516 return;
9517
9518 /* All fixed-bounds are represented by INTEGER_CST nodes. */
9519 case INTEGER_CST:
9520 if (! host_integerp (bound, 0)
9521 || (bound_attr == DW_AT_lower_bound
9522 && (((is_c_family () || is_java ()) && integer_zerop (bound))
9523 || (is_fortran () && integer_onep (bound)))))
9524 /* use the default */
9525 ;
9526 else
9527 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
9528 break;
9529
9530 case CONVERT_EXPR:
9531 case NOP_EXPR:
9532 case NON_LVALUE_EXPR:
9533 case VIEW_CONVERT_EXPR:
9534 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
9535 break;
9536
9537 case SAVE_EXPR:
9538 /* If optimization is turned on, the SAVE_EXPRs that describe how to
9539 access the upper bound values may be bogus. If they refer to a
9540 register, they may only describe how to get at these values at the
9541 points in the generated code right after they have just been
9542 computed. Worse yet, in the typical case, the upper bound values
9543 will not even *be* computed in the optimized code (though the
9544 number of elements will), so these SAVE_EXPRs are entirely
9545 bogus. In order to compensate for this fact, we check here to see
9546 if optimization is enabled, and if so, we don't add an attribute
9547 for the (unknown and unknowable) upper bound. This should not
9548 cause too much trouble for existing (stupid?) debuggers because
9549 they have to deal with empty upper bounds location descriptions
9550 anyway in order to be able to deal with incomplete array types.
9551 Of course an intelligent debugger (GDB?) should be able to
9552 comprehend that a missing upper bound specification in an array
9553 type used for a storage class `auto' local array variable
9554 indicates that the upper bound is both unknown (at compile- time)
9555 and unknowable (at run-time) due to optimization.
9556
9557 We assume that a MEM rtx is safe because gcc wouldn't put the
9558 value there unless it was going to be used repeatedly in the
9559 function, i.e. for cleanups. */
9560 if (SAVE_EXPR_RTL (bound)
9561 && (! optimize || GET_CODE (SAVE_EXPR_RTL (bound)) == MEM))
9562 {
9563 dw_die_ref ctx = lookup_decl_die (current_function_decl);
9564 dw_die_ref decl_die = new_die (DW_TAG_variable, ctx, bound);
9565 rtx loc = SAVE_EXPR_RTL (bound);
9566
9567 /* If the RTL for the SAVE_EXPR is memory, handle the case where
9568 it references an outer function's frame. */
9569 if (GET_CODE (loc) == MEM)
9570 {
9571 rtx new_addr = fix_lexical_addr (XEXP (loc, 0), bound);
9572
9573 if (XEXP (loc, 0) != new_addr)
9574 loc = gen_rtx_MEM (GET_MODE (loc), new_addr);
9575 }
9576
9577 add_AT_flag (decl_die, DW_AT_artificial, 1);
9578 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9579 add_AT_location_description (decl_die, DW_AT_location,
9580 loc_descriptor (loc));
9581 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9582 }
9583
9584 /* Else leave out the attribute. */
9585 break;
9586
9587 case VAR_DECL:
9588 case PARM_DECL:
9589 {
9590 dw_die_ref decl_die = lookup_decl_die (bound);
9591
9592 /* ??? Can this happen, or should the variable have been bound
9593 first? Probably it can, since I imagine that we try to create
9594 the types of parameters in the order in which they exist in
9595 the list, and won't have created a forward reference to a
9596 later parameter. */
9597 if (decl_die != NULL)
9598 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9599 break;
9600 }
9601
9602 default:
9603 {
9604 /* Otherwise try to create a stack operation procedure to
9605 evaluate the value of the array bound. */
9606
9607 dw_die_ref ctx, decl_die;
9608 dw_loc_descr_ref loc;
9609
9610 loc = loc_descriptor_from_tree (bound, 0);
9611 if (loc == NULL)
9612 break;
9613
9614 if (current_function_decl == 0)
9615 ctx = comp_unit_die;
9616 else
9617 ctx = lookup_decl_die (current_function_decl);
9618
9619 /* If we weren't able to find a context, it's most likely the case
9620 that we are processing the return type of the function. So
9621 make a SAVE_EXPR to point to it and have the limbo DIE code
9622 find the proper die. The save_expr function doesn't always
9623 make a SAVE_EXPR, so do it ourselves. */
9624 if (ctx == 0)
9625 bound = build (SAVE_EXPR, TREE_TYPE (bound), bound,
9626 current_function_decl, NULL_TREE);
9627
9628 decl_die = new_die (DW_TAG_variable, ctx, bound);
9629 add_AT_flag (decl_die, DW_AT_artificial, 1);
9630 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
9631 add_AT_loc (decl_die, DW_AT_location, loc);
9632
9633 add_AT_die_ref (subrange_die, bound_attr, decl_die);
9634 break;
9635 }
9636 }
9637 }
9638
9639 /* Note that the block of subscript information for an array type also
9640 includes information about the element type of type given array type. */
9641
9642 static void
9643 add_subscript_info (dw_die_ref type_die, tree type)
9644 {
9645 #ifndef MIPS_DEBUGGING_INFO
9646 unsigned dimension_number;
9647 #endif
9648 tree lower, upper;
9649 dw_die_ref subrange_die;
9650
9651 /* The GNU compilers represent multidimensional array types as sequences of
9652 one dimensional array types whose element types are themselves array
9653 types. Here we squish that down, so that each multidimensional array
9654 type gets only one array_type DIE in the Dwarf debugging info. The draft
9655 Dwarf specification say that we are allowed to do this kind of
9656 compression in C (because there is no difference between an array or
9657 arrays and a multidimensional array in C) but for other source languages
9658 (e.g. Ada) we probably shouldn't do this. */
9659
9660 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
9661 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
9662 We work around this by disabling this feature. See also
9663 gen_array_type_die. */
9664 #ifndef MIPS_DEBUGGING_INFO
9665 for (dimension_number = 0;
9666 TREE_CODE (type) == ARRAY_TYPE;
9667 type = TREE_TYPE (type), dimension_number++)
9668 #endif
9669 {
9670 tree domain = TYPE_DOMAIN (type);
9671
9672 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
9673 and (in GNU C only) variable bounds. Handle all three forms
9674 here. */
9675 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
9676 if (domain)
9677 {
9678 /* We have an array type with specified bounds. */
9679 lower = TYPE_MIN_VALUE (domain);
9680 upper = TYPE_MAX_VALUE (domain);
9681
9682 /* Define the index type. */
9683 if (TREE_TYPE (domain))
9684 {
9685 /* ??? This is probably an Ada unnamed subrange type. Ignore the
9686 TREE_TYPE field. We can't emit debug info for this
9687 because it is an unnamed integral type. */
9688 if (TREE_CODE (domain) == INTEGER_TYPE
9689 && TYPE_NAME (domain) == NULL_TREE
9690 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
9691 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
9692 ;
9693 else
9694 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
9695 type_die);
9696 }
9697
9698 /* ??? If upper is NULL, the array has unspecified length,
9699 but it does have a lower bound. This happens with Fortran
9700 dimension arr(N:*)
9701 Since the debugger is definitely going to need to know N
9702 to produce useful results, go ahead and output the lower
9703 bound solo, and hope the debugger can cope. */
9704
9705 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
9706 if (upper)
9707 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
9708 }
9709
9710 /* Otherwise we have an array type with an unspecified length. The
9711 DWARF-2 spec does not say how to handle this; let's just leave out the
9712 bounds. */
9713 }
9714 }
9715
9716 static void
9717 add_byte_size_attribute (dw_die_ref die, tree tree_node)
9718 {
9719 unsigned size;
9720
9721 switch (TREE_CODE (tree_node))
9722 {
9723 case ERROR_MARK:
9724 size = 0;
9725 break;
9726 case ENUMERAL_TYPE:
9727 case RECORD_TYPE:
9728 case UNION_TYPE:
9729 case QUAL_UNION_TYPE:
9730 size = int_size_in_bytes (tree_node);
9731 break;
9732 case FIELD_DECL:
9733 /* For a data member of a struct or union, the DW_AT_byte_size is
9734 generally given as the number of bytes normally allocated for an
9735 object of the *declared* type of the member itself. This is true
9736 even for bit-fields. */
9737 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
9738 break;
9739 default:
9740 abort ();
9741 }
9742
9743 /* Note that `size' might be -1 when we get to this point. If it is, that
9744 indicates that the byte size of the entity in question is variable. We
9745 have no good way of expressing this fact in Dwarf at the present time,
9746 so just let the -1 pass on through. */
9747 add_AT_unsigned (die, DW_AT_byte_size, size);
9748 }
9749
9750 /* For a FIELD_DECL node which represents a bit-field, output an attribute
9751 which specifies the distance in bits from the highest order bit of the
9752 "containing object" for the bit-field to the highest order bit of the
9753 bit-field itself.
9754
9755 For any given bit-field, the "containing object" is a hypothetical object
9756 (of some integral or enum type) within which the given bit-field lives. The
9757 type of this hypothetical "containing object" is always the same as the
9758 declared type of the individual bit-field itself. The determination of the
9759 exact location of the "containing object" for a bit-field is rather
9760 complicated. It's handled by the `field_byte_offset' function (above).
9761
9762 Note that it is the size (in bytes) of the hypothetical "containing object"
9763 which will be given in the DW_AT_byte_size attribute for this bit-field.
9764 (See `byte_size_attribute' above). */
9765
9766 static inline void
9767 add_bit_offset_attribute (dw_die_ref die, tree decl)
9768 {
9769 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
9770 tree type = DECL_BIT_FIELD_TYPE (decl);
9771 HOST_WIDE_INT bitpos_int;
9772 HOST_WIDE_INT highest_order_object_bit_offset;
9773 HOST_WIDE_INT highest_order_field_bit_offset;
9774 HOST_WIDE_INT unsigned bit_offset;
9775
9776 /* Must be a field and a bit field. */
9777 if (!type
9778 || TREE_CODE (decl) != FIELD_DECL)
9779 abort ();
9780
9781 /* We can't yet handle bit-fields whose offsets are variable, so if we
9782 encounter such things, just return without generating any attribute
9783 whatsoever. Likewise for variable or too large size. */
9784 if (! host_integerp (bit_position (decl), 0)
9785 || ! host_integerp (DECL_SIZE (decl), 1))
9786 return;
9787
9788 bitpos_int = int_bit_position (decl);
9789
9790 /* Note that the bit offset is always the distance (in bits) from the
9791 highest-order bit of the "containing object" to the highest-order bit of
9792 the bit-field itself. Since the "high-order end" of any object or field
9793 is different on big-endian and little-endian machines, the computation
9794 below must take account of these differences. */
9795 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
9796 highest_order_field_bit_offset = bitpos_int;
9797
9798 if (! BYTES_BIG_ENDIAN)
9799 {
9800 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
9801 highest_order_object_bit_offset += simple_type_size_in_bits (type);
9802 }
9803
9804 bit_offset
9805 = (! BYTES_BIG_ENDIAN
9806 ? highest_order_object_bit_offset - highest_order_field_bit_offset
9807 : highest_order_field_bit_offset - highest_order_object_bit_offset);
9808
9809 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
9810 }
9811
9812 /* For a FIELD_DECL node which represents a bit field, output an attribute
9813 which specifies the length in bits of the given field. */
9814
9815 static inline void
9816 add_bit_size_attribute (dw_die_ref die, tree decl)
9817 {
9818 /* Must be a field and a bit field. */
9819 if (TREE_CODE (decl) != FIELD_DECL
9820 || ! DECL_BIT_FIELD_TYPE (decl))
9821 abort ();
9822
9823 if (host_integerp (DECL_SIZE (decl), 1))
9824 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
9825 }
9826
9827 /* If the compiled language is ANSI C, then add a 'prototyped'
9828 attribute, if arg types are given for the parameters of a function. */
9829
9830 static inline void
9831 add_prototyped_attribute (dw_die_ref die, tree func_type)
9832 {
9833 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
9834 && TYPE_ARG_TYPES (func_type) != NULL)
9835 add_AT_flag (die, DW_AT_prototyped, 1);
9836 }
9837
9838 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
9839 by looking in either the type declaration or object declaration
9840 equate table. */
9841
9842 static inline void
9843 add_abstract_origin_attribute (dw_die_ref die, tree origin)
9844 {
9845 dw_die_ref origin_die = NULL;
9846
9847 if (TREE_CODE (origin) != FUNCTION_DECL)
9848 {
9849 /* We may have gotten separated from the block for the inlined
9850 function, if we're in an exception handler or some such; make
9851 sure that the abstract function has been written out.
9852
9853 Doing this for nested functions is wrong, however; functions are
9854 distinct units, and our context might not even be inline. */
9855 tree fn = origin;
9856
9857 if (TYPE_P (fn))
9858 fn = TYPE_STUB_DECL (fn);
9859
9860 fn = decl_function_context (fn);
9861 if (fn)
9862 dwarf2out_abstract_function (fn);
9863 }
9864
9865 if (DECL_P (origin))
9866 origin_die = lookup_decl_die (origin);
9867 else if (TYPE_P (origin))
9868 origin_die = lookup_type_die (origin);
9869
9870 if (origin_die == NULL)
9871 abort ();
9872
9873 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
9874 }
9875
9876 /* We do not currently support the pure_virtual attribute. */
9877
9878 static inline void
9879 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
9880 {
9881 if (DECL_VINDEX (func_decl))
9882 {
9883 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
9884
9885 if (host_integerp (DECL_VINDEX (func_decl), 0))
9886 add_AT_loc (die, DW_AT_vtable_elem_location,
9887 new_loc_descr (DW_OP_constu,
9888 tree_low_cst (DECL_VINDEX (func_decl), 0),
9889 0));
9890
9891 /* GNU extension: Record what type this method came from originally. */
9892 if (debug_info_level > DINFO_LEVEL_TERSE)
9893 add_AT_die_ref (die, DW_AT_containing_type,
9894 lookup_type_die (DECL_CONTEXT (func_decl)));
9895 }
9896 }
9897 \f
9898 /* Add source coordinate attributes for the given decl. */
9899
9900 static void
9901 add_src_coords_attributes (dw_die_ref die, tree decl)
9902 {
9903 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
9904
9905 add_AT_unsigned (die, DW_AT_decl_file, file_index);
9906 add_AT_unsigned (die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
9907 }
9908
9909 /* Add a DW_AT_name attribute and source coordinate attribute for the
9910 given decl, but only if it actually has a name. */
9911
9912 static void
9913 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
9914 {
9915 tree decl_name;
9916
9917 decl_name = DECL_NAME (decl);
9918 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
9919 {
9920 add_name_attribute (die, dwarf2_name (decl, 0));
9921 if (! DECL_ARTIFICIAL (decl))
9922 add_src_coords_attributes (die, decl);
9923
9924 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
9925 && TREE_PUBLIC (decl)
9926 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
9927 && !DECL_ABSTRACT (decl))
9928 add_AT_string (die, DW_AT_MIPS_linkage_name,
9929 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
9930 }
9931
9932 #ifdef VMS_DEBUGGING_INFO
9933 /* Get the function's name, as described by its RTL. This may be different
9934 from the DECL_NAME name used in the source file. */
9935 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
9936 {
9937 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
9938 XEXP (DECL_RTL (decl), 0));
9939 VARRAY_PUSH_RTX (used_rtx_varray, XEXP (DECL_RTL (decl), 0));
9940 }
9941 #endif
9942 }
9943
9944 /* Push a new declaration scope. */
9945
9946 static void
9947 push_decl_scope (tree scope)
9948 {
9949 VARRAY_PUSH_TREE (decl_scope_table, scope);
9950 }
9951
9952 /* Pop a declaration scope. */
9953
9954 static inline void
9955 pop_decl_scope (void)
9956 {
9957 if (VARRAY_ACTIVE_SIZE (decl_scope_table) <= 0)
9958 abort ();
9959
9960 VARRAY_POP (decl_scope_table);
9961 }
9962
9963 /* Return the DIE for the scope that immediately contains this type.
9964 Non-named types get global scope. Named types nested in other
9965 types get their containing scope if it's open, or global scope
9966 otherwise. All other types (i.e. function-local named types) get
9967 the current active scope. */
9968
9969 static dw_die_ref
9970 scope_die_for (tree t, dw_die_ref context_die)
9971 {
9972 dw_die_ref scope_die = NULL;
9973 tree containing_scope;
9974 int i;
9975
9976 /* Non-types always go in the current scope. */
9977 if (! TYPE_P (t))
9978 abort ();
9979
9980 containing_scope = TYPE_CONTEXT (t);
9981
9982 /* Ignore namespaces for the moment. */
9983 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
9984 containing_scope = NULL_TREE;
9985
9986 /* Ignore function type "scopes" from the C frontend. They mean that
9987 a tagged type is local to a parmlist of a function declarator, but
9988 that isn't useful to DWARF. */
9989 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
9990 containing_scope = NULL_TREE;
9991
9992 if (containing_scope == NULL_TREE)
9993 scope_die = comp_unit_die;
9994 else if (TYPE_P (containing_scope))
9995 {
9996 /* For types, we can just look up the appropriate DIE. But
9997 first we check to see if we're in the middle of emitting it
9998 so we know where the new DIE should go. */
9999 for (i = VARRAY_ACTIVE_SIZE (decl_scope_table) - 1; i >= 0; --i)
10000 if (VARRAY_TREE (decl_scope_table, i) == containing_scope)
10001 break;
10002
10003 if (i < 0)
10004 {
10005 if (debug_info_level > DINFO_LEVEL_TERSE
10006 && !TREE_ASM_WRITTEN (containing_scope))
10007 abort ();
10008
10009 /* If none of the current dies are suitable, we get file scope. */
10010 scope_die = comp_unit_die;
10011 }
10012 else
10013 scope_die = lookup_type_die (containing_scope);
10014 }
10015 else
10016 scope_die = context_die;
10017
10018 return scope_die;
10019 }
10020
10021 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10022
10023 static inline int
10024 local_scope_p (dw_die_ref context_die)
10025 {
10026 for (; context_die; context_die = context_die->die_parent)
10027 if (context_die->die_tag == DW_TAG_inlined_subroutine
10028 || context_die->die_tag == DW_TAG_subprogram)
10029 return 1;
10030
10031 return 0;
10032 }
10033
10034 /* Returns nonzero if CONTEXT_DIE is a class. */
10035
10036 static inline int
10037 class_scope_p (dw_die_ref context_die)
10038 {
10039 return (context_die
10040 && (context_die->die_tag == DW_TAG_structure_type
10041 || context_die->die_tag == DW_TAG_union_type));
10042 }
10043
10044 /* Many forms of DIEs require a "type description" attribute. This
10045 routine locates the proper "type descriptor" die for the type given
10046 by 'type', and adds a DW_AT_type attribute below the given die. */
10047
10048 static void
10049 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10050 int decl_volatile, dw_die_ref context_die)
10051 {
10052 enum tree_code code = TREE_CODE (type);
10053 dw_die_ref type_die = NULL;
10054
10055 /* ??? If this type is an unnamed subrange type of an integral or
10056 floating-point type, use the inner type. This is because we have no
10057 support for unnamed types in base_type_die. This can happen if this is
10058 an Ada subrange type. Correct solution is emit a subrange type die. */
10059 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10060 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10061 type = TREE_TYPE (type), code = TREE_CODE (type);
10062
10063 if (code == ERROR_MARK
10064 /* Handle a special case. For functions whose return type is void, we
10065 generate *no* type attribute. (Note that no object may have type
10066 `void', so this only applies to function return types). */
10067 || code == VOID_TYPE)
10068 return;
10069
10070 type_die = modified_type_die (type,
10071 decl_const || TYPE_READONLY (type),
10072 decl_volatile || TYPE_VOLATILE (type),
10073 context_die);
10074
10075 if (type_die != NULL)
10076 add_AT_die_ref (object_die, DW_AT_type, type_die);
10077 }
10078
10079 /* Given a tree pointer to a struct, class, union, or enum type node, return
10080 a pointer to the (string) tag name for the given type, or zero if the type
10081 was declared without a tag. */
10082
10083 static const char *
10084 type_tag (tree type)
10085 {
10086 const char *name = 0;
10087
10088 if (TYPE_NAME (type) != 0)
10089 {
10090 tree t = 0;
10091
10092 /* Find the IDENTIFIER_NODE for the type name. */
10093 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10094 t = TYPE_NAME (type);
10095
10096 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10097 a TYPE_DECL node, regardless of whether or not a `typedef' was
10098 involved. */
10099 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10100 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10101 t = DECL_NAME (TYPE_NAME (type));
10102
10103 /* Now get the name as a string, or invent one. */
10104 if (t != 0)
10105 name = IDENTIFIER_POINTER (t);
10106 }
10107
10108 return (name == 0 || *name == '\0') ? 0 : name;
10109 }
10110
10111 /* Return the type associated with a data member, make a special check
10112 for bit field types. */
10113
10114 static inline tree
10115 member_declared_type (tree member)
10116 {
10117 return (DECL_BIT_FIELD_TYPE (member)
10118 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10119 }
10120
10121 /* Get the decl's label, as described by its RTL. This may be different
10122 from the DECL_NAME name used in the source file. */
10123
10124 #if 0
10125 static const char *
10126 decl_start_label (tree decl)
10127 {
10128 rtx x;
10129 const char *fnname;
10130
10131 x = DECL_RTL (decl);
10132 if (GET_CODE (x) != MEM)
10133 abort ();
10134
10135 x = XEXP (x, 0);
10136 if (GET_CODE (x) != SYMBOL_REF)
10137 abort ();
10138
10139 fnname = XSTR (x, 0);
10140 return fnname;
10141 }
10142 #endif
10143 \f
10144 /* These routines generate the internal representation of the DIE's for
10145 the compilation unit. Debugging information is collected by walking
10146 the declaration trees passed in from dwarf2out_decl(). */
10147
10148 static void
10149 gen_array_type_die (tree type, dw_die_ref context_die)
10150 {
10151 dw_die_ref scope_die = scope_die_for (type, context_die);
10152 dw_die_ref array_die;
10153 tree element_type;
10154
10155 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10156 the inner array type comes before the outer array type. Thus we must
10157 call gen_type_die before we call new_die. See below also. */
10158 #ifdef MIPS_DEBUGGING_INFO
10159 gen_type_die (TREE_TYPE (type), context_die);
10160 #endif
10161
10162 array_die = new_die (DW_TAG_array_type, scope_die, type);
10163 add_name_attribute (array_die, type_tag (type));
10164 equate_type_number_to_die (type, array_die);
10165
10166 if (TREE_CODE (type) == VECTOR_TYPE)
10167 {
10168 /* The frontend feeds us a representation for the vector as a struct
10169 containing an array. Pull out the array type. */
10170 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10171 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10172 }
10173
10174 #if 0
10175 /* We default the array ordering. SDB will probably do
10176 the right things even if DW_AT_ordering is not present. It's not even
10177 an issue until we start to get into multidimensional arrays anyway. If
10178 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10179 then we'll have to put the DW_AT_ordering attribute back in. (But if
10180 and when we find out that we need to put these in, we will only do so
10181 for multidimensional arrays. */
10182 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10183 #endif
10184
10185 #ifdef MIPS_DEBUGGING_INFO
10186 /* The SGI compilers handle arrays of unknown bound by setting
10187 AT_declaration and not emitting any subrange DIEs. */
10188 if (! TYPE_DOMAIN (type))
10189 add_AT_unsigned (array_die, DW_AT_declaration, 1);
10190 else
10191 #endif
10192 add_subscript_info (array_die, type);
10193
10194 /* Add representation of the type of the elements of this array type. */
10195 element_type = TREE_TYPE (type);
10196
10197 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10198 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10199 We work around this by disabling this feature. See also
10200 add_subscript_info. */
10201 #ifndef MIPS_DEBUGGING_INFO
10202 while (TREE_CODE (element_type) == ARRAY_TYPE)
10203 element_type = TREE_TYPE (element_type);
10204
10205 gen_type_die (element_type, context_die);
10206 #endif
10207
10208 add_type_attribute (array_die, element_type, 0, 0, context_die);
10209 }
10210
10211 static void
10212 gen_set_type_die (tree type, dw_die_ref context_die)
10213 {
10214 dw_die_ref type_die
10215 = new_die (DW_TAG_set_type, scope_die_for (type, context_die), type);
10216
10217 equate_type_number_to_die (type, type_die);
10218 add_type_attribute (type_die, TREE_TYPE (type), 0, 0, context_die);
10219 }
10220
10221 #if 0
10222 static void
10223 gen_entry_point_die (tree decl, dw_die_ref context_die)
10224 {
10225 tree origin = decl_ultimate_origin (decl);
10226 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10227
10228 if (origin != NULL)
10229 add_abstract_origin_attribute (decl_die, origin);
10230 else
10231 {
10232 add_name_and_src_coords_attributes (decl_die, decl);
10233 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10234 0, 0, context_die);
10235 }
10236
10237 if (DECL_ABSTRACT (decl))
10238 equate_decl_number_to_die (decl, decl_die);
10239 else
10240 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10241 }
10242 #endif
10243
10244 /* Walk through the list of incomplete types again, trying once more to
10245 emit full debugging info for them. */
10246
10247 static void
10248 retry_incomplete_types (void)
10249 {
10250 int i;
10251
10252 for (i = VARRAY_ACTIVE_SIZE (incomplete_types) - 1; i >= 0; i--)
10253 gen_type_die (VARRAY_TREE (incomplete_types, i), comp_unit_die);
10254 }
10255
10256 /* Generate a DIE to represent an inlined instance of an enumeration type. */
10257
10258 static void
10259 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
10260 {
10261 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
10262
10263 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10264 be incomplete and such types are not marked. */
10265 add_abstract_origin_attribute (type_die, type);
10266 }
10267
10268 /* Generate a DIE to represent an inlined instance of a structure type. */
10269
10270 static void
10271 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
10272 {
10273 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
10274
10275 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10276 be incomplete and such types are not marked. */
10277 add_abstract_origin_attribute (type_die, type);
10278 }
10279
10280 /* Generate a DIE to represent an inlined instance of a union type. */
10281
10282 static void
10283 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
10284 {
10285 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
10286
10287 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
10288 be incomplete and such types are not marked. */
10289 add_abstract_origin_attribute (type_die, type);
10290 }
10291
10292 /* Generate a DIE to represent an enumeration type. Note that these DIEs
10293 include all of the information about the enumeration values also. Each
10294 enumerated type name/value is listed as a child of the enumerated type
10295 DIE. */
10296
10297 static void
10298 gen_enumeration_type_die (tree type, dw_die_ref context_die)
10299 {
10300 dw_die_ref type_die = lookup_type_die (type);
10301
10302 if (type_die == NULL)
10303 {
10304 type_die = new_die (DW_TAG_enumeration_type,
10305 scope_die_for (type, context_die), type);
10306 equate_type_number_to_die (type, type_die);
10307 add_name_attribute (type_die, type_tag (type));
10308 }
10309 else if (! TYPE_SIZE (type))
10310 return;
10311 else
10312 remove_AT (type_die, DW_AT_declaration);
10313
10314 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
10315 given enum type is incomplete, do not generate the DW_AT_byte_size
10316 attribute or the DW_AT_element_list attribute. */
10317 if (TYPE_SIZE (type))
10318 {
10319 tree link;
10320
10321 TREE_ASM_WRITTEN (type) = 1;
10322 add_byte_size_attribute (type_die, type);
10323 if (TYPE_STUB_DECL (type) != NULL_TREE)
10324 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
10325
10326 /* If the first reference to this type was as the return type of an
10327 inline function, then it may not have a parent. Fix this now. */
10328 if (type_die->die_parent == NULL)
10329 add_child_die (scope_die_for (type, context_die), type_die);
10330
10331 for (link = TYPE_FIELDS (type);
10332 link != NULL; link = TREE_CHAIN (link))
10333 {
10334 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
10335
10336 add_name_attribute (enum_die,
10337 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
10338
10339 if (host_integerp (TREE_VALUE (link),
10340 TREE_UNSIGNED (TREE_TYPE (TREE_VALUE (link)))))
10341 {
10342 if (tree_int_cst_sgn (TREE_VALUE (link)) < 0)
10343 add_AT_int (enum_die, DW_AT_const_value,
10344 tree_low_cst (TREE_VALUE (link), 0));
10345 else
10346 add_AT_unsigned (enum_die, DW_AT_const_value,
10347 tree_low_cst (TREE_VALUE (link), 1));
10348 }
10349 }
10350 }
10351 else
10352 add_AT_flag (type_die, DW_AT_declaration, 1);
10353 }
10354
10355 /* Generate a DIE to represent either a real live formal parameter decl or to
10356 represent just the type of some formal parameter position in some function
10357 type.
10358
10359 Note that this routine is a bit unusual because its argument may be a
10360 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
10361 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
10362 node. If it's the former then this function is being called to output a
10363 DIE to represent a formal parameter object (or some inlining thereof). If
10364 it's the latter, then this function is only being called to output a
10365 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
10366 argument type of some subprogram type. */
10367
10368 static dw_die_ref
10369 gen_formal_parameter_die (tree node, dw_die_ref context_die)
10370 {
10371 dw_die_ref parm_die
10372 = new_die (DW_TAG_formal_parameter, context_die, node);
10373 tree origin;
10374
10375 switch (TREE_CODE_CLASS (TREE_CODE (node)))
10376 {
10377 case 'd':
10378 origin = decl_ultimate_origin (node);
10379 if (origin != NULL)
10380 add_abstract_origin_attribute (parm_die, origin);
10381 else
10382 {
10383 add_name_and_src_coords_attributes (parm_die, node);
10384 add_type_attribute (parm_die, TREE_TYPE (node),
10385 TREE_READONLY (node),
10386 TREE_THIS_VOLATILE (node),
10387 context_die);
10388 if (DECL_ARTIFICIAL (node))
10389 add_AT_flag (parm_die, DW_AT_artificial, 1);
10390 }
10391
10392 equate_decl_number_to_die (node, parm_die);
10393 if (! DECL_ABSTRACT (node))
10394 add_location_or_const_value_attribute (parm_die, node);
10395
10396 break;
10397
10398 case 't':
10399 /* We were called with some kind of a ..._TYPE node. */
10400 add_type_attribute (parm_die, node, 0, 0, context_die);
10401 break;
10402
10403 default:
10404 abort ();
10405 }
10406
10407 return parm_die;
10408 }
10409
10410 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
10411 at the end of an (ANSI prototyped) formal parameters list. */
10412
10413 static void
10414 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
10415 {
10416 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
10417 }
10418
10419 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
10420 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
10421 parameters as specified in some function type specification (except for
10422 those which appear as part of a function *definition*). */
10423
10424 static void
10425 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
10426 {
10427 tree link;
10428 tree formal_type = NULL;
10429 tree first_parm_type;
10430 tree arg;
10431
10432 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
10433 {
10434 arg = DECL_ARGUMENTS (function_or_method_type);
10435 function_or_method_type = TREE_TYPE (function_or_method_type);
10436 }
10437 else
10438 arg = NULL_TREE;
10439
10440 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
10441
10442 /* Make our first pass over the list of formal parameter types and output a
10443 DW_TAG_formal_parameter DIE for each one. */
10444 for (link = first_parm_type; link; )
10445 {
10446 dw_die_ref parm_die;
10447
10448 formal_type = TREE_VALUE (link);
10449 if (formal_type == void_type_node)
10450 break;
10451
10452 /* Output a (nameless) DIE to represent the formal parameter itself. */
10453 parm_die = gen_formal_parameter_die (formal_type, context_die);
10454 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
10455 && link == first_parm_type)
10456 || (arg && DECL_ARTIFICIAL (arg)))
10457 add_AT_flag (parm_die, DW_AT_artificial, 1);
10458
10459 link = TREE_CHAIN (link);
10460 if (arg)
10461 arg = TREE_CHAIN (arg);
10462 }
10463
10464 /* If this function type has an ellipsis, add a
10465 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
10466 if (formal_type != void_type_node)
10467 gen_unspecified_parameters_die (function_or_method_type, context_die);
10468
10469 /* Make our second (and final) pass over the list of formal parameter types
10470 and output DIEs to represent those types (as necessary). */
10471 for (link = TYPE_ARG_TYPES (function_or_method_type);
10472 link && TREE_VALUE (link);
10473 link = TREE_CHAIN (link))
10474 gen_type_die (TREE_VALUE (link), context_die);
10475 }
10476
10477 /* We want to generate the DIE for TYPE so that we can generate the
10478 die for MEMBER, which has been defined; we will need to refer back
10479 to the member declaration nested within TYPE. If we're trying to
10480 generate minimal debug info for TYPE, processing TYPE won't do the
10481 trick; we need to attach the member declaration by hand. */
10482
10483 static void
10484 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
10485 {
10486 gen_type_die (type, context_die);
10487
10488 /* If we're trying to avoid duplicate debug info, we may not have
10489 emitted the member decl for this function. Emit it now. */
10490 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
10491 && ! lookup_decl_die (member))
10492 {
10493 if (decl_ultimate_origin (member))
10494 abort ();
10495
10496 push_decl_scope (type);
10497 if (TREE_CODE (member) == FUNCTION_DECL)
10498 gen_subprogram_die (member, lookup_type_die (type));
10499 else
10500 gen_variable_die (member, lookup_type_die (type));
10501
10502 pop_decl_scope ();
10503 }
10504 }
10505
10506 /* Generate the DWARF2 info for the "abstract" instance of a function which we
10507 may later generate inlined and/or out-of-line instances of. */
10508
10509 static void
10510 dwarf2out_abstract_function (tree decl)
10511 {
10512 dw_die_ref old_die;
10513 tree save_fn;
10514 tree context;
10515 int was_abstract = DECL_ABSTRACT (decl);
10516
10517 /* Make sure we have the actual abstract inline, not a clone. */
10518 decl = DECL_ORIGIN (decl);
10519
10520 old_die = lookup_decl_die (decl);
10521 if (old_die && get_AT (old_die, DW_AT_inline))
10522 /* We've already generated the abstract instance. */
10523 return;
10524
10525 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
10526 we don't get confused by DECL_ABSTRACT. */
10527 if (debug_info_level > DINFO_LEVEL_TERSE)
10528 {
10529 context = decl_class_context (decl);
10530 if (context)
10531 gen_type_die_for_member
10532 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
10533 }
10534
10535 /* Pretend we've just finished compiling this function. */
10536 save_fn = current_function_decl;
10537 current_function_decl = decl;
10538
10539 set_decl_abstract_flags (decl, 1);
10540 dwarf2out_decl (decl);
10541 if (! was_abstract)
10542 set_decl_abstract_flags (decl, 0);
10543
10544 current_function_decl = save_fn;
10545 }
10546
10547 /* Generate a DIE to represent a declared function (either file-scope or
10548 block-local). */
10549
10550 static void
10551 gen_subprogram_die (tree decl, dw_die_ref context_die)
10552 {
10553 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10554 tree origin = decl_ultimate_origin (decl);
10555 dw_die_ref subr_die;
10556 rtx fp_reg;
10557 tree fn_arg_types;
10558 tree outer_scope;
10559 dw_die_ref old_die = lookup_decl_die (decl);
10560 int declaration = (current_function_decl != decl
10561 || class_scope_p (context_die));
10562
10563 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
10564 started to generate the abstract instance of an inline, decided to output
10565 its containing class, and proceeded to emit the declaration of the inline
10566 from the member list for the class. If so, DECLARATION takes priority;
10567 we'll get back to the abstract instance when done with the class. */
10568
10569 /* The class-scope declaration DIE must be the primary DIE. */
10570 if (origin && declaration && class_scope_p (context_die))
10571 {
10572 origin = NULL;
10573 if (old_die)
10574 abort ();
10575 }
10576
10577 if (origin != NULL)
10578 {
10579 if (declaration && ! local_scope_p (context_die))
10580 abort ();
10581
10582 /* Fixup die_parent for the abstract instance of a nested
10583 inline function. */
10584 if (old_die && old_die->die_parent == NULL)
10585 add_child_die (context_die, old_die);
10586
10587 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10588 add_abstract_origin_attribute (subr_die, origin);
10589 }
10590 else if (old_die)
10591 {
10592 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10593
10594 if (!get_AT_flag (old_die, DW_AT_declaration)
10595 /* We can have a normal definition following an inline one in the
10596 case of redefinition of GNU C extern inlines.
10597 It seems reasonable to use AT_specification in this case. */
10598 && !get_AT (old_die, DW_AT_inline))
10599 {
10600 /* ??? This can happen if there is a bug in the program, for
10601 instance, if it has duplicate function definitions. Ideally,
10602 we should detect this case and ignore it. For now, if we have
10603 already reported an error, any error at all, then assume that
10604 we got here because of an input error, not a dwarf2 bug. */
10605 if (errorcount)
10606 return;
10607 abort ();
10608 }
10609
10610 /* If the definition comes from the same place as the declaration,
10611 maybe use the old DIE. We always want the DIE for this function
10612 that has the *_pc attributes to be under comp_unit_die so the
10613 debugger can find it. We also need to do this for abstract
10614 instances of inlines, since the spec requires the out-of-line copy
10615 to have the same parent. For local class methods, this doesn't
10616 apply; we just use the old DIE. */
10617 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
10618 && (DECL_ARTIFICIAL (decl)
10619 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
10620 && (get_AT_unsigned (old_die, DW_AT_decl_line)
10621 == (unsigned) DECL_SOURCE_LINE (decl)))))
10622 {
10623 subr_die = old_die;
10624
10625 /* Clear out the declaration attribute and the parm types. */
10626 remove_AT (subr_die, DW_AT_declaration);
10627 remove_children (subr_die);
10628 }
10629 else
10630 {
10631 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10632 add_AT_die_ref (subr_die, DW_AT_specification, old_die);
10633 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10634 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
10635 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10636 != (unsigned) DECL_SOURCE_LINE (decl))
10637 add_AT_unsigned
10638 (subr_die, DW_AT_decl_line, DECL_SOURCE_LINE (decl));
10639 }
10640 }
10641 else
10642 {
10643 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
10644
10645 if (TREE_PUBLIC (decl))
10646 add_AT_flag (subr_die, DW_AT_external, 1);
10647
10648 add_name_and_src_coords_attributes (subr_die, decl);
10649 if (debug_info_level > DINFO_LEVEL_TERSE)
10650 {
10651 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
10652 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
10653 0, 0, context_die);
10654 }
10655
10656 add_pure_or_virtual_attribute (subr_die, decl);
10657 if (DECL_ARTIFICIAL (decl))
10658 add_AT_flag (subr_die, DW_AT_artificial, 1);
10659
10660 if (TREE_PROTECTED (decl))
10661 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
10662 else if (TREE_PRIVATE (decl))
10663 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
10664 }
10665
10666 if (declaration)
10667 {
10668 if (!old_die || !get_AT (old_die, DW_AT_inline))
10669 {
10670 add_AT_flag (subr_die, DW_AT_declaration, 1);
10671
10672 /* The first time we see a member function, it is in the context of
10673 the class to which it belongs. We make sure of this by emitting
10674 the class first. The next time is the definition, which is
10675 handled above. The two may come from the same source text. */
10676 if (DECL_CONTEXT (decl) || DECL_ABSTRACT (decl))
10677 equate_decl_number_to_die (decl, subr_die);
10678 }
10679 }
10680 else if (DECL_ABSTRACT (decl))
10681 {
10682 if (DECL_DECLARED_INLINE_P (decl))
10683 {
10684 if (cgraph_function_possibly_inlined_p (decl))
10685 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
10686 else
10687 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
10688 }
10689 else
10690 {
10691 if (cgraph_function_possibly_inlined_p (decl))
10692 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
10693 else
10694 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
10695 }
10696
10697 equate_decl_number_to_die (decl, subr_die);
10698 }
10699 else if (!DECL_EXTERNAL (decl))
10700 {
10701 if (!old_die || !get_AT (old_die, DW_AT_inline))
10702 equate_decl_number_to_die (decl, subr_die);
10703
10704 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
10705 current_function_funcdef_no);
10706 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
10707 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10708 current_function_funcdef_no);
10709 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
10710
10711 add_pubname (decl, subr_die);
10712 add_arange (decl, subr_die);
10713
10714 #ifdef MIPS_DEBUGGING_INFO
10715 /* Add a reference to the FDE for this routine. */
10716 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
10717 #endif
10718
10719 /* Define the "frame base" location for this routine. We use the
10720 frame pointer or stack pointer registers, since the RTL for local
10721 variables is relative to one of them. */
10722 fp_reg
10723 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
10724 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
10725
10726 #if 0
10727 /* ??? This fails for nested inline functions, because context_display
10728 is not part of the state saved/restored for inline functions. */
10729 if (current_function_needs_context)
10730 add_AT_location_description (subr_die, DW_AT_static_link,
10731 loc_descriptor (lookup_static_chain (decl)));
10732 #endif
10733 }
10734
10735 /* Now output descriptions of the arguments for this function. This gets
10736 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
10737 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
10738 `...' at the end of the formal parameter list. In order to find out if
10739 there was a trailing ellipsis or not, we must instead look at the type
10740 associated with the FUNCTION_DECL. This will be a node of type
10741 FUNCTION_TYPE. If the chain of type nodes hanging off of this
10742 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
10743 an ellipsis at the end. */
10744
10745 /* In the case where we are describing a mere function declaration, all we
10746 need to do here (and all we *can* do here) is to describe the *types* of
10747 its formal parameters. */
10748 if (debug_info_level <= DINFO_LEVEL_TERSE)
10749 ;
10750 else if (declaration)
10751 gen_formal_types_die (decl, subr_die);
10752 else
10753 {
10754 /* Generate DIEs to represent all known formal parameters. */
10755 tree arg_decls = DECL_ARGUMENTS (decl);
10756 tree parm;
10757
10758 /* When generating DIEs, generate the unspecified_parameters DIE
10759 instead if we come across the arg "__builtin_va_alist" */
10760 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
10761 if (TREE_CODE (parm) == PARM_DECL)
10762 {
10763 if (DECL_NAME (parm)
10764 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
10765 "__builtin_va_alist"))
10766 gen_unspecified_parameters_die (parm, subr_die);
10767 else
10768 gen_decl_die (parm, subr_die);
10769 }
10770
10771 /* Decide whether we need an unspecified_parameters DIE at the end.
10772 There are 2 more cases to do this for: 1) the ansi ... declaration -
10773 this is detectable when the end of the arg list is not a
10774 void_type_node 2) an unprototyped function declaration (not a
10775 definition). This just means that we have no info about the
10776 parameters at all. */
10777 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
10778 if (fn_arg_types != NULL)
10779 {
10780 /* This is the prototyped case, check for.... */
10781 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
10782 gen_unspecified_parameters_die (decl, subr_die);
10783 }
10784 else if (DECL_INITIAL (decl) == NULL_TREE)
10785 gen_unspecified_parameters_die (decl, subr_die);
10786 }
10787
10788 /* Output Dwarf info for all of the stuff within the body of the function
10789 (if it has one - it may be just a declaration). */
10790 outer_scope = DECL_INITIAL (decl);
10791
10792 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
10793 a function. This BLOCK actually represents the outermost binding contour
10794 for the function, i.e. the contour in which the function's formal
10795 parameters and labels get declared. Curiously, it appears that the front
10796 end doesn't actually put the PARM_DECL nodes for the current function onto
10797 the BLOCK_VARS list for this outer scope, but are strung off of the
10798 DECL_ARGUMENTS list for the function instead.
10799
10800 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
10801 the LABEL_DECL nodes for the function however, and we output DWARF info
10802 for those in decls_for_scope. Just within the `outer_scope' there will be
10803 a BLOCK node representing the function's outermost pair of curly braces,
10804 and any blocks used for the base and member initializers of a C++
10805 constructor function. */
10806 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
10807 {
10808 current_function_has_inlines = 0;
10809 decls_for_scope (outer_scope, subr_die, 0);
10810
10811 #if 0 && defined (MIPS_DEBUGGING_INFO)
10812 if (current_function_has_inlines)
10813 {
10814 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
10815 if (! comp_unit_has_inlines)
10816 {
10817 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
10818 comp_unit_has_inlines = 1;
10819 }
10820 }
10821 #endif
10822 }
10823 }
10824
10825 /* Generate a DIE to represent a declared data object. */
10826
10827 static void
10828 gen_variable_die (tree decl, dw_die_ref context_die)
10829 {
10830 tree origin = decl_ultimate_origin (decl);
10831 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
10832
10833 dw_die_ref old_die = lookup_decl_die (decl);
10834 int declaration = (DECL_EXTERNAL (decl)
10835 || class_scope_p (context_die));
10836
10837 if (origin != NULL)
10838 add_abstract_origin_attribute (var_die, origin);
10839
10840 /* Loop unrolling can create multiple blocks that refer to the same
10841 static variable, so we must test for the DW_AT_declaration flag.
10842
10843 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
10844 copy decls and set the DECL_ABSTRACT flag on them instead of
10845 sharing them.
10846
10847 ??? Duplicated blocks have been rewritten to use .debug_ranges. */
10848 else if (old_die && TREE_STATIC (decl)
10849 && get_AT_flag (old_die, DW_AT_declaration) == 1)
10850 {
10851 /* This is a definition of a C++ class level static. */
10852 add_AT_die_ref (var_die, DW_AT_specification, old_die);
10853 if (DECL_NAME (decl))
10854 {
10855 unsigned file_index = lookup_filename (DECL_SOURCE_FILE (decl));
10856
10857 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
10858 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
10859
10860 if (get_AT_unsigned (old_die, DW_AT_decl_line)
10861 != (unsigned) DECL_SOURCE_LINE (decl))
10862
10863 add_AT_unsigned (var_die, DW_AT_decl_line,
10864 DECL_SOURCE_LINE (decl));
10865 }
10866 }
10867 else
10868 {
10869 add_name_and_src_coords_attributes (var_die, decl);
10870 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
10871 TREE_THIS_VOLATILE (decl), context_die);
10872
10873 if (TREE_PUBLIC (decl))
10874 add_AT_flag (var_die, DW_AT_external, 1);
10875
10876 if (DECL_ARTIFICIAL (decl))
10877 add_AT_flag (var_die, DW_AT_artificial, 1);
10878
10879 if (TREE_PROTECTED (decl))
10880 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
10881 else if (TREE_PRIVATE (decl))
10882 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
10883 }
10884
10885 if (declaration)
10886 add_AT_flag (var_die, DW_AT_declaration, 1);
10887
10888 if (class_scope_p (context_die) || DECL_ABSTRACT (decl))
10889 equate_decl_number_to_die (decl, var_die);
10890
10891 if (! declaration && ! DECL_ABSTRACT (decl))
10892 {
10893 add_location_or_const_value_attribute (var_die, decl);
10894 add_pubname (decl, var_die);
10895 }
10896 else
10897 tree_add_const_value_attribute (var_die, decl);
10898 }
10899
10900 /* Generate a DIE to represent a label identifier. */
10901
10902 static void
10903 gen_label_die (tree decl, dw_die_ref context_die)
10904 {
10905 tree origin = decl_ultimate_origin (decl);
10906 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
10907 rtx insn;
10908 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10909
10910 if (origin != NULL)
10911 add_abstract_origin_attribute (lbl_die, origin);
10912 else
10913 add_name_and_src_coords_attributes (lbl_die, decl);
10914
10915 if (DECL_ABSTRACT (decl))
10916 equate_decl_number_to_die (decl, lbl_die);
10917 else
10918 {
10919 insn = DECL_RTL (decl);
10920
10921 /* Deleted labels are programmer specified labels which have been
10922 eliminated because of various optimizations. We still emit them
10923 here so that it is possible to put breakpoints on them. */
10924 if (GET_CODE (insn) == CODE_LABEL
10925 || ((GET_CODE (insn) == NOTE
10926 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL)))
10927 {
10928 /* When optimization is enabled (via -O) some parts of the compiler
10929 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
10930 represent source-level labels which were explicitly declared by
10931 the user. This really shouldn't be happening though, so catch
10932 it if it ever does happen. */
10933 if (INSN_DELETED_P (insn))
10934 abort ();
10935
10936 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
10937 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
10938 }
10939 }
10940 }
10941
10942 /* Generate a DIE for a lexical block. */
10943
10944 static void
10945 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
10946 {
10947 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
10948 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10949
10950 if (! BLOCK_ABSTRACT (stmt))
10951 {
10952 if (BLOCK_FRAGMENT_CHAIN (stmt))
10953 {
10954 tree chain;
10955
10956 add_AT_range_list (stmt_die, DW_AT_ranges, add_ranges (stmt));
10957
10958 chain = BLOCK_FRAGMENT_CHAIN (stmt);
10959 do
10960 {
10961 add_ranges (chain);
10962 chain = BLOCK_FRAGMENT_CHAIN (chain);
10963 }
10964 while (chain);
10965 add_ranges (NULL);
10966 }
10967 else
10968 {
10969 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
10970 BLOCK_NUMBER (stmt));
10971 add_AT_lbl_id (stmt_die, DW_AT_low_pc, label);
10972 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
10973 BLOCK_NUMBER (stmt));
10974 add_AT_lbl_id (stmt_die, DW_AT_high_pc, label);
10975 }
10976 }
10977
10978 decls_for_scope (stmt, stmt_die, depth);
10979 }
10980
10981 /* Generate a DIE for an inlined subprogram. */
10982
10983 static void
10984 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
10985 {
10986 tree decl = block_ultimate_origin (stmt);
10987
10988 /* Emit info for the abstract instance first, if we haven't yet. We
10989 must emit this even if the block is abstract, otherwise when we
10990 emit the block below (or elsewhere), we may end up trying to emit
10991 a die whose origin die hasn't been emitted, and crashing. */
10992 dwarf2out_abstract_function (decl);
10993
10994 if (! BLOCK_ABSTRACT (stmt))
10995 {
10996 dw_die_ref subr_die
10997 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
10998 char label[MAX_ARTIFICIAL_LABEL_BYTES];
10999
11000 add_abstract_origin_attribute (subr_die, decl);
11001 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11002 BLOCK_NUMBER (stmt));
11003 add_AT_lbl_id (subr_die, DW_AT_low_pc, label);
11004 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11005 BLOCK_NUMBER (stmt));
11006 add_AT_lbl_id (subr_die, DW_AT_high_pc, label);
11007 decls_for_scope (stmt, subr_die, depth);
11008 current_function_has_inlines = 1;
11009 }
11010 else
11011 /* We may get here if we're the outer block of function A that was
11012 inlined into function B that was inlined into function C. When
11013 generating debugging info for C, dwarf2out_abstract_function(B)
11014 would mark all inlined blocks as abstract, including this one.
11015 So, we wouldn't (and shouldn't) expect labels to be generated
11016 for this one. Instead, just emit debugging info for
11017 declarations within the block. This is particularly important
11018 in the case of initializers of arguments passed from B to us:
11019 if they're statement expressions containing declarations, we
11020 wouldn't generate dies for their abstract variables, and then,
11021 when generating dies for the real variables, we'd die (pun
11022 intended :-) */
11023 gen_lexical_block_die (stmt, context_die, depth);
11024 }
11025
11026 /* Generate a DIE for a field in a record, or structure. */
11027
11028 static void
11029 gen_field_die (tree decl, dw_die_ref context_die)
11030 {
11031 dw_die_ref decl_die;
11032
11033 if (TREE_TYPE (decl) == error_mark_node)
11034 return;
11035
11036 decl_die = new_die (DW_TAG_member, context_die, decl);
11037 add_name_and_src_coords_attributes (decl_die, decl);
11038 add_type_attribute (decl_die, member_declared_type (decl),
11039 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11040 context_die);
11041
11042 if (DECL_BIT_FIELD_TYPE (decl))
11043 {
11044 add_byte_size_attribute (decl_die, decl);
11045 add_bit_size_attribute (decl_die, decl);
11046 add_bit_offset_attribute (decl_die, decl);
11047 }
11048
11049 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11050 add_data_member_location_attribute (decl_die, decl);
11051
11052 if (DECL_ARTIFICIAL (decl))
11053 add_AT_flag (decl_die, DW_AT_artificial, 1);
11054
11055 if (TREE_PROTECTED (decl))
11056 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11057 else if (TREE_PRIVATE (decl))
11058 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11059 }
11060
11061 #if 0
11062 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11063 Use modified_type_die instead.
11064 We keep this code here just in case these types of DIEs may be needed to
11065 represent certain things in other languages (e.g. Pascal) someday. */
11066
11067 static void
11068 gen_pointer_type_die (tree type, dw_die_ref context_die)
11069 {
11070 dw_die_ref ptr_die
11071 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11072
11073 equate_type_number_to_die (type, ptr_die);
11074 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11075 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11076 }
11077
11078 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11079 Use modified_type_die instead.
11080 We keep this code here just in case these types of DIEs may be needed to
11081 represent certain things in other languages (e.g. Pascal) someday. */
11082
11083 static void
11084 gen_reference_type_die (tree type, dw_die_ref context_die)
11085 {
11086 dw_die_ref ref_die
11087 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11088
11089 equate_type_number_to_die (type, ref_die);
11090 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11091 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11092 }
11093 #endif
11094
11095 /* Generate a DIE for a pointer to a member type. */
11096
11097 static void
11098 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11099 {
11100 dw_die_ref ptr_die
11101 = new_die (DW_TAG_ptr_to_member_type,
11102 scope_die_for (type, context_die), type);
11103
11104 equate_type_number_to_die (type, ptr_die);
11105 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11106 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11107 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11108 }
11109
11110 /* Generate the DIE for the compilation unit. */
11111
11112 static dw_die_ref
11113 gen_compile_unit_die (const char *filename)
11114 {
11115 dw_die_ref die;
11116 char producer[250];
11117 const char *language_string = lang_hooks.name;
11118 int language;
11119
11120 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11121
11122 if (filename)
11123 {
11124 add_name_attribute (die, filename);
11125 /* Don't add cwd for <built-in>. */
11126 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11127 add_comp_dir_attribute (die);
11128 }
11129
11130 sprintf (producer, "%s %s", language_string, version_string);
11131
11132 #ifdef MIPS_DEBUGGING_INFO
11133 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11134 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11135 not appear in the producer string, the debugger reaches the conclusion
11136 that the object file is stripped and has no debugging information.
11137 To get the MIPS/SGI debugger to believe that there is debugging
11138 information in the object file, we add a -g to the producer string. */
11139 if (debug_info_level > DINFO_LEVEL_TERSE)
11140 strcat (producer, " -g");
11141 #endif
11142
11143 add_AT_string (die, DW_AT_producer, producer);
11144
11145 if (strcmp (language_string, "GNU C++") == 0)
11146 language = DW_LANG_C_plus_plus;
11147 else if (strcmp (language_string, "GNU Ada") == 0)
11148 language = DW_LANG_Ada95;
11149 else if (strcmp (language_string, "GNU F77") == 0)
11150 language = DW_LANG_Fortran77;
11151 else if (strcmp (language_string, "GNU Pascal") == 0)
11152 language = DW_LANG_Pascal83;
11153 else if (strcmp (language_string, "GNU Java") == 0)
11154 language = DW_LANG_Java;
11155 else
11156 language = DW_LANG_C89;
11157
11158 add_AT_unsigned (die, DW_AT_language, language);
11159 return die;
11160 }
11161
11162 /* Generate a DIE for a string type. */
11163
11164 static void
11165 gen_string_type_die (tree type, dw_die_ref context_die)
11166 {
11167 dw_die_ref type_die
11168 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11169
11170 equate_type_number_to_die (type, type_die);
11171
11172 /* ??? Fudge the string length attribute for now.
11173 TODO: add string length info. */
11174 #if 0
11175 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11176 bound_representation (upper_bound, 0, 'u');
11177 #endif
11178 }
11179
11180 /* Generate the DIE for a base class. */
11181
11182 static void
11183 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11184 {
11185 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11186
11187 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11188 add_data_member_location_attribute (die, binfo);
11189
11190 if (TREE_VIA_VIRTUAL (binfo))
11191 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11192
11193 if (access == access_public_node)
11194 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11195 else if (access == access_protected_node)
11196 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
11197 }
11198
11199 /* Generate a DIE for a class member. */
11200
11201 static void
11202 gen_member_die (tree type, dw_die_ref context_die)
11203 {
11204 tree member;
11205 tree binfo = TYPE_BINFO (type);
11206 dw_die_ref child;
11207
11208 /* If this is not an incomplete type, output descriptions of each of its
11209 members. Note that as we output the DIEs necessary to represent the
11210 members of this record or union type, we will also be trying to output
11211 DIEs to represent the *types* of those members. However the `type'
11212 function (above) will specifically avoid generating type DIEs for member
11213 types *within* the list of member DIEs for this (containing) type except
11214 for those types (of members) which are explicitly marked as also being
11215 members of this (containing) type themselves. The g++ front- end can
11216 force any given type to be treated as a member of some other (containing)
11217 type by setting the TYPE_CONTEXT of the given (member) type to point to
11218 the TREE node representing the appropriate (containing) type. */
11219
11220 /* First output info about the base classes. */
11221 if (binfo && BINFO_BASETYPES (binfo))
11222 {
11223 tree bases = BINFO_BASETYPES (binfo);
11224 tree accesses = BINFO_BASEACCESSES (binfo);
11225 int n_bases = TREE_VEC_LENGTH (bases);
11226 int i;
11227
11228 for (i = 0; i < n_bases; i++)
11229 gen_inheritance_die (TREE_VEC_ELT (bases, i),
11230 (accesses ? TREE_VEC_ELT (accesses, i)
11231 : access_public_node), context_die);
11232 }
11233
11234 /* Now output info about the data members and type members. */
11235 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
11236 {
11237 /* If we thought we were generating minimal debug info for TYPE
11238 and then changed our minds, some of the member declarations
11239 may have already been defined. Don't define them again, but
11240 do put them in the right order. */
11241
11242 child = lookup_decl_die (member);
11243 if (child)
11244 splice_child_die (context_die, child);
11245 else
11246 gen_decl_die (member, context_die);
11247 }
11248
11249 /* Now output info about the function members (if any). */
11250 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
11251 {
11252 /* Don't include clones in the member list. */
11253 if (DECL_ABSTRACT_ORIGIN (member))
11254 continue;
11255
11256 child = lookup_decl_die (member);
11257 if (child)
11258 splice_child_die (context_die, child);
11259 else
11260 gen_decl_die (member, context_die);
11261 }
11262 }
11263
11264 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
11265 is set, we pretend that the type was never defined, so we only get the
11266 member DIEs needed by later specification DIEs. */
11267
11268 static void
11269 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
11270 {
11271 dw_die_ref type_die = lookup_type_die (type);
11272 dw_die_ref scope_die = 0;
11273 int nested = 0;
11274 int complete = (TYPE_SIZE (type)
11275 && (! TYPE_STUB_DECL (type)
11276 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
11277
11278 if (type_die && ! complete)
11279 return;
11280
11281 if (TYPE_CONTEXT (type) != NULL_TREE
11282 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type)))
11283 nested = 1;
11284
11285 scope_die = scope_die_for (type, context_die);
11286
11287 if (! type_die || (nested && scope_die == comp_unit_die))
11288 /* First occurrence of type or toplevel definition of nested class. */
11289 {
11290 dw_die_ref old_die = type_die;
11291
11292 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
11293 ? DW_TAG_structure_type : DW_TAG_union_type,
11294 scope_die, type);
11295 equate_type_number_to_die (type, type_die);
11296 if (old_die)
11297 add_AT_die_ref (type_die, DW_AT_specification, old_die);
11298 else
11299 add_name_attribute (type_die, type_tag (type));
11300 }
11301 else
11302 remove_AT (type_die, DW_AT_declaration);
11303
11304 /* If this type has been completed, then give it a byte_size attribute and
11305 then give a list of members. */
11306 if (complete)
11307 {
11308 /* Prevent infinite recursion in cases where the type of some member of
11309 this type is expressed in terms of this type itself. */
11310 TREE_ASM_WRITTEN (type) = 1;
11311 add_byte_size_attribute (type_die, type);
11312 if (TYPE_STUB_DECL (type) != NULL_TREE)
11313 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11314
11315 /* If the first reference to this type was as the return type of an
11316 inline function, then it may not have a parent. Fix this now. */
11317 if (type_die->die_parent == NULL)
11318 add_child_die (scope_die, type_die);
11319
11320 push_decl_scope (type);
11321 gen_member_die (type, type_die);
11322 pop_decl_scope ();
11323
11324 /* GNU extension: Record what type our vtable lives in. */
11325 if (TYPE_VFIELD (type))
11326 {
11327 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
11328
11329 gen_type_die (vtype, context_die);
11330 add_AT_die_ref (type_die, DW_AT_containing_type,
11331 lookup_type_die (vtype));
11332 }
11333 }
11334 else
11335 {
11336 add_AT_flag (type_die, DW_AT_declaration, 1);
11337
11338 /* We don't need to do this for function-local types. */
11339 if (TYPE_STUB_DECL (type)
11340 && ! decl_function_context (TYPE_STUB_DECL (type)))
11341 VARRAY_PUSH_TREE (incomplete_types, type);
11342 }
11343 }
11344
11345 /* Generate a DIE for a subroutine _type_. */
11346
11347 static void
11348 gen_subroutine_type_die (tree type, dw_die_ref context_die)
11349 {
11350 tree return_type = TREE_TYPE (type);
11351 dw_die_ref subr_die
11352 = new_die (DW_TAG_subroutine_type,
11353 scope_die_for (type, context_die), type);
11354
11355 equate_type_number_to_die (type, subr_die);
11356 add_prototyped_attribute (subr_die, type);
11357 add_type_attribute (subr_die, return_type, 0, 0, context_die);
11358 gen_formal_types_die (type, subr_die);
11359 }
11360
11361 /* Generate a DIE for a type definition. */
11362
11363 static void
11364 gen_typedef_die (tree decl, dw_die_ref context_die)
11365 {
11366 dw_die_ref type_die;
11367 tree origin;
11368
11369 if (TREE_ASM_WRITTEN (decl))
11370 return;
11371
11372 TREE_ASM_WRITTEN (decl) = 1;
11373 type_die = new_die (DW_TAG_typedef, context_die, decl);
11374 origin = decl_ultimate_origin (decl);
11375 if (origin != NULL)
11376 add_abstract_origin_attribute (type_die, origin);
11377 else
11378 {
11379 tree type;
11380
11381 add_name_and_src_coords_attributes (type_die, decl);
11382 if (DECL_ORIGINAL_TYPE (decl))
11383 {
11384 type = DECL_ORIGINAL_TYPE (decl);
11385
11386 if (type == TREE_TYPE (decl))
11387 abort ();
11388 else
11389 equate_type_number_to_die (TREE_TYPE (decl), type_die);
11390 }
11391 else
11392 type = TREE_TYPE (decl);
11393
11394 add_type_attribute (type_die, type, TREE_READONLY (decl),
11395 TREE_THIS_VOLATILE (decl), context_die);
11396 }
11397
11398 if (DECL_ABSTRACT (decl))
11399 equate_decl_number_to_die (decl, type_die);
11400 }
11401
11402 /* Generate a type description DIE. */
11403
11404 static void
11405 gen_type_die (tree type, dw_die_ref context_die)
11406 {
11407 int need_pop;
11408
11409 if (type == NULL_TREE || type == error_mark_node)
11410 return;
11411
11412 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
11413 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
11414 {
11415 if (TREE_ASM_WRITTEN (type))
11416 return;
11417
11418 /* Prevent broken recursion; we can't hand off to the same type. */
11419 if (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) == type)
11420 abort ();
11421
11422 TREE_ASM_WRITTEN (type) = 1;
11423 gen_decl_die (TYPE_NAME (type), context_die);
11424 return;
11425 }
11426
11427 /* We are going to output a DIE to represent the unqualified version
11428 of this type (i.e. without any const or volatile qualifiers) so
11429 get the main variant (i.e. the unqualified version) of this type
11430 now. (Vectors are special because the debugging info is in the
11431 cloned type itself). */
11432 if (TREE_CODE (type) != VECTOR_TYPE)
11433 type = type_main_variant (type);
11434
11435 if (TREE_ASM_WRITTEN (type))
11436 return;
11437
11438 switch (TREE_CODE (type))
11439 {
11440 case ERROR_MARK:
11441 break;
11442
11443 case POINTER_TYPE:
11444 case REFERENCE_TYPE:
11445 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
11446 ensures that the gen_type_die recursion will terminate even if the
11447 type is recursive. Recursive types are possible in Ada. */
11448 /* ??? We could perhaps do this for all types before the switch
11449 statement. */
11450 TREE_ASM_WRITTEN (type) = 1;
11451
11452 /* For these types, all that is required is that we output a DIE (or a
11453 set of DIEs) to represent the "basis" type. */
11454 gen_type_die (TREE_TYPE (type), context_die);
11455 break;
11456
11457 case OFFSET_TYPE:
11458 /* This code is used for C++ pointer-to-data-member types.
11459 Output a description of the relevant class type. */
11460 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
11461
11462 /* Output a description of the type of the object pointed to. */
11463 gen_type_die (TREE_TYPE (type), context_die);
11464
11465 /* Now output a DIE to represent this pointer-to-data-member type
11466 itself. */
11467 gen_ptr_to_mbr_type_die (type, context_die);
11468 break;
11469
11470 case SET_TYPE:
11471 gen_type_die (TYPE_DOMAIN (type), context_die);
11472 gen_set_type_die (type, context_die);
11473 break;
11474
11475 case FILE_TYPE:
11476 gen_type_die (TREE_TYPE (type), context_die);
11477 abort (); /* No way to represent these in Dwarf yet! */
11478 break;
11479
11480 case FUNCTION_TYPE:
11481 /* Force out return type (in case it wasn't forced out already). */
11482 gen_type_die (TREE_TYPE (type), context_die);
11483 gen_subroutine_type_die (type, context_die);
11484 break;
11485
11486 case METHOD_TYPE:
11487 /* Force out return type (in case it wasn't forced out already). */
11488 gen_type_die (TREE_TYPE (type), context_die);
11489 gen_subroutine_type_die (type, context_die);
11490 break;
11491
11492 case ARRAY_TYPE:
11493 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
11494 {
11495 gen_type_die (TREE_TYPE (type), context_die);
11496 gen_string_type_die (type, context_die);
11497 }
11498 else
11499 gen_array_type_die (type, context_die);
11500 break;
11501
11502 case VECTOR_TYPE:
11503 gen_array_type_die (type, context_die);
11504 break;
11505
11506 case ENUMERAL_TYPE:
11507 case RECORD_TYPE:
11508 case UNION_TYPE:
11509 case QUAL_UNION_TYPE:
11510 /* If this is a nested type whose containing class hasn't been written
11511 out yet, writing it out will cover this one, too. This does not apply
11512 to instantiations of member class templates; they need to be added to
11513 the containing class as they are generated. FIXME: This hurts the
11514 idea of combining type decls from multiple TUs, since we can't predict
11515 what set of template instantiations we'll get. */
11516 if (TYPE_CONTEXT (type)
11517 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
11518 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
11519 {
11520 gen_type_die (TYPE_CONTEXT (type), context_die);
11521
11522 if (TREE_ASM_WRITTEN (type))
11523 return;
11524
11525 /* If that failed, attach ourselves to the stub. */
11526 push_decl_scope (TYPE_CONTEXT (type));
11527 context_die = lookup_type_die (TYPE_CONTEXT (type));
11528 need_pop = 1;
11529 }
11530 else
11531 need_pop = 0;
11532
11533 if (TREE_CODE (type) == ENUMERAL_TYPE)
11534 gen_enumeration_type_die (type, context_die);
11535 else
11536 gen_struct_or_union_type_die (type, context_die);
11537
11538 if (need_pop)
11539 pop_decl_scope ();
11540
11541 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
11542 it up if it is ever completed. gen_*_type_die will set it for us
11543 when appropriate. */
11544 return;
11545
11546 case VOID_TYPE:
11547 case INTEGER_TYPE:
11548 case REAL_TYPE:
11549 case COMPLEX_TYPE:
11550 case BOOLEAN_TYPE:
11551 case CHAR_TYPE:
11552 /* No DIEs needed for fundamental types. */
11553 break;
11554
11555 case LANG_TYPE:
11556 /* No Dwarf representation currently defined. */
11557 break;
11558
11559 default:
11560 abort ();
11561 }
11562
11563 TREE_ASM_WRITTEN (type) = 1;
11564 }
11565
11566 /* Generate a DIE for a tagged type instantiation. */
11567
11568 static void
11569 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
11570 {
11571 if (type == NULL_TREE || type == error_mark_node)
11572 return;
11573
11574 /* We are going to output a DIE to represent the unqualified version of
11575 this type (i.e. without any const or volatile qualifiers) so make sure
11576 that we have the main variant (i.e. the unqualified version) of this
11577 type now. */
11578 if (type != type_main_variant (type))
11579 abort ();
11580
11581 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
11582 an instance of an unresolved type. */
11583
11584 switch (TREE_CODE (type))
11585 {
11586 case ERROR_MARK:
11587 break;
11588
11589 case ENUMERAL_TYPE:
11590 gen_inlined_enumeration_type_die (type, context_die);
11591 break;
11592
11593 case RECORD_TYPE:
11594 gen_inlined_structure_type_die (type, context_die);
11595 break;
11596
11597 case UNION_TYPE:
11598 case QUAL_UNION_TYPE:
11599 gen_inlined_union_type_die (type, context_die);
11600 break;
11601
11602 default:
11603 abort ();
11604 }
11605 }
11606
11607 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
11608 things which are local to the given block. */
11609
11610 static void
11611 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
11612 {
11613 int must_output_die = 0;
11614 tree origin;
11615 tree decl;
11616 enum tree_code origin_code;
11617
11618 /* Ignore blocks never really used to make RTL. */
11619 if (stmt == NULL_TREE || !TREE_USED (stmt)
11620 || (!TREE_ASM_WRITTEN (stmt) && !BLOCK_ABSTRACT (stmt)))
11621 return;
11622
11623 /* If the block is one fragment of a non-contiguous block, do not
11624 process the variables, since they will have been done by the
11625 origin block. Do process subblocks. */
11626 if (BLOCK_FRAGMENT_ORIGIN (stmt))
11627 {
11628 tree sub;
11629
11630 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
11631 gen_block_die (sub, context_die, depth + 1);
11632
11633 return;
11634 }
11635
11636 /* Determine the "ultimate origin" of this block. This block may be an
11637 inlined instance of an inlined instance of inline function, so we have
11638 to trace all of the way back through the origin chain to find out what
11639 sort of node actually served as the original seed for the creation of
11640 the current block. */
11641 origin = block_ultimate_origin (stmt);
11642 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
11643
11644 /* Determine if we need to output any Dwarf DIEs at all to represent this
11645 block. */
11646 if (origin_code == FUNCTION_DECL)
11647 /* The outer scopes for inlinings *must* always be represented. We
11648 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
11649 must_output_die = 1;
11650 else
11651 {
11652 /* In the case where the current block represents an inlining of the
11653 "body block" of an inline function, we must *NOT* output any DIE for
11654 this block because we have already output a DIE to represent the whole
11655 inlined function scope and the "body block" of any function doesn't
11656 really represent a different scope according to ANSI C rules. So we
11657 check here to make sure that this block does not represent a "body
11658 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
11659 if (! is_body_block (origin ? origin : stmt))
11660 {
11661 /* Determine if this block directly contains any "significant"
11662 local declarations which we will need to output DIEs for. */
11663 if (debug_info_level > DINFO_LEVEL_TERSE)
11664 /* We are not in terse mode so *any* local declaration counts
11665 as being a "significant" one. */
11666 must_output_die = (BLOCK_VARS (stmt) != NULL);
11667 else
11668 /* We are in terse mode, so only local (nested) function
11669 definitions count as "significant" local declarations. */
11670 for (decl = BLOCK_VARS (stmt);
11671 decl != NULL; decl = TREE_CHAIN (decl))
11672 if (TREE_CODE (decl) == FUNCTION_DECL
11673 && DECL_INITIAL (decl))
11674 {
11675 must_output_die = 1;
11676 break;
11677 }
11678 }
11679 }
11680
11681 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
11682 DIE for any block which contains no significant local declarations at
11683 all. Rather, in such cases we just call `decls_for_scope' so that any
11684 needed Dwarf info for any sub-blocks will get properly generated. Note
11685 that in terse mode, our definition of what constitutes a "significant"
11686 local declaration gets restricted to include only inlined function
11687 instances and local (nested) function definitions. */
11688 if (must_output_die)
11689 {
11690 if (origin_code == FUNCTION_DECL)
11691 gen_inlined_subroutine_die (stmt, context_die, depth);
11692 else
11693 gen_lexical_block_die (stmt, context_die, depth);
11694 }
11695 else
11696 decls_for_scope (stmt, context_die, depth);
11697 }
11698
11699 /* Generate all of the decls declared within a given scope and (recursively)
11700 all of its sub-blocks. */
11701
11702 static void
11703 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
11704 {
11705 tree decl;
11706 tree subblocks;
11707
11708 /* Ignore blocks never really used to make RTL. */
11709 if (stmt == NULL_TREE || ! TREE_USED (stmt))
11710 return;
11711
11712 /* Output the DIEs to represent all of the data objects and typedefs
11713 declared directly within this block but not within any nested
11714 sub-blocks. Also, nested function and tag DIEs have been
11715 generated with a parent of NULL; fix that up now. */
11716 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
11717 {
11718 dw_die_ref die;
11719
11720 if (TREE_CODE (decl) == FUNCTION_DECL)
11721 die = lookup_decl_die (decl);
11722 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
11723 die = lookup_type_die (TREE_TYPE (decl));
11724 else
11725 die = NULL;
11726
11727 if (die != NULL && die->die_parent == NULL)
11728 add_child_die (context_die, die);
11729 else
11730 gen_decl_die (decl, context_die);
11731 }
11732
11733 /* If we're at -g1, we're not interested in subblocks. */
11734 if (debug_info_level <= DINFO_LEVEL_TERSE)
11735 return;
11736
11737 /* Output the DIEs to represent all sub-blocks (and the items declared
11738 therein) of this block. */
11739 for (subblocks = BLOCK_SUBBLOCKS (stmt);
11740 subblocks != NULL;
11741 subblocks = BLOCK_CHAIN (subblocks))
11742 gen_block_die (subblocks, context_die, depth + 1);
11743 }
11744
11745 /* Is this a typedef we can avoid emitting? */
11746
11747 static inline int
11748 is_redundant_typedef (tree decl)
11749 {
11750 if (TYPE_DECL_IS_STUB (decl))
11751 return 1;
11752
11753 if (DECL_ARTIFICIAL (decl)
11754 && DECL_CONTEXT (decl)
11755 && is_tagged_type (DECL_CONTEXT (decl))
11756 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
11757 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
11758 /* Also ignore the artificial member typedef for the class name. */
11759 return 1;
11760
11761 return 0;
11762 }
11763
11764 /* Generate Dwarf debug information for a decl described by DECL. */
11765
11766 static void
11767 gen_decl_die (tree decl, dw_die_ref context_die)
11768 {
11769 tree origin;
11770
11771 if (DECL_P (decl) && DECL_IGNORED_P (decl))
11772 return;
11773
11774 switch (TREE_CODE (decl))
11775 {
11776 case ERROR_MARK:
11777 break;
11778
11779 case CONST_DECL:
11780 /* The individual enumerators of an enum type get output when we output
11781 the Dwarf representation of the relevant enum type itself. */
11782 break;
11783
11784 case FUNCTION_DECL:
11785 /* Don't output any DIEs to represent mere function declarations,
11786 unless they are class members or explicit block externs. */
11787 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
11788 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
11789 break;
11790
11791 /* If we're emitting a clone, emit info for the abstract instance. */
11792 if (DECL_ORIGIN (decl) != decl)
11793 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
11794
11795 /* If we're emitting an out-of-line copy of an inline function,
11796 emit info for the abstract instance and set up to refer to it. */
11797 else if (cgraph_function_possibly_inlined_p (decl)
11798 && ! DECL_ABSTRACT (decl)
11799 && ! class_scope_p (context_die)
11800 /* dwarf2out_abstract_function won't emit a die if this is just
11801 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
11802 that case, because that works only if we have a die. */
11803 && DECL_INITIAL (decl) != NULL_TREE)
11804 {
11805 dwarf2out_abstract_function (decl);
11806 set_decl_origin_self (decl);
11807 }
11808
11809 /* Otherwise we're emitting the primary DIE for this decl. */
11810 else if (debug_info_level > DINFO_LEVEL_TERSE)
11811 {
11812 /* Before we describe the FUNCTION_DECL itself, make sure that we
11813 have described its return type. */
11814 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
11815
11816 /* And its virtual context. */
11817 if (DECL_VINDEX (decl) != NULL_TREE)
11818 gen_type_die (DECL_CONTEXT (decl), context_die);
11819
11820 /* And its containing type. */
11821 origin = decl_class_context (decl);
11822 if (origin != NULL_TREE)
11823 gen_type_die_for_member (origin, decl, context_die);
11824 }
11825
11826 /* Now output a DIE to represent the function itself. */
11827 gen_subprogram_die (decl, context_die);
11828 break;
11829
11830 case TYPE_DECL:
11831 /* If we are in terse mode, don't generate any DIEs to represent any
11832 actual typedefs. */
11833 if (debug_info_level <= DINFO_LEVEL_TERSE)
11834 break;
11835
11836 /* In the special case of a TYPE_DECL node representing the declaration
11837 of some type tag, if the given TYPE_DECL is marked as having been
11838 instantiated from some other (original) TYPE_DECL node (e.g. one which
11839 was generated within the original definition of an inline function) we
11840 have to generate a special (abbreviated) DW_TAG_structure_type,
11841 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
11842 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
11843 {
11844 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
11845 break;
11846 }
11847
11848 if (is_redundant_typedef (decl))
11849 gen_type_die (TREE_TYPE (decl), context_die);
11850 else
11851 /* Output a DIE to represent the typedef itself. */
11852 gen_typedef_die (decl, context_die);
11853 break;
11854
11855 case LABEL_DECL:
11856 if (debug_info_level >= DINFO_LEVEL_NORMAL)
11857 gen_label_die (decl, context_die);
11858 break;
11859
11860 case VAR_DECL:
11861 /* If we are in terse mode, don't generate any DIEs to represent any
11862 variable declarations or definitions. */
11863 if (debug_info_level <= DINFO_LEVEL_TERSE)
11864 break;
11865
11866 /* Output any DIEs that are needed to specify the type of this data
11867 object. */
11868 gen_type_die (TREE_TYPE (decl), context_die);
11869
11870 /* And its containing type. */
11871 origin = decl_class_context (decl);
11872 if (origin != NULL_TREE)
11873 gen_type_die_for_member (origin, decl, context_die);
11874
11875 /* Now output the DIE to represent the data object itself. This gets
11876 complicated because of the possibility that the VAR_DECL really
11877 represents an inlined instance of a formal parameter for an inline
11878 function. */
11879 origin = decl_ultimate_origin (decl);
11880 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
11881 gen_formal_parameter_die (decl, context_die);
11882 else
11883 gen_variable_die (decl, context_die);
11884 break;
11885
11886 case FIELD_DECL:
11887 /* Ignore the nameless fields that are used to skip bits but handle C++
11888 anonymous unions. */
11889 if (DECL_NAME (decl) != NULL_TREE
11890 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE)
11891 {
11892 gen_type_die (member_declared_type (decl), context_die);
11893 gen_field_die (decl, context_die);
11894 }
11895 break;
11896
11897 case PARM_DECL:
11898 gen_type_die (TREE_TYPE (decl), context_die);
11899 gen_formal_parameter_die (decl, context_die);
11900 break;
11901
11902 case NAMESPACE_DECL:
11903 /* Ignore for now. */
11904 break;
11905
11906 default:
11907 if ((int)TREE_CODE (decl) > NUM_TREE_CODES)
11908 /* Probably some frontend-internal decl. Assume we don't care. */
11909 break;
11910 abort ();
11911 }
11912 }
11913 \f
11914 /* Add Ada "use" clause information for SGI Workshop debugger. */
11915
11916 void
11917 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
11918 {
11919 unsigned int file_index;
11920
11921 if (filename != NULL)
11922 {
11923 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
11924 tree context_list_decl
11925 = build_decl (LABEL_DECL, get_identifier (context_list),
11926 void_type_node);
11927
11928 TREE_PUBLIC (context_list_decl) = TRUE;
11929 add_name_attribute (unit_die, context_list);
11930 file_index = lookup_filename (filename);
11931 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
11932 add_pubname (context_list_decl, unit_die);
11933 }
11934 }
11935
11936 /* Output debug information for global decl DECL. Called from toplev.c after
11937 compilation proper has finished. */
11938
11939 static void
11940 dwarf2out_global_decl (tree decl)
11941 {
11942 /* Output DWARF2 information for file-scope tentative data object
11943 declarations, file-scope (extern) function declarations (which had no
11944 corresponding body) and file-scope tagged type declarations and
11945 definitions which have not yet been forced out. */
11946 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
11947 dwarf2out_decl (decl);
11948 }
11949
11950 /* Write the debugging output for DECL. */
11951
11952 void
11953 dwarf2out_decl (tree decl)
11954 {
11955 dw_die_ref context_die = comp_unit_die;
11956
11957 switch (TREE_CODE (decl))
11958 {
11959 case ERROR_MARK:
11960 return;
11961
11962 case FUNCTION_DECL:
11963 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of a
11964 builtin function. Explicit programmer-supplied declarations of
11965 these same functions should NOT be ignored however. */
11966 if (DECL_EXTERNAL (decl) && DECL_BUILT_IN (decl))
11967 return;
11968
11969 /* What we would really like to do here is to filter out all mere
11970 file-scope declarations of file-scope functions which are never
11971 referenced later within this translation unit (and keep all of ones
11972 that *are* referenced later on) but we aren't clairvoyant, so we have
11973 no idea which functions will be referenced in the future (i.e. later
11974 on within the current translation unit). So here we just ignore all
11975 file-scope function declarations which are not also definitions. If
11976 and when the debugger needs to know something about these functions,
11977 it will have to hunt around and find the DWARF information associated
11978 with the definition of the function.
11979
11980 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
11981 nodes represent definitions and which ones represent mere
11982 declarations. We have to check DECL_INITIAL instead. That's because
11983 the C front-end supports some weird semantics for "extern inline"
11984 function definitions. These can get inlined within the current
11985 translation unit (an thus, we need to generate Dwarf info for their
11986 abstract instances so that the Dwarf info for the concrete inlined
11987 instances can have something to refer to) but the compiler never
11988 generates any out-of-lines instances of such things (despite the fact
11989 that they *are* definitions).
11990
11991 The important point is that the C front-end marks these "extern
11992 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
11993 them anyway. Note that the C++ front-end also plays some similar games
11994 for inline function definitions appearing within include files which
11995 also contain `#pragma interface' pragmas. */
11996 if (DECL_INITIAL (decl) == NULL_TREE)
11997 return;
11998
11999 /* If we're a nested function, initially use a parent of NULL; if we're
12000 a plain function, this will be fixed up in decls_for_scope. If
12001 we're a method, it will be ignored, since we already have a DIE. */
12002 if (decl_function_context (decl)
12003 /* But if we're in terse mode, we don't care about scope. */
12004 && debug_info_level > DINFO_LEVEL_TERSE)
12005 context_die = NULL;
12006 break;
12007
12008 case VAR_DECL:
12009 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
12010 declaration and if the declaration was never even referenced from
12011 within this entire compilation unit. We suppress these DIEs in
12012 order to save space in the .debug section (by eliminating entries
12013 which are probably useless). Note that we must not suppress
12014 block-local extern declarations (whether used or not) because that
12015 would screw-up the debugger's name lookup mechanism and cause it to
12016 miss things which really ought to be in scope at a given point. */
12017 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
12018 return;
12019
12020 /* If we are in terse mode, don't generate any DIEs to represent any
12021 variable declarations or definitions. */
12022 if (debug_info_level <= DINFO_LEVEL_TERSE)
12023 return;
12024 break;
12025
12026 case TYPE_DECL:
12027 /* Don't emit stubs for types unless they are needed by other DIEs. */
12028 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
12029 return;
12030
12031 /* Don't bother trying to generate any DIEs to represent any of the
12032 normal built-in types for the language we are compiling. */
12033 if (DECL_SOURCE_LINE (decl) == 0)
12034 {
12035 /* OK, we need to generate one for `bool' so GDB knows what type
12036 comparisons have. */
12037 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
12038 == DW_LANG_C_plus_plus)
12039 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
12040 && ! DECL_IGNORED_P (decl))
12041 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
12042
12043 return;
12044 }
12045
12046 /* If we are in terse mode, don't generate any DIEs for types. */
12047 if (debug_info_level <= DINFO_LEVEL_TERSE)
12048 return;
12049
12050 /* If we're a function-scope tag, initially use a parent of NULL;
12051 this will be fixed up in decls_for_scope. */
12052 if (decl_function_context (decl))
12053 context_die = NULL;
12054
12055 break;
12056
12057 default:
12058 return;
12059 }
12060
12061 gen_decl_die (decl, context_die);
12062 }
12063
12064 /* Output a marker (i.e. a label) for the beginning of the generated code for
12065 a lexical block. */
12066
12067 static void
12068 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
12069 unsigned int blocknum)
12070 {
12071 function_section (current_function_decl);
12072 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
12073 }
12074
12075 /* Output a marker (i.e. a label) for the end of the generated code for a
12076 lexical block. */
12077
12078 static void
12079 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
12080 {
12081 function_section (current_function_decl);
12082 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
12083 }
12084
12085 /* Returns nonzero if it is appropriate not to emit any debugging
12086 information for BLOCK, because it doesn't contain any instructions.
12087
12088 Don't allow this for blocks with nested functions or local classes
12089 as we would end up with orphans, and in the presence of scheduling
12090 we may end up calling them anyway. */
12091
12092 static bool
12093 dwarf2out_ignore_block (tree block)
12094 {
12095 tree decl;
12096
12097 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
12098 if (TREE_CODE (decl) == FUNCTION_DECL
12099 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
12100 return 0;
12101
12102 return 1;
12103 }
12104
12105 /* Lookup FILE_NAME (in the list of filenames that we know about here in
12106 dwarf2out.c) and return its "index". The index of each (known) filename is
12107 just a unique number which is associated with only that one filename. We
12108 need such numbers for the sake of generating labels (in the .debug_sfnames
12109 section) and references to those files numbers (in the .debug_srcinfo
12110 and.debug_macinfo sections). If the filename given as an argument is not
12111 found in our current list, add it to the list and assign it the next
12112 available unique index number. In order to speed up searches, we remember
12113 the index of the filename was looked up last. This handles the majority of
12114 all searches. */
12115
12116 static unsigned
12117 lookup_filename (const char *file_name)
12118 {
12119 size_t i, n;
12120 char *save_file_name;
12121
12122 /* Check to see if the file name that was searched on the previous
12123 call matches this file name. If so, return the index. */
12124 if (file_table_last_lookup_index != 0)
12125 {
12126 const char *last
12127 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
12128 if (strcmp (file_name, last) == 0)
12129 return file_table_last_lookup_index;
12130 }
12131
12132 /* Didn't match the previous lookup, search the table */
12133 n = VARRAY_ACTIVE_SIZE (file_table);
12134 for (i = 1; i < n; i++)
12135 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
12136 {
12137 file_table_last_lookup_index = i;
12138 return i;
12139 }
12140
12141 /* Add the new entry to the end of the filename table. */
12142 file_table_last_lookup_index = n;
12143 save_file_name = (char *) ggc_strdup (file_name);
12144 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
12145 VARRAY_PUSH_UINT (file_table_emitted, 0);
12146
12147 return i;
12148 }
12149
12150 static int
12151 maybe_emit_file (int fileno)
12152 {
12153 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
12154 {
12155 if (!VARRAY_UINT (file_table_emitted, fileno))
12156 {
12157 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
12158 fprintf (asm_out_file, "\t.file %u ",
12159 VARRAY_UINT (file_table_emitted, fileno));
12160 output_quoted_string (asm_out_file,
12161 VARRAY_CHAR_PTR (file_table, fileno));
12162 fputc ('\n', asm_out_file);
12163 }
12164 return VARRAY_UINT (file_table_emitted, fileno);
12165 }
12166 else
12167 return fileno;
12168 }
12169
12170 static void
12171 init_file_table (void)
12172 {
12173 /* Allocate the initial hunk of the file_table. */
12174 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
12175 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
12176
12177 /* Skip the first entry - file numbers begin at 1. */
12178 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
12179 VARRAY_PUSH_UINT (file_table_emitted, 0);
12180 file_table_last_lookup_index = 0;
12181 }
12182
12183 /* Output a label to mark the beginning of a source code line entry
12184 and record information relating to this source line, in
12185 'line_info_table' for later output of the .debug_line section. */
12186
12187 static void
12188 dwarf2out_source_line (unsigned int line, const char *filename)
12189 {
12190 if (debug_info_level >= DINFO_LEVEL_NORMAL
12191 && line != 0)
12192 {
12193 function_section (current_function_decl);
12194
12195 /* If requested, emit something human-readable. */
12196 if (flag_debug_asm)
12197 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
12198 filename, line);
12199
12200 if (DWARF2_ASM_LINE_DEBUG_INFO)
12201 {
12202 unsigned file_num = lookup_filename (filename);
12203
12204 file_num = maybe_emit_file (file_num);
12205
12206 /* Emit the .loc directive understood by GNU as. */
12207 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
12208
12209 /* Indicate that line number info exists. */
12210 line_info_table_in_use++;
12211
12212 /* Indicate that multiple line number tables exist. */
12213 if (DECL_SECTION_NAME (current_function_decl))
12214 separate_line_info_table_in_use++;
12215 }
12216 else if (DECL_SECTION_NAME (current_function_decl))
12217 {
12218 dw_separate_line_info_ref line_info;
12219 (*targetm.asm_out.internal_label) (asm_out_file, SEPARATE_LINE_CODE_LABEL,
12220 separate_line_info_table_in_use);
12221
12222 /* expand the line info table if necessary */
12223 if (separate_line_info_table_in_use
12224 == separate_line_info_table_allocated)
12225 {
12226 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12227 separate_line_info_table
12228 = ggc_realloc (separate_line_info_table,
12229 separate_line_info_table_allocated
12230 * sizeof (dw_separate_line_info_entry));
12231 memset (separate_line_info_table
12232 + separate_line_info_table_in_use,
12233 0,
12234 (LINE_INFO_TABLE_INCREMENT
12235 * sizeof (dw_separate_line_info_entry)));
12236 }
12237
12238 /* Add the new entry at the end of the line_info_table. */
12239 line_info
12240 = &separate_line_info_table[separate_line_info_table_in_use++];
12241 line_info->dw_file_num = lookup_filename (filename);
12242 line_info->dw_line_num = line;
12243 line_info->function = current_function_funcdef_no;
12244 }
12245 else
12246 {
12247 dw_line_info_ref line_info;
12248
12249 (*targetm.asm_out.internal_label) (asm_out_file, LINE_CODE_LABEL,
12250 line_info_table_in_use);
12251
12252 /* Expand the line info table if necessary. */
12253 if (line_info_table_in_use == line_info_table_allocated)
12254 {
12255 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
12256 line_info_table
12257 = ggc_realloc (line_info_table,
12258 (line_info_table_allocated
12259 * sizeof (dw_line_info_entry)));
12260 memset (line_info_table + line_info_table_in_use, 0,
12261 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
12262 }
12263
12264 /* Add the new entry at the end of the line_info_table. */
12265 line_info = &line_info_table[line_info_table_in_use++];
12266 line_info->dw_file_num = lookup_filename (filename);
12267 line_info->dw_line_num = line;
12268 }
12269 }
12270 }
12271
12272 /* Record the beginning of a new source file. */
12273
12274 static void
12275 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
12276 {
12277 if (flag_eliminate_dwarf2_dups)
12278 {
12279 /* Record the beginning of the file for break_out_includes. */
12280 dw_die_ref bincl_die;
12281
12282 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
12283 add_AT_string (bincl_die, DW_AT_name, filename);
12284 }
12285
12286 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12287 {
12288 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12289 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
12290 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
12291 lineno);
12292 maybe_emit_file (lookup_filename (filename));
12293 dw2_asm_output_data_uleb128 (lookup_filename (filename),
12294 "Filename we just started");
12295 }
12296 }
12297
12298 /* Record the end of a source file. */
12299
12300 static void
12301 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
12302 {
12303 if (flag_eliminate_dwarf2_dups)
12304 /* Record the end of the file for break_out_includes. */
12305 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
12306
12307 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12308 {
12309 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12310 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12311 }
12312 }
12313
12314 /* Called from debug_define in toplev.c. The `buffer' parameter contains
12315 the tail part of the directive line, i.e. the part which is past the
12316 initial whitespace, #, whitespace, directive-name, whitespace part. */
12317
12318 static void
12319 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
12320 const char *buffer ATTRIBUTE_UNUSED)
12321 {
12322 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12323 {
12324 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12325 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
12326 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12327 dw2_asm_output_nstring (buffer, -1, "The macro");
12328 }
12329 }
12330
12331 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
12332 the tail part of the directive line, i.e. the part which is past the
12333 initial whitespace, #, whitespace, directive-name, whitespace part. */
12334
12335 static void
12336 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
12337 const char *buffer ATTRIBUTE_UNUSED)
12338 {
12339 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12340 {
12341 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12342 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
12343 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
12344 dw2_asm_output_nstring (buffer, -1, "The macro");
12345 }
12346 }
12347
12348 /* Set up for Dwarf output at the start of compilation. */
12349
12350 static void
12351 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
12352 {
12353 init_file_table ();
12354
12355 /* Allocate the initial hunk of the decl_die_table. */
12356 decl_die_table = ggc_alloc_cleared (DECL_DIE_TABLE_INCREMENT
12357 * sizeof (dw_die_ref));
12358 decl_die_table_allocated = DECL_DIE_TABLE_INCREMENT;
12359 decl_die_table_in_use = 0;
12360
12361 /* Allocate the initial hunk of the decl_scope_table. */
12362 VARRAY_TREE_INIT (decl_scope_table, 256, "decl_scope_table");
12363
12364 /* Allocate the initial hunk of the abbrev_die_table. */
12365 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
12366 * sizeof (dw_die_ref));
12367 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
12368 /* Zero-th entry is allocated, but unused */
12369 abbrev_die_table_in_use = 1;
12370
12371 /* Allocate the initial hunk of the line_info_table. */
12372 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
12373 * sizeof (dw_line_info_entry));
12374 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
12375
12376 /* Zero-th entry is allocated, but unused */
12377 line_info_table_in_use = 1;
12378
12379 /* Generate the initial DIE for the .debug section. Note that the (string)
12380 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
12381 will (typically) be a relative pathname and that this pathname should be
12382 taken as being relative to the directory from which the compiler was
12383 invoked when the given (base) source file was compiled. We will fill
12384 in this value in dwarf2out_finish. */
12385 comp_unit_die = gen_compile_unit_die (NULL);
12386
12387 VARRAY_TREE_INIT (incomplete_types, 64, "incomplete_types");
12388
12389 VARRAY_RTX_INIT (used_rtx_varray, 32, "used_rtx_varray");
12390
12391 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
12392 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
12393 DEBUG_ABBREV_SECTION_LABEL, 0);
12394 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12395 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
12396 else
12397 strcpy (text_section_label, stripattributes (TEXT_SECTION_NAME));
12398
12399 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
12400 DEBUG_INFO_SECTION_LABEL, 0);
12401 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
12402 DEBUG_LINE_SECTION_LABEL, 0);
12403 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
12404 DEBUG_RANGES_SECTION_LABEL, 0);
12405 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12406 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
12407 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
12408 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
12409 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12410 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
12411
12412 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12413 {
12414 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12415 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
12416 DEBUG_MACINFO_SECTION_LABEL, 0);
12417 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
12418 }
12419
12420 if (DWARF2_GENERATE_TEXT_SECTION_LABEL)
12421 {
12422 text_section ();
12423 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
12424 }
12425 }
12426
12427 /* A helper function for dwarf2out_finish called through
12428 ht_forall. Emit one queued .debug_str string. */
12429
12430 static int
12431 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
12432 {
12433 struct indirect_string_node *node = (struct indirect_string_node *) *h;
12434
12435 if (node->form == DW_FORM_strp)
12436 {
12437 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
12438 ASM_OUTPUT_LABEL (asm_out_file, node->label);
12439 assemble_string (node->str, strlen (node->str) + 1);
12440 }
12441
12442 return 1;
12443 }
12444
12445
12446
12447 /* Clear the marks for a die and its children.
12448 Be cool if the mark isn't set. */
12449
12450 static void
12451 prune_unmark_dies (dw_die_ref die)
12452 {
12453 dw_die_ref c;
12454 die->die_mark = 0;
12455 for (c = die->die_child; c; c = c->die_sib)
12456 prune_unmark_dies (c);
12457 }
12458
12459
12460 /* Given DIE that we're marking as used, find any other dies
12461 it references as attributes and mark them as used. */
12462
12463 static void
12464 prune_unused_types_walk_attribs (dw_die_ref die)
12465 {
12466 dw_attr_ref a;
12467
12468 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
12469 {
12470 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
12471 {
12472 /* A reference to another DIE.
12473 Make sure that it will get emitted. */
12474 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
12475 }
12476 else if (a->dw_attr == DW_AT_decl_file)
12477 {
12478 /* A reference to a file. Make sure the file name is emitted. */
12479 a->dw_attr_val.v.val_unsigned =
12480 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
12481 }
12482 }
12483 }
12484
12485
12486 /* Mark DIE as being used. If DOKIDS is true, then walk down
12487 to DIE's children. */
12488
12489 static void
12490 prune_unused_types_mark (dw_die_ref die, int dokids)
12491 {
12492 dw_die_ref c;
12493
12494 if (die->die_mark == 0)
12495 {
12496 /* We haven't done this node yet. Mark it as used. */
12497 die->die_mark = 1;
12498
12499 /* We also have to mark its parents as used.
12500 (But we don't want to mark our parents' kids due to this.) */
12501 if (die->die_parent)
12502 prune_unused_types_mark (die->die_parent, 0);
12503
12504 /* Mark any referenced nodes. */
12505 prune_unused_types_walk_attribs (die);
12506 }
12507
12508 if (dokids && die->die_mark != 2)
12509 {
12510 /* We need to walk the children, but haven't done so yet.
12511 Remember that we've walked the kids. */
12512 die->die_mark = 2;
12513
12514 /* Walk them. */
12515 for (c = die->die_child; c; c = c->die_sib)
12516 {
12517 /* If this is an array type, we need to make sure our
12518 kids get marked, even if they're types. */
12519 if (die->die_tag == DW_TAG_array_type)
12520 prune_unused_types_mark (c, 1);
12521 else
12522 prune_unused_types_walk (c);
12523 }
12524 }
12525 }
12526
12527
12528 /* Walk the tree DIE and mark types that we actually use. */
12529
12530 static void
12531 prune_unused_types_walk (dw_die_ref die)
12532 {
12533 dw_die_ref c;
12534
12535 /* Don't do anything if this node is already marked. */
12536 if (die->die_mark)
12537 return;
12538
12539 switch (die->die_tag) {
12540 case DW_TAG_const_type:
12541 case DW_TAG_packed_type:
12542 case DW_TAG_pointer_type:
12543 case DW_TAG_reference_type:
12544 case DW_TAG_volatile_type:
12545 case DW_TAG_typedef:
12546 case DW_TAG_array_type:
12547 case DW_TAG_structure_type:
12548 case DW_TAG_union_type:
12549 case DW_TAG_class_type:
12550 case DW_TAG_friend:
12551 case DW_TAG_variant_part:
12552 case DW_TAG_enumeration_type:
12553 case DW_TAG_subroutine_type:
12554 case DW_TAG_string_type:
12555 case DW_TAG_set_type:
12556 case DW_TAG_subrange_type:
12557 case DW_TAG_ptr_to_member_type:
12558 case DW_TAG_file_type:
12559 /* It's a type node --- don't mark it. */
12560 return;
12561
12562 default:
12563 /* Mark everything else. */
12564 break;
12565 }
12566
12567 die->die_mark = 1;
12568
12569 /* Now, mark any dies referenced from here. */
12570 prune_unused_types_walk_attribs (die);
12571
12572 /* Mark children. */
12573 for (c = die->die_child; c; c = c->die_sib)
12574 prune_unused_types_walk (c);
12575 }
12576
12577
12578 /* Remove from the tree DIE any dies that aren't marked. */
12579
12580 static void
12581 prune_unused_types_prune (dw_die_ref die)
12582 {
12583 dw_die_ref c, p, n;
12584 if (!die->die_mark)
12585 abort();
12586
12587 p = NULL;
12588 for (c = die->die_child; c; c = n)
12589 {
12590 n = c->die_sib;
12591 if (c->die_mark)
12592 {
12593 prune_unused_types_prune (c);
12594 p = c;
12595 }
12596 else
12597 {
12598 if (p)
12599 p->die_sib = n;
12600 else
12601 die->die_child = n;
12602 free_die (c);
12603 }
12604 }
12605 }
12606
12607
12608 /* Remove dies representing declarations that we never use. */
12609
12610 static void
12611 prune_unused_types (void)
12612 {
12613 unsigned int i;
12614 limbo_die_node *node;
12615
12616 /* Clear all the marks. */
12617 prune_unmark_dies (comp_unit_die);
12618 for (node = limbo_die_list; node; node = node->next)
12619 prune_unmark_dies (node->die);
12620
12621 /* Set the mark on nodes that are actually used. */
12622 prune_unused_types_walk (comp_unit_die);
12623 for (node = limbo_die_list; node; node = node->next)
12624 prune_unused_types_walk (node->die);
12625
12626 /* Also set the mark on nodes referenced from the
12627 pubname_table or arange_table. */
12628 for (i = 0; i < pubname_table_in_use; i++)
12629 prune_unused_types_mark (pubname_table[i].die, 1);
12630 for (i = 0; i < arange_table_in_use; i++)
12631 prune_unused_types_mark (arange_table[i], 1);
12632
12633 /* Get rid of nodes that aren't marked. */
12634 prune_unused_types_prune (comp_unit_die);
12635 for (node = limbo_die_list; node; node = node->next)
12636 prune_unused_types_prune (node->die);
12637
12638 /* Leave the marks clear. */
12639 prune_unmark_dies (comp_unit_die);
12640 for (node = limbo_die_list; node; node = node->next)
12641 prune_unmark_dies (node->die);
12642 }
12643
12644 /* Output stuff that dwarf requires at the end of every file,
12645 and generate the DWARF-2 debugging info. */
12646
12647 static void
12648 dwarf2out_finish (const char *filename)
12649 {
12650 limbo_die_node *node, *next_node;
12651 dw_die_ref die = 0;
12652
12653 /* Add the name for the main input file now. We delayed this from
12654 dwarf2out_init to avoid complications with PCH. */
12655 add_name_attribute (comp_unit_die, filename);
12656 if (filename[0] != DIR_SEPARATOR)
12657 add_comp_dir_attribute (comp_unit_die);
12658 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
12659 {
12660 size_t i;
12661 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
12662 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
12663 /* Don't add cwd for <built-in>. */
12664 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
12665 {
12666 add_comp_dir_attribute (comp_unit_die);
12667 break;
12668 }
12669 }
12670
12671 /* Traverse the limbo die list, and add parent/child links. The only
12672 dies without parents that should be here are concrete instances of
12673 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
12674 For concrete instances, we can get the parent die from the abstract
12675 instance. */
12676 for (node = limbo_die_list; node; node = next_node)
12677 {
12678 next_node = node->next;
12679 die = node->die;
12680
12681 if (die->die_parent == NULL)
12682 {
12683 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
12684 tree context;
12685
12686 if (origin)
12687 add_child_die (origin->die_parent, die);
12688 else if (die == comp_unit_die)
12689 ;
12690 /* If this was an expression for a bound involved in a function
12691 return type, it may be a SAVE_EXPR for which we weren't able
12692 to find a DIE previously. So try now. */
12693 else if (node->created_for
12694 && TREE_CODE (node->created_for) == SAVE_EXPR
12695 && 0 != (origin = (lookup_decl_die
12696 (SAVE_EXPR_CONTEXT
12697 (node->created_for)))))
12698 add_child_die (origin, die);
12699 else if (errorcount > 0 || sorrycount > 0)
12700 /* It's OK to be confused by errors in the input. */
12701 add_child_die (comp_unit_die, die);
12702 else if (node->created_for
12703 && ((DECL_P (node->created_for)
12704 && (context = DECL_CONTEXT (node->created_for)))
12705 || (TYPE_P (node->created_for)
12706 && (context = TYPE_CONTEXT (node->created_for))))
12707 && TREE_CODE (context) == FUNCTION_DECL)
12708 {
12709 /* In certain situations, the lexical block containing a
12710 nested function can be optimized away, which results
12711 in the nested function die being orphaned. Likewise
12712 with the return type of that nested function. Force
12713 this to be a child of the containing function. */
12714 origin = lookup_decl_die (context);
12715 if (! origin)
12716 abort ();
12717 add_child_die (origin, die);
12718 }
12719 else
12720 abort ();
12721 }
12722 }
12723
12724 limbo_die_list = NULL;
12725
12726 /* Walk through the list of incomplete types again, trying once more to
12727 emit full debugging info for them. */
12728 retry_incomplete_types ();
12729
12730 /* We need to reverse all the dies before break_out_includes, or
12731 we'll see the end of an include file before the beginning. */
12732 reverse_all_dies (comp_unit_die);
12733
12734 if (flag_eliminate_unused_debug_types)
12735 prune_unused_types ();
12736
12737 /* Generate separate CUs for each of the include files we've seen.
12738 They will go into limbo_die_list. */
12739 if (flag_eliminate_dwarf2_dups)
12740 break_out_includes (comp_unit_die);
12741
12742 /* Traverse the DIE's and add add sibling attributes to those DIE's
12743 that have children. */
12744 add_sibling_attributes (comp_unit_die);
12745 for (node = limbo_die_list; node; node = node->next)
12746 add_sibling_attributes (node->die);
12747
12748 /* Output a terminator label for the .text section. */
12749 text_section ();
12750 (*targetm.asm_out.internal_label) (asm_out_file, TEXT_END_LABEL, 0);
12751
12752 /* Output the source line correspondence table. We must do this
12753 even if there is no line information. Otherwise, on an empty
12754 translation unit, we will generate a present, but empty,
12755 .debug_info section. IRIX 6.5 `nm' will then complain when
12756 examining the file. */
12757 if (! DWARF2_ASM_LINE_DEBUG_INFO)
12758 {
12759 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
12760 output_line_info ();
12761 }
12762
12763 /* Output location list section if necessary. */
12764 if (have_location_lists)
12765 {
12766 /* Output the location lists info. */
12767 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
12768 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
12769 DEBUG_LOC_SECTION_LABEL, 0);
12770 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
12771 output_location_lists (die);
12772 have_location_lists = 0;
12773 }
12774
12775 /* We can only use the low/high_pc attributes if all of the code was
12776 in .text. */
12777 if (separate_line_info_table_in_use == 0)
12778 {
12779 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
12780 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
12781 }
12782
12783 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
12784 "base address". Use zero so that these addresses become absolute. */
12785 else if (have_location_lists || ranges_table_in_use)
12786 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
12787
12788 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12789 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
12790 debug_line_section_label);
12791
12792 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12793 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
12794
12795 /* Output all of the compilation units. We put the main one last so that
12796 the offsets are available to output_pubnames. */
12797 for (node = limbo_die_list; node; node = node->next)
12798 output_comp_unit (node->die, 0);
12799
12800 output_comp_unit (comp_unit_die, 0);
12801
12802 /* Output the abbreviation table. */
12803 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
12804 output_abbrev_section ();
12805
12806 /* Output public names table if necessary. */
12807 if (pubname_table_in_use)
12808 {
12809 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
12810 output_pubnames ();
12811 }
12812
12813 /* Output the address range information. We only put functions in the arange
12814 table, so don't write it out if we don't have any. */
12815 if (fde_table_in_use)
12816 {
12817 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
12818 output_aranges ();
12819 }
12820
12821 /* Output ranges section if necessary. */
12822 if (ranges_table_in_use)
12823 {
12824 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
12825 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
12826 output_ranges ();
12827 }
12828
12829 /* Have to end the primary source file. */
12830 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
12831 {
12832 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
12833 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
12834 dw2_asm_output_data (1, 0, "End compilation unit");
12835 }
12836
12837 /* If we emitted any DW_FORM_strp form attribute, output the string
12838 table too. */
12839 if (debug_str_hash)
12840 htab_traverse (debug_str_hash, output_indirect_string, NULL);
12841 }
12842 #else
12843
12844 /* This should never be used, but its address is needed for comparisons. */
12845 const struct gcc_debug_hooks dwarf2_debug_hooks;
12846
12847 #endif /* DWARF2_DEBUGGING_INFO */
12848
12849 #include "gt-dwarf2out.h"