]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/final.c
[C++] Protect call to copy_attributes_to_builtin (PR91505)
[thirdparty/gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "params.h"
79 #include "stringpool.h"
80 #include "attribs.h"
81 #include "asan.h"
82 #include "rtl-iter.h"
83 #include "print-rtl.h"
84
85 #ifdef XCOFF_DEBUGGING_INFO
86 #include "xcoffout.h" /* Needed for external data declarations. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
96 So define a null default for it to save conditionalization later. */
97 #ifndef CC_STATUS_INIT
98 #define CC_STATUS_INIT
99 #endif
100
101 /* Is the given character a logical line separator for the assembler? */
102 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
103 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
104 #endif
105
106 #ifndef JUMP_TABLES_IN_TEXT_SECTION
107 #define JUMP_TABLES_IN_TEXT_SECTION 0
108 #endif
109
110 /* Bitflags used by final_scan_insn. */
111 #define SEEN_NOTE 1
112 #define SEEN_EMITTED 2
113 #define SEEN_NEXT_VIEW 4
114
115 /* Last insn processed by final_scan_insn. */
116 static rtx_insn *debug_insn;
117 rtx_insn *current_output_insn;
118
119 /* Line number of last NOTE. */
120 static int last_linenum;
121
122 /* Column number of last NOTE. */
123 static int last_columnnum;
124
125 /* Discriminator written to assembly. */
126 static int last_discriminator;
127
128 /* Discriminator to be written to assembly for current instruction.
129 Note: actual usage depends on loc_discriminator_kind setting. */
130 static int discriminator;
131 static inline int compute_discriminator (location_t loc);
132
133 /* Discriminator identifying current basic block among others sharing
134 the same locus. */
135 static int bb_discriminator;
136
137 /* Basic block discriminator for previous instruction. */
138 static int last_bb_discriminator;
139
140 /* Highest line number in current block. */
141 static int high_block_linenum;
142
143 /* Likewise for function. */
144 static int high_function_linenum;
145
146 /* Filename of last NOTE. */
147 static const char *last_filename;
148
149 /* Override filename, line and column number. */
150 static const char *override_filename;
151 static int override_linenum;
152 static int override_columnnum;
153 static int override_discriminator;
154
155 /* Whether to force emission of a line note before the next insn. */
156 static bool force_source_line = false;
157
158 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
159
160 /* Nonzero while outputting an `asm' with operands.
161 This means that inconsistencies are the user's fault, so don't die.
162 The precise value is the insn being output, to pass to error_for_asm. */
163 const rtx_insn *this_is_asm_operands;
164
165 /* Number of operands of this insn, for an `asm' with operands. */
166 static unsigned int insn_noperands;
167
168 /* Compare optimization flag. */
169
170 static rtx last_ignored_compare = 0;
171
172 /* Assign a unique number to each insn that is output.
173 This can be used to generate unique local labels. */
174
175 static int insn_counter = 0;
176
177 /* This variable contains machine-dependent flags (defined in tm.h)
178 set and examined by output routines
179 that describe how to interpret the condition codes properly. */
180
181 CC_STATUS cc_status;
182
183 /* During output of an insn, this contains a copy of cc_status
184 from before the insn. */
185
186 CC_STATUS cc_prev_status;
187
188 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
189
190 static int block_depth;
191
192 /* Nonzero if have enabled APP processing of our assembler output. */
193
194 static int app_on;
195
196 /* If we are outputting an insn sequence, this contains the sequence rtx.
197 Zero otherwise. */
198
199 rtx_sequence *final_sequence;
200
201 #ifdef ASSEMBLER_DIALECT
202
203 /* Number of the assembler dialect to use, starting at 0. */
204 static int dialect_number;
205 #endif
206
207 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
208 rtx current_insn_predicate;
209
210 /* True if printing into -fdump-final-insns= dump. */
211 bool final_insns_dump_p;
212
213 /* True if profile_function should be called, but hasn't been called yet. */
214 static bool need_profile_function;
215
216 static int asm_insn_count (rtx);
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx_insn *, bool *);
220 static rtx walk_alter_subreg (rtx *, bool *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx_insn *);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 #ifdef LEAF_REGISTERS
226 static void leaf_renumber_regs (rtx_insn *);
227 #endif
228 #if HAVE_cc0
229 static int alter_cond (rtx);
230 #endif
231 static int align_fuzz (rtx, rtx, int, unsigned);
232 static void collect_fn_hard_reg_usage (void);
233 static tree get_call_fndecl (rtx_insn *);
234 \f
235 /* Initialize data in final at the beginning of a compilation. */
236
237 void
238 init_final (const char *filename ATTRIBUTE_UNUSED)
239 {
240 app_on = 0;
241 final_sequence = 0;
242
243 #ifdef ASSEMBLER_DIALECT
244 dialect_number = ASSEMBLER_DIALECT;
245 #endif
246 }
247
248 /* Default target function prologue and epilogue assembler output.
249
250 If not overridden for epilogue code, then the function body itself
251 contains return instructions wherever needed. */
252 void
253 default_function_pro_epilogue (FILE *)
254 {
255 }
256
257 void
258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
259 tree decl ATTRIBUTE_UNUSED,
260 bool new_is_cold ATTRIBUTE_UNUSED)
261 {
262 }
263
264 /* Default target hook that outputs nothing to a stream. */
265 void
266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 {
268 }
269
270 /* Enable APP processing of subsequent output.
271 Used before the output from an `asm' statement. */
272
273 void
274 app_enable (void)
275 {
276 if (! app_on)
277 {
278 fputs (ASM_APP_ON, asm_out_file);
279 app_on = 1;
280 }
281 }
282
283 /* Disable APP processing of subsequent output.
284 Called from varasm.c before most kinds of output. */
285
286 void
287 app_disable (void)
288 {
289 if (app_on)
290 {
291 fputs (ASM_APP_OFF, asm_out_file);
292 app_on = 0;
293 }
294 }
295 \f
296 /* Return the number of slots filled in the current
297 delayed branch sequence (we don't count the insn needing the
298 delay slot). Zero if not in a delayed branch sequence. */
299
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 vec<int> insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 static rtx *uid_align;
341 static int *uid_shuid;
342 static vec<align_flags> label_align;
343
344 /* Indicate that branch shortening hasn't yet been done. */
345
346 void
347 init_insn_lengths (void)
348 {
349 if (uid_shuid)
350 {
351 free (uid_shuid);
352 uid_shuid = 0;
353 }
354 if (insn_lengths)
355 {
356 free (insn_lengths);
357 insn_lengths = 0;
358 insn_lengths_max_uid = 0;
359 }
360 if (HAVE_ATTR_length)
361 INSN_ADDRESSES_FREE ();
362 if (uid_align)
363 {
364 free (uid_align);
365 uid_align = 0;
366 }
367 }
368
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
371 length. */
372 static int
373 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
374 {
375 rtx body;
376 int i;
377 int length = 0;
378
379 if (!HAVE_ATTR_length)
380 return 0;
381
382 if (insn_lengths_max_uid > INSN_UID (insn))
383 return insn_lengths[INSN_UID (insn)];
384 else
385 switch (GET_CODE (insn))
386 {
387 case NOTE:
388 case BARRIER:
389 case CODE_LABEL:
390 case DEBUG_INSN:
391 return 0;
392
393 case CALL_INSN:
394 case JUMP_INSN:
395 length = fallback_fn (insn);
396 break;
397
398 case INSN:
399 body = PATTERN (insn);
400 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
401 return 0;
402
403 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
404 length = asm_insn_count (body) * fallback_fn (insn);
405 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
406 for (i = 0; i < seq->len (); i++)
407 length += get_attr_length_1 (seq->insn (i), fallback_fn);
408 else
409 length = fallback_fn (insn);
410 break;
411
412 default:
413 break;
414 }
415
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn, length);
418 #endif
419 return length;
420 }
421
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
424 int
425 get_attr_length (rtx_insn *insn)
426 {
427 return get_attr_length_1 (insn, insn_default_length);
428 }
429
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
432 int
433 get_attr_min_length (rtx_insn *insn)
434 {
435 return get_attr_length_1 (insn, insn_min_length);
436 }
437 \f
438 /* Code to handle alignment inside shorten_branches. */
439
440 /* Here is an explanation how the algorithm in align_fuzz can give
441 proper results:
442
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
446 alignment point.
447
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
451
452 Likewise with the next alignment-delimited block following X, which we
453 shall call block Y.
454
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
457
458 The estimated padding is then OX - IX.
459
460 OX can be safely estimated as
461
462 if (X >= Y)
463 OX = round_up(IX, Y)
464 else
465 OX = round_up(IX, X) + Y - X
466
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
469
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
472
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
478
479 #ifndef LABEL_ALIGN
480 #define LABEL_ALIGN(LABEL) align_labels
481 #endif
482
483 #ifndef LOOP_ALIGN
484 #define LOOP_ALIGN(LABEL) align_loops
485 #endif
486
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
489 #endif
490
491 #ifndef JUMP_ALIGN
492 #define JUMP_ALIGN(LABEL) align_jumps
493 #endif
494
495 #ifndef ADDR_VEC_ALIGN
496 static int
497 final_addr_vec_align (rtx_jump_table_data *addr_vec)
498 {
499 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
500
501 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
502 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
503 return exact_log2 (align);
504
505 }
506
507 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
508 #endif
509
510 #ifndef INSN_LENGTH_ALIGNMENT
511 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
512 #endif
513
514 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
515
516 static int min_labelno, max_labelno;
517
518 #define LABEL_TO_ALIGNMENT(LABEL) \
519 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
520
521 /* For the benefit of port specific code do this also as a function. */
522
523 align_flags
524 label_to_alignment (rtx label)
525 {
526 if (CODE_LABEL_NUMBER (label) <= max_labelno)
527 return LABEL_TO_ALIGNMENT (label);
528 return align_flags ();
529 }
530
531 /* The differences in addresses
532 between a branch and its target might grow or shrink depending on
533 the alignment the start insn of the range (the branch for a forward
534 branch or the label for a backward branch) starts out on; if these
535 differences are used naively, they can even oscillate infinitely.
536 We therefore want to compute a 'worst case' address difference that
537 is independent of the alignment the start insn of the range end
538 up on, and that is at least as large as the actual difference.
539 The function align_fuzz calculates the amount we have to add to the
540 naively computed difference, by traversing the part of the alignment
541 chain of the start insn of the range that is in front of the end insn
542 of the range, and considering for each alignment the maximum amount
543 that it might contribute to a size increase.
544
545 For casesi tables, we also want to know worst case minimum amounts of
546 address difference, in case a machine description wants to introduce
547 some common offset that is added to all offsets in a table.
548 For this purpose, align_fuzz with a growth argument of 0 computes the
549 appropriate adjustment. */
550
551 /* Compute the maximum delta by which the difference of the addresses of
552 START and END might grow / shrink due to a different address for start
553 which changes the size of alignment insns between START and END.
554 KNOWN_ALIGN_LOG is the alignment known for START.
555 GROWTH should be ~0 if the objective is to compute potential code size
556 increase, and 0 if the objective is to compute potential shrink.
557 The return value is undefined for any other value of GROWTH. */
558
559 static int
560 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
561 {
562 int uid = INSN_UID (start);
563 rtx align_label;
564 int known_align = 1 << known_align_log;
565 int end_shuid = INSN_SHUID (end);
566 int fuzz = 0;
567
568 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
569 {
570 int align_addr, new_align;
571
572 uid = INSN_UID (align_label);
573 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
574 if (uid_shuid[uid] > end_shuid)
575 break;
576 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
577 new_align = 1 << alignment.levels[0].log;
578 if (new_align < known_align)
579 continue;
580 fuzz += (-align_addr ^ growth) & (new_align - known_align);
581 known_align = new_align;
582 }
583 return fuzz;
584 }
585
586 /* Compute a worst-case reference address of a branch so that it
587 can be safely used in the presence of aligned labels. Since the
588 size of the branch itself is unknown, the size of the branch is
589 not included in the range. I.e. for a forward branch, the reference
590 address is the end address of the branch as known from the previous
591 branch shortening pass, minus a value to account for possible size
592 increase due to alignment. For a backward branch, it is the start
593 address of the branch as known from the current pass, plus a value
594 to account for possible size increase due to alignment.
595 NB.: Therefore, the maximum offset allowed for backward branches needs
596 to exclude the branch size. */
597
598 int
599 insn_current_reference_address (rtx_insn *branch)
600 {
601 rtx dest;
602 int seq_uid;
603
604 if (! INSN_ADDRESSES_SET_P ())
605 return 0;
606
607 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
608 seq_uid = INSN_UID (seq);
609 if (!jump_to_label_p (branch))
610 /* This can happen for example on the PA; the objective is to know the
611 offset to address something in front of the start of the function.
612 Thus, we can treat it like a backward branch.
613 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
614 any alignment we'd encounter, so we skip the call to align_fuzz. */
615 return insn_current_address;
616 dest = JUMP_LABEL (branch);
617
618 /* BRANCH has no proper alignment chain set, so use SEQ.
619 BRANCH also has no INSN_SHUID. */
620 if (INSN_SHUID (seq) < INSN_SHUID (dest))
621 {
622 /* Forward branch. */
623 return (insn_last_address + insn_lengths[seq_uid]
624 - align_fuzz (seq, dest, length_unit_log, ~0));
625 }
626 else
627 {
628 /* Backward branch. */
629 return (insn_current_address
630 + align_fuzz (dest, seq, length_unit_log, ~0));
631 }
632 }
633 \f
634 /* Compute branch alignments based on CFG profile. */
635
636 unsigned int
637 compute_alignments (void)
638 {
639 basic_block bb;
640 align_flags max_alignment;
641
642 label_align.truncate (0);
643
644 max_labelno = max_label_num ();
645 min_labelno = get_first_label_num ();
646 label_align.safe_grow_cleared (max_labelno - min_labelno + 1);
647
648 /* If not optimizing or optimizing for size, don't assign any alignments. */
649 if (! optimize || optimize_function_for_size_p (cfun))
650 return 0;
651
652 if (dump_file)
653 {
654 dump_reg_info (dump_file);
655 dump_flow_info (dump_file, TDF_DETAILS);
656 flow_loops_dump (dump_file, NULL, 1);
657 }
658 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
659 profile_count count_threshold = cfun->cfg->count_max.apply_scale
660 (1, PARAM_VALUE (PARAM_ALIGN_THRESHOLD));
661
662 if (dump_file)
663 {
664 fprintf (dump_file, "count_max: ");
665 cfun->cfg->count_max.dump (dump_file);
666 fprintf (dump_file, "\n");
667 }
668 FOR_EACH_BB_FN (bb, cfun)
669 {
670 rtx_insn *label = BB_HEAD (bb);
671 bool has_fallthru = 0;
672 edge e;
673 edge_iterator ei;
674
675 if (!LABEL_P (label)
676 || optimize_bb_for_size_p (bb))
677 {
678 if (dump_file)
679 fprintf (dump_file,
680 "BB %4i loop %2i loop_depth %2i skipped.\n",
681 bb->index,
682 bb->loop_father->num,
683 bb_loop_depth (bb));
684 continue;
685 }
686 max_alignment = LABEL_ALIGN (label);
687 profile_count fallthru_count = profile_count::zero ();
688 profile_count branch_count = profile_count::zero ();
689
690 FOR_EACH_EDGE (e, ei, bb->preds)
691 {
692 if (e->flags & EDGE_FALLTHRU)
693 has_fallthru = 1, fallthru_count += e->count ();
694 else
695 branch_count += e->count ();
696 }
697 if (dump_file)
698 {
699 fprintf (dump_file, "BB %4i loop %2i loop_depth"
700 " %2i fall ",
701 bb->index, bb->loop_father->num,
702 bb_loop_depth (bb));
703 fallthru_count.dump (dump_file);
704 fprintf (dump_file, " branch ");
705 branch_count.dump (dump_file);
706 if (!bb->loop_father->inner && bb->loop_father->num)
707 fprintf (dump_file, " inner_loop");
708 if (bb->loop_father->header == bb)
709 fprintf (dump_file, " loop_header");
710 fprintf (dump_file, "\n");
711 }
712 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
713 continue;
714
715 /* There are two purposes to align block with no fallthru incoming edge:
716 1) to avoid fetch stalls when branch destination is near cache boundary
717 2) to improve cache efficiency in case the previous block is not executed
718 (so it does not need to be in the cache).
719
720 We to catch first case, we align frequently executed blocks.
721 To catch the second, we align blocks that are executed more frequently
722 than the predecessor and the predecessor is likely to not be executed
723 when function is called. */
724
725 if (!has_fallthru
726 && (branch_count > count_threshold
727 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
728 && (bb->prev_bb->count
729 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
730 ->count.apply_scale (1, 2)))))
731 {
732 align_flags alignment = JUMP_ALIGN (label);
733 if (dump_file)
734 fprintf (dump_file, " jump alignment added.\n");
735 max_alignment = align_flags::max (max_alignment, alignment);
736 }
737 /* In case block is frequent and reached mostly by non-fallthru edge,
738 align it. It is most likely a first block of loop. */
739 if (has_fallthru
740 && !(single_succ_p (bb)
741 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
742 && optimize_bb_for_speed_p (bb)
743 && branch_count + fallthru_count > count_threshold
744 && (branch_count
745 > fallthru_count.apply_scale
746 (PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS), 1)))
747 {
748 align_flags alignment = LOOP_ALIGN (label);
749 if (dump_file)
750 fprintf (dump_file, " internal loop alignment added.\n");
751 max_alignment = align_flags::max (max_alignment, alignment);
752 }
753 LABEL_TO_ALIGNMENT (label) = max_alignment;
754 }
755
756 loop_optimizer_finalize ();
757 free_dominance_info (CDI_DOMINATORS);
758 return 0;
759 }
760
761 /* Grow the LABEL_ALIGN array after new labels are created. */
762
763 static void
764 grow_label_align (void)
765 {
766 int old = max_labelno;
767 int n_labels;
768 int n_old_labels;
769
770 max_labelno = max_label_num ();
771
772 n_labels = max_labelno - min_labelno + 1;
773 n_old_labels = old - min_labelno + 1;
774
775 label_align.safe_grow_cleared (n_labels);
776
777 /* Range of labels grows monotonically in the function. Failing here
778 means that the initialization of array got lost. */
779 gcc_assert (n_old_labels <= n_labels);
780 }
781
782 /* Update the already computed alignment information. LABEL_PAIRS is a vector
783 made up of pairs of labels for which the alignment information of the first
784 element will be copied from that of the second element. */
785
786 void
787 update_alignments (vec<rtx> &label_pairs)
788 {
789 unsigned int i = 0;
790 rtx iter, label = NULL_RTX;
791
792 if (max_labelno != max_label_num ())
793 grow_label_align ();
794
795 FOR_EACH_VEC_ELT (label_pairs, i, iter)
796 if (i & 1)
797 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
798 else
799 label = iter;
800 }
801
802 namespace {
803
804 const pass_data pass_data_compute_alignments =
805 {
806 RTL_PASS, /* type */
807 "alignments", /* name */
808 OPTGROUP_NONE, /* optinfo_flags */
809 TV_NONE, /* tv_id */
810 0, /* properties_required */
811 0, /* properties_provided */
812 0, /* properties_destroyed */
813 0, /* todo_flags_start */
814 0, /* todo_flags_finish */
815 };
816
817 class pass_compute_alignments : public rtl_opt_pass
818 {
819 public:
820 pass_compute_alignments (gcc::context *ctxt)
821 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
822 {}
823
824 /* opt_pass methods: */
825 virtual unsigned int execute (function *) { return compute_alignments (); }
826
827 }; // class pass_compute_alignments
828
829 } // anon namespace
830
831 rtl_opt_pass *
832 make_pass_compute_alignments (gcc::context *ctxt)
833 {
834 return new pass_compute_alignments (ctxt);
835 }
836
837 \f
838 /* Make a pass over all insns and compute their actual lengths by shortening
839 any branches of variable length if possible. */
840
841 /* shorten_branches might be called multiple times: for example, the SH
842 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
843 In order to do this, it needs proper length information, which it obtains
844 by calling shorten_branches. This cannot be collapsed with
845 shorten_branches itself into a single pass unless we also want to integrate
846 reorg.c, since the branch splitting exposes new instructions with delay
847 slots. */
848
849 void
850 shorten_branches (rtx_insn *first)
851 {
852 rtx_insn *insn;
853 int max_uid;
854 int i;
855 rtx_insn *seq;
856 int something_changed = 1;
857 char *varying_length;
858 rtx body;
859 int uid;
860 rtx align_tab[MAX_CODE_ALIGN + 1];
861
862 /* Compute maximum UID and allocate label_align / uid_shuid. */
863 max_uid = get_max_uid ();
864
865 /* Free uid_shuid before reallocating it. */
866 free (uid_shuid);
867
868 uid_shuid = XNEWVEC (int, max_uid);
869
870 if (max_labelno != max_label_num ())
871 grow_label_align ();
872
873 /* Initialize label_align and set up uid_shuid to be strictly
874 monotonically rising with insn order. */
875 /* We use alignment here to keep track of the maximum alignment we want to
876 impose on the next CODE_LABEL (or the current one if we are processing
877 the CODE_LABEL itself). */
878
879 align_flags max_alignment;
880
881 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
882 {
883 INSN_SHUID (insn) = i++;
884 if (INSN_P (insn))
885 continue;
886
887 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
888 {
889 /* Merge in alignments computed by compute_alignments. */
890 align_flags alignment = LABEL_TO_ALIGNMENT (label);
891 max_alignment = align_flags::max (max_alignment, alignment);
892
893 rtx_jump_table_data *table = jump_table_for_label (label);
894 if (!table)
895 {
896 align_flags alignment = LABEL_ALIGN (label);
897 max_alignment = align_flags::max (max_alignment, alignment);
898 }
899 /* ADDR_VECs only take room if read-only data goes into the text
900 section. */
901 if ((JUMP_TABLES_IN_TEXT_SECTION
902 || readonly_data_section == text_section)
903 && table)
904 {
905 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
906 max_alignment = align_flags::max (max_alignment, alignment);
907 }
908 LABEL_TO_ALIGNMENT (label) = max_alignment;
909 max_alignment = align_flags ();
910 }
911 else if (BARRIER_P (insn))
912 {
913 rtx_insn *label;
914
915 for (label = insn; label && ! INSN_P (label);
916 label = NEXT_INSN (label))
917 if (LABEL_P (label))
918 {
919 align_flags alignment
920 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
921 max_alignment = align_flags::max (max_alignment, alignment);
922 break;
923 }
924 }
925 }
926 if (!HAVE_ATTR_length)
927 return;
928
929 /* Allocate the rest of the arrays. */
930 insn_lengths = XNEWVEC (int, max_uid);
931 insn_lengths_max_uid = max_uid;
932 /* Syntax errors can lead to labels being outside of the main insn stream.
933 Initialize insn_addresses, so that we get reproducible results. */
934 INSN_ADDRESSES_ALLOC (max_uid);
935
936 varying_length = XCNEWVEC (char, max_uid);
937
938 /* Initialize uid_align. We scan instructions
939 from end to start, and keep in align_tab[n] the last seen insn
940 that does an alignment of at least n+1, i.e. the successor
941 in the alignment chain for an insn that does / has a known
942 alignment of n. */
943 uid_align = XCNEWVEC (rtx, max_uid);
944
945 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
946 align_tab[i] = NULL_RTX;
947 seq = get_last_insn ();
948 for (; seq; seq = PREV_INSN (seq))
949 {
950 int uid = INSN_UID (seq);
951 int log;
952 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
953 uid_align[uid] = align_tab[0];
954 if (log)
955 {
956 /* Found an alignment label. */
957 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
958 uid_align[uid] = align_tab[log];
959 for (i = log - 1; i >= 0; i--)
960 align_tab[i] = seq;
961 }
962 }
963
964 /* When optimizing, we start assuming minimum length, and keep increasing
965 lengths as we find the need for this, till nothing changes.
966 When not optimizing, we start assuming maximum lengths, and
967 do a single pass to update the lengths. */
968 bool increasing = optimize != 0;
969
970 #ifdef CASE_VECTOR_SHORTEN_MODE
971 if (optimize)
972 {
973 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
974 label fields. */
975
976 int min_shuid = INSN_SHUID (get_insns ()) - 1;
977 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
978 int rel;
979
980 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
981 {
982 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
983 int len, i, min, max, insn_shuid;
984 int min_align;
985 addr_diff_vec_flags flags;
986
987 if (! JUMP_TABLE_DATA_P (insn)
988 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
989 continue;
990 pat = PATTERN (insn);
991 len = XVECLEN (pat, 1);
992 gcc_assert (len > 0);
993 min_align = MAX_CODE_ALIGN;
994 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
995 {
996 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
997 int shuid = INSN_SHUID (lab);
998 if (shuid < min)
999 {
1000 min = shuid;
1001 min_lab = lab;
1002 }
1003 if (shuid > max)
1004 {
1005 max = shuid;
1006 max_lab = lab;
1007 }
1008
1009 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
1010 if (min_align > label_alignment)
1011 min_align = label_alignment;
1012 }
1013 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1014 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1015 insn_shuid = INSN_SHUID (insn);
1016 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1017 memset (&flags, 0, sizeof (flags));
1018 flags.min_align = min_align;
1019 flags.base_after_vec = rel > insn_shuid;
1020 flags.min_after_vec = min > insn_shuid;
1021 flags.max_after_vec = max > insn_shuid;
1022 flags.min_after_base = min > rel;
1023 flags.max_after_base = max > rel;
1024 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1025
1026 if (increasing)
1027 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1028 }
1029 }
1030 #endif /* CASE_VECTOR_SHORTEN_MODE */
1031
1032 /* Compute initial lengths, addresses, and varying flags for each insn. */
1033 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1034
1035 for (insn_current_address = 0, insn = first;
1036 insn != 0;
1037 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1038 {
1039 uid = INSN_UID (insn);
1040
1041 insn_lengths[uid] = 0;
1042
1043 if (LABEL_P (insn))
1044 {
1045 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1046 if (log)
1047 {
1048 int align = 1 << log;
1049 int new_address = (insn_current_address + align - 1) & -align;
1050 insn_lengths[uid] = new_address - insn_current_address;
1051 }
1052 }
1053
1054 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1055
1056 if (NOTE_P (insn) || BARRIER_P (insn)
1057 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1058 continue;
1059 if (insn->deleted ())
1060 continue;
1061
1062 body = PATTERN (insn);
1063 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1064 {
1065 /* This only takes room if read-only data goes into the text
1066 section. */
1067 if (JUMP_TABLES_IN_TEXT_SECTION
1068 || readonly_data_section == text_section)
1069 insn_lengths[uid] = (XVECLEN (body,
1070 GET_CODE (body) == ADDR_DIFF_VEC)
1071 * GET_MODE_SIZE (table->get_data_mode ()));
1072 /* Alignment is handled by ADDR_VEC_ALIGN. */
1073 }
1074 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1075 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1076 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1077 {
1078 int i;
1079 int const_delay_slots;
1080 if (DELAY_SLOTS)
1081 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1082 else
1083 const_delay_slots = 0;
1084
1085 int (*inner_length_fun) (rtx_insn *)
1086 = const_delay_slots ? length_fun : insn_default_length;
1087 /* Inside a delay slot sequence, we do not do any branch shortening
1088 if the shortening could change the number of delay slots
1089 of the branch. */
1090 for (i = 0; i < body_seq->len (); i++)
1091 {
1092 rtx_insn *inner_insn = body_seq->insn (i);
1093 int inner_uid = INSN_UID (inner_insn);
1094 int inner_length;
1095
1096 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1097 || asm_noperands (PATTERN (inner_insn)) >= 0)
1098 inner_length = (asm_insn_count (PATTERN (inner_insn))
1099 * insn_default_length (inner_insn));
1100 else
1101 inner_length = inner_length_fun (inner_insn);
1102
1103 insn_lengths[inner_uid] = inner_length;
1104 if (const_delay_slots)
1105 {
1106 if ((varying_length[inner_uid]
1107 = insn_variable_length_p (inner_insn)) != 0)
1108 varying_length[uid] = 1;
1109 INSN_ADDRESSES (inner_uid) = (insn_current_address
1110 + insn_lengths[uid]);
1111 }
1112 else
1113 varying_length[inner_uid] = 0;
1114 insn_lengths[uid] += inner_length;
1115 }
1116 }
1117 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1118 {
1119 insn_lengths[uid] = length_fun (insn);
1120 varying_length[uid] = insn_variable_length_p (insn);
1121 }
1122
1123 /* If needed, do any adjustment. */
1124 #ifdef ADJUST_INSN_LENGTH
1125 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1126 if (insn_lengths[uid] < 0)
1127 fatal_insn ("negative insn length", insn);
1128 #endif
1129 }
1130
1131 /* Now loop over all the insns finding varying length insns. For each,
1132 get the current insn length. If it has changed, reflect the change.
1133 When nothing changes for a full pass, we are done. */
1134
1135 while (something_changed)
1136 {
1137 something_changed = 0;
1138 insn_current_align = MAX_CODE_ALIGN - 1;
1139 for (insn_current_address = 0, insn = first;
1140 insn != 0;
1141 insn = NEXT_INSN (insn))
1142 {
1143 int new_length;
1144 #ifdef ADJUST_INSN_LENGTH
1145 int tmp_length;
1146 #endif
1147 int length_align;
1148
1149 uid = INSN_UID (insn);
1150
1151 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1152 {
1153 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1154
1155 #ifdef CASE_VECTOR_SHORTEN_MODE
1156 /* If the mode of a following jump table was changed, we
1157 may need to update the alignment of this label. */
1158
1159 if (JUMP_TABLES_IN_TEXT_SECTION
1160 || readonly_data_section == text_section)
1161 {
1162 rtx_jump_table_data *table = jump_table_for_label (label);
1163 if (table)
1164 {
1165 int newlog = ADDR_VEC_ALIGN (table);
1166 if (newlog != log)
1167 {
1168 log = newlog;
1169 LABEL_TO_ALIGNMENT (insn) = log;
1170 something_changed = 1;
1171 }
1172 }
1173 }
1174 #endif
1175
1176 if (log > insn_current_align)
1177 {
1178 int align = 1 << log;
1179 int new_address= (insn_current_address + align - 1) & -align;
1180 insn_lengths[uid] = new_address - insn_current_address;
1181 insn_current_align = log;
1182 insn_current_address = new_address;
1183 }
1184 else
1185 insn_lengths[uid] = 0;
1186 INSN_ADDRESSES (uid) = insn_current_address;
1187 continue;
1188 }
1189
1190 length_align = INSN_LENGTH_ALIGNMENT (insn);
1191 if (length_align < insn_current_align)
1192 insn_current_align = length_align;
1193
1194 insn_last_address = INSN_ADDRESSES (uid);
1195 INSN_ADDRESSES (uid) = insn_current_address;
1196
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 if (optimize
1199 && JUMP_TABLE_DATA_P (insn)
1200 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1201 {
1202 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1203 rtx body = PATTERN (insn);
1204 int old_length = insn_lengths[uid];
1205 rtx_insn *rel_lab =
1206 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1207 rtx min_lab = XEXP (XEXP (body, 2), 0);
1208 rtx max_lab = XEXP (XEXP (body, 3), 0);
1209 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1210 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1211 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1212 rtx_insn *prev;
1213 int rel_align = 0;
1214 addr_diff_vec_flags flags;
1215 scalar_int_mode vec_mode;
1216
1217 /* Avoid automatic aggregate initialization. */
1218 flags = ADDR_DIFF_VEC_FLAGS (body);
1219
1220 /* Try to find a known alignment for rel_lab. */
1221 for (prev = rel_lab;
1222 prev
1223 && ! insn_lengths[INSN_UID (prev)]
1224 && ! (varying_length[INSN_UID (prev)] & 1);
1225 prev = PREV_INSN (prev))
1226 if (varying_length[INSN_UID (prev)] & 2)
1227 {
1228 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1229 break;
1230 }
1231
1232 /* See the comment on addr_diff_vec_flags in rtl.h for the
1233 meaning of the flags values. base: REL_LAB vec: INSN */
1234 /* Anything after INSN has still addresses from the last
1235 pass; adjust these so that they reflect our current
1236 estimate for this pass. */
1237 if (flags.base_after_vec)
1238 rel_addr += insn_current_address - insn_last_address;
1239 if (flags.min_after_vec)
1240 min_addr += insn_current_address - insn_last_address;
1241 if (flags.max_after_vec)
1242 max_addr += insn_current_address - insn_last_address;
1243 /* We want to know the worst case, i.e. lowest possible value
1244 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1245 its offset is positive, and we have to be wary of code shrink;
1246 otherwise, it is negative, and we have to be vary of code
1247 size increase. */
1248 if (flags.min_after_base)
1249 {
1250 /* If INSN is between REL_LAB and MIN_LAB, the size
1251 changes we are about to make can change the alignment
1252 within the observed offset, therefore we have to break
1253 it up into two parts that are independent. */
1254 if (! flags.base_after_vec && flags.min_after_vec)
1255 {
1256 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1257 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1258 }
1259 else
1260 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1261 }
1262 else
1263 {
1264 if (flags.base_after_vec && ! flags.min_after_vec)
1265 {
1266 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1267 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1268 }
1269 else
1270 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1271 }
1272 /* Likewise, determine the highest lowest possible value
1273 for the offset of MAX_LAB. */
1274 if (flags.max_after_base)
1275 {
1276 if (! flags.base_after_vec && flags.max_after_vec)
1277 {
1278 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1279 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1280 }
1281 else
1282 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1283 }
1284 else
1285 {
1286 if (flags.base_after_vec && ! flags.max_after_vec)
1287 {
1288 max_addr += align_fuzz (max_lab, insn, 0, 0);
1289 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1290 }
1291 else
1292 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1293 }
1294 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1295 max_addr - rel_addr, body);
1296 if (!increasing
1297 || (GET_MODE_SIZE (vec_mode)
1298 >= GET_MODE_SIZE (table->get_data_mode ())))
1299 PUT_MODE (body, vec_mode);
1300 if (JUMP_TABLES_IN_TEXT_SECTION
1301 || readonly_data_section == text_section)
1302 {
1303 insn_lengths[uid]
1304 = (XVECLEN (body, 1)
1305 * GET_MODE_SIZE (table->get_data_mode ()));
1306 insn_current_address += insn_lengths[uid];
1307 if (insn_lengths[uid] != old_length)
1308 something_changed = 1;
1309 }
1310
1311 continue;
1312 }
1313 #endif /* CASE_VECTOR_SHORTEN_MODE */
1314
1315 if (! (varying_length[uid]))
1316 {
1317 if (NONJUMP_INSN_P (insn)
1318 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1319 {
1320 int i;
1321
1322 body = PATTERN (insn);
1323 for (i = 0; i < XVECLEN (body, 0); i++)
1324 {
1325 rtx inner_insn = XVECEXP (body, 0, i);
1326 int inner_uid = INSN_UID (inner_insn);
1327
1328 INSN_ADDRESSES (inner_uid) = insn_current_address;
1329
1330 insn_current_address += insn_lengths[inner_uid];
1331 }
1332 }
1333 else
1334 insn_current_address += insn_lengths[uid];
1335
1336 continue;
1337 }
1338
1339 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1340 {
1341 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1342 int i;
1343
1344 body = PATTERN (insn);
1345 new_length = 0;
1346 for (i = 0; i < seqn->len (); i++)
1347 {
1348 rtx_insn *inner_insn = seqn->insn (i);
1349 int inner_uid = INSN_UID (inner_insn);
1350 int inner_length;
1351
1352 INSN_ADDRESSES (inner_uid) = insn_current_address;
1353
1354 /* insn_current_length returns 0 for insns with a
1355 non-varying length. */
1356 if (! varying_length[inner_uid])
1357 inner_length = insn_lengths[inner_uid];
1358 else
1359 inner_length = insn_current_length (inner_insn);
1360
1361 if (inner_length != insn_lengths[inner_uid])
1362 {
1363 if (!increasing || inner_length > insn_lengths[inner_uid])
1364 {
1365 insn_lengths[inner_uid] = inner_length;
1366 something_changed = 1;
1367 }
1368 else
1369 inner_length = insn_lengths[inner_uid];
1370 }
1371 insn_current_address += inner_length;
1372 new_length += inner_length;
1373 }
1374 }
1375 else
1376 {
1377 new_length = insn_current_length (insn);
1378 insn_current_address += new_length;
1379 }
1380
1381 #ifdef ADJUST_INSN_LENGTH
1382 /* If needed, do any adjustment. */
1383 tmp_length = new_length;
1384 ADJUST_INSN_LENGTH (insn, new_length);
1385 insn_current_address += (new_length - tmp_length);
1386 #endif
1387
1388 if (new_length != insn_lengths[uid]
1389 && (!increasing || new_length > insn_lengths[uid]))
1390 {
1391 insn_lengths[uid] = new_length;
1392 something_changed = 1;
1393 }
1394 else
1395 insn_current_address += insn_lengths[uid] - new_length;
1396 }
1397 /* For a non-optimizing compile, do only a single pass. */
1398 if (!increasing)
1399 break;
1400 }
1401 crtl->max_insn_address = insn_current_address;
1402 free (varying_length);
1403 }
1404
1405 /* Given the body of an INSN known to be generated by an ASM statement, return
1406 the number of machine instructions likely to be generated for this insn.
1407 This is used to compute its length. */
1408
1409 static int
1410 asm_insn_count (rtx body)
1411 {
1412 const char *templ;
1413
1414 if (GET_CODE (body) == ASM_INPUT)
1415 templ = XSTR (body, 0);
1416 else
1417 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1418
1419 return asm_str_count (templ);
1420 }
1421
1422 /* Return the number of machine instructions likely to be generated for the
1423 inline-asm template. */
1424 int
1425 asm_str_count (const char *templ)
1426 {
1427 int count = 1;
1428
1429 if (!*templ)
1430 return 0;
1431
1432 for (; *templ; templ++)
1433 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1434 || *templ == '\n')
1435 count++;
1436
1437 return count;
1438 }
1439 \f
1440 /* Return true if DWARF2 debug info can be emitted for DECL. */
1441
1442 static bool
1443 dwarf2_debug_info_emitted_p (tree decl)
1444 {
1445 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1446 return false;
1447
1448 if (DECL_IGNORED_P (decl))
1449 return false;
1450
1451 return true;
1452 }
1453
1454 /* Return scope resulting from combination of S1 and S2. */
1455 static tree
1456 choose_inner_scope (tree s1, tree s2)
1457 {
1458 if (!s1)
1459 return s2;
1460 if (!s2)
1461 return s1;
1462 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1463 return s1;
1464 return s2;
1465 }
1466
1467 /* Emit lexical block notes needed to change scope from S1 to S2. */
1468
1469 static void
1470 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1471 {
1472 rtx_insn *insn = orig_insn;
1473 tree com = NULL_TREE;
1474 tree ts1 = s1, ts2 = s2;
1475 tree s;
1476
1477 while (ts1 != ts2)
1478 {
1479 gcc_assert (ts1 && ts2);
1480 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1481 ts1 = BLOCK_SUPERCONTEXT (ts1);
1482 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1483 ts2 = BLOCK_SUPERCONTEXT (ts2);
1484 else
1485 {
1486 ts1 = BLOCK_SUPERCONTEXT (ts1);
1487 ts2 = BLOCK_SUPERCONTEXT (ts2);
1488 }
1489 }
1490 com = ts1;
1491
1492 /* Close scopes. */
1493 s = s1;
1494 while (s != com)
1495 {
1496 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1497 NOTE_BLOCK (note) = s;
1498 s = BLOCK_SUPERCONTEXT (s);
1499 }
1500
1501 /* Open scopes. */
1502 s = s2;
1503 while (s != com)
1504 {
1505 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1506 NOTE_BLOCK (insn) = s;
1507 s = BLOCK_SUPERCONTEXT (s);
1508 }
1509 }
1510
1511 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1512 on the scope tree and the newly reordered instructions. */
1513
1514 static void
1515 reemit_insn_block_notes (void)
1516 {
1517 tree cur_block = DECL_INITIAL (cfun->decl);
1518 rtx_insn *insn;
1519
1520 insn = get_insns ();
1521 for (; insn; insn = NEXT_INSN (insn))
1522 {
1523 tree this_block;
1524
1525 /* Prevent lexical blocks from straddling section boundaries. */
1526 if (NOTE_P (insn))
1527 switch (NOTE_KIND (insn))
1528 {
1529 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1530 {
1531 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1532 s = BLOCK_SUPERCONTEXT (s))
1533 {
1534 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1535 NOTE_BLOCK (note) = s;
1536 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1537 NOTE_BLOCK (note) = s;
1538 }
1539 }
1540 break;
1541
1542 case NOTE_INSN_BEGIN_STMT:
1543 case NOTE_INSN_INLINE_ENTRY:
1544 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1545 goto set_cur_block_to_this_block;
1546
1547 default:
1548 continue;
1549 }
1550
1551 if (!active_insn_p (insn))
1552 continue;
1553
1554 /* Avoid putting scope notes between jump table and its label. */
1555 if (JUMP_TABLE_DATA_P (insn))
1556 continue;
1557
1558 this_block = insn_scope (insn);
1559 /* For sequences compute scope resulting from merging all scopes
1560 of instructions nested inside. */
1561 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1562 {
1563 int i;
1564
1565 this_block = NULL;
1566 for (i = 0; i < body->len (); i++)
1567 this_block = choose_inner_scope (this_block,
1568 insn_scope (body->insn (i)));
1569 }
1570 set_cur_block_to_this_block:
1571 if (! this_block)
1572 {
1573 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1574 continue;
1575 else
1576 this_block = DECL_INITIAL (cfun->decl);
1577 }
1578
1579 if (this_block != cur_block)
1580 {
1581 change_scope (insn, cur_block, this_block);
1582 cur_block = this_block;
1583 }
1584 }
1585
1586 /* change_scope emits before the insn, not after. */
1587 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1588 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1589 delete_insn (note);
1590
1591 reorder_blocks ();
1592 }
1593
1594 static const char *some_local_dynamic_name;
1595
1596 /* Locate some local-dynamic symbol still in use by this function
1597 so that we can print its name in local-dynamic base patterns.
1598 Return null if there are no local-dynamic references. */
1599
1600 const char *
1601 get_some_local_dynamic_name ()
1602 {
1603 subrtx_iterator::array_type array;
1604 rtx_insn *insn;
1605
1606 if (some_local_dynamic_name)
1607 return some_local_dynamic_name;
1608
1609 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1610 if (NONDEBUG_INSN_P (insn))
1611 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1612 {
1613 const_rtx x = *iter;
1614 if (GET_CODE (x) == SYMBOL_REF)
1615 {
1616 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1617 return some_local_dynamic_name = XSTR (x, 0);
1618 if (CONSTANT_POOL_ADDRESS_P (x))
1619 iter.substitute (get_pool_constant (x));
1620 }
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Arrange for us to emit a source location note before any further
1627 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1628 *SEEN, as long as we are keeping track of location views. The bit
1629 indicates we have referenced the next view at the current PC, so we
1630 have to emit it. This should be called next to the var_location
1631 debug hook. */
1632
1633 static inline void
1634 set_next_view_needed (int *seen)
1635 {
1636 if (debug_variable_location_views)
1637 *seen |= SEEN_NEXT_VIEW;
1638 }
1639
1640 /* Clear the flag in *SEEN indicating we need to emit the next view.
1641 This should be called next to the source_line debug hook. */
1642
1643 static inline void
1644 clear_next_view_needed (int *seen)
1645 {
1646 *seen &= ~SEEN_NEXT_VIEW;
1647 }
1648
1649 /* Test whether we have a pending request to emit the next view in
1650 *SEEN, and emit it if needed, clearing the request bit. */
1651
1652 static inline void
1653 maybe_output_next_view (int *seen)
1654 {
1655 if ((*seen & SEEN_NEXT_VIEW) != 0)
1656 {
1657 clear_next_view_needed (seen);
1658 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1659 last_filename, last_discriminator,
1660 false);
1661 }
1662 }
1663
1664 /* We want to emit param bindings (before the first begin_stmt) in the
1665 initial view, if we are emitting views. To that end, we may
1666 consume initial notes in the function, processing them in
1667 final_start_function, before signaling the beginning of the
1668 prologue, rather than in final.
1669
1670 We don't test whether the DECLs are PARM_DECLs: the assumption is
1671 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1672 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1673 there, we'll just have more variable locations bound in the initial
1674 view, which is consistent with their being bound without any code
1675 that would give them a value. */
1676
1677 static inline bool
1678 in_initial_view_p (rtx_insn *insn)
1679 {
1680 return (!DECL_IGNORED_P (current_function_decl)
1681 && debug_variable_location_views
1682 && insn && GET_CODE (insn) == NOTE
1683 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1684 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1685 }
1686
1687 /* Output assembler code for the start of a function,
1688 and initialize some of the variables in this file
1689 for the new function. The label for the function and associated
1690 assembler pseudo-ops have already been output in `assemble_start_function'.
1691
1692 FIRST is the first insn of the rtl for the function being compiled.
1693 FILE is the file to write assembler code to.
1694 SEEN should be initially set to zero, and it may be updated to
1695 indicate we have references to the next location view, that would
1696 require us to emit it at the current PC.
1697 OPTIMIZE_P is nonzero if we should eliminate redundant
1698 test and compare insns. */
1699
1700 static void
1701 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1702 int optimize_p ATTRIBUTE_UNUSED)
1703 {
1704 block_depth = 0;
1705
1706 this_is_asm_operands = 0;
1707
1708 need_profile_function = false;
1709
1710 last_filename = LOCATION_FILE (prologue_location);
1711 last_linenum = LOCATION_LINE (prologue_location);
1712 last_columnnum = LOCATION_COLUMN (prologue_location);
1713 last_discriminator = discriminator = 0;
1714 last_bb_discriminator = bb_discriminator = 0;
1715
1716 high_block_linenum = high_function_linenum = last_linenum;
1717
1718 if (flag_sanitize & SANITIZE_ADDRESS)
1719 asan_function_start ();
1720
1721 rtx_insn *first = *firstp;
1722 if (in_initial_view_p (first))
1723 {
1724 do
1725 {
1726 final_scan_insn (first, file, 0, 0, seen);
1727 first = NEXT_INSN (first);
1728 }
1729 while (in_initial_view_p (first));
1730 *firstp = first;
1731 }
1732
1733 if (!DECL_IGNORED_P (current_function_decl))
1734 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1735 last_filename);
1736
1737 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1738 dwarf2out_begin_prologue (0, 0, NULL);
1739
1740 #ifdef LEAF_REG_REMAP
1741 if (crtl->uses_only_leaf_regs)
1742 leaf_renumber_regs (first);
1743 #endif
1744
1745 /* The Sun386i and perhaps other machines don't work right
1746 if the profiling code comes after the prologue. */
1747 if (targetm.profile_before_prologue () && crtl->profile)
1748 {
1749 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1750 && targetm.have_prologue ())
1751 {
1752 rtx_insn *insn;
1753 for (insn = first; insn; insn = NEXT_INSN (insn))
1754 if (!NOTE_P (insn))
1755 {
1756 insn = NULL;
1757 break;
1758 }
1759 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1760 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1761 break;
1762 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1763 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1764 continue;
1765 else
1766 {
1767 insn = NULL;
1768 break;
1769 }
1770
1771 if (insn)
1772 need_profile_function = true;
1773 else
1774 profile_function (file);
1775 }
1776 else
1777 profile_function (file);
1778 }
1779
1780 /* If debugging, assign block numbers to all of the blocks in this
1781 function. */
1782 if (write_symbols)
1783 {
1784 reemit_insn_block_notes ();
1785 number_blocks (current_function_decl);
1786 /* We never actually put out begin/end notes for the top-level
1787 block in the function. But, conceptually, that block is
1788 always needed. */
1789 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1790 }
1791
1792 unsigned HOST_WIDE_INT min_frame_size
1793 = constant_lower_bound (get_frame_size ());
1794 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1795 {
1796 /* Issue a warning */
1797 warning (OPT_Wframe_larger_than_,
1798 "the frame size of %wu bytes is larger than %wu bytes",
1799 min_frame_size, warn_frame_larger_than_size);
1800 }
1801
1802 /* First output the function prologue: code to set up the stack frame. */
1803 targetm.asm_out.function_prologue (file);
1804
1805 /* If the machine represents the prologue as RTL, the profiling code must
1806 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1807 if (! targetm.have_prologue ())
1808 profile_after_prologue (file);
1809 }
1810
1811 /* This is an exported final_start_function_1, callable without SEEN. */
1812
1813 void
1814 final_start_function (rtx_insn *first, FILE *file,
1815 int optimize_p ATTRIBUTE_UNUSED)
1816 {
1817 int seen = 0;
1818 final_start_function_1 (&first, file, &seen, optimize_p);
1819 gcc_assert (seen == 0);
1820 }
1821
1822 static void
1823 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1824 {
1825 if (!targetm.profile_before_prologue () && crtl->profile)
1826 profile_function (file);
1827 }
1828
1829 static void
1830 profile_function (FILE *file ATTRIBUTE_UNUSED)
1831 {
1832 #ifndef NO_PROFILE_COUNTERS
1833 # define NO_PROFILE_COUNTERS 0
1834 #endif
1835 #ifdef ASM_OUTPUT_REG_PUSH
1836 rtx sval = NULL, chain = NULL;
1837
1838 if (cfun->returns_struct)
1839 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1840 true);
1841 if (cfun->static_chain_decl)
1842 chain = targetm.calls.static_chain (current_function_decl, true);
1843 #endif /* ASM_OUTPUT_REG_PUSH */
1844
1845 if (! NO_PROFILE_COUNTERS)
1846 {
1847 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1848 switch_to_section (data_section);
1849 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1850 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1851 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1852 }
1853
1854 switch_to_section (current_function_section ());
1855
1856 #ifdef ASM_OUTPUT_REG_PUSH
1857 if (sval && REG_P (sval))
1858 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1859 if (chain && REG_P (chain))
1860 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1861 #endif
1862
1863 FUNCTION_PROFILER (file, current_function_funcdef_no);
1864
1865 #ifdef ASM_OUTPUT_REG_PUSH
1866 if (chain && REG_P (chain))
1867 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1868 if (sval && REG_P (sval))
1869 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1870 #endif
1871 }
1872
1873 /* Output assembler code for the end of a function.
1874 For clarity, args are same as those of `final_start_function'
1875 even though not all of them are needed. */
1876
1877 void
1878 final_end_function (void)
1879 {
1880 app_disable ();
1881
1882 if (!DECL_IGNORED_P (current_function_decl))
1883 debug_hooks->end_function (high_function_linenum);
1884
1885 /* Finally, output the function epilogue:
1886 code to restore the stack frame and return to the caller. */
1887 targetm.asm_out.function_epilogue (asm_out_file);
1888
1889 /* And debug output. */
1890 if (!DECL_IGNORED_P (current_function_decl))
1891 debug_hooks->end_epilogue (last_linenum, last_filename);
1892
1893 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1894 && dwarf2out_do_frame ())
1895 dwarf2out_end_epilogue (last_linenum, last_filename);
1896
1897 some_local_dynamic_name = 0;
1898 }
1899 \f
1900
1901 /* Dumper helper for basic block information. FILE is the assembly
1902 output file, and INSN is the instruction being emitted. */
1903
1904 static void
1905 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1906 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1907 {
1908 basic_block bb;
1909
1910 if (!flag_debug_asm)
1911 return;
1912
1913 if (INSN_UID (insn) < bb_map_size
1914 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1915 {
1916 edge e;
1917 edge_iterator ei;
1918
1919 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1920 if (bb->count.initialized_p ())
1921 {
1922 fprintf (file, ", count:");
1923 bb->count.dump (file);
1924 }
1925 fprintf (file, " seq:%d", (*bb_seqn)++);
1926 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1927 FOR_EACH_EDGE (e, ei, bb->preds)
1928 {
1929 dump_edge_info (file, e, TDF_DETAILS, 0);
1930 }
1931 fprintf (file, "\n");
1932 }
1933 if (INSN_UID (insn) < bb_map_size
1934 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1935 {
1936 edge e;
1937 edge_iterator ei;
1938
1939 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1940 FOR_EACH_EDGE (e, ei, bb->succs)
1941 {
1942 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1943 }
1944 fprintf (file, "\n");
1945 }
1946 }
1947
1948 /* Output assembler code for some insns: all or part of a function.
1949 For description of args, see `final_start_function', above. */
1950
1951 static void
1952 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1953 {
1954 rtx_insn *insn, *next;
1955
1956 /* Used for -dA dump. */
1957 basic_block *start_to_bb = NULL;
1958 basic_block *end_to_bb = NULL;
1959 int bb_map_size = 0;
1960 int bb_seqn = 0;
1961
1962 last_ignored_compare = 0;
1963
1964 if (HAVE_cc0)
1965 for (insn = first; insn; insn = NEXT_INSN (insn))
1966 {
1967 /* If CC tracking across branches is enabled, record the insn which
1968 jumps to each branch only reached from one place. */
1969 if (optimize_p && JUMP_P (insn))
1970 {
1971 rtx lab = JUMP_LABEL (insn);
1972 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1973 {
1974 LABEL_REFS (lab) = insn;
1975 }
1976 }
1977 }
1978
1979 init_recog ();
1980
1981 CC_STATUS_INIT;
1982
1983 if (flag_debug_asm)
1984 {
1985 basic_block bb;
1986
1987 bb_map_size = get_max_uid () + 1;
1988 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1989 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1990
1991 /* There is no cfg for a thunk. */
1992 if (!cfun->is_thunk)
1993 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1994 {
1995 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1996 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1997 }
1998 }
1999
2000 /* Output the insns. */
2001 for (insn = first; insn;)
2002 {
2003 if (HAVE_ATTR_length)
2004 {
2005 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2006 {
2007 /* This can be triggered by bugs elsewhere in the compiler if
2008 new insns are created after init_insn_lengths is called. */
2009 gcc_assert (NOTE_P (insn));
2010 insn_current_address = -1;
2011 }
2012 else
2013 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2014 /* final can be seen as an iteration of shorten_branches that
2015 does nothing (since a fixed point has already been reached). */
2016 insn_last_address = insn_current_address;
2017 }
2018
2019 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2020 bb_map_size, &bb_seqn);
2021 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2022 }
2023
2024 maybe_output_next_view (&seen);
2025
2026 if (flag_debug_asm)
2027 {
2028 free (start_to_bb);
2029 free (end_to_bb);
2030 }
2031
2032 /* Remove CFI notes, to avoid compare-debug failures. */
2033 for (insn = first; insn; insn = next)
2034 {
2035 next = NEXT_INSN (insn);
2036 if (NOTE_P (insn)
2037 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2038 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2039 delete_insn (insn);
2040 }
2041 }
2042
2043 /* This is an exported final_1, callable without SEEN. */
2044
2045 void
2046 final (rtx_insn *first, FILE *file, int optimize_p)
2047 {
2048 /* Those that use the internal final_start_function_1/final_1 API
2049 skip initial debug bind notes in final_start_function_1, and pass
2050 the modified FIRST to final_1. But those that use the public
2051 final_start_function/final APIs, final_start_function can't move
2052 FIRST because it's not passed by reference, so if they were
2053 skipped there, skip them again here. */
2054 while (in_initial_view_p (first))
2055 first = NEXT_INSN (first);
2056
2057 final_1 (first, file, 0, optimize_p);
2058 }
2059 \f
2060 const char *
2061 get_insn_template (int code, rtx_insn *insn)
2062 {
2063 switch (insn_data[code].output_format)
2064 {
2065 case INSN_OUTPUT_FORMAT_SINGLE:
2066 return insn_data[code].output.single;
2067 case INSN_OUTPUT_FORMAT_MULTI:
2068 return insn_data[code].output.multi[which_alternative];
2069 case INSN_OUTPUT_FORMAT_FUNCTION:
2070 gcc_assert (insn);
2071 return (*insn_data[code].output.function) (recog_data.operand, insn);
2072
2073 default:
2074 gcc_unreachable ();
2075 }
2076 }
2077
2078 /* Emit the appropriate declaration for an alternate-entry-point
2079 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2080 LABEL_KIND != LABEL_NORMAL.
2081
2082 The case fall-through in this function is intentional. */
2083 static void
2084 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2085 {
2086 const char *name = LABEL_NAME (insn);
2087
2088 switch (LABEL_KIND (insn))
2089 {
2090 case LABEL_WEAK_ENTRY:
2091 #ifdef ASM_WEAKEN_LABEL
2092 ASM_WEAKEN_LABEL (file, name);
2093 gcc_fallthrough ();
2094 #endif
2095 case LABEL_GLOBAL_ENTRY:
2096 targetm.asm_out.globalize_label (file, name);
2097 gcc_fallthrough ();
2098 case LABEL_STATIC_ENTRY:
2099 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2100 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2101 #endif
2102 ASM_OUTPUT_LABEL (file, name);
2103 break;
2104
2105 case LABEL_NORMAL:
2106 default:
2107 gcc_unreachable ();
2108 }
2109 }
2110
2111 /* Given a CALL_INSN, find and return the nested CALL. */
2112 static rtx
2113 call_from_call_insn (rtx_call_insn *insn)
2114 {
2115 rtx x;
2116 gcc_assert (CALL_P (insn));
2117 x = PATTERN (insn);
2118
2119 while (GET_CODE (x) != CALL)
2120 {
2121 switch (GET_CODE (x))
2122 {
2123 default:
2124 gcc_unreachable ();
2125 case COND_EXEC:
2126 x = COND_EXEC_CODE (x);
2127 break;
2128 case PARALLEL:
2129 x = XVECEXP (x, 0, 0);
2130 break;
2131 case SET:
2132 x = XEXP (x, 1);
2133 break;
2134 }
2135 }
2136 return x;
2137 }
2138
2139 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2140 corresponding source line, if available. */
2141
2142 static void
2143 asm_show_source (const char *filename, int linenum)
2144 {
2145 if (!filename)
2146 return;
2147
2148 char_span line = location_get_source_line (filename, linenum);
2149 if (!line)
2150 return;
2151
2152 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2153 /* "line" is not 0-terminated, so we must use its length. */
2154 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2155 fputc ('\n', asm_out_file);
2156 }
2157
2158 /* The final scan for one insn, INSN.
2159 Args are same as in `final', except that INSN
2160 is the insn being scanned.
2161 Value returned is the next insn to be scanned.
2162
2163 NOPEEPHOLES is the flag to disallow peephole processing (currently
2164 used for within delayed branch sequence output).
2165
2166 SEEN is used to track the end of the prologue, for emitting
2167 debug information. We force the emission of a line note after
2168 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2169
2170 static rtx_insn *
2171 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2172 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2173 {
2174 #if HAVE_cc0
2175 rtx set;
2176 #endif
2177 rtx_insn *next;
2178 rtx_jump_table_data *table;
2179
2180 insn_counter++;
2181
2182 /* Ignore deleted insns. These can occur when we split insns (due to a
2183 template of "#") while not optimizing. */
2184 if (insn->deleted ())
2185 return NEXT_INSN (insn);
2186
2187 switch (GET_CODE (insn))
2188 {
2189 case NOTE:
2190 switch (NOTE_KIND (insn))
2191 {
2192 case NOTE_INSN_DELETED:
2193 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2194 break;
2195
2196 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2197 maybe_output_next_view (seen);
2198
2199 output_function_exception_table (0);
2200
2201 if (targetm.asm_out.unwind_emit)
2202 targetm.asm_out.unwind_emit (asm_out_file, insn);
2203
2204 in_cold_section_p = !in_cold_section_p;
2205
2206 if (in_cold_section_p)
2207 cold_function_name
2208 = clone_function_name (current_function_decl, "cold");
2209
2210 if (dwarf2out_do_frame ())
2211 {
2212 dwarf2out_switch_text_section ();
2213 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2214 && !DECL_IGNORED_P (current_function_decl))
2215 debug_hooks->switch_text_section ();
2216 }
2217 else if (!DECL_IGNORED_P (current_function_decl))
2218 debug_hooks->switch_text_section ();
2219
2220 switch_to_section (current_function_section ());
2221 targetm.asm_out.function_switched_text_sections (asm_out_file,
2222 current_function_decl,
2223 in_cold_section_p);
2224 /* Emit a label for the split cold section. Form label name by
2225 suffixing "cold" to the original function's name. */
2226 if (in_cold_section_p)
2227 {
2228 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2229 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2230 IDENTIFIER_POINTER
2231 (cold_function_name),
2232 current_function_decl);
2233 #else
2234 ASM_OUTPUT_LABEL (asm_out_file,
2235 IDENTIFIER_POINTER (cold_function_name));
2236 #endif
2237 if (dwarf2out_do_frame ()
2238 && cfun->fde->dw_fde_second_begin != NULL)
2239 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2240 }
2241 break;
2242
2243 case NOTE_INSN_BASIC_BLOCK:
2244 if (need_profile_function)
2245 {
2246 profile_function (asm_out_file);
2247 need_profile_function = false;
2248 }
2249
2250 if (targetm.asm_out.unwind_emit)
2251 targetm.asm_out.unwind_emit (asm_out_file, insn);
2252
2253 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2254 break;
2255
2256 case NOTE_INSN_EH_REGION_BEG:
2257 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2258 NOTE_EH_HANDLER (insn));
2259 break;
2260
2261 case NOTE_INSN_EH_REGION_END:
2262 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2263 NOTE_EH_HANDLER (insn));
2264 break;
2265
2266 case NOTE_INSN_PROLOGUE_END:
2267 targetm.asm_out.function_end_prologue (file);
2268 profile_after_prologue (file);
2269
2270 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2271 {
2272 *seen |= SEEN_EMITTED;
2273 force_source_line = true;
2274 }
2275 else
2276 *seen |= SEEN_NOTE;
2277
2278 break;
2279
2280 case NOTE_INSN_EPILOGUE_BEG:
2281 if (!DECL_IGNORED_P (current_function_decl))
2282 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2283 targetm.asm_out.function_begin_epilogue (file);
2284 break;
2285
2286 case NOTE_INSN_CFI:
2287 dwarf2out_emit_cfi (NOTE_CFI (insn));
2288 break;
2289
2290 case NOTE_INSN_CFI_LABEL:
2291 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2292 NOTE_LABEL_NUMBER (insn));
2293 break;
2294
2295 case NOTE_INSN_FUNCTION_BEG:
2296 if (need_profile_function)
2297 {
2298 profile_function (asm_out_file);
2299 need_profile_function = false;
2300 }
2301
2302 app_disable ();
2303 if (!DECL_IGNORED_P (current_function_decl))
2304 debug_hooks->end_prologue (last_linenum, last_filename);
2305
2306 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2307 {
2308 *seen |= SEEN_EMITTED;
2309 force_source_line = true;
2310 }
2311 else
2312 *seen |= SEEN_NOTE;
2313
2314 break;
2315
2316 case NOTE_INSN_BLOCK_BEG:
2317 if (debug_info_level == DINFO_LEVEL_NORMAL
2318 || debug_info_level == DINFO_LEVEL_VERBOSE
2319 || write_symbols == DWARF2_DEBUG
2320 || write_symbols == VMS_AND_DWARF2_DEBUG
2321 || write_symbols == VMS_DEBUG)
2322 {
2323 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2324
2325 app_disable ();
2326 ++block_depth;
2327 high_block_linenum = last_linenum;
2328
2329 /* Output debugging info about the symbol-block beginning. */
2330 if (!DECL_IGNORED_P (current_function_decl))
2331 debug_hooks->begin_block (last_linenum, n);
2332
2333 /* Mark this block as output. */
2334 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2335 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2336 }
2337 if (write_symbols == DBX_DEBUG)
2338 {
2339 location_t *locus_ptr
2340 = block_nonartificial_location (NOTE_BLOCK (insn));
2341
2342 if (locus_ptr != NULL)
2343 {
2344 override_filename = LOCATION_FILE (*locus_ptr);
2345 override_linenum = LOCATION_LINE (*locus_ptr);
2346 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2347 override_discriminator = compute_discriminator (*locus_ptr);
2348 }
2349 }
2350 break;
2351
2352 case NOTE_INSN_BLOCK_END:
2353 maybe_output_next_view (seen);
2354
2355 if (debug_info_level == DINFO_LEVEL_NORMAL
2356 || debug_info_level == DINFO_LEVEL_VERBOSE
2357 || write_symbols == DWARF2_DEBUG
2358 || write_symbols == VMS_AND_DWARF2_DEBUG
2359 || write_symbols == VMS_DEBUG)
2360 {
2361 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2362
2363 app_disable ();
2364
2365 /* End of a symbol-block. */
2366 --block_depth;
2367 gcc_assert (block_depth >= 0);
2368
2369 if (!DECL_IGNORED_P (current_function_decl))
2370 debug_hooks->end_block (high_block_linenum, n);
2371 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2372 == in_cold_section_p);
2373 }
2374 if (write_symbols == DBX_DEBUG)
2375 {
2376 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2377 location_t *locus_ptr
2378 = block_nonartificial_location (outer_block);
2379
2380 if (locus_ptr != NULL)
2381 {
2382 override_filename = LOCATION_FILE (*locus_ptr);
2383 override_linenum = LOCATION_LINE (*locus_ptr);
2384 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2385 override_discriminator = compute_discriminator (*locus_ptr);
2386 }
2387 else
2388 {
2389 override_filename = NULL;
2390 override_linenum = 0;
2391 override_columnnum = 0;
2392 override_discriminator = 0;
2393 }
2394 }
2395 break;
2396
2397 case NOTE_INSN_DELETED_LABEL:
2398 /* Emit the label. We may have deleted the CODE_LABEL because
2399 the label could be proved to be unreachable, though still
2400 referenced (in the form of having its address taken. */
2401 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2402 break;
2403
2404 case NOTE_INSN_DELETED_DEBUG_LABEL:
2405 /* Similarly, but need to use different namespace for it. */
2406 if (CODE_LABEL_NUMBER (insn) != -1)
2407 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2408 break;
2409
2410 case NOTE_INSN_VAR_LOCATION:
2411 if (!DECL_IGNORED_P (current_function_decl))
2412 {
2413 debug_hooks->var_location (insn);
2414 set_next_view_needed (seen);
2415 }
2416 break;
2417
2418 case NOTE_INSN_BEGIN_STMT:
2419 gcc_checking_assert (cfun->debug_nonbind_markers);
2420 if (!DECL_IGNORED_P (current_function_decl)
2421 && notice_source_line (insn, NULL))
2422 {
2423 output_source_line:
2424 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2425 last_filename, last_discriminator,
2426 true);
2427 clear_next_view_needed (seen);
2428 }
2429 break;
2430
2431 case NOTE_INSN_INLINE_ENTRY:
2432 gcc_checking_assert (cfun->debug_nonbind_markers);
2433 if (!DECL_IGNORED_P (current_function_decl)
2434 && notice_source_line (insn, NULL))
2435 {
2436 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2437 (NOTE_MARKER_LOCATION (insn)));
2438 goto output_source_line;
2439 }
2440 break;
2441
2442 default:
2443 gcc_unreachable ();
2444 break;
2445 }
2446 break;
2447
2448 case BARRIER:
2449 break;
2450
2451 case CODE_LABEL:
2452 /* The target port might emit labels in the output function for
2453 some insn, e.g. sh.c output_branchy_insn. */
2454 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2455 {
2456 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2457 if (alignment.levels[0].log && NEXT_INSN (insn))
2458 {
2459 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2460 /* Output both primary and secondary alignment. */
2461 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2462 alignment.levels[0].maxskip);
2463 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2464 alignment.levels[1].maxskip);
2465 #else
2466 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2467 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2468 #else
2469 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2470 #endif
2471 #endif
2472 }
2473 }
2474 CC_STATUS_INIT;
2475
2476 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2477 debug_hooks->label (as_a <rtx_code_label *> (insn));
2478
2479 app_disable ();
2480
2481 /* If this label is followed by a jump-table, make sure we put
2482 the label in the read-only section. Also possibly write the
2483 label and jump table together. */
2484 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2485 if (table)
2486 {
2487 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2488 /* In this case, the case vector is being moved by the
2489 target, so don't output the label at all. Leave that
2490 to the back end macros. */
2491 #else
2492 if (! JUMP_TABLES_IN_TEXT_SECTION)
2493 {
2494 int log_align;
2495
2496 switch_to_section (targetm.asm_out.function_rodata_section
2497 (current_function_decl));
2498
2499 #ifdef ADDR_VEC_ALIGN
2500 log_align = ADDR_VEC_ALIGN (table);
2501 #else
2502 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2503 #endif
2504 ASM_OUTPUT_ALIGN (file, log_align);
2505 }
2506 else
2507 switch_to_section (current_function_section ());
2508
2509 #ifdef ASM_OUTPUT_CASE_LABEL
2510 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2511 #else
2512 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2513 #endif
2514 #endif
2515 break;
2516 }
2517 if (LABEL_ALT_ENTRY_P (insn))
2518 output_alternate_entry_point (file, insn);
2519 else
2520 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2521 break;
2522
2523 default:
2524 {
2525 rtx body = PATTERN (insn);
2526 int insn_code_number;
2527 const char *templ;
2528 bool is_stmt, *is_stmt_p;
2529
2530 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2531 {
2532 is_stmt = false;
2533 is_stmt_p = NULL;
2534 }
2535 else
2536 is_stmt_p = &is_stmt;
2537
2538 /* Reset this early so it is correct for ASM statements. */
2539 current_insn_predicate = NULL_RTX;
2540
2541 /* An INSN, JUMP_INSN or CALL_INSN.
2542 First check for special kinds that recog doesn't recognize. */
2543
2544 if (GET_CODE (body) == USE /* These are just declarations. */
2545 || GET_CODE (body) == CLOBBER)
2546 break;
2547
2548 #if HAVE_cc0
2549 {
2550 /* If there is a REG_CC_SETTER note on this insn, it means that
2551 the setting of the condition code was done in the delay slot
2552 of the insn that branched here. So recover the cc status
2553 from the insn that set it. */
2554
2555 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2556 if (note)
2557 {
2558 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2559 NOTICE_UPDATE_CC (PATTERN (other), other);
2560 cc_prev_status = cc_status;
2561 }
2562 }
2563 #endif
2564
2565 /* Detect insns that are really jump-tables
2566 and output them as such. */
2567
2568 if (JUMP_TABLE_DATA_P (insn))
2569 {
2570 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2571 int vlen, idx;
2572 #endif
2573
2574 if (! JUMP_TABLES_IN_TEXT_SECTION)
2575 switch_to_section (targetm.asm_out.function_rodata_section
2576 (current_function_decl));
2577 else
2578 switch_to_section (current_function_section ());
2579
2580 app_disable ();
2581
2582 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2583 if (GET_CODE (body) == ADDR_VEC)
2584 {
2585 #ifdef ASM_OUTPUT_ADDR_VEC
2586 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2587 #else
2588 gcc_unreachable ();
2589 #endif
2590 }
2591 else
2592 {
2593 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2594 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2595 #else
2596 gcc_unreachable ();
2597 #endif
2598 }
2599 #else
2600 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2601 for (idx = 0; idx < vlen; idx++)
2602 {
2603 if (GET_CODE (body) == ADDR_VEC)
2604 {
2605 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2606 ASM_OUTPUT_ADDR_VEC_ELT
2607 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2608 #else
2609 gcc_unreachable ();
2610 #endif
2611 }
2612 else
2613 {
2614 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2615 ASM_OUTPUT_ADDR_DIFF_ELT
2616 (file,
2617 body,
2618 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2619 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2620 #else
2621 gcc_unreachable ();
2622 #endif
2623 }
2624 }
2625 #ifdef ASM_OUTPUT_CASE_END
2626 ASM_OUTPUT_CASE_END (file,
2627 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2628 insn);
2629 #endif
2630 #endif
2631
2632 switch_to_section (current_function_section ());
2633
2634 if (debug_variable_location_views
2635 && !DECL_IGNORED_P (current_function_decl))
2636 debug_hooks->var_location (insn);
2637
2638 break;
2639 }
2640 /* Output this line note if it is the first or the last line
2641 note in a row. */
2642 if (!DECL_IGNORED_P (current_function_decl)
2643 && notice_source_line (insn, is_stmt_p))
2644 {
2645 if (flag_verbose_asm)
2646 asm_show_source (last_filename, last_linenum);
2647 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2648 last_filename, last_discriminator,
2649 is_stmt);
2650 clear_next_view_needed (seen);
2651 }
2652 else
2653 maybe_output_next_view (seen);
2654
2655 gcc_checking_assert (!DEBUG_INSN_P (insn));
2656
2657 if (GET_CODE (body) == PARALLEL
2658 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2659 body = XVECEXP (body, 0, 0);
2660
2661 if (GET_CODE (body) == ASM_INPUT)
2662 {
2663 const char *string = XSTR (body, 0);
2664
2665 /* There's no telling what that did to the condition codes. */
2666 CC_STATUS_INIT;
2667
2668 if (string[0])
2669 {
2670 expanded_location loc;
2671
2672 app_enable ();
2673 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2674 if (*loc.file && loc.line)
2675 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2676 ASM_COMMENT_START, loc.line, loc.file);
2677 fprintf (asm_out_file, "\t%s\n", string);
2678 #if HAVE_AS_LINE_ZERO
2679 if (*loc.file && loc.line)
2680 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2681 #endif
2682 }
2683 break;
2684 }
2685
2686 /* Detect `asm' construct with operands. */
2687 if (asm_noperands (body) >= 0)
2688 {
2689 unsigned int noperands = asm_noperands (body);
2690 rtx *ops = XALLOCAVEC (rtx, noperands);
2691 const char *string;
2692 location_t loc;
2693 expanded_location expanded;
2694
2695 /* There's no telling what that did to the condition codes. */
2696 CC_STATUS_INIT;
2697
2698 /* Get out the operand values. */
2699 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2700 /* Inhibit dying on what would otherwise be compiler bugs. */
2701 insn_noperands = noperands;
2702 this_is_asm_operands = insn;
2703 expanded = expand_location (loc);
2704
2705 #ifdef FINAL_PRESCAN_INSN
2706 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2707 #endif
2708
2709 /* Output the insn using them. */
2710 if (string[0])
2711 {
2712 app_enable ();
2713 if (expanded.file && expanded.line)
2714 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2715 ASM_COMMENT_START, expanded.line, expanded.file);
2716 output_asm_insn (string, ops);
2717 #if HAVE_AS_LINE_ZERO
2718 if (expanded.file && expanded.line)
2719 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2720 #endif
2721 }
2722
2723 if (targetm.asm_out.final_postscan_insn)
2724 targetm.asm_out.final_postscan_insn (file, insn, ops,
2725 insn_noperands);
2726
2727 this_is_asm_operands = 0;
2728 break;
2729 }
2730
2731 app_disable ();
2732
2733 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2734 {
2735 /* A delayed-branch sequence */
2736 int i;
2737
2738 final_sequence = seq;
2739
2740 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2741 force the restoration of a comparison that was previously
2742 thought unnecessary. If that happens, cancel this sequence
2743 and cause that insn to be restored. */
2744
2745 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2746 if (next != seq->insn (1))
2747 {
2748 final_sequence = 0;
2749 return next;
2750 }
2751
2752 for (i = 1; i < seq->len (); i++)
2753 {
2754 rtx_insn *insn = seq->insn (i);
2755 rtx_insn *next = NEXT_INSN (insn);
2756 /* We loop in case any instruction in a delay slot gets
2757 split. */
2758 do
2759 insn = final_scan_insn (insn, file, 0, 1, seen);
2760 while (insn != next);
2761 }
2762 #ifdef DBR_OUTPUT_SEQEND
2763 DBR_OUTPUT_SEQEND (file);
2764 #endif
2765 final_sequence = 0;
2766
2767 /* If the insn requiring the delay slot was a CALL_INSN, the
2768 insns in the delay slot are actually executed before the
2769 called function. Hence we don't preserve any CC-setting
2770 actions in these insns and the CC must be marked as being
2771 clobbered by the function. */
2772 if (CALL_P (seq->insn (0)))
2773 {
2774 CC_STATUS_INIT;
2775 }
2776 break;
2777 }
2778
2779 /* We have a real machine instruction as rtl. */
2780
2781 body = PATTERN (insn);
2782
2783 #if HAVE_cc0
2784 set = single_set (insn);
2785
2786 /* Check for redundant test and compare instructions
2787 (when the condition codes are already set up as desired).
2788 This is done only when optimizing; if not optimizing,
2789 it should be possible for the user to alter a variable
2790 with the debugger in between statements
2791 and the next statement should reexamine the variable
2792 to compute the condition codes. */
2793
2794 if (optimize_p)
2795 {
2796 if (set
2797 && GET_CODE (SET_DEST (set)) == CC0
2798 && insn != last_ignored_compare)
2799 {
2800 rtx src1, src2;
2801 if (GET_CODE (SET_SRC (set)) == SUBREG)
2802 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2803
2804 src1 = SET_SRC (set);
2805 src2 = NULL_RTX;
2806 if (GET_CODE (SET_SRC (set)) == COMPARE)
2807 {
2808 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2809 XEXP (SET_SRC (set), 0)
2810 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2811 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2812 XEXP (SET_SRC (set), 1)
2813 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2814 if (XEXP (SET_SRC (set), 1)
2815 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2816 src2 = XEXP (SET_SRC (set), 0);
2817 }
2818 if ((cc_status.value1 != 0
2819 && rtx_equal_p (src1, cc_status.value1))
2820 || (cc_status.value2 != 0
2821 && rtx_equal_p (src1, cc_status.value2))
2822 || (src2 != 0 && cc_status.value1 != 0
2823 && rtx_equal_p (src2, cc_status.value1))
2824 || (src2 != 0 && cc_status.value2 != 0
2825 && rtx_equal_p (src2, cc_status.value2)))
2826 {
2827 /* Don't delete insn if it has an addressing side-effect. */
2828 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2829 /* or if anything in it is volatile. */
2830 && ! volatile_refs_p (PATTERN (insn)))
2831 {
2832 /* We don't really delete the insn; just ignore it. */
2833 last_ignored_compare = insn;
2834 break;
2835 }
2836 }
2837 }
2838 }
2839
2840 /* If this is a conditional branch, maybe modify it
2841 if the cc's are in a nonstandard state
2842 so that it accomplishes the same thing that it would
2843 do straightforwardly if the cc's were set up normally. */
2844
2845 if (cc_status.flags != 0
2846 && JUMP_P (insn)
2847 && GET_CODE (body) == SET
2848 && SET_DEST (body) == pc_rtx
2849 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2850 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2851 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2852 {
2853 /* This function may alter the contents of its argument
2854 and clear some of the cc_status.flags bits.
2855 It may also return 1 meaning condition now always true
2856 or -1 meaning condition now always false
2857 or 2 meaning condition nontrivial but altered. */
2858 int result = alter_cond (XEXP (SET_SRC (body), 0));
2859 /* If condition now has fixed value, replace the IF_THEN_ELSE
2860 with its then-operand or its else-operand. */
2861 if (result == 1)
2862 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2863 if (result == -1)
2864 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2865
2866 /* The jump is now either unconditional or a no-op.
2867 If it has become a no-op, don't try to output it.
2868 (It would not be recognized.) */
2869 if (SET_SRC (body) == pc_rtx)
2870 {
2871 delete_insn (insn);
2872 break;
2873 }
2874 else if (ANY_RETURN_P (SET_SRC (body)))
2875 /* Replace (set (pc) (return)) with (return). */
2876 PATTERN (insn) = body = SET_SRC (body);
2877
2878 /* Rerecognize the instruction if it has changed. */
2879 if (result != 0)
2880 INSN_CODE (insn) = -1;
2881 }
2882
2883 /* If this is a conditional trap, maybe modify it if the cc's
2884 are in a nonstandard state so that it accomplishes the same
2885 thing that it would do straightforwardly if the cc's were
2886 set up normally. */
2887 if (cc_status.flags != 0
2888 && NONJUMP_INSN_P (insn)
2889 && GET_CODE (body) == TRAP_IF
2890 && COMPARISON_P (TRAP_CONDITION (body))
2891 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2892 {
2893 /* This function may alter the contents of its argument
2894 and clear some of the cc_status.flags bits.
2895 It may also return 1 meaning condition now always true
2896 or -1 meaning condition now always false
2897 or 2 meaning condition nontrivial but altered. */
2898 int result = alter_cond (TRAP_CONDITION (body));
2899
2900 /* If TRAP_CONDITION has become always false, delete the
2901 instruction. */
2902 if (result == -1)
2903 {
2904 delete_insn (insn);
2905 break;
2906 }
2907
2908 /* If TRAP_CONDITION has become always true, replace
2909 TRAP_CONDITION with const_true_rtx. */
2910 if (result == 1)
2911 TRAP_CONDITION (body) = const_true_rtx;
2912
2913 /* Rerecognize the instruction if it has changed. */
2914 if (result != 0)
2915 INSN_CODE (insn) = -1;
2916 }
2917
2918 /* Make same adjustments to instructions that examine the
2919 condition codes without jumping and instructions that
2920 handle conditional moves (if this machine has either one). */
2921
2922 if (cc_status.flags != 0
2923 && set != 0)
2924 {
2925 rtx cond_rtx, then_rtx, else_rtx;
2926
2927 if (!JUMP_P (insn)
2928 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2929 {
2930 cond_rtx = XEXP (SET_SRC (set), 0);
2931 then_rtx = XEXP (SET_SRC (set), 1);
2932 else_rtx = XEXP (SET_SRC (set), 2);
2933 }
2934 else
2935 {
2936 cond_rtx = SET_SRC (set);
2937 then_rtx = const_true_rtx;
2938 else_rtx = const0_rtx;
2939 }
2940
2941 if (COMPARISON_P (cond_rtx)
2942 && XEXP (cond_rtx, 0) == cc0_rtx)
2943 {
2944 int result;
2945 result = alter_cond (cond_rtx);
2946 if (result == 1)
2947 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2948 else if (result == -1)
2949 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2950 else if (result == 2)
2951 INSN_CODE (insn) = -1;
2952 if (SET_DEST (set) == SET_SRC (set))
2953 delete_insn (insn);
2954 }
2955 }
2956
2957 #endif
2958
2959 /* Do machine-specific peephole optimizations if desired. */
2960
2961 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2962 {
2963 rtx_insn *next = peephole (insn);
2964 /* When peepholing, if there were notes within the peephole,
2965 emit them before the peephole. */
2966 if (next != 0 && next != NEXT_INSN (insn))
2967 {
2968 rtx_insn *note, *prev = PREV_INSN (insn);
2969
2970 for (note = NEXT_INSN (insn); note != next;
2971 note = NEXT_INSN (note))
2972 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2973
2974 /* Put the notes in the proper position for a later
2975 rescan. For example, the SH target can do this
2976 when generating a far jump in a delayed branch
2977 sequence. */
2978 note = NEXT_INSN (insn);
2979 SET_PREV_INSN (note) = prev;
2980 SET_NEXT_INSN (prev) = note;
2981 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2982 SET_PREV_INSN (insn) = PREV_INSN (next);
2983 SET_NEXT_INSN (insn) = next;
2984 SET_PREV_INSN (next) = insn;
2985 }
2986
2987 /* PEEPHOLE might have changed this. */
2988 body = PATTERN (insn);
2989 }
2990
2991 /* Try to recognize the instruction.
2992 If successful, verify that the operands satisfy the
2993 constraints for the instruction. Crash if they don't,
2994 since `reload' should have changed them so that they do. */
2995
2996 insn_code_number = recog_memoized (insn);
2997 cleanup_subreg_operands (insn);
2998
2999 /* Dump the insn in the assembly for debugging (-dAP).
3000 If the final dump is requested as slim RTL, dump slim
3001 RTL to the assembly file also. */
3002 if (flag_dump_rtl_in_asm)
3003 {
3004 print_rtx_head = ASM_COMMENT_START;
3005 if (! (dump_flags & TDF_SLIM))
3006 print_rtl_single (asm_out_file, insn);
3007 else
3008 dump_insn_slim (asm_out_file, insn);
3009 print_rtx_head = "";
3010 }
3011
3012 if (! constrain_operands_cached (insn, 1))
3013 fatal_insn_not_found (insn);
3014
3015 /* Some target machines need to prescan each insn before
3016 it is output. */
3017
3018 #ifdef FINAL_PRESCAN_INSN
3019 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3020 #endif
3021
3022 if (targetm.have_conditional_execution ()
3023 && GET_CODE (PATTERN (insn)) == COND_EXEC)
3024 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
3025
3026 #if HAVE_cc0
3027 cc_prev_status = cc_status;
3028
3029 /* Update `cc_status' for this instruction.
3030 The instruction's output routine may change it further.
3031 If the output routine for a jump insn needs to depend
3032 on the cc status, it should look at cc_prev_status. */
3033
3034 NOTICE_UPDATE_CC (body, insn);
3035 #endif
3036
3037 current_output_insn = debug_insn = insn;
3038
3039 /* Find the proper template for this insn. */
3040 templ = get_insn_template (insn_code_number, insn);
3041
3042 /* If the C code returns 0, it means that it is a jump insn
3043 which follows a deleted test insn, and that test insn
3044 needs to be reinserted. */
3045 if (templ == 0)
3046 {
3047 rtx_insn *prev;
3048
3049 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
3050
3051 /* We have already processed the notes between the setter and
3052 the user. Make sure we don't process them again, this is
3053 particularly important if one of the notes is a block
3054 scope note or an EH note. */
3055 for (prev = insn;
3056 prev != last_ignored_compare;
3057 prev = PREV_INSN (prev))
3058 {
3059 if (NOTE_P (prev))
3060 delete_insn (prev); /* Use delete_note. */
3061 }
3062
3063 return prev;
3064 }
3065
3066 /* If the template is the string "#", it means that this insn must
3067 be split. */
3068 if (templ[0] == '#' && templ[1] == '\0')
3069 {
3070 rtx_insn *new_rtx = try_split (body, insn, 0);
3071
3072 /* If we didn't split the insn, go away. */
3073 if (new_rtx == insn && PATTERN (new_rtx) == body)
3074 fatal_insn ("could not split insn", insn);
3075
3076 /* If we have a length attribute, this instruction should have
3077 been split in shorten_branches, to ensure that we would have
3078 valid length info for the splitees. */
3079 gcc_assert (!HAVE_ATTR_length);
3080
3081 return new_rtx;
3082 }
3083
3084 /* ??? This will put the directives in the wrong place if
3085 get_insn_template outputs assembly directly. However calling it
3086 before get_insn_template breaks if the insns is split. */
3087 if (targetm.asm_out.unwind_emit_before_insn
3088 && targetm.asm_out.unwind_emit)
3089 targetm.asm_out.unwind_emit (asm_out_file, insn);
3090
3091 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
3092 if (call_insn != NULL)
3093 {
3094 rtx x = call_from_call_insn (call_insn);
3095 x = XEXP (x, 0);
3096 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3097 {
3098 tree t;
3099 x = XEXP (x, 0);
3100 t = SYMBOL_REF_DECL (x);
3101 if (t)
3102 assemble_external (t);
3103 }
3104 }
3105
3106 /* Output assembler code from the template. */
3107 output_asm_insn (templ, recog_data.operand);
3108
3109 /* Some target machines need to postscan each insn after
3110 it is output. */
3111 if (targetm.asm_out.final_postscan_insn)
3112 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3113 recog_data.n_operands);
3114
3115 if (!targetm.asm_out.unwind_emit_before_insn
3116 && targetm.asm_out.unwind_emit)
3117 targetm.asm_out.unwind_emit (asm_out_file, insn);
3118
3119 /* Let the debug info back-end know about this call. We do this only
3120 after the instruction has been emitted because labels that may be
3121 created to reference the call instruction must appear after it. */
3122 if ((debug_variable_location_views || call_insn != NULL)
3123 && !DECL_IGNORED_P (current_function_decl))
3124 debug_hooks->var_location (insn);
3125
3126 current_output_insn = debug_insn = 0;
3127 }
3128 }
3129 return NEXT_INSN (insn);
3130 }
3131
3132 /* This is a wrapper around final_scan_insn_1 that allows ports to
3133 call it recursively without a known value for SEEN. The value is
3134 saved at the outermost call, and recovered for recursive calls.
3135 Recursive calls MUST pass NULL, or the same pointer if they can
3136 otherwise get to it. */
3137
3138 rtx_insn *
3139 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
3140 int nopeepholes, int *seen)
3141 {
3142 static int *enclosing_seen;
3143 static int recursion_counter;
3144
3145 gcc_assert (seen || recursion_counter);
3146 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
3147
3148 if (!recursion_counter++)
3149 enclosing_seen = seen;
3150 else if (!seen)
3151 seen = enclosing_seen;
3152
3153 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
3154
3155 if (!--recursion_counter)
3156 enclosing_seen = NULL;
3157
3158 return ret;
3159 }
3160
3161 \f
3162
3163 /* Map DECLs to instance discriminators. This is allocated and
3164 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
3165 Mappings from this table are saved and restored for LTO, so
3166 link-time compilation will have this map set, at least in
3167 partitions containing at least one DECL with an associated instance
3168 discriminator. */
3169
3170 decl_to_instance_map_t *decl_to_instance_map;
3171
3172 /* Return the instance number assigned to DECL. */
3173
3174 static inline int
3175 map_decl_to_instance (const_tree decl)
3176 {
3177 int *inst;
3178
3179 if (!decl_to_instance_map || !decl || !DECL_P (decl))
3180 return 0;
3181
3182 inst = decl_to_instance_map->get (decl);
3183
3184 if (!inst)
3185 return 0;
3186
3187 return *inst;
3188 }
3189
3190 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
3191
3192 static inline int
3193 compute_discriminator (location_t loc)
3194 {
3195 int discriminator;
3196
3197 if (!decl_to_instance_map)
3198 discriminator = bb_discriminator;
3199 else
3200 {
3201 tree block = LOCATION_BLOCK (loc);
3202
3203 while (block && TREE_CODE (block) == BLOCK
3204 && !inlined_function_outer_scope_p (block))
3205 block = BLOCK_SUPERCONTEXT (block);
3206
3207 tree decl;
3208
3209 if (!block)
3210 decl = current_function_decl;
3211 else if (DECL_P (block))
3212 decl = block;
3213 else
3214 decl = block_ultimate_origin (block);
3215
3216 discriminator = map_decl_to_instance (decl);
3217 }
3218
3219 return discriminator;
3220 }
3221
3222 /* Return whether a source line note needs to be emitted before INSN.
3223 Sets IS_STMT to TRUE if the line should be marked as a possible
3224 breakpoint location. */
3225
3226 static bool
3227 notice_source_line (rtx_insn *insn, bool *is_stmt)
3228 {
3229 const char *filename;
3230 int linenum, columnnum;
3231
3232 if (NOTE_MARKER_P (insn))
3233 {
3234 location_t loc = NOTE_MARKER_LOCATION (insn);
3235 expanded_location xloc = expand_location (loc);
3236 if (xloc.line == 0)
3237 {
3238 gcc_checking_assert (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3239 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION);
3240 return false;
3241 }
3242 filename = xloc.file;
3243 linenum = xloc.line;
3244 columnnum = xloc.column;
3245 discriminator = compute_discriminator (loc);
3246 force_source_line = true;
3247 }
3248 else if (override_filename)
3249 {
3250 filename = override_filename;
3251 linenum = override_linenum;
3252 columnnum = override_columnnum;
3253 discriminator = override_discriminator;
3254 }
3255 else if (INSN_HAS_LOCATION (insn))
3256 {
3257 expanded_location xloc = insn_location (insn);
3258 filename = xloc.file;
3259 linenum = xloc.line;
3260 columnnum = xloc.column;
3261 discriminator = compute_discriminator (INSN_LOCATION (insn));
3262 }
3263 else
3264 {
3265 filename = NULL;
3266 linenum = 0;
3267 columnnum = 0;
3268 discriminator = 0;
3269 }
3270
3271 if (filename == NULL)
3272 return false;
3273
3274 if (force_source_line
3275 || filename != last_filename
3276 || last_linenum != linenum
3277 || (debug_column_info && last_columnnum != columnnum))
3278 {
3279 force_source_line = false;
3280 last_filename = filename;
3281 last_linenum = linenum;
3282 last_columnnum = columnnum;
3283 last_discriminator = discriminator;
3284 if (is_stmt)
3285 *is_stmt = true;
3286 high_block_linenum = MAX (last_linenum, high_block_linenum);
3287 high_function_linenum = MAX (last_linenum, high_function_linenum);
3288 return true;
3289 }
3290
3291 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3292 {
3293 /* If the discriminator changed, but the line number did not,
3294 output the line table entry with is_stmt false so the
3295 debugger does not treat this as a breakpoint location. */
3296 last_discriminator = discriminator;
3297 if (is_stmt)
3298 *is_stmt = false;
3299 return true;
3300 }
3301
3302 return false;
3303 }
3304 \f
3305 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3306 directly to the desired hard register. */
3307
3308 void
3309 cleanup_subreg_operands (rtx_insn *insn)
3310 {
3311 int i;
3312 bool changed = false;
3313 extract_insn_cached (insn);
3314 for (i = 0; i < recog_data.n_operands; i++)
3315 {
3316 /* The following test cannot use recog_data.operand when testing
3317 for a SUBREG: the underlying object might have been changed
3318 already if we are inside a match_operator expression that
3319 matches the else clause. Instead we test the underlying
3320 expression directly. */
3321 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3322 {
3323 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3324 changed = true;
3325 }
3326 else if (GET_CODE (recog_data.operand[i]) == PLUS
3327 || GET_CODE (recog_data.operand[i]) == MULT
3328 || MEM_P (recog_data.operand[i]))
3329 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3330 }
3331
3332 for (i = 0; i < recog_data.n_dups; i++)
3333 {
3334 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3335 {
3336 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3337 changed = true;
3338 }
3339 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3340 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3341 || MEM_P (*recog_data.dup_loc[i]))
3342 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3343 }
3344 if (changed)
3345 df_insn_rescan (insn);
3346 }
3347
3348 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3349 the thing it is a subreg of. Do it anyway if FINAL_P. */
3350
3351 rtx
3352 alter_subreg (rtx *xp, bool final_p)
3353 {
3354 rtx x = *xp;
3355 rtx y = SUBREG_REG (x);
3356
3357 /* simplify_subreg does not remove subreg from volatile references.
3358 We are required to. */
3359 if (MEM_P (y))
3360 {
3361 poly_int64 offset = SUBREG_BYTE (x);
3362
3363 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3364 contains 0 instead of the proper offset. See simplify_subreg. */
3365 if (paradoxical_subreg_p (x))
3366 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3367
3368 if (final_p)
3369 *xp = adjust_address (y, GET_MODE (x), offset);
3370 else
3371 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3372 }
3373 else if (REG_P (y) && HARD_REGISTER_P (y))
3374 {
3375 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3376 SUBREG_BYTE (x));
3377
3378 if (new_rtx != 0)
3379 *xp = new_rtx;
3380 else if (final_p && REG_P (y))
3381 {
3382 /* Simplify_subreg can't handle some REG cases, but we have to. */
3383 unsigned int regno;
3384 poly_int64 offset;
3385
3386 regno = subreg_regno (x);
3387 if (subreg_lowpart_p (x))
3388 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3389 else
3390 offset = SUBREG_BYTE (x);
3391 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3392 }
3393 }
3394
3395 return *xp;
3396 }
3397
3398 /* Do alter_subreg on all the SUBREGs contained in X. */
3399
3400 static rtx
3401 walk_alter_subreg (rtx *xp, bool *changed)
3402 {
3403 rtx x = *xp;
3404 switch (GET_CODE (x))
3405 {
3406 case PLUS:
3407 case MULT:
3408 case AND:
3409 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3410 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3411 break;
3412
3413 case MEM:
3414 case ZERO_EXTEND:
3415 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3416 break;
3417
3418 case SUBREG:
3419 *changed = true;
3420 return alter_subreg (xp, true);
3421
3422 default:
3423 break;
3424 }
3425
3426 return *xp;
3427 }
3428 \f
3429 #if HAVE_cc0
3430
3431 /* Given BODY, the body of a jump instruction, alter the jump condition
3432 as required by the bits that are set in cc_status.flags.
3433 Not all of the bits there can be handled at this level in all cases.
3434
3435 The value is normally 0.
3436 1 means that the condition has become always true.
3437 -1 means that the condition has become always false.
3438 2 means that COND has been altered. */
3439
3440 static int
3441 alter_cond (rtx cond)
3442 {
3443 int value = 0;
3444
3445 if (cc_status.flags & CC_REVERSED)
3446 {
3447 value = 2;
3448 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3449 }
3450
3451 if (cc_status.flags & CC_INVERTED)
3452 {
3453 value = 2;
3454 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3455 }
3456
3457 if (cc_status.flags & CC_NOT_POSITIVE)
3458 switch (GET_CODE (cond))
3459 {
3460 case LE:
3461 case LEU:
3462 case GEU:
3463 /* Jump becomes unconditional. */
3464 return 1;
3465
3466 case GT:
3467 case GTU:
3468 case LTU:
3469 /* Jump becomes no-op. */
3470 return -1;
3471
3472 case GE:
3473 PUT_CODE (cond, EQ);
3474 value = 2;
3475 break;
3476
3477 case LT:
3478 PUT_CODE (cond, NE);
3479 value = 2;
3480 break;
3481
3482 default:
3483 break;
3484 }
3485
3486 if (cc_status.flags & CC_NOT_NEGATIVE)
3487 switch (GET_CODE (cond))
3488 {
3489 case GE:
3490 case GEU:
3491 /* Jump becomes unconditional. */
3492 return 1;
3493
3494 case LT:
3495 case LTU:
3496 /* Jump becomes no-op. */
3497 return -1;
3498
3499 case LE:
3500 case LEU:
3501 PUT_CODE (cond, EQ);
3502 value = 2;
3503 break;
3504
3505 case GT:
3506 case GTU:
3507 PUT_CODE (cond, NE);
3508 value = 2;
3509 break;
3510
3511 default:
3512 break;
3513 }
3514
3515 if (cc_status.flags & CC_NO_OVERFLOW)
3516 switch (GET_CODE (cond))
3517 {
3518 case GEU:
3519 /* Jump becomes unconditional. */
3520 return 1;
3521
3522 case LEU:
3523 PUT_CODE (cond, EQ);
3524 value = 2;
3525 break;
3526
3527 case GTU:
3528 PUT_CODE (cond, NE);
3529 value = 2;
3530 break;
3531
3532 case LTU:
3533 /* Jump becomes no-op. */
3534 return -1;
3535
3536 default:
3537 break;
3538 }
3539
3540 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3541 switch (GET_CODE (cond))
3542 {
3543 default:
3544 gcc_unreachable ();
3545
3546 case NE:
3547 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3548 value = 2;
3549 break;
3550
3551 case EQ:
3552 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3553 value = 2;
3554 break;
3555 }
3556
3557 if (cc_status.flags & CC_NOT_SIGNED)
3558 /* The flags are valid if signed condition operators are converted
3559 to unsigned. */
3560 switch (GET_CODE (cond))
3561 {
3562 case LE:
3563 PUT_CODE (cond, LEU);
3564 value = 2;
3565 break;
3566
3567 case LT:
3568 PUT_CODE (cond, LTU);
3569 value = 2;
3570 break;
3571
3572 case GT:
3573 PUT_CODE (cond, GTU);
3574 value = 2;
3575 break;
3576
3577 case GE:
3578 PUT_CODE (cond, GEU);
3579 value = 2;
3580 break;
3581
3582 default:
3583 break;
3584 }
3585
3586 return value;
3587 }
3588 #endif
3589 \f
3590 /* Report inconsistency between the assembler template and the operands.
3591 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3592
3593 void
3594 output_operand_lossage (const char *cmsgid, ...)
3595 {
3596 char *fmt_string;
3597 char *new_message;
3598 const char *pfx_str;
3599 va_list ap;
3600
3601 va_start (ap, cmsgid);
3602
3603 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3604 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3605 new_message = xvasprintf (fmt_string, ap);
3606
3607 if (this_is_asm_operands)
3608 error_for_asm (this_is_asm_operands, "%s", new_message);
3609 else
3610 internal_error ("%s", new_message);
3611
3612 free (fmt_string);
3613 free (new_message);
3614 va_end (ap);
3615 }
3616 \f
3617 /* Output of assembler code from a template, and its subroutines. */
3618
3619 /* Annotate the assembly with a comment describing the pattern and
3620 alternative used. */
3621
3622 static void
3623 output_asm_name (void)
3624 {
3625 if (debug_insn)
3626 {
3627 fprintf (asm_out_file, "\t%s %d\t",
3628 ASM_COMMENT_START, INSN_UID (debug_insn));
3629
3630 fprintf (asm_out_file, "[c=%d",
3631 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3632 if (HAVE_ATTR_length)
3633 fprintf (asm_out_file, " l=%d",
3634 get_attr_length (debug_insn));
3635 fprintf (asm_out_file, "] ");
3636
3637 int num = INSN_CODE (debug_insn);
3638 fprintf (asm_out_file, "%s", insn_data[num].name);
3639 if (insn_data[num].n_alternatives > 1)
3640 fprintf (asm_out_file, "/%d", which_alternative);
3641
3642 /* Clear this so only the first assembler insn
3643 of any rtl insn will get the special comment for -dp. */
3644 debug_insn = 0;
3645 }
3646 }
3647
3648 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3649 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3650 corresponds to the address of the object and 0 if to the object. */
3651
3652 static tree
3653 get_mem_expr_from_op (rtx op, int *paddressp)
3654 {
3655 tree expr;
3656 int inner_addressp;
3657
3658 *paddressp = 0;
3659
3660 if (REG_P (op))
3661 return REG_EXPR (op);
3662 else if (!MEM_P (op))
3663 return 0;
3664
3665 if (MEM_EXPR (op) != 0)
3666 return MEM_EXPR (op);
3667
3668 /* Otherwise we have an address, so indicate it and look at the address. */
3669 *paddressp = 1;
3670 op = XEXP (op, 0);
3671
3672 /* First check if we have a decl for the address, then look at the right side
3673 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3674 But don't allow the address to itself be indirect. */
3675 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3676 return expr;
3677 else if (GET_CODE (op) == PLUS
3678 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3679 return expr;
3680
3681 while (UNARY_P (op)
3682 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3683 op = XEXP (op, 0);
3684
3685 expr = get_mem_expr_from_op (op, &inner_addressp);
3686 return inner_addressp ? 0 : expr;
3687 }
3688
3689 /* Output operand names for assembler instructions. OPERANDS is the
3690 operand vector, OPORDER is the order to write the operands, and NOPS
3691 is the number of operands to write. */
3692
3693 static void
3694 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3695 {
3696 int wrote = 0;
3697 int i;
3698
3699 for (i = 0; i < nops; i++)
3700 {
3701 int addressp;
3702 rtx op = operands[oporder[i]];
3703 tree expr = get_mem_expr_from_op (op, &addressp);
3704
3705 fprintf (asm_out_file, "%c%s",
3706 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3707 wrote = 1;
3708 if (expr)
3709 {
3710 fprintf (asm_out_file, "%s",
3711 addressp ? "*" : "");
3712 print_mem_expr (asm_out_file, expr);
3713 wrote = 1;
3714 }
3715 else if (REG_P (op) && ORIGINAL_REGNO (op)
3716 && ORIGINAL_REGNO (op) != REGNO (op))
3717 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3718 }
3719 }
3720
3721 #ifdef ASSEMBLER_DIALECT
3722 /* Helper function to parse assembler dialects in the asm string.
3723 This is called from output_asm_insn and asm_fprintf. */
3724 static const char *
3725 do_assembler_dialects (const char *p, int *dialect)
3726 {
3727 char c = *(p - 1);
3728
3729 switch (c)
3730 {
3731 case '{':
3732 {
3733 int i;
3734
3735 if (*dialect)
3736 output_operand_lossage ("nested assembly dialect alternatives");
3737 else
3738 *dialect = 1;
3739
3740 /* If we want the first dialect, do nothing. Otherwise, skip
3741 DIALECT_NUMBER of strings ending with '|'. */
3742 for (i = 0; i < dialect_number; i++)
3743 {
3744 while (*p && *p != '}')
3745 {
3746 if (*p == '|')
3747 {
3748 p++;
3749 break;
3750 }
3751
3752 /* Skip over any character after a percent sign. */
3753 if (*p == '%')
3754 p++;
3755 if (*p)
3756 p++;
3757 }
3758
3759 if (*p == '}')
3760 break;
3761 }
3762
3763 if (*p == '\0')
3764 output_operand_lossage ("unterminated assembly dialect alternative");
3765 }
3766 break;
3767
3768 case '|':
3769 if (*dialect)
3770 {
3771 /* Skip to close brace. */
3772 do
3773 {
3774 if (*p == '\0')
3775 {
3776 output_operand_lossage ("unterminated assembly dialect alternative");
3777 break;
3778 }
3779
3780 /* Skip over any character after a percent sign. */
3781 if (*p == '%' && p[1])
3782 {
3783 p += 2;
3784 continue;
3785 }
3786
3787 if (*p++ == '}')
3788 break;
3789 }
3790 while (1);
3791
3792 *dialect = 0;
3793 }
3794 else
3795 putc (c, asm_out_file);
3796 break;
3797
3798 case '}':
3799 if (! *dialect)
3800 putc (c, asm_out_file);
3801 *dialect = 0;
3802 break;
3803 default:
3804 gcc_unreachable ();
3805 }
3806
3807 return p;
3808 }
3809 #endif
3810
3811 /* Output text from TEMPLATE to the assembler output file,
3812 obeying %-directions to substitute operands taken from
3813 the vector OPERANDS.
3814
3815 %N (for N a digit) means print operand N in usual manner.
3816 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3817 and print the label name with no punctuation.
3818 %cN means require operand N to be a constant
3819 and print the constant expression with no punctuation.
3820 %aN means expect operand N to be a memory address
3821 (not a memory reference!) and print a reference
3822 to that address.
3823 %nN means expect operand N to be a constant
3824 and print a constant expression for minus the value
3825 of the operand, with no other punctuation. */
3826
3827 void
3828 output_asm_insn (const char *templ, rtx *operands)
3829 {
3830 const char *p;
3831 int c;
3832 #ifdef ASSEMBLER_DIALECT
3833 int dialect = 0;
3834 #endif
3835 int oporder[MAX_RECOG_OPERANDS];
3836 char opoutput[MAX_RECOG_OPERANDS];
3837 int ops = 0;
3838
3839 /* An insn may return a null string template
3840 in a case where no assembler code is needed. */
3841 if (*templ == 0)
3842 return;
3843
3844 memset (opoutput, 0, sizeof opoutput);
3845 p = templ;
3846 putc ('\t', asm_out_file);
3847
3848 #ifdef ASM_OUTPUT_OPCODE
3849 ASM_OUTPUT_OPCODE (asm_out_file, p);
3850 #endif
3851
3852 while ((c = *p++))
3853 switch (c)
3854 {
3855 case '\n':
3856 if (flag_verbose_asm)
3857 output_asm_operand_names (operands, oporder, ops);
3858 if (flag_print_asm_name)
3859 output_asm_name ();
3860
3861 ops = 0;
3862 memset (opoutput, 0, sizeof opoutput);
3863
3864 putc (c, asm_out_file);
3865 #ifdef ASM_OUTPUT_OPCODE
3866 while ((c = *p) == '\t')
3867 {
3868 putc (c, asm_out_file);
3869 p++;
3870 }
3871 ASM_OUTPUT_OPCODE (asm_out_file, p);
3872 #endif
3873 break;
3874
3875 #ifdef ASSEMBLER_DIALECT
3876 case '{':
3877 case '}':
3878 case '|':
3879 p = do_assembler_dialects (p, &dialect);
3880 break;
3881 #endif
3882
3883 case '%':
3884 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3885 if ASSEMBLER_DIALECT defined and these characters have a special
3886 meaning as dialect delimiters.*/
3887 if (*p == '%'
3888 #ifdef ASSEMBLER_DIALECT
3889 || *p == '{' || *p == '}' || *p == '|'
3890 #endif
3891 )
3892 {
3893 putc (*p, asm_out_file);
3894 p++;
3895 }
3896 /* %= outputs a number which is unique to each insn in the entire
3897 compilation. This is useful for making local labels that are
3898 referred to more than once in a given insn. */
3899 else if (*p == '=')
3900 {
3901 p++;
3902 fprintf (asm_out_file, "%d", insn_counter);
3903 }
3904 /* % followed by a letter and some digits
3905 outputs an operand in a special way depending on the letter.
3906 Letters `acln' are implemented directly.
3907 Other letters are passed to `output_operand' so that
3908 the TARGET_PRINT_OPERAND hook can define them. */
3909 else if (ISALPHA (*p))
3910 {
3911 int letter = *p++;
3912 unsigned long opnum;
3913 char *endptr;
3914
3915 opnum = strtoul (p, &endptr, 10);
3916
3917 if (endptr == p)
3918 output_operand_lossage ("operand number missing "
3919 "after %%-letter");
3920 else if (this_is_asm_operands && opnum >= insn_noperands)
3921 output_operand_lossage ("operand number out of range");
3922 else if (letter == 'l')
3923 output_asm_label (operands[opnum]);
3924 else if (letter == 'a')
3925 output_address (VOIDmode, operands[opnum]);
3926 else if (letter == 'c')
3927 {
3928 if (CONSTANT_ADDRESS_P (operands[opnum]))
3929 output_addr_const (asm_out_file, operands[opnum]);
3930 else
3931 output_operand (operands[opnum], 'c');
3932 }
3933 else if (letter == 'n')
3934 {
3935 if (CONST_INT_P (operands[opnum]))
3936 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3937 - INTVAL (operands[opnum]));
3938 else
3939 {
3940 putc ('-', asm_out_file);
3941 output_addr_const (asm_out_file, operands[opnum]);
3942 }
3943 }
3944 else
3945 output_operand (operands[opnum], letter);
3946
3947 if (!opoutput[opnum])
3948 oporder[ops++] = opnum;
3949 opoutput[opnum] = 1;
3950
3951 p = endptr;
3952 c = *p;
3953 }
3954 /* % followed by a digit outputs an operand the default way. */
3955 else if (ISDIGIT (*p))
3956 {
3957 unsigned long opnum;
3958 char *endptr;
3959
3960 opnum = strtoul (p, &endptr, 10);
3961 if (this_is_asm_operands && opnum >= insn_noperands)
3962 output_operand_lossage ("operand number out of range");
3963 else
3964 output_operand (operands[opnum], 0);
3965
3966 if (!opoutput[opnum])
3967 oporder[ops++] = opnum;
3968 opoutput[opnum] = 1;
3969
3970 p = endptr;
3971 c = *p;
3972 }
3973 /* % followed by punctuation: output something for that
3974 punctuation character alone, with no operand. The
3975 TARGET_PRINT_OPERAND hook decides what is actually done. */
3976 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3977 output_operand (NULL_RTX, *p++);
3978 else
3979 output_operand_lossage ("invalid %%-code");
3980 break;
3981
3982 default:
3983 putc (c, asm_out_file);
3984 }
3985
3986 /* Try to keep the asm a bit more readable. */
3987 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3988 putc ('\t', asm_out_file);
3989
3990 /* Write out the variable names for operands, if we know them. */
3991 if (flag_verbose_asm)
3992 output_asm_operand_names (operands, oporder, ops);
3993 if (flag_print_asm_name)
3994 output_asm_name ();
3995
3996 putc ('\n', asm_out_file);
3997 }
3998 \f
3999 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
4000
4001 void
4002 output_asm_label (rtx x)
4003 {
4004 char buf[256];
4005
4006 if (GET_CODE (x) == LABEL_REF)
4007 x = label_ref_label (x);
4008 if (LABEL_P (x)
4009 || (NOTE_P (x)
4010 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
4011 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4012 else
4013 output_operand_lossage ("'%%l' operand isn't a label");
4014
4015 assemble_name (asm_out_file, buf);
4016 }
4017
4018 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
4019
4020 void
4021 mark_symbol_refs_as_used (rtx x)
4022 {
4023 subrtx_iterator::array_type array;
4024 FOR_EACH_SUBRTX (iter, array, x, ALL)
4025 {
4026 const_rtx x = *iter;
4027 if (GET_CODE (x) == SYMBOL_REF)
4028 if (tree t = SYMBOL_REF_DECL (x))
4029 assemble_external (t);
4030 }
4031 }
4032
4033 /* Print operand X using machine-dependent assembler syntax.
4034 CODE is a non-digit that preceded the operand-number in the % spec,
4035 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
4036 between the % and the digits.
4037 When CODE is a non-letter, X is 0.
4038
4039 The meanings of the letters are machine-dependent and controlled
4040 by TARGET_PRINT_OPERAND. */
4041
4042 void
4043 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
4044 {
4045 if (x && GET_CODE (x) == SUBREG)
4046 x = alter_subreg (&x, true);
4047
4048 /* X must not be a pseudo reg. */
4049 if (!targetm.no_register_allocation)
4050 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
4051
4052 targetm.asm_out.print_operand (asm_out_file, x, code);
4053
4054 if (x == NULL_RTX)
4055 return;
4056
4057 mark_symbol_refs_as_used (x);
4058 }
4059
4060 /* Print a memory reference operand for address X using
4061 machine-dependent assembler syntax. */
4062
4063 void
4064 output_address (machine_mode mode, rtx x)
4065 {
4066 bool changed = false;
4067 walk_alter_subreg (&x, &changed);
4068 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
4069 }
4070 \f
4071 /* Print an integer constant expression in assembler syntax.
4072 Addition and subtraction are the only arithmetic
4073 that may appear in these expressions. */
4074
4075 void
4076 output_addr_const (FILE *file, rtx x)
4077 {
4078 char buf[256];
4079
4080 restart:
4081 switch (GET_CODE (x))
4082 {
4083 case PC:
4084 putc ('.', file);
4085 break;
4086
4087 case SYMBOL_REF:
4088 if (SYMBOL_REF_DECL (x))
4089 assemble_external (SYMBOL_REF_DECL (x));
4090 #ifdef ASM_OUTPUT_SYMBOL_REF
4091 ASM_OUTPUT_SYMBOL_REF (file, x);
4092 #else
4093 assemble_name (file, XSTR (x, 0));
4094 #endif
4095 break;
4096
4097 case LABEL_REF:
4098 x = label_ref_label (x);
4099 /* Fall through. */
4100 case CODE_LABEL:
4101 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
4102 #ifdef ASM_OUTPUT_LABEL_REF
4103 ASM_OUTPUT_LABEL_REF (file, buf);
4104 #else
4105 assemble_name (file, buf);
4106 #endif
4107 break;
4108
4109 case CONST_INT:
4110 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
4111 break;
4112
4113 case CONST:
4114 /* This used to output parentheses around the expression,
4115 but that does not work on the 386 (either ATT or BSD assembler). */
4116 output_addr_const (file, XEXP (x, 0));
4117 break;
4118
4119 case CONST_WIDE_INT:
4120 /* We do not know the mode here so we have to use a round about
4121 way to build a wide-int to get it printed properly. */
4122 {
4123 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
4124 CONST_WIDE_INT_NUNITS (x),
4125 CONST_WIDE_INT_NUNITS (x)
4126 * HOST_BITS_PER_WIDE_INT,
4127 false);
4128 print_decs (w, file);
4129 }
4130 break;
4131
4132 case CONST_DOUBLE:
4133 if (CONST_DOUBLE_AS_INT_P (x))
4134 {
4135 /* We can use %d if the number is one word and positive. */
4136 if (CONST_DOUBLE_HIGH (x))
4137 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
4138 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
4139 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4140 else if (CONST_DOUBLE_LOW (x) < 0)
4141 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
4142 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
4143 else
4144 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
4145 }
4146 else
4147 /* We can't handle floating point constants;
4148 PRINT_OPERAND must handle them. */
4149 output_operand_lossage ("floating constant misused");
4150 break;
4151
4152 case CONST_FIXED:
4153 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
4154 break;
4155
4156 case PLUS:
4157 /* Some assemblers need integer constants to appear last (eg masm). */
4158 if (CONST_INT_P (XEXP (x, 0)))
4159 {
4160 output_addr_const (file, XEXP (x, 1));
4161 if (INTVAL (XEXP (x, 0)) >= 0)
4162 fprintf (file, "+");
4163 output_addr_const (file, XEXP (x, 0));
4164 }
4165 else
4166 {
4167 output_addr_const (file, XEXP (x, 0));
4168 if (!CONST_INT_P (XEXP (x, 1))
4169 || INTVAL (XEXP (x, 1)) >= 0)
4170 fprintf (file, "+");
4171 output_addr_const (file, XEXP (x, 1));
4172 }
4173 break;
4174
4175 case MINUS:
4176 /* Avoid outputting things like x-x or x+5-x,
4177 since some assemblers can't handle that. */
4178 x = simplify_subtraction (x);
4179 if (GET_CODE (x) != MINUS)
4180 goto restart;
4181
4182 output_addr_const (file, XEXP (x, 0));
4183 fprintf (file, "-");
4184 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4185 || GET_CODE (XEXP (x, 1)) == PC
4186 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4187 output_addr_const (file, XEXP (x, 1));
4188 else
4189 {
4190 fputs (targetm.asm_out.open_paren, file);
4191 output_addr_const (file, XEXP (x, 1));
4192 fputs (targetm.asm_out.close_paren, file);
4193 }
4194 break;
4195
4196 case ZERO_EXTEND:
4197 case SIGN_EXTEND:
4198 case SUBREG:
4199 case TRUNCATE:
4200 output_addr_const (file, XEXP (x, 0));
4201 break;
4202
4203 default:
4204 if (targetm.asm_out.output_addr_const_extra (file, x))
4205 break;
4206
4207 output_operand_lossage ("invalid expression as operand");
4208 }
4209 }
4210 \f
4211 /* Output a quoted string. */
4212
4213 void
4214 output_quoted_string (FILE *asm_file, const char *string)
4215 {
4216 #ifdef OUTPUT_QUOTED_STRING
4217 OUTPUT_QUOTED_STRING (asm_file, string);
4218 #else
4219 char c;
4220
4221 putc ('\"', asm_file);
4222 while ((c = *string++) != 0)
4223 {
4224 if (ISPRINT (c))
4225 {
4226 if (c == '\"' || c == '\\')
4227 putc ('\\', asm_file);
4228 putc (c, asm_file);
4229 }
4230 else
4231 fprintf (asm_file, "\\%03o", (unsigned char) c);
4232 }
4233 putc ('\"', asm_file);
4234 #endif
4235 }
4236 \f
4237 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4238
4239 void
4240 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4241 {
4242 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4243 if (value == 0)
4244 putc ('0', f);
4245 else
4246 {
4247 char *p = buf + sizeof (buf);
4248 do
4249 *--p = "0123456789abcdef"[value % 16];
4250 while ((value /= 16) != 0);
4251 *--p = 'x';
4252 *--p = '0';
4253 fwrite (p, 1, buf + sizeof (buf) - p, f);
4254 }
4255 }
4256
4257 /* Internal function that prints an unsigned long in decimal in reverse.
4258 The output string IS NOT null-terminated. */
4259
4260 static int
4261 sprint_ul_rev (char *s, unsigned long value)
4262 {
4263 int i = 0;
4264 do
4265 {
4266 s[i] = "0123456789"[value % 10];
4267 value /= 10;
4268 i++;
4269 /* alternate version, without modulo */
4270 /* oldval = value; */
4271 /* value /= 10; */
4272 /* s[i] = "0123456789" [oldval - 10*value]; */
4273 /* i++ */
4274 }
4275 while (value != 0);
4276 return i;
4277 }
4278
4279 /* Write an unsigned long as decimal to a file, fast. */
4280
4281 void
4282 fprint_ul (FILE *f, unsigned long value)
4283 {
4284 /* python says: len(str(2**64)) == 20 */
4285 char s[20];
4286 int i;
4287
4288 i = sprint_ul_rev (s, value);
4289
4290 /* It's probably too small to bother with string reversal and fputs. */
4291 do
4292 {
4293 i--;
4294 putc (s[i], f);
4295 }
4296 while (i != 0);
4297 }
4298
4299 /* Write an unsigned long as decimal to a string, fast.
4300 s must be wide enough to not overflow, at least 21 chars.
4301 Returns the length of the string (without terminating '\0'). */
4302
4303 int
4304 sprint_ul (char *s, unsigned long value)
4305 {
4306 int len = sprint_ul_rev (s, value);
4307 s[len] = '\0';
4308
4309 std::reverse (s, s + len);
4310 return len;
4311 }
4312
4313 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4314 %R prints the value of REGISTER_PREFIX.
4315 %L prints the value of LOCAL_LABEL_PREFIX.
4316 %U prints the value of USER_LABEL_PREFIX.
4317 %I prints the value of IMMEDIATE_PREFIX.
4318 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4319 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4320
4321 We handle alternate assembler dialects here, just like output_asm_insn. */
4322
4323 void
4324 asm_fprintf (FILE *file, const char *p, ...)
4325 {
4326 char buf[10];
4327 char *q, c;
4328 #ifdef ASSEMBLER_DIALECT
4329 int dialect = 0;
4330 #endif
4331 va_list argptr;
4332
4333 va_start (argptr, p);
4334
4335 buf[0] = '%';
4336
4337 while ((c = *p++))
4338 switch (c)
4339 {
4340 #ifdef ASSEMBLER_DIALECT
4341 case '{':
4342 case '}':
4343 case '|':
4344 p = do_assembler_dialects (p, &dialect);
4345 break;
4346 #endif
4347
4348 case '%':
4349 c = *p++;
4350 q = &buf[1];
4351 while (strchr ("-+ #0", c))
4352 {
4353 *q++ = c;
4354 c = *p++;
4355 }
4356 while (ISDIGIT (c) || c == '.')
4357 {
4358 *q++ = c;
4359 c = *p++;
4360 }
4361 switch (c)
4362 {
4363 case '%':
4364 putc ('%', file);
4365 break;
4366
4367 case 'd': case 'i': case 'u':
4368 case 'x': case 'X': case 'o':
4369 case 'c':
4370 *q++ = c;
4371 *q = 0;
4372 fprintf (file, buf, va_arg (argptr, int));
4373 break;
4374
4375 case 'w':
4376 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4377 'o' cases, but we do not check for those cases. It
4378 means that the value is a HOST_WIDE_INT, which may be
4379 either `long' or `long long'. */
4380 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4381 q += strlen (HOST_WIDE_INT_PRINT);
4382 *q++ = *p++;
4383 *q = 0;
4384 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4385 break;
4386
4387 case 'l':
4388 *q++ = c;
4389 #ifdef HAVE_LONG_LONG
4390 if (*p == 'l')
4391 {
4392 *q++ = *p++;
4393 *q++ = *p++;
4394 *q = 0;
4395 fprintf (file, buf, va_arg (argptr, long long));
4396 }
4397 else
4398 #endif
4399 {
4400 *q++ = *p++;
4401 *q = 0;
4402 fprintf (file, buf, va_arg (argptr, long));
4403 }
4404
4405 break;
4406
4407 case 's':
4408 *q++ = c;
4409 *q = 0;
4410 fprintf (file, buf, va_arg (argptr, char *));
4411 break;
4412
4413 case 'O':
4414 #ifdef ASM_OUTPUT_OPCODE
4415 ASM_OUTPUT_OPCODE (asm_out_file, p);
4416 #endif
4417 break;
4418
4419 case 'R':
4420 #ifdef REGISTER_PREFIX
4421 fprintf (file, "%s", REGISTER_PREFIX);
4422 #endif
4423 break;
4424
4425 case 'I':
4426 #ifdef IMMEDIATE_PREFIX
4427 fprintf (file, "%s", IMMEDIATE_PREFIX);
4428 #endif
4429 break;
4430
4431 case 'L':
4432 #ifdef LOCAL_LABEL_PREFIX
4433 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4434 #endif
4435 break;
4436
4437 case 'U':
4438 fputs (user_label_prefix, file);
4439 break;
4440
4441 #ifdef ASM_FPRINTF_EXTENSIONS
4442 /* Uppercase letters are reserved for general use by asm_fprintf
4443 and so are not available to target specific code. In order to
4444 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4445 they are defined here. As they get turned into real extensions
4446 to asm_fprintf they should be removed from this list. */
4447 case 'A': case 'B': case 'C': case 'D': case 'E':
4448 case 'F': case 'G': case 'H': case 'J': case 'K':
4449 case 'M': case 'N': case 'P': case 'Q': case 'S':
4450 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4451 break;
4452
4453 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4454 #endif
4455 default:
4456 gcc_unreachable ();
4457 }
4458 break;
4459
4460 default:
4461 putc (c, file);
4462 }
4463 va_end (argptr);
4464 }
4465 \f
4466 /* Return nonzero if this function has no function calls. */
4467
4468 int
4469 leaf_function_p (void)
4470 {
4471 rtx_insn *insn;
4472
4473 /* Ensure we walk the entire function body. */
4474 gcc_assert (!in_sequence_p ());
4475
4476 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4477 functions even if they call mcount. */
4478 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4479 return 0;
4480
4481 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4482 {
4483 if (CALL_P (insn)
4484 && ! SIBLING_CALL_P (insn))
4485 return 0;
4486 if (NONJUMP_INSN_P (insn)
4487 && GET_CODE (PATTERN (insn)) == SEQUENCE
4488 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4489 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4490 return 0;
4491 }
4492
4493 return 1;
4494 }
4495
4496 /* Return 1 if branch is a forward branch.
4497 Uses insn_shuid array, so it works only in the final pass. May be used by
4498 output templates to customary add branch prediction hints.
4499 */
4500 int
4501 final_forward_branch_p (rtx_insn *insn)
4502 {
4503 int insn_id, label_id;
4504
4505 gcc_assert (uid_shuid);
4506 insn_id = INSN_SHUID (insn);
4507 label_id = INSN_SHUID (JUMP_LABEL (insn));
4508 /* We've hit some insns that does not have id information available. */
4509 gcc_assert (insn_id && label_id);
4510 return insn_id < label_id;
4511 }
4512
4513 /* On some machines, a function with no call insns
4514 can run faster if it doesn't create its own register window.
4515 When output, the leaf function should use only the "output"
4516 registers. Ordinarily, the function would be compiled to use
4517 the "input" registers to find its arguments; it is a candidate
4518 for leaf treatment if it uses only the "input" registers.
4519 Leaf function treatment means renumbering so the function
4520 uses the "output" registers instead. */
4521
4522 #ifdef LEAF_REGISTERS
4523
4524 /* Return 1 if this function uses only the registers that can be
4525 safely renumbered. */
4526
4527 int
4528 only_leaf_regs_used (void)
4529 {
4530 int i;
4531 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4532
4533 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4534 if ((df_regs_ever_live_p (i) || global_regs[i])
4535 && ! permitted_reg_in_leaf_functions[i])
4536 return 0;
4537
4538 if (crtl->uses_pic_offset_table
4539 && pic_offset_table_rtx != 0
4540 && REG_P (pic_offset_table_rtx)
4541 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4542 return 0;
4543
4544 return 1;
4545 }
4546
4547 /* Scan all instructions and renumber all registers into those
4548 available in leaf functions. */
4549
4550 static void
4551 leaf_renumber_regs (rtx_insn *first)
4552 {
4553 rtx_insn *insn;
4554
4555 /* Renumber only the actual patterns.
4556 The reg-notes can contain frame pointer refs,
4557 and renumbering them could crash, and should not be needed. */
4558 for (insn = first; insn; insn = NEXT_INSN (insn))
4559 if (INSN_P (insn))
4560 leaf_renumber_regs_insn (PATTERN (insn));
4561 }
4562
4563 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4564 available in leaf functions. */
4565
4566 void
4567 leaf_renumber_regs_insn (rtx in_rtx)
4568 {
4569 int i, j;
4570 const char *format_ptr;
4571
4572 if (in_rtx == 0)
4573 return;
4574
4575 /* Renumber all input-registers into output-registers.
4576 renumbered_regs would be 1 for an output-register;
4577 they */
4578
4579 if (REG_P (in_rtx))
4580 {
4581 int newreg;
4582
4583 /* Don't renumber the same reg twice. */
4584 if (in_rtx->used)
4585 return;
4586
4587 newreg = REGNO (in_rtx);
4588 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4589 to reach here as part of a REG_NOTE. */
4590 if (newreg >= FIRST_PSEUDO_REGISTER)
4591 {
4592 in_rtx->used = 1;
4593 return;
4594 }
4595 newreg = LEAF_REG_REMAP (newreg);
4596 gcc_assert (newreg >= 0);
4597 df_set_regs_ever_live (REGNO (in_rtx), false);
4598 df_set_regs_ever_live (newreg, true);
4599 SET_REGNO (in_rtx, newreg);
4600 in_rtx->used = 1;
4601 return;
4602 }
4603
4604 if (INSN_P (in_rtx))
4605 {
4606 /* Inside a SEQUENCE, we find insns.
4607 Renumber just the patterns of these insns,
4608 just as we do for the top-level insns. */
4609 leaf_renumber_regs_insn (PATTERN (in_rtx));
4610 return;
4611 }
4612
4613 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4614
4615 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4616 switch (*format_ptr++)
4617 {
4618 case 'e':
4619 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4620 break;
4621
4622 case 'E':
4623 if (XVEC (in_rtx, i) != NULL)
4624 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4625 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4626 break;
4627
4628 case 'S':
4629 case 's':
4630 case '0':
4631 case 'i':
4632 case 'w':
4633 case 'p':
4634 case 'n':
4635 case 'u':
4636 break;
4637
4638 default:
4639 gcc_unreachable ();
4640 }
4641 }
4642 #endif
4643 \f
4644 /* Turn the RTL into assembly. */
4645 static unsigned int
4646 rest_of_handle_final (void)
4647 {
4648 const char *fnname = get_fnname_from_decl (current_function_decl);
4649
4650 /* Turn debug markers into notes if the var-tracking pass has not
4651 been invoked. */
4652 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4653 delete_vta_debug_insns (false);
4654
4655 assemble_start_function (current_function_decl, fnname);
4656 rtx_insn *first = get_insns ();
4657 int seen = 0;
4658 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4659 final_1 (first, asm_out_file, seen, optimize);
4660 if (flag_ipa_ra
4661 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4662 /* Functions with naked attributes are supported only with basic asm
4663 statements in the body, thus for supported use cases the information
4664 on clobbered registers is not available. */
4665 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4666 collect_fn_hard_reg_usage ();
4667 final_end_function ();
4668
4669 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4670 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4671 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4672 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4673
4674 assemble_end_function (current_function_decl, fnname);
4675
4676 /* Free up reg info memory. */
4677 free_reg_info ();
4678
4679 if (! quiet_flag)
4680 fflush (asm_out_file);
4681
4682 /* Write DBX symbols if requested. */
4683
4684 /* Note that for those inline functions where we don't initially
4685 know for certain that we will be generating an out-of-line copy,
4686 the first invocation of this routine (rest_of_compilation) will
4687 skip over this code by doing a `goto exit_rest_of_compilation;'.
4688 Later on, wrapup_global_declarations will (indirectly) call
4689 rest_of_compilation again for those inline functions that need
4690 to have out-of-line copies generated. During that call, we
4691 *will* be routed past here. */
4692
4693 timevar_push (TV_SYMOUT);
4694 if (!DECL_IGNORED_P (current_function_decl))
4695 debug_hooks->function_decl (current_function_decl);
4696 timevar_pop (TV_SYMOUT);
4697
4698 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4699 DECL_INITIAL (current_function_decl) = error_mark_node;
4700
4701 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4702 && targetm.have_ctors_dtors)
4703 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4704 decl_init_priority_lookup
4705 (current_function_decl));
4706 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4707 && targetm.have_ctors_dtors)
4708 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4709 decl_fini_priority_lookup
4710 (current_function_decl));
4711 return 0;
4712 }
4713
4714 namespace {
4715
4716 const pass_data pass_data_final =
4717 {
4718 RTL_PASS, /* type */
4719 "final", /* name */
4720 OPTGROUP_NONE, /* optinfo_flags */
4721 TV_FINAL, /* tv_id */
4722 0, /* properties_required */
4723 0, /* properties_provided */
4724 0, /* properties_destroyed */
4725 0, /* todo_flags_start */
4726 0, /* todo_flags_finish */
4727 };
4728
4729 class pass_final : public rtl_opt_pass
4730 {
4731 public:
4732 pass_final (gcc::context *ctxt)
4733 : rtl_opt_pass (pass_data_final, ctxt)
4734 {}
4735
4736 /* opt_pass methods: */
4737 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4738
4739 }; // class pass_final
4740
4741 } // anon namespace
4742
4743 rtl_opt_pass *
4744 make_pass_final (gcc::context *ctxt)
4745 {
4746 return new pass_final (ctxt);
4747 }
4748
4749
4750 static unsigned int
4751 rest_of_handle_shorten_branches (void)
4752 {
4753 /* Shorten branches. */
4754 shorten_branches (get_insns ());
4755 return 0;
4756 }
4757
4758 namespace {
4759
4760 const pass_data pass_data_shorten_branches =
4761 {
4762 RTL_PASS, /* type */
4763 "shorten", /* name */
4764 OPTGROUP_NONE, /* optinfo_flags */
4765 TV_SHORTEN_BRANCH, /* tv_id */
4766 0, /* properties_required */
4767 0, /* properties_provided */
4768 0, /* properties_destroyed */
4769 0, /* todo_flags_start */
4770 0, /* todo_flags_finish */
4771 };
4772
4773 class pass_shorten_branches : public rtl_opt_pass
4774 {
4775 public:
4776 pass_shorten_branches (gcc::context *ctxt)
4777 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4778 {}
4779
4780 /* opt_pass methods: */
4781 virtual unsigned int execute (function *)
4782 {
4783 return rest_of_handle_shorten_branches ();
4784 }
4785
4786 }; // class pass_shorten_branches
4787
4788 } // anon namespace
4789
4790 rtl_opt_pass *
4791 make_pass_shorten_branches (gcc::context *ctxt)
4792 {
4793 return new pass_shorten_branches (ctxt);
4794 }
4795
4796
4797 static unsigned int
4798 rest_of_clean_state (void)
4799 {
4800 rtx_insn *insn, *next;
4801 FILE *final_output = NULL;
4802 int save_unnumbered = flag_dump_unnumbered;
4803 int save_noaddr = flag_dump_noaddr;
4804
4805 if (flag_dump_final_insns)
4806 {
4807 final_output = fopen (flag_dump_final_insns, "a");
4808 if (!final_output)
4809 {
4810 error ("could not open final insn dump file %qs: %m",
4811 flag_dump_final_insns);
4812 flag_dump_final_insns = NULL;
4813 }
4814 else
4815 {
4816 flag_dump_noaddr = flag_dump_unnumbered = 1;
4817 if (flag_compare_debug_opt || flag_compare_debug)
4818 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4819 dump_function_header (final_output, current_function_decl,
4820 dump_flags);
4821 final_insns_dump_p = true;
4822
4823 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4824 if (LABEL_P (insn))
4825 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4826 else
4827 {
4828 if (NOTE_P (insn))
4829 set_block_for_insn (insn, NULL);
4830 INSN_UID (insn) = 0;
4831 }
4832 }
4833 }
4834
4835 /* It is very important to decompose the RTL instruction chain here:
4836 debug information keeps pointing into CODE_LABEL insns inside the function
4837 body. If these remain pointing to the other insns, we end up preserving
4838 whole RTL chain and attached detailed debug info in memory. */
4839 for (insn = get_insns (); insn; insn = next)
4840 {
4841 next = NEXT_INSN (insn);
4842 SET_NEXT_INSN (insn) = NULL;
4843 SET_PREV_INSN (insn) = NULL;
4844
4845 rtx_insn *call_insn = insn;
4846 if (NONJUMP_INSN_P (call_insn)
4847 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4848 {
4849 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4850 call_insn = seq->insn (0);
4851 }
4852 if (CALL_P (call_insn))
4853 {
4854 rtx note
4855 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4856 if (note)
4857 remove_note (call_insn, note);
4858 }
4859
4860 if (final_output
4861 && (!NOTE_P (insn)
4862 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4863 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4864 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4865 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4866 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4867 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4868 print_rtl_single (final_output, insn);
4869 }
4870
4871 if (final_output)
4872 {
4873 flag_dump_noaddr = save_noaddr;
4874 flag_dump_unnumbered = save_unnumbered;
4875 final_insns_dump_p = false;
4876
4877 if (fclose (final_output))
4878 {
4879 error ("could not close final insn dump file %qs: %m",
4880 flag_dump_final_insns);
4881 flag_dump_final_insns = NULL;
4882 }
4883 }
4884
4885 flag_rerun_cse_after_global_opts = 0;
4886 reload_completed = 0;
4887 epilogue_completed = 0;
4888 #ifdef STACK_REGS
4889 regstack_completed = 0;
4890 #endif
4891
4892 /* Clear out the insn_length contents now that they are no
4893 longer valid. */
4894 init_insn_lengths ();
4895
4896 /* Show no temporary slots allocated. */
4897 init_temp_slots ();
4898
4899 free_bb_for_insn ();
4900
4901 if (cfun->gimple_df)
4902 delete_tree_ssa (cfun);
4903
4904 /* We can reduce stack alignment on call site only when we are sure that
4905 the function body just produced will be actually used in the final
4906 executable. */
4907 if (flag_ipa_stack_alignment
4908 && decl_binds_to_current_def_p (current_function_decl))
4909 {
4910 unsigned int pref = crtl->preferred_stack_boundary;
4911 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4912 pref = crtl->stack_alignment_needed;
4913 cgraph_node::rtl_info (current_function_decl)
4914 ->preferred_incoming_stack_boundary = pref;
4915 }
4916
4917 /* Make sure volatile mem refs aren't considered valid operands for
4918 arithmetic insns. We must call this here if this is a nested inline
4919 function, since the above code leaves us in the init_recog state,
4920 and the function context push/pop code does not save/restore volatile_ok.
4921
4922 ??? Maybe it isn't necessary for expand_start_function to call this
4923 anymore if we do it here? */
4924
4925 init_recog_no_volatile ();
4926
4927 /* We're done with this function. Free up memory if we can. */
4928 free_after_parsing (cfun);
4929 free_after_compilation (cfun);
4930 return 0;
4931 }
4932
4933 namespace {
4934
4935 const pass_data pass_data_clean_state =
4936 {
4937 RTL_PASS, /* type */
4938 "*clean_state", /* name */
4939 OPTGROUP_NONE, /* optinfo_flags */
4940 TV_FINAL, /* tv_id */
4941 0, /* properties_required */
4942 0, /* properties_provided */
4943 PROP_rtl, /* properties_destroyed */
4944 0, /* todo_flags_start */
4945 0, /* todo_flags_finish */
4946 };
4947
4948 class pass_clean_state : public rtl_opt_pass
4949 {
4950 public:
4951 pass_clean_state (gcc::context *ctxt)
4952 : rtl_opt_pass (pass_data_clean_state, ctxt)
4953 {}
4954
4955 /* opt_pass methods: */
4956 virtual unsigned int execute (function *)
4957 {
4958 return rest_of_clean_state ();
4959 }
4960
4961 }; // class pass_clean_state
4962
4963 } // anon namespace
4964
4965 rtl_opt_pass *
4966 make_pass_clean_state (gcc::context *ctxt)
4967 {
4968 return new pass_clean_state (ctxt);
4969 }
4970
4971 /* Return true if INSN is a call to the current function. */
4972
4973 static bool
4974 self_recursive_call_p (rtx_insn *insn)
4975 {
4976 tree fndecl = get_call_fndecl (insn);
4977 return (fndecl == current_function_decl
4978 && decl_binds_to_current_def_p (fndecl));
4979 }
4980
4981 /* Collect hard register usage for the current function. */
4982
4983 static void
4984 collect_fn_hard_reg_usage (void)
4985 {
4986 rtx_insn *insn;
4987 #ifdef STACK_REGS
4988 int i;
4989 #endif
4990 struct cgraph_rtl_info *node;
4991 HARD_REG_SET function_used_regs;
4992
4993 /* ??? To be removed when all the ports have been fixed. */
4994 if (!targetm.call_fusage_contains_non_callee_clobbers)
4995 return;
4996
4997 CLEAR_HARD_REG_SET (function_used_regs);
4998
4999 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
5000 {
5001 HARD_REG_SET insn_used_regs;
5002
5003 if (!NONDEBUG_INSN_P (insn))
5004 continue;
5005
5006 if (CALL_P (insn)
5007 && !self_recursive_call_p (insn))
5008 {
5009 if (!get_call_reg_set_usage (insn, &insn_used_regs,
5010 call_used_reg_set))
5011 return;
5012
5013 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5014 }
5015
5016 find_all_hard_reg_sets (insn, &insn_used_regs, false);
5017 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
5018 }
5019
5020 /* Be conservative - mark fixed and global registers as used. */
5021 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
5022
5023 #ifdef STACK_REGS
5024 /* Handle STACK_REGS conservatively, since the df-framework does not
5025 provide accurate information for them. */
5026
5027 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
5028 SET_HARD_REG_BIT (function_used_regs, i);
5029 #endif
5030
5031 /* The information we have gathered is only interesting if it exposes a
5032 register from the call_used_regs that is not used in this function. */
5033 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
5034 return;
5035
5036 node = cgraph_node::rtl_info (current_function_decl);
5037 gcc_assert (node != NULL);
5038
5039 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
5040 node->function_used_regs_valid = 1;
5041 }
5042
5043 /* Get the declaration of the function called by INSN. */
5044
5045 static tree
5046 get_call_fndecl (rtx_insn *insn)
5047 {
5048 rtx note, datum;
5049
5050 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
5051 if (note == NULL_RTX)
5052 return NULL_TREE;
5053
5054 datum = XEXP (note, 0);
5055 if (datum != NULL_RTX)
5056 return SYMBOL_REF_DECL (datum);
5057
5058 return NULL_TREE;
5059 }
5060
5061 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
5062 call targets that can be overwritten. */
5063
5064 static struct cgraph_rtl_info *
5065 get_call_cgraph_rtl_info (rtx_insn *insn)
5066 {
5067 tree fndecl;
5068
5069 if (insn == NULL_RTX)
5070 return NULL;
5071
5072 fndecl = get_call_fndecl (insn);
5073 if (fndecl == NULL_TREE
5074 || !decl_binds_to_current_def_p (fndecl))
5075 return NULL;
5076
5077 return cgraph_node::rtl_info (fndecl);
5078 }
5079
5080 /* Find hard registers used by function call instruction INSN, and return them
5081 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
5082
5083 bool
5084 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
5085 HARD_REG_SET default_set)
5086 {
5087 if (flag_ipa_ra)
5088 {
5089 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
5090 if (node != NULL
5091 && node->function_used_regs_valid)
5092 {
5093 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
5094 AND_HARD_REG_SET (*reg_set, default_set);
5095 return true;
5096 }
5097 }
5098 COPY_HARD_REG_SET (*reg_set, default_set);
5099 targetm.remove_extra_call_preserved_regs (insn, reg_set);
5100 return false;
5101 }