]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/function.c
* config/microblaze/microblaze.c (microblaze_expand_block_move): Treat
[thirdparty/gcc.git] / gcc / function.c
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
33
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "regs.h"
50 #include "emit-rtl.h"
51 #include "recog.h"
52 #include "rtl-error.h"
53 #include "alias.h"
54 #include "fold-const.h"
55 #include "stor-layout.h"
56 #include "varasm.h"
57 #include "except.h"
58 #include "dojump.h"
59 #include "explow.h"
60 #include "calls.h"
61 #include "expr.h"
62 #include "optabs-tree.h"
63 #include "output.h"
64 #include "langhooks.h"
65 #include "common/common-target.h"
66 #include "gimplify.h"
67 #include "tree-pass.h"
68 #include "cfgrtl.h"
69 #include "cfganal.h"
70 #include "cfgbuild.h"
71 #include "cfgcleanup.h"
72 #include "cfgexpand.h"
73 #include "shrink-wrap.h"
74 #include "toplev.h"
75 #include "rtl-iter.h"
76 #include "tree-dfa.h"
77 #include "tree-ssa.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "gimple.h"
81 #include "options.h"
82
83 /* So we can assign to cfun in this file. */
84 #undef cfun
85
86 #ifndef STACK_ALIGNMENT_NEEDED
87 #define STACK_ALIGNMENT_NEEDED 1
88 #endif
89
90 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
91
92 /* Round a value to the lowest integer less than it that is a multiple of
93 the required alignment. Avoid using division in case the value is
94 negative. Assume the alignment is a power of two. */
95 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
96
97 /* Similar, but round to the next highest integer that meets the
98 alignment. */
99 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
100
101 /* Nonzero once virtual register instantiation has been done.
102 assign_stack_local uses frame_pointer_rtx when this is nonzero.
103 calls.c:emit_library_call_value_1 uses it to set up
104 post-instantiation libcalls. */
105 int virtuals_instantiated;
106
107 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
108 static GTY(()) int funcdef_no;
109
110 /* These variables hold pointers to functions to create and destroy
111 target specific, per-function data structures. */
112 struct machine_function * (*init_machine_status) (void);
113
114 /* The currently compiled function. */
115 struct function *cfun = 0;
116
117 /* These hashes record the prologue and epilogue insns. */
118
119 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
120 {
121 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
122 static bool equal (rtx a, rtx b) { return a == b; }
123 };
124
125 static GTY((cache))
126 hash_table<insn_cache_hasher> *prologue_insn_hash;
127 static GTY((cache))
128 hash_table<insn_cache_hasher> *epilogue_insn_hash;
129 \f
130
131 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
132 vec<tree, va_gc> *types_used_by_cur_var_decl;
133
134 /* Forward declarations. */
135
136 static struct temp_slot *find_temp_slot_from_address (rtx);
137 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
138 static void pad_below (struct args_size *, machine_mode, tree);
139 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
140 static int all_blocks (tree, tree *);
141 static tree *get_block_vector (tree, int *);
142 extern tree debug_find_var_in_block_tree (tree, tree);
143 /* We always define `record_insns' even if it's not used so that we
144 can always export `prologue_epilogue_contains'. */
145 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
146 ATTRIBUTE_UNUSED;
147 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
148 static void prepare_function_start (void);
149 static void do_clobber_return_reg (rtx, void *);
150 static void do_use_return_reg (rtx, void *);
151
152 \f
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
155
156 static vec<function *> function_context_stack;
157
158 /* Save the current context for compilation of a nested function.
159 This is called from language-specific code. */
160
161 void
162 push_function_context (void)
163 {
164 if (cfun == 0)
165 allocate_struct_function (NULL, false);
166
167 function_context_stack.safe_push (cfun);
168 set_cfun (NULL);
169 }
170
171 /* Restore the last saved context, at the end of a nested function.
172 This function is called from language-specific code. */
173
174 void
175 pop_function_context (void)
176 {
177 struct function *p = function_context_stack.pop ();
178 set_cfun (p);
179 current_function_decl = p->decl;
180
181 /* Reset variables that have known state during rtx generation. */
182 virtuals_instantiated = 0;
183 generating_concat_p = 1;
184 }
185
186 /* Clear out all parts of the state in F that can safely be discarded
187 after the function has been parsed, but not compiled, to let
188 garbage collection reclaim the memory. */
189
190 void
191 free_after_parsing (struct function *f)
192 {
193 f->language = 0;
194 }
195
196 /* Clear out all parts of the state in F that can safely be discarded
197 after the function has been compiled, to let garbage collection
198 reclaim the memory. */
199
200 void
201 free_after_compilation (struct function *f)
202 {
203 prologue_insn_hash = NULL;
204 epilogue_insn_hash = NULL;
205
206 free (crtl->emit.regno_pointer_align);
207
208 memset (crtl, 0, sizeof (struct rtl_data));
209 f->eh = NULL;
210 f->machine = NULL;
211 f->cfg = NULL;
212 f->curr_properties &= ~PROP_cfg;
213
214 regno_reg_rtx = NULL;
215 }
216 \f
217 /* Return size needed for stack frame based on slots so far allocated.
218 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
219 the caller may have to do that. */
220
221 poly_int64
222 get_frame_size (void)
223 {
224 if (FRAME_GROWS_DOWNWARD)
225 return -frame_offset;
226 else
227 return frame_offset;
228 }
229
230 /* Issue an error message and return TRUE if frame OFFSET overflows in
231 the signed target pointer arithmetics for function FUNC. Otherwise
232 return FALSE. */
233
234 bool
235 frame_offset_overflow (poly_int64 offset, tree func)
236 {
237 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
238 unsigned HOST_WIDE_INT limit
239 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
240 /* Leave room for the fixed part of the frame. */
241 - 64 * UNITS_PER_WORD);
242
243 if (!coeffs_in_range_p (size, 0U, limit))
244 {
245 unsigned HOST_WIDE_INT hwisize;
246 if (size.is_constant (&hwisize))
247 error_at (DECL_SOURCE_LOCATION (func),
248 "total size of local objects %wu exceeds maximum %wu",
249 hwisize, limit);
250 else
251 error_at (DECL_SOURCE_LOCATION (func),
252 "total size of local objects exceeds maximum %wu",
253 limit);
254 return true;
255 }
256
257 return false;
258 }
259
260 /* Return the minimum spill slot alignment for a register of mode MODE. */
261
262 unsigned int
263 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
264 {
265 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
266 }
267
268 /* Return stack slot alignment in bits for TYPE and MODE. */
269
270 static unsigned int
271 get_stack_local_alignment (tree type, machine_mode mode)
272 {
273 unsigned int alignment;
274
275 if (mode == BLKmode)
276 alignment = BIGGEST_ALIGNMENT;
277 else
278 alignment = GET_MODE_ALIGNMENT (mode);
279
280 /* Allow the frond-end to (possibly) increase the alignment of this
281 stack slot. */
282 if (! type)
283 type = lang_hooks.types.type_for_mode (mode, 0);
284
285 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
286 }
287
288 /* Determine whether it is possible to fit a stack slot of size SIZE and
289 alignment ALIGNMENT into an area in the stack frame that starts at
290 frame offset START and has a length of LENGTH. If so, store the frame
291 offset to be used for the stack slot in *POFFSET and return true;
292 return false otherwise. This function will extend the frame size when
293 given a start/length pair that lies at the end of the frame. */
294
295 static bool
296 try_fit_stack_local (poly_int64 start, poly_int64 length,
297 poly_int64 size, unsigned int alignment,
298 poly_int64_pod *poffset)
299 {
300 poly_int64 this_frame_offset;
301 int frame_off, frame_alignment, frame_phase;
302
303 /* Calculate how many bytes the start of local variables is off from
304 stack alignment. */
305 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
306 frame_off = targetm.starting_frame_offset () % frame_alignment;
307 frame_phase = frame_off ? frame_alignment - frame_off : 0;
308
309 /* Round the frame offset to the specified alignment. */
310
311 if (FRAME_GROWS_DOWNWARD)
312 this_frame_offset
313 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
314 + frame_phase);
315 else
316 this_frame_offset
317 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
318
319 /* See if it fits. If this space is at the edge of the frame,
320 consider extending the frame to make it fit. Our caller relies on
321 this when allocating a new slot. */
322 if (maybe_lt (this_frame_offset, start))
323 {
324 if (known_eq (frame_offset, start))
325 frame_offset = this_frame_offset;
326 else
327 return false;
328 }
329 else if (maybe_gt (this_frame_offset + size, start + length))
330 {
331 if (known_eq (frame_offset, start + length))
332 frame_offset = this_frame_offset + size;
333 else
334 return false;
335 }
336
337 *poffset = this_frame_offset;
338 return true;
339 }
340
341 /* Create a new frame_space structure describing free space in the stack
342 frame beginning at START and ending at END, and chain it into the
343 function's frame_space_list. */
344
345 static void
346 add_frame_space (poly_int64 start, poly_int64 end)
347 {
348 struct frame_space *space = ggc_alloc<frame_space> ();
349 space->next = crtl->frame_space_list;
350 crtl->frame_space_list = space;
351 space->start = start;
352 space->length = end - start;
353 }
354
355 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
356 with machine mode MODE.
357
358 ALIGN controls the amount of alignment for the address of the slot:
359 0 means according to MODE,
360 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
361 -2 means use BITS_PER_UNIT,
362 positive specifies alignment boundary in bits.
363
364 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
365 alignment and ASLK_RECORD_PAD bit set if we should remember
366 extra space we allocated for alignment purposes. When we are
367 called from assign_stack_temp_for_type, it is not set so we don't
368 track the same stack slot in two independent lists.
369
370 We do not round to stack_boundary here. */
371
372 rtx
373 assign_stack_local_1 (machine_mode mode, poly_int64 size,
374 int align, int kind)
375 {
376 rtx x, addr;
377 poly_int64 bigend_correction = 0;
378 poly_int64 slot_offset = 0, old_frame_offset;
379 unsigned int alignment, alignment_in_bits;
380
381 if (align == 0)
382 {
383 alignment = get_stack_local_alignment (NULL, mode);
384 alignment /= BITS_PER_UNIT;
385 }
386 else if (align == -1)
387 {
388 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
389 size = aligned_upper_bound (size, alignment);
390 }
391 else if (align == -2)
392 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
393 else
394 alignment = align / BITS_PER_UNIT;
395
396 alignment_in_bits = alignment * BITS_PER_UNIT;
397
398 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
399 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
400 {
401 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
402 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
403 }
404
405 if (SUPPORTS_STACK_ALIGNMENT)
406 {
407 if (crtl->stack_alignment_estimated < alignment_in_bits)
408 {
409 if (!crtl->stack_realign_processed)
410 crtl->stack_alignment_estimated = alignment_in_bits;
411 else
412 {
413 /* If stack is realigned and stack alignment value
414 hasn't been finalized, it is OK not to increase
415 stack_alignment_estimated. The bigger alignment
416 requirement is recorded in stack_alignment_needed
417 below. */
418 gcc_assert (!crtl->stack_realign_finalized);
419 if (!crtl->stack_realign_needed)
420 {
421 /* It is OK to reduce the alignment as long as the
422 requested size is 0 or the estimated stack
423 alignment >= mode alignment. */
424 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
425 || known_eq (size, 0)
426 || (crtl->stack_alignment_estimated
427 >= GET_MODE_ALIGNMENT (mode)));
428 alignment_in_bits = crtl->stack_alignment_estimated;
429 alignment = alignment_in_bits / BITS_PER_UNIT;
430 }
431 }
432 }
433 }
434
435 if (crtl->stack_alignment_needed < alignment_in_bits)
436 crtl->stack_alignment_needed = alignment_in_bits;
437 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
438 crtl->max_used_stack_slot_alignment = alignment_in_bits;
439
440 if (mode != BLKmode || maybe_ne (size, 0))
441 {
442 if (kind & ASLK_RECORD_PAD)
443 {
444 struct frame_space **psp;
445
446 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
447 {
448 struct frame_space *space = *psp;
449 if (!try_fit_stack_local (space->start, space->length, size,
450 alignment, &slot_offset))
451 continue;
452 *psp = space->next;
453 if (known_gt (slot_offset, space->start))
454 add_frame_space (space->start, slot_offset);
455 if (known_lt (slot_offset + size, space->start + space->length))
456 add_frame_space (slot_offset + size,
457 space->start + space->length);
458 goto found_space;
459 }
460 }
461 }
462 else if (!STACK_ALIGNMENT_NEEDED)
463 {
464 slot_offset = frame_offset;
465 goto found_space;
466 }
467
468 old_frame_offset = frame_offset;
469
470 if (FRAME_GROWS_DOWNWARD)
471 {
472 frame_offset -= size;
473 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
474
475 if (kind & ASLK_RECORD_PAD)
476 {
477 if (known_gt (slot_offset, frame_offset))
478 add_frame_space (frame_offset, slot_offset);
479 if (known_lt (slot_offset + size, old_frame_offset))
480 add_frame_space (slot_offset + size, old_frame_offset);
481 }
482 }
483 else
484 {
485 frame_offset += size;
486 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
487
488 if (kind & ASLK_RECORD_PAD)
489 {
490 if (known_gt (slot_offset, old_frame_offset))
491 add_frame_space (old_frame_offset, slot_offset);
492 if (known_lt (slot_offset + size, frame_offset))
493 add_frame_space (slot_offset + size, frame_offset);
494 }
495 }
496
497 found_space:
498 /* On a big-endian machine, if we are allocating more space than we will use,
499 use the least significant bytes of those that are allocated. */
500 if (mode != BLKmode)
501 {
502 /* The slot size can sometimes be smaller than the mode size;
503 e.g. the rs6000 port allocates slots with a vector mode
504 that have the size of only one element. However, the slot
505 size must always be ordered wrt to the mode size, in the
506 same way as for a subreg. */
507 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
508 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
509 bigend_correction = size - GET_MODE_SIZE (mode);
510 }
511
512 /* If we have already instantiated virtual registers, return the actual
513 address relative to the frame pointer. */
514 if (virtuals_instantiated)
515 addr = plus_constant (Pmode, frame_pointer_rtx,
516 trunc_int_for_mode
517 (slot_offset + bigend_correction
518 + targetm.starting_frame_offset (), Pmode));
519 else
520 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction,
523 Pmode));
524
525 x = gen_rtx_MEM (mode, addr);
526 set_mem_align (x, alignment_in_bits);
527 MEM_NOTRAP_P (x) = 1;
528
529 vec_safe_push (stack_slot_list, x);
530
531 if (frame_offset_overflow (frame_offset, current_function_decl))
532 frame_offset = 0;
533
534 return x;
535 }
536
537 /* Wrap up assign_stack_local_1 with last parameter as false. */
538
539 rtx
540 assign_stack_local (machine_mode mode, poly_int64 size, int align)
541 {
542 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
543 }
544 \f
545 /* In order to evaluate some expressions, such as function calls returning
546 structures in memory, we need to temporarily allocate stack locations.
547 We record each allocated temporary in the following structure.
548
549 Associated with each temporary slot is a nesting level. When we pop up
550 one level, all temporaries associated with the previous level are freed.
551 Normally, all temporaries are freed after the execution of the statement
552 in which they were created. However, if we are inside a ({...}) grouping,
553 the result may be in a temporary and hence must be preserved. If the
554 result could be in a temporary, we preserve it if we can determine which
555 one it is in. If we cannot determine which temporary may contain the
556 result, all temporaries are preserved. A temporary is preserved by
557 pretending it was allocated at the previous nesting level. */
558
559 struct GTY(()) temp_slot {
560 /* Points to next temporary slot. */
561 struct temp_slot *next;
562 /* Points to previous temporary slot. */
563 struct temp_slot *prev;
564 /* The rtx to used to reference the slot. */
565 rtx slot;
566 /* The size, in units, of the slot. */
567 poly_int64 size;
568 /* The type of the object in the slot, or zero if it doesn't correspond
569 to a type. We use this to determine whether a slot can be reused.
570 It can be reused if objects of the type of the new slot will always
571 conflict with objects of the type of the old slot. */
572 tree type;
573 /* The alignment (in bits) of the slot. */
574 unsigned int align;
575 /* Nonzero if this temporary is currently in use. */
576 char in_use;
577 /* Nesting level at which this slot is being used. */
578 int level;
579 /* The offset of the slot from the frame_pointer, including extra space
580 for alignment. This info is for combine_temp_slots. */
581 poly_int64 base_offset;
582 /* The size of the slot, including extra space for alignment. This
583 info is for combine_temp_slots. */
584 poly_int64 full_size;
585 };
586
587 /* Entry for the below hash table. */
588 struct GTY((for_user)) temp_slot_address_entry {
589 hashval_t hash;
590 rtx address;
591 struct temp_slot *temp_slot;
592 };
593
594 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
595 {
596 static hashval_t hash (temp_slot_address_entry *);
597 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
598 };
599
600 /* A table of addresses that represent a stack slot. The table is a mapping
601 from address RTXen to a temp slot. */
602 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
603 static size_t n_temp_slots_in_use;
604
605 /* Removes temporary slot TEMP from LIST. */
606
607 static void
608 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
609 {
610 if (temp->next)
611 temp->next->prev = temp->prev;
612 if (temp->prev)
613 temp->prev->next = temp->next;
614 else
615 *list = temp->next;
616
617 temp->prev = temp->next = NULL;
618 }
619
620 /* Inserts temporary slot TEMP to LIST. */
621
622 static void
623 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
624 {
625 temp->next = *list;
626 if (*list)
627 (*list)->prev = temp;
628 temp->prev = NULL;
629 *list = temp;
630 }
631
632 /* Returns the list of used temp slots at LEVEL. */
633
634 static struct temp_slot **
635 temp_slots_at_level (int level)
636 {
637 if (level >= (int) vec_safe_length (used_temp_slots))
638 vec_safe_grow_cleared (used_temp_slots, level + 1);
639
640 return &(*used_temp_slots)[level];
641 }
642
643 /* Returns the maximal temporary slot level. */
644
645 static int
646 max_slot_level (void)
647 {
648 if (!used_temp_slots)
649 return -1;
650
651 return used_temp_slots->length () - 1;
652 }
653
654 /* Moves temporary slot TEMP to LEVEL. */
655
656 static void
657 move_slot_to_level (struct temp_slot *temp, int level)
658 {
659 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
660 insert_slot_to_list (temp, temp_slots_at_level (level));
661 temp->level = level;
662 }
663
664 /* Make temporary slot TEMP available. */
665
666 static void
667 make_slot_available (struct temp_slot *temp)
668 {
669 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
670 insert_slot_to_list (temp, &avail_temp_slots);
671 temp->in_use = 0;
672 temp->level = -1;
673 n_temp_slots_in_use--;
674 }
675
676 /* Compute the hash value for an address -> temp slot mapping.
677 The value is cached on the mapping entry. */
678 static hashval_t
679 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
680 {
681 int do_not_record = 0;
682 return hash_rtx (t->address, GET_MODE (t->address),
683 &do_not_record, NULL, false);
684 }
685
686 /* Return the hash value for an address -> temp slot mapping. */
687 hashval_t
688 temp_address_hasher::hash (temp_slot_address_entry *t)
689 {
690 return t->hash;
691 }
692
693 /* Compare two address -> temp slot mapping entries. */
694 bool
695 temp_address_hasher::equal (temp_slot_address_entry *t1,
696 temp_slot_address_entry *t2)
697 {
698 return exp_equiv_p (t1->address, t2->address, 0, true);
699 }
700
701 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
702 static void
703 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
704 {
705 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
706 t->address = address;
707 t->temp_slot = temp_slot;
708 t->hash = temp_slot_address_compute_hash (t);
709 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
710 }
711
712 /* Remove an address -> temp slot mapping entry if the temp slot is
713 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
714 int
715 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
716 {
717 const struct temp_slot_address_entry *t = *slot;
718 if (! t->temp_slot->in_use)
719 temp_slot_address_table->clear_slot (slot);
720 return 1;
721 }
722
723 /* Remove all mappings of addresses to unused temp slots. */
724 static void
725 remove_unused_temp_slot_addresses (void)
726 {
727 /* Use quicker clearing if there aren't any active temp slots. */
728 if (n_temp_slots_in_use)
729 temp_slot_address_table->traverse
730 <void *, remove_unused_temp_slot_addresses_1> (NULL);
731 else
732 temp_slot_address_table->empty ();
733 }
734
735 /* Find the temp slot corresponding to the object at address X. */
736
737 static struct temp_slot *
738 find_temp_slot_from_address (rtx x)
739 {
740 struct temp_slot *p;
741 struct temp_slot_address_entry tmp, *t;
742
743 /* First try the easy way:
744 See if X exists in the address -> temp slot mapping. */
745 tmp.address = x;
746 tmp.temp_slot = NULL;
747 tmp.hash = temp_slot_address_compute_hash (&tmp);
748 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
749 if (t)
750 return t->temp_slot;
751
752 /* If we have a sum involving a register, see if it points to a temp
753 slot. */
754 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
755 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
756 return p;
757 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
758 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
759 return p;
760
761 /* Last resort: Address is a virtual stack var address. */
762 poly_int64 offset;
763 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
764 {
765 int i;
766 for (i = max_slot_level (); i >= 0; i--)
767 for (p = *temp_slots_at_level (i); p; p = p->next)
768 if (known_in_range_p (offset, p->base_offset, p->full_size))
769 return p;
770 }
771
772 return NULL;
773 }
774 \f
775 /* Allocate a temporary stack slot and record it for possible later
776 reuse.
777
778 MODE is the machine mode to be given to the returned rtx.
779
780 SIZE is the size in units of the space required. We do no rounding here
781 since assign_stack_local will do any required rounding.
782
783 TYPE is the type that will be used for the stack slot. */
784
785 rtx
786 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
787 {
788 unsigned int align;
789 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
790 rtx slot;
791
792 gcc_assert (known_size_p (size));
793
794 align = get_stack_local_alignment (type, mode);
795
796 /* Try to find an available, already-allocated temporary of the proper
797 mode which meets the size and alignment requirements. Choose the
798 smallest one with the closest alignment.
799
800 If assign_stack_temp is called outside of the tree->rtl expansion,
801 we cannot reuse the stack slots (that may still refer to
802 VIRTUAL_STACK_VARS_REGNUM). */
803 if (!virtuals_instantiated)
804 {
805 for (p = avail_temp_slots; p; p = p->next)
806 {
807 if (p->align >= align
808 && known_ge (p->size, size)
809 && GET_MODE (p->slot) == mode
810 && objects_must_conflict_p (p->type, type)
811 && (best_p == 0
812 || (known_eq (best_p->size, p->size)
813 ? best_p->align > p->align
814 : known_ge (best_p->size, p->size))))
815 {
816 if (p->align == align && known_eq (p->size, size))
817 {
818 selected = p;
819 cut_slot_from_list (selected, &avail_temp_slots);
820 best_p = 0;
821 break;
822 }
823 best_p = p;
824 }
825 }
826 }
827
828 /* Make our best, if any, the one to use. */
829 if (best_p)
830 {
831 selected = best_p;
832 cut_slot_from_list (selected, &avail_temp_slots);
833
834 /* If there are enough aligned bytes left over, make them into a new
835 temp_slot so that the extra bytes don't get wasted. Do this only
836 for BLKmode slots, so that we can be sure of the alignment. */
837 if (GET_MODE (best_p->slot) == BLKmode)
838 {
839 int alignment = best_p->align / BITS_PER_UNIT;
840 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
841
842 if (known_ge (best_p->size - rounded_size, alignment))
843 {
844 p = ggc_alloc<temp_slot> ();
845 p->in_use = 0;
846 p->size = best_p->size - rounded_size;
847 p->base_offset = best_p->base_offset + rounded_size;
848 p->full_size = best_p->full_size - rounded_size;
849 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
850 p->align = best_p->align;
851 p->type = best_p->type;
852 insert_slot_to_list (p, &avail_temp_slots);
853
854 vec_safe_push (stack_slot_list, p->slot);
855
856 best_p->size = rounded_size;
857 best_p->full_size = rounded_size;
858 }
859 }
860 }
861
862 /* If we still didn't find one, make a new temporary. */
863 if (selected == 0)
864 {
865 poly_int64 frame_offset_old = frame_offset;
866
867 p = ggc_alloc<temp_slot> ();
868
869 /* We are passing an explicit alignment request to assign_stack_local.
870 One side effect of that is assign_stack_local will not round SIZE
871 to ensure the frame offset remains suitably aligned.
872
873 So for requests which depended on the rounding of SIZE, we go ahead
874 and round it now. We also make sure ALIGNMENT is at least
875 BIGGEST_ALIGNMENT. */
876 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
877 p->slot = assign_stack_local_1 (mode,
878 (mode == BLKmode
879 ? aligned_upper_bound (size,
880 (int) align
881 / BITS_PER_UNIT)
882 : size),
883 align, 0);
884
885 p->align = align;
886
887 /* The following slot size computation is necessary because we don't
888 know the actual size of the temporary slot until assign_stack_local
889 has performed all the frame alignment and size rounding for the
890 requested temporary. Note that extra space added for alignment
891 can be either above or below this stack slot depending on which
892 way the frame grows. We include the extra space if and only if it
893 is above this slot. */
894 if (FRAME_GROWS_DOWNWARD)
895 p->size = frame_offset_old - frame_offset;
896 else
897 p->size = size;
898
899 /* Now define the fields used by combine_temp_slots. */
900 if (FRAME_GROWS_DOWNWARD)
901 {
902 p->base_offset = frame_offset;
903 p->full_size = frame_offset_old - frame_offset;
904 }
905 else
906 {
907 p->base_offset = frame_offset_old;
908 p->full_size = frame_offset - frame_offset_old;
909 }
910
911 selected = p;
912 }
913
914 p = selected;
915 p->in_use = 1;
916 p->type = type;
917 p->level = temp_slot_level;
918 n_temp_slots_in_use++;
919
920 pp = temp_slots_at_level (p->level);
921 insert_slot_to_list (p, pp);
922 insert_temp_slot_address (XEXP (p->slot, 0), p);
923
924 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
925 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
926 vec_safe_push (stack_slot_list, slot);
927
928 /* If we know the alias set for the memory that will be used, use
929 it. If there's no TYPE, then we don't know anything about the
930 alias set for the memory. */
931 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
932 set_mem_align (slot, align);
933
934 /* If a type is specified, set the relevant flags. */
935 if (type != 0)
936 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
937 MEM_NOTRAP_P (slot) = 1;
938
939 return slot;
940 }
941
942 /* Allocate a temporary stack slot and record it for possible later
943 reuse. First two arguments are same as in preceding function. */
944
945 rtx
946 assign_stack_temp (machine_mode mode, poly_int64 size)
947 {
948 return assign_stack_temp_for_type (mode, size, NULL_TREE);
949 }
950 \f
951 /* Assign a temporary.
952 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
953 and so that should be used in error messages. In either case, we
954 allocate of the given type.
955 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
956 it is 0 if a register is OK.
957 DONT_PROMOTE is 1 if we should not promote values in register
958 to wider modes. */
959
960 rtx
961 assign_temp (tree type_or_decl, int memory_required,
962 int dont_promote ATTRIBUTE_UNUSED)
963 {
964 tree type, decl;
965 machine_mode mode;
966 #ifdef PROMOTE_MODE
967 int unsignedp;
968 #endif
969
970 if (DECL_P (type_or_decl))
971 decl = type_or_decl, type = TREE_TYPE (decl);
972 else
973 decl = NULL, type = type_or_decl;
974
975 mode = TYPE_MODE (type);
976 #ifdef PROMOTE_MODE
977 unsignedp = TYPE_UNSIGNED (type);
978 #endif
979
980 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
981 end. See also create_tmp_var for the gimplification-time check. */
982 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
983
984 if (mode == BLKmode || memory_required)
985 {
986 poly_int64 size;
987 rtx tmp;
988
989 /* Unfortunately, we don't yet know how to allocate variable-sized
990 temporaries. However, sometimes we can find a fixed upper limit on
991 the size, so try that instead. */
992 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
993 size = max_int_size_in_bytes (type);
994
995 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
996 problems with allocating the stack space. */
997 if (known_eq (size, 0))
998 size = 1;
999
1000 /* The size of the temporary may be too large to fit into an integer. */
1001 /* ??? Not sure this should happen except for user silliness, so limit
1002 this to things that aren't compiler-generated temporaries. The
1003 rest of the time we'll die in assign_stack_temp_for_type. */
1004 if (decl
1005 && !known_size_p (size)
1006 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1007 {
1008 error ("size of variable %q+D is too large", decl);
1009 size = 1;
1010 }
1011
1012 tmp = assign_stack_temp_for_type (mode, size, type);
1013 return tmp;
1014 }
1015
1016 #ifdef PROMOTE_MODE
1017 if (! dont_promote)
1018 mode = promote_mode (type, mode, &unsignedp);
1019 #endif
1020
1021 return gen_reg_rtx (mode);
1022 }
1023 \f
1024 /* Combine temporary stack slots which are adjacent on the stack.
1025
1026 This allows for better use of already allocated stack space. This is only
1027 done for BLKmode slots because we can be sure that we won't have alignment
1028 problems in this case. */
1029
1030 static void
1031 combine_temp_slots (void)
1032 {
1033 struct temp_slot *p, *q, *next, *next_q;
1034 int num_slots;
1035
1036 /* We can't combine slots, because the information about which slot
1037 is in which alias set will be lost. */
1038 if (flag_strict_aliasing)
1039 return;
1040
1041 /* If there are a lot of temp slots, don't do anything unless
1042 high levels of optimization. */
1043 if (! flag_expensive_optimizations)
1044 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1045 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1046 return;
1047
1048 for (p = avail_temp_slots; p; p = next)
1049 {
1050 int delete_p = 0;
1051
1052 next = p->next;
1053
1054 if (GET_MODE (p->slot) != BLKmode)
1055 continue;
1056
1057 for (q = p->next; q; q = next_q)
1058 {
1059 int delete_q = 0;
1060
1061 next_q = q->next;
1062
1063 if (GET_MODE (q->slot) != BLKmode)
1064 continue;
1065
1066 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1067 {
1068 /* Q comes after P; combine Q into P. */
1069 p->size += q->size;
1070 p->full_size += q->full_size;
1071 delete_q = 1;
1072 }
1073 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1074 {
1075 /* P comes after Q; combine P into Q. */
1076 q->size += p->size;
1077 q->full_size += p->full_size;
1078 delete_p = 1;
1079 break;
1080 }
1081 if (delete_q)
1082 cut_slot_from_list (q, &avail_temp_slots);
1083 }
1084
1085 /* Either delete P or advance past it. */
1086 if (delete_p)
1087 cut_slot_from_list (p, &avail_temp_slots);
1088 }
1089 }
1090 \f
1091 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1092 slot that previously was known by OLD_RTX. */
1093
1094 void
1095 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1096 {
1097 struct temp_slot *p;
1098
1099 if (rtx_equal_p (old_rtx, new_rtx))
1100 return;
1101
1102 p = find_temp_slot_from_address (old_rtx);
1103
1104 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1105 NEW_RTX is a register, see if one operand of the PLUS is a
1106 temporary location. If so, NEW_RTX points into it. Otherwise,
1107 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1108 in common between them. If so, try a recursive call on those
1109 values. */
1110 if (p == 0)
1111 {
1112 if (GET_CODE (old_rtx) != PLUS)
1113 return;
1114
1115 if (REG_P (new_rtx))
1116 {
1117 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1118 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1119 return;
1120 }
1121 else if (GET_CODE (new_rtx) != PLUS)
1122 return;
1123
1124 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1125 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1126 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1127 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1128 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1129 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1130 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1131 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1132
1133 return;
1134 }
1135
1136 /* Otherwise add an alias for the temp's address. */
1137 insert_temp_slot_address (new_rtx, p);
1138 }
1139
1140 /* If X could be a reference to a temporary slot, mark that slot as
1141 belonging to the to one level higher than the current level. If X
1142 matched one of our slots, just mark that one. Otherwise, we can't
1143 easily predict which it is, so upgrade all of them.
1144
1145 This is called when an ({...}) construct occurs and a statement
1146 returns a value in memory. */
1147
1148 void
1149 preserve_temp_slots (rtx x)
1150 {
1151 struct temp_slot *p = 0, *next;
1152
1153 if (x == 0)
1154 return;
1155
1156 /* If X is a register that is being used as a pointer, see if we have
1157 a temporary slot we know it points to. */
1158 if (REG_P (x) && REG_POINTER (x))
1159 p = find_temp_slot_from_address (x);
1160
1161 /* If X is not in memory or is at a constant address, it cannot be in
1162 a temporary slot. */
1163 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1164 return;
1165
1166 /* First see if we can find a match. */
1167 if (p == 0)
1168 p = find_temp_slot_from_address (XEXP (x, 0));
1169
1170 if (p != 0)
1171 {
1172 if (p->level == temp_slot_level)
1173 move_slot_to_level (p, temp_slot_level - 1);
1174 return;
1175 }
1176
1177 /* Otherwise, preserve all non-kept slots at this level. */
1178 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1179 {
1180 next = p->next;
1181 move_slot_to_level (p, temp_slot_level - 1);
1182 }
1183 }
1184
1185 /* Free all temporaries used so far. This is normally called at the
1186 end of generating code for a statement. */
1187
1188 void
1189 free_temp_slots (void)
1190 {
1191 struct temp_slot *p, *next;
1192 bool some_available = false;
1193
1194 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1195 {
1196 next = p->next;
1197 make_slot_available (p);
1198 some_available = true;
1199 }
1200
1201 if (some_available)
1202 {
1203 remove_unused_temp_slot_addresses ();
1204 combine_temp_slots ();
1205 }
1206 }
1207
1208 /* Push deeper into the nesting level for stack temporaries. */
1209
1210 void
1211 push_temp_slots (void)
1212 {
1213 temp_slot_level++;
1214 }
1215
1216 /* Pop a temporary nesting level. All slots in use in the current level
1217 are freed. */
1218
1219 void
1220 pop_temp_slots (void)
1221 {
1222 free_temp_slots ();
1223 temp_slot_level--;
1224 }
1225
1226 /* Initialize temporary slots. */
1227
1228 void
1229 init_temp_slots (void)
1230 {
1231 /* We have not allocated any temporaries yet. */
1232 avail_temp_slots = 0;
1233 vec_alloc (used_temp_slots, 0);
1234 temp_slot_level = 0;
1235 n_temp_slots_in_use = 0;
1236
1237 /* Set up the table to map addresses to temp slots. */
1238 if (! temp_slot_address_table)
1239 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1240 else
1241 temp_slot_address_table->empty ();
1242 }
1243 \f
1244 /* Functions and data structures to keep track of the values hard regs
1245 had at the start of the function. */
1246
1247 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1248 and has_hard_reg_initial_val.. */
1249 struct GTY(()) initial_value_pair {
1250 rtx hard_reg;
1251 rtx pseudo;
1252 };
1253 /* ??? This could be a VEC but there is currently no way to define an
1254 opaque VEC type. This could be worked around by defining struct
1255 initial_value_pair in function.h. */
1256 struct GTY(()) initial_value_struct {
1257 int num_entries;
1258 int max_entries;
1259 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1260 };
1261
1262 /* If a pseudo represents an initial hard reg (or expression), return
1263 it, else return NULL_RTX. */
1264
1265 rtx
1266 get_hard_reg_initial_reg (rtx reg)
1267 {
1268 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1269 int i;
1270
1271 if (ivs == 0)
1272 return NULL_RTX;
1273
1274 for (i = 0; i < ivs->num_entries; i++)
1275 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1276 return ivs->entries[i].hard_reg;
1277
1278 return NULL_RTX;
1279 }
1280
1281 /* Make sure that there's a pseudo register of mode MODE that stores the
1282 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1283
1284 rtx
1285 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1286 {
1287 struct initial_value_struct *ivs;
1288 rtx rv;
1289
1290 rv = has_hard_reg_initial_val (mode, regno);
1291 if (rv)
1292 return rv;
1293
1294 ivs = crtl->hard_reg_initial_vals;
1295 if (ivs == 0)
1296 {
1297 ivs = ggc_alloc<initial_value_struct> ();
1298 ivs->num_entries = 0;
1299 ivs->max_entries = 5;
1300 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1301 crtl->hard_reg_initial_vals = ivs;
1302 }
1303
1304 if (ivs->num_entries >= ivs->max_entries)
1305 {
1306 ivs->max_entries += 5;
1307 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1308 ivs->max_entries);
1309 }
1310
1311 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1312 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1313
1314 return ivs->entries[ivs->num_entries++].pseudo;
1315 }
1316
1317 /* See if get_hard_reg_initial_val has been used to create a pseudo
1318 for the initial value of hard register REGNO in mode MODE. Return
1319 the associated pseudo if so, otherwise return NULL. */
1320
1321 rtx
1322 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1323 {
1324 struct initial_value_struct *ivs;
1325 int i;
1326
1327 ivs = crtl->hard_reg_initial_vals;
1328 if (ivs != 0)
1329 for (i = 0; i < ivs->num_entries; i++)
1330 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1331 && REGNO (ivs->entries[i].hard_reg) == regno)
1332 return ivs->entries[i].pseudo;
1333
1334 return NULL_RTX;
1335 }
1336
1337 unsigned int
1338 emit_initial_value_sets (void)
1339 {
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 int i;
1342 rtx_insn *seq;
1343
1344 if (ivs == 0)
1345 return 0;
1346
1347 start_sequence ();
1348 for (i = 0; i < ivs->num_entries; i++)
1349 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1350 seq = get_insns ();
1351 end_sequence ();
1352
1353 emit_insn_at_entry (seq);
1354 return 0;
1355 }
1356
1357 /* Return the hardreg-pseudoreg initial values pair entry I and
1358 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1359 bool
1360 initial_value_entry (int i, rtx *hreg, rtx *preg)
1361 {
1362 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1363 if (!ivs || i >= ivs->num_entries)
1364 return false;
1365
1366 *hreg = ivs->entries[i].hard_reg;
1367 *preg = ivs->entries[i].pseudo;
1368 return true;
1369 }
1370 \f
1371 /* These routines are responsible for converting virtual register references
1372 to the actual hard register references once RTL generation is complete.
1373
1374 The following four variables are used for communication between the
1375 routines. They contain the offsets of the virtual registers from their
1376 respective hard registers. */
1377
1378 static poly_int64 in_arg_offset;
1379 static poly_int64 var_offset;
1380 static poly_int64 dynamic_offset;
1381 static poly_int64 out_arg_offset;
1382 static poly_int64 cfa_offset;
1383
1384 /* In most machines, the stack pointer register is equivalent to the bottom
1385 of the stack. */
1386
1387 #ifndef STACK_POINTER_OFFSET
1388 #define STACK_POINTER_OFFSET 0
1389 #endif
1390
1391 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1392 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1393 #endif
1394
1395 /* If not defined, pick an appropriate default for the offset of dynamically
1396 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1397 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1398
1399 #ifndef STACK_DYNAMIC_OFFSET
1400
1401 /* The bottom of the stack points to the actual arguments. If
1402 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1403 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1404 stack space for register parameters is not pushed by the caller, but
1405 rather part of the fixed stack areas and hence not included in
1406 `crtl->outgoing_args_size'. Nevertheless, we must allow
1407 for it when allocating stack dynamic objects. */
1408
1409 #ifdef INCOMING_REG_PARM_STACK_SPACE
1410 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1411 ((ACCUMULATE_OUTGOING_ARGS \
1412 ? (crtl->outgoing_args_size \
1413 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1414 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1415 : 0) + (STACK_POINTER_OFFSET))
1416 #else
1417 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1418 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1419 + (STACK_POINTER_OFFSET))
1420 #endif
1421 #endif
1422
1423 \f
1424 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1425 is a virtual register, return the equivalent hard register and set the
1426 offset indirectly through the pointer. Otherwise, return 0. */
1427
1428 static rtx
1429 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1430 {
1431 rtx new_rtx;
1432 poly_int64 offset;
1433
1434 if (x == virtual_incoming_args_rtx)
1435 {
1436 if (stack_realign_drap)
1437 {
1438 /* Replace virtual_incoming_args_rtx with internal arg
1439 pointer if DRAP is used to realign stack. */
1440 new_rtx = crtl->args.internal_arg_pointer;
1441 offset = 0;
1442 }
1443 else
1444 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1445 }
1446 else if (x == virtual_stack_vars_rtx)
1447 new_rtx = frame_pointer_rtx, offset = var_offset;
1448 else if (x == virtual_stack_dynamic_rtx)
1449 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1450 else if (x == virtual_outgoing_args_rtx)
1451 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1452 else if (x == virtual_cfa_rtx)
1453 {
1454 #ifdef FRAME_POINTER_CFA_OFFSET
1455 new_rtx = frame_pointer_rtx;
1456 #else
1457 new_rtx = arg_pointer_rtx;
1458 #endif
1459 offset = cfa_offset;
1460 }
1461 else if (x == virtual_preferred_stack_boundary_rtx)
1462 {
1463 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1464 offset = 0;
1465 }
1466 else
1467 return NULL_RTX;
1468
1469 *poffset = offset;
1470 return new_rtx;
1471 }
1472
1473 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1474 registers present inside of *LOC. The expression is simplified,
1475 as much as possible, but is not to be considered "valid" in any sense
1476 implied by the target. Return true if any change is made. */
1477
1478 static bool
1479 instantiate_virtual_regs_in_rtx (rtx *loc)
1480 {
1481 if (!*loc)
1482 return false;
1483 bool changed = false;
1484 subrtx_ptr_iterator::array_type array;
1485 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1486 {
1487 rtx *loc = *iter;
1488 if (rtx x = *loc)
1489 {
1490 rtx new_rtx;
1491 poly_int64 offset;
1492 switch (GET_CODE (x))
1493 {
1494 case REG:
1495 new_rtx = instantiate_new_reg (x, &offset);
1496 if (new_rtx)
1497 {
1498 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1499 changed = true;
1500 }
1501 iter.skip_subrtxes ();
1502 break;
1503
1504 case PLUS:
1505 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1506 if (new_rtx)
1507 {
1508 XEXP (x, 0) = new_rtx;
1509 *loc = plus_constant (GET_MODE (x), x, offset, true);
1510 changed = true;
1511 iter.skip_subrtxes ();
1512 break;
1513 }
1514
1515 /* FIXME -- from old code */
1516 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1517 we can commute the PLUS and SUBREG because pointers into the
1518 frame are well-behaved. */
1519 break;
1520
1521 default:
1522 break;
1523 }
1524 }
1525 }
1526 return changed;
1527 }
1528
1529 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1530 matches the predicate for insn CODE operand OPERAND. */
1531
1532 static int
1533 safe_insn_predicate (int code, int operand, rtx x)
1534 {
1535 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1536 }
1537
1538 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1539 registers present inside of insn. The result will be a valid insn. */
1540
1541 static void
1542 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1543 {
1544 poly_int64 offset;
1545 int insn_code, i;
1546 bool any_change = false;
1547 rtx set, new_rtx, x;
1548 rtx_insn *seq;
1549
1550 /* There are some special cases to be handled first. */
1551 set = single_set (insn);
1552 if (set)
1553 {
1554 /* We're allowed to assign to a virtual register. This is interpreted
1555 to mean that the underlying register gets assigned the inverse
1556 transformation. This is used, for example, in the handling of
1557 non-local gotos. */
1558 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1559 if (new_rtx)
1560 {
1561 start_sequence ();
1562
1563 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1564 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1565 gen_int_mode (-offset, GET_MODE (new_rtx)));
1566 x = force_operand (x, new_rtx);
1567 if (x != new_rtx)
1568 emit_move_insn (new_rtx, x);
1569
1570 seq = get_insns ();
1571 end_sequence ();
1572
1573 emit_insn_before (seq, insn);
1574 delete_insn (insn);
1575 return;
1576 }
1577
1578 /* Handle a straight copy from a virtual register by generating a
1579 new add insn. The difference between this and falling through
1580 to the generic case is avoiding a new pseudo and eliminating a
1581 move insn in the initial rtl stream. */
1582 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1583 if (new_rtx
1584 && maybe_ne (offset, 0)
1585 && REG_P (SET_DEST (set))
1586 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1587 {
1588 start_sequence ();
1589
1590 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1591 gen_int_mode (offset,
1592 GET_MODE (SET_DEST (set))),
1593 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1594 if (x != SET_DEST (set))
1595 emit_move_insn (SET_DEST (set), x);
1596
1597 seq = get_insns ();
1598 end_sequence ();
1599
1600 emit_insn_before (seq, insn);
1601 delete_insn (insn);
1602 return;
1603 }
1604
1605 extract_insn (insn);
1606 insn_code = INSN_CODE (insn);
1607
1608 /* Handle a plus involving a virtual register by determining if the
1609 operands remain valid if they're modified in place. */
1610 poly_int64 delta;
1611 if (GET_CODE (SET_SRC (set)) == PLUS
1612 && recog_data.n_operands >= 3
1613 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1614 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1615 && poly_int_rtx_p (recog_data.operand[2], &delta)
1616 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1617 {
1618 offset += delta;
1619
1620 /* If the sum is zero, then replace with a plain move. */
1621 if (known_eq (offset, 0)
1622 && REG_P (SET_DEST (set))
1623 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1624 {
1625 start_sequence ();
1626 emit_move_insn (SET_DEST (set), new_rtx);
1627 seq = get_insns ();
1628 end_sequence ();
1629
1630 emit_insn_before (seq, insn);
1631 delete_insn (insn);
1632 return;
1633 }
1634
1635 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1636
1637 /* Using validate_change and apply_change_group here leaves
1638 recog_data in an invalid state. Since we know exactly what
1639 we want to check, do those two by hand. */
1640 if (safe_insn_predicate (insn_code, 1, new_rtx)
1641 && safe_insn_predicate (insn_code, 2, x))
1642 {
1643 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1644 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1645 any_change = true;
1646
1647 /* Fall through into the regular operand fixup loop in
1648 order to take care of operands other than 1 and 2. */
1649 }
1650 }
1651 }
1652 else
1653 {
1654 extract_insn (insn);
1655 insn_code = INSN_CODE (insn);
1656 }
1657
1658 /* In the general case, we expect virtual registers to appear only in
1659 operands, and then only as either bare registers or inside memories. */
1660 for (i = 0; i < recog_data.n_operands; ++i)
1661 {
1662 x = recog_data.operand[i];
1663 switch (GET_CODE (x))
1664 {
1665 case MEM:
1666 {
1667 rtx addr = XEXP (x, 0);
1668
1669 if (!instantiate_virtual_regs_in_rtx (&addr))
1670 continue;
1671
1672 start_sequence ();
1673 x = replace_equiv_address (x, addr, true);
1674 /* It may happen that the address with the virtual reg
1675 was valid (e.g. based on the virtual stack reg, which might
1676 be acceptable to the predicates with all offsets), whereas
1677 the address now isn't anymore, for instance when the address
1678 is still offsetted, but the base reg isn't virtual-stack-reg
1679 anymore. Below we would do a force_reg on the whole operand,
1680 but this insn might actually only accept memory. Hence,
1681 before doing that last resort, try to reload the address into
1682 a register, so this operand stays a MEM. */
1683 if (!safe_insn_predicate (insn_code, i, x))
1684 {
1685 addr = force_reg (GET_MODE (addr), addr);
1686 x = replace_equiv_address (x, addr, true);
1687 }
1688 seq = get_insns ();
1689 end_sequence ();
1690 if (seq)
1691 emit_insn_before (seq, insn);
1692 }
1693 break;
1694
1695 case REG:
1696 new_rtx = instantiate_new_reg (x, &offset);
1697 if (new_rtx == NULL)
1698 continue;
1699 if (known_eq (offset, 0))
1700 x = new_rtx;
1701 else
1702 {
1703 start_sequence ();
1704
1705 /* Careful, special mode predicates may have stuff in
1706 insn_data[insn_code].operand[i].mode that isn't useful
1707 to us for computing a new value. */
1708 /* ??? Recognize address_operand and/or "p" constraints
1709 to see if (plus new offset) is a valid before we put
1710 this through expand_simple_binop. */
1711 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1712 gen_int_mode (offset, GET_MODE (x)),
1713 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1714 seq = get_insns ();
1715 end_sequence ();
1716 emit_insn_before (seq, insn);
1717 }
1718 break;
1719
1720 case SUBREG:
1721 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1722 if (new_rtx == NULL)
1723 continue;
1724 if (maybe_ne (offset, 0))
1725 {
1726 start_sequence ();
1727 new_rtx = expand_simple_binop
1728 (GET_MODE (new_rtx), PLUS, new_rtx,
1729 gen_int_mode (offset, GET_MODE (new_rtx)),
1730 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1731 seq = get_insns ();
1732 end_sequence ();
1733 emit_insn_before (seq, insn);
1734 }
1735 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1736 GET_MODE (new_rtx), SUBREG_BYTE (x));
1737 gcc_assert (x);
1738 break;
1739
1740 default:
1741 continue;
1742 }
1743
1744 /* At this point, X contains the new value for the operand.
1745 Validate the new value vs the insn predicate. Note that
1746 asm insns will have insn_code -1 here. */
1747 if (!safe_insn_predicate (insn_code, i, x))
1748 {
1749 start_sequence ();
1750 if (REG_P (x))
1751 {
1752 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1753 x = copy_to_reg (x);
1754 }
1755 else
1756 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1757 seq = get_insns ();
1758 end_sequence ();
1759 if (seq)
1760 emit_insn_before (seq, insn);
1761 }
1762
1763 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1764 any_change = true;
1765 }
1766
1767 if (any_change)
1768 {
1769 /* Propagate operand changes into the duplicates. */
1770 for (i = 0; i < recog_data.n_dups; ++i)
1771 *recog_data.dup_loc[i]
1772 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1773
1774 /* Force re-recognition of the instruction for validation. */
1775 INSN_CODE (insn) = -1;
1776 }
1777
1778 if (asm_noperands (PATTERN (insn)) >= 0)
1779 {
1780 if (!check_asm_operands (PATTERN (insn)))
1781 {
1782 error_for_asm (insn, "impossible constraint in %<asm%>");
1783 /* For asm goto, instead of fixing up all the edges
1784 just clear the template and clear input operands
1785 (asm goto doesn't have any output operands). */
1786 if (JUMP_P (insn))
1787 {
1788 rtx asm_op = extract_asm_operands (PATTERN (insn));
1789 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1790 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1791 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1792 }
1793 else
1794 delete_insn (insn);
1795 }
1796 }
1797 else
1798 {
1799 if (recog_memoized (insn) < 0)
1800 fatal_insn_not_found (insn);
1801 }
1802 }
1803
1804 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1805 do any instantiation required. */
1806
1807 void
1808 instantiate_decl_rtl (rtx x)
1809 {
1810 rtx addr;
1811
1812 if (x == 0)
1813 return;
1814
1815 /* If this is a CONCAT, recurse for the pieces. */
1816 if (GET_CODE (x) == CONCAT)
1817 {
1818 instantiate_decl_rtl (XEXP (x, 0));
1819 instantiate_decl_rtl (XEXP (x, 1));
1820 return;
1821 }
1822
1823 /* If this is not a MEM, no need to do anything. Similarly if the
1824 address is a constant or a register that is not a virtual register. */
1825 if (!MEM_P (x))
1826 return;
1827
1828 addr = XEXP (x, 0);
1829 if (CONSTANT_P (addr)
1830 || (REG_P (addr)
1831 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1832 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1833 return;
1834
1835 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1836 }
1837
1838 /* Helper for instantiate_decls called via walk_tree: Process all decls
1839 in the given DECL_VALUE_EXPR. */
1840
1841 static tree
1842 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1843 {
1844 tree t = *tp;
1845 if (! EXPR_P (t))
1846 {
1847 *walk_subtrees = 0;
1848 if (DECL_P (t))
1849 {
1850 if (DECL_RTL_SET_P (t))
1851 instantiate_decl_rtl (DECL_RTL (t));
1852 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1853 && DECL_INCOMING_RTL (t))
1854 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1855 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1856 && DECL_HAS_VALUE_EXPR_P (t))
1857 {
1858 tree v = DECL_VALUE_EXPR (t);
1859 walk_tree (&v, instantiate_expr, NULL, NULL);
1860 }
1861 }
1862 }
1863 return NULL;
1864 }
1865
1866 /* Subroutine of instantiate_decls: Process all decls in the given
1867 BLOCK node and all its subblocks. */
1868
1869 static void
1870 instantiate_decls_1 (tree let)
1871 {
1872 tree t;
1873
1874 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1875 {
1876 if (DECL_RTL_SET_P (t))
1877 instantiate_decl_rtl (DECL_RTL (t));
1878 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1879 {
1880 tree v = DECL_VALUE_EXPR (t);
1881 walk_tree (&v, instantiate_expr, NULL, NULL);
1882 }
1883 }
1884
1885 /* Process all subblocks. */
1886 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1887 instantiate_decls_1 (t);
1888 }
1889
1890 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1891 all virtual registers in their DECL_RTL's. */
1892
1893 static void
1894 instantiate_decls (tree fndecl)
1895 {
1896 tree decl;
1897 unsigned ix;
1898
1899 /* Process all parameters of the function. */
1900 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1901 {
1902 instantiate_decl_rtl (DECL_RTL (decl));
1903 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1904 if (DECL_HAS_VALUE_EXPR_P (decl))
1905 {
1906 tree v = DECL_VALUE_EXPR (decl);
1907 walk_tree (&v, instantiate_expr, NULL, NULL);
1908 }
1909 }
1910
1911 if ((decl = DECL_RESULT (fndecl))
1912 && TREE_CODE (decl) == RESULT_DECL)
1913 {
1914 if (DECL_RTL_SET_P (decl))
1915 instantiate_decl_rtl (DECL_RTL (decl));
1916 if (DECL_HAS_VALUE_EXPR_P (decl))
1917 {
1918 tree v = DECL_VALUE_EXPR (decl);
1919 walk_tree (&v, instantiate_expr, NULL, NULL);
1920 }
1921 }
1922
1923 /* Process the saved static chain if it exists. */
1924 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1925 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1926 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1927
1928 /* Now process all variables defined in the function or its subblocks. */
1929 if (DECL_INITIAL (fndecl))
1930 instantiate_decls_1 (DECL_INITIAL (fndecl));
1931
1932 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1933 if (DECL_RTL_SET_P (decl))
1934 instantiate_decl_rtl (DECL_RTL (decl));
1935 vec_free (cfun->local_decls);
1936 }
1937
1938 /* Pass through the INSNS of function FNDECL and convert virtual register
1939 references to hard register references. */
1940
1941 static unsigned int
1942 instantiate_virtual_regs (void)
1943 {
1944 rtx_insn *insn;
1945
1946 /* Compute the offsets to use for this function. */
1947 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1948 var_offset = targetm.starting_frame_offset ();
1949 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1950 out_arg_offset = STACK_POINTER_OFFSET;
1951 #ifdef FRAME_POINTER_CFA_OFFSET
1952 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1953 #else
1954 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1955 #endif
1956
1957 /* Initialize recognition, indicating that volatile is OK. */
1958 init_recog ();
1959
1960 /* Scan through all the insns, instantiating every virtual register still
1961 present. */
1962 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1963 if (INSN_P (insn))
1964 {
1965 /* These patterns in the instruction stream can never be recognized.
1966 Fortunately, they shouldn't contain virtual registers either. */
1967 if (GET_CODE (PATTERN (insn)) == USE
1968 || GET_CODE (PATTERN (insn)) == CLOBBER
1969 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1970 || DEBUG_MARKER_INSN_P (insn))
1971 continue;
1972 else if (DEBUG_BIND_INSN_P (insn))
1973 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1974 else
1975 instantiate_virtual_regs_in_insn (insn);
1976
1977 if (insn->deleted ())
1978 continue;
1979
1980 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1981
1982 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1983 if (CALL_P (insn))
1984 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1985 }
1986
1987 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1988 instantiate_decls (current_function_decl);
1989
1990 targetm.instantiate_decls ();
1991
1992 /* Indicate that, from now on, assign_stack_local should use
1993 frame_pointer_rtx. */
1994 virtuals_instantiated = 1;
1995
1996 return 0;
1997 }
1998
1999 namespace {
2000
2001 const pass_data pass_data_instantiate_virtual_regs =
2002 {
2003 RTL_PASS, /* type */
2004 "vregs", /* name */
2005 OPTGROUP_NONE, /* optinfo_flags */
2006 TV_NONE, /* tv_id */
2007 0, /* properties_required */
2008 0, /* properties_provided */
2009 0, /* properties_destroyed */
2010 0, /* todo_flags_start */
2011 0, /* todo_flags_finish */
2012 };
2013
2014 class pass_instantiate_virtual_regs : public rtl_opt_pass
2015 {
2016 public:
2017 pass_instantiate_virtual_regs (gcc::context *ctxt)
2018 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2019 {}
2020
2021 /* opt_pass methods: */
2022 virtual unsigned int execute (function *)
2023 {
2024 return instantiate_virtual_regs ();
2025 }
2026
2027 }; // class pass_instantiate_virtual_regs
2028
2029 } // anon namespace
2030
2031 rtl_opt_pass *
2032 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2033 {
2034 return new pass_instantiate_virtual_regs (ctxt);
2035 }
2036
2037 \f
2038 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2039 This means a type for which function calls must pass an address to the
2040 function or get an address back from the function.
2041 EXP may be a type node or an expression (whose type is tested). */
2042
2043 int
2044 aggregate_value_p (const_tree exp, const_tree fntype)
2045 {
2046 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2047 int i, regno, nregs;
2048 rtx reg;
2049
2050 if (fntype)
2051 switch (TREE_CODE (fntype))
2052 {
2053 case CALL_EXPR:
2054 {
2055 tree fndecl = get_callee_fndecl (fntype);
2056 if (fndecl)
2057 fntype = TREE_TYPE (fndecl);
2058 else if (CALL_EXPR_FN (fntype))
2059 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2060 else
2061 /* For internal functions, assume nothing needs to be
2062 returned in memory. */
2063 return 0;
2064 }
2065 break;
2066 case FUNCTION_DECL:
2067 fntype = TREE_TYPE (fntype);
2068 break;
2069 case FUNCTION_TYPE:
2070 case METHOD_TYPE:
2071 break;
2072 case IDENTIFIER_NODE:
2073 fntype = NULL_TREE;
2074 break;
2075 default:
2076 /* We don't expect other tree types here. */
2077 gcc_unreachable ();
2078 }
2079
2080 if (VOID_TYPE_P (type))
2081 return 0;
2082
2083 /* If a record should be passed the same as its first (and only) member
2084 don't pass it as an aggregate. */
2085 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2086 return aggregate_value_p (first_field (type), fntype);
2087
2088 /* If the front end has decided that this needs to be passed by
2089 reference, do so. */
2090 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2091 && DECL_BY_REFERENCE (exp))
2092 return 1;
2093
2094 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2095 if (fntype && TREE_ADDRESSABLE (fntype))
2096 return 1;
2097
2098 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2099 and thus can't be returned in registers. */
2100 if (TREE_ADDRESSABLE (type))
2101 return 1;
2102
2103 if (TYPE_EMPTY_P (type))
2104 return 0;
2105
2106 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2107 return 1;
2108
2109 if (targetm.calls.return_in_memory (type, fntype))
2110 return 1;
2111
2112 /* Make sure we have suitable call-clobbered regs to return
2113 the value in; if not, we must return it in memory. */
2114 reg = hard_function_value (type, 0, fntype, 0);
2115
2116 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2117 it is OK. */
2118 if (!REG_P (reg))
2119 return 0;
2120
2121 regno = REGNO (reg);
2122 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2123 for (i = 0; i < nregs; i++)
2124 if (! call_used_regs[regno + i])
2125 return 1;
2126
2127 return 0;
2128 }
2129 \f
2130 /* Return true if we should assign DECL a pseudo register; false if it
2131 should live on the local stack. */
2132
2133 bool
2134 use_register_for_decl (const_tree decl)
2135 {
2136 if (TREE_CODE (decl) == SSA_NAME)
2137 {
2138 /* We often try to use the SSA_NAME, instead of its underlying
2139 decl, to get type information and guide decisions, to avoid
2140 differences of behavior between anonymous and named
2141 variables, but in this one case we have to go for the actual
2142 variable if there is one. The main reason is that, at least
2143 at -O0, we want to place user variables on the stack, but we
2144 don't mind using pseudos for anonymous or ignored temps.
2145 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2146 should go in pseudos, whereas their corresponding variables
2147 might have to go on the stack. So, disregarding the decl
2148 here would negatively impact debug info at -O0, enable
2149 coalescing between SSA_NAMEs that ought to get different
2150 stack/pseudo assignments, and get the incoming argument
2151 processing thoroughly confused by PARM_DECLs expected to live
2152 in stack slots but assigned to pseudos. */
2153 if (!SSA_NAME_VAR (decl))
2154 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2155 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2156
2157 decl = SSA_NAME_VAR (decl);
2158 }
2159
2160 /* Honor volatile. */
2161 if (TREE_SIDE_EFFECTS (decl))
2162 return false;
2163
2164 /* Honor addressability. */
2165 if (TREE_ADDRESSABLE (decl))
2166 return false;
2167
2168 /* RESULT_DECLs are a bit special in that they're assigned without
2169 regard to use_register_for_decl, but we generally only store in
2170 them. If we coalesce their SSA NAMEs, we'd better return a
2171 result that matches the assignment in expand_function_start. */
2172 if (TREE_CODE (decl) == RESULT_DECL)
2173 {
2174 /* If it's not an aggregate, we're going to use a REG or a
2175 PARALLEL containing a REG. */
2176 if (!aggregate_value_p (decl, current_function_decl))
2177 return true;
2178
2179 /* If expand_function_start determines the return value, we'll
2180 use MEM if it's not by reference. */
2181 if (cfun->returns_pcc_struct
2182 || (targetm.calls.struct_value_rtx
2183 (TREE_TYPE (current_function_decl), 1)))
2184 return DECL_BY_REFERENCE (decl);
2185
2186 /* Otherwise, we're taking an extra all.function_result_decl
2187 argument. It's set up in assign_parms_augmented_arg_list,
2188 under the (negated) conditions above, and then it's used to
2189 set up the RESULT_DECL rtl in assign_params, after looping
2190 over all parameters. Now, if the RESULT_DECL is not by
2191 reference, we'll use a MEM either way. */
2192 if (!DECL_BY_REFERENCE (decl))
2193 return false;
2194
2195 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2196 the function_result_decl's assignment. Since it's a pointer,
2197 we can short-circuit a number of the tests below, and we must
2198 duplicat e them because we don't have the
2199 function_result_decl to test. */
2200 if (!targetm.calls.allocate_stack_slots_for_args ())
2201 return true;
2202 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2203 if (optimize)
2204 return true;
2205 /* We don't set DECL_REGISTER for the function_result_decl. */
2206 return false;
2207 }
2208
2209 /* Only register-like things go in registers. */
2210 if (DECL_MODE (decl) == BLKmode)
2211 return false;
2212
2213 /* If -ffloat-store specified, don't put explicit float variables
2214 into registers. */
2215 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2216 propagates values across these stores, and it probably shouldn't. */
2217 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2218 return false;
2219
2220 if (!targetm.calls.allocate_stack_slots_for_args ())
2221 return true;
2222
2223 /* If we're not interested in tracking debugging information for
2224 this decl, then we can certainly put it in a register. */
2225 if (DECL_IGNORED_P (decl))
2226 return true;
2227
2228 if (optimize)
2229 return true;
2230
2231 if (!DECL_REGISTER (decl))
2232 return false;
2233
2234 /* When not optimizing, disregard register keyword for types that
2235 could have methods, otherwise the methods won't be callable from
2236 the debugger. */
2237 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2238 return false;
2239
2240 return true;
2241 }
2242
2243 /* Structures to communicate between the subroutines of assign_parms.
2244 The first holds data persistent across all parameters, the second
2245 is cleared out for each parameter. */
2246
2247 struct assign_parm_data_all
2248 {
2249 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2250 should become a job of the target or otherwise encapsulated. */
2251 CUMULATIVE_ARGS args_so_far_v;
2252 cumulative_args_t args_so_far;
2253 struct args_size stack_args_size;
2254 tree function_result_decl;
2255 tree orig_fnargs;
2256 rtx_insn *first_conversion_insn;
2257 rtx_insn *last_conversion_insn;
2258 HOST_WIDE_INT pretend_args_size;
2259 HOST_WIDE_INT extra_pretend_bytes;
2260 int reg_parm_stack_space;
2261 };
2262
2263 struct assign_parm_data_one
2264 {
2265 tree nominal_type;
2266 tree passed_type;
2267 rtx entry_parm;
2268 rtx stack_parm;
2269 machine_mode nominal_mode;
2270 machine_mode passed_mode;
2271 machine_mode promoted_mode;
2272 struct locate_and_pad_arg_data locate;
2273 int partial;
2274 BOOL_BITFIELD named_arg : 1;
2275 BOOL_BITFIELD passed_pointer : 1;
2276 BOOL_BITFIELD on_stack : 1;
2277 BOOL_BITFIELD loaded_in_reg : 1;
2278 };
2279
2280 /* A subroutine of assign_parms. Initialize ALL. */
2281
2282 static void
2283 assign_parms_initialize_all (struct assign_parm_data_all *all)
2284 {
2285 tree fntype ATTRIBUTE_UNUSED;
2286
2287 memset (all, 0, sizeof (*all));
2288
2289 fntype = TREE_TYPE (current_function_decl);
2290
2291 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2292 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2293 #else
2294 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2295 current_function_decl, -1);
2296 #endif
2297 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2298
2299 #ifdef INCOMING_REG_PARM_STACK_SPACE
2300 all->reg_parm_stack_space
2301 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2302 #endif
2303 }
2304
2305 /* If ARGS contains entries with complex types, split the entry into two
2306 entries of the component type. Return a new list of substitutions are
2307 needed, else the old list. */
2308
2309 static void
2310 split_complex_args (vec<tree> *args)
2311 {
2312 unsigned i;
2313 tree p;
2314
2315 FOR_EACH_VEC_ELT (*args, i, p)
2316 {
2317 tree type = TREE_TYPE (p);
2318 if (TREE_CODE (type) == COMPLEX_TYPE
2319 && targetm.calls.split_complex_arg (type))
2320 {
2321 tree decl;
2322 tree subtype = TREE_TYPE (type);
2323 bool addressable = TREE_ADDRESSABLE (p);
2324
2325 /* Rewrite the PARM_DECL's type with its component. */
2326 p = copy_node (p);
2327 TREE_TYPE (p) = subtype;
2328 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2329 SET_DECL_MODE (p, VOIDmode);
2330 DECL_SIZE (p) = NULL;
2331 DECL_SIZE_UNIT (p) = NULL;
2332 /* If this arg must go in memory, put it in a pseudo here.
2333 We can't allow it to go in memory as per normal parms,
2334 because the usual place might not have the imag part
2335 adjacent to the real part. */
2336 DECL_ARTIFICIAL (p) = addressable;
2337 DECL_IGNORED_P (p) = addressable;
2338 TREE_ADDRESSABLE (p) = 0;
2339 layout_decl (p, 0);
2340 (*args)[i] = p;
2341
2342 /* Build a second synthetic decl. */
2343 decl = build_decl (EXPR_LOCATION (p),
2344 PARM_DECL, NULL_TREE, subtype);
2345 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2346 DECL_ARTIFICIAL (decl) = addressable;
2347 DECL_IGNORED_P (decl) = addressable;
2348 layout_decl (decl, 0);
2349 args->safe_insert (++i, decl);
2350 }
2351 }
2352 }
2353
2354 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2355 the hidden struct return argument, and (abi willing) complex args.
2356 Return the new parameter list. */
2357
2358 static vec<tree>
2359 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2360 {
2361 tree fndecl = current_function_decl;
2362 tree fntype = TREE_TYPE (fndecl);
2363 vec<tree> fnargs = vNULL;
2364 tree arg;
2365
2366 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2367 fnargs.safe_push (arg);
2368
2369 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2370
2371 /* If struct value address is treated as the first argument, make it so. */
2372 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2373 && ! cfun->returns_pcc_struct
2374 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2375 {
2376 tree type = build_pointer_type (TREE_TYPE (fntype));
2377 tree decl;
2378
2379 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2380 PARM_DECL, get_identifier (".result_ptr"), type);
2381 DECL_ARG_TYPE (decl) = type;
2382 DECL_ARTIFICIAL (decl) = 1;
2383 DECL_NAMELESS (decl) = 1;
2384 TREE_CONSTANT (decl) = 1;
2385 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2386 changes, the end of the RESULT_DECL handling block in
2387 use_register_for_decl must be adjusted to match. */
2388
2389 DECL_CHAIN (decl) = all->orig_fnargs;
2390 all->orig_fnargs = decl;
2391 fnargs.safe_insert (0, decl);
2392
2393 all->function_result_decl = decl;
2394 }
2395
2396 /* If the target wants to split complex arguments into scalars, do so. */
2397 if (targetm.calls.split_complex_arg)
2398 split_complex_args (&fnargs);
2399
2400 return fnargs;
2401 }
2402
2403 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2404 data for the parameter. Incorporate ABI specifics such as pass-by-
2405 reference and type promotion. */
2406
2407 static void
2408 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2409 struct assign_parm_data_one *data)
2410 {
2411 tree nominal_type, passed_type;
2412 machine_mode nominal_mode, passed_mode, promoted_mode;
2413 int unsignedp;
2414
2415 memset (data, 0, sizeof (*data));
2416
2417 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2418 if (!cfun->stdarg)
2419 data->named_arg = 1; /* No variadic parms. */
2420 else if (DECL_CHAIN (parm))
2421 data->named_arg = 1; /* Not the last non-variadic parm. */
2422 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2423 data->named_arg = 1; /* Only variadic ones are unnamed. */
2424 else
2425 data->named_arg = 0; /* Treat as variadic. */
2426
2427 nominal_type = TREE_TYPE (parm);
2428 passed_type = DECL_ARG_TYPE (parm);
2429
2430 /* Look out for errors propagating this far. Also, if the parameter's
2431 type is void then its value doesn't matter. */
2432 if (TREE_TYPE (parm) == error_mark_node
2433 /* This can happen after weird syntax errors
2434 or if an enum type is defined among the parms. */
2435 || TREE_CODE (parm) != PARM_DECL
2436 || passed_type == NULL
2437 || VOID_TYPE_P (nominal_type))
2438 {
2439 nominal_type = passed_type = void_type_node;
2440 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2441 goto egress;
2442 }
2443
2444 /* Find mode of arg as it is passed, and mode of arg as it should be
2445 during execution of this function. */
2446 passed_mode = TYPE_MODE (passed_type);
2447 nominal_mode = TYPE_MODE (nominal_type);
2448
2449 /* If the parm is to be passed as a transparent union or record, use the
2450 type of the first field for the tests below. We have already verified
2451 that the modes are the same. */
2452 if ((TREE_CODE (passed_type) == UNION_TYPE
2453 || TREE_CODE (passed_type) == RECORD_TYPE)
2454 && TYPE_TRANSPARENT_AGGR (passed_type))
2455 passed_type = TREE_TYPE (first_field (passed_type));
2456
2457 /* See if this arg was passed by invisible reference. */
2458 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2459 passed_type, data->named_arg))
2460 {
2461 passed_type = nominal_type = build_pointer_type (passed_type);
2462 data->passed_pointer = true;
2463 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2464 }
2465
2466 /* Find mode as it is passed by the ABI. */
2467 unsignedp = TYPE_UNSIGNED (passed_type);
2468 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2469 TREE_TYPE (current_function_decl), 0);
2470
2471 egress:
2472 data->nominal_type = nominal_type;
2473 data->passed_type = passed_type;
2474 data->nominal_mode = nominal_mode;
2475 data->passed_mode = passed_mode;
2476 data->promoted_mode = promoted_mode;
2477 }
2478
2479 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2480
2481 static void
2482 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2483 struct assign_parm_data_one *data, bool no_rtl)
2484 {
2485 int varargs_pretend_bytes = 0;
2486
2487 targetm.calls.setup_incoming_varargs (all->args_so_far,
2488 data->promoted_mode,
2489 data->passed_type,
2490 &varargs_pretend_bytes, no_rtl);
2491
2492 /* If the back-end has requested extra stack space, record how much is
2493 needed. Do not change pretend_args_size otherwise since it may be
2494 nonzero from an earlier partial argument. */
2495 if (varargs_pretend_bytes > 0)
2496 all->pretend_args_size = varargs_pretend_bytes;
2497 }
2498
2499 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2500 the incoming location of the current parameter. */
2501
2502 static void
2503 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2504 struct assign_parm_data_one *data)
2505 {
2506 HOST_WIDE_INT pretend_bytes = 0;
2507 rtx entry_parm;
2508 bool in_regs;
2509
2510 if (data->promoted_mode == VOIDmode)
2511 {
2512 data->entry_parm = data->stack_parm = const0_rtx;
2513 return;
2514 }
2515
2516 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2517 data->passed_type);
2518
2519 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2520 data->promoted_mode,
2521 data->passed_type,
2522 data->named_arg);
2523
2524 if (entry_parm == 0)
2525 data->promoted_mode = data->passed_mode;
2526
2527 /* Determine parm's home in the stack, in case it arrives in the stack
2528 or we should pretend it did. Compute the stack position and rtx where
2529 the argument arrives and its size.
2530
2531 There is one complexity here: If this was a parameter that would
2532 have been passed in registers, but wasn't only because it is
2533 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2534 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2535 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2536 as it was the previous time. */
2537 in_regs = (entry_parm != 0);
2538 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2539 in_regs = true;
2540 #endif
2541 if (!in_regs && !data->named_arg)
2542 {
2543 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2544 {
2545 rtx tem;
2546 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2547 data->promoted_mode,
2548 data->passed_type, true);
2549 in_regs = tem != NULL;
2550 }
2551 }
2552
2553 /* If this parameter was passed both in registers and in the stack, use
2554 the copy on the stack. */
2555 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2556 data->passed_type))
2557 entry_parm = 0;
2558
2559 if (entry_parm)
2560 {
2561 int partial;
2562
2563 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2564 data->promoted_mode,
2565 data->passed_type,
2566 data->named_arg);
2567 data->partial = partial;
2568
2569 /* The caller might already have allocated stack space for the
2570 register parameters. */
2571 if (partial != 0 && all->reg_parm_stack_space == 0)
2572 {
2573 /* Part of this argument is passed in registers and part
2574 is passed on the stack. Ask the prologue code to extend
2575 the stack part so that we can recreate the full value.
2576
2577 PRETEND_BYTES is the size of the registers we need to store.
2578 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2579 stack space that the prologue should allocate.
2580
2581 Internally, gcc assumes that the argument pointer is aligned
2582 to STACK_BOUNDARY bits. This is used both for alignment
2583 optimizations (see init_emit) and to locate arguments that are
2584 aligned to more than PARM_BOUNDARY bits. We must preserve this
2585 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2586 a stack boundary. */
2587
2588 /* We assume at most one partial arg, and it must be the first
2589 argument on the stack. */
2590 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2591
2592 pretend_bytes = partial;
2593 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2594
2595 /* We want to align relative to the actual stack pointer, so
2596 don't include this in the stack size until later. */
2597 all->extra_pretend_bytes = all->pretend_args_size;
2598 }
2599 }
2600
2601 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2602 all->reg_parm_stack_space,
2603 entry_parm ? data->partial : 0, current_function_decl,
2604 &all->stack_args_size, &data->locate);
2605
2606 /* Update parm_stack_boundary if this parameter is passed in the
2607 stack. */
2608 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2609 crtl->parm_stack_boundary = data->locate.boundary;
2610
2611 /* Adjust offsets to include the pretend args. */
2612 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2613 data->locate.slot_offset.constant += pretend_bytes;
2614 data->locate.offset.constant += pretend_bytes;
2615
2616 data->entry_parm = entry_parm;
2617 }
2618
2619 /* A subroutine of assign_parms. If there is actually space on the stack
2620 for this parm, count it in stack_args_size and return true. */
2621
2622 static bool
2623 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2624 struct assign_parm_data_one *data)
2625 {
2626 /* Trivially true if we've no incoming register. */
2627 if (data->entry_parm == NULL)
2628 ;
2629 /* Also true if we're partially in registers and partially not,
2630 since we've arranged to drop the entire argument on the stack. */
2631 else if (data->partial != 0)
2632 ;
2633 /* Also true if the target says that it's passed in both registers
2634 and on the stack. */
2635 else if (GET_CODE (data->entry_parm) == PARALLEL
2636 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2637 ;
2638 /* Also true if the target says that there's stack allocated for
2639 all register parameters. */
2640 else if (all->reg_parm_stack_space > 0)
2641 ;
2642 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2643 else
2644 return false;
2645
2646 all->stack_args_size.constant += data->locate.size.constant;
2647 if (data->locate.size.var)
2648 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2649
2650 return true;
2651 }
2652
2653 /* A subroutine of assign_parms. Given that this parameter is allocated
2654 stack space by the ABI, find it. */
2655
2656 static void
2657 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2658 {
2659 rtx offset_rtx, stack_parm;
2660 unsigned int align, boundary;
2661
2662 /* If we're passing this arg using a reg, make its stack home the
2663 aligned stack slot. */
2664 if (data->entry_parm)
2665 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2666 else
2667 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2668
2669 stack_parm = crtl->args.internal_arg_pointer;
2670 if (offset_rtx != const0_rtx)
2671 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2672 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2673
2674 if (!data->passed_pointer)
2675 {
2676 set_mem_attributes (stack_parm, parm, 1);
2677 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2678 while promoted mode's size is needed. */
2679 if (data->promoted_mode != BLKmode
2680 && data->promoted_mode != DECL_MODE (parm))
2681 {
2682 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2683 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2684 {
2685 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2686 data->promoted_mode);
2687 if (maybe_ne (offset, 0))
2688 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2689 }
2690 }
2691 }
2692
2693 boundary = data->locate.boundary;
2694 align = BITS_PER_UNIT;
2695
2696 /* If we're padding upward, we know that the alignment of the slot
2697 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2698 intentionally forcing upward padding. Otherwise we have to come
2699 up with a guess at the alignment based on OFFSET_RTX. */
2700 poly_int64 offset;
2701 if (data->locate.where_pad != PAD_DOWNWARD || data->entry_parm)
2702 align = boundary;
2703 else if (poly_int_rtx_p (offset_rtx, &offset))
2704 {
2705 align = least_bit_hwi (boundary);
2706 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2707 if (offset_align != 0)
2708 align = MIN (align, offset_align);
2709 }
2710 set_mem_align (stack_parm, align);
2711
2712 if (data->entry_parm)
2713 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2714
2715 data->stack_parm = stack_parm;
2716 }
2717
2718 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2719 always valid and contiguous. */
2720
2721 static void
2722 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2723 {
2724 rtx entry_parm = data->entry_parm;
2725 rtx stack_parm = data->stack_parm;
2726
2727 /* If this parm was passed part in regs and part in memory, pretend it
2728 arrived entirely in memory by pushing the register-part onto the stack.
2729 In the special case of a DImode or DFmode that is split, we could put
2730 it together in a pseudoreg directly, but for now that's not worth
2731 bothering with. */
2732 if (data->partial != 0)
2733 {
2734 /* Handle calls that pass values in multiple non-contiguous
2735 locations. The Irix 6 ABI has examples of this. */
2736 if (GET_CODE (entry_parm) == PARALLEL)
2737 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2738 data->passed_type,
2739 int_size_in_bytes (data->passed_type));
2740 else
2741 {
2742 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2743 move_block_from_reg (REGNO (entry_parm),
2744 validize_mem (copy_rtx (stack_parm)),
2745 data->partial / UNITS_PER_WORD);
2746 }
2747
2748 entry_parm = stack_parm;
2749 }
2750
2751 /* If we didn't decide this parm came in a register, by default it came
2752 on the stack. */
2753 else if (entry_parm == NULL)
2754 entry_parm = stack_parm;
2755
2756 /* When an argument is passed in multiple locations, we can't make use
2757 of this information, but we can save some copying if the whole argument
2758 is passed in a single register. */
2759 else if (GET_CODE (entry_parm) == PARALLEL
2760 && data->nominal_mode != BLKmode
2761 && data->passed_mode != BLKmode)
2762 {
2763 size_t i, len = XVECLEN (entry_parm, 0);
2764
2765 for (i = 0; i < len; i++)
2766 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2767 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2768 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2769 == data->passed_mode)
2770 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2771 {
2772 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2773 break;
2774 }
2775 }
2776
2777 data->entry_parm = entry_parm;
2778 }
2779
2780 /* A subroutine of assign_parms. Reconstitute any values which were
2781 passed in multiple registers and would fit in a single register. */
2782
2783 static void
2784 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2785 {
2786 rtx entry_parm = data->entry_parm;
2787
2788 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2789 This can be done with register operations rather than on the
2790 stack, even if we will store the reconstituted parameter on the
2791 stack later. */
2792 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2793 {
2794 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2795 emit_group_store (parmreg, entry_parm, data->passed_type,
2796 GET_MODE_SIZE (GET_MODE (entry_parm)));
2797 entry_parm = parmreg;
2798 }
2799
2800 data->entry_parm = entry_parm;
2801 }
2802
2803 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2804 always valid and properly aligned. */
2805
2806 static void
2807 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2808 {
2809 rtx stack_parm = data->stack_parm;
2810
2811 /* If we can't trust the parm stack slot to be aligned enough for its
2812 ultimate type, don't use that slot after entry. We'll make another
2813 stack slot, if we need one. */
2814 if (stack_parm
2815 && ((STRICT_ALIGNMENT
2816 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2817 || (data->nominal_type
2818 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2819 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2820 stack_parm = NULL;
2821
2822 /* If parm was passed in memory, and we need to convert it on entry,
2823 don't store it back in that same slot. */
2824 else if (data->entry_parm == stack_parm
2825 && data->nominal_mode != BLKmode
2826 && data->nominal_mode != data->passed_mode)
2827 stack_parm = NULL;
2828
2829 /* If stack protection is in effect for this function, don't leave any
2830 pointers in their passed stack slots. */
2831 else if (crtl->stack_protect_guard
2832 && (flag_stack_protect == 2
2833 || data->passed_pointer
2834 || POINTER_TYPE_P (data->nominal_type)))
2835 stack_parm = NULL;
2836
2837 data->stack_parm = stack_parm;
2838 }
2839
2840 /* A subroutine of assign_parms. Return true if the current parameter
2841 should be stored as a BLKmode in the current frame. */
2842
2843 static bool
2844 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2845 {
2846 if (data->nominal_mode == BLKmode)
2847 return true;
2848 if (GET_MODE (data->entry_parm) == BLKmode)
2849 return true;
2850
2851 #ifdef BLOCK_REG_PADDING
2852 /* Only assign_parm_setup_block knows how to deal with register arguments
2853 that are padded at the least significant end. */
2854 if (REG_P (data->entry_parm)
2855 && known_lt (GET_MODE_SIZE (data->promoted_mode), UNITS_PER_WORD)
2856 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2857 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2858 return true;
2859 #endif
2860
2861 return false;
2862 }
2863
2864 /* A subroutine of assign_parms. Arrange for the parameter to be
2865 present and valid in DATA->STACK_RTL. */
2866
2867 static void
2868 assign_parm_setup_block (struct assign_parm_data_all *all,
2869 tree parm, struct assign_parm_data_one *data)
2870 {
2871 rtx entry_parm = data->entry_parm;
2872 rtx stack_parm = data->stack_parm;
2873 rtx target_reg = NULL_RTX;
2874 bool in_conversion_seq = false;
2875 HOST_WIDE_INT size;
2876 HOST_WIDE_INT size_stored;
2877
2878 if (GET_CODE (entry_parm) == PARALLEL)
2879 entry_parm = emit_group_move_into_temps (entry_parm);
2880
2881 /* If we want the parameter in a pseudo, don't use a stack slot. */
2882 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2883 {
2884 tree def = ssa_default_def (cfun, parm);
2885 gcc_assert (def);
2886 machine_mode mode = promote_ssa_mode (def, NULL);
2887 rtx reg = gen_reg_rtx (mode);
2888 if (GET_CODE (reg) != CONCAT)
2889 stack_parm = reg;
2890 else
2891 {
2892 target_reg = reg;
2893 /* Avoid allocating a stack slot, if there isn't one
2894 preallocated by the ABI. It might seem like we should
2895 always prefer a pseudo, but converting between
2896 floating-point and integer modes goes through the stack
2897 on various machines, so it's better to use the reserved
2898 stack slot than to risk wasting it and allocating more
2899 for the conversion. */
2900 if (stack_parm == NULL_RTX)
2901 {
2902 int save = generating_concat_p;
2903 generating_concat_p = 0;
2904 stack_parm = gen_reg_rtx (mode);
2905 generating_concat_p = save;
2906 }
2907 }
2908 data->stack_parm = NULL;
2909 }
2910
2911 size = int_size_in_bytes (data->passed_type);
2912 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2913 if (stack_parm == 0)
2914 {
2915 SET_DECL_ALIGN (parm, MAX (DECL_ALIGN (parm), BITS_PER_WORD));
2916 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2917 {
2918 rtx allocsize = gen_int_mode (size_stored, Pmode);
2919 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2920 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2921 MAX_SUPPORTED_STACK_ALIGNMENT);
2922 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2923 DECL_ALIGN (parm));
2924 mark_reg_pointer (addr, DECL_ALIGN (parm));
2925 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2926 MEM_NOTRAP_P (stack_parm) = 1;
2927 }
2928 else
2929 stack_parm = assign_stack_local (BLKmode, size_stored,
2930 DECL_ALIGN (parm));
2931 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2932 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2933 set_mem_attributes (stack_parm, parm, 1);
2934 }
2935
2936 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2937 calls that pass values in multiple non-contiguous locations. */
2938 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2939 {
2940 rtx mem;
2941
2942 /* Note that we will be storing an integral number of words.
2943 So we have to be careful to ensure that we allocate an
2944 integral number of words. We do this above when we call
2945 assign_stack_local if space was not allocated in the argument
2946 list. If it was, this will not work if PARM_BOUNDARY is not
2947 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2948 if it becomes a problem. Exception is when BLKmode arrives
2949 with arguments not conforming to word_mode. */
2950
2951 if (data->stack_parm == 0)
2952 ;
2953 else if (GET_CODE (entry_parm) == PARALLEL)
2954 ;
2955 else
2956 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2957
2958 mem = validize_mem (copy_rtx (stack_parm));
2959
2960 /* Handle values in multiple non-contiguous locations. */
2961 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2962 emit_group_store (mem, entry_parm, data->passed_type, size);
2963 else if (GET_CODE (entry_parm) == PARALLEL)
2964 {
2965 push_to_sequence2 (all->first_conversion_insn,
2966 all->last_conversion_insn);
2967 emit_group_store (mem, entry_parm, data->passed_type, size);
2968 all->first_conversion_insn = get_insns ();
2969 all->last_conversion_insn = get_last_insn ();
2970 end_sequence ();
2971 in_conversion_seq = true;
2972 }
2973
2974 else if (size == 0)
2975 ;
2976
2977 /* If SIZE is that of a mode no bigger than a word, just use
2978 that mode's store operation. */
2979 else if (size <= UNITS_PER_WORD)
2980 {
2981 unsigned int bits = size * BITS_PER_UNIT;
2982 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
2983
2984 if (mode != BLKmode
2985 #ifdef BLOCK_REG_PADDING
2986 && (size == UNITS_PER_WORD
2987 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2988 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2989 #endif
2990 )
2991 {
2992 rtx reg;
2993
2994 /* We are really truncating a word_mode value containing
2995 SIZE bytes into a value of mode MODE. If such an
2996 operation requires no actual instructions, we can refer
2997 to the value directly in mode MODE, otherwise we must
2998 start with the register in word_mode and explicitly
2999 convert it. */
3000 if (targetm.truly_noop_truncation (size * BITS_PER_UNIT,
3001 BITS_PER_WORD))
3002 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3003 else
3004 {
3005 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3006 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3007 }
3008 emit_move_insn (change_address (mem, mode, 0), reg);
3009 }
3010
3011 #ifdef BLOCK_REG_PADDING
3012 /* Storing the register in memory as a full word, as
3013 move_block_from_reg below would do, and then using the
3014 MEM in a smaller mode, has the effect of shifting right
3015 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3016 shifting must be explicit. */
3017 else if (!MEM_P (mem))
3018 {
3019 rtx x;
3020
3021 /* If the assert below fails, we should have taken the
3022 mode != BLKmode path above, unless we have downward
3023 padding of smaller-than-word arguments on a machine
3024 with little-endian bytes, which would likely require
3025 additional changes to work correctly. */
3026 gcc_checking_assert (BYTES_BIG_ENDIAN
3027 && (BLOCK_REG_PADDING (mode,
3028 data->passed_type, 1)
3029 == PAD_UPWARD));
3030
3031 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3032
3033 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3034 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3035 NULL_RTX, 1);
3036 x = force_reg (word_mode, x);
3037 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3038
3039 emit_move_insn (mem, x);
3040 }
3041 #endif
3042
3043 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3044 machine must be aligned to the left before storing
3045 to memory. Note that the previous test doesn't
3046 handle all cases (e.g. SIZE == 3). */
3047 else if (size != UNITS_PER_WORD
3048 #ifdef BLOCK_REG_PADDING
3049 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
3050 == PAD_DOWNWARD)
3051 #else
3052 && BYTES_BIG_ENDIAN
3053 #endif
3054 )
3055 {
3056 rtx tem, x;
3057 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3058 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3059
3060 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3061 tem = change_address (mem, word_mode, 0);
3062 emit_move_insn (tem, x);
3063 }
3064 else
3065 move_block_from_reg (REGNO (entry_parm), mem,
3066 size_stored / UNITS_PER_WORD);
3067 }
3068 else if (!MEM_P (mem))
3069 {
3070 gcc_checking_assert (size > UNITS_PER_WORD);
3071 #ifdef BLOCK_REG_PADDING
3072 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3073 data->passed_type, 0)
3074 == PAD_UPWARD);
3075 #endif
3076 emit_move_insn (mem, entry_parm);
3077 }
3078 else
3079 move_block_from_reg (REGNO (entry_parm), mem,
3080 size_stored / UNITS_PER_WORD);
3081 }
3082 else if (data->stack_parm == 0)
3083 {
3084 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3085 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3086 BLOCK_OP_NORMAL);
3087 all->first_conversion_insn = get_insns ();
3088 all->last_conversion_insn = get_last_insn ();
3089 end_sequence ();
3090 in_conversion_seq = true;
3091 }
3092
3093 if (target_reg)
3094 {
3095 if (!in_conversion_seq)
3096 emit_move_insn (target_reg, stack_parm);
3097 else
3098 {
3099 push_to_sequence2 (all->first_conversion_insn,
3100 all->last_conversion_insn);
3101 emit_move_insn (target_reg, stack_parm);
3102 all->first_conversion_insn = get_insns ();
3103 all->last_conversion_insn = get_last_insn ();
3104 end_sequence ();
3105 }
3106 stack_parm = target_reg;
3107 }
3108
3109 data->stack_parm = stack_parm;
3110 set_parm_rtl (parm, stack_parm);
3111 }
3112
3113 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3114 parameter. Get it there. Perform all ABI specified conversions. */
3115
3116 static void
3117 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3118 struct assign_parm_data_one *data)
3119 {
3120 rtx parmreg, validated_mem;
3121 rtx equiv_stack_parm;
3122 machine_mode promoted_nominal_mode;
3123 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3124 bool did_conversion = false;
3125 bool need_conversion, moved;
3126 rtx rtl;
3127
3128 /* Store the parm in a pseudoregister during the function, but we may
3129 need to do it in a wider mode. Using 2 here makes the result
3130 consistent with promote_decl_mode and thus expand_expr_real_1. */
3131 promoted_nominal_mode
3132 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3133 TREE_TYPE (current_function_decl), 2);
3134
3135 parmreg = gen_reg_rtx (promoted_nominal_mode);
3136 if (!DECL_ARTIFICIAL (parm))
3137 mark_user_reg (parmreg);
3138
3139 /* If this was an item that we received a pointer to,
3140 set rtl appropriately. */
3141 if (data->passed_pointer)
3142 {
3143 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3144 set_mem_attributes (rtl, parm, 1);
3145 }
3146 else
3147 rtl = parmreg;
3148
3149 assign_parm_remove_parallels (data);
3150
3151 /* Copy the value into the register, thus bridging between
3152 assign_parm_find_data_types and expand_expr_real_1. */
3153
3154 equiv_stack_parm = data->stack_parm;
3155 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3156
3157 need_conversion = (data->nominal_mode != data->passed_mode
3158 || promoted_nominal_mode != data->promoted_mode);
3159 moved = false;
3160
3161 if (need_conversion
3162 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3163 && data->nominal_mode == data->passed_mode
3164 && data->nominal_mode == GET_MODE (data->entry_parm))
3165 {
3166 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3167 mode, by the caller. We now have to convert it to
3168 NOMINAL_MODE, if different. However, PARMREG may be in
3169 a different mode than NOMINAL_MODE if it is being stored
3170 promoted.
3171
3172 If ENTRY_PARM is a hard register, it might be in a register
3173 not valid for operating in its mode (e.g., an odd-numbered
3174 register for a DFmode). In that case, moves are the only
3175 thing valid, so we can't do a convert from there. This
3176 occurs when the calling sequence allow such misaligned
3177 usages.
3178
3179 In addition, the conversion may involve a call, which could
3180 clobber parameters which haven't been copied to pseudo
3181 registers yet.
3182
3183 First, we try to emit an insn which performs the necessary
3184 conversion. We verify that this insn does not clobber any
3185 hard registers. */
3186
3187 enum insn_code icode;
3188 rtx op0, op1;
3189
3190 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3191 unsignedp);
3192
3193 op0 = parmreg;
3194 op1 = validated_mem;
3195 if (icode != CODE_FOR_nothing
3196 && insn_operand_matches (icode, 0, op0)
3197 && insn_operand_matches (icode, 1, op1))
3198 {
3199 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3200 rtx_insn *insn, *insns;
3201 rtx t = op1;
3202 HARD_REG_SET hardregs;
3203
3204 start_sequence ();
3205 /* If op1 is a hard register that is likely spilled, first
3206 force it into a pseudo, otherwise combiner might extend
3207 its lifetime too much. */
3208 if (GET_CODE (t) == SUBREG)
3209 t = SUBREG_REG (t);
3210 if (REG_P (t)
3211 && HARD_REGISTER_P (t)
3212 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3213 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3214 {
3215 t = gen_reg_rtx (GET_MODE (op1));
3216 emit_move_insn (t, op1);
3217 }
3218 else
3219 t = op1;
3220 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3221 data->passed_mode, unsignedp);
3222 emit_insn (pat);
3223 insns = get_insns ();
3224
3225 moved = true;
3226 CLEAR_HARD_REG_SET (hardregs);
3227 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3228 {
3229 if (INSN_P (insn))
3230 note_stores (PATTERN (insn), record_hard_reg_sets,
3231 &hardregs);
3232 if (!hard_reg_set_empty_p (hardregs))
3233 moved = false;
3234 }
3235
3236 end_sequence ();
3237
3238 if (moved)
3239 {
3240 emit_insn (insns);
3241 if (equiv_stack_parm != NULL_RTX)
3242 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3243 equiv_stack_parm);
3244 }
3245 }
3246 }
3247
3248 if (moved)
3249 /* Nothing to do. */
3250 ;
3251 else if (need_conversion)
3252 {
3253 /* We did not have an insn to convert directly, or the sequence
3254 generated appeared unsafe. We must first copy the parm to a
3255 pseudo reg, and save the conversion until after all
3256 parameters have been moved. */
3257
3258 int save_tree_used;
3259 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3260
3261 emit_move_insn (tempreg, validated_mem);
3262
3263 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3264 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3265
3266 if (partial_subreg_p (tempreg)
3267 && GET_MODE (tempreg) == data->nominal_mode
3268 && REG_P (SUBREG_REG (tempreg))
3269 && data->nominal_mode == data->passed_mode
3270 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3271 {
3272 /* The argument is already sign/zero extended, so note it
3273 into the subreg. */
3274 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3275 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3276 }
3277
3278 /* TREE_USED gets set erroneously during expand_assignment. */
3279 save_tree_used = TREE_USED (parm);
3280 SET_DECL_RTL (parm, rtl);
3281 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3282 SET_DECL_RTL (parm, NULL_RTX);
3283 TREE_USED (parm) = save_tree_used;
3284 all->first_conversion_insn = get_insns ();
3285 all->last_conversion_insn = get_last_insn ();
3286 end_sequence ();
3287
3288 did_conversion = true;
3289 }
3290 else
3291 emit_move_insn (parmreg, validated_mem);
3292
3293 /* If we were passed a pointer but the actual value can safely live
3294 in a register, retrieve it and use it directly. */
3295 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3296 {
3297 /* We can't use nominal_mode, because it will have been set to
3298 Pmode above. We must use the actual mode of the parm. */
3299 if (use_register_for_decl (parm))
3300 {
3301 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3302 mark_user_reg (parmreg);
3303 }
3304 else
3305 {
3306 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3307 TYPE_MODE (TREE_TYPE (parm)),
3308 TYPE_ALIGN (TREE_TYPE (parm)));
3309 parmreg
3310 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3311 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3312 align);
3313 set_mem_attributes (parmreg, parm, 1);
3314 }
3315
3316 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3317 the debug info in case it is not legitimate. */
3318 if (GET_MODE (parmreg) != GET_MODE (rtl))
3319 {
3320 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3321 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3322
3323 push_to_sequence2 (all->first_conversion_insn,
3324 all->last_conversion_insn);
3325 emit_move_insn (tempreg, rtl);
3326 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3327 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3328 tempreg);
3329 all->first_conversion_insn = get_insns ();
3330 all->last_conversion_insn = get_last_insn ();
3331 end_sequence ();
3332
3333 did_conversion = true;
3334 }
3335 else
3336 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3337
3338 rtl = parmreg;
3339
3340 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3341 now the parm. */
3342 data->stack_parm = NULL;
3343 }
3344
3345 set_parm_rtl (parm, rtl);
3346
3347 /* Mark the register as eliminable if we did no conversion and it was
3348 copied from memory at a fixed offset, and the arg pointer was not
3349 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3350 offset formed an invalid address, such memory-equivalences as we
3351 make here would screw up life analysis for it. */
3352 if (data->nominal_mode == data->passed_mode
3353 && !did_conversion
3354 && data->stack_parm != 0
3355 && MEM_P (data->stack_parm)
3356 && data->locate.offset.var == 0
3357 && reg_mentioned_p (virtual_incoming_args_rtx,
3358 XEXP (data->stack_parm, 0)))
3359 {
3360 rtx_insn *linsn = get_last_insn ();
3361 rtx_insn *sinsn;
3362 rtx set;
3363
3364 /* Mark complex types separately. */
3365 if (GET_CODE (parmreg) == CONCAT)
3366 {
3367 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3368 int regnor = REGNO (XEXP (parmreg, 0));
3369 int regnoi = REGNO (XEXP (parmreg, 1));
3370 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3371 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3372 GET_MODE_SIZE (submode));
3373
3374 /* Scan backwards for the set of the real and
3375 imaginary parts. */
3376 for (sinsn = linsn; sinsn != 0;
3377 sinsn = prev_nonnote_insn (sinsn))
3378 {
3379 set = single_set (sinsn);
3380 if (set == 0)
3381 continue;
3382
3383 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3384 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3385 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3386 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3387 }
3388 }
3389 else
3390 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3391 }
3392
3393 /* For pointer data type, suggest pointer register. */
3394 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3395 mark_reg_pointer (parmreg,
3396 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3397 }
3398
3399 /* A subroutine of assign_parms. Allocate stack space to hold the current
3400 parameter. Get it there. Perform all ABI specified conversions. */
3401
3402 static void
3403 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3404 struct assign_parm_data_one *data)
3405 {
3406 /* Value must be stored in the stack slot STACK_PARM during function
3407 execution. */
3408 bool to_conversion = false;
3409
3410 assign_parm_remove_parallels (data);
3411
3412 if (data->promoted_mode != data->nominal_mode)
3413 {
3414 /* Conversion is required. */
3415 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3416
3417 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3418
3419 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3420 to_conversion = true;
3421
3422 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3423 TYPE_UNSIGNED (TREE_TYPE (parm)));
3424
3425 if (data->stack_parm)
3426 {
3427 poly_int64 offset
3428 = subreg_lowpart_offset (data->nominal_mode,
3429 GET_MODE (data->stack_parm));
3430 /* ??? This may need a big-endian conversion on sparc64. */
3431 data->stack_parm
3432 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3433 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3434 set_mem_offset (data->stack_parm,
3435 MEM_OFFSET (data->stack_parm) + offset);
3436 }
3437 }
3438
3439 if (data->entry_parm != data->stack_parm)
3440 {
3441 rtx src, dest;
3442
3443 if (data->stack_parm == 0)
3444 {
3445 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3446 GET_MODE (data->entry_parm),
3447 TYPE_ALIGN (data->passed_type));
3448 data->stack_parm
3449 = assign_stack_local (GET_MODE (data->entry_parm),
3450 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3451 align);
3452 set_mem_attributes (data->stack_parm, parm, 1);
3453 }
3454
3455 dest = validize_mem (copy_rtx (data->stack_parm));
3456 src = validize_mem (copy_rtx (data->entry_parm));
3457
3458 if (MEM_P (src))
3459 {
3460 /* Use a block move to handle potentially misaligned entry_parm. */
3461 if (!to_conversion)
3462 push_to_sequence2 (all->first_conversion_insn,
3463 all->last_conversion_insn);
3464 to_conversion = true;
3465
3466 emit_block_move (dest, src,
3467 GEN_INT (int_size_in_bytes (data->passed_type)),
3468 BLOCK_OP_NORMAL);
3469 }
3470 else
3471 {
3472 if (!REG_P (src))
3473 src = force_reg (GET_MODE (src), src);
3474 emit_move_insn (dest, src);
3475 }
3476 }
3477
3478 if (to_conversion)
3479 {
3480 all->first_conversion_insn = get_insns ();
3481 all->last_conversion_insn = get_last_insn ();
3482 end_sequence ();
3483 }
3484
3485 set_parm_rtl (parm, data->stack_parm);
3486 }
3487
3488 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3489 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3490
3491 static void
3492 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3493 vec<tree> fnargs)
3494 {
3495 tree parm;
3496 tree orig_fnargs = all->orig_fnargs;
3497 unsigned i = 0;
3498
3499 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3500 {
3501 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3502 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3503 {
3504 rtx tmp, real, imag;
3505 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3506
3507 real = DECL_RTL (fnargs[i]);
3508 imag = DECL_RTL (fnargs[i + 1]);
3509 if (inner != GET_MODE (real))
3510 {
3511 real = gen_lowpart_SUBREG (inner, real);
3512 imag = gen_lowpart_SUBREG (inner, imag);
3513 }
3514
3515 if (TREE_ADDRESSABLE (parm))
3516 {
3517 rtx rmem, imem;
3518 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3519 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3520 DECL_MODE (parm),
3521 TYPE_ALIGN (TREE_TYPE (parm)));
3522
3523 /* split_complex_arg put the real and imag parts in
3524 pseudos. Move them to memory. */
3525 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3526 set_mem_attributes (tmp, parm, 1);
3527 rmem = adjust_address_nv (tmp, inner, 0);
3528 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3529 push_to_sequence2 (all->first_conversion_insn,
3530 all->last_conversion_insn);
3531 emit_move_insn (rmem, real);
3532 emit_move_insn (imem, imag);
3533 all->first_conversion_insn = get_insns ();
3534 all->last_conversion_insn = get_last_insn ();
3535 end_sequence ();
3536 }
3537 else
3538 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3539 set_parm_rtl (parm, tmp);
3540
3541 real = DECL_INCOMING_RTL (fnargs[i]);
3542 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3543 if (inner != GET_MODE (real))
3544 {
3545 real = gen_lowpart_SUBREG (inner, real);
3546 imag = gen_lowpart_SUBREG (inner, imag);
3547 }
3548 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3549 set_decl_incoming_rtl (parm, tmp, false);
3550 i++;
3551 }
3552 }
3553 }
3554
3555 /* Assign RTL expressions to the function's parameters. This may involve
3556 copying them into registers and using those registers as the DECL_RTL. */
3557
3558 static void
3559 assign_parms (tree fndecl)
3560 {
3561 struct assign_parm_data_all all;
3562 tree parm;
3563 vec<tree> fnargs;
3564 unsigned i;
3565
3566 crtl->args.internal_arg_pointer
3567 = targetm.calls.internal_arg_pointer ();
3568
3569 assign_parms_initialize_all (&all);
3570 fnargs = assign_parms_augmented_arg_list (&all);
3571
3572 FOR_EACH_VEC_ELT (fnargs, i, parm)
3573 {
3574 struct assign_parm_data_one data;
3575
3576 /* Extract the type of PARM; adjust it according to ABI. */
3577 assign_parm_find_data_types (&all, parm, &data);
3578
3579 /* Early out for errors and void parameters. */
3580 if (data.passed_mode == VOIDmode)
3581 {
3582 SET_DECL_RTL (parm, const0_rtx);
3583 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3584 continue;
3585 }
3586
3587 /* Estimate stack alignment from parameter alignment. */
3588 if (SUPPORTS_STACK_ALIGNMENT)
3589 {
3590 unsigned int align
3591 = targetm.calls.function_arg_boundary (data.promoted_mode,
3592 data.passed_type);
3593 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3594 align);
3595 if (TYPE_ALIGN (data.nominal_type) > align)
3596 align = MINIMUM_ALIGNMENT (data.nominal_type,
3597 TYPE_MODE (data.nominal_type),
3598 TYPE_ALIGN (data.nominal_type));
3599 if (crtl->stack_alignment_estimated < align)
3600 {
3601 gcc_assert (!crtl->stack_realign_processed);
3602 crtl->stack_alignment_estimated = align;
3603 }
3604 }
3605
3606 /* Find out where the parameter arrives in this function. */
3607 assign_parm_find_entry_rtl (&all, &data);
3608
3609 /* Find out where stack space for this parameter might be. */
3610 if (assign_parm_is_stack_parm (&all, &data))
3611 {
3612 assign_parm_find_stack_rtl (parm, &data);
3613 assign_parm_adjust_entry_rtl (&data);
3614 }
3615 /* Record permanently how this parm was passed. */
3616 if (data.passed_pointer)
3617 {
3618 rtx incoming_rtl
3619 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3620 data.entry_parm);
3621 set_decl_incoming_rtl (parm, incoming_rtl, true);
3622 }
3623 else
3624 set_decl_incoming_rtl (parm, data.entry_parm, false);
3625
3626 assign_parm_adjust_stack_rtl (&data);
3627
3628 if (assign_parm_setup_block_p (&data))
3629 assign_parm_setup_block (&all, parm, &data);
3630 else if (data.passed_pointer || use_register_for_decl (parm))
3631 assign_parm_setup_reg (&all, parm, &data);
3632 else
3633 assign_parm_setup_stack (&all, parm, &data);
3634
3635 if (cfun->stdarg && !DECL_CHAIN (parm))
3636 assign_parms_setup_varargs (&all, &data, false);
3637
3638 /* Update info on where next arg arrives in registers. */
3639 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3640 data.passed_type, data.named_arg);
3641 }
3642
3643 if (targetm.calls.split_complex_arg)
3644 assign_parms_unsplit_complex (&all, fnargs);
3645
3646 fnargs.release ();
3647
3648 /* Output all parameter conversion instructions (possibly including calls)
3649 now that all parameters have been copied out of hard registers. */
3650 emit_insn (all.first_conversion_insn);
3651
3652 /* Estimate reload stack alignment from scalar return mode. */
3653 if (SUPPORTS_STACK_ALIGNMENT)
3654 {
3655 if (DECL_RESULT (fndecl))
3656 {
3657 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3658 machine_mode mode = TYPE_MODE (type);
3659
3660 if (mode != BLKmode
3661 && mode != VOIDmode
3662 && !AGGREGATE_TYPE_P (type))
3663 {
3664 unsigned int align = GET_MODE_ALIGNMENT (mode);
3665 if (crtl->stack_alignment_estimated < align)
3666 {
3667 gcc_assert (!crtl->stack_realign_processed);
3668 crtl->stack_alignment_estimated = align;
3669 }
3670 }
3671 }
3672 }
3673
3674 /* If we are receiving a struct value address as the first argument, set up
3675 the RTL for the function result. As this might require code to convert
3676 the transmitted address to Pmode, we do this here to ensure that possible
3677 preliminary conversions of the address have been emitted already. */
3678 if (all.function_result_decl)
3679 {
3680 tree result = DECL_RESULT (current_function_decl);
3681 rtx addr = DECL_RTL (all.function_result_decl);
3682 rtx x;
3683
3684 if (DECL_BY_REFERENCE (result))
3685 {
3686 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3687 x = addr;
3688 }
3689 else
3690 {
3691 SET_DECL_VALUE_EXPR (result,
3692 build1 (INDIRECT_REF, TREE_TYPE (result),
3693 all.function_result_decl));
3694 addr = convert_memory_address (Pmode, addr);
3695 x = gen_rtx_MEM (DECL_MODE (result), addr);
3696 set_mem_attributes (x, result, 1);
3697 }
3698
3699 DECL_HAS_VALUE_EXPR_P (result) = 1;
3700
3701 set_parm_rtl (result, x);
3702 }
3703
3704 /* We have aligned all the args, so add space for the pretend args. */
3705 crtl->args.pretend_args_size = all.pretend_args_size;
3706 all.stack_args_size.constant += all.extra_pretend_bytes;
3707 crtl->args.size = all.stack_args_size.constant;
3708
3709 /* Adjust function incoming argument size for alignment and
3710 minimum length. */
3711
3712 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3713 crtl->args.size = aligned_upper_bound (crtl->args.size,
3714 PARM_BOUNDARY / BITS_PER_UNIT);
3715
3716 if (ARGS_GROW_DOWNWARD)
3717 {
3718 crtl->args.arg_offset_rtx
3719 = (all.stack_args_size.var == 0
3720 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3721 : expand_expr (size_diffop (all.stack_args_size.var,
3722 size_int (-all.stack_args_size.constant)),
3723 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3724 }
3725 else
3726 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3727
3728 /* See how many bytes, if any, of its args a function should try to pop
3729 on return. */
3730
3731 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3732 TREE_TYPE (fndecl),
3733 crtl->args.size);
3734
3735 /* For stdarg.h function, save info about
3736 regs and stack space used by the named args. */
3737
3738 crtl->args.info = all.args_so_far_v;
3739
3740 /* Set the rtx used for the function return value. Put this in its
3741 own variable so any optimizers that need this information don't have
3742 to include tree.h. Do this here so it gets done when an inlined
3743 function gets output. */
3744
3745 crtl->return_rtx
3746 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3747 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3748
3749 /* If scalar return value was computed in a pseudo-reg, or was a named
3750 return value that got dumped to the stack, copy that to the hard
3751 return register. */
3752 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3753 {
3754 tree decl_result = DECL_RESULT (fndecl);
3755 rtx decl_rtl = DECL_RTL (decl_result);
3756
3757 if (REG_P (decl_rtl)
3758 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3759 : DECL_REGISTER (decl_result))
3760 {
3761 rtx real_decl_rtl;
3762
3763 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3764 fndecl, true);
3765 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3766 /* The delay slot scheduler assumes that crtl->return_rtx
3767 holds the hard register containing the return value, not a
3768 temporary pseudo. */
3769 crtl->return_rtx = real_decl_rtl;
3770 }
3771 }
3772 }
3773
3774 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3775 For all seen types, gimplify their sizes. */
3776
3777 static tree
3778 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3779 {
3780 tree t = *tp;
3781
3782 *walk_subtrees = 0;
3783 if (TYPE_P (t))
3784 {
3785 if (POINTER_TYPE_P (t))
3786 *walk_subtrees = 1;
3787 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3788 && !TYPE_SIZES_GIMPLIFIED (t))
3789 {
3790 gimplify_type_sizes (t, (gimple_seq *) data);
3791 *walk_subtrees = 1;
3792 }
3793 }
3794
3795 return NULL;
3796 }
3797
3798 /* Gimplify the parameter list for current_function_decl. This involves
3799 evaluating SAVE_EXPRs of variable sized parameters and generating code
3800 to implement callee-copies reference parameters. Returns a sequence of
3801 statements to add to the beginning of the function. */
3802
3803 gimple_seq
3804 gimplify_parameters (gimple_seq *cleanup)
3805 {
3806 struct assign_parm_data_all all;
3807 tree parm;
3808 gimple_seq stmts = NULL;
3809 vec<tree> fnargs;
3810 unsigned i;
3811
3812 assign_parms_initialize_all (&all);
3813 fnargs = assign_parms_augmented_arg_list (&all);
3814
3815 FOR_EACH_VEC_ELT (fnargs, i, parm)
3816 {
3817 struct assign_parm_data_one data;
3818
3819 /* Extract the type of PARM; adjust it according to ABI. */
3820 assign_parm_find_data_types (&all, parm, &data);
3821
3822 /* Early out for errors and void parameters. */
3823 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3824 continue;
3825
3826 /* Update info on where next arg arrives in registers. */
3827 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3828 data.passed_type, data.named_arg);
3829
3830 /* ??? Once upon a time variable_size stuffed parameter list
3831 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3832 turned out to be less than manageable in the gimple world.
3833 Now we have to hunt them down ourselves. */
3834 walk_tree_without_duplicates (&data.passed_type,
3835 gimplify_parm_type, &stmts);
3836
3837 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3838 {
3839 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3840 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3841 }
3842
3843 if (data.passed_pointer)
3844 {
3845 tree type = TREE_TYPE (data.passed_type);
3846 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3847 type, data.named_arg))
3848 {
3849 tree local, t;
3850
3851 /* For constant-sized objects, this is trivial; for
3852 variable-sized objects, we have to play games. */
3853 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3854 && !(flag_stack_check == GENERIC_STACK_CHECK
3855 && compare_tree_int (DECL_SIZE_UNIT (parm),
3856 STACK_CHECK_MAX_VAR_SIZE) > 0))
3857 {
3858 local = create_tmp_var (type, get_name (parm));
3859 DECL_IGNORED_P (local) = 0;
3860 /* If PARM was addressable, move that flag over
3861 to the local copy, as its address will be taken,
3862 not the PARMs. Keep the parms address taken
3863 as we'll query that flag during gimplification. */
3864 if (TREE_ADDRESSABLE (parm))
3865 TREE_ADDRESSABLE (local) = 1;
3866 else if (TREE_CODE (type) == COMPLEX_TYPE
3867 || TREE_CODE (type) == VECTOR_TYPE)
3868 DECL_GIMPLE_REG_P (local) = 1;
3869
3870 if (!is_gimple_reg (local)
3871 && flag_stack_reuse != SR_NONE)
3872 {
3873 tree clobber = build_constructor (type, NULL);
3874 gimple *clobber_stmt;
3875 TREE_THIS_VOLATILE (clobber) = 1;
3876 clobber_stmt = gimple_build_assign (local, clobber);
3877 gimple_seq_add_stmt (cleanup, clobber_stmt);
3878 }
3879 }
3880 else
3881 {
3882 tree ptr_type, addr;
3883
3884 ptr_type = build_pointer_type (type);
3885 addr = create_tmp_reg (ptr_type, get_name (parm));
3886 DECL_IGNORED_P (addr) = 0;
3887 local = build_fold_indirect_ref (addr);
3888
3889 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3890 DECL_ALIGN (parm),
3891 max_int_size_in_bytes (type));
3892 /* The call has been built for a variable-sized object. */
3893 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3894 t = fold_convert (ptr_type, t);
3895 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3896 gimplify_and_add (t, &stmts);
3897 }
3898
3899 gimplify_assign (local, parm, &stmts);
3900
3901 SET_DECL_VALUE_EXPR (parm, local);
3902 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3903 }
3904 }
3905 }
3906
3907 fnargs.release ();
3908
3909 return stmts;
3910 }
3911 \f
3912 /* Compute the size and offset from the start of the stacked arguments for a
3913 parm passed in mode PASSED_MODE and with type TYPE.
3914
3915 INITIAL_OFFSET_PTR points to the current offset into the stacked
3916 arguments.
3917
3918 The starting offset and size for this parm are returned in
3919 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3920 nonzero, the offset is that of stack slot, which is returned in
3921 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3922 padding required from the initial offset ptr to the stack slot.
3923
3924 IN_REGS is nonzero if the argument will be passed in registers. It will
3925 never be set if REG_PARM_STACK_SPACE is not defined.
3926
3927 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3928 for arguments which are passed in registers.
3929
3930 FNDECL is the function in which the argument was defined.
3931
3932 There are two types of rounding that are done. The first, controlled by
3933 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3934 argument list to be aligned to the specific boundary (in bits). This
3935 rounding affects the initial and starting offsets, but not the argument
3936 size.
3937
3938 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3939 optionally rounds the size of the parm to PARM_BOUNDARY. The
3940 initial offset is not affected by this rounding, while the size always
3941 is and the starting offset may be. */
3942
3943 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3944 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3945 callers pass in the total size of args so far as
3946 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3947
3948 void
3949 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3950 int reg_parm_stack_space, int partial,
3951 tree fndecl ATTRIBUTE_UNUSED,
3952 struct args_size *initial_offset_ptr,
3953 struct locate_and_pad_arg_data *locate)
3954 {
3955 tree sizetree;
3956 pad_direction where_pad;
3957 unsigned int boundary, round_boundary;
3958 int part_size_in_regs;
3959
3960 /* If we have found a stack parm before we reach the end of the
3961 area reserved for registers, skip that area. */
3962 if (! in_regs)
3963 {
3964 if (reg_parm_stack_space > 0)
3965 {
3966 if (initial_offset_ptr->var
3967 || !ordered_p (initial_offset_ptr->constant,
3968 reg_parm_stack_space))
3969 {
3970 initial_offset_ptr->var
3971 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3972 ssize_int (reg_parm_stack_space));
3973 initial_offset_ptr->constant = 0;
3974 }
3975 else
3976 initial_offset_ptr->constant
3977 = ordered_max (initial_offset_ptr->constant,
3978 reg_parm_stack_space);
3979 }
3980 }
3981
3982 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3983
3984 sizetree = (type
3985 ? arg_size_in_bytes (type)
3986 : size_int (GET_MODE_SIZE (passed_mode)));
3987 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
3988 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3989 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3990 type);
3991 locate->where_pad = where_pad;
3992
3993 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3994 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3995 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3996
3997 locate->boundary = boundary;
3998
3999 if (SUPPORTS_STACK_ALIGNMENT)
4000 {
4001 /* stack_alignment_estimated can't change after stack has been
4002 realigned. */
4003 if (crtl->stack_alignment_estimated < boundary)
4004 {
4005 if (!crtl->stack_realign_processed)
4006 crtl->stack_alignment_estimated = boundary;
4007 else
4008 {
4009 /* If stack is realigned and stack alignment value
4010 hasn't been finalized, it is OK not to increase
4011 stack_alignment_estimated. The bigger alignment
4012 requirement is recorded in stack_alignment_needed
4013 below. */
4014 gcc_assert (!crtl->stack_realign_finalized
4015 && crtl->stack_realign_needed);
4016 }
4017 }
4018 }
4019
4020 /* Remember if the outgoing parameter requires extra alignment on the
4021 calling function side. */
4022 if (crtl->stack_alignment_needed < boundary)
4023 crtl->stack_alignment_needed = boundary;
4024 if (crtl->preferred_stack_boundary < boundary)
4025 crtl->preferred_stack_boundary = boundary;
4026
4027 if (ARGS_GROW_DOWNWARD)
4028 {
4029 locate->slot_offset.constant = -initial_offset_ptr->constant;
4030 if (initial_offset_ptr->var)
4031 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4032 initial_offset_ptr->var);
4033
4034 {
4035 tree s2 = sizetree;
4036 if (where_pad != PAD_NONE
4037 && (!tree_fits_uhwi_p (sizetree)
4038 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4039 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4040 SUB_PARM_SIZE (locate->slot_offset, s2);
4041 }
4042
4043 locate->slot_offset.constant += part_size_in_regs;
4044
4045 if (!in_regs || reg_parm_stack_space > 0)
4046 pad_to_arg_alignment (&locate->slot_offset, boundary,
4047 &locate->alignment_pad);
4048
4049 locate->size.constant = (-initial_offset_ptr->constant
4050 - locate->slot_offset.constant);
4051 if (initial_offset_ptr->var)
4052 locate->size.var = size_binop (MINUS_EXPR,
4053 size_binop (MINUS_EXPR,
4054 ssize_int (0),
4055 initial_offset_ptr->var),
4056 locate->slot_offset.var);
4057
4058 /* Pad_below needs the pre-rounded size to know how much to pad
4059 below. */
4060 locate->offset = locate->slot_offset;
4061 if (where_pad == PAD_DOWNWARD)
4062 pad_below (&locate->offset, passed_mode, sizetree);
4063
4064 }
4065 else
4066 {
4067 if (!in_regs || reg_parm_stack_space > 0)
4068 pad_to_arg_alignment (initial_offset_ptr, boundary,
4069 &locate->alignment_pad);
4070 locate->slot_offset = *initial_offset_ptr;
4071
4072 #ifdef PUSH_ROUNDING
4073 if (passed_mode != BLKmode)
4074 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4075 #endif
4076
4077 /* Pad_below needs the pre-rounded size to know how much to pad below
4078 so this must be done before rounding up. */
4079 locate->offset = locate->slot_offset;
4080 if (where_pad == PAD_DOWNWARD)
4081 pad_below (&locate->offset, passed_mode, sizetree);
4082
4083 if (where_pad != PAD_NONE
4084 && (!tree_fits_uhwi_p (sizetree)
4085 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4086 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4087
4088 ADD_PARM_SIZE (locate->size, sizetree);
4089
4090 locate->size.constant -= part_size_in_regs;
4091 }
4092
4093 locate->offset.constant
4094 += targetm.calls.function_arg_offset (passed_mode, type);
4095 }
4096
4097 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4098 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4099
4100 static void
4101 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4102 struct args_size *alignment_pad)
4103 {
4104 tree save_var = NULL_TREE;
4105 poly_int64 save_constant = 0;
4106 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4107 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4108
4109 #ifdef SPARC_STACK_BOUNDARY_HACK
4110 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4111 the real alignment of %sp. However, when it does this, the
4112 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4113 if (SPARC_STACK_BOUNDARY_HACK)
4114 sp_offset = 0;
4115 #endif
4116
4117 if (boundary > PARM_BOUNDARY)
4118 {
4119 save_var = offset_ptr->var;
4120 save_constant = offset_ptr->constant;
4121 }
4122
4123 alignment_pad->var = NULL_TREE;
4124 alignment_pad->constant = 0;
4125
4126 if (boundary > BITS_PER_UNIT)
4127 {
4128 int misalign;
4129 if (offset_ptr->var
4130 || !known_misalignment (offset_ptr->constant + sp_offset,
4131 boundary_in_bytes, &misalign))
4132 {
4133 tree sp_offset_tree = ssize_int (sp_offset);
4134 tree offset = size_binop (PLUS_EXPR,
4135 ARGS_SIZE_TREE (*offset_ptr),
4136 sp_offset_tree);
4137 tree rounded;
4138 if (ARGS_GROW_DOWNWARD)
4139 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4140 else
4141 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4142
4143 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4144 /* ARGS_SIZE_TREE includes constant term. */
4145 offset_ptr->constant = 0;
4146 if (boundary > PARM_BOUNDARY)
4147 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4148 save_var);
4149 }
4150 else
4151 {
4152 if (ARGS_GROW_DOWNWARD)
4153 offset_ptr->constant -= misalign;
4154 else
4155 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4156
4157 if (boundary > PARM_BOUNDARY)
4158 alignment_pad->constant = offset_ptr->constant - save_constant;
4159 }
4160 }
4161 }
4162
4163 static void
4164 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4165 {
4166 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4167 int misalign;
4168 if (passed_mode != BLKmode
4169 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4170 offset_ptr->constant += -misalign & (align - 1);
4171 else
4172 {
4173 if (TREE_CODE (sizetree) != INTEGER_CST
4174 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4175 {
4176 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4177 tree s2 = round_up (sizetree, align);
4178 /* Add it in. */
4179 ADD_PARM_SIZE (*offset_ptr, s2);
4180 SUB_PARM_SIZE (*offset_ptr, sizetree);
4181 }
4182 }
4183 }
4184 \f
4185
4186 /* True if register REGNO was alive at a place where `setjmp' was
4187 called and was set more than once or is an argument. Such regs may
4188 be clobbered by `longjmp'. */
4189
4190 static bool
4191 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4192 {
4193 /* There appear to be cases where some local vars never reach the
4194 backend but have bogus regnos. */
4195 if (regno >= max_reg_num ())
4196 return false;
4197
4198 return ((REG_N_SETS (regno) > 1
4199 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4200 regno))
4201 && REGNO_REG_SET_P (setjmp_crosses, regno));
4202 }
4203
4204 /* Walk the tree of blocks describing the binding levels within a
4205 function and warn about variables the might be killed by setjmp or
4206 vfork. This is done after calling flow_analysis before register
4207 allocation since that will clobber the pseudo-regs to hard
4208 regs. */
4209
4210 static void
4211 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4212 {
4213 tree decl, sub;
4214
4215 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4216 {
4217 if (VAR_P (decl)
4218 && DECL_RTL_SET_P (decl)
4219 && REG_P (DECL_RTL (decl))
4220 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4221 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4222 " %<longjmp%> or %<vfork%>", decl);
4223 }
4224
4225 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4226 setjmp_vars_warning (setjmp_crosses, sub);
4227 }
4228
4229 /* Do the appropriate part of setjmp_vars_warning
4230 but for arguments instead of local variables. */
4231
4232 static void
4233 setjmp_args_warning (bitmap setjmp_crosses)
4234 {
4235 tree decl;
4236 for (decl = DECL_ARGUMENTS (current_function_decl);
4237 decl; decl = DECL_CHAIN (decl))
4238 if (DECL_RTL (decl) != 0
4239 && REG_P (DECL_RTL (decl))
4240 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4241 warning (OPT_Wclobbered,
4242 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4243 decl);
4244 }
4245
4246 /* Generate warning messages for variables live across setjmp. */
4247
4248 void
4249 generate_setjmp_warnings (void)
4250 {
4251 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4252
4253 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4254 || bitmap_empty_p (setjmp_crosses))
4255 return;
4256
4257 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4258 setjmp_args_warning (setjmp_crosses);
4259 }
4260
4261 \f
4262 /* Reverse the order of elements in the fragment chain T of blocks,
4263 and return the new head of the chain (old last element).
4264 In addition to that clear BLOCK_SAME_RANGE flags when needed
4265 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4266 its super fragment origin. */
4267
4268 static tree
4269 block_fragments_nreverse (tree t)
4270 {
4271 tree prev = 0, block, next, prev_super = 0;
4272 tree super = BLOCK_SUPERCONTEXT (t);
4273 if (BLOCK_FRAGMENT_ORIGIN (super))
4274 super = BLOCK_FRAGMENT_ORIGIN (super);
4275 for (block = t; block; block = next)
4276 {
4277 next = BLOCK_FRAGMENT_CHAIN (block);
4278 BLOCK_FRAGMENT_CHAIN (block) = prev;
4279 if ((prev && !BLOCK_SAME_RANGE (prev))
4280 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4281 != prev_super))
4282 BLOCK_SAME_RANGE (block) = 0;
4283 prev_super = BLOCK_SUPERCONTEXT (block);
4284 BLOCK_SUPERCONTEXT (block) = super;
4285 prev = block;
4286 }
4287 t = BLOCK_FRAGMENT_ORIGIN (t);
4288 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4289 != prev_super)
4290 BLOCK_SAME_RANGE (t) = 0;
4291 BLOCK_SUPERCONTEXT (t) = super;
4292 return prev;
4293 }
4294
4295 /* Reverse the order of elements in the chain T of blocks,
4296 and return the new head of the chain (old last element).
4297 Also do the same on subblocks and reverse the order of elements
4298 in BLOCK_FRAGMENT_CHAIN as well. */
4299
4300 static tree
4301 blocks_nreverse_all (tree t)
4302 {
4303 tree prev = 0, block, next;
4304 for (block = t; block; block = next)
4305 {
4306 next = BLOCK_CHAIN (block);
4307 BLOCK_CHAIN (block) = prev;
4308 if (BLOCK_FRAGMENT_CHAIN (block)
4309 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4310 {
4311 BLOCK_FRAGMENT_CHAIN (block)
4312 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4313 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4314 BLOCK_SAME_RANGE (block) = 0;
4315 }
4316 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4317 prev = block;
4318 }
4319 return prev;
4320 }
4321
4322
4323 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4324 and create duplicate blocks. */
4325 /* ??? Need an option to either create block fragments or to create
4326 abstract origin duplicates of a source block. It really depends
4327 on what optimization has been performed. */
4328
4329 void
4330 reorder_blocks (void)
4331 {
4332 tree block = DECL_INITIAL (current_function_decl);
4333
4334 if (block == NULL_TREE)
4335 return;
4336
4337 auto_vec<tree, 10> block_stack;
4338
4339 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4340 clear_block_marks (block);
4341
4342 /* Prune the old trees away, so that they don't get in the way. */
4343 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4344 BLOCK_CHAIN (block) = NULL_TREE;
4345
4346 /* Recreate the block tree from the note nesting. */
4347 reorder_blocks_1 (get_insns (), block, &block_stack);
4348 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4349 }
4350
4351 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4352
4353 void
4354 clear_block_marks (tree block)
4355 {
4356 while (block)
4357 {
4358 TREE_ASM_WRITTEN (block) = 0;
4359 clear_block_marks (BLOCK_SUBBLOCKS (block));
4360 block = BLOCK_CHAIN (block);
4361 }
4362 }
4363
4364 static void
4365 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4366 vec<tree> *p_block_stack)
4367 {
4368 rtx_insn *insn;
4369 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4370
4371 for (insn = insns; insn; insn = NEXT_INSN (insn))
4372 {
4373 if (NOTE_P (insn))
4374 {
4375 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4376 {
4377 tree block = NOTE_BLOCK (insn);
4378 tree origin;
4379
4380 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4381 origin = block;
4382
4383 if (prev_end)
4384 BLOCK_SAME_RANGE (prev_end) = 0;
4385 prev_end = NULL_TREE;
4386
4387 /* If we have seen this block before, that means it now
4388 spans multiple address regions. Create a new fragment. */
4389 if (TREE_ASM_WRITTEN (block))
4390 {
4391 tree new_block = copy_node (block);
4392
4393 BLOCK_SAME_RANGE (new_block) = 0;
4394 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4395 BLOCK_FRAGMENT_CHAIN (new_block)
4396 = BLOCK_FRAGMENT_CHAIN (origin);
4397 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4398
4399 NOTE_BLOCK (insn) = new_block;
4400 block = new_block;
4401 }
4402
4403 if (prev_beg == current_block && prev_beg)
4404 BLOCK_SAME_RANGE (block) = 1;
4405
4406 prev_beg = origin;
4407
4408 BLOCK_SUBBLOCKS (block) = 0;
4409 TREE_ASM_WRITTEN (block) = 1;
4410 /* When there's only one block for the entire function,
4411 current_block == block and we mustn't do this, it
4412 will cause infinite recursion. */
4413 if (block != current_block)
4414 {
4415 tree super;
4416 if (block != origin)
4417 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4418 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4419 (origin))
4420 == current_block);
4421 if (p_block_stack->is_empty ())
4422 super = current_block;
4423 else
4424 {
4425 super = p_block_stack->last ();
4426 gcc_assert (super == current_block
4427 || BLOCK_FRAGMENT_ORIGIN (super)
4428 == current_block);
4429 }
4430 BLOCK_SUPERCONTEXT (block) = super;
4431 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4432 BLOCK_SUBBLOCKS (current_block) = block;
4433 current_block = origin;
4434 }
4435 p_block_stack->safe_push (block);
4436 }
4437 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4438 {
4439 NOTE_BLOCK (insn) = p_block_stack->pop ();
4440 current_block = BLOCK_SUPERCONTEXT (current_block);
4441 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4442 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4443 prev_beg = NULL_TREE;
4444 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4445 ? NOTE_BLOCK (insn) : NULL_TREE;
4446 }
4447 }
4448 else
4449 {
4450 prev_beg = NULL_TREE;
4451 if (prev_end)
4452 BLOCK_SAME_RANGE (prev_end) = 0;
4453 prev_end = NULL_TREE;
4454 }
4455 }
4456 }
4457
4458 /* Reverse the order of elements in the chain T of blocks,
4459 and return the new head of the chain (old last element). */
4460
4461 tree
4462 blocks_nreverse (tree t)
4463 {
4464 tree prev = 0, block, next;
4465 for (block = t; block; block = next)
4466 {
4467 next = BLOCK_CHAIN (block);
4468 BLOCK_CHAIN (block) = prev;
4469 prev = block;
4470 }
4471 return prev;
4472 }
4473
4474 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4475 by modifying the last node in chain 1 to point to chain 2. */
4476
4477 tree
4478 block_chainon (tree op1, tree op2)
4479 {
4480 tree t1;
4481
4482 if (!op1)
4483 return op2;
4484 if (!op2)
4485 return op1;
4486
4487 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4488 continue;
4489 BLOCK_CHAIN (t1) = op2;
4490
4491 #ifdef ENABLE_TREE_CHECKING
4492 {
4493 tree t2;
4494 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4495 gcc_assert (t2 != t1);
4496 }
4497 #endif
4498
4499 return op1;
4500 }
4501
4502 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4503 non-NULL, list them all into VECTOR, in a depth-first preorder
4504 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4505 blocks. */
4506
4507 static int
4508 all_blocks (tree block, tree *vector)
4509 {
4510 int n_blocks = 0;
4511
4512 while (block)
4513 {
4514 TREE_ASM_WRITTEN (block) = 0;
4515
4516 /* Record this block. */
4517 if (vector)
4518 vector[n_blocks] = block;
4519
4520 ++n_blocks;
4521
4522 /* Record the subblocks, and their subblocks... */
4523 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4524 vector ? vector + n_blocks : 0);
4525 block = BLOCK_CHAIN (block);
4526 }
4527
4528 return n_blocks;
4529 }
4530
4531 /* Return a vector containing all the blocks rooted at BLOCK. The
4532 number of elements in the vector is stored in N_BLOCKS_P. The
4533 vector is dynamically allocated; it is the caller's responsibility
4534 to call `free' on the pointer returned. */
4535
4536 static tree *
4537 get_block_vector (tree block, int *n_blocks_p)
4538 {
4539 tree *block_vector;
4540
4541 *n_blocks_p = all_blocks (block, NULL);
4542 block_vector = XNEWVEC (tree, *n_blocks_p);
4543 all_blocks (block, block_vector);
4544
4545 return block_vector;
4546 }
4547
4548 static GTY(()) int next_block_index = 2;
4549
4550 /* Set BLOCK_NUMBER for all the blocks in FN. */
4551
4552 void
4553 number_blocks (tree fn)
4554 {
4555 int i;
4556 int n_blocks;
4557 tree *block_vector;
4558
4559 /* For XCOFF debugging output, we start numbering the blocks
4560 from 1 within each function, rather than keeping a running
4561 count. */
4562 #if defined (XCOFF_DEBUGGING_INFO)
4563 if (write_symbols == XCOFF_DEBUG)
4564 next_block_index = 1;
4565 #endif
4566
4567 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4568
4569 /* The top-level BLOCK isn't numbered at all. */
4570 for (i = 1; i < n_blocks; ++i)
4571 /* We number the blocks from two. */
4572 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4573
4574 free (block_vector);
4575
4576 return;
4577 }
4578
4579 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4580
4581 DEBUG_FUNCTION tree
4582 debug_find_var_in_block_tree (tree var, tree block)
4583 {
4584 tree t;
4585
4586 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4587 if (t == var)
4588 return block;
4589
4590 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4591 {
4592 tree ret = debug_find_var_in_block_tree (var, t);
4593 if (ret)
4594 return ret;
4595 }
4596
4597 return NULL_TREE;
4598 }
4599 \f
4600 /* Keep track of whether we're in a dummy function context. If we are,
4601 we don't want to invoke the set_current_function hook, because we'll
4602 get into trouble if the hook calls target_reinit () recursively or
4603 when the initial initialization is not yet complete. */
4604
4605 static bool in_dummy_function;
4606
4607 /* Invoke the target hook when setting cfun. Update the optimization options
4608 if the function uses different options than the default. */
4609
4610 static void
4611 invoke_set_current_function_hook (tree fndecl)
4612 {
4613 if (!in_dummy_function)
4614 {
4615 tree opts = ((fndecl)
4616 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4617 : optimization_default_node);
4618
4619 if (!opts)
4620 opts = optimization_default_node;
4621
4622 /* Change optimization options if needed. */
4623 if (optimization_current_node != opts)
4624 {
4625 optimization_current_node = opts;
4626 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4627 }
4628
4629 targetm.set_current_function (fndecl);
4630 this_fn_optabs = this_target_optabs;
4631
4632 /* Initialize global alignment variables after op. */
4633 parse_alignment_opts ();
4634
4635 if (opts != optimization_default_node)
4636 {
4637 init_tree_optimization_optabs (opts);
4638 if (TREE_OPTIMIZATION_OPTABS (opts))
4639 this_fn_optabs = (struct target_optabs *)
4640 TREE_OPTIMIZATION_OPTABS (opts);
4641 }
4642 }
4643 }
4644
4645 /* cfun should never be set directly; use this function. */
4646
4647 void
4648 set_cfun (struct function *new_cfun, bool force)
4649 {
4650 if (cfun != new_cfun || force)
4651 {
4652 cfun = new_cfun;
4653 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4654 redirect_edge_var_map_empty ();
4655 }
4656 }
4657
4658 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4659
4660 static vec<function *> cfun_stack;
4661
4662 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4663 current_function_decl accordingly. */
4664
4665 void
4666 push_cfun (struct function *new_cfun)
4667 {
4668 gcc_assert ((!cfun && !current_function_decl)
4669 || (cfun && current_function_decl == cfun->decl));
4670 cfun_stack.safe_push (cfun);
4671 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4672 set_cfun (new_cfun);
4673 }
4674
4675 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4676
4677 void
4678 pop_cfun (void)
4679 {
4680 struct function *new_cfun = cfun_stack.pop ();
4681 /* When in_dummy_function, we do have a cfun but current_function_decl is
4682 NULL. We also allow pushing NULL cfun and subsequently changing
4683 current_function_decl to something else and have both restored by
4684 pop_cfun. */
4685 gcc_checking_assert (in_dummy_function
4686 || !cfun
4687 || current_function_decl == cfun->decl);
4688 set_cfun (new_cfun);
4689 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4690 }
4691
4692 /* Return value of funcdef and increase it. */
4693 int
4694 get_next_funcdef_no (void)
4695 {
4696 return funcdef_no++;
4697 }
4698
4699 /* Return value of funcdef. */
4700 int
4701 get_last_funcdef_no (void)
4702 {
4703 return funcdef_no;
4704 }
4705
4706 /* Allocate a function structure for FNDECL and set its contents
4707 to the defaults. Set cfun to the newly-allocated object.
4708 Some of the helper functions invoked during initialization assume
4709 that cfun has already been set. Therefore, assign the new object
4710 directly into cfun and invoke the back end hook explicitly at the
4711 very end, rather than initializing a temporary and calling set_cfun
4712 on it.
4713
4714 ABSTRACT_P is true if this is a function that will never be seen by
4715 the middle-end. Such functions are front-end concepts (like C++
4716 function templates) that do not correspond directly to functions
4717 placed in object files. */
4718
4719 void
4720 allocate_struct_function (tree fndecl, bool abstract_p)
4721 {
4722 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4723
4724 cfun = ggc_cleared_alloc<function> ();
4725
4726 init_eh_for_function ();
4727
4728 if (init_machine_status)
4729 cfun->machine = (*init_machine_status) ();
4730
4731 #ifdef OVERRIDE_ABI_FORMAT
4732 OVERRIDE_ABI_FORMAT (fndecl);
4733 #endif
4734
4735 if (fndecl != NULL_TREE)
4736 {
4737 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4738 cfun->decl = fndecl;
4739 current_function_funcdef_no = get_next_funcdef_no ();
4740 }
4741
4742 invoke_set_current_function_hook (fndecl);
4743
4744 if (fndecl != NULL_TREE)
4745 {
4746 tree result = DECL_RESULT (fndecl);
4747
4748 if (!abstract_p)
4749 {
4750 /* Now that we have activated any function-specific attributes
4751 that might affect layout, particularly vector modes, relayout
4752 each of the parameters and the result. */
4753 relayout_decl (result);
4754 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4755 parm = DECL_CHAIN (parm))
4756 relayout_decl (parm);
4757
4758 /* Similarly relayout the function decl. */
4759 targetm.target_option.relayout_function (fndecl);
4760 }
4761
4762 if (!abstract_p && aggregate_value_p (result, fndecl))
4763 {
4764 #ifdef PCC_STATIC_STRUCT_RETURN
4765 cfun->returns_pcc_struct = 1;
4766 #endif
4767 cfun->returns_struct = 1;
4768 }
4769
4770 cfun->stdarg = stdarg_p (fntype);
4771
4772 /* Assume all registers in stdarg functions need to be saved. */
4773 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4774 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4775
4776 /* ??? This could be set on a per-function basis by the front-end
4777 but is this worth the hassle? */
4778 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4779 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4780
4781 if (!profile_flag && !flag_instrument_function_entry_exit)
4782 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4783 }
4784
4785 /* Don't enable begin stmt markers if var-tracking at assignments is
4786 disabled. The markers make little sense without the variable
4787 binding annotations among them. */
4788 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4789 && MAY_HAVE_DEBUG_MARKER_STMTS;
4790 }
4791
4792 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4793 instead of just setting it. */
4794
4795 void
4796 push_struct_function (tree fndecl)
4797 {
4798 /* When in_dummy_function we might be in the middle of a pop_cfun and
4799 current_function_decl and cfun may not match. */
4800 gcc_assert (in_dummy_function
4801 || (!cfun && !current_function_decl)
4802 || (cfun && current_function_decl == cfun->decl));
4803 cfun_stack.safe_push (cfun);
4804 current_function_decl = fndecl;
4805 allocate_struct_function (fndecl, false);
4806 }
4807
4808 /* Reset crtl and other non-struct-function variables to defaults as
4809 appropriate for emitting rtl at the start of a function. */
4810
4811 static void
4812 prepare_function_start (void)
4813 {
4814 gcc_assert (!get_last_insn ());
4815 init_temp_slots ();
4816 init_emit ();
4817 init_varasm_status ();
4818 init_expr ();
4819 default_rtl_profile ();
4820
4821 if (flag_stack_usage_info)
4822 {
4823 cfun->su = ggc_cleared_alloc<stack_usage> ();
4824 cfun->su->static_stack_size = -1;
4825 }
4826
4827 cse_not_expected = ! optimize;
4828
4829 /* Caller save not needed yet. */
4830 caller_save_needed = 0;
4831
4832 /* We haven't done register allocation yet. */
4833 reg_renumber = 0;
4834
4835 /* Indicate that we have not instantiated virtual registers yet. */
4836 virtuals_instantiated = 0;
4837
4838 /* Indicate that we want CONCATs now. */
4839 generating_concat_p = 1;
4840
4841 /* Indicate we have no need of a frame pointer yet. */
4842 frame_pointer_needed = 0;
4843 }
4844
4845 void
4846 push_dummy_function (bool with_decl)
4847 {
4848 tree fn_decl, fn_type, fn_result_decl;
4849
4850 gcc_assert (!in_dummy_function);
4851 in_dummy_function = true;
4852
4853 if (with_decl)
4854 {
4855 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4856 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4857 fn_type);
4858 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4859 NULL_TREE, void_type_node);
4860 DECL_RESULT (fn_decl) = fn_result_decl;
4861 }
4862 else
4863 fn_decl = NULL_TREE;
4864
4865 push_struct_function (fn_decl);
4866 }
4867
4868 /* Initialize the rtl expansion mechanism so that we can do simple things
4869 like generate sequences. This is used to provide a context during global
4870 initialization of some passes. You must call expand_dummy_function_end
4871 to exit this context. */
4872
4873 void
4874 init_dummy_function_start (void)
4875 {
4876 push_dummy_function (false);
4877 prepare_function_start ();
4878 }
4879
4880 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4881 and initialize static variables for generating RTL for the statements
4882 of the function. */
4883
4884 void
4885 init_function_start (tree subr)
4886 {
4887 /* Initialize backend, if needed. */
4888 initialize_rtl ();
4889
4890 prepare_function_start ();
4891 decide_function_section (subr);
4892
4893 /* Warn if this value is an aggregate type,
4894 regardless of which calling convention we are using for it. */
4895 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4896 warning (OPT_Waggregate_return, "function returns an aggregate");
4897 }
4898
4899 /* Expand code to verify the stack_protect_guard. This is invoked at
4900 the end of a function to be protected. */
4901
4902 void
4903 stack_protect_epilogue (void)
4904 {
4905 tree guard_decl = crtl->stack_protect_guard_decl;
4906 rtx_code_label *label = gen_label_rtx ();
4907 rtx x, y;
4908 rtx_insn *seq = NULL;
4909
4910 x = expand_normal (crtl->stack_protect_guard);
4911
4912 if (targetm.have_stack_protect_combined_test () && guard_decl)
4913 {
4914 gcc_assert (DECL_P (guard_decl));
4915 y = DECL_RTL (guard_decl);
4916 /* Allow the target to compute address of Y and compare it with X without
4917 leaking Y into a register. This combined address + compare pattern
4918 allows the target to prevent spilling of any intermediate results by
4919 splitting it after register allocator. */
4920 seq = targetm.gen_stack_protect_combined_test (x, y, label);
4921 }
4922 else
4923 {
4924 if (guard_decl)
4925 y = expand_normal (guard_decl);
4926 else
4927 y = const0_rtx;
4928
4929 /* Allow the target to compare Y with X without leaking either into
4930 a register. */
4931 if (targetm.have_stack_protect_test ())
4932 seq = targetm.gen_stack_protect_test (x, y, label);
4933 }
4934
4935 if (seq)
4936 emit_insn (seq);
4937 else
4938 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4939
4940 /* The noreturn predictor has been moved to the tree level. The rtl-level
4941 predictors estimate this branch about 20%, which isn't enough to get
4942 things moved out of line. Since this is the only extant case of adding
4943 a noreturn function at the rtl level, it doesn't seem worth doing ought
4944 except adding the prediction by hand. */
4945 rtx_insn *tmp = get_last_insn ();
4946 if (JUMP_P (tmp))
4947 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4948
4949 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4950 free_temp_slots ();
4951 emit_label (label);
4952 }
4953 \f
4954 /* Start the RTL for a new function, and set variables used for
4955 emitting RTL.
4956 SUBR is the FUNCTION_DECL node.
4957 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4958 the function's parameters, which must be run at any return statement. */
4959
4960 void
4961 expand_function_start (tree subr)
4962 {
4963 /* Make sure volatile mem refs aren't considered
4964 valid operands of arithmetic insns. */
4965 init_recog_no_volatile ();
4966
4967 crtl->profile
4968 = (profile_flag
4969 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4970
4971 crtl->limit_stack
4972 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4973
4974 /* Make the label for return statements to jump to. Do not special
4975 case machines with special return instructions -- they will be
4976 handled later during jump, ifcvt, or epilogue creation. */
4977 return_label = gen_label_rtx ();
4978
4979 /* Initialize rtx used to return the value. */
4980 /* Do this before assign_parms so that we copy the struct value address
4981 before any library calls that assign parms might generate. */
4982
4983 /* Decide whether to return the value in memory or in a register. */
4984 tree res = DECL_RESULT (subr);
4985 if (aggregate_value_p (res, subr))
4986 {
4987 /* Returning something that won't go in a register. */
4988 rtx value_address = 0;
4989
4990 #ifdef PCC_STATIC_STRUCT_RETURN
4991 if (cfun->returns_pcc_struct)
4992 {
4993 int size = int_size_in_bytes (TREE_TYPE (res));
4994 value_address = assemble_static_space (size);
4995 }
4996 else
4997 #endif
4998 {
4999 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5000 /* Expect to be passed the address of a place to store the value.
5001 If it is passed as an argument, assign_parms will take care of
5002 it. */
5003 if (sv)
5004 {
5005 value_address = gen_reg_rtx (Pmode);
5006 emit_move_insn (value_address, sv);
5007 }
5008 }
5009 if (value_address)
5010 {
5011 rtx x = value_address;
5012 if (!DECL_BY_REFERENCE (res))
5013 {
5014 x = gen_rtx_MEM (DECL_MODE (res), x);
5015 set_mem_attributes (x, res, 1);
5016 }
5017 set_parm_rtl (res, x);
5018 }
5019 }
5020 else if (DECL_MODE (res) == VOIDmode)
5021 /* If return mode is void, this decl rtl should not be used. */
5022 set_parm_rtl (res, NULL_RTX);
5023 else
5024 {
5025 /* Compute the return values into a pseudo reg, which we will copy
5026 into the true return register after the cleanups are done. */
5027 tree return_type = TREE_TYPE (res);
5028
5029 /* If we may coalesce this result, make sure it has the expected mode
5030 in case it was promoted. But we need not bother about BLKmode. */
5031 machine_mode promoted_mode
5032 = flag_tree_coalesce_vars && is_gimple_reg (res)
5033 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5034 : BLKmode;
5035
5036 if (promoted_mode != BLKmode)
5037 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5038 else if (TYPE_MODE (return_type) != BLKmode
5039 && targetm.calls.return_in_msb (return_type))
5040 /* expand_function_end will insert the appropriate padding in
5041 this case. Use the return value's natural (unpadded) mode
5042 within the function proper. */
5043 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5044 else
5045 {
5046 /* In order to figure out what mode to use for the pseudo, we
5047 figure out what the mode of the eventual return register will
5048 actually be, and use that. */
5049 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5050
5051 /* Structures that are returned in registers are not
5052 aggregate_value_p, so we may see a PARALLEL or a REG. */
5053 if (REG_P (hard_reg))
5054 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5055 else
5056 {
5057 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5058 set_parm_rtl (res, gen_group_rtx (hard_reg));
5059 }
5060 }
5061
5062 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5063 result to the real return register(s). */
5064 DECL_REGISTER (res) = 1;
5065 }
5066
5067 /* Initialize rtx for parameters and local variables.
5068 In some cases this requires emitting insns. */
5069 assign_parms (subr);
5070
5071 /* If function gets a static chain arg, store it. */
5072 if (cfun->static_chain_decl)
5073 {
5074 tree parm = cfun->static_chain_decl;
5075 rtx local, chain;
5076 rtx_insn *insn;
5077 int unsignedp;
5078
5079 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5080 chain = targetm.calls.static_chain (current_function_decl, true);
5081
5082 set_decl_incoming_rtl (parm, chain, false);
5083 set_parm_rtl (parm, local);
5084 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5085
5086 if (GET_MODE (local) != GET_MODE (chain))
5087 {
5088 convert_move (local, chain, unsignedp);
5089 insn = get_last_insn ();
5090 }
5091 else
5092 insn = emit_move_insn (local, chain);
5093
5094 /* Mark the register as eliminable, similar to parameters. */
5095 if (MEM_P (chain)
5096 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5097 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5098
5099 /* If we aren't optimizing, save the static chain onto the stack. */
5100 if (!optimize)
5101 {
5102 tree saved_static_chain_decl
5103 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5104 DECL_NAME (parm), TREE_TYPE (parm));
5105 rtx saved_static_chain_rtx
5106 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5107 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5108 emit_move_insn (saved_static_chain_rtx, chain);
5109 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5110 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5111 }
5112 }
5113
5114 /* The following was moved from init_function_start.
5115 The move was supposed to make sdb output more accurate. */
5116 /* Indicate the beginning of the function body,
5117 as opposed to parm setup. */
5118 emit_note (NOTE_INSN_FUNCTION_BEG);
5119
5120 gcc_assert (NOTE_P (get_last_insn ()));
5121
5122 parm_birth_insn = get_last_insn ();
5123
5124 /* If the function receives a non-local goto, then store the
5125 bits we need to restore the frame pointer. */
5126 if (cfun->nonlocal_goto_save_area)
5127 {
5128 tree t_save;
5129 rtx r_save;
5130
5131 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5132 gcc_assert (DECL_RTL_SET_P (var));
5133
5134 t_save = build4 (ARRAY_REF,
5135 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5136 cfun->nonlocal_goto_save_area,
5137 integer_zero_node, NULL_TREE, NULL_TREE);
5138 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5139 gcc_assert (GET_MODE (r_save) == Pmode);
5140
5141 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5142 update_nonlocal_goto_save_area ();
5143 }
5144
5145 if (crtl->profile)
5146 {
5147 #ifdef PROFILE_HOOK
5148 PROFILE_HOOK (current_function_funcdef_no);
5149 #endif
5150 }
5151
5152 /* If we are doing generic stack checking, the probe should go here. */
5153 if (flag_stack_check == GENERIC_STACK_CHECK)
5154 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5155 }
5156 \f
5157 void
5158 pop_dummy_function (void)
5159 {
5160 pop_cfun ();
5161 in_dummy_function = false;
5162 }
5163
5164 /* Undo the effects of init_dummy_function_start. */
5165 void
5166 expand_dummy_function_end (void)
5167 {
5168 gcc_assert (in_dummy_function);
5169
5170 /* End any sequences that failed to be closed due to syntax errors. */
5171 while (in_sequence_p ())
5172 end_sequence ();
5173
5174 /* Outside function body, can't compute type's actual size
5175 until next function's body starts. */
5176
5177 free_after_parsing (cfun);
5178 free_after_compilation (cfun);
5179 pop_dummy_function ();
5180 }
5181
5182 /* Helper for diddle_return_value. */
5183
5184 void
5185 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5186 {
5187 if (! outgoing)
5188 return;
5189
5190 if (REG_P (outgoing))
5191 (*doit) (outgoing, arg);
5192 else if (GET_CODE (outgoing) == PARALLEL)
5193 {
5194 int i;
5195
5196 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5197 {
5198 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5199
5200 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5201 (*doit) (x, arg);
5202 }
5203 }
5204 }
5205
5206 /* Call DOIT for each hard register used as a return value from
5207 the current function. */
5208
5209 void
5210 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5211 {
5212 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5213 }
5214
5215 static void
5216 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5217 {
5218 emit_clobber (reg);
5219 }
5220
5221 void
5222 clobber_return_register (void)
5223 {
5224 diddle_return_value (do_clobber_return_reg, NULL);
5225
5226 /* In case we do use pseudo to return value, clobber it too. */
5227 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5228 {
5229 tree decl_result = DECL_RESULT (current_function_decl);
5230 rtx decl_rtl = DECL_RTL (decl_result);
5231 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5232 {
5233 do_clobber_return_reg (decl_rtl, NULL);
5234 }
5235 }
5236 }
5237
5238 static void
5239 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5240 {
5241 emit_use (reg);
5242 }
5243
5244 static void
5245 use_return_register (void)
5246 {
5247 diddle_return_value (do_use_return_reg, NULL);
5248 }
5249
5250 /* Set the location of the insn chain starting at INSN to LOC. */
5251
5252 static void
5253 set_insn_locations (rtx_insn *insn, int loc)
5254 {
5255 while (insn != NULL)
5256 {
5257 if (INSN_P (insn))
5258 INSN_LOCATION (insn) = loc;
5259 insn = NEXT_INSN (insn);
5260 }
5261 }
5262
5263 /* Generate RTL for the end of the current function. */
5264
5265 void
5266 expand_function_end (void)
5267 {
5268 /* If arg_pointer_save_area was referenced only from a nested
5269 function, we will not have initialized it yet. Do that now. */
5270 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5271 get_arg_pointer_save_area ();
5272
5273 /* If we are doing generic stack checking and this function makes calls,
5274 do a stack probe at the start of the function to ensure we have enough
5275 space for another stack frame. */
5276 if (flag_stack_check == GENERIC_STACK_CHECK)
5277 {
5278 rtx_insn *insn, *seq;
5279
5280 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5281 if (CALL_P (insn))
5282 {
5283 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5284 start_sequence ();
5285 if (STACK_CHECK_MOVING_SP)
5286 anti_adjust_stack_and_probe (max_frame_size, true);
5287 else
5288 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5289 seq = get_insns ();
5290 end_sequence ();
5291 set_insn_locations (seq, prologue_location);
5292 emit_insn_before (seq, stack_check_probe_note);
5293 break;
5294 }
5295 }
5296
5297 /* End any sequences that failed to be closed due to syntax errors. */
5298 while (in_sequence_p ())
5299 end_sequence ();
5300
5301 clear_pending_stack_adjust ();
5302 do_pending_stack_adjust ();
5303
5304 /* Output a linenumber for the end of the function.
5305 SDB depended on this. */
5306 set_curr_insn_location (input_location);
5307
5308 /* Before the return label (if any), clobber the return
5309 registers so that they are not propagated live to the rest of
5310 the function. This can only happen with functions that drop
5311 through; if there had been a return statement, there would
5312 have either been a return rtx, or a jump to the return label.
5313
5314 We delay actual code generation after the current_function_value_rtx
5315 is computed. */
5316 rtx_insn *clobber_after = get_last_insn ();
5317
5318 /* Output the label for the actual return from the function. */
5319 emit_label (return_label);
5320
5321 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5322 {
5323 /* Let except.c know where it should emit the call to unregister
5324 the function context for sjlj exceptions. */
5325 if (flag_exceptions)
5326 sjlj_emit_function_exit_after (get_last_insn ());
5327 }
5328
5329 /* If this is an implementation of throw, do what's necessary to
5330 communicate between __builtin_eh_return and the epilogue. */
5331 expand_eh_return ();
5332
5333 /* If stack protection is enabled for this function, check the guard. */
5334 if (crtl->stack_protect_guard
5335 && targetm.stack_protect_runtime_enabled_p ()
5336 && naked_return_label == NULL_RTX)
5337 stack_protect_epilogue ();
5338
5339 /* If scalar return value was computed in a pseudo-reg, or was a named
5340 return value that got dumped to the stack, copy that to the hard
5341 return register. */
5342 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5343 {
5344 tree decl_result = DECL_RESULT (current_function_decl);
5345 rtx decl_rtl = DECL_RTL (decl_result);
5346
5347 if (REG_P (decl_rtl)
5348 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5349 : DECL_REGISTER (decl_result))
5350 {
5351 rtx real_decl_rtl = crtl->return_rtx;
5352 complex_mode cmode;
5353
5354 /* This should be set in assign_parms. */
5355 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5356
5357 /* If this is a BLKmode structure being returned in registers,
5358 then use the mode computed in expand_return. Note that if
5359 decl_rtl is memory, then its mode may have been changed,
5360 but that crtl->return_rtx has not. */
5361 if (GET_MODE (real_decl_rtl) == BLKmode)
5362 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5363
5364 /* If a non-BLKmode return value should be padded at the least
5365 significant end of the register, shift it left by the appropriate
5366 amount. BLKmode results are handled using the group load/store
5367 machinery. */
5368 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5369 && REG_P (real_decl_rtl)
5370 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5371 {
5372 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5373 REGNO (real_decl_rtl)),
5374 decl_rtl);
5375 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5376 }
5377 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5378 {
5379 /* If expand_function_start has created a PARALLEL for decl_rtl,
5380 move the result to the real return registers. Otherwise, do
5381 a group load from decl_rtl for a named return. */
5382 if (GET_CODE (decl_rtl) == PARALLEL)
5383 emit_group_move (real_decl_rtl, decl_rtl);
5384 else
5385 emit_group_load (real_decl_rtl, decl_rtl,
5386 TREE_TYPE (decl_result),
5387 int_size_in_bytes (TREE_TYPE (decl_result)));
5388 }
5389 /* In the case of complex integer modes smaller than a word, we'll
5390 need to generate some non-trivial bitfield insertions. Do that
5391 on a pseudo and not the hard register. */
5392 else if (GET_CODE (decl_rtl) == CONCAT
5393 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5394 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5395 {
5396 int old_generating_concat_p;
5397 rtx tmp;
5398
5399 old_generating_concat_p = generating_concat_p;
5400 generating_concat_p = 0;
5401 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5402 generating_concat_p = old_generating_concat_p;
5403
5404 emit_move_insn (tmp, decl_rtl);
5405 emit_move_insn (real_decl_rtl, tmp);
5406 }
5407 /* If a named return value dumped decl_return to memory, then
5408 we may need to re-do the PROMOTE_MODE signed/unsigned
5409 extension. */
5410 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5411 {
5412 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5413 promote_function_mode (TREE_TYPE (decl_result),
5414 GET_MODE (decl_rtl), &unsignedp,
5415 TREE_TYPE (current_function_decl), 1);
5416
5417 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5418 }
5419 else
5420 emit_move_insn (real_decl_rtl, decl_rtl);
5421 }
5422 }
5423
5424 /* If returning a structure, arrange to return the address of the value
5425 in a place where debuggers expect to find it.
5426
5427 If returning a structure PCC style,
5428 the caller also depends on this value.
5429 And cfun->returns_pcc_struct is not necessarily set. */
5430 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5431 && !targetm.calls.omit_struct_return_reg)
5432 {
5433 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5434 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5435 rtx outgoing;
5436
5437 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5438 type = TREE_TYPE (type);
5439 else
5440 value_address = XEXP (value_address, 0);
5441
5442 outgoing = targetm.calls.function_value (build_pointer_type (type),
5443 current_function_decl, true);
5444
5445 /* Mark this as a function return value so integrate will delete the
5446 assignment and USE below when inlining this function. */
5447 REG_FUNCTION_VALUE_P (outgoing) = 1;
5448
5449 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5450 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5451 value_address = convert_memory_address (mode, value_address);
5452
5453 emit_move_insn (outgoing, value_address);
5454
5455 /* Show return register used to hold result (in this case the address
5456 of the result. */
5457 crtl->return_rtx = outgoing;
5458 }
5459
5460 /* Emit the actual code to clobber return register. Don't emit
5461 it if clobber_after is a barrier, then the previous basic block
5462 certainly doesn't fall thru into the exit block. */
5463 if (!BARRIER_P (clobber_after))
5464 {
5465 start_sequence ();
5466 clobber_return_register ();
5467 rtx_insn *seq = get_insns ();
5468 end_sequence ();
5469
5470 emit_insn_after (seq, clobber_after);
5471 }
5472
5473 /* Output the label for the naked return from the function. */
5474 if (naked_return_label)
5475 emit_label (naked_return_label);
5476
5477 /* @@@ This is a kludge. We want to ensure that instructions that
5478 may trap are not moved into the epilogue by scheduling, because
5479 we don't always emit unwind information for the epilogue. */
5480 if (cfun->can_throw_non_call_exceptions
5481 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5482 emit_insn (gen_blockage ());
5483
5484 /* If stack protection is enabled for this function, check the guard. */
5485 if (crtl->stack_protect_guard
5486 && targetm.stack_protect_runtime_enabled_p ()
5487 && naked_return_label)
5488 stack_protect_epilogue ();
5489
5490 /* If we had calls to alloca, and this machine needs
5491 an accurate stack pointer to exit the function,
5492 insert some code to save and restore the stack pointer. */
5493 if (! EXIT_IGNORE_STACK
5494 && cfun->calls_alloca)
5495 {
5496 rtx tem = 0;
5497
5498 start_sequence ();
5499 emit_stack_save (SAVE_FUNCTION, &tem);
5500 rtx_insn *seq = get_insns ();
5501 end_sequence ();
5502 emit_insn_before (seq, parm_birth_insn);
5503
5504 emit_stack_restore (SAVE_FUNCTION, tem);
5505 }
5506
5507 /* ??? This should no longer be necessary since stupid is no longer with
5508 us, but there are some parts of the compiler (eg reload_combine, and
5509 sh mach_dep_reorg) that still try and compute their own lifetime info
5510 instead of using the general framework. */
5511 use_return_register ();
5512 }
5513
5514 rtx
5515 get_arg_pointer_save_area (void)
5516 {
5517 rtx ret = arg_pointer_save_area;
5518
5519 if (! ret)
5520 {
5521 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5522 arg_pointer_save_area = ret;
5523 }
5524
5525 if (! crtl->arg_pointer_save_area_init)
5526 {
5527 /* Save the arg pointer at the beginning of the function. The
5528 generated stack slot may not be a valid memory address, so we
5529 have to check it and fix it if necessary. */
5530 start_sequence ();
5531 emit_move_insn (validize_mem (copy_rtx (ret)),
5532 crtl->args.internal_arg_pointer);
5533 rtx_insn *seq = get_insns ();
5534 end_sequence ();
5535
5536 push_topmost_sequence ();
5537 emit_insn_after (seq, entry_of_function ());
5538 pop_topmost_sequence ();
5539
5540 crtl->arg_pointer_save_area_init = true;
5541 }
5542
5543 return ret;
5544 }
5545 \f
5546
5547 /* If debugging dumps are requested, dump information about how the
5548 target handled -fstack-check=clash for the prologue.
5549
5550 PROBES describes what if any probes were emitted.
5551
5552 RESIDUALS indicates if the prologue had any residual allocation
5553 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5554
5555 void
5556 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5557 {
5558 if (!dump_file)
5559 return;
5560
5561 switch (probes)
5562 {
5563 case NO_PROBE_NO_FRAME:
5564 fprintf (dump_file,
5565 "Stack clash no probe no stack adjustment in prologue.\n");
5566 break;
5567 case NO_PROBE_SMALL_FRAME:
5568 fprintf (dump_file,
5569 "Stack clash no probe small stack adjustment in prologue.\n");
5570 break;
5571 case PROBE_INLINE:
5572 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5573 break;
5574 case PROBE_LOOP:
5575 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5576 break;
5577 }
5578
5579 if (residuals)
5580 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5581 else
5582 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5583
5584 if (frame_pointer_needed)
5585 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5586 else
5587 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5588
5589 if (TREE_THIS_VOLATILE (cfun->decl))
5590 fprintf (dump_file,
5591 "Stack clash noreturn prologue, assuming no implicit"
5592 " probes in caller.\n");
5593 else
5594 fprintf (dump_file,
5595 "Stack clash not noreturn prologue.\n");
5596 }
5597
5598 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5599 for the first time. */
5600
5601 static void
5602 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5603 {
5604 rtx_insn *tmp;
5605 hash_table<insn_cache_hasher> *hash = *hashp;
5606
5607 if (hash == NULL)
5608 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5609
5610 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5611 {
5612 rtx *slot = hash->find_slot (tmp, INSERT);
5613 gcc_assert (*slot == NULL);
5614 *slot = tmp;
5615 }
5616 }
5617
5618 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5619 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5620 insn, then record COPY as well. */
5621
5622 void
5623 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5624 {
5625 hash_table<insn_cache_hasher> *hash;
5626 rtx *slot;
5627
5628 hash = epilogue_insn_hash;
5629 if (!hash || !hash->find (insn))
5630 {
5631 hash = prologue_insn_hash;
5632 if (!hash || !hash->find (insn))
5633 return;
5634 }
5635
5636 slot = hash->find_slot (copy, INSERT);
5637 gcc_assert (*slot == NULL);
5638 *slot = copy;
5639 }
5640
5641 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5642 we can be running after reorg, SEQUENCE rtl is possible. */
5643
5644 static bool
5645 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5646 {
5647 if (hash == NULL)
5648 return false;
5649
5650 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5651 {
5652 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5653 int i;
5654 for (i = seq->len () - 1; i >= 0; i--)
5655 if (hash->find (seq->element (i)))
5656 return true;
5657 return false;
5658 }
5659
5660 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5661 }
5662
5663 int
5664 prologue_contains (const rtx_insn *insn)
5665 {
5666 return contains (insn, prologue_insn_hash);
5667 }
5668
5669 int
5670 epilogue_contains (const rtx_insn *insn)
5671 {
5672 return contains (insn, epilogue_insn_hash);
5673 }
5674
5675 int
5676 prologue_epilogue_contains (const rtx_insn *insn)
5677 {
5678 if (contains (insn, prologue_insn_hash))
5679 return 1;
5680 if (contains (insn, epilogue_insn_hash))
5681 return 1;
5682 return 0;
5683 }
5684
5685 void
5686 record_prologue_seq (rtx_insn *seq)
5687 {
5688 record_insns (seq, NULL, &prologue_insn_hash);
5689 }
5690
5691 void
5692 record_epilogue_seq (rtx_insn *seq)
5693 {
5694 record_insns (seq, NULL, &epilogue_insn_hash);
5695 }
5696
5697 /* Set JUMP_LABEL for a return insn. */
5698
5699 void
5700 set_return_jump_label (rtx_insn *returnjump)
5701 {
5702 rtx pat = PATTERN (returnjump);
5703 if (GET_CODE (pat) == PARALLEL)
5704 pat = XVECEXP (pat, 0, 0);
5705 if (ANY_RETURN_P (pat))
5706 JUMP_LABEL (returnjump) = pat;
5707 else
5708 JUMP_LABEL (returnjump) = ret_rtx;
5709 }
5710
5711 /* Return a sequence to be used as the split prologue for the current
5712 function, or NULL. */
5713
5714 static rtx_insn *
5715 make_split_prologue_seq (void)
5716 {
5717 if (!flag_split_stack
5718 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5719 return NULL;
5720
5721 start_sequence ();
5722 emit_insn (targetm.gen_split_stack_prologue ());
5723 rtx_insn *seq = get_insns ();
5724 end_sequence ();
5725
5726 record_insns (seq, NULL, &prologue_insn_hash);
5727 set_insn_locations (seq, prologue_location);
5728
5729 return seq;
5730 }
5731
5732 /* Return a sequence to be used as the prologue for the current function,
5733 or NULL. */
5734
5735 static rtx_insn *
5736 make_prologue_seq (void)
5737 {
5738 if (!targetm.have_prologue ())
5739 return NULL;
5740
5741 start_sequence ();
5742 rtx_insn *seq = targetm.gen_prologue ();
5743 emit_insn (seq);
5744
5745 /* Insert an explicit USE for the frame pointer
5746 if the profiling is on and the frame pointer is required. */
5747 if (crtl->profile && frame_pointer_needed)
5748 emit_use (hard_frame_pointer_rtx);
5749
5750 /* Retain a map of the prologue insns. */
5751 record_insns (seq, NULL, &prologue_insn_hash);
5752 emit_note (NOTE_INSN_PROLOGUE_END);
5753
5754 /* Ensure that instructions are not moved into the prologue when
5755 profiling is on. The call to the profiling routine can be
5756 emitted within the live range of a call-clobbered register. */
5757 if (!targetm.profile_before_prologue () && crtl->profile)
5758 emit_insn (gen_blockage ());
5759
5760 seq = get_insns ();
5761 end_sequence ();
5762 set_insn_locations (seq, prologue_location);
5763
5764 return seq;
5765 }
5766
5767 /* Return a sequence to be used as the epilogue for the current function,
5768 or NULL. */
5769
5770 static rtx_insn *
5771 make_epilogue_seq (void)
5772 {
5773 if (!targetm.have_epilogue ())
5774 return NULL;
5775
5776 start_sequence ();
5777 emit_note (NOTE_INSN_EPILOGUE_BEG);
5778 rtx_insn *seq = targetm.gen_epilogue ();
5779 if (seq)
5780 emit_jump_insn (seq);
5781
5782 /* Retain a map of the epilogue insns. */
5783 record_insns (seq, NULL, &epilogue_insn_hash);
5784 set_insn_locations (seq, epilogue_location);
5785
5786 seq = get_insns ();
5787 rtx_insn *returnjump = get_last_insn ();
5788 end_sequence ();
5789
5790 if (JUMP_P (returnjump))
5791 set_return_jump_label (returnjump);
5792
5793 return seq;
5794 }
5795
5796
5797 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5798 this into place with notes indicating where the prologue ends and where
5799 the epilogue begins. Update the basic block information when possible.
5800
5801 Notes on epilogue placement:
5802 There are several kinds of edges to the exit block:
5803 * a single fallthru edge from LAST_BB
5804 * possibly, edges from blocks containing sibcalls
5805 * possibly, fake edges from infinite loops
5806
5807 The epilogue is always emitted on the fallthru edge from the last basic
5808 block in the function, LAST_BB, into the exit block.
5809
5810 If LAST_BB is empty except for a label, it is the target of every
5811 other basic block in the function that ends in a return. If a
5812 target has a return or simple_return pattern (possibly with
5813 conditional variants), these basic blocks can be changed so that a
5814 return insn is emitted into them, and their target is adjusted to
5815 the real exit block.
5816
5817 Notes on shrink wrapping: We implement a fairly conservative
5818 version of shrink-wrapping rather than the textbook one. We only
5819 generate a single prologue and a single epilogue. This is
5820 sufficient to catch a number of interesting cases involving early
5821 exits.
5822
5823 First, we identify the blocks that require the prologue to occur before
5824 them. These are the ones that modify a call-saved register, or reference
5825 any of the stack or frame pointer registers. To simplify things, we then
5826 mark everything reachable from these blocks as also requiring a prologue.
5827 This takes care of loops automatically, and avoids the need to examine
5828 whether MEMs reference the frame, since it is sufficient to check for
5829 occurrences of the stack or frame pointer.
5830
5831 We then compute the set of blocks for which the need for a prologue
5832 is anticipatable (borrowing terminology from the shrink-wrapping
5833 description in Muchnick's book). These are the blocks which either
5834 require a prologue themselves, or those that have only successors
5835 where the prologue is anticipatable. The prologue needs to be
5836 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5837 is not. For the moment, we ensure that only one such edge exists.
5838
5839 The epilogue is placed as described above, but we make a
5840 distinction between inserting return and simple_return patterns
5841 when modifying other blocks that end in a return. Blocks that end
5842 in a sibcall omit the sibcall_epilogue if the block is not in
5843 ANTIC. */
5844
5845 void
5846 thread_prologue_and_epilogue_insns (void)
5847 {
5848 df_analyze ();
5849
5850 /* Can't deal with multiple successors of the entry block at the
5851 moment. Function should always have at least one entry
5852 point. */
5853 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5854
5855 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5856 edge orig_entry_edge = entry_edge;
5857
5858 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
5859 rtx_insn *prologue_seq = make_prologue_seq ();
5860 rtx_insn *epilogue_seq = make_epilogue_seq ();
5861
5862 /* Try to perform a kind of shrink-wrapping, making sure the
5863 prologue/epilogue is emitted only around those parts of the
5864 function that require it. */
5865 try_shrink_wrapping (&entry_edge, prologue_seq);
5866
5867 /* If the target can handle splitting the prologue/epilogue into separate
5868 components, try to shrink-wrap these components separately. */
5869 try_shrink_wrapping_separate (entry_edge->dest);
5870
5871 /* If that did anything for any component we now need the generate the
5872 "main" prologue again. Because some targets require some of these
5873 to be called in a specific order (i386 requires the split prologue
5874 to be first, for example), we create all three sequences again here.
5875 If this does not work for some target, that target should not enable
5876 separate shrink-wrapping. */
5877 if (crtl->shrink_wrapped_separate)
5878 {
5879 split_prologue_seq = make_split_prologue_seq ();
5880 prologue_seq = make_prologue_seq ();
5881 epilogue_seq = make_epilogue_seq ();
5882 }
5883
5884 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5885
5886 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5887 this marker for the splits of EH_RETURN patterns, and nothing else
5888 uses the flag in the meantime. */
5889 epilogue_completed = 1;
5890
5891 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5892 some targets, these get split to a special version of the epilogue
5893 code. In order to be able to properly annotate these with unwind
5894 info, try to split them now. If we get a valid split, drop an
5895 EPILOGUE_BEG note and mark the insns as epilogue insns. */
5896 edge e;
5897 edge_iterator ei;
5898 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5899 {
5900 rtx_insn *prev, *last, *trial;
5901
5902 if (e->flags & EDGE_FALLTHRU)
5903 continue;
5904 last = BB_END (e->src);
5905 if (!eh_returnjump_p (last))
5906 continue;
5907
5908 prev = PREV_INSN (last);
5909 trial = try_split (PATTERN (last), last, 1);
5910 if (trial == last)
5911 continue;
5912
5913 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5914 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5915 }
5916
5917 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5918
5919 if (exit_fallthru_edge)
5920 {
5921 if (epilogue_seq)
5922 {
5923 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
5924 commit_edge_insertions ();
5925
5926 /* The epilogue insns we inserted may cause the exit edge to no longer
5927 be fallthru. */
5928 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5929 {
5930 if (((e->flags & EDGE_FALLTHRU) != 0)
5931 && returnjump_p (BB_END (e->src)))
5932 e->flags &= ~EDGE_FALLTHRU;
5933 }
5934 }
5935 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
5936 {
5937 /* We have a fall-through edge to the exit block, the source is not
5938 at the end of the function, and there will be an assembler epilogue
5939 at the end of the function.
5940 We can't use force_nonfallthru here, because that would try to
5941 use return. Inserting a jump 'by hand' is extremely messy, so
5942 we take advantage of cfg_layout_finalize using
5943 fixup_fallthru_exit_predecessor. */
5944 cfg_layout_initialize (0);
5945 basic_block cur_bb;
5946 FOR_EACH_BB_FN (cur_bb, cfun)
5947 if (cur_bb->index >= NUM_FIXED_BLOCKS
5948 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5949 cur_bb->aux = cur_bb->next_bb;
5950 cfg_layout_finalize ();
5951 }
5952 }
5953
5954 /* Insert the prologue. */
5955
5956 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5957
5958 if (split_prologue_seq || prologue_seq)
5959 {
5960 rtx_insn *split_prologue_insn = split_prologue_seq;
5961 if (split_prologue_seq)
5962 {
5963 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
5964 split_prologue_insn = NEXT_INSN (split_prologue_insn);
5965 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5966 }
5967
5968 rtx_insn *prologue_insn = prologue_seq;
5969 if (prologue_seq)
5970 {
5971 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
5972 prologue_insn = NEXT_INSN (prologue_insn);
5973 insert_insn_on_edge (prologue_seq, entry_edge);
5974 }
5975
5976 commit_edge_insertions ();
5977
5978 /* Look for basic blocks within the prologue insns. */
5979 if (split_prologue_insn
5980 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
5981 split_prologue_insn = NULL;
5982 if (prologue_insn
5983 && BLOCK_FOR_INSN (prologue_insn) == NULL)
5984 prologue_insn = NULL;
5985 if (split_prologue_insn || prologue_insn)
5986 {
5987 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
5988 bitmap_clear (blocks);
5989 if (split_prologue_insn)
5990 bitmap_set_bit (blocks,
5991 BLOCK_FOR_INSN (split_prologue_insn)->index);
5992 if (prologue_insn)
5993 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
5994 find_many_sub_basic_blocks (blocks);
5995 }
5996 }
5997
5998 default_rtl_profile ();
5999
6000 /* Emit sibling epilogues before any sibling call sites. */
6001 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6002 (e = ei_safe_edge (ei));
6003 ei_next (&ei))
6004 {
6005 /* Skip those already handled, the ones that run without prologue. */
6006 if (e->flags & EDGE_IGNORE)
6007 {
6008 e->flags &= ~EDGE_IGNORE;
6009 continue;
6010 }
6011
6012 rtx_insn *insn = BB_END (e->src);
6013
6014 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6015 continue;
6016
6017 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6018 {
6019 start_sequence ();
6020 emit_note (NOTE_INSN_EPILOGUE_BEG);
6021 emit_insn (ep_seq);
6022 rtx_insn *seq = get_insns ();
6023 end_sequence ();
6024
6025 /* Retain a map of the epilogue insns. Used in life analysis to
6026 avoid getting rid of sibcall epilogue insns. Do this before we
6027 actually emit the sequence. */
6028 record_insns (seq, NULL, &epilogue_insn_hash);
6029 set_insn_locations (seq, epilogue_location);
6030
6031 emit_insn_before (seq, insn);
6032 }
6033 }
6034
6035 if (epilogue_seq)
6036 {
6037 rtx_insn *insn, *next;
6038
6039 /* Similarly, move any line notes that appear after the epilogue.
6040 There is no need, however, to be quite so anal about the existence
6041 of such a note. Also possibly move
6042 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6043 info generation. */
6044 for (insn = epilogue_seq; insn; insn = next)
6045 {
6046 next = NEXT_INSN (insn);
6047 if (NOTE_P (insn)
6048 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6049 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6050 }
6051 }
6052
6053 /* Threading the prologue and epilogue changes the artificial refs
6054 in the entry and exit blocks. */
6055 epilogue_completed = 1;
6056 df_update_entry_exit_and_calls ();
6057 }
6058
6059 /* Reposition the prologue-end and epilogue-begin notes after
6060 instruction scheduling. */
6061
6062 void
6063 reposition_prologue_and_epilogue_notes (void)
6064 {
6065 if (!targetm.have_prologue ()
6066 && !targetm.have_epilogue ()
6067 && !targetm.have_sibcall_epilogue ())
6068 return;
6069
6070 /* Since the hash table is created on demand, the fact that it is
6071 non-null is a signal that it is non-empty. */
6072 if (prologue_insn_hash != NULL)
6073 {
6074 size_t len = prologue_insn_hash->elements ();
6075 rtx_insn *insn, *last = NULL, *note = NULL;
6076
6077 /* Scan from the beginning until we reach the last prologue insn. */
6078 /* ??? While we do have the CFG intact, there are two problems:
6079 (1) The prologue can contain loops (typically probing the stack),
6080 which means that the end of the prologue isn't in the first bb.
6081 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6082 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6083 {
6084 if (NOTE_P (insn))
6085 {
6086 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6087 note = insn;
6088 }
6089 else if (contains (insn, prologue_insn_hash))
6090 {
6091 last = insn;
6092 if (--len == 0)
6093 break;
6094 }
6095 }
6096
6097 if (last)
6098 {
6099 if (note == NULL)
6100 {
6101 /* Scan forward looking for the PROLOGUE_END note. It should
6102 be right at the beginning of the block, possibly with other
6103 insn notes that got moved there. */
6104 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6105 {
6106 if (NOTE_P (note)
6107 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6108 break;
6109 }
6110 }
6111
6112 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6113 if (LABEL_P (last))
6114 last = NEXT_INSN (last);
6115 reorder_insns (note, note, last);
6116 }
6117 }
6118
6119 if (epilogue_insn_hash != NULL)
6120 {
6121 edge_iterator ei;
6122 edge e;
6123
6124 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6125 {
6126 rtx_insn *insn, *first = NULL, *note = NULL;
6127 basic_block bb = e->src;
6128
6129 /* Scan from the beginning until we reach the first epilogue insn. */
6130 FOR_BB_INSNS (bb, insn)
6131 {
6132 if (NOTE_P (insn))
6133 {
6134 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6135 {
6136 note = insn;
6137 if (first != NULL)
6138 break;
6139 }
6140 }
6141 else if (first == NULL && contains (insn, epilogue_insn_hash))
6142 {
6143 first = insn;
6144 if (note != NULL)
6145 break;
6146 }
6147 }
6148
6149 if (note)
6150 {
6151 /* If the function has a single basic block, and no real
6152 epilogue insns (e.g. sibcall with no cleanup), the
6153 epilogue note can get scheduled before the prologue
6154 note. If we have frame related prologue insns, having
6155 them scanned during the epilogue will result in a crash.
6156 In this case re-order the epilogue note to just before
6157 the last insn in the block. */
6158 if (first == NULL)
6159 first = BB_END (bb);
6160
6161 if (PREV_INSN (first) != note)
6162 reorder_insns (note, note, PREV_INSN (first));
6163 }
6164 }
6165 }
6166 }
6167
6168 /* Returns the name of function declared by FNDECL. */
6169 const char *
6170 fndecl_name (tree fndecl)
6171 {
6172 if (fndecl == NULL)
6173 return "(nofn)";
6174 return lang_hooks.decl_printable_name (fndecl, 1);
6175 }
6176
6177 /* Returns the name of function FN. */
6178 const char *
6179 function_name (struct function *fn)
6180 {
6181 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6182 return fndecl_name (fndecl);
6183 }
6184
6185 /* Returns the name of the current function. */
6186 const char *
6187 current_function_name (void)
6188 {
6189 return function_name (cfun);
6190 }
6191 \f
6192
6193 static unsigned int
6194 rest_of_handle_check_leaf_regs (void)
6195 {
6196 #ifdef LEAF_REGISTERS
6197 crtl->uses_only_leaf_regs
6198 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6199 #endif
6200 return 0;
6201 }
6202
6203 /* Insert a TYPE into the used types hash table of CFUN. */
6204
6205 static void
6206 used_types_insert_helper (tree type, struct function *func)
6207 {
6208 if (type != NULL && func != NULL)
6209 {
6210 if (func->used_types_hash == NULL)
6211 func->used_types_hash = hash_set<tree>::create_ggc (37);
6212
6213 func->used_types_hash->add (type);
6214 }
6215 }
6216
6217 /* Given a type, insert it into the used hash table in cfun. */
6218 void
6219 used_types_insert (tree t)
6220 {
6221 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6222 if (TYPE_NAME (t))
6223 break;
6224 else
6225 t = TREE_TYPE (t);
6226 if (TREE_CODE (t) == ERROR_MARK)
6227 return;
6228 if (TYPE_NAME (t) == NULL_TREE
6229 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6230 t = TYPE_MAIN_VARIANT (t);
6231 if (debug_info_level > DINFO_LEVEL_NONE)
6232 {
6233 if (cfun)
6234 used_types_insert_helper (t, cfun);
6235 else
6236 {
6237 /* So this might be a type referenced by a global variable.
6238 Record that type so that we can later decide to emit its
6239 debug information. */
6240 vec_safe_push (types_used_by_cur_var_decl, t);
6241 }
6242 }
6243 }
6244
6245 /* Helper to Hash a struct types_used_by_vars_entry. */
6246
6247 static hashval_t
6248 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6249 {
6250 gcc_assert (entry && entry->var_decl && entry->type);
6251
6252 return iterative_hash_object (entry->type,
6253 iterative_hash_object (entry->var_decl, 0));
6254 }
6255
6256 /* Hash function of the types_used_by_vars_entry hash table. */
6257
6258 hashval_t
6259 used_type_hasher::hash (types_used_by_vars_entry *entry)
6260 {
6261 return hash_types_used_by_vars_entry (entry);
6262 }
6263
6264 /*Equality function of the types_used_by_vars_entry hash table. */
6265
6266 bool
6267 used_type_hasher::equal (types_used_by_vars_entry *e1,
6268 types_used_by_vars_entry *e2)
6269 {
6270 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6271 }
6272
6273 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6274
6275 void
6276 types_used_by_var_decl_insert (tree type, tree var_decl)
6277 {
6278 if (type != NULL && var_decl != NULL)
6279 {
6280 types_used_by_vars_entry **slot;
6281 struct types_used_by_vars_entry e;
6282 e.var_decl = var_decl;
6283 e.type = type;
6284 if (types_used_by_vars_hash == NULL)
6285 types_used_by_vars_hash
6286 = hash_table<used_type_hasher>::create_ggc (37);
6287
6288 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6289 if (*slot == NULL)
6290 {
6291 struct types_used_by_vars_entry *entry;
6292 entry = ggc_alloc<types_used_by_vars_entry> ();
6293 entry->type = type;
6294 entry->var_decl = var_decl;
6295 *slot = entry;
6296 }
6297 }
6298 }
6299
6300 namespace {
6301
6302 const pass_data pass_data_leaf_regs =
6303 {
6304 RTL_PASS, /* type */
6305 "*leaf_regs", /* name */
6306 OPTGROUP_NONE, /* optinfo_flags */
6307 TV_NONE, /* tv_id */
6308 0, /* properties_required */
6309 0, /* properties_provided */
6310 0, /* properties_destroyed */
6311 0, /* todo_flags_start */
6312 0, /* todo_flags_finish */
6313 };
6314
6315 class pass_leaf_regs : public rtl_opt_pass
6316 {
6317 public:
6318 pass_leaf_regs (gcc::context *ctxt)
6319 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6320 {}
6321
6322 /* opt_pass methods: */
6323 virtual unsigned int execute (function *)
6324 {
6325 return rest_of_handle_check_leaf_regs ();
6326 }
6327
6328 }; // class pass_leaf_regs
6329
6330 } // anon namespace
6331
6332 rtl_opt_pass *
6333 make_pass_leaf_regs (gcc::context *ctxt)
6334 {
6335 return new pass_leaf_regs (ctxt);
6336 }
6337
6338 static unsigned int
6339 rest_of_handle_thread_prologue_and_epilogue (void)
6340 {
6341 /* prepare_shrink_wrap is sensitive to the block structure of the control
6342 flow graph, so clean it up first. */
6343 if (optimize)
6344 cleanup_cfg (0);
6345
6346 /* On some machines, the prologue and epilogue code, or parts thereof,
6347 can be represented as RTL. Doing so lets us schedule insns between
6348 it and the rest of the code and also allows delayed branch
6349 scheduling to operate in the epilogue. */
6350 thread_prologue_and_epilogue_insns ();
6351
6352 /* Some non-cold blocks may now be only reachable from cold blocks.
6353 Fix that up. */
6354 fixup_partitions ();
6355
6356 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6357 see PR57320. */
6358 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6359
6360 /* The stack usage info is finalized during prologue expansion. */
6361 if (flag_stack_usage_info)
6362 output_stack_usage ();
6363
6364 return 0;
6365 }
6366
6367 namespace {
6368
6369 const pass_data pass_data_thread_prologue_and_epilogue =
6370 {
6371 RTL_PASS, /* type */
6372 "pro_and_epilogue", /* name */
6373 OPTGROUP_NONE, /* optinfo_flags */
6374 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6375 0, /* properties_required */
6376 0, /* properties_provided */
6377 0, /* properties_destroyed */
6378 0, /* todo_flags_start */
6379 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6380 };
6381
6382 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6383 {
6384 public:
6385 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6386 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6387 {}
6388
6389 /* opt_pass methods: */
6390 virtual unsigned int execute (function *)
6391 {
6392 return rest_of_handle_thread_prologue_and_epilogue ();
6393 }
6394
6395 }; // class pass_thread_prologue_and_epilogue
6396
6397 } // anon namespace
6398
6399 rtl_opt_pass *
6400 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6401 {
6402 return new pass_thread_prologue_and_epilogue (ctxt);
6403 }
6404 \f
6405
6406 /* If CONSTRAINT is a matching constraint, then return its number.
6407 Otherwise, return -1. */
6408
6409 static int
6410 matching_constraint_num (const char *constraint)
6411 {
6412 if (*constraint == '%')
6413 constraint++;
6414
6415 if (IN_RANGE (*constraint, '0', '9'))
6416 return strtoul (constraint, NULL, 10);
6417
6418 return -1;
6419 }
6420
6421 /* This mini-pass fixes fall-out from SSA in asm statements that have
6422 in-out constraints. Say you start with
6423
6424 orig = inout;
6425 asm ("": "+mr" (inout));
6426 use (orig);
6427
6428 which is transformed very early to use explicit output and match operands:
6429
6430 orig = inout;
6431 asm ("": "=mr" (inout) : "0" (inout));
6432 use (orig);
6433
6434 Or, after SSA and copyprop,
6435
6436 asm ("": "=mr" (inout_2) : "0" (inout_1));
6437 use (inout_1);
6438
6439 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6440 they represent two separate values, so they will get different pseudo
6441 registers during expansion. Then, since the two operands need to match
6442 per the constraints, but use different pseudo registers, reload can
6443 only register a reload for these operands. But reloads can only be
6444 satisfied by hardregs, not by memory, so we need a register for this
6445 reload, just because we are presented with non-matching operands.
6446 So, even though we allow memory for this operand, no memory can be
6447 used for it, just because the two operands don't match. This can
6448 cause reload failures on register-starved targets.
6449
6450 So it's a symptom of reload not being able to use memory for reloads
6451 or, alternatively it's also a symptom of both operands not coming into
6452 reload as matching (in which case the pseudo could go to memory just
6453 fine, as the alternative allows it, and no reload would be necessary).
6454 We fix the latter problem here, by transforming
6455
6456 asm ("": "=mr" (inout_2) : "0" (inout_1));
6457
6458 back to
6459
6460 inout_2 = inout_1;
6461 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6462
6463 static void
6464 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6465 {
6466 int i;
6467 bool changed = false;
6468 rtx op = SET_SRC (p_sets[0]);
6469 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6470 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6471 bool *output_matched = XALLOCAVEC (bool, noutputs);
6472
6473 memset (output_matched, 0, noutputs * sizeof (bool));
6474 for (i = 0; i < ninputs; i++)
6475 {
6476 rtx input, output;
6477 rtx_insn *insns;
6478 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6479 int match, j;
6480
6481 match = matching_constraint_num (constraint);
6482 if (match < 0)
6483 continue;
6484
6485 gcc_assert (match < noutputs);
6486 output = SET_DEST (p_sets[match]);
6487 input = RTVEC_ELT (inputs, i);
6488 /* Only do the transformation for pseudos. */
6489 if (! REG_P (output)
6490 || rtx_equal_p (output, input)
6491 || !(REG_P (input) || SUBREG_P (input)
6492 || MEM_P (input) || CONSTANT_P (input))
6493 || !general_operand (input, GET_MODE (output)))
6494 continue;
6495
6496 /* We can't do anything if the output is also used as input,
6497 as we're going to overwrite it. */
6498 for (j = 0; j < ninputs; j++)
6499 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6500 break;
6501 if (j != ninputs)
6502 continue;
6503
6504 /* Avoid changing the same input several times. For
6505 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6506 only change it once (to out1), rather than changing it
6507 first to out1 and afterwards to out2. */
6508 if (i > 0)
6509 {
6510 for (j = 0; j < noutputs; j++)
6511 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6512 break;
6513 if (j != noutputs)
6514 continue;
6515 }
6516 output_matched[match] = true;
6517
6518 start_sequence ();
6519 emit_move_insn (output, copy_rtx (input));
6520 insns = get_insns ();
6521 end_sequence ();
6522 emit_insn_before (insns, insn);
6523
6524 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6525 bool early_clobber_p = strchr (constraint, '&') != NULL;
6526
6527 /* Now replace all mentions of the input with output. We can't
6528 just replace the occurrence in inputs[i], as the register might
6529 also be used in some other input (or even in an address of an
6530 output), which would mean possibly increasing the number of
6531 inputs by one (namely 'output' in addition), which might pose
6532 a too complicated problem for reload to solve. E.g. this situation:
6533
6534 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6535
6536 Here 'input' is used in two occurrences as input (once for the
6537 input operand, once for the address in the second output operand).
6538 If we would replace only the occurrence of the input operand (to
6539 make the matching) we would be left with this:
6540
6541 output = input
6542 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6543
6544 Now we suddenly have two different input values (containing the same
6545 value, but different pseudos) where we formerly had only one.
6546 With more complicated asms this might lead to reload failures
6547 which wouldn't have happen without this pass. So, iterate over
6548 all operands and replace all occurrences of the register used.
6549
6550 However, if one or more of the 'input' uses have a non-matching
6551 constraint and the matched output operand is an early clobber
6552 operand, then do not replace the input operand, since by definition
6553 it conflicts with the output operand and cannot share the same
6554 register. See PR89313 for details. */
6555
6556 for (j = 0; j < noutputs; j++)
6557 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6558 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6559 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6560 input, output);
6561 for (j = 0; j < ninputs; j++)
6562 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6563 {
6564 if (!early_clobber_p
6565 || match == matching_constraint_num
6566 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6567 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6568 input, output);
6569 }
6570
6571 changed = true;
6572 }
6573
6574 if (changed)
6575 df_insn_rescan (insn);
6576 }
6577
6578 /* Add the decl D to the local_decls list of FUN. */
6579
6580 void
6581 add_local_decl (struct function *fun, tree d)
6582 {
6583 gcc_assert (VAR_P (d));
6584 vec_safe_push (fun->local_decls, d);
6585 }
6586
6587 namespace {
6588
6589 const pass_data pass_data_match_asm_constraints =
6590 {
6591 RTL_PASS, /* type */
6592 "asmcons", /* name */
6593 OPTGROUP_NONE, /* optinfo_flags */
6594 TV_NONE, /* tv_id */
6595 0, /* properties_required */
6596 0, /* properties_provided */
6597 0, /* properties_destroyed */
6598 0, /* todo_flags_start */
6599 0, /* todo_flags_finish */
6600 };
6601
6602 class pass_match_asm_constraints : public rtl_opt_pass
6603 {
6604 public:
6605 pass_match_asm_constraints (gcc::context *ctxt)
6606 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6607 {}
6608
6609 /* opt_pass methods: */
6610 virtual unsigned int execute (function *);
6611
6612 }; // class pass_match_asm_constraints
6613
6614 unsigned
6615 pass_match_asm_constraints::execute (function *fun)
6616 {
6617 basic_block bb;
6618 rtx_insn *insn;
6619 rtx pat, *p_sets;
6620 int noutputs;
6621
6622 if (!crtl->has_asm_statement)
6623 return 0;
6624
6625 df_set_flags (DF_DEFER_INSN_RESCAN);
6626 FOR_EACH_BB_FN (bb, fun)
6627 {
6628 FOR_BB_INSNS (bb, insn)
6629 {
6630 if (!INSN_P (insn))
6631 continue;
6632
6633 pat = PATTERN (insn);
6634 if (GET_CODE (pat) == PARALLEL)
6635 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6636 else if (GET_CODE (pat) == SET)
6637 p_sets = &PATTERN (insn), noutputs = 1;
6638 else
6639 continue;
6640
6641 if (GET_CODE (*p_sets) == SET
6642 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6643 match_asm_constraints_1 (insn, p_sets, noutputs);
6644 }
6645 }
6646
6647 return TODO_df_finish;
6648 }
6649
6650 } // anon namespace
6651
6652 rtl_opt_pass *
6653 make_pass_match_asm_constraints (gcc::context *ctxt)
6654 {
6655 return new pass_match_asm_constraints (ctxt);
6656 }
6657
6658
6659 #include "gt-function.h"