]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/emit-rtl.c
Make more use of int_mode_for_size
[thirdparty/gcc.git] / gcc / emit-rtl.c
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 /* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "memmodel.h"
38 #include "backend.h"
39 #include "target.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "df.h"
43 #include "tm_p.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
46 #include "regs.h"
47 #include "emit-rtl.h"
48 #include "recog.h"
49 #include "diagnostic-core.h"
50 #include "alias.h"
51 #include "fold-const.h"
52 #include "varasm.h"
53 #include "cfgrtl.h"
54 #include "tree-eh.h"
55 #include "explow.h"
56 #include "expr.h"
57 #include "params.h"
58 #include "builtins.h"
59 #include "rtl-iter.h"
60 #include "stor-layout.h"
61 #include "opts.h"
62 #include "predict.h"
63
64 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif
68
69 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
71 /* Commonly used modes. */
72
73 scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74 scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75 scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
76
77 /* Datastructures maintained for currently processed function in RTL form. */
78
79 struct rtl_data x_rtl;
80
81 /* Indexed by pseudo register number, gives the rtx for that pseudo.
82 Allocated in parallel with regno_pointer_align.
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86 rtx * regno_reg_rtx;
87
88 /* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
91 static GTY(()) int label_num = 1;
92
93 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
97
98 rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
99
100 rtx const_true_rtx;
101
102 REAL_VALUE_TYPE dconst0;
103 REAL_VALUE_TYPE dconst1;
104 REAL_VALUE_TYPE dconst2;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconsthalf;
107
108 /* Record fixed-point constant 0 and 1. */
109 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
112 /* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
117 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
118
119 /* Standard pieces of rtx, to be substituted directly into things. */
120 rtx pc_rtx;
121 rtx ret_rtx;
122 rtx simple_return_rtx;
123 rtx cc0_rtx;
124
125 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128 rtx_insn *invalid_insn_rtx;
129
130 /* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
133 struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
134 {
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139 };
140
141 static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
143 struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
144 {
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147 };
148
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
150
151 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 {
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156 };
157
158 static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
159
160 /* A hash table storing all CONST_DOUBLEs. */
161 struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
162 {
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165 };
166
167 static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
168
169 /* A hash table storing all CONST_FIXEDs. */
170 struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
171 {
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174 };
175
176 static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
177
178 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
179 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
180 #define first_label_num (crtl->emit.x_first_label_num)
181
182 static void set_used_decls (tree);
183 static void mark_label_nuses (rtx);
184 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx);
186 #endif
187 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig);
192
193 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability;
195 \f
196 /* Returns a hash code for X (which is a really a CONST_INT). */
197
198 hashval_t
199 const_int_hasher::hash (rtx x)
200 {
201 return (hashval_t) INTVAL (x);
202 }
203
204 /* Returns nonzero if the value represented by X (which is really a
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
207
208 bool
209 const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
210 {
211 return (INTVAL (x) == y);
212 }
213
214 #if TARGET_SUPPORTS_WIDE_INT
215 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
216
217 hashval_t
218 const_wide_int_hasher::hash (rtx x)
219 {
220 int i;
221 unsigned HOST_WIDE_INT hash = 0;
222 const_rtx xr = x;
223
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
226
227 return (hashval_t) hash;
228 }
229
230 /* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
233
234 bool
235 const_wide_int_hasher::equal (rtx x, rtx y)
236 {
237 int i;
238 const_rtx xr = x;
239 const_rtx yr = y;
240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
241 return false;
242
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
245 return false;
246
247 return true;
248 }
249 #endif
250
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t
253 const_double_hasher::hash (rtx x)
254 {
255 const_rtx const value = x;
256 hashval_t h;
257
258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
261 {
262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 }
266 return h;
267 }
268
269 /* Returns nonzero if the value represented by X (really a ...)
270 is the same as that represented by Y (really a ...) */
271 bool
272 const_double_hasher::equal (rtx x, rtx y)
273 {
274 const_rtx const a = x, b = y;
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
284 }
285
286 /* Returns a hash code for X (which is really a CONST_FIXED). */
287
288 hashval_t
289 const_fixed_hasher::hash (rtx x)
290 {
291 const_rtx const value = x;
292 hashval_t h;
293
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
298 }
299
300 /* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
302
303 bool
304 const_fixed_hasher::equal (rtx x, rtx y)
305 {
306 const_rtx const a = x, b = y;
307
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
311 }
312
313 /* Return true if the given memory attributes are equal. */
314
315 bool
316 mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
317 {
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
328 && p->addrspace == q->addrspace
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
332 }
333
334 /* Set MEM's memory attributes so that they are the same as ATTRS. */
335
336 static void
337 set_mem_attrs (rtx mem, mem_attrs *attrs)
338 {
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
341 {
342 MEM_ATTRS (mem) = 0;
343 return;
344 }
345
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
348 {
349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
351 }
352 }
353
354 /* Returns a hash code for X (which is a really a reg_attrs *). */
355
356 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x)
358 {
359 const reg_attrs *const p = x;
360
361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
362 }
363
364 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
366
367 bool
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
369 {
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
372
373 return (p->decl == q->decl && p->offset == q->offset);
374 }
375 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
378
379 static reg_attrs *
380 get_reg_attrs (tree decl, int offset)
381 {
382 reg_attrs attrs;
383
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
387
388 attrs.decl = decl;
389 attrs.offset = offset;
390
391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
392 if (*slot == 0)
393 {
394 *slot = ggc_alloc<reg_attrs> ();
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
396 }
397
398 return *slot;
399 }
400
401
402 #if !HAVE_blockage
403 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
405
406 rtx
407 gen_blockage (void)
408 {
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
412 }
413 #endif
414
415
416 /* Set the mode and register number of X to MODE and REGNO. */
417
418 void
419 set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
420 {
421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
422 ? hard_regno_nregs[regno][mode]
423 : 1);
424 PUT_MODE_RAW (x, mode);
425 set_regno_raw (x, regno, nregs);
426 }
427
428 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
431
432 rtx
433 gen_raw_REG (machine_mode mode, unsigned int regno)
434 {
435 rtx x = rtx_alloc (REG MEM_STAT_INFO);
436 set_mode_and_regno (x, mode, regno);
437 REG_ATTRS (x) = NULL;
438 ORIGINAL_REGNO (x) = regno;
439 return x;
440 }
441
442 /* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
445
446 rtx_expr_list *
447 gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
448 {
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
451 }
452
453 rtx_insn_list *
454 gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
455 {
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
458 }
459
460 rtx_insn *
461 gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
464 {
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
469 }
470
471 rtx
472 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
473 {
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
476
477 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480 #endif
481
482 /* Look up the CONST_INT in the hash table. */
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
485 if (*slot == 0)
486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
487
488 return *slot;
489 }
490
491 rtx
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
493 {
494 return GEN_INT (trunc_int_for_mode (c, mode));
495 }
496
497 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
500
501 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504 static rtx
505 lookup_const_double (rtx real)
506 {
507 rtx *slot = const_double_htab->find_slot (real, INSERT);
508 if (*slot == 0)
509 *slot = real;
510
511 return *slot;
512 }
513
514 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
516 rtx
517 const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
518 {
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
521
522 real->u.rv = value;
523
524 return lookup_const_double (real);
525 }
526
527 /* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
530
531 static rtx
532 lookup_const_fixed (rtx fixed)
533 {
534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
535 if (*slot == 0)
536 *slot = fixed;
537
538 return *slot;
539 }
540
541 /* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
543
544 rtx
545 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
546 {
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
549
550 fixed->u.fv = value;
551
552 return lookup_const_fixed (fixed);
553 }
554
555 #if TARGET_SUPPORTS_WIDE_INT == 0
556 /* Constructs double_int from rtx CST. */
557
558 double_int
559 rtx_to_double_int (const_rtx cst)
560 {
561 double_int r;
562
563 if (CONST_INT_P (cst))
564 r = double_int::from_shwi (INTVAL (cst));
565 else if (CONST_DOUBLE_AS_INT_P (cst))
566 {
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
569 }
570 else
571 gcc_unreachable ();
572
573 return r;
574 }
575 #endif
576
577 #if TARGET_SUPPORTS_WIDE_INT
578 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
581
582 static rtx
583 lookup_const_wide_int (rtx wint)
584 {
585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
586 if (*slot == 0)
587 *slot = wint;
588
589 return *slot;
590 }
591 #endif
592
593 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
597
598 rtx
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
600 {
601 unsigned int len = v.get_len ();
602 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612 #if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634 #else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636 #endif
637 }
638
639 #if TARGET_SUPPORTS_WIDE_INT == 0
640 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
646 const_double_from_real_value. */
647
648 rtx
649 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
650 {
651 rtx value;
652 unsigned int i;
653
654 /* There are the following cases (note that there are no modes with
655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
663 scalar_mode smode;
664 if (is_a <scalar_mode> (mode, &smode)
665 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
666 return gen_int_mode (i0, mode);
667
668 /* If this integer fits in one word, return a CONST_INT. */
669 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
670 return GEN_INT (i0);
671
672 /* We use VOIDmode for integers. */
673 value = rtx_alloc (CONST_DOUBLE);
674 PUT_MODE (value, VOIDmode);
675
676 CONST_DOUBLE_LOW (value) = i0;
677 CONST_DOUBLE_HIGH (value) = i1;
678
679 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
680 XWINT (value, i) = 0;
681
682 return lookup_const_double (value);
683 }
684 #endif
685
686 rtx
687 gen_rtx_REG (machine_mode mode, unsigned int regno)
688 {
689 /* In case the MD file explicitly references the frame pointer, have
690 all such references point to the same frame pointer. This is
691 used during frame pointer elimination to distinguish the explicit
692 references to these registers from pseudos that happened to be
693 assigned to them.
694
695 If we have eliminated the frame pointer or arg pointer, we will
696 be using it as a normal register, for example as a spill
697 register. In such cases, we might be accessing it in a mode that
698 is not Pmode and therefore cannot use the pre-allocated rtx.
699
700 Also don't do this when we are making new REGs in reload, since
701 we don't want to get confused with the real pointers. */
702
703 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
704 {
705 if (regno == FRAME_POINTER_REGNUM
706 && (!reload_completed || frame_pointer_needed))
707 return frame_pointer_rtx;
708
709 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
710 && regno == HARD_FRAME_POINTER_REGNUM
711 && (!reload_completed || frame_pointer_needed))
712 return hard_frame_pointer_rtx;
713 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
714 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
715 && regno == ARG_POINTER_REGNUM)
716 return arg_pointer_rtx;
717 #endif
718 #ifdef RETURN_ADDRESS_POINTER_REGNUM
719 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
720 return return_address_pointer_rtx;
721 #endif
722 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
723 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
724 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
725 return pic_offset_table_rtx;
726 if (regno == STACK_POINTER_REGNUM)
727 return stack_pointer_rtx;
728 }
729
730 #if 0
731 /* If the per-function register table has been set up, try to re-use
732 an existing entry in that table to avoid useless generation of RTL.
733
734 This code is disabled for now until we can fix the various backends
735 which depend on having non-shared hard registers in some cases. Long
736 term we want to re-enable this code as it can significantly cut down
737 on the amount of useless RTL that gets generated.
738
739 We'll also need to fix some code that runs after reload that wants to
740 set ORIGINAL_REGNO. */
741
742 if (cfun
743 && cfun->emit
744 && regno_reg_rtx
745 && regno < FIRST_PSEUDO_REGISTER
746 && reg_raw_mode[regno] == mode)
747 return regno_reg_rtx[regno];
748 #endif
749
750 return gen_raw_REG (mode, regno);
751 }
752
753 rtx
754 gen_rtx_MEM (machine_mode mode, rtx addr)
755 {
756 rtx rt = gen_rtx_raw_MEM (mode, addr);
757
758 /* This field is not cleared by the mere allocation of the rtx, so
759 we clear it here. */
760 MEM_ATTRS (rt) = 0;
761
762 return rt;
763 }
764
765 /* Generate a memory referring to non-trapping constant memory. */
766
767 rtx
768 gen_const_mem (machine_mode mode, rtx addr)
769 {
770 rtx mem = gen_rtx_MEM (mode, addr);
771 MEM_READONLY_P (mem) = 1;
772 MEM_NOTRAP_P (mem) = 1;
773 return mem;
774 }
775
776 /* Generate a MEM referring to fixed portions of the frame, e.g., register
777 save areas. */
778
779 rtx
780 gen_frame_mem (machine_mode mode, rtx addr)
781 {
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_NOTRAP_P (mem) = 1;
784 set_mem_alias_set (mem, get_frame_alias_set ());
785 return mem;
786 }
787
788 /* Generate a MEM referring to a temporary use of the stack, not part
789 of the fixed stack frame. For example, something which is pushed
790 by a target splitter. */
791 rtx
792 gen_tmp_stack_mem (machine_mode mode, rtx addr)
793 {
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
796 if (!cfun->calls_alloca)
797 set_mem_alias_set (mem, get_frame_alias_set ());
798 return mem;
799 }
800
801 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */
803
804 bool
805 validate_subreg (machine_mode omode, machine_mode imode,
806 const_rtx reg, unsigned int offset)
807 {
808 unsigned int isize = GET_MODE_SIZE (imode);
809 unsigned int osize = GET_MODE_SIZE (omode);
810
811 /* All subregs must be aligned. */
812 if (offset % osize != 0)
813 return false;
814
815 /* The subreg offset cannot be outside the inner object. */
816 if (offset >= isize)
817 return false;
818
819 /* ??? This should not be here. Temporarily continue to allow word_mode
820 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
821 Generally, backends are doing something sketchy but it'll take time to
822 fix them all. */
823 if (omode == word_mode)
824 ;
825 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
826 is the culprit here, and not the backends. */
827 else if (osize >= UNITS_PER_WORD && isize >= osize)
828 ;
829 /* Allow component subregs of complex and vector. Though given the below
830 extraction rules, it's not always clear what that means. */
831 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
832 && GET_MODE_INNER (imode) == omode)
833 ;
834 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
835 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
836 represent this. It's questionable if this ought to be represented at
837 all -- why can't this all be hidden in post-reload splitters that make
838 arbitrarily mode changes to the registers themselves. */
839 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
840 ;
841 /* Subregs involving floating point modes are not allowed to
842 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
843 (subreg:SI (reg:DF) 0) isn't. */
844 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
845 {
846 if (! (isize == osize
847 /* LRA can use subreg to store a floating point value in
848 an integer mode. Although the floating point and the
849 integer modes need the same number of hard registers,
850 the size of floating point mode can be less than the
851 integer mode. LRA also uses subregs for a register
852 should be used in different mode in on insn. */
853 || lra_in_progress))
854 return false;
855 }
856
857 /* Paradoxical subregs must have offset zero. */
858 if (osize > isize)
859 return offset == 0;
860
861 /* This is a normal subreg. Verify that the offset is representable. */
862
863 /* For hard registers, we already have most of these rules collected in
864 subreg_offset_representable_p. */
865 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
866 {
867 unsigned int regno = REGNO (reg);
868
869 #ifdef CANNOT_CHANGE_MODE_CLASS
870 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
871 && GET_MODE_INNER (imode) == omode)
872 ;
873 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
874 return false;
875 #endif
876
877 return subreg_offset_representable_p (regno, imode, offset, omode);
878 }
879
880 /* For pseudo registers, we want most of the same checks. Namely:
881 If the register no larger than a word, the subreg must be lowpart.
882 If the register is larger than a word, the subreg must be the lowpart
883 of a subword. A subreg does *not* perform arbitrary bit extraction.
884 Given that we've already checked mode/offset alignment, we only have
885 to check subword subregs here. */
886 if (osize < UNITS_PER_WORD
887 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
888 {
889 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
890 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
891 if (offset % UNITS_PER_WORD != low_off)
892 return false;
893 }
894 return true;
895 }
896
897 rtx
898 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
899 {
900 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
901 return gen_rtx_raw_SUBREG (mode, reg, offset);
902 }
903
904 /* Generate a SUBREG representing the least-significant part of REG if MODE
905 is smaller than mode of REG, otherwise paradoxical SUBREG. */
906
907 rtx
908 gen_lowpart_SUBREG (machine_mode mode, rtx reg)
909 {
910 machine_mode inmode;
911
912 inmode = GET_MODE (reg);
913 if (inmode == VOIDmode)
914 inmode = mode;
915 return gen_rtx_SUBREG (mode, reg,
916 subreg_lowpart_offset (mode, inmode));
917 }
918
919 rtx
920 gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
921 enum var_init_status status)
922 {
923 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
924 PAT_VAR_LOCATION_STATUS (x) = status;
925 return x;
926 }
927 \f
928
929 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
930
931 rtvec
932 gen_rtvec (int n, ...)
933 {
934 int i;
935 rtvec rt_val;
936 va_list p;
937
938 va_start (p, n);
939
940 /* Don't allocate an empty rtvec... */
941 if (n == 0)
942 {
943 va_end (p);
944 return NULL_RTVEC;
945 }
946
947 rt_val = rtvec_alloc (n);
948
949 for (i = 0; i < n; i++)
950 rt_val->elem[i] = va_arg (p, rtx);
951
952 va_end (p);
953 return rt_val;
954 }
955
956 rtvec
957 gen_rtvec_v (int n, rtx *argp)
958 {
959 int i;
960 rtvec rt_val;
961
962 /* Don't allocate an empty rtvec... */
963 if (n == 0)
964 return NULL_RTVEC;
965
966 rt_val = rtvec_alloc (n);
967
968 for (i = 0; i < n; i++)
969 rt_val->elem[i] = *argp++;
970
971 return rt_val;
972 }
973
974 rtvec
975 gen_rtvec_v (int n, rtx_insn **argp)
976 {
977 int i;
978 rtvec rt_val;
979
980 /* Don't allocate an empty rtvec... */
981 if (n == 0)
982 return NULL_RTVEC;
983
984 rt_val = rtvec_alloc (n);
985
986 for (i = 0; i < n; i++)
987 rt_val->elem[i] = *argp++;
988
989 return rt_val;
990 }
991
992 \f
993 /* Return the number of bytes between the start of an OUTER_MODE
994 in-memory value and the start of an INNER_MODE in-memory value,
995 given that the former is a lowpart of the latter. It may be a
996 paradoxical lowpart, in which case the offset will be negative
997 on big-endian targets. */
998
999 int
1000 byte_lowpart_offset (machine_mode outer_mode,
1001 machine_mode inner_mode)
1002 {
1003 if (paradoxical_subreg_p (outer_mode, inner_mode))
1004 return -subreg_lowpart_offset (inner_mode, outer_mode);
1005 else
1006 return subreg_lowpart_offset (outer_mode, inner_mode);
1007 }
1008
1009 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1010 from address X. For paradoxical big-endian subregs this is a
1011 negative value, otherwise it's the same as OFFSET. */
1012
1013 int
1014 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1015 unsigned int offset)
1016 {
1017 if (paradoxical_subreg_p (outer_mode, inner_mode))
1018 {
1019 gcc_assert (offset == 0);
1020 return -subreg_lowpart_offset (inner_mode, outer_mode);
1021 }
1022 return offset;
1023 }
1024
1025 /* As above, but return the offset that existing subreg X would have
1026 if SUBREG_REG (X) were stored in memory. The only significant thing
1027 about the current SUBREG_REG is its mode. */
1028
1029 int
1030 subreg_memory_offset (const_rtx x)
1031 {
1032 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1033 SUBREG_BYTE (x));
1034 }
1035 \f
1036 /* Generate a REG rtx for a new pseudo register of mode MODE.
1037 This pseudo is assigned the next sequential register number. */
1038
1039 rtx
1040 gen_reg_rtx (machine_mode mode)
1041 {
1042 rtx val;
1043 unsigned int align = GET_MODE_ALIGNMENT (mode);
1044
1045 gcc_assert (can_create_pseudo_p ());
1046
1047 /* If a virtual register with bigger mode alignment is generated,
1048 increase stack alignment estimation because it might be spilled
1049 to stack later. */
1050 if (SUPPORTS_STACK_ALIGNMENT
1051 && crtl->stack_alignment_estimated < align
1052 && !crtl->stack_realign_processed)
1053 {
1054 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1055 if (crtl->stack_alignment_estimated < min_align)
1056 crtl->stack_alignment_estimated = min_align;
1057 }
1058
1059 if (generating_concat_p
1060 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1061 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1062 {
1063 /* For complex modes, don't make a single pseudo.
1064 Instead, make a CONCAT of two pseudos.
1065 This allows noncontiguous allocation of the real and imaginary parts,
1066 which makes much better code. Besides, allocating DCmode
1067 pseudos overstrains reload on some machines like the 386. */
1068 rtx realpart, imagpart;
1069 machine_mode partmode = GET_MODE_INNER (mode);
1070
1071 realpart = gen_reg_rtx (partmode);
1072 imagpart = gen_reg_rtx (partmode);
1073 return gen_rtx_CONCAT (mode, realpart, imagpart);
1074 }
1075
1076 /* Do not call gen_reg_rtx with uninitialized crtl. */
1077 gcc_assert (crtl->emit.regno_pointer_align_length);
1078
1079 crtl->emit.ensure_regno_capacity ();
1080 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1081
1082 val = gen_raw_REG (mode, reg_rtx_no);
1083 regno_reg_rtx[reg_rtx_no++] = val;
1084 return val;
1085 }
1086
1087 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1088 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1089
1090 void
1091 emit_status::ensure_regno_capacity ()
1092 {
1093 int old_size = regno_pointer_align_length;
1094
1095 if (reg_rtx_no < old_size)
1096 return;
1097
1098 int new_size = old_size * 2;
1099 while (reg_rtx_no >= new_size)
1100 new_size *= 2;
1101
1102 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1103 memset (tmp + old_size, 0, new_size - old_size);
1104 regno_pointer_align = (unsigned char *) tmp;
1105
1106 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1107 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1108 regno_reg_rtx = new1;
1109
1110 crtl->emit.regno_pointer_align_length = new_size;
1111 }
1112
1113 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1114
1115 bool
1116 reg_is_parm_p (rtx reg)
1117 {
1118 tree decl;
1119
1120 gcc_assert (REG_P (reg));
1121 decl = REG_EXPR (reg);
1122 return (decl && TREE_CODE (decl) == PARM_DECL);
1123 }
1124
1125 /* Update NEW with the same attributes as REG, but with OFFSET added
1126 to the REG_OFFSET. */
1127
1128 static void
1129 update_reg_offset (rtx new_rtx, rtx reg, int offset)
1130 {
1131 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1132 REG_OFFSET (reg) + offset);
1133 }
1134
1135 /* Generate a register with same attributes as REG, but with OFFSET
1136 added to the REG_OFFSET. */
1137
1138 rtx
1139 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1140 int offset)
1141 {
1142 rtx new_rtx = gen_rtx_REG (mode, regno);
1143
1144 update_reg_offset (new_rtx, reg, offset);
1145 return new_rtx;
1146 }
1147
1148 /* Generate a new pseudo-register with the same attributes as REG, but
1149 with OFFSET added to the REG_OFFSET. */
1150
1151 rtx
1152 gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1153 {
1154 rtx new_rtx = gen_reg_rtx (mode);
1155
1156 update_reg_offset (new_rtx, reg, offset);
1157 return new_rtx;
1158 }
1159
1160 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1161 new register is a (possibly paradoxical) lowpart of the old one. */
1162
1163 void
1164 adjust_reg_mode (rtx reg, machine_mode mode)
1165 {
1166 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1167 PUT_MODE (reg, mode);
1168 }
1169
1170 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1171 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1172
1173 void
1174 set_reg_attrs_from_value (rtx reg, rtx x)
1175 {
1176 int offset;
1177 bool can_be_reg_pointer = true;
1178
1179 /* Don't call mark_reg_pointer for incompatible pointer sign
1180 extension. */
1181 while (GET_CODE (x) == SIGN_EXTEND
1182 || GET_CODE (x) == ZERO_EXTEND
1183 || GET_CODE (x) == TRUNCATE
1184 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1185 {
1186 #if defined(POINTERS_EXTEND_UNSIGNED)
1187 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1188 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1189 || (paradoxical_subreg_p (x)
1190 && ! (SUBREG_PROMOTED_VAR_P (x)
1191 && SUBREG_CHECK_PROMOTED_SIGN (x,
1192 POINTERS_EXTEND_UNSIGNED))))
1193 && !targetm.have_ptr_extend ())
1194 can_be_reg_pointer = false;
1195 #endif
1196 x = XEXP (x, 0);
1197 }
1198
1199 /* Hard registers can be reused for multiple purposes within the same
1200 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1201 on them is wrong. */
1202 if (HARD_REGISTER_P (reg))
1203 return;
1204
1205 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1206 if (MEM_P (x))
1207 {
1208 if (MEM_OFFSET_KNOWN_P (x))
1209 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1210 MEM_OFFSET (x) + offset);
1211 if (can_be_reg_pointer && MEM_POINTER (x))
1212 mark_reg_pointer (reg, 0);
1213 }
1214 else if (REG_P (x))
1215 {
1216 if (REG_ATTRS (x))
1217 update_reg_offset (reg, x, offset);
1218 if (can_be_reg_pointer && REG_POINTER (x))
1219 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1220 }
1221 }
1222
1223 /* Generate a REG rtx for a new pseudo register, copying the mode
1224 and attributes from X. */
1225
1226 rtx
1227 gen_reg_rtx_and_attrs (rtx x)
1228 {
1229 rtx reg = gen_reg_rtx (GET_MODE (x));
1230 set_reg_attrs_from_value (reg, x);
1231 return reg;
1232 }
1233
1234 /* Set the register attributes for registers contained in PARM_RTX.
1235 Use needed values from memory attributes of MEM. */
1236
1237 void
1238 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1239 {
1240 if (REG_P (parm_rtx))
1241 set_reg_attrs_from_value (parm_rtx, mem);
1242 else if (GET_CODE (parm_rtx) == PARALLEL)
1243 {
1244 /* Check for a NULL entry in the first slot, used to indicate that the
1245 parameter goes both on the stack and in registers. */
1246 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1247 for (; i < XVECLEN (parm_rtx, 0); i++)
1248 {
1249 rtx x = XVECEXP (parm_rtx, 0, i);
1250 if (REG_P (XEXP (x, 0)))
1251 REG_ATTRS (XEXP (x, 0))
1252 = get_reg_attrs (MEM_EXPR (mem),
1253 INTVAL (XEXP (x, 1)));
1254 }
1255 }
1256 }
1257
1258 /* Set the REG_ATTRS for registers in value X, given that X represents
1259 decl T. */
1260
1261 void
1262 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1263 {
1264 if (!t)
1265 return;
1266 tree tdecl = t;
1267 if (GET_CODE (x) == SUBREG)
1268 {
1269 gcc_assert (subreg_lowpart_p (x));
1270 x = SUBREG_REG (x);
1271 }
1272 if (REG_P (x))
1273 REG_ATTRS (x)
1274 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1275 DECL_P (tdecl)
1276 ? DECL_MODE (tdecl)
1277 : TYPE_MODE (TREE_TYPE (tdecl))));
1278 if (GET_CODE (x) == CONCAT)
1279 {
1280 if (REG_P (XEXP (x, 0)))
1281 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1282 if (REG_P (XEXP (x, 1)))
1283 REG_ATTRS (XEXP (x, 1))
1284 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1285 }
1286 if (GET_CODE (x) == PARALLEL)
1287 {
1288 int i, start;
1289
1290 /* Check for a NULL entry, used to indicate that the parameter goes
1291 both on the stack and in registers. */
1292 if (XEXP (XVECEXP (x, 0, 0), 0))
1293 start = 0;
1294 else
1295 start = 1;
1296
1297 for (i = start; i < XVECLEN (x, 0); i++)
1298 {
1299 rtx y = XVECEXP (x, 0, i);
1300 if (REG_P (XEXP (y, 0)))
1301 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1302 }
1303 }
1304 }
1305
1306 /* Assign the RTX X to declaration T. */
1307
1308 void
1309 set_decl_rtl (tree t, rtx x)
1310 {
1311 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1312 if (x)
1313 set_reg_attrs_for_decl_rtl (t, x);
1314 }
1315
1316 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1317 if the ABI requires the parameter to be passed by reference. */
1318
1319 void
1320 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1321 {
1322 DECL_INCOMING_RTL (t) = x;
1323 if (x && !by_reference_p)
1324 set_reg_attrs_for_decl_rtl (t, x);
1325 }
1326
1327 /* Identify REG (which may be a CONCAT) as a user register. */
1328
1329 void
1330 mark_user_reg (rtx reg)
1331 {
1332 if (GET_CODE (reg) == CONCAT)
1333 {
1334 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1335 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1336 }
1337 else
1338 {
1339 gcc_assert (REG_P (reg));
1340 REG_USERVAR_P (reg) = 1;
1341 }
1342 }
1343
1344 /* Identify REG as a probable pointer register and show its alignment
1345 as ALIGN, if nonzero. */
1346
1347 void
1348 mark_reg_pointer (rtx reg, int align)
1349 {
1350 if (! REG_POINTER (reg))
1351 {
1352 REG_POINTER (reg) = 1;
1353
1354 if (align)
1355 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1356 }
1357 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1358 /* We can no-longer be sure just how aligned this pointer is. */
1359 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1360 }
1361
1362 /* Return 1 plus largest pseudo reg number used in the current function. */
1363
1364 int
1365 max_reg_num (void)
1366 {
1367 return reg_rtx_no;
1368 }
1369
1370 /* Return 1 + the largest label number used so far in the current function. */
1371
1372 int
1373 max_label_num (void)
1374 {
1375 return label_num;
1376 }
1377
1378 /* Return first label number used in this function (if any were used). */
1379
1380 int
1381 get_first_label_num (void)
1382 {
1383 return first_label_num;
1384 }
1385
1386 /* If the rtx for label was created during the expansion of a nested
1387 function, then first_label_num won't include this label number.
1388 Fix this now so that array indices work later. */
1389
1390 void
1391 maybe_set_first_label_num (rtx_code_label *x)
1392 {
1393 if (CODE_LABEL_NUMBER (x) < first_label_num)
1394 first_label_num = CODE_LABEL_NUMBER (x);
1395 }
1396
1397 /* For use by the RTL function loader, when mingling with normal
1398 functions.
1399 Ensure that label_num is greater than the label num of X, to avoid
1400 duplicate labels in the generated assembler. */
1401
1402 void
1403 maybe_set_max_label_num (rtx_code_label *x)
1404 {
1405 if (CODE_LABEL_NUMBER (x) >= label_num)
1406 label_num = CODE_LABEL_NUMBER (x) + 1;
1407 }
1408
1409 \f
1410 /* Return a value representing some low-order bits of X, where the number
1411 of low-order bits is given by MODE. Note that no conversion is done
1412 between floating-point and fixed-point values, rather, the bit
1413 representation is returned.
1414
1415 This function handles the cases in common between gen_lowpart, below,
1416 and two variants in cse.c and combine.c. These are the cases that can
1417 be safely handled at all points in the compilation.
1418
1419 If this is not a case we can handle, return 0. */
1420
1421 rtx
1422 gen_lowpart_common (machine_mode mode, rtx x)
1423 {
1424 int msize = GET_MODE_SIZE (mode);
1425 int xsize;
1426 machine_mode innermode;
1427
1428 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1429 so we have to make one up. Yuk. */
1430 innermode = GET_MODE (x);
1431 if (CONST_INT_P (x)
1432 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1433 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1434 else if (innermode == VOIDmode)
1435 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1436
1437 xsize = GET_MODE_SIZE (innermode);
1438
1439 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1440
1441 if (innermode == mode)
1442 return x;
1443
1444 /* MODE must occupy no more words than the mode of X. */
1445 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1446 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1447 return 0;
1448
1449 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1450 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1451 return 0;
1452
1453 scalar_int_mode int_mode, int_innermode, from_mode;
1454 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1455 && is_a <scalar_int_mode> (mode, &int_mode)
1456 && is_a <scalar_int_mode> (innermode, &int_innermode)
1457 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
1458 {
1459 /* If we are getting the low-order part of something that has been
1460 sign- or zero-extended, we can either just use the object being
1461 extended or make a narrower extension. If we want an even smaller
1462 piece than the size of the object being extended, call ourselves
1463 recursively.
1464
1465 This case is used mostly by combine and cse. */
1466
1467 if (from_mode == int_mode)
1468 return XEXP (x, 0);
1469 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1470 return gen_lowpart_common (int_mode, XEXP (x, 0));
1471 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1472 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1473 }
1474 else if (GET_CODE (x) == SUBREG || REG_P (x)
1475 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1476 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
1477 return lowpart_subreg (mode, x, innermode);
1478
1479 /* Otherwise, we can't do this. */
1480 return 0;
1481 }
1482 \f
1483 rtx
1484 gen_highpart (machine_mode mode, rtx x)
1485 {
1486 unsigned int msize = GET_MODE_SIZE (mode);
1487 rtx result;
1488
1489 /* This case loses if X is a subreg. To catch bugs early,
1490 complain if an invalid MODE is used even in other cases. */
1491 gcc_assert (msize <= UNITS_PER_WORD
1492 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1493
1494 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1495 subreg_highpart_offset (mode, GET_MODE (x)));
1496 gcc_assert (result);
1497
1498 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1499 the target if we have a MEM. gen_highpart must return a valid operand,
1500 emitting code if necessary to do so. */
1501 if (MEM_P (result))
1502 {
1503 result = validize_mem (result);
1504 gcc_assert (result);
1505 }
1506
1507 return result;
1508 }
1509
1510 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1511 be VOIDmode constant. */
1512 rtx
1513 gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1514 {
1515 if (GET_MODE (exp) != VOIDmode)
1516 {
1517 gcc_assert (GET_MODE (exp) == innermode);
1518 return gen_highpart (outermode, exp);
1519 }
1520 return simplify_gen_subreg (outermode, exp, innermode,
1521 subreg_highpart_offset (outermode, innermode));
1522 }
1523
1524 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1525 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1526
1527 unsigned int
1528 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
1529 {
1530 if (outer_bytes > inner_bytes)
1531 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1532 return 0;
1533
1534 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1535 return inner_bytes - outer_bytes;
1536 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1537 return 0;
1538 else
1539 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1540 }
1541
1542 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1543 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1544
1545 unsigned int
1546 subreg_size_highpart_offset (unsigned int outer_bytes,
1547 unsigned int inner_bytes)
1548 {
1549 gcc_assert (inner_bytes >= outer_bytes);
1550
1551 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1552 return 0;
1553 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1554 return inner_bytes - outer_bytes;
1555 else
1556 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1557 (inner_bytes - outer_bytes)
1558 * BITS_PER_UNIT);
1559 }
1560
1561 /* Return 1 iff X, assumed to be a SUBREG,
1562 refers to the least significant part of its containing reg.
1563 If X is not a SUBREG, always return 1 (it is its own low part!). */
1564
1565 int
1566 subreg_lowpart_p (const_rtx x)
1567 {
1568 if (GET_CODE (x) != SUBREG)
1569 return 1;
1570 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1571 return 0;
1572
1573 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1574 == SUBREG_BYTE (x));
1575 }
1576 \f
1577 /* Return subword OFFSET of operand OP.
1578 The word number, OFFSET, is interpreted as the word number starting
1579 at the low-order address. OFFSET 0 is the low-order word if not
1580 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1581
1582 If we cannot extract the required word, we return zero. Otherwise,
1583 an rtx corresponding to the requested word will be returned.
1584
1585 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1586 reload has completed, a valid address will always be returned. After
1587 reload, if a valid address cannot be returned, we return zero.
1588
1589 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1590 it is the responsibility of the caller.
1591
1592 MODE is the mode of OP in case it is a CONST_INT.
1593
1594 ??? This is still rather broken for some cases. The problem for the
1595 moment is that all callers of this thing provide no 'goal mode' to
1596 tell us to work with. This exists because all callers were written
1597 in a word based SUBREG world.
1598 Now use of this function can be deprecated by simplify_subreg in most
1599 cases.
1600 */
1601
1602 rtx
1603 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
1604 {
1605 if (mode == VOIDmode)
1606 mode = GET_MODE (op);
1607
1608 gcc_assert (mode != VOIDmode);
1609
1610 /* If OP is narrower than a word, fail. */
1611 if (mode != BLKmode
1612 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1613 return 0;
1614
1615 /* If we want a word outside OP, return zero. */
1616 if (mode != BLKmode
1617 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1618 return const0_rtx;
1619
1620 /* Form a new MEM at the requested address. */
1621 if (MEM_P (op))
1622 {
1623 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1624
1625 if (! validate_address)
1626 return new_rtx;
1627
1628 else if (reload_completed)
1629 {
1630 if (! strict_memory_address_addr_space_p (word_mode,
1631 XEXP (new_rtx, 0),
1632 MEM_ADDR_SPACE (op)))
1633 return 0;
1634 }
1635 else
1636 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1637 }
1638
1639 /* Rest can be handled by simplify_subreg. */
1640 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1641 }
1642
1643 /* Similar to `operand_subword', but never return 0. If we can't
1644 extract the required subword, put OP into a register and try again.
1645 The second attempt must succeed. We always validate the address in
1646 this case.
1647
1648 MODE is the mode of OP, in case it is CONST_INT. */
1649
1650 rtx
1651 operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
1652 {
1653 rtx result = operand_subword (op, offset, 1, mode);
1654
1655 if (result)
1656 return result;
1657
1658 if (mode != BLKmode && mode != VOIDmode)
1659 {
1660 /* If this is a register which can not be accessed by words, copy it
1661 to a pseudo register. */
1662 if (REG_P (op))
1663 op = copy_to_reg (op);
1664 else
1665 op = force_reg (mode, op);
1666 }
1667
1668 result = operand_subword (op, offset, 1, mode);
1669 gcc_assert (result);
1670
1671 return result;
1672 }
1673 \f
1674 /* Returns 1 if both MEM_EXPR can be considered equal
1675 and 0 otherwise. */
1676
1677 int
1678 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1679 {
1680 if (expr1 == expr2)
1681 return 1;
1682
1683 if (! expr1 || ! expr2)
1684 return 0;
1685
1686 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1687 return 0;
1688
1689 return operand_equal_p (expr1, expr2, 0);
1690 }
1691
1692 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1693 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1694 -1 if not known. */
1695
1696 int
1697 get_mem_align_offset (rtx mem, unsigned int align)
1698 {
1699 tree expr;
1700 unsigned HOST_WIDE_INT offset;
1701
1702 /* This function can't use
1703 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1704 || (MAX (MEM_ALIGN (mem),
1705 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1706 < align))
1707 return -1;
1708 else
1709 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1710 for two reasons:
1711 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1712 for <variable>. get_inner_reference doesn't handle it and
1713 even if it did, the alignment in that case needs to be determined
1714 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1715 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1716 isn't sufficiently aligned, the object it is in might be. */
1717 gcc_assert (MEM_P (mem));
1718 expr = MEM_EXPR (mem);
1719 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1720 return -1;
1721
1722 offset = MEM_OFFSET (mem);
1723 if (DECL_P (expr))
1724 {
1725 if (DECL_ALIGN (expr) < align)
1726 return -1;
1727 }
1728 else if (INDIRECT_REF_P (expr))
1729 {
1730 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1731 return -1;
1732 }
1733 else if (TREE_CODE (expr) == COMPONENT_REF)
1734 {
1735 while (1)
1736 {
1737 tree inner = TREE_OPERAND (expr, 0);
1738 tree field = TREE_OPERAND (expr, 1);
1739 tree byte_offset = component_ref_field_offset (expr);
1740 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1741
1742 if (!byte_offset
1743 || !tree_fits_uhwi_p (byte_offset)
1744 || !tree_fits_uhwi_p (bit_offset))
1745 return -1;
1746
1747 offset += tree_to_uhwi (byte_offset);
1748 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1749
1750 if (inner == NULL_TREE)
1751 {
1752 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1753 < (unsigned int) align)
1754 return -1;
1755 break;
1756 }
1757 else if (DECL_P (inner))
1758 {
1759 if (DECL_ALIGN (inner) < align)
1760 return -1;
1761 break;
1762 }
1763 else if (TREE_CODE (inner) != COMPONENT_REF)
1764 return -1;
1765 expr = inner;
1766 }
1767 }
1768 else
1769 return -1;
1770
1771 return offset & ((align / BITS_PER_UNIT) - 1);
1772 }
1773
1774 /* Given REF (a MEM) and T, either the type of X or the expression
1775 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1776 if we are making a new object of this type. BITPOS is nonzero if
1777 there is an offset outstanding on T that will be applied later. */
1778
1779 void
1780 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1781 HOST_WIDE_INT bitpos)
1782 {
1783 HOST_WIDE_INT apply_bitpos = 0;
1784 tree type;
1785 struct mem_attrs attrs, *defattrs, *refattrs;
1786 addr_space_t as;
1787
1788 /* It can happen that type_for_mode was given a mode for which there
1789 is no language-level type. In which case it returns NULL, which
1790 we can see here. */
1791 if (t == NULL_TREE)
1792 return;
1793
1794 type = TYPE_P (t) ? t : TREE_TYPE (t);
1795 if (type == error_mark_node)
1796 return;
1797
1798 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1799 wrong answer, as it assumes that DECL_RTL already has the right alias
1800 info. Callers should not set DECL_RTL until after the call to
1801 set_mem_attributes. */
1802 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1803
1804 memset (&attrs, 0, sizeof (attrs));
1805
1806 /* Get the alias set from the expression or type (perhaps using a
1807 front-end routine) and use it. */
1808 attrs.alias = get_alias_set (t);
1809
1810 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1811 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1812
1813 /* Default values from pre-existing memory attributes if present. */
1814 refattrs = MEM_ATTRS (ref);
1815 if (refattrs)
1816 {
1817 /* ??? Can this ever happen? Calling this routine on a MEM that
1818 already carries memory attributes should probably be invalid. */
1819 attrs.expr = refattrs->expr;
1820 attrs.offset_known_p = refattrs->offset_known_p;
1821 attrs.offset = refattrs->offset;
1822 attrs.size_known_p = refattrs->size_known_p;
1823 attrs.size = refattrs->size;
1824 attrs.align = refattrs->align;
1825 }
1826
1827 /* Otherwise, default values from the mode of the MEM reference. */
1828 else
1829 {
1830 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1831 gcc_assert (!defattrs->expr);
1832 gcc_assert (!defattrs->offset_known_p);
1833
1834 /* Respect mode size. */
1835 attrs.size_known_p = defattrs->size_known_p;
1836 attrs.size = defattrs->size;
1837 /* ??? Is this really necessary? We probably should always get
1838 the size from the type below. */
1839
1840 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1841 if T is an object, always compute the object alignment below. */
1842 if (TYPE_P (t))
1843 attrs.align = defattrs->align;
1844 else
1845 attrs.align = BITS_PER_UNIT;
1846 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1847 e.g. if the type carries an alignment attribute. Should we be
1848 able to simply always use TYPE_ALIGN? */
1849 }
1850
1851 /* We can set the alignment from the type if we are making an object or if
1852 this is an INDIRECT_REF. */
1853 if (objectp || TREE_CODE (t) == INDIRECT_REF)
1854 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
1855
1856 /* If the size is known, we can set that. */
1857 tree new_size = TYPE_SIZE_UNIT (type);
1858
1859 /* The address-space is that of the type. */
1860 as = TYPE_ADDR_SPACE (type);
1861
1862 /* If T is not a type, we may be able to deduce some more information about
1863 the expression. */
1864 if (! TYPE_P (t))
1865 {
1866 tree base;
1867
1868 if (TREE_THIS_VOLATILE (t))
1869 MEM_VOLATILE_P (ref) = 1;
1870
1871 /* Now remove any conversions: they don't change what the underlying
1872 object is. Likewise for SAVE_EXPR. */
1873 while (CONVERT_EXPR_P (t)
1874 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1875 || TREE_CODE (t) == SAVE_EXPR)
1876 t = TREE_OPERAND (t, 0);
1877
1878 /* Note whether this expression can trap. */
1879 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1880
1881 base = get_base_address (t);
1882 if (base)
1883 {
1884 if (DECL_P (base)
1885 && TREE_READONLY (base)
1886 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1887 && !TREE_THIS_VOLATILE (base))
1888 MEM_READONLY_P (ref) = 1;
1889
1890 /* Mark static const strings readonly as well. */
1891 if (TREE_CODE (base) == STRING_CST
1892 && TREE_READONLY (base)
1893 && TREE_STATIC (base))
1894 MEM_READONLY_P (ref) = 1;
1895
1896 /* Address-space information is on the base object. */
1897 if (TREE_CODE (base) == MEM_REF
1898 || TREE_CODE (base) == TARGET_MEM_REF)
1899 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1900 0))));
1901 else
1902 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1903 }
1904
1905 /* If this expression uses it's parent's alias set, mark it such
1906 that we won't change it. */
1907 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
1908 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1909
1910 /* If this is a decl, set the attributes of the MEM from it. */
1911 if (DECL_P (t))
1912 {
1913 attrs.expr = t;
1914 attrs.offset_known_p = true;
1915 attrs.offset = 0;
1916 apply_bitpos = bitpos;
1917 new_size = DECL_SIZE_UNIT (t);
1918 }
1919
1920 /* ??? If we end up with a constant here do record a MEM_EXPR. */
1921 else if (CONSTANT_CLASS_P (t))
1922 ;
1923
1924 /* If this is a field reference, record it. */
1925 else if (TREE_CODE (t) == COMPONENT_REF)
1926 {
1927 attrs.expr = t;
1928 attrs.offset_known_p = true;
1929 attrs.offset = 0;
1930 apply_bitpos = bitpos;
1931 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1932 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
1933 }
1934
1935 /* If this is an array reference, look for an outer field reference. */
1936 else if (TREE_CODE (t) == ARRAY_REF)
1937 {
1938 tree off_tree = size_zero_node;
1939 /* We can't modify t, because we use it at the end of the
1940 function. */
1941 tree t2 = t;
1942
1943 do
1944 {
1945 tree index = TREE_OPERAND (t2, 1);
1946 tree low_bound = array_ref_low_bound (t2);
1947 tree unit_size = array_ref_element_size (t2);
1948
1949 /* We assume all arrays have sizes that are a multiple of a byte.
1950 First subtract the lower bound, if any, in the type of the
1951 index, then convert to sizetype and multiply by the size of
1952 the array element. */
1953 if (! integer_zerop (low_bound))
1954 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1955 index, low_bound);
1956
1957 off_tree = size_binop (PLUS_EXPR,
1958 size_binop (MULT_EXPR,
1959 fold_convert (sizetype,
1960 index),
1961 unit_size),
1962 off_tree);
1963 t2 = TREE_OPERAND (t2, 0);
1964 }
1965 while (TREE_CODE (t2) == ARRAY_REF);
1966
1967 if (DECL_P (t2)
1968 || (TREE_CODE (t2) == COMPONENT_REF
1969 /* For trailing arrays t2 doesn't have a size that
1970 covers all valid accesses. */
1971 && ! array_at_struct_end_p (t)))
1972 {
1973 attrs.expr = t2;
1974 attrs.offset_known_p = false;
1975 if (tree_fits_uhwi_p (off_tree))
1976 {
1977 attrs.offset_known_p = true;
1978 attrs.offset = tree_to_uhwi (off_tree);
1979 apply_bitpos = bitpos;
1980 }
1981 }
1982 /* Else do not record a MEM_EXPR. */
1983 }
1984
1985 /* If this is an indirect reference, record it. */
1986 else if (TREE_CODE (t) == MEM_REF
1987 || TREE_CODE (t) == TARGET_MEM_REF)
1988 {
1989 attrs.expr = t;
1990 attrs.offset_known_p = true;
1991 attrs.offset = 0;
1992 apply_bitpos = bitpos;
1993 }
1994
1995 /* Compute the alignment. */
1996 unsigned int obj_align;
1997 unsigned HOST_WIDE_INT obj_bitpos;
1998 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1999 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
2000 if (obj_bitpos != 0)
2001 obj_align = least_bit_hwi (obj_bitpos);
2002 attrs.align = MAX (attrs.align, obj_align);
2003 }
2004
2005 if (tree_fits_uhwi_p (new_size))
2006 {
2007 attrs.size_known_p = true;
2008 attrs.size = tree_to_uhwi (new_size);
2009 }
2010
2011 /* If we modified OFFSET based on T, then subtract the outstanding
2012 bit position offset. Similarly, increase the size of the accessed
2013 object to contain the negative offset. */
2014 if (apply_bitpos)
2015 {
2016 gcc_assert (attrs.offset_known_p);
2017 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
2018 if (attrs.size_known_p)
2019 attrs.size += apply_bitpos / BITS_PER_UNIT;
2020 }
2021
2022 /* Now set the attributes we computed above. */
2023 attrs.addrspace = as;
2024 set_mem_attrs (ref, &attrs);
2025 }
2026
2027 void
2028 set_mem_attributes (rtx ref, tree t, int objectp)
2029 {
2030 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2031 }
2032
2033 /* Set the alias set of MEM to SET. */
2034
2035 void
2036 set_mem_alias_set (rtx mem, alias_set_type set)
2037 {
2038 struct mem_attrs attrs;
2039
2040 /* If the new and old alias sets don't conflict, something is wrong. */
2041 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2042 attrs = *get_mem_attrs (mem);
2043 attrs.alias = set;
2044 set_mem_attrs (mem, &attrs);
2045 }
2046
2047 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2048
2049 void
2050 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2051 {
2052 struct mem_attrs attrs;
2053
2054 attrs = *get_mem_attrs (mem);
2055 attrs.addrspace = addrspace;
2056 set_mem_attrs (mem, &attrs);
2057 }
2058
2059 /* Set the alignment of MEM to ALIGN bits. */
2060
2061 void
2062 set_mem_align (rtx mem, unsigned int align)
2063 {
2064 struct mem_attrs attrs;
2065
2066 attrs = *get_mem_attrs (mem);
2067 attrs.align = align;
2068 set_mem_attrs (mem, &attrs);
2069 }
2070
2071 /* Set the expr for MEM to EXPR. */
2072
2073 void
2074 set_mem_expr (rtx mem, tree expr)
2075 {
2076 struct mem_attrs attrs;
2077
2078 attrs = *get_mem_attrs (mem);
2079 attrs.expr = expr;
2080 set_mem_attrs (mem, &attrs);
2081 }
2082
2083 /* Set the offset of MEM to OFFSET. */
2084
2085 void
2086 set_mem_offset (rtx mem, HOST_WIDE_INT offset)
2087 {
2088 struct mem_attrs attrs;
2089
2090 attrs = *get_mem_attrs (mem);
2091 attrs.offset_known_p = true;
2092 attrs.offset = offset;
2093 set_mem_attrs (mem, &attrs);
2094 }
2095
2096 /* Clear the offset of MEM. */
2097
2098 void
2099 clear_mem_offset (rtx mem)
2100 {
2101 struct mem_attrs attrs;
2102
2103 attrs = *get_mem_attrs (mem);
2104 attrs.offset_known_p = false;
2105 set_mem_attrs (mem, &attrs);
2106 }
2107
2108 /* Set the size of MEM to SIZE. */
2109
2110 void
2111 set_mem_size (rtx mem, HOST_WIDE_INT size)
2112 {
2113 struct mem_attrs attrs;
2114
2115 attrs = *get_mem_attrs (mem);
2116 attrs.size_known_p = true;
2117 attrs.size = size;
2118 set_mem_attrs (mem, &attrs);
2119 }
2120
2121 /* Clear the size of MEM. */
2122
2123 void
2124 clear_mem_size (rtx mem)
2125 {
2126 struct mem_attrs attrs;
2127
2128 attrs = *get_mem_attrs (mem);
2129 attrs.size_known_p = false;
2130 set_mem_attrs (mem, &attrs);
2131 }
2132 \f
2133 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2134 and its address changed to ADDR. (VOIDmode means don't change the mode.
2135 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2136 returned memory location is required to be valid. INPLACE is true if any
2137 changes can be made directly to MEMREF or false if MEMREF must be treated
2138 as immutable.
2139
2140 The memory attributes are not changed. */
2141
2142 static rtx
2143 change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2144 bool inplace)
2145 {
2146 addr_space_t as;
2147 rtx new_rtx;
2148
2149 gcc_assert (MEM_P (memref));
2150 as = MEM_ADDR_SPACE (memref);
2151 if (mode == VOIDmode)
2152 mode = GET_MODE (memref);
2153 if (addr == 0)
2154 addr = XEXP (memref, 0);
2155 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2156 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2157 return memref;
2158
2159 /* Don't validate address for LRA. LRA can make the address valid
2160 by itself in most efficient way. */
2161 if (validate && !lra_in_progress)
2162 {
2163 if (reload_in_progress || reload_completed)
2164 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2165 else
2166 addr = memory_address_addr_space (mode, addr, as);
2167 }
2168
2169 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2170 return memref;
2171
2172 if (inplace)
2173 {
2174 XEXP (memref, 0) = addr;
2175 return memref;
2176 }
2177
2178 new_rtx = gen_rtx_MEM (mode, addr);
2179 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2180 return new_rtx;
2181 }
2182
2183 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2184 way we are changing MEMREF, so we only preserve the alias set. */
2185
2186 rtx
2187 change_address (rtx memref, machine_mode mode, rtx addr)
2188 {
2189 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2190 machine_mode mmode = GET_MODE (new_rtx);
2191 struct mem_attrs attrs, *defattrs;
2192
2193 attrs = *get_mem_attrs (memref);
2194 defattrs = mode_mem_attrs[(int) mmode];
2195 attrs.expr = NULL_TREE;
2196 attrs.offset_known_p = false;
2197 attrs.size_known_p = defattrs->size_known_p;
2198 attrs.size = defattrs->size;
2199 attrs.align = defattrs->align;
2200
2201 /* If there are no changes, just return the original memory reference. */
2202 if (new_rtx == memref)
2203 {
2204 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
2205 return new_rtx;
2206
2207 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2208 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2209 }
2210
2211 set_mem_attrs (new_rtx, &attrs);
2212 return new_rtx;
2213 }
2214
2215 /* Return a memory reference like MEMREF, but with its mode changed
2216 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2217 nonzero, the memory address is forced to be valid.
2218 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2219 and the caller is responsible for adjusting MEMREF base register.
2220 If ADJUST_OBJECT is zero, the underlying object associated with the
2221 memory reference is left unchanged and the caller is responsible for
2222 dealing with it. Otherwise, if the new memory reference is outside
2223 the underlying object, even partially, then the object is dropped.
2224 SIZE, if nonzero, is the size of an access in cases where MODE
2225 has no inherent size. */
2226
2227 rtx
2228 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
2229 int validate, int adjust_address, int adjust_object,
2230 HOST_WIDE_INT size)
2231 {
2232 rtx addr = XEXP (memref, 0);
2233 rtx new_rtx;
2234 scalar_int_mode address_mode;
2235 int pbits;
2236 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2237 unsigned HOST_WIDE_INT max_align;
2238 #ifdef POINTERS_EXTEND_UNSIGNED
2239 scalar_int_mode pointer_mode
2240 = targetm.addr_space.pointer_mode (attrs.addrspace);
2241 #endif
2242
2243 /* VOIDmode means no mode change for change_address_1. */
2244 if (mode == VOIDmode)
2245 mode = GET_MODE (memref);
2246
2247 /* Take the size of non-BLKmode accesses from the mode. */
2248 defattrs = mode_mem_attrs[(int) mode];
2249 if (defattrs->size_known_p)
2250 size = defattrs->size;
2251
2252 /* If there are no changes, just return the original memory reference. */
2253 if (mode == GET_MODE (memref) && !offset
2254 && (size == 0 || (attrs.size_known_p && attrs.size == size))
2255 && (!validate || memory_address_addr_space_p (mode, addr,
2256 attrs.addrspace)))
2257 return memref;
2258
2259 /* ??? Prefer to create garbage instead of creating shared rtl.
2260 This may happen even if offset is nonzero -- consider
2261 (plus (plus reg reg) const_int) -- so do this always. */
2262 addr = copy_rtx (addr);
2263
2264 /* Convert a possibly large offset to a signed value within the
2265 range of the target address space. */
2266 address_mode = get_address_mode (memref);
2267 pbits = GET_MODE_BITSIZE (address_mode);
2268 if (HOST_BITS_PER_WIDE_INT > pbits)
2269 {
2270 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2271 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2272 >> shift);
2273 }
2274
2275 if (adjust_address)
2276 {
2277 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2278 object, we can merge it into the LO_SUM. */
2279 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2280 && offset >= 0
2281 && (unsigned HOST_WIDE_INT) offset
2282 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2283 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2284 plus_constant (address_mode,
2285 XEXP (addr, 1), offset));
2286 #ifdef POINTERS_EXTEND_UNSIGNED
2287 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2288 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2289 the fact that pointers are not allowed to overflow. */
2290 else if (POINTERS_EXTEND_UNSIGNED > 0
2291 && GET_CODE (addr) == ZERO_EXTEND
2292 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2293 && trunc_int_for_mode (offset, pointer_mode) == offset)
2294 addr = gen_rtx_ZERO_EXTEND (address_mode,
2295 plus_constant (pointer_mode,
2296 XEXP (addr, 0), offset));
2297 #endif
2298 else
2299 addr = plus_constant (address_mode, addr, offset);
2300 }
2301
2302 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2303
2304 /* If the address is a REG, change_address_1 rightfully returns memref,
2305 but this would destroy memref's MEM_ATTRS. */
2306 if (new_rtx == memref && offset != 0)
2307 new_rtx = copy_rtx (new_rtx);
2308
2309 /* Conservatively drop the object if we don't know where we start from. */
2310 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2311 {
2312 attrs.expr = NULL_TREE;
2313 attrs.alias = 0;
2314 }
2315
2316 /* Compute the new values of the memory attributes due to this adjustment.
2317 We add the offsets and update the alignment. */
2318 if (attrs.offset_known_p)
2319 {
2320 attrs.offset += offset;
2321
2322 /* Drop the object if the new left end is not within its bounds. */
2323 if (adjust_object && attrs.offset < 0)
2324 {
2325 attrs.expr = NULL_TREE;
2326 attrs.alias = 0;
2327 }
2328 }
2329
2330 /* Compute the new alignment by taking the MIN of the alignment and the
2331 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2332 if zero. */
2333 if (offset != 0)
2334 {
2335 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
2336 attrs.align = MIN (attrs.align, max_align);
2337 }
2338
2339 if (size)
2340 {
2341 /* Drop the object if the new right end is not within its bounds. */
2342 if (adjust_object && (offset + size) > attrs.size)
2343 {
2344 attrs.expr = NULL_TREE;
2345 attrs.alias = 0;
2346 }
2347 attrs.size_known_p = true;
2348 attrs.size = size;
2349 }
2350 else if (attrs.size_known_p)
2351 {
2352 gcc_assert (!adjust_object);
2353 attrs.size -= offset;
2354 /* ??? The store_by_pieces machinery generates negative sizes,
2355 so don't assert for that here. */
2356 }
2357
2358 set_mem_attrs (new_rtx, &attrs);
2359
2360 return new_rtx;
2361 }
2362
2363 /* Return a memory reference like MEMREF, but with its mode changed
2364 to MODE and its address changed to ADDR, which is assumed to be
2365 MEMREF offset by OFFSET bytes. If VALIDATE is
2366 nonzero, the memory address is forced to be valid. */
2367
2368 rtx
2369 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2370 HOST_WIDE_INT offset, int validate)
2371 {
2372 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2373 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2374 }
2375
2376 /* Return a memory reference like MEMREF, but whose address is changed by
2377 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2378 known to be in OFFSET (possibly 1). */
2379
2380 rtx
2381 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2382 {
2383 rtx new_rtx, addr = XEXP (memref, 0);
2384 machine_mode address_mode;
2385 struct mem_attrs attrs, *defattrs;
2386
2387 attrs = *get_mem_attrs (memref);
2388 address_mode = get_address_mode (memref);
2389 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2390
2391 /* At this point we don't know _why_ the address is invalid. It
2392 could have secondary memory references, multiplies or anything.
2393
2394 However, if we did go and rearrange things, we can wind up not
2395 being able to recognize the magic around pic_offset_table_rtx.
2396 This stuff is fragile, and is yet another example of why it is
2397 bad to expose PIC machinery too early. */
2398 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2399 attrs.addrspace)
2400 && GET_CODE (addr) == PLUS
2401 && XEXP (addr, 0) == pic_offset_table_rtx)
2402 {
2403 addr = force_reg (GET_MODE (addr), addr);
2404 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2405 }
2406
2407 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2408 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
2409
2410 /* If there are no changes, just return the original memory reference. */
2411 if (new_rtx == memref)
2412 return new_rtx;
2413
2414 /* Update the alignment to reflect the offset. Reset the offset, which
2415 we don't know. */
2416 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2417 attrs.offset_known_p = false;
2418 attrs.size_known_p = defattrs->size_known_p;
2419 attrs.size = defattrs->size;
2420 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2421 set_mem_attrs (new_rtx, &attrs);
2422 return new_rtx;
2423 }
2424
2425 /* Return a memory reference like MEMREF, but with its address changed to
2426 ADDR. The caller is asserting that the actual piece of memory pointed
2427 to is the same, just the form of the address is being changed, such as
2428 by putting something into a register. INPLACE is true if any changes
2429 can be made directly to MEMREF or false if MEMREF must be treated as
2430 immutable. */
2431
2432 rtx
2433 replace_equiv_address (rtx memref, rtx addr, bool inplace)
2434 {
2435 /* change_address_1 copies the memory attribute structure without change
2436 and that's exactly what we want here. */
2437 update_temp_slot_address (XEXP (memref, 0), addr);
2438 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
2439 }
2440
2441 /* Likewise, but the reference is not required to be valid. */
2442
2443 rtx
2444 replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2445 {
2446 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
2447 }
2448
2449 /* Return a memory reference like MEMREF, but with its mode widened to
2450 MODE and offset by OFFSET. This would be used by targets that e.g.
2451 cannot issue QImode memory operations and have to use SImode memory
2452 operations plus masking logic. */
2453
2454 rtx
2455 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
2456 {
2457 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2458 struct mem_attrs attrs;
2459 unsigned int size = GET_MODE_SIZE (mode);
2460
2461 /* If there are no changes, just return the original memory reference. */
2462 if (new_rtx == memref)
2463 return new_rtx;
2464
2465 attrs = *get_mem_attrs (new_rtx);
2466
2467 /* If we don't know what offset we were at within the expression, then
2468 we can't know if we've overstepped the bounds. */
2469 if (! attrs.offset_known_p)
2470 attrs.expr = NULL_TREE;
2471
2472 while (attrs.expr)
2473 {
2474 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2475 {
2476 tree field = TREE_OPERAND (attrs.expr, 1);
2477 tree offset = component_ref_field_offset (attrs.expr);
2478
2479 if (! DECL_SIZE_UNIT (field))
2480 {
2481 attrs.expr = NULL_TREE;
2482 break;
2483 }
2484
2485 /* Is the field at least as large as the access? If so, ok,
2486 otherwise strip back to the containing structure. */
2487 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2488 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2489 && attrs.offset >= 0)
2490 break;
2491
2492 if (! tree_fits_uhwi_p (offset))
2493 {
2494 attrs.expr = NULL_TREE;
2495 break;
2496 }
2497
2498 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2499 attrs.offset += tree_to_uhwi (offset);
2500 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2501 / BITS_PER_UNIT);
2502 }
2503 /* Similarly for the decl. */
2504 else if (DECL_P (attrs.expr)
2505 && DECL_SIZE_UNIT (attrs.expr)
2506 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2507 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
2508 && (! attrs.offset_known_p || attrs.offset >= 0))
2509 break;
2510 else
2511 {
2512 /* The widened memory access overflows the expression, which means
2513 that it could alias another expression. Zap it. */
2514 attrs.expr = NULL_TREE;
2515 break;
2516 }
2517 }
2518
2519 if (! attrs.expr)
2520 attrs.offset_known_p = false;
2521
2522 /* The widened memory may alias other stuff, so zap the alias set. */
2523 /* ??? Maybe use get_alias_set on any remaining expression. */
2524 attrs.alias = 0;
2525 attrs.size_known_p = true;
2526 attrs.size = size;
2527 set_mem_attrs (new_rtx, &attrs);
2528 return new_rtx;
2529 }
2530 \f
2531 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2532 static GTY(()) tree spill_slot_decl;
2533
2534 tree
2535 get_spill_slot_decl (bool force_build_p)
2536 {
2537 tree d = spill_slot_decl;
2538 rtx rd;
2539 struct mem_attrs attrs;
2540
2541 if (d || !force_build_p)
2542 return d;
2543
2544 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2545 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2546 DECL_ARTIFICIAL (d) = 1;
2547 DECL_IGNORED_P (d) = 1;
2548 TREE_USED (d) = 1;
2549 spill_slot_decl = d;
2550
2551 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2552 MEM_NOTRAP_P (rd) = 1;
2553 attrs = *mode_mem_attrs[(int) BLKmode];
2554 attrs.alias = new_alias_set ();
2555 attrs.expr = d;
2556 set_mem_attrs (rd, &attrs);
2557 SET_DECL_RTL (d, rd);
2558
2559 return d;
2560 }
2561
2562 /* Given MEM, a result from assign_stack_local, fill in the memory
2563 attributes as appropriate for a register allocator spill slot.
2564 These slots are not aliasable by other memory. We arrange for
2565 them all to use a single MEM_EXPR, so that the aliasing code can
2566 work properly in the case of shared spill slots. */
2567
2568 void
2569 set_mem_attrs_for_spill (rtx mem)
2570 {
2571 struct mem_attrs attrs;
2572 rtx addr;
2573
2574 attrs = *get_mem_attrs (mem);
2575 attrs.expr = get_spill_slot_decl (true);
2576 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2577 attrs.addrspace = ADDR_SPACE_GENERIC;
2578
2579 /* We expect the incoming memory to be of the form:
2580 (mem:MODE (plus (reg sfp) (const_int offset)))
2581 with perhaps the plus missing for offset = 0. */
2582 addr = XEXP (mem, 0);
2583 attrs.offset_known_p = true;
2584 attrs.offset = 0;
2585 if (GET_CODE (addr) == PLUS
2586 && CONST_INT_P (XEXP (addr, 1)))
2587 attrs.offset = INTVAL (XEXP (addr, 1));
2588
2589 set_mem_attrs (mem, &attrs);
2590 MEM_NOTRAP_P (mem) = 1;
2591 }
2592 \f
2593 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2594
2595 rtx_code_label *
2596 gen_label_rtx (void)
2597 {
2598 return as_a <rtx_code_label *> (
2599 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2600 NULL, label_num++, NULL));
2601 }
2602 \f
2603 /* For procedure integration. */
2604
2605 /* Install new pointers to the first and last insns in the chain.
2606 Also, set cur_insn_uid to one higher than the last in use.
2607 Used for an inline-procedure after copying the insn chain. */
2608
2609 void
2610 set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2611 {
2612 rtx_insn *insn;
2613
2614 set_first_insn (first);
2615 set_last_insn (last);
2616 cur_insn_uid = 0;
2617
2618 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2619 {
2620 int debug_count = 0;
2621
2622 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2623 cur_debug_insn_uid = 0;
2624
2625 for (insn = first; insn; insn = NEXT_INSN (insn))
2626 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2627 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2628 else
2629 {
2630 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2631 if (DEBUG_INSN_P (insn))
2632 debug_count++;
2633 }
2634
2635 if (debug_count)
2636 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2637 else
2638 cur_debug_insn_uid++;
2639 }
2640 else
2641 for (insn = first; insn; insn = NEXT_INSN (insn))
2642 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2643
2644 cur_insn_uid++;
2645 }
2646 \f
2647 /* Go through all the RTL insn bodies and copy any invalid shared
2648 structure. This routine should only be called once. */
2649
2650 static void
2651 unshare_all_rtl_1 (rtx_insn *insn)
2652 {
2653 /* Unshare just about everything else. */
2654 unshare_all_rtl_in_chain (insn);
2655
2656 /* Make sure the addresses of stack slots found outside the insn chain
2657 (such as, in DECL_RTL of a variable) are not shared
2658 with the insn chain.
2659
2660 This special care is necessary when the stack slot MEM does not
2661 actually appear in the insn chain. If it does appear, its address
2662 is unshared from all else at that point. */
2663 unsigned int i;
2664 rtx temp;
2665 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2666 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2667 }
2668
2669 /* Go through all the RTL insn bodies and copy any invalid shared
2670 structure, again. This is a fairly expensive thing to do so it
2671 should be done sparingly. */
2672
2673 void
2674 unshare_all_rtl_again (rtx_insn *insn)
2675 {
2676 rtx_insn *p;
2677 tree decl;
2678
2679 for (p = insn; p; p = NEXT_INSN (p))
2680 if (INSN_P (p))
2681 {
2682 reset_used_flags (PATTERN (p));
2683 reset_used_flags (REG_NOTES (p));
2684 if (CALL_P (p))
2685 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2686 }
2687
2688 /* Make sure that virtual stack slots are not shared. */
2689 set_used_decls (DECL_INITIAL (cfun->decl));
2690
2691 /* Make sure that virtual parameters are not shared. */
2692 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2693 set_used_flags (DECL_RTL (decl));
2694
2695 rtx temp;
2696 unsigned int i;
2697 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2698 reset_used_flags (temp);
2699
2700 unshare_all_rtl_1 (insn);
2701 }
2702
2703 unsigned int
2704 unshare_all_rtl (void)
2705 {
2706 unshare_all_rtl_1 (get_insns ());
2707
2708 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2709 {
2710 if (DECL_RTL_SET_P (decl))
2711 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2712 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2713 }
2714
2715 return 0;
2716 }
2717
2718
2719 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2720 Recursively does the same for subexpressions. */
2721
2722 static void
2723 verify_rtx_sharing (rtx orig, rtx insn)
2724 {
2725 rtx x = orig;
2726 int i;
2727 enum rtx_code code;
2728 const char *format_ptr;
2729
2730 if (x == 0)
2731 return;
2732
2733 code = GET_CODE (x);
2734
2735 /* These types may be freely shared. */
2736
2737 switch (code)
2738 {
2739 case REG:
2740 case DEBUG_EXPR:
2741 case VALUE:
2742 CASE_CONST_ANY:
2743 case SYMBOL_REF:
2744 case LABEL_REF:
2745 case CODE_LABEL:
2746 case PC:
2747 case CC0:
2748 case RETURN:
2749 case SIMPLE_RETURN:
2750 case SCRATCH:
2751 /* SCRATCH must be shared because they represent distinct values. */
2752 return;
2753 case CLOBBER:
2754 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2755 clobbers or clobbers of hard registers that originated as pseudos.
2756 This is needed to allow safe register renaming. */
2757 if (REG_P (XEXP (x, 0))
2758 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2759 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
2760 return;
2761 break;
2762
2763 case CONST:
2764 if (shared_const_p (orig))
2765 return;
2766 break;
2767
2768 case MEM:
2769 /* A MEM is allowed to be shared if its address is constant. */
2770 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2771 || reload_completed || reload_in_progress)
2772 return;
2773
2774 break;
2775
2776 default:
2777 break;
2778 }
2779
2780 /* This rtx may not be shared. If it has already been seen,
2781 replace it with a copy of itself. */
2782 if (flag_checking && RTX_FLAG (x, used))
2783 {
2784 error ("invalid rtl sharing found in the insn");
2785 debug_rtx (insn);
2786 error ("shared rtx");
2787 debug_rtx (x);
2788 internal_error ("internal consistency failure");
2789 }
2790 gcc_assert (!RTX_FLAG (x, used));
2791
2792 RTX_FLAG (x, used) = 1;
2793
2794 /* Now scan the subexpressions recursively. */
2795
2796 format_ptr = GET_RTX_FORMAT (code);
2797
2798 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2799 {
2800 switch (*format_ptr++)
2801 {
2802 case 'e':
2803 verify_rtx_sharing (XEXP (x, i), insn);
2804 break;
2805
2806 case 'E':
2807 if (XVEC (x, i) != NULL)
2808 {
2809 int j;
2810 int len = XVECLEN (x, i);
2811
2812 for (j = 0; j < len; j++)
2813 {
2814 /* We allow sharing of ASM_OPERANDS inside single
2815 instruction. */
2816 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2817 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2818 == ASM_OPERANDS))
2819 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2820 else
2821 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2822 }
2823 }
2824 break;
2825 }
2826 }
2827 return;
2828 }
2829
2830 /* Reset used-flags for INSN. */
2831
2832 static void
2833 reset_insn_used_flags (rtx insn)
2834 {
2835 gcc_assert (INSN_P (insn));
2836 reset_used_flags (PATTERN (insn));
2837 reset_used_flags (REG_NOTES (insn));
2838 if (CALL_P (insn))
2839 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2840 }
2841
2842 /* Go through all the RTL insn bodies and clear all the USED bits. */
2843
2844 static void
2845 reset_all_used_flags (void)
2846 {
2847 rtx_insn *p;
2848
2849 for (p = get_insns (); p; p = NEXT_INSN (p))
2850 if (INSN_P (p))
2851 {
2852 rtx pat = PATTERN (p);
2853 if (GET_CODE (pat) != SEQUENCE)
2854 reset_insn_used_flags (p);
2855 else
2856 {
2857 gcc_assert (REG_NOTES (p) == NULL);
2858 for (int i = 0; i < XVECLEN (pat, 0); i++)
2859 {
2860 rtx insn = XVECEXP (pat, 0, i);
2861 if (INSN_P (insn))
2862 reset_insn_used_flags (insn);
2863 }
2864 }
2865 }
2866 }
2867
2868 /* Verify sharing in INSN. */
2869
2870 static void
2871 verify_insn_sharing (rtx insn)
2872 {
2873 gcc_assert (INSN_P (insn));
2874 verify_rtx_sharing (PATTERN (insn), insn);
2875 verify_rtx_sharing (REG_NOTES (insn), insn);
2876 if (CALL_P (insn))
2877 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
2878 }
2879
2880 /* Go through all the RTL insn bodies and check that there is no unexpected
2881 sharing in between the subexpressions. */
2882
2883 DEBUG_FUNCTION void
2884 verify_rtl_sharing (void)
2885 {
2886 rtx_insn *p;
2887
2888 timevar_push (TV_VERIFY_RTL_SHARING);
2889
2890 reset_all_used_flags ();
2891
2892 for (p = get_insns (); p; p = NEXT_INSN (p))
2893 if (INSN_P (p))
2894 {
2895 rtx pat = PATTERN (p);
2896 if (GET_CODE (pat) != SEQUENCE)
2897 verify_insn_sharing (p);
2898 else
2899 for (int i = 0; i < XVECLEN (pat, 0); i++)
2900 {
2901 rtx insn = XVECEXP (pat, 0, i);
2902 if (INSN_P (insn))
2903 verify_insn_sharing (insn);
2904 }
2905 }
2906
2907 reset_all_used_flags ();
2908
2909 timevar_pop (TV_VERIFY_RTL_SHARING);
2910 }
2911
2912 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2913 Assumes the mark bits are cleared at entry. */
2914
2915 void
2916 unshare_all_rtl_in_chain (rtx_insn *insn)
2917 {
2918 for (; insn; insn = NEXT_INSN (insn))
2919 if (INSN_P (insn))
2920 {
2921 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2922 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2923 if (CALL_P (insn))
2924 CALL_INSN_FUNCTION_USAGE (insn)
2925 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2926 }
2927 }
2928
2929 /* Go through all virtual stack slots of a function and mark them as
2930 shared. We never replace the DECL_RTLs themselves with a copy,
2931 but expressions mentioned into a DECL_RTL cannot be shared with
2932 expressions in the instruction stream.
2933
2934 Note that reload may convert pseudo registers into memories in-place.
2935 Pseudo registers are always shared, but MEMs never are. Thus if we
2936 reset the used flags on MEMs in the instruction stream, we must set
2937 them again on MEMs that appear in DECL_RTLs. */
2938
2939 static void
2940 set_used_decls (tree blk)
2941 {
2942 tree t;
2943
2944 /* Mark decls. */
2945 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
2946 if (DECL_RTL_SET_P (t))
2947 set_used_flags (DECL_RTL (t));
2948
2949 /* Now process sub-blocks. */
2950 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2951 set_used_decls (t);
2952 }
2953
2954 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2955 Recursively does the same for subexpressions. Uses
2956 copy_rtx_if_shared_1 to reduce stack space. */
2957
2958 rtx
2959 copy_rtx_if_shared (rtx orig)
2960 {
2961 copy_rtx_if_shared_1 (&orig);
2962 return orig;
2963 }
2964
2965 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2966 use. Recursively does the same for subexpressions. */
2967
2968 static void
2969 copy_rtx_if_shared_1 (rtx *orig1)
2970 {
2971 rtx x;
2972 int i;
2973 enum rtx_code code;
2974 rtx *last_ptr;
2975 const char *format_ptr;
2976 int copied = 0;
2977 int length;
2978
2979 /* Repeat is used to turn tail-recursion into iteration. */
2980 repeat:
2981 x = *orig1;
2982
2983 if (x == 0)
2984 return;
2985
2986 code = GET_CODE (x);
2987
2988 /* These types may be freely shared. */
2989
2990 switch (code)
2991 {
2992 case REG:
2993 case DEBUG_EXPR:
2994 case VALUE:
2995 CASE_CONST_ANY:
2996 case SYMBOL_REF:
2997 case LABEL_REF:
2998 case CODE_LABEL:
2999 case PC:
3000 case CC0:
3001 case RETURN:
3002 case SIMPLE_RETURN:
3003 case SCRATCH:
3004 /* SCRATCH must be shared because they represent distinct values. */
3005 return;
3006 case CLOBBER:
3007 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3008 clobbers or clobbers of hard registers that originated as pseudos.
3009 This is needed to allow safe register renaming. */
3010 if (REG_P (XEXP (x, 0))
3011 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3012 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3013 return;
3014 break;
3015
3016 case CONST:
3017 if (shared_const_p (x))
3018 return;
3019 break;
3020
3021 case DEBUG_INSN:
3022 case INSN:
3023 case JUMP_INSN:
3024 case CALL_INSN:
3025 case NOTE:
3026 case BARRIER:
3027 /* The chain of insns is not being copied. */
3028 return;
3029
3030 default:
3031 break;
3032 }
3033
3034 /* This rtx may not be shared. If it has already been seen,
3035 replace it with a copy of itself. */
3036
3037 if (RTX_FLAG (x, used))
3038 {
3039 x = shallow_copy_rtx (x);
3040 copied = 1;
3041 }
3042 RTX_FLAG (x, used) = 1;
3043
3044 /* Now scan the subexpressions recursively.
3045 We can store any replaced subexpressions directly into X
3046 since we know X is not shared! Any vectors in X
3047 must be copied if X was copied. */
3048
3049 format_ptr = GET_RTX_FORMAT (code);
3050 length = GET_RTX_LENGTH (code);
3051 last_ptr = NULL;
3052
3053 for (i = 0; i < length; i++)
3054 {
3055 switch (*format_ptr++)
3056 {
3057 case 'e':
3058 if (last_ptr)
3059 copy_rtx_if_shared_1 (last_ptr);
3060 last_ptr = &XEXP (x, i);
3061 break;
3062
3063 case 'E':
3064 if (XVEC (x, i) != NULL)
3065 {
3066 int j;
3067 int len = XVECLEN (x, i);
3068
3069 /* Copy the vector iff I copied the rtx and the length
3070 is nonzero. */
3071 if (copied && len > 0)
3072 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
3073
3074 /* Call recursively on all inside the vector. */
3075 for (j = 0; j < len; j++)
3076 {
3077 if (last_ptr)
3078 copy_rtx_if_shared_1 (last_ptr);
3079 last_ptr = &XVECEXP (x, i, j);
3080 }
3081 }
3082 break;
3083 }
3084 }
3085 *orig1 = x;
3086 if (last_ptr)
3087 {
3088 orig1 = last_ptr;
3089 goto repeat;
3090 }
3091 return;
3092 }
3093
3094 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3095
3096 static void
3097 mark_used_flags (rtx x, int flag)
3098 {
3099 int i, j;
3100 enum rtx_code code;
3101 const char *format_ptr;
3102 int length;
3103
3104 /* Repeat is used to turn tail-recursion into iteration. */
3105 repeat:
3106 if (x == 0)
3107 return;
3108
3109 code = GET_CODE (x);
3110
3111 /* These types may be freely shared so we needn't do any resetting
3112 for them. */
3113
3114 switch (code)
3115 {
3116 case REG:
3117 case DEBUG_EXPR:
3118 case VALUE:
3119 CASE_CONST_ANY:
3120 case SYMBOL_REF:
3121 case CODE_LABEL:
3122 case PC:
3123 case CC0:
3124 case RETURN:
3125 case SIMPLE_RETURN:
3126 return;
3127
3128 case DEBUG_INSN:
3129 case INSN:
3130 case JUMP_INSN:
3131 case CALL_INSN:
3132 case NOTE:
3133 case LABEL_REF:
3134 case BARRIER:
3135 /* The chain of insns is not being copied. */
3136 return;
3137
3138 default:
3139 break;
3140 }
3141
3142 RTX_FLAG (x, used) = flag;
3143
3144 format_ptr = GET_RTX_FORMAT (code);
3145 length = GET_RTX_LENGTH (code);
3146
3147 for (i = 0; i < length; i++)
3148 {
3149 switch (*format_ptr++)
3150 {
3151 case 'e':
3152 if (i == length-1)
3153 {
3154 x = XEXP (x, i);
3155 goto repeat;
3156 }
3157 mark_used_flags (XEXP (x, i), flag);
3158 break;
3159
3160 case 'E':
3161 for (j = 0; j < XVECLEN (x, i); j++)
3162 mark_used_flags (XVECEXP (x, i, j), flag);
3163 break;
3164 }
3165 }
3166 }
3167
3168 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3169 to look for shared sub-parts. */
3170
3171 void
3172 reset_used_flags (rtx x)
3173 {
3174 mark_used_flags (x, 0);
3175 }
3176
3177 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3178 to look for shared sub-parts. */
3179
3180 void
3181 set_used_flags (rtx x)
3182 {
3183 mark_used_flags (x, 1);
3184 }
3185 \f
3186 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3187 Return X or the rtx for the pseudo reg the value of X was copied into.
3188 OTHER must be valid as a SET_DEST. */
3189
3190 rtx
3191 make_safe_from (rtx x, rtx other)
3192 {
3193 while (1)
3194 switch (GET_CODE (other))
3195 {
3196 case SUBREG:
3197 other = SUBREG_REG (other);
3198 break;
3199 case STRICT_LOW_PART:
3200 case SIGN_EXTEND:
3201 case ZERO_EXTEND:
3202 other = XEXP (other, 0);
3203 break;
3204 default:
3205 goto done;
3206 }
3207 done:
3208 if ((MEM_P (other)
3209 && ! CONSTANT_P (x)
3210 && !REG_P (x)
3211 && GET_CODE (x) != SUBREG)
3212 || (REG_P (other)
3213 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3214 || reg_mentioned_p (other, x))))
3215 {
3216 rtx temp = gen_reg_rtx (GET_MODE (x));
3217 emit_move_insn (temp, x);
3218 return temp;
3219 }
3220 return x;
3221 }
3222 \f
3223 /* Emission of insns (adding them to the doubly-linked list). */
3224
3225 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3226
3227 rtx_insn *
3228 get_last_insn_anywhere (void)
3229 {
3230 struct sequence_stack *seq;
3231 for (seq = get_current_sequence (); seq; seq = seq->next)
3232 if (seq->last != 0)
3233 return seq->last;
3234 return 0;
3235 }
3236
3237 /* Return the first nonnote insn emitted in current sequence or current
3238 function. This routine looks inside SEQUENCEs. */
3239
3240 rtx_insn *
3241 get_first_nonnote_insn (void)
3242 {
3243 rtx_insn *insn = get_insns ();
3244
3245 if (insn)
3246 {
3247 if (NOTE_P (insn))
3248 for (insn = next_insn (insn);
3249 insn && NOTE_P (insn);
3250 insn = next_insn (insn))
3251 continue;
3252 else
3253 {
3254 if (NONJUMP_INSN_P (insn)
3255 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3256 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3257 }
3258 }
3259
3260 return insn;
3261 }
3262
3263 /* Return the last nonnote insn emitted in current sequence or current
3264 function. This routine looks inside SEQUENCEs. */
3265
3266 rtx_insn *
3267 get_last_nonnote_insn (void)
3268 {
3269 rtx_insn *insn = get_last_insn ();
3270
3271 if (insn)
3272 {
3273 if (NOTE_P (insn))
3274 for (insn = previous_insn (insn);
3275 insn && NOTE_P (insn);
3276 insn = previous_insn (insn))
3277 continue;
3278 else
3279 {
3280 if (NONJUMP_INSN_P (insn))
3281 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3282 insn = seq->insn (seq->len () - 1);
3283 }
3284 }
3285
3286 return insn;
3287 }
3288
3289 /* Return the number of actual (non-debug) insns emitted in this
3290 function. */
3291
3292 int
3293 get_max_insn_count (void)
3294 {
3295 int n = cur_insn_uid;
3296
3297 /* The table size must be stable across -g, to avoid codegen
3298 differences due to debug insns, and not be affected by
3299 -fmin-insn-uid, to avoid excessive table size and to simplify
3300 debugging of -fcompare-debug failures. */
3301 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3302 n -= cur_debug_insn_uid;
3303 else
3304 n -= MIN_NONDEBUG_INSN_UID;
3305
3306 return n;
3307 }
3308
3309 \f
3310 /* Return the next insn. If it is a SEQUENCE, return the first insn
3311 of the sequence. */
3312
3313 rtx_insn *
3314 next_insn (rtx_insn *insn)
3315 {
3316 if (insn)
3317 {
3318 insn = NEXT_INSN (insn);
3319 if (insn && NONJUMP_INSN_P (insn)
3320 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3321 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3322 }
3323
3324 return insn;
3325 }
3326
3327 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3328 of the sequence. */
3329
3330 rtx_insn *
3331 previous_insn (rtx_insn *insn)
3332 {
3333 if (insn)
3334 {
3335 insn = PREV_INSN (insn);
3336 if (insn && NONJUMP_INSN_P (insn))
3337 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3338 insn = seq->insn (seq->len () - 1);
3339 }
3340
3341 return insn;
3342 }
3343
3344 /* Return the next insn after INSN that is not a NOTE. This routine does not
3345 look inside SEQUENCEs. */
3346
3347 rtx_insn *
3348 next_nonnote_insn (rtx_insn *insn)
3349 {
3350 while (insn)
3351 {
3352 insn = NEXT_INSN (insn);
3353 if (insn == 0 || !NOTE_P (insn))
3354 break;
3355 }
3356
3357 return insn;
3358 }
3359
3360 /* Return the next insn after INSN that is not a NOTE, but stop the
3361 search before we enter another basic block. This routine does not
3362 look inside SEQUENCEs. */
3363
3364 rtx_insn *
3365 next_nonnote_insn_bb (rtx_insn *insn)
3366 {
3367 while (insn)
3368 {
3369 insn = NEXT_INSN (insn);
3370 if (insn == 0 || !NOTE_P (insn))
3371 break;
3372 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3373 return NULL;
3374 }
3375
3376 return insn;
3377 }
3378
3379 /* Return the previous insn before INSN that is not a NOTE. This routine does
3380 not look inside SEQUENCEs. */
3381
3382 rtx_insn *
3383 prev_nonnote_insn (rtx_insn *insn)
3384 {
3385 while (insn)
3386 {
3387 insn = PREV_INSN (insn);
3388 if (insn == 0 || !NOTE_P (insn))
3389 break;
3390 }
3391
3392 return insn;
3393 }
3394
3395 /* Return the previous insn before INSN that is not a NOTE, but stop
3396 the search before we enter another basic block. This routine does
3397 not look inside SEQUENCEs. */
3398
3399 rtx_insn *
3400 prev_nonnote_insn_bb (rtx_insn *insn)
3401 {
3402
3403 while (insn)
3404 {
3405 insn = PREV_INSN (insn);
3406 if (insn == 0 || !NOTE_P (insn))
3407 break;
3408 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3409 return NULL;
3410 }
3411
3412 return insn;
3413 }
3414
3415 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3416 routine does not look inside SEQUENCEs. */
3417
3418 rtx_insn *
3419 next_nondebug_insn (rtx_insn *insn)
3420 {
3421 while (insn)
3422 {
3423 insn = NEXT_INSN (insn);
3424 if (insn == 0 || !DEBUG_INSN_P (insn))
3425 break;
3426 }
3427
3428 return insn;
3429 }
3430
3431 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3432 This routine does not look inside SEQUENCEs. */
3433
3434 rtx_insn *
3435 prev_nondebug_insn (rtx_insn *insn)
3436 {
3437 while (insn)
3438 {
3439 insn = PREV_INSN (insn);
3440 if (insn == 0 || !DEBUG_INSN_P (insn))
3441 break;
3442 }
3443
3444 return insn;
3445 }
3446
3447 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3448 This routine does not look inside SEQUENCEs. */
3449
3450 rtx_insn *
3451 next_nonnote_nondebug_insn (rtx_insn *insn)
3452 {
3453 while (insn)
3454 {
3455 insn = NEXT_INSN (insn);
3456 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3457 break;
3458 }
3459
3460 return insn;
3461 }
3462
3463 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3464 This routine does not look inside SEQUENCEs. */
3465
3466 rtx_insn *
3467 prev_nonnote_nondebug_insn (rtx_insn *insn)
3468 {
3469 while (insn)
3470 {
3471 insn = PREV_INSN (insn);
3472 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3473 break;
3474 }
3475
3476 return insn;
3477 }
3478
3479 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3480 or 0, if there is none. This routine does not look inside
3481 SEQUENCEs. */
3482
3483 rtx_insn *
3484 next_real_insn (rtx uncast_insn)
3485 {
3486 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3487
3488 while (insn)
3489 {
3490 insn = NEXT_INSN (insn);
3491 if (insn == 0 || INSN_P (insn))
3492 break;
3493 }
3494
3495 return insn;
3496 }
3497
3498 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3499 or 0, if there is none. This routine does not look inside
3500 SEQUENCEs. */
3501
3502 rtx_insn *
3503 prev_real_insn (rtx_insn *insn)
3504 {
3505 while (insn)
3506 {
3507 insn = PREV_INSN (insn);
3508 if (insn == 0 || INSN_P (insn))
3509 break;
3510 }
3511
3512 return insn;
3513 }
3514
3515 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3516 This routine does not look inside SEQUENCEs. */
3517
3518 rtx_call_insn *
3519 last_call_insn (void)
3520 {
3521 rtx_insn *insn;
3522
3523 for (insn = get_last_insn ();
3524 insn && !CALL_P (insn);
3525 insn = PREV_INSN (insn))
3526 ;
3527
3528 return safe_as_a <rtx_call_insn *> (insn);
3529 }
3530
3531 /* Find the next insn after INSN that really does something. This routine
3532 does not look inside SEQUENCEs. After reload this also skips over
3533 standalone USE and CLOBBER insn. */
3534
3535 int
3536 active_insn_p (const rtx_insn *insn)
3537 {
3538 return (CALL_P (insn) || JUMP_P (insn)
3539 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3540 || (NONJUMP_INSN_P (insn)
3541 && (! reload_completed
3542 || (GET_CODE (PATTERN (insn)) != USE
3543 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3544 }
3545
3546 rtx_insn *
3547 next_active_insn (rtx_insn *insn)
3548 {
3549 while (insn)
3550 {
3551 insn = NEXT_INSN (insn);
3552 if (insn == 0 || active_insn_p (insn))
3553 break;
3554 }
3555
3556 return insn;
3557 }
3558
3559 /* Find the last insn before INSN that really does something. This routine
3560 does not look inside SEQUENCEs. After reload this also skips over
3561 standalone USE and CLOBBER insn. */
3562
3563 rtx_insn *
3564 prev_active_insn (rtx_insn *insn)
3565 {
3566 while (insn)
3567 {
3568 insn = PREV_INSN (insn);
3569 if (insn == 0 || active_insn_p (insn))
3570 break;
3571 }
3572
3573 return insn;
3574 }
3575 \f
3576 /* Return the next insn that uses CC0 after INSN, which is assumed to
3577 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3578 applied to the result of this function should yield INSN).
3579
3580 Normally, this is simply the next insn. However, if a REG_CC_USER note
3581 is present, it contains the insn that uses CC0.
3582
3583 Return 0 if we can't find the insn. */
3584
3585 rtx_insn *
3586 next_cc0_user (rtx_insn *insn)
3587 {
3588 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3589
3590 if (note)
3591 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3592
3593 insn = next_nonnote_insn (insn);
3594 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3595 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
3596
3597 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3598 return insn;
3599
3600 return 0;
3601 }
3602
3603 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3604 note, it is the previous insn. */
3605
3606 rtx_insn *
3607 prev_cc0_setter (rtx_insn *insn)
3608 {
3609 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3610
3611 if (note)
3612 return safe_as_a <rtx_insn *> (XEXP (note, 0));
3613
3614 insn = prev_nonnote_insn (insn);
3615 gcc_assert (sets_cc0_p (PATTERN (insn)));
3616
3617 return insn;
3618 }
3619
3620 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3621
3622 static int
3623 find_auto_inc (const_rtx x, const_rtx reg)
3624 {
3625 subrtx_iterator::array_type array;
3626 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3627 {
3628 const_rtx x = *iter;
3629 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3630 && rtx_equal_p (reg, XEXP (x, 0)))
3631 return true;
3632 }
3633 return false;
3634 }
3635
3636 /* Increment the label uses for all labels present in rtx. */
3637
3638 static void
3639 mark_label_nuses (rtx x)
3640 {
3641 enum rtx_code code;
3642 int i, j;
3643 const char *fmt;
3644
3645 code = GET_CODE (x);
3646 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3647 LABEL_NUSES (label_ref_label (x))++;
3648
3649 fmt = GET_RTX_FORMAT (code);
3650 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3651 {
3652 if (fmt[i] == 'e')
3653 mark_label_nuses (XEXP (x, i));
3654 else if (fmt[i] == 'E')
3655 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3656 mark_label_nuses (XVECEXP (x, i, j));
3657 }
3658 }
3659
3660 \f
3661 /* Try splitting insns that can be split for better scheduling.
3662 PAT is the pattern which might split.
3663 TRIAL is the insn providing PAT.
3664 LAST is nonzero if we should return the last insn of the sequence produced.
3665
3666 If this routine succeeds in splitting, it returns the first or last
3667 replacement insn depending on the value of LAST. Otherwise, it
3668 returns TRIAL. If the insn to be returned can be split, it will be. */
3669
3670 rtx_insn *
3671 try_split (rtx pat, rtx_insn *trial, int last)
3672 {
3673 rtx_insn *before, *after;
3674 rtx note;
3675 rtx_insn *seq, *tem;
3676 profile_probability probability;
3677 rtx_insn *insn_last, *insn;
3678 int njumps = 0;
3679 rtx_insn *call_insn = NULL;
3680
3681 /* We're not good at redistributing frame information. */
3682 if (RTX_FRAME_RELATED_P (trial))
3683 return trial;
3684
3685 if (any_condjump_p (trial)
3686 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3687 split_branch_probability
3688 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3689 else
3690 split_branch_probability = profile_probability::uninitialized ();
3691
3692 probability = split_branch_probability;
3693
3694 seq = split_insns (pat, trial);
3695
3696 split_branch_probability = profile_probability::uninitialized ();
3697
3698 if (!seq)
3699 return trial;
3700
3701 /* Avoid infinite loop if any insn of the result matches
3702 the original pattern. */
3703 insn_last = seq;
3704 while (1)
3705 {
3706 if (INSN_P (insn_last)
3707 && rtx_equal_p (PATTERN (insn_last), pat))
3708 return trial;
3709 if (!NEXT_INSN (insn_last))
3710 break;
3711 insn_last = NEXT_INSN (insn_last);
3712 }
3713
3714 /* We will be adding the new sequence to the function. The splitters
3715 may have introduced invalid RTL sharing, so unshare the sequence now. */
3716 unshare_all_rtl_in_chain (seq);
3717
3718 /* Mark labels and copy flags. */
3719 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3720 {
3721 if (JUMP_P (insn))
3722 {
3723 if (JUMP_P (trial))
3724 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3725 mark_jump_label (PATTERN (insn), insn, 0);
3726 njumps++;
3727 if (probability.initialized_p ()
3728 && any_condjump_p (insn)
3729 && !find_reg_note (insn, REG_BR_PROB, 0))
3730 {
3731 /* We can preserve the REG_BR_PROB notes only if exactly
3732 one jump is created, otherwise the machine description
3733 is responsible for this step using
3734 split_branch_probability variable. */
3735 gcc_assert (njumps == 1);
3736 add_reg_br_prob_note (insn, probability);
3737 }
3738 }
3739 }
3740
3741 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3742 in SEQ and copy any additional information across. */
3743 if (CALL_P (trial))
3744 {
3745 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3746 if (CALL_P (insn))
3747 {
3748 rtx_insn *next;
3749 rtx *p;
3750
3751 gcc_assert (call_insn == NULL_RTX);
3752 call_insn = insn;
3753
3754 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3755 target may have explicitly specified. */
3756 p = &CALL_INSN_FUNCTION_USAGE (insn);
3757 while (*p)
3758 p = &XEXP (*p, 1);
3759 *p = CALL_INSN_FUNCTION_USAGE (trial);
3760
3761 /* If the old call was a sibling call, the new one must
3762 be too. */
3763 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3764
3765 /* If the new call is the last instruction in the sequence,
3766 it will effectively replace the old call in-situ. Otherwise
3767 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3768 so that it comes immediately after the new call. */
3769 if (NEXT_INSN (insn))
3770 for (next = NEXT_INSN (trial);
3771 next && NOTE_P (next);
3772 next = NEXT_INSN (next))
3773 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3774 {
3775 remove_insn (next);
3776 add_insn_after (next, insn, NULL);
3777 break;
3778 }
3779 }
3780 }
3781
3782 /* Copy notes, particularly those related to the CFG. */
3783 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3784 {
3785 switch (REG_NOTE_KIND (note))
3786 {
3787 case REG_EH_REGION:
3788 copy_reg_eh_region_note_backward (note, insn_last, NULL);
3789 break;
3790
3791 case REG_NORETURN:
3792 case REG_SETJMP:
3793 case REG_TM:
3794 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3795 {
3796 if (CALL_P (insn))
3797 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3798 }
3799 break;
3800
3801 case REG_NON_LOCAL_GOTO:
3802 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3803 {
3804 if (JUMP_P (insn))
3805 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3806 }
3807 break;
3808
3809 case REG_INC:
3810 if (!AUTO_INC_DEC)
3811 break;
3812
3813 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3814 {
3815 rtx reg = XEXP (note, 0);
3816 if (!FIND_REG_INC_NOTE (insn, reg)
3817 && find_auto_inc (PATTERN (insn), reg))
3818 add_reg_note (insn, REG_INC, reg);
3819 }
3820 break;
3821
3822 case REG_ARGS_SIZE:
3823 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
3824 break;
3825
3826 case REG_CALL_DECL:
3827 gcc_assert (call_insn != NULL_RTX);
3828 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3829 break;
3830
3831 default:
3832 break;
3833 }
3834 }
3835
3836 /* If there are LABELS inside the split insns increment the
3837 usage count so we don't delete the label. */
3838 if (INSN_P (trial))
3839 {
3840 insn = insn_last;
3841 while (insn != NULL_RTX)
3842 {
3843 /* JUMP_P insns have already been "marked" above. */
3844 if (NONJUMP_INSN_P (insn))
3845 mark_label_nuses (PATTERN (insn));
3846
3847 insn = PREV_INSN (insn);
3848 }
3849 }
3850
3851 before = PREV_INSN (trial);
3852 after = NEXT_INSN (trial);
3853
3854 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
3855
3856 delete_insn (trial);
3857
3858 /* Recursively call try_split for each new insn created; by the
3859 time control returns here that insn will be fully split, so
3860 set LAST and continue from the insn after the one returned.
3861 We can't use next_active_insn here since AFTER may be a note.
3862 Ignore deleted insns, which can be occur if not optimizing. */
3863 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3864 if (! tem->deleted () && INSN_P (tem))
3865 tem = try_split (PATTERN (tem), tem, 1);
3866
3867 /* Return either the first or the last insn, depending on which was
3868 requested. */
3869 return last
3870 ? (after ? PREV_INSN (after) : get_last_insn ())
3871 : NEXT_INSN (before);
3872 }
3873 \f
3874 /* Make and return an INSN rtx, initializing all its slots.
3875 Store PATTERN in the pattern slots. */
3876
3877 rtx_insn *
3878 make_insn_raw (rtx pattern)
3879 {
3880 rtx_insn *insn;
3881
3882 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
3883
3884 INSN_UID (insn) = cur_insn_uid++;
3885 PATTERN (insn) = pattern;
3886 INSN_CODE (insn) = -1;
3887 REG_NOTES (insn) = NULL;
3888 INSN_LOCATION (insn) = curr_insn_location ();
3889 BLOCK_FOR_INSN (insn) = NULL;
3890
3891 #ifdef ENABLE_RTL_CHECKING
3892 if (insn
3893 && INSN_P (insn)
3894 && (returnjump_p (insn)
3895 || (GET_CODE (insn) == SET
3896 && SET_DEST (insn) == pc_rtx)))
3897 {
3898 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3899 debug_rtx (insn);
3900 }
3901 #endif
3902
3903 return insn;
3904 }
3905
3906 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3907
3908 static rtx_insn *
3909 make_debug_insn_raw (rtx pattern)
3910 {
3911 rtx_debug_insn *insn;
3912
3913 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
3914 INSN_UID (insn) = cur_debug_insn_uid++;
3915 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3916 INSN_UID (insn) = cur_insn_uid++;
3917
3918 PATTERN (insn) = pattern;
3919 INSN_CODE (insn) = -1;
3920 REG_NOTES (insn) = NULL;
3921 INSN_LOCATION (insn) = curr_insn_location ();
3922 BLOCK_FOR_INSN (insn) = NULL;
3923
3924 return insn;
3925 }
3926
3927 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3928
3929 static rtx_insn *
3930 make_jump_insn_raw (rtx pattern)
3931 {
3932 rtx_jump_insn *insn;
3933
3934 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
3935 INSN_UID (insn) = cur_insn_uid++;
3936
3937 PATTERN (insn) = pattern;
3938 INSN_CODE (insn) = -1;
3939 REG_NOTES (insn) = NULL;
3940 JUMP_LABEL (insn) = NULL;
3941 INSN_LOCATION (insn) = curr_insn_location ();
3942 BLOCK_FOR_INSN (insn) = NULL;
3943
3944 return insn;
3945 }
3946
3947 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3948
3949 static rtx_insn *
3950 make_call_insn_raw (rtx pattern)
3951 {
3952 rtx_call_insn *insn;
3953
3954 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
3955 INSN_UID (insn) = cur_insn_uid++;
3956
3957 PATTERN (insn) = pattern;
3958 INSN_CODE (insn) = -1;
3959 REG_NOTES (insn) = NULL;
3960 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3961 INSN_LOCATION (insn) = curr_insn_location ();
3962 BLOCK_FOR_INSN (insn) = NULL;
3963
3964 return insn;
3965 }
3966
3967 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
3968
3969 static rtx_note *
3970 make_note_raw (enum insn_note subtype)
3971 {
3972 /* Some notes are never created this way at all. These notes are
3973 only created by patching out insns. */
3974 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3975 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3976
3977 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
3978 INSN_UID (note) = cur_insn_uid++;
3979 NOTE_KIND (note) = subtype;
3980 BLOCK_FOR_INSN (note) = NULL;
3981 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3982 return note;
3983 }
3984 \f
3985 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3986 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3987 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3988
3989 static inline void
3990 link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
3991 {
3992 SET_PREV_INSN (insn) = prev;
3993 SET_NEXT_INSN (insn) = next;
3994 if (prev != NULL)
3995 {
3996 SET_NEXT_INSN (prev) = insn;
3997 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3998 {
3999 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4000 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
4001 }
4002 }
4003 if (next != NULL)
4004 {
4005 SET_PREV_INSN (next) = insn;
4006 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4007 {
4008 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4009 SET_PREV_INSN (sequence->insn (0)) = insn;
4010 }
4011 }
4012
4013 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4014 {
4015 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4016 SET_PREV_INSN (sequence->insn (0)) = prev;
4017 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4018 }
4019 }
4020
4021 /* Add INSN to the end of the doubly-linked list.
4022 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4023
4024 void
4025 add_insn (rtx_insn *insn)
4026 {
4027 rtx_insn *prev = get_last_insn ();
4028 link_insn_into_chain (insn, prev, NULL);
4029 if (NULL == get_insns ())
4030 set_first_insn (insn);
4031 set_last_insn (insn);
4032 }
4033
4034 /* Add INSN into the doubly-linked list after insn AFTER. */
4035
4036 static void
4037 add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4038 {
4039 rtx_insn *next = NEXT_INSN (after);
4040
4041 gcc_assert (!optimize || !after->deleted ());
4042
4043 link_insn_into_chain (insn, after, next);
4044
4045 if (next == NULL)
4046 {
4047 struct sequence_stack *seq;
4048
4049 for (seq = get_current_sequence (); seq; seq = seq->next)
4050 if (after == seq->last)
4051 {
4052 seq->last = insn;
4053 break;
4054 }
4055 }
4056 }
4057
4058 /* Add INSN into the doubly-linked list before insn BEFORE. */
4059
4060 static void
4061 add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4062 {
4063 rtx_insn *prev = PREV_INSN (before);
4064
4065 gcc_assert (!optimize || !before->deleted ());
4066
4067 link_insn_into_chain (insn, prev, before);
4068
4069 if (prev == NULL)
4070 {
4071 struct sequence_stack *seq;
4072
4073 for (seq = get_current_sequence (); seq; seq = seq->next)
4074 if (before == seq->first)
4075 {
4076 seq->first = insn;
4077 break;
4078 }
4079
4080 gcc_assert (seq);
4081 }
4082 }
4083
4084 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4085 If BB is NULL, an attempt is made to infer the bb from before.
4086
4087 This and the next function should be the only functions called
4088 to insert an insn once delay slots have been filled since only
4089 they know how to update a SEQUENCE. */
4090
4091 void
4092 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
4093 {
4094 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4095 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4096 add_insn_after_nobb (insn, after);
4097 if (!BARRIER_P (after)
4098 && !BARRIER_P (insn)
4099 && (bb = BLOCK_FOR_INSN (after)))
4100 {
4101 set_block_for_insn (insn, bb);
4102 if (INSN_P (insn))
4103 df_insn_rescan (insn);
4104 /* Should not happen as first in the BB is always
4105 either NOTE or LABEL. */
4106 if (BB_END (bb) == after
4107 /* Avoid clobbering of structure when creating new BB. */
4108 && !BARRIER_P (insn)
4109 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4110 BB_END (bb) = insn;
4111 }
4112 }
4113
4114 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4115 If BB is NULL, an attempt is made to infer the bb from before.
4116
4117 This and the previous function should be the only functions called
4118 to insert an insn once delay slots have been filled since only
4119 they know how to update a SEQUENCE. */
4120
4121 void
4122 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
4123 {
4124 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4125 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4126 add_insn_before_nobb (insn, before);
4127
4128 if (!bb
4129 && !BARRIER_P (before)
4130 && !BARRIER_P (insn))
4131 bb = BLOCK_FOR_INSN (before);
4132
4133 if (bb)
4134 {
4135 set_block_for_insn (insn, bb);
4136 if (INSN_P (insn))
4137 df_insn_rescan (insn);
4138 /* Should not happen as first in the BB is always either NOTE or
4139 LABEL. */
4140 gcc_assert (BB_HEAD (bb) != insn
4141 /* Avoid clobbering of structure when creating new BB. */
4142 || BARRIER_P (insn)
4143 || NOTE_INSN_BASIC_BLOCK_P (insn));
4144 }
4145 }
4146
4147 /* Replace insn with an deleted instruction note. */
4148
4149 void
4150 set_insn_deleted (rtx insn)
4151 {
4152 if (INSN_P (insn))
4153 df_insn_delete (as_a <rtx_insn *> (insn));
4154 PUT_CODE (insn, NOTE);
4155 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4156 }
4157
4158
4159 /* Unlink INSN from the insn chain.
4160
4161 This function knows how to handle sequences.
4162
4163 This function does not invalidate data flow information associated with
4164 INSN (i.e. does not call df_insn_delete). That makes this function
4165 usable for only disconnecting an insn from the chain, and re-emit it
4166 elsewhere later.
4167
4168 To later insert INSN elsewhere in the insn chain via add_insn and
4169 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4170 the caller. Nullifying them here breaks many insn chain walks.
4171
4172 To really delete an insn and related DF information, use delete_insn. */
4173
4174 void
4175 remove_insn (rtx uncast_insn)
4176 {
4177 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4178 rtx_insn *next = NEXT_INSN (insn);
4179 rtx_insn *prev = PREV_INSN (insn);
4180 basic_block bb;
4181
4182 if (prev)
4183 {
4184 SET_NEXT_INSN (prev) = next;
4185 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4186 {
4187 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4188 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
4189 }
4190 }
4191 else
4192 {
4193 struct sequence_stack *seq;
4194
4195 for (seq = get_current_sequence (); seq; seq = seq->next)
4196 if (insn == seq->first)
4197 {
4198 seq->first = next;
4199 break;
4200 }
4201
4202 gcc_assert (seq);
4203 }
4204
4205 if (next)
4206 {
4207 SET_PREV_INSN (next) = prev;
4208 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4209 {
4210 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4211 SET_PREV_INSN (sequence->insn (0)) = prev;
4212 }
4213 }
4214 else
4215 {
4216 struct sequence_stack *seq;
4217
4218 for (seq = get_current_sequence (); seq; seq = seq->next)
4219 if (insn == seq->last)
4220 {
4221 seq->last = prev;
4222 break;
4223 }
4224
4225 gcc_assert (seq);
4226 }
4227
4228 /* Fix up basic block boundaries, if necessary. */
4229 if (!BARRIER_P (insn)
4230 && (bb = BLOCK_FOR_INSN (insn)))
4231 {
4232 if (BB_HEAD (bb) == insn)
4233 {
4234 /* Never ever delete the basic block note without deleting whole
4235 basic block. */
4236 gcc_assert (!NOTE_P (insn));
4237 BB_HEAD (bb) = next;
4238 }
4239 if (BB_END (bb) == insn)
4240 BB_END (bb) = prev;
4241 }
4242 }
4243
4244 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4245
4246 void
4247 add_function_usage_to (rtx call_insn, rtx call_fusage)
4248 {
4249 gcc_assert (call_insn && CALL_P (call_insn));
4250
4251 /* Put the register usage information on the CALL. If there is already
4252 some usage information, put ours at the end. */
4253 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4254 {
4255 rtx link;
4256
4257 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4258 link = XEXP (link, 1))
4259 ;
4260
4261 XEXP (link, 1) = call_fusage;
4262 }
4263 else
4264 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4265 }
4266
4267 /* Delete all insns made since FROM.
4268 FROM becomes the new last instruction. */
4269
4270 void
4271 delete_insns_since (rtx_insn *from)
4272 {
4273 if (from == 0)
4274 set_first_insn (0);
4275 else
4276 SET_NEXT_INSN (from) = 0;
4277 set_last_insn (from);
4278 }
4279
4280 /* This function is deprecated, please use sequences instead.
4281
4282 Move a consecutive bunch of insns to a different place in the chain.
4283 The insns to be moved are those between FROM and TO.
4284 They are moved to a new position after the insn AFTER.
4285 AFTER must not be FROM or TO or any insn in between.
4286
4287 This function does not know about SEQUENCEs and hence should not be
4288 called after delay-slot filling has been done. */
4289
4290 void
4291 reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4292 {
4293 if (flag_checking)
4294 {
4295 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4296 gcc_assert (after != x);
4297 gcc_assert (after != to);
4298 }
4299
4300 /* Splice this bunch out of where it is now. */
4301 if (PREV_INSN (from))
4302 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4303 if (NEXT_INSN (to))
4304 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
4305 if (get_last_insn () == to)
4306 set_last_insn (PREV_INSN (from));
4307 if (get_insns () == from)
4308 set_first_insn (NEXT_INSN (to));
4309
4310 /* Make the new neighbors point to it and it to them. */
4311 if (NEXT_INSN (after))
4312 SET_PREV_INSN (NEXT_INSN (after)) = to;
4313
4314 SET_NEXT_INSN (to) = NEXT_INSN (after);
4315 SET_PREV_INSN (from) = after;
4316 SET_NEXT_INSN (after) = from;
4317 if (after == get_last_insn ())
4318 set_last_insn (to);
4319 }
4320
4321 /* Same as function above, but take care to update BB boundaries. */
4322 void
4323 reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4324 {
4325 rtx_insn *prev = PREV_INSN (from);
4326 basic_block bb, bb2;
4327
4328 reorder_insns_nobb (from, to, after);
4329
4330 if (!BARRIER_P (after)
4331 && (bb = BLOCK_FOR_INSN (after)))
4332 {
4333 rtx_insn *x;
4334 df_set_bb_dirty (bb);
4335
4336 if (!BARRIER_P (from)
4337 && (bb2 = BLOCK_FOR_INSN (from)))
4338 {
4339 if (BB_END (bb2) == to)
4340 BB_END (bb2) = prev;
4341 df_set_bb_dirty (bb2);
4342 }
4343
4344 if (BB_END (bb) == after)
4345 BB_END (bb) = to;
4346
4347 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
4348 if (!BARRIER_P (x))
4349 df_insn_change_bb (x, bb);
4350 }
4351 }
4352
4353 \f
4354 /* Emit insn(s) of given code and pattern
4355 at a specified place within the doubly-linked list.
4356
4357 All of the emit_foo global entry points accept an object
4358 X which is either an insn list or a PATTERN of a single
4359 instruction.
4360
4361 There are thus a few canonical ways to generate code and
4362 emit it at a specific place in the instruction stream. For
4363 example, consider the instruction named SPOT and the fact that
4364 we would like to emit some instructions before SPOT. We might
4365 do it like this:
4366
4367 start_sequence ();
4368 ... emit the new instructions ...
4369 insns_head = get_insns ();
4370 end_sequence ();
4371
4372 emit_insn_before (insns_head, SPOT);
4373
4374 It used to be common to generate SEQUENCE rtl instead, but that
4375 is a relic of the past which no longer occurs. The reason is that
4376 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4377 generated would almost certainly die right after it was created. */
4378
4379 static rtx_insn *
4380 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4381 rtx_insn *(*make_raw) (rtx))
4382 {
4383 rtx_insn *insn;
4384
4385 gcc_assert (before);
4386
4387 if (x == NULL_RTX)
4388 return safe_as_a <rtx_insn *> (last);
4389
4390 switch (GET_CODE (x))
4391 {
4392 case DEBUG_INSN:
4393 case INSN:
4394 case JUMP_INSN:
4395 case CALL_INSN:
4396 case CODE_LABEL:
4397 case BARRIER:
4398 case NOTE:
4399 insn = as_a <rtx_insn *> (x);
4400 while (insn)
4401 {
4402 rtx_insn *next = NEXT_INSN (insn);
4403 add_insn_before (insn, before, bb);
4404 last = insn;
4405 insn = next;
4406 }
4407 break;
4408
4409 #ifdef ENABLE_RTL_CHECKING
4410 case SEQUENCE:
4411 gcc_unreachable ();
4412 break;
4413 #endif
4414
4415 default:
4416 last = (*make_raw) (x);
4417 add_insn_before (last, before, bb);
4418 break;
4419 }
4420
4421 return safe_as_a <rtx_insn *> (last);
4422 }
4423
4424 /* Make X be output before the instruction BEFORE. */
4425
4426 rtx_insn *
4427 emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4428 {
4429 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4430 }
4431
4432 /* Make an instruction with body X and code JUMP_INSN
4433 and output it before the instruction BEFORE. */
4434
4435 rtx_jump_insn *
4436 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4437 {
4438 return as_a <rtx_jump_insn *> (
4439 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4440 make_jump_insn_raw));
4441 }
4442
4443 /* Make an instruction with body X and code CALL_INSN
4444 and output it before the instruction BEFORE. */
4445
4446 rtx_insn *
4447 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4448 {
4449 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4450 make_call_insn_raw);
4451 }
4452
4453 /* Make an instruction with body X and code DEBUG_INSN
4454 and output it before the instruction BEFORE. */
4455
4456 rtx_insn *
4457 emit_debug_insn_before_noloc (rtx x, rtx before)
4458 {
4459 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4460 make_debug_insn_raw);
4461 }
4462
4463 /* Make an insn of code BARRIER
4464 and output it before the insn BEFORE. */
4465
4466 rtx_barrier *
4467 emit_barrier_before (rtx before)
4468 {
4469 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4470
4471 INSN_UID (insn) = cur_insn_uid++;
4472
4473 add_insn_before (insn, before, NULL);
4474 return insn;
4475 }
4476
4477 /* Emit the label LABEL before the insn BEFORE. */
4478
4479 rtx_code_label *
4480 emit_label_before (rtx label, rtx_insn *before)
4481 {
4482 gcc_checking_assert (INSN_UID (label) == 0);
4483 INSN_UID (label) = cur_insn_uid++;
4484 add_insn_before (label, before, NULL);
4485 return as_a <rtx_code_label *> (label);
4486 }
4487 \f
4488 /* Helper for emit_insn_after, handles lists of instructions
4489 efficiently. */
4490
4491 static rtx_insn *
4492 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
4493 {
4494 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4495 rtx_insn *last;
4496 rtx_insn *after_after;
4497 if (!bb && !BARRIER_P (after))
4498 bb = BLOCK_FOR_INSN (after);
4499
4500 if (bb)
4501 {
4502 df_set_bb_dirty (bb);
4503 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4504 if (!BARRIER_P (last))
4505 {
4506 set_block_for_insn (last, bb);
4507 df_insn_rescan (last);
4508 }
4509 if (!BARRIER_P (last))
4510 {
4511 set_block_for_insn (last, bb);
4512 df_insn_rescan (last);
4513 }
4514 if (BB_END (bb) == after)
4515 BB_END (bb) = last;
4516 }
4517 else
4518 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4519 continue;
4520
4521 after_after = NEXT_INSN (after);
4522
4523 SET_NEXT_INSN (after) = first;
4524 SET_PREV_INSN (first) = after;
4525 SET_NEXT_INSN (last) = after_after;
4526 if (after_after)
4527 SET_PREV_INSN (after_after) = last;
4528
4529 if (after == get_last_insn ())
4530 set_last_insn (last);
4531
4532 return last;
4533 }
4534
4535 static rtx_insn *
4536 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
4537 rtx_insn *(*make_raw)(rtx))
4538 {
4539 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4540 rtx_insn *last = after;
4541
4542 gcc_assert (after);
4543
4544 if (x == NULL_RTX)
4545 return last;
4546
4547 switch (GET_CODE (x))
4548 {
4549 case DEBUG_INSN:
4550 case INSN:
4551 case JUMP_INSN:
4552 case CALL_INSN:
4553 case CODE_LABEL:
4554 case BARRIER:
4555 case NOTE:
4556 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
4557 break;
4558
4559 #ifdef ENABLE_RTL_CHECKING
4560 case SEQUENCE:
4561 gcc_unreachable ();
4562 break;
4563 #endif
4564
4565 default:
4566 last = (*make_raw) (x);
4567 add_insn_after (last, after, bb);
4568 break;
4569 }
4570
4571 return last;
4572 }
4573
4574 /* Make X be output after the insn AFTER and set the BB of insn. If
4575 BB is NULL, an attempt is made to infer the BB from AFTER. */
4576
4577 rtx_insn *
4578 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4579 {
4580 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4581 }
4582
4583
4584 /* Make an insn of code JUMP_INSN with body X
4585 and output it after the insn AFTER. */
4586
4587 rtx_jump_insn *
4588 emit_jump_insn_after_noloc (rtx x, rtx after)
4589 {
4590 return as_a <rtx_jump_insn *> (
4591 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4592 }
4593
4594 /* Make an instruction with body X and code CALL_INSN
4595 and output it after the instruction AFTER. */
4596
4597 rtx_insn *
4598 emit_call_insn_after_noloc (rtx x, rtx after)
4599 {
4600 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4601 }
4602
4603 /* Make an instruction with body X and code CALL_INSN
4604 and output it after the instruction AFTER. */
4605
4606 rtx_insn *
4607 emit_debug_insn_after_noloc (rtx x, rtx after)
4608 {
4609 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4610 }
4611
4612 /* Make an insn of code BARRIER
4613 and output it after the insn AFTER. */
4614
4615 rtx_barrier *
4616 emit_barrier_after (rtx after)
4617 {
4618 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4619
4620 INSN_UID (insn) = cur_insn_uid++;
4621
4622 add_insn_after (insn, after, NULL);
4623 return insn;
4624 }
4625
4626 /* Emit the label LABEL after the insn AFTER. */
4627
4628 rtx_insn *
4629 emit_label_after (rtx label, rtx_insn *after)
4630 {
4631 gcc_checking_assert (INSN_UID (label) == 0);
4632 INSN_UID (label) = cur_insn_uid++;
4633 add_insn_after (label, after, NULL);
4634 return as_a <rtx_insn *> (label);
4635 }
4636 \f
4637 /* Notes require a bit of special handling: Some notes need to have their
4638 BLOCK_FOR_INSN set, others should never have it set, and some should
4639 have it set or clear depending on the context. */
4640
4641 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4642 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4643 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4644
4645 static bool
4646 note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4647 {
4648 switch (subtype)
4649 {
4650 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4651 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4652 return true;
4653
4654 /* Notes for var tracking and EH region markers can appear between or
4655 inside basic blocks. If the caller is emitting on the basic block
4656 boundary, do not set BLOCK_FOR_INSN on the new note. */
4657 case NOTE_INSN_VAR_LOCATION:
4658 case NOTE_INSN_CALL_ARG_LOCATION:
4659 case NOTE_INSN_EH_REGION_BEG:
4660 case NOTE_INSN_EH_REGION_END:
4661 return on_bb_boundary_p;
4662
4663 /* Otherwise, BLOCK_FOR_INSN must be set. */
4664 default:
4665 return false;
4666 }
4667 }
4668
4669 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4670
4671 rtx_note *
4672 emit_note_after (enum insn_note subtype, rtx_insn *after)
4673 {
4674 rtx_note *note = make_note_raw (subtype);
4675 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4676 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4677
4678 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4679 add_insn_after_nobb (note, after);
4680 else
4681 add_insn_after (note, after, bb);
4682 return note;
4683 }
4684
4685 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4686
4687 rtx_note *
4688 emit_note_before (enum insn_note subtype, rtx_insn *before)
4689 {
4690 rtx_note *note = make_note_raw (subtype);
4691 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4692 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4693
4694 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4695 add_insn_before_nobb (note, before);
4696 else
4697 add_insn_before (note, before, bb);
4698 return note;
4699 }
4700 \f
4701 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4702 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4703
4704 static rtx_insn *
4705 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
4706 rtx_insn *(*make_raw) (rtx))
4707 {
4708 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4709 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4710
4711 if (pattern == NULL_RTX || !loc)
4712 return last;
4713
4714 after = NEXT_INSN (after);
4715 while (1)
4716 {
4717 if (active_insn_p (after)
4718 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4719 && !INSN_LOCATION (after))
4720 INSN_LOCATION (after) = loc;
4721 if (after == last)
4722 break;
4723 after = NEXT_INSN (after);
4724 }
4725 return last;
4726 }
4727
4728 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4729 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4730 any DEBUG_INSNs. */
4731
4732 static rtx_insn *
4733 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
4734 rtx_insn *(*make_raw) (rtx))
4735 {
4736 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4737 rtx_insn *prev = after;
4738
4739 if (skip_debug_insns)
4740 while (DEBUG_INSN_P (prev))
4741 prev = PREV_INSN (prev);
4742
4743 if (INSN_P (prev))
4744 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
4745 make_raw);
4746 else
4747 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4748 }
4749
4750 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4751 rtx_insn *
4752 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4753 {
4754 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4755 }
4756
4757 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4758 rtx_insn *
4759 emit_insn_after (rtx pattern, rtx after)
4760 {
4761 return emit_pattern_after (pattern, after, true, make_insn_raw);
4762 }
4763
4764 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4765 rtx_jump_insn *
4766 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4767 {
4768 return as_a <rtx_jump_insn *> (
4769 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4770 }
4771
4772 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4773 rtx_jump_insn *
4774 emit_jump_insn_after (rtx pattern, rtx after)
4775 {
4776 return as_a <rtx_jump_insn *> (
4777 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4778 }
4779
4780 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4781 rtx_insn *
4782 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4783 {
4784 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4785 }
4786
4787 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4788 rtx_insn *
4789 emit_call_insn_after (rtx pattern, rtx after)
4790 {
4791 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4792 }
4793
4794 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4795 rtx_insn *
4796 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4797 {
4798 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4799 }
4800
4801 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4802 rtx_insn *
4803 emit_debug_insn_after (rtx pattern, rtx after)
4804 {
4805 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4806 }
4807
4808 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4809 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4810 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4811 CALL_INSN, etc. */
4812
4813 static rtx_insn *
4814 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
4815 rtx_insn *(*make_raw) (rtx))
4816 {
4817 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4818 rtx_insn *first = PREV_INSN (before);
4819 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4820 insnp ? before : NULL_RTX,
4821 NULL, make_raw);
4822
4823 if (pattern == NULL_RTX || !loc)
4824 return last;
4825
4826 if (!first)
4827 first = get_insns ();
4828 else
4829 first = NEXT_INSN (first);
4830 while (1)
4831 {
4832 if (active_insn_p (first)
4833 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4834 && !INSN_LOCATION (first))
4835 INSN_LOCATION (first) = loc;
4836 if (first == last)
4837 break;
4838 first = NEXT_INSN (first);
4839 }
4840 return last;
4841 }
4842
4843 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4844 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4845 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4846 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4847
4848 static rtx_insn *
4849 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
4850 bool insnp, rtx_insn *(*make_raw) (rtx))
4851 {
4852 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4853 rtx_insn *next = before;
4854
4855 if (skip_debug_insns)
4856 while (DEBUG_INSN_P (next))
4857 next = PREV_INSN (next);
4858
4859 if (INSN_P (next))
4860 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4861 insnp, make_raw);
4862 else
4863 return emit_pattern_before_noloc (pattern, before,
4864 insnp ? before : NULL_RTX,
4865 NULL, make_raw);
4866 }
4867
4868 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4869 rtx_insn *
4870 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4871 {
4872 return emit_pattern_before_setloc (pattern, before, loc, true,
4873 make_insn_raw);
4874 }
4875
4876 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4877 rtx_insn *
4878 emit_insn_before (rtx pattern, rtx before)
4879 {
4880 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4881 }
4882
4883 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4884 rtx_jump_insn *
4885 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4886 {
4887 return as_a <rtx_jump_insn *> (
4888 emit_pattern_before_setloc (pattern, before, loc, false,
4889 make_jump_insn_raw));
4890 }
4891
4892 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4893 rtx_jump_insn *
4894 emit_jump_insn_before (rtx pattern, rtx before)
4895 {
4896 return as_a <rtx_jump_insn *> (
4897 emit_pattern_before (pattern, before, true, false,
4898 make_jump_insn_raw));
4899 }
4900
4901 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4902 rtx_insn *
4903 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
4904 {
4905 return emit_pattern_before_setloc (pattern, before, loc, false,
4906 make_call_insn_raw);
4907 }
4908
4909 /* Like emit_call_insn_before_noloc,
4910 but set insn_location according to BEFORE. */
4911 rtx_insn *
4912 emit_call_insn_before (rtx pattern, rtx_insn *before)
4913 {
4914 return emit_pattern_before (pattern, before, true, false,
4915 make_call_insn_raw);
4916 }
4917
4918 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4919 rtx_insn *
4920 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4921 {
4922 return emit_pattern_before_setloc (pattern, before, loc, false,
4923 make_debug_insn_raw);
4924 }
4925
4926 /* Like emit_debug_insn_before_noloc,
4927 but set insn_location according to BEFORE. */
4928 rtx_insn *
4929 emit_debug_insn_before (rtx pattern, rtx_insn *before)
4930 {
4931 return emit_pattern_before (pattern, before, false, false,
4932 make_debug_insn_raw);
4933 }
4934 \f
4935 /* Take X and emit it at the end of the doubly-linked
4936 INSN list.
4937
4938 Returns the last insn emitted. */
4939
4940 rtx_insn *
4941 emit_insn (rtx x)
4942 {
4943 rtx_insn *last = get_last_insn ();
4944 rtx_insn *insn;
4945
4946 if (x == NULL_RTX)
4947 return last;
4948
4949 switch (GET_CODE (x))
4950 {
4951 case DEBUG_INSN:
4952 case INSN:
4953 case JUMP_INSN:
4954 case CALL_INSN:
4955 case CODE_LABEL:
4956 case BARRIER:
4957 case NOTE:
4958 insn = as_a <rtx_insn *> (x);
4959 while (insn)
4960 {
4961 rtx_insn *next = NEXT_INSN (insn);
4962 add_insn (insn);
4963 last = insn;
4964 insn = next;
4965 }
4966 break;
4967
4968 #ifdef ENABLE_RTL_CHECKING
4969 case JUMP_TABLE_DATA:
4970 case SEQUENCE:
4971 gcc_unreachable ();
4972 break;
4973 #endif
4974
4975 default:
4976 last = make_insn_raw (x);
4977 add_insn (last);
4978 break;
4979 }
4980
4981 return last;
4982 }
4983
4984 /* Make an insn of code DEBUG_INSN with pattern X
4985 and add it to the end of the doubly-linked list. */
4986
4987 rtx_insn *
4988 emit_debug_insn (rtx x)
4989 {
4990 rtx_insn *last = get_last_insn ();
4991 rtx_insn *insn;
4992
4993 if (x == NULL_RTX)
4994 return last;
4995
4996 switch (GET_CODE (x))
4997 {
4998 case DEBUG_INSN:
4999 case INSN:
5000 case JUMP_INSN:
5001 case CALL_INSN:
5002 case CODE_LABEL:
5003 case BARRIER:
5004 case NOTE:
5005 insn = as_a <rtx_insn *> (x);
5006 while (insn)
5007 {
5008 rtx_insn *next = NEXT_INSN (insn);
5009 add_insn (insn);
5010 last = insn;
5011 insn = next;
5012 }
5013 break;
5014
5015 #ifdef ENABLE_RTL_CHECKING
5016 case JUMP_TABLE_DATA:
5017 case SEQUENCE:
5018 gcc_unreachable ();
5019 break;
5020 #endif
5021
5022 default:
5023 last = make_debug_insn_raw (x);
5024 add_insn (last);
5025 break;
5026 }
5027
5028 return last;
5029 }
5030
5031 /* Make an insn of code JUMP_INSN with pattern X
5032 and add it to the end of the doubly-linked list. */
5033
5034 rtx_insn *
5035 emit_jump_insn (rtx x)
5036 {
5037 rtx_insn *last = NULL;
5038 rtx_insn *insn;
5039
5040 switch (GET_CODE (x))
5041 {
5042 case DEBUG_INSN:
5043 case INSN:
5044 case JUMP_INSN:
5045 case CALL_INSN:
5046 case CODE_LABEL:
5047 case BARRIER:
5048 case NOTE:
5049 insn = as_a <rtx_insn *> (x);
5050 while (insn)
5051 {
5052 rtx_insn *next = NEXT_INSN (insn);
5053 add_insn (insn);
5054 last = insn;
5055 insn = next;
5056 }
5057 break;
5058
5059 #ifdef ENABLE_RTL_CHECKING
5060 case JUMP_TABLE_DATA:
5061 case SEQUENCE:
5062 gcc_unreachable ();
5063 break;
5064 #endif
5065
5066 default:
5067 last = make_jump_insn_raw (x);
5068 add_insn (last);
5069 break;
5070 }
5071
5072 return last;
5073 }
5074
5075 /* Make an insn of code CALL_INSN with pattern X
5076 and add it to the end of the doubly-linked list. */
5077
5078 rtx_insn *
5079 emit_call_insn (rtx x)
5080 {
5081 rtx_insn *insn;
5082
5083 switch (GET_CODE (x))
5084 {
5085 case DEBUG_INSN:
5086 case INSN:
5087 case JUMP_INSN:
5088 case CALL_INSN:
5089 case CODE_LABEL:
5090 case BARRIER:
5091 case NOTE:
5092 insn = emit_insn (x);
5093 break;
5094
5095 #ifdef ENABLE_RTL_CHECKING
5096 case SEQUENCE:
5097 case JUMP_TABLE_DATA:
5098 gcc_unreachable ();
5099 break;
5100 #endif
5101
5102 default:
5103 insn = make_call_insn_raw (x);
5104 add_insn (insn);
5105 break;
5106 }
5107
5108 return insn;
5109 }
5110
5111 /* Add the label LABEL to the end of the doubly-linked list. */
5112
5113 rtx_code_label *
5114 emit_label (rtx uncast_label)
5115 {
5116 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5117
5118 gcc_checking_assert (INSN_UID (label) == 0);
5119 INSN_UID (label) = cur_insn_uid++;
5120 add_insn (label);
5121 return label;
5122 }
5123
5124 /* Make an insn of code JUMP_TABLE_DATA
5125 and add it to the end of the doubly-linked list. */
5126
5127 rtx_jump_table_data *
5128 emit_jump_table_data (rtx table)
5129 {
5130 rtx_jump_table_data *jump_table_data =
5131 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
5132 INSN_UID (jump_table_data) = cur_insn_uid++;
5133 PATTERN (jump_table_data) = table;
5134 BLOCK_FOR_INSN (jump_table_data) = NULL;
5135 add_insn (jump_table_data);
5136 return jump_table_data;
5137 }
5138
5139 /* Make an insn of code BARRIER
5140 and add it to the end of the doubly-linked list. */
5141
5142 rtx_barrier *
5143 emit_barrier (void)
5144 {
5145 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
5146 INSN_UID (barrier) = cur_insn_uid++;
5147 add_insn (barrier);
5148 return barrier;
5149 }
5150
5151 /* Emit a copy of note ORIG. */
5152
5153 rtx_note *
5154 emit_note_copy (rtx_note *orig)
5155 {
5156 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5157 rtx_note *note = make_note_raw (kind);
5158 NOTE_DATA (note) = NOTE_DATA (orig);
5159 add_insn (note);
5160 return note;
5161 }
5162
5163 /* Make an insn of code NOTE or type NOTE_NO
5164 and add it to the end of the doubly-linked list. */
5165
5166 rtx_note *
5167 emit_note (enum insn_note kind)
5168 {
5169 rtx_note *note = make_note_raw (kind);
5170 add_insn (note);
5171 return note;
5172 }
5173
5174 /* Emit a clobber of lvalue X. */
5175
5176 rtx_insn *
5177 emit_clobber (rtx x)
5178 {
5179 /* CONCATs should not appear in the insn stream. */
5180 if (GET_CODE (x) == CONCAT)
5181 {
5182 emit_clobber (XEXP (x, 0));
5183 return emit_clobber (XEXP (x, 1));
5184 }
5185 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5186 }
5187
5188 /* Return a sequence of insns to clobber lvalue X. */
5189
5190 rtx_insn *
5191 gen_clobber (rtx x)
5192 {
5193 rtx_insn *seq;
5194
5195 start_sequence ();
5196 emit_clobber (x);
5197 seq = get_insns ();
5198 end_sequence ();
5199 return seq;
5200 }
5201
5202 /* Emit a use of rvalue X. */
5203
5204 rtx_insn *
5205 emit_use (rtx x)
5206 {
5207 /* CONCATs should not appear in the insn stream. */
5208 if (GET_CODE (x) == CONCAT)
5209 {
5210 emit_use (XEXP (x, 0));
5211 return emit_use (XEXP (x, 1));
5212 }
5213 return emit_insn (gen_rtx_USE (VOIDmode, x));
5214 }
5215
5216 /* Return a sequence of insns to use rvalue X. */
5217
5218 rtx_insn *
5219 gen_use (rtx x)
5220 {
5221 rtx_insn *seq;
5222
5223 start_sequence ();
5224 emit_use (x);
5225 seq = get_insns ();
5226 end_sequence ();
5227 return seq;
5228 }
5229
5230 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5231 Return the set in INSN that such notes describe, or NULL if the notes
5232 have no meaning for INSN. */
5233
5234 rtx
5235 set_for_reg_notes (rtx insn)
5236 {
5237 rtx pat, reg;
5238
5239 if (!INSN_P (insn))
5240 return NULL_RTX;
5241
5242 pat = PATTERN (insn);
5243 if (GET_CODE (pat) == PARALLEL)
5244 {
5245 /* We do not use single_set because that ignores SETs of unused
5246 registers. REG_EQUAL and REG_EQUIV notes really do require the
5247 PARALLEL to have a single SET. */
5248 if (multiple_sets (insn))
5249 return NULL_RTX;
5250 pat = XVECEXP (pat, 0, 0);
5251 }
5252
5253 if (GET_CODE (pat) != SET)
5254 return NULL_RTX;
5255
5256 reg = SET_DEST (pat);
5257
5258 /* Notes apply to the contents of a STRICT_LOW_PART. */
5259 if (GET_CODE (reg) == STRICT_LOW_PART
5260 || GET_CODE (reg) == ZERO_EXTRACT)
5261 reg = XEXP (reg, 0);
5262
5263 /* Check that we have a register. */
5264 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5265 return NULL_RTX;
5266
5267 return pat;
5268 }
5269
5270 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5271 note of this type already exists, remove it first. */
5272
5273 rtx
5274 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5275 {
5276 rtx note = find_reg_note (insn, kind, NULL_RTX);
5277
5278 switch (kind)
5279 {
5280 case REG_EQUAL:
5281 case REG_EQUIV:
5282 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5283 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5284 return NULL_RTX;
5285
5286 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5287 It serves no useful purpose and breaks eliminate_regs. */
5288 if (GET_CODE (datum) == ASM_OPERANDS)
5289 return NULL_RTX;
5290
5291 /* Notes with side effects are dangerous. Even if the side-effect
5292 initially mirrors one in PATTERN (INSN), later optimizations
5293 might alter the way that the final register value is calculated
5294 and so move or alter the side-effect in some way. The note would
5295 then no longer be a valid substitution for SET_SRC. */
5296 if (side_effects_p (datum))
5297 return NULL_RTX;
5298 break;
5299
5300 default:
5301 break;
5302 }
5303
5304 if (note)
5305 XEXP (note, 0) = datum;
5306 else
5307 {
5308 add_reg_note (insn, kind, datum);
5309 note = REG_NOTES (insn);
5310 }
5311
5312 switch (kind)
5313 {
5314 case REG_EQUAL:
5315 case REG_EQUIV:
5316 df_notes_rescan (as_a <rtx_insn *> (insn));
5317 break;
5318 default:
5319 break;
5320 }
5321
5322 return note;
5323 }
5324
5325 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5326 rtx
5327 set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5328 {
5329 rtx set = set_for_reg_notes (insn);
5330
5331 if (set && SET_DEST (set) == dst)
5332 return set_unique_reg_note (insn, kind, datum);
5333 return NULL_RTX;
5334 }
5335 \f
5336 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5337 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5338 is true.
5339
5340 If X is a label, it is simply added into the insn chain. */
5341
5342 rtx_insn *
5343 emit (rtx x, bool allow_barrier_p)
5344 {
5345 enum rtx_code code = classify_insn (x);
5346
5347 switch (code)
5348 {
5349 case CODE_LABEL:
5350 return emit_label (x);
5351 case INSN:
5352 return emit_insn (x);
5353 case JUMP_INSN:
5354 {
5355 rtx_insn *insn = emit_jump_insn (x);
5356 if (allow_barrier_p
5357 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5358 return emit_barrier ();
5359 return insn;
5360 }
5361 case CALL_INSN:
5362 return emit_call_insn (x);
5363 case DEBUG_INSN:
5364 return emit_debug_insn (x);
5365 default:
5366 gcc_unreachable ();
5367 }
5368 }
5369 \f
5370 /* Space for free sequence stack entries. */
5371 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5372
5373 /* Begin emitting insns to a sequence. If this sequence will contain
5374 something that might cause the compiler to pop arguments to function
5375 calls (because those pops have previously been deferred; see
5376 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5377 before calling this function. That will ensure that the deferred
5378 pops are not accidentally emitted in the middle of this sequence. */
5379
5380 void
5381 start_sequence (void)
5382 {
5383 struct sequence_stack *tem;
5384
5385 if (free_sequence_stack != NULL)
5386 {
5387 tem = free_sequence_stack;
5388 free_sequence_stack = tem->next;
5389 }
5390 else
5391 tem = ggc_alloc<sequence_stack> ();
5392
5393 tem->next = get_current_sequence ()->next;
5394 tem->first = get_insns ();
5395 tem->last = get_last_insn ();
5396 get_current_sequence ()->next = tem;
5397
5398 set_first_insn (0);
5399 set_last_insn (0);
5400 }
5401
5402 /* Set up the insn chain starting with FIRST as the current sequence,
5403 saving the previously current one. See the documentation for
5404 start_sequence for more information about how to use this function. */
5405
5406 void
5407 push_to_sequence (rtx_insn *first)
5408 {
5409 rtx_insn *last;
5410
5411 start_sequence ();
5412
5413 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5414 ;
5415
5416 set_first_insn (first);
5417 set_last_insn (last);
5418 }
5419
5420 /* Like push_to_sequence, but take the last insn as an argument to avoid
5421 looping through the list. */
5422
5423 void
5424 push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5425 {
5426 start_sequence ();
5427
5428 set_first_insn (first);
5429 set_last_insn (last);
5430 }
5431
5432 /* Set up the outer-level insn chain
5433 as the current sequence, saving the previously current one. */
5434
5435 void
5436 push_topmost_sequence (void)
5437 {
5438 struct sequence_stack *top;
5439
5440 start_sequence ();
5441
5442 top = get_topmost_sequence ();
5443 set_first_insn (top->first);
5444 set_last_insn (top->last);
5445 }
5446
5447 /* After emitting to the outer-level insn chain, update the outer-level
5448 insn chain, and restore the previous saved state. */
5449
5450 void
5451 pop_topmost_sequence (void)
5452 {
5453 struct sequence_stack *top;
5454
5455 top = get_topmost_sequence ();
5456 top->first = get_insns ();
5457 top->last = get_last_insn ();
5458
5459 end_sequence ();
5460 }
5461
5462 /* After emitting to a sequence, restore previous saved state.
5463
5464 To get the contents of the sequence just made, you must call
5465 `get_insns' *before* calling here.
5466
5467 If the compiler might have deferred popping arguments while
5468 generating this sequence, and this sequence will not be immediately
5469 inserted into the instruction stream, use do_pending_stack_adjust
5470 before calling get_insns. That will ensure that the deferred
5471 pops are inserted into this sequence, and not into some random
5472 location in the instruction stream. See INHIBIT_DEFER_POP for more
5473 information about deferred popping of arguments. */
5474
5475 void
5476 end_sequence (void)
5477 {
5478 struct sequence_stack *tem = get_current_sequence ()->next;
5479
5480 set_first_insn (tem->first);
5481 set_last_insn (tem->last);
5482 get_current_sequence ()->next = tem->next;
5483
5484 memset (tem, 0, sizeof (*tem));
5485 tem->next = free_sequence_stack;
5486 free_sequence_stack = tem;
5487 }
5488
5489 /* Return 1 if currently emitting into a sequence. */
5490
5491 int
5492 in_sequence_p (void)
5493 {
5494 return get_current_sequence ()->next != 0;
5495 }
5496 \f
5497 /* Put the various virtual registers into REGNO_REG_RTX. */
5498
5499 static void
5500 init_virtual_regs (void)
5501 {
5502 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5503 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5504 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5505 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5506 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5507 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5508 = virtual_preferred_stack_boundary_rtx;
5509 }
5510
5511 \f
5512 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5513 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5514 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5515 static int copy_insn_n_scratches;
5516
5517 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5518 copied an ASM_OPERANDS.
5519 In that case, it is the original input-operand vector. */
5520 static rtvec orig_asm_operands_vector;
5521
5522 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5523 copied an ASM_OPERANDS.
5524 In that case, it is the copied input-operand vector. */
5525 static rtvec copy_asm_operands_vector;
5526
5527 /* Likewise for the constraints vector. */
5528 static rtvec orig_asm_constraints_vector;
5529 static rtvec copy_asm_constraints_vector;
5530
5531 /* Recursively create a new copy of an rtx for copy_insn.
5532 This function differs from copy_rtx in that it handles SCRATCHes and
5533 ASM_OPERANDs properly.
5534 Normally, this function is not used directly; use copy_insn as front end.
5535 However, you could first copy an insn pattern with copy_insn and then use
5536 this function afterwards to properly copy any REG_NOTEs containing
5537 SCRATCHes. */
5538
5539 rtx
5540 copy_insn_1 (rtx orig)
5541 {
5542 rtx copy;
5543 int i, j;
5544 RTX_CODE code;
5545 const char *format_ptr;
5546
5547 if (orig == NULL)
5548 return NULL;
5549
5550 code = GET_CODE (orig);
5551
5552 switch (code)
5553 {
5554 case REG:
5555 case DEBUG_EXPR:
5556 CASE_CONST_ANY:
5557 case SYMBOL_REF:
5558 case CODE_LABEL:
5559 case PC:
5560 case CC0:
5561 case RETURN:
5562 case SIMPLE_RETURN:
5563 return orig;
5564 case CLOBBER:
5565 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5566 clobbers or clobbers of hard registers that originated as pseudos.
5567 This is needed to allow safe register renaming. */
5568 if (REG_P (XEXP (orig, 0))
5569 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5570 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5571 return orig;
5572 break;
5573
5574 case SCRATCH:
5575 for (i = 0; i < copy_insn_n_scratches; i++)
5576 if (copy_insn_scratch_in[i] == orig)
5577 return copy_insn_scratch_out[i];
5578 break;
5579
5580 case CONST:
5581 if (shared_const_p (orig))
5582 return orig;
5583 break;
5584
5585 /* A MEM with a constant address is not sharable. The problem is that
5586 the constant address may need to be reloaded. If the mem is shared,
5587 then reloading one copy of this mem will cause all copies to appear
5588 to have been reloaded. */
5589
5590 default:
5591 break;
5592 }
5593
5594 /* Copy the various flags, fields, and other information. We assume
5595 that all fields need copying, and then clear the fields that should
5596 not be copied. That is the sensible default behavior, and forces
5597 us to explicitly document why we are *not* copying a flag. */
5598 copy = shallow_copy_rtx (orig);
5599
5600 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5601 if (INSN_P (orig))
5602 {
5603 RTX_FLAG (copy, jump) = 0;
5604 RTX_FLAG (copy, call) = 0;
5605 RTX_FLAG (copy, frame_related) = 0;
5606 }
5607
5608 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5609
5610 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5611 switch (*format_ptr++)
5612 {
5613 case 'e':
5614 if (XEXP (orig, i) != NULL)
5615 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5616 break;
5617
5618 case 'E':
5619 case 'V':
5620 if (XVEC (orig, i) == orig_asm_constraints_vector)
5621 XVEC (copy, i) = copy_asm_constraints_vector;
5622 else if (XVEC (orig, i) == orig_asm_operands_vector)
5623 XVEC (copy, i) = copy_asm_operands_vector;
5624 else if (XVEC (orig, i) != NULL)
5625 {
5626 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5627 for (j = 0; j < XVECLEN (copy, i); j++)
5628 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5629 }
5630 break;
5631
5632 case 't':
5633 case 'w':
5634 case 'i':
5635 case 's':
5636 case 'S':
5637 case 'u':
5638 case '0':
5639 /* These are left unchanged. */
5640 break;
5641
5642 default:
5643 gcc_unreachable ();
5644 }
5645
5646 if (code == SCRATCH)
5647 {
5648 i = copy_insn_n_scratches++;
5649 gcc_assert (i < MAX_RECOG_OPERANDS);
5650 copy_insn_scratch_in[i] = orig;
5651 copy_insn_scratch_out[i] = copy;
5652 }
5653 else if (code == ASM_OPERANDS)
5654 {
5655 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5656 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5657 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5658 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5659 }
5660
5661 return copy;
5662 }
5663
5664 /* Create a new copy of an rtx.
5665 This function differs from copy_rtx in that it handles SCRATCHes and
5666 ASM_OPERANDs properly.
5667 INSN doesn't really have to be a full INSN; it could be just the
5668 pattern. */
5669 rtx
5670 copy_insn (rtx insn)
5671 {
5672 copy_insn_n_scratches = 0;
5673 orig_asm_operands_vector = 0;
5674 orig_asm_constraints_vector = 0;
5675 copy_asm_operands_vector = 0;
5676 copy_asm_constraints_vector = 0;
5677 return copy_insn_1 (insn);
5678 }
5679
5680 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5681 on that assumption that INSN itself remains in its original place. */
5682
5683 rtx_insn *
5684 copy_delay_slot_insn (rtx_insn *insn)
5685 {
5686 /* Copy INSN with its rtx_code, all its notes, location etc. */
5687 insn = as_a <rtx_insn *> (copy_rtx (insn));
5688 INSN_UID (insn) = cur_insn_uid++;
5689 return insn;
5690 }
5691
5692 /* Initialize data structures and variables in this file
5693 before generating rtl for each function. */
5694
5695 void
5696 init_emit (void)
5697 {
5698 set_first_insn (NULL);
5699 set_last_insn (NULL);
5700 if (MIN_NONDEBUG_INSN_UID)
5701 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5702 else
5703 cur_insn_uid = 1;
5704 cur_debug_insn_uid = 1;
5705 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5706 first_label_num = label_num;
5707 get_current_sequence ()->next = NULL;
5708
5709 /* Init the tables that describe all the pseudo regs. */
5710
5711 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5712
5713 crtl->emit.regno_pointer_align
5714 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5715
5716 regno_reg_rtx
5717 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5718
5719 /* Put copies of all the hard registers into regno_reg_rtx. */
5720 memcpy (regno_reg_rtx,
5721 initial_regno_reg_rtx,
5722 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5723
5724 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5725 init_virtual_regs ();
5726
5727 /* Indicate that the virtual registers and stack locations are
5728 all pointers. */
5729 REG_POINTER (stack_pointer_rtx) = 1;
5730 REG_POINTER (frame_pointer_rtx) = 1;
5731 REG_POINTER (hard_frame_pointer_rtx) = 1;
5732 REG_POINTER (arg_pointer_rtx) = 1;
5733
5734 REG_POINTER (virtual_incoming_args_rtx) = 1;
5735 REG_POINTER (virtual_stack_vars_rtx) = 1;
5736 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5737 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5738 REG_POINTER (virtual_cfa_rtx) = 1;
5739
5740 #ifdef STACK_BOUNDARY
5741 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5742 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5743 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5744 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5745
5746 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5747 32-bit SPARC and cannot be all fixed because of the ABI). */
5748 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5749 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5750 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5751 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5752
5753 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5754 #endif
5755
5756 #ifdef INIT_EXPANDERS
5757 INIT_EXPANDERS;
5758 #endif
5759 }
5760
5761 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5762
5763 static rtx
5764 gen_const_vector (machine_mode mode, int constant)
5765 {
5766 rtx tem;
5767 rtvec v;
5768 int units, i;
5769 machine_mode inner;
5770
5771 units = GET_MODE_NUNITS (mode);
5772 inner = GET_MODE_INNER (mode);
5773
5774 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5775
5776 v = rtvec_alloc (units);
5777
5778 /* We need to call this function after we set the scalar const_tiny_rtx
5779 entries. */
5780 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5781
5782 for (i = 0; i < units; ++i)
5783 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5784
5785 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5786 return tem;
5787 }
5788
5789 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5790 all elements are zero, and the one vector when all elements are one. */
5791 rtx
5792 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5793 {
5794 machine_mode inner = GET_MODE_INNER (mode);
5795 int nunits = GET_MODE_NUNITS (mode);
5796 rtx x;
5797 int i;
5798
5799 /* Check to see if all of the elements have the same value. */
5800 x = RTVEC_ELT (v, nunits - 1);
5801 for (i = nunits - 2; i >= 0; i--)
5802 if (RTVEC_ELT (v, i) != x)
5803 break;
5804
5805 /* If the values are all the same, check to see if we can use one of the
5806 standard constant vectors. */
5807 if (i == -1)
5808 {
5809 if (x == CONST0_RTX (inner))
5810 return CONST0_RTX (mode);
5811 else if (x == CONST1_RTX (inner))
5812 return CONST1_RTX (mode);
5813 else if (x == CONSTM1_RTX (inner))
5814 return CONSTM1_RTX (mode);
5815 }
5816
5817 return gen_rtx_raw_CONST_VECTOR (mode, v);
5818 }
5819
5820 /* Initialise global register information required by all functions. */
5821
5822 void
5823 init_emit_regs (void)
5824 {
5825 int i;
5826 machine_mode mode;
5827 mem_attrs *attrs;
5828
5829 /* Reset register attributes */
5830 reg_attrs_htab->empty ();
5831
5832 /* We need reg_raw_mode, so initialize the modes now. */
5833 init_reg_modes_target ();
5834
5835 /* Assign register numbers to the globally defined register rtx. */
5836 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5837 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5838 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5839 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5840 virtual_incoming_args_rtx =
5841 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5842 virtual_stack_vars_rtx =
5843 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5844 virtual_stack_dynamic_rtx =
5845 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5846 virtual_outgoing_args_rtx =
5847 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5848 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5849 virtual_preferred_stack_boundary_rtx =
5850 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
5851
5852 /* Initialize RTL for commonly used hard registers. These are
5853 copied into regno_reg_rtx as we begin to compile each function. */
5854 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5855 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5856
5857 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5858 return_address_pointer_rtx
5859 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5860 #endif
5861
5862 pic_offset_table_rtx = NULL_RTX;
5863 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5864 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5865
5866 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5867 {
5868 mode = (machine_mode) i;
5869 attrs = ggc_cleared_alloc<mem_attrs> ();
5870 attrs->align = BITS_PER_UNIT;
5871 attrs->addrspace = ADDR_SPACE_GENERIC;
5872 if (mode != BLKmode)
5873 {
5874 attrs->size_known_p = true;
5875 attrs->size = GET_MODE_SIZE (mode);
5876 if (STRICT_ALIGNMENT)
5877 attrs->align = GET_MODE_ALIGNMENT (mode);
5878 }
5879 mode_mem_attrs[i] = attrs;
5880 }
5881 }
5882
5883 /* Initialize global machine_mode variables. */
5884
5885 void
5886 init_derived_machine_modes (void)
5887 {
5888 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
5889 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
5890 {
5891 scalar_int_mode mode = mode_iter.require ();
5892
5893 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5894 && !opt_byte_mode.exists ())
5895 opt_byte_mode = mode;
5896
5897 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5898 && !opt_word_mode.exists ())
5899 opt_word_mode = mode;
5900 }
5901
5902 byte_mode = opt_byte_mode.require ();
5903 word_mode = opt_word_mode.require ();
5904 ptr_mode = int_mode_for_size (POINTER_SIZE, 0).require ();
5905 }
5906
5907 /* Create some permanent unique rtl objects shared between all functions. */
5908
5909 void
5910 init_emit_once (void)
5911 {
5912 int i;
5913 machine_mode mode;
5914 scalar_float_mode double_mode;
5915 opt_scalar_mode smode_iter;
5916
5917 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5918 CONST_FIXED, and memory attribute hash tables. */
5919 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
5920
5921 #if TARGET_SUPPORTS_WIDE_INT
5922 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5923 #endif
5924 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5925
5926 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5927
5928 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5929
5930 #ifdef INIT_EXPANDERS
5931 /* This is to initialize {init|mark|free}_machine_status before the first
5932 call to push_function_context_to. This is needed by the Chill front
5933 end which calls push_function_context_to before the first call to
5934 init_function_start. */
5935 INIT_EXPANDERS;
5936 #endif
5937
5938 /* Create the unique rtx's for certain rtx codes and operand values. */
5939
5940 /* Process stack-limiting command-line options. */
5941 if (opt_fstack_limit_symbol_arg != NULL)
5942 stack_limit_rtx
5943 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
5944 if (opt_fstack_limit_register_no >= 0)
5945 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
5946
5947 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5948 tries to use these variables. */
5949 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5950 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5951 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5952
5953 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5954 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5955 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5956 else
5957 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5958
5959 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
5960
5961 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5962 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5963 real_from_integer (&dconst2, double_mode, 2, SIGNED);
5964
5965 dconstm1 = dconst1;
5966 dconstm1.sign = 1;
5967
5968 dconsthalf = dconst1;
5969 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5970
5971 for (i = 0; i < 3; i++)
5972 {
5973 const REAL_VALUE_TYPE *const r =
5974 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5975
5976 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
5977 const_tiny_rtx[i][(int) mode] =
5978 const_double_from_real_value (*r, mode);
5979
5980 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5981 const_tiny_rtx[i][(int) mode] =
5982 const_double_from_real_value (*r, mode);
5983
5984 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5985
5986 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5987 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5988
5989 for (mode = MIN_MODE_PARTIAL_INT;
5990 mode <= MAX_MODE_PARTIAL_INT;
5991 mode = (machine_mode)((int)(mode) + 1))
5992 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5993 }
5994
5995 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5996
5997 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5998 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5999
6000 for (mode = MIN_MODE_PARTIAL_INT;
6001 mode <= MAX_MODE_PARTIAL_INT;
6002 mode = (machine_mode)((int)(mode) + 1))
6003 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6004
6005 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6006 {
6007 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6008 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6009 }
6010
6011 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6012 {
6013 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6014 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6015 }
6016
6017 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6018 {
6019 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6020 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6021 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6022 }
6023
6024 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6025 {
6026 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6027 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6028 }
6029
6030 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6031 {
6032 scalar_mode smode = smode_iter.require ();
6033 FCONST0 (smode).data.high = 0;
6034 FCONST0 (smode).data.low = 0;
6035 FCONST0 (smode).mode = smode;
6036 const_tiny_rtx[0][(int) smode]
6037 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6038 }
6039
6040 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6041 {
6042 scalar_mode smode = smode_iter.require ();
6043 FCONST0 (smode).data.high = 0;
6044 FCONST0 (smode).data.low = 0;
6045 FCONST0 (smode).mode = smode;
6046 const_tiny_rtx[0][(int) smode]
6047 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6048 }
6049
6050 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6051 {
6052 scalar_mode smode = smode_iter.require ();
6053 FCONST0 (smode).data.high = 0;
6054 FCONST0 (smode).data.low = 0;
6055 FCONST0 (smode).mode = smode;
6056 const_tiny_rtx[0][(int) smode]
6057 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6058
6059 /* We store the value 1. */
6060 FCONST1 (smode).data.high = 0;
6061 FCONST1 (smode).data.low = 0;
6062 FCONST1 (smode).mode = smode;
6063 FCONST1 (smode).data
6064 = double_int_one.lshift (GET_MODE_FBIT (smode),
6065 HOST_BITS_PER_DOUBLE_INT,
6066 SIGNED_FIXED_POINT_MODE_P (smode));
6067 const_tiny_rtx[1][(int) smode]
6068 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6069 }
6070
6071 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6072 {
6073 scalar_mode smode = smode_iter.require ();
6074 FCONST0 (smode).data.high = 0;
6075 FCONST0 (smode).data.low = 0;
6076 FCONST0 (smode).mode = smode;
6077 const_tiny_rtx[0][(int) smode]
6078 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6079
6080 /* We store the value 1. */
6081 FCONST1 (smode).data.high = 0;
6082 FCONST1 (smode).data.low = 0;
6083 FCONST1 (smode).mode = smode;
6084 FCONST1 (smode).data
6085 = double_int_one.lshift (GET_MODE_FBIT (smode),
6086 HOST_BITS_PER_DOUBLE_INT,
6087 SIGNED_FIXED_POINT_MODE_P (smode));
6088 const_tiny_rtx[1][(int) smode]
6089 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6090 }
6091
6092 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6093 {
6094 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6095 }
6096
6097 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6098 {
6099 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6100 }
6101
6102 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6103 {
6104 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6105 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6106 }
6107
6108 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6109 {
6110 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6111 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6112 }
6113
6114 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6115 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6116 const_tiny_rtx[0][i] = const0_rtx;
6117
6118 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6119 if (STORE_FLAG_VALUE == 1)
6120 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6121
6122 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
6123 {
6124 scalar_mode smode = smode_iter.require ();
6125 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6126 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
6127 }
6128
6129 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6130 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6131 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6132 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6133 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6134 /*prev_insn=*/NULL,
6135 /*next_insn=*/NULL,
6136 /*bb=*/NULL,
6137 /*pattern=*/NULL_RTX,
6138 /*location=*/-1,
6139 CODE_FOR_nothing,
6140 /*reg_notes=*/NULL_RTX);
6141 }
6142 \f
6143 /* Produce exact duplicate of insn INSN after AFTER.
6144 Care updating of libcall regions if present. */
6145
6146 rtx_insn *
6147 emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6148 {
6149 rtx_insn *new_rtx;
6150 rtx link;
6151
6152 switch (GET_CODE (insn))
6153 {
6154 case INSN:
6155 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
6156 break;
6157
6158 case JUMP_INSN:
6159 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
6160 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6161 break;
6162
6163 case DEBUG_INSN:
6164 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6165 break;
6166
6167 case CALL_INSN:
6168 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
6169 if (CALL_INSN_FUNCTION_USAGE (insn))
6170 CALL_INSN_FUNCTION_USAGE (new_rtx)
6171 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6172 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6173 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6174 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6175 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6176 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6177 break;
6178
6179 default:
6180 gcc_unreachable ();
6181 }
6182
6183 /* Update LABEL_NUSES. */
6184 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
6185
6186 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
6187
6188 /* If the old insn is frame related, then so is the new one. This is
6189 primarily needed for IA-64 unwind info which marks epilogue insns,
6190 which may be duplicated by the basic block reordering code. */
6191 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6192
6193 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6194 rtx *ptail = &REG_NOTES (new_rtx);
6195 while (*ptail != NULL_RTX)
6196 ptail = &XEXP (*ptail, 1);
6197
6198 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6199 will make them. REG_LABEL_TARGETs are created there too, but are
6200 supposed to be sticky, so we copy them. */
6201 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6202 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6203 {
6204 *ptail = duplicate_reg_note (link);
6205 ptail = &XEXP (*ptail, 1);
6206 }
6207
6208 INSN_CODE (new_rtx) = INSN_CODE (insn);
6209 return new_rtx;
6210 }
6211
6212 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6213 rtx
6214 gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6215 {
6216 if (hard_reg_clobbers[mode][regno])
6217 return hard_reg_clobbers[mode][regno];
6218 else
6219 return (hard_reg_clobbers[mode][regno] =
6220 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6221 }
6222
6223 location_t prologue_location;
6224 location_t epilogue_location;
6225
6226 /* Hold current location information and last location information, so the
6227 datastructures are built lazily only when some instructions in given
6228 place are needed. */
6229 static location_t curr_location;
6230
6231 /* Allocate insn location datastructure. */
6232 void
6233 insn_locations_init (void)
6234 {
6235 prologue_location = epilogue_location = 0;
6236 curr_location = UNKNOWN_LOCATION;
6237 }
6238
6239 /* At the end of emit stage, clear current location. */
6240 void
6241 insn_locations_finalize (void)
6242 {
6243 epilogue_location = curr_location;
6244 curr_location = UNKNOWN_LOCATION;
6245 }
6246
6247 /* Set current location. */
6248 void
6249 set_curr_insn_location (location_t location)
6250 {
6251 curr_location = location;
6252 }
6253
6254 /* Get current location. */
6255 location_t
6256 curr_insn_location (void)
6257 {
6258 return curr_location;
6259 }
6260
6261 /* Return lexical scope block insn belongs to. */
6262 tree
6263 insn_scope (const rtx_insn *insn)
6264 {
6265 return LOCATION_BLOCK (INSN_LOCATION (insn));
6266 }
6267
6268 /* Return line number of the statement that produced this insn. */
6269 int
6270 insn_line (const rtx_insn *insn)
6271 {
6272 return LOCATION_LINE (INSN_LOCATION (insn));
6273 }
6274
6275 /* Return source file of the statement that produced this insn. */
6276 const char *
6277 insn_file (const rtx_insn *insn)
6278 {
6279 return LOCATION_FILE (INSN_LOCATION (insn));
6280 }
6281
6282 /* Return expanded location of the statement that produced this insn. */
6283 expanded_location
6284 insn_location (const rtx_insn *insn)
6285 {
6286 return expand_location (INSN_LOCATION (insn));
6287 }
6288
6289 /* Return true if memory model MODEL requires a pre-operation (release-style)
6290 barrier or a post-operation (acquire-style) barrier. While not universal,
6291 this function matches behavior of several targets. */
6292
6293 bool
6294 need_atomic_barrier_p (enum memmodel model, bool pre)
6295 {
6296 switch (model & MEMMODEL_BASE_MASK)
6297 {
6298 case MEMMODEL_RELAXED:
6299 case MEMMODEL_CONSUME:
6300 return false;
6301 case MEMMODEL_RELEASE:
6302 return pre;
6303 case MEMMODEL_ACQUIRE:
6304 return !pre;
6305 case MEMMODEL_ACQ_REL:
6306 case MEMMODEL_SEQ_CST:
6307 return true;
6308 default:
6309 gcc_unreachable ();
6310 }
6311 }
6312
6313 /* Initialize fields of rtl_data related to stack alignment. */
6314
6315 void
6316 rtl_data::init_stack_alignment ()
6317 {
6318 stack_alignment_needed = STACK_BOUNDARY;
6319 max_used_stack_slot_alignment = STACK_BOUNDARY;
6320 stack_alignment_estimated = 0;
6321 preferred_stack_boundary = STACK_BOUNDARY;
6322 }
6323
6324 \f
6325 #include "gt-emit-rtl.h"