]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple-loop-versioning.cc
PR c++/87554 - ICE with extern template and reference member.
[thirdparty/gcc.git] / gcc / gimple-loop-versioning.cc
1 /* Loop versioning pass.
2 Copyright (C) 2018-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "gimple.h"
26 #include "gimple-iterator.h"
27 #include "tree-pass.h"
28 #include "gimplify-me.h"
29 #include "cfgloop.h"
30 #include "tree-ssa-loop.h"
31 #include "ssa.h"
32 #include "tree-scalar-evolution.h"
33 #include "tree-chrec.h"
34 #include "tree-ssa-loop-ivopts.h"
35 #include "fold-const.h"
36 #include "tree-ssa-propagate.h"
37 #include "tree-inline.h"
38 #include "domwalk.h"
39 #include "alloc-pool.h"
40 #include "vr-values.h"
41 #include "gimple-ssa-evrp-analyze.h"
42 #include "tree-vectorizer.h"
43 #include "omp-general.h"
44 #include "predict.h"
45 #include "tree-into-ssa.h"
46 #include "params.h"
47
48 namespace {
49
50 /* This pass looks for loops that could be simplified if certain loop
51 invariant conditions were true. It is effectively a form of loop
52 splitting in which the pass produces the split conditions itself,
53 instead of using ones that are already present in the IL.
54
55 Versioning for when strides are 1
56 ---------------------------------
57
58 At the moment the only thing the pass looks for are memory references
59 like:
60
61 for (auto i : ...)
62 ...x[i * stride]...
63
64 It considers changing such loops to:
65
66 if (stride == 1)
67 for (auto i : ...) [A]
68 ...x[i]...
69 else
70 for (auto i : ...) [B]
71 ...x[i * stride]...
72
73 This can have several benefits:
74
75 (1) [A] is often easier or cheaper to vectorize than [B].
76
77 (2) The scalar code in [A] is simpler than the scalar code in [B]
78 (if the loops cannot be vectorized or need an epilogue loop).
79
80 (3) We might recognize [A] as a pattern, such as a memcpy or memset.
81
82 (4) [A] has simpler address evolutions, which can help other passes
83 like loop interchange.
84
85 The optimization is particularly useful for assumed-shape arrays in
86 Fortran, where the stride of the innermost dimension depends on the
87 array descriptor but is often equal to 1 in practice. For example:
88
89 subroutine f1(x)
90 real :: x(:)
91 x(:) = 100
92 end subroutine f1
93
94 generates the equivalent of:
95
96 raw_stride = *x.dim[0].stride;
97 stride = raw_stride != 0 ? raw_stride : 1;
98 x_base = *x.data;
99 ...
100 tmp1 = stride * S;
101 tmp2 = tmp1 - stride;
102 *x_base[tmp2] = 1.0e+2;
103
104 but in the common case that stride == 1, the last three statements
105 simplify to:
106
107 tmp3 = S + -1;
108 *x_base[tmp3] = 1.0e+2;
109
110 The optimization is in principle very simple. The difficult parts are:
111
112 (a) deciding which parts of a general address calculation correspond
113 to the inner dimension of an array, since this usually isn't explicit
114 in the IL, and for C often isn't even explicit in the source code
115
116 (b) estimating when the transformation is worthwhile
117
118 Structure
119 ---------
120
121 The pass has four phases:
122
123 (1) Walk through the statements looking for and recording potential
124 versioning opportunities. Stop if there are none.
125
126 (2) Use context-sensitive range information to see whether any versioning
127 conditions are impossible in practice. Remove them if so, and stop
128 if no opportunities remain.
129
130 (We do this only after (1) to keep compile time down when no
131 versioning opportunities exist.)
132
133 (3) Apply the cost model. Decide which versioning opportunities are
134 worthwhile and at which nesting level they should be applied.
135
136 (4) Attempt to version all the loops selected by (3), so that:
137
138 for (...)
139 ...
140
141 becomes:
142
143 if (!cond)
144 for (...) // Original loop
145 ...
146 else
147 for (...) // New loop
148 ...
149
150 Use the version condition COND to simplify the new loop. */
151
152 /* Enumerates the likelihood that a particular value indexes the inner
153 dimension of an array. */
154 enum inner_likelihood {
155 INNER_UNLIKELY,
156 INNER_DONT_KNOW,
157 INNER_LIKELY
158 };
159
160 /* Information about one term of an address_info. */
161 struct address_term_info
162 {
163 /* The value of the term is EXPR * MULTIPLIER. */
164 tree expr;
165 unsigned HOST_WIDE_INT multiplier;
166
167 /* The stride applied by EXPR in each iteration of some unrecorded loop,
168 or null if no stride has been identified. */
169 tree stride;
170
171 /* Enumerates the likelihood that EXPR indexes the inner dimension
172 of an array. */
173 enum inner_likelihood inner_likelihood;
174
175 /* True if STRIDE == 1 is a versioning opportunity when considered
176 in isolation. */
177 bool versioning_opportunity_p;
178 };
179
180 /* Information about an address calculation, and the range of constant
181 offsets applied to it. */
182 struct address_info
183 {
184 static const unsigned int MAX_TERMS = 8;
185
186 /* One statement that calculates the address. If multiple statements
187 share the same address, we only record the first. */
188 gimple *stmt;
189
190 /* The loop containing STMT (cached for convenience). If multiple
191 statements share the same address, they all belong to this loop. */
192 struct loop *loop;
193
194 /* A decomposition of the calculation into a sum of terms plus an
195 optional base. When BASE is provided, it is never an SSA name.
196 Once initialization is complete, all members of TERMs are SSA names. */
197 tree base;
198 auto_vec<address_term_info, MAX_TERMS> terms;
199
200 /* All bytes accessed from the address fall in the offset range
201 [MIN_OFFSET, MAX_OFFSET). */
202 HOST_WIDE_INT min_offset, max_offset;
203 };
204
205 /* Stores addresses based on their base and terms (ignoring the offsets). */
206 struct address_info_hasher : nofree_ptr_hash <address_info>
207 {
208 static hashval_t hash (const address_info *);
209 static bool equal (const address_info *, const address_info *);
210 };
211
212 /* Information about the versioning we'd like to apply to a loop. */
213 struct loop_info
214 {
215 bool worth_versioning_p () const;
216
217 /* True if we've decided not to version this loop. The remaining
218 fields are meaningless if so. */
219 bool rejected_p;
220
221 /* True if at least one subloop of this loop benefits from versioning. */
222 bool subloops_benefit_p;
223
224 /* An estimate of the total number of instructions in the loop,
225 excluding those in subloops that benefit from versioning. */
226 unsigned int num_insns;
227
228 /* The outermost loop that can handle all the version checks
229 described below. */
230 struct loop *outermost;
231
232 /* The first entry in the list of blocks that belong to this loop
233 (and not to subloops). m_next_block_in_loop provides the chain
234 pointers for the list. */
235 basic_block block_list;
236
237 /* We'd like to version the loop for the case in which these SSA names
238 (keyed off their SSA_NAME_VERSION) are all equal to 1 at runtime. */
239 bitmap_head unity_names;
240
241 /* If versioning succeeds, this points the version of the loop that
242 assumes the version conditions holds. */
243 struct loop *optimized_loop;
244 };
245
246 /* The main pass structure. */
247 class loop_versioning
248 {
249 public:
250 loop_versioning (function *);
251 ~loop_versioning ();
252 unsigned int run ();
253
254 private:
255 /* Used to walk the dominator tree to find loop versioning conditions
256 that are always false. */
257 class lv_dom_walker : public dom_walker
258 {
259 public:
260 lv_dom_walker (loop_versioning &);
261
262 edge before_dom_children (basic_block) FINAL OVERRIDE;
263 void after_dom_children (basic_block) FINAL OVERRIDE;
264
265 private:
266 /* The parent pass. */
267 loop_versioning &m_lv;
268
269 /* Used to build context-dependent range information. */
270 evrp_range_analyzer m_range_analyzer;
271 };
272
273 /* Used to simplify statements based on conditions that are established
274 by the version checks. */
275 class name_prop : public substitute_and_fold_engine
276 {
277 public:
278 name_prop (loop_info &li) : m_li (li) {}
279 tree get_value (tree) FINAL OVERRIDE;
280
281 private:
282 /* Information about the versioning we've performed on the loop. */
283 loop_info &m_li;
284 };
285
286 loop_info &get_loop_info (struct loop *loop) { return m_loops[loop->num]; }
287
288 unsigned int max_insns_for_loop (struct loop *);
289 bool expensive_stmt_p (gimple *);
290
291 void version_for_unity (gimple *, tree);
292 bool acceptable_multiplier_p (tree, unsigned HOST_WIDE_INT,
293 unsigned HOST_WIDE_INT * = 0);
294 bool acceptable_type_p (tree, unsigned HOST_WIDE_INT *);
295 bool multiply_term_by (address_term_info &, tree);
296 inner_likelihood get_inner_likelihood (tree, unsigned HOST_WIDE_INT);
297 void dump_inner_likelihood (address_info &, address_term_info &);
298 void analyze_stride (address_info &, address_term_info &,
299 tree, struct loop *);
300 bool find_per_loop_multiplication (address_info &, address_term_info &);
301 bool analyze_term_using_scevs (address_info &, address_term_info &);
302 void analyze_arbitrary_term (address_info &, address_term_info &);
303 void analyze_address_fragment (address_info &);
304 void record_address_fragment (gimple *, unsigned HOST_WIDE_INT,
305 tree, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
306 void analyze_expr (gimple *, tree);
307 bool analyze_block (basic_block);
308 bool analyze_blocks ();
309
310 void prune_loop_conditions (struct loop *, vr_values *);
311 bool prune_conditions ();
312
313 void merge_loop_info (struct loop *, struct loop *);
314 void add_loop_to_queue (struct loop *);
315 bool decide_whether_loop_is_versionable (struct loop *);
316 bool make_versioning_decisions ();
317
318 bool version_loop (struct loop *);
319 void implement_versioning_decisions ();
320
321 /* The function we're optimizing. */
322 function *m_fn;
323
324 /* The obstack to use for all pass-specific bitmaps. */
325 bitmap_obstack m_bitmap_obstack;
326
327 /* An obstack to use for general allocation. */
328 obstack m_obstack;
329
330 /* The number of loops in the function. */
331 unsigned int m_nloops;
332
333 /* The total number of loop version conditions we've found. */
334 unsigned int m_num_conditions;
335
336 /* Assume that an address fragment of the form i * stride * scale
337 (for variable stride and constant scale) will not benefit from
338 versioning for stride == 1 when scale is greater than this value. */
339 unsigned HOST_WIDE_INT m_maximum_scale;
340
341 /* Information about each loop. */
342 auto_vec<loop_info> m_loops;
343
344 /* Used to form a linked list of blocks that belong to a loop,
345 started by loop_info::block_list. */
346 auto_vec<basic_block> m_next_block_in_loop;
347
348 /* The list of loops that we've decided to version. */
349 auto_vec<struct loop *> m_loops_to_version;
350
351 /* A table of addresses in the current loop, keyed off their values
352 but not their offsets. */
353 hash_table <address_info_hasher> m_address_table;
354
355 /* A list of all addresses in M_ADDRESS_TABLE, in a predictable order. */
356 auto_vec <address_info *, 32> m_address_list;
357 };
358
359 /* If EXPR is an SSA name and not a default definition, return the
360 defining statement, otherwise return null. */
361
362 static gimple *
363 maybe_get_stmt (tree expr)
364 {
365 if (TREE_CODE (expr) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (expr))
366 return SSA_NAME_DEF_STMT (expr);
367 return NULL;
368 }
369
370 /* Like maybe_get_stmt, but also return null if the defining
371 statement isn't an assignment. */
372
373 static gassign *
374 maybe_get_assign (tree expr)
375 {
376 return safe_dyn_cast <gassign *> (maybe_get_stmt (expr));
377 }
378
379 /* Return true if this pass should look through a cast of expression FROM
380 to type TYPE when analyzing pieces of an address. */
381
382 static bool
383 look_through_cast_p (tree type, tree from)
384 {
385 return (INTEGRAL_TYPE_P (TREE_TYPE (from)) == INTEGRAL_TYPE_P (type)
386 && POINTER_TYPE_P (TREE_TYPE (from)) == POINTER_TYPE_P (type));
387 }
388
389 /* Strip all conversions of integers or pointers from EXPR, regardless
390 of whether the conversions are nops. This is useful in the context
391 of this pass because we're not trying to fold or simulate the
392 expression; we just want to see how it's structured. */
393
394 static tree
395 strip_casts (tree expr)
396 {
397 const unsigned int MAX_NITERS = 4;
398
399 tree type = TREE_TYPE (expr);
400 while (CONVERT_EXPR_P (expr)
401 && look_through_cast_p (type, TREE_OPERAND (expr, 0)))
402 expr = TREE_OPERAND (expr, 0);
403
404 for (unsigned int niters = 0; niters < MAX_NITERS; ++niters)
405 {
406 gassign *assign = maybe_get_assign (expr);
407 if (assign
408 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (assign))
409 && look_through_cast_p (type, gimple_assign_rhs1 (assign)))
410 expr = gimple_assign_rhs1 (assign);
411 else
412 break;
413 }
414 return expr;
415 }
416
417 /* Compare two address_term_infos in the same address_info. */
418
419 static int
420 compare_address_terms (const void *a_uncast, const void *b_uncast)
421 {
422 const address_term_info *a = (const address_term_info *) a_uncast;
423 const address_term_info *b = (const address_term_info *) b_uncast;
424
425 if (a->expr != b->expr)
426 return SSA_NAME_VERSION (a->expr) < SSA_NAME_VERSION (b->expr) ? -1 : 1;
427
428 if (a->multiplier != b->multiplier)
429 return a->multiplier < b->multiplier ? -1 : 1;
430
431 return 0;
432 }
433
434 /* Dump ADDRESS using flags FLAGS. */
435
436 static void
437 dump_address_info (dump_flags_t flags, address_info &address)
438 {
439 if (address.base)
440 dump_printf (flags, "%T + ", address.base);
441 for (unsigned int i = 0; i < address.terms.length (); ++i)
442 {
443 if (i != 0)
444 dump_printf (flags, " + ");
445 dump_printf (flags, "%T", address.terms[i].expr);
446 if (address.terms[i].multiplier != 1)
447 dump_printf (flags, " * %wd", address.terms[i].multiplier);
448 }
449 dump_printf (flags, " + [%wd, %wd]",
450 address.min_offset, address.max_offset - 1);
451 }
452
453 /* Hash an address_info based on its base and terms. */
454
455 hashval_t
456 address_info_hasher::hash (const address_info *info)
457 {
458 inchash::hash hash;
459 hash.add_int (info->base ? TREE_CODE (info->base) : 0);
460 hash.add_int (info->terms.length ());
461 for (unsigned int i = 0; i < info->terms.length (); ++i)
462 {
463 hash.add_int (SSA_NAME_VERSION (info->terms[i].expr));
464 hash.add_hwi (info->terms[i].multiplier);
465 }
466 return hash.end ();
467 }
468
469 /* Return true if two address_infos have equal bases and terms. Other
470 properties might be different (such as the statement or constant
471 offset range). */
472
473 bool
474 address_info_hasher::equal (const address_info *a, const address_info *b)
475 {
476 if (a->base != b->base
477 && (!a->base || !b->base || !operand_equal_p (a->base, b->base, 0)))
478 return false;
479
480 if (a->terms.length () != b->terms.length ())
481 return false;
482
483 for (unsigned int i = 0; i < a->terms.length (); ++i)
484 if (a->terms[i].expr != b->terms[i].expr
485 || a->terms[i].multiplier != b->terms[i].multiplier)
486 return false;
487
488 return true;
489 }
490
491 /* Return true if we want to version the loop, i.e. if we have a
492 specific reason for doing so and no specific reason not to. */
493
494 bool
495 loop_info::worth_versioning_p () const
496 {
497 return (!rejected_p
498 && (!bitmap_empty_p (&unity_names) || subloops_benefit_p));
499 }
500
501 loop_versioning::lv_dom_walker::lv_dom_walker (loop_versioning &lv)
502 : dom_walker (CDI_DOMINATORS), m_lv (lv), m_range_analyzer (false)
503 {
504 }
505
506 /* Process BB before processing the blocks it dominates. */
507
508 edge
509 loop_versioning::lv_dom_walker::before_dom_children (basic_block bb)
510 {
511 m_range_analyzer.enter (bb);
512
513 if (bb == bb->loop_father->header)
514 m_lv.prune_loop_conditions (bb->loop_father,
515 m_range_analyzer.get_vr_values ());
516
517 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
518 gsi_next (&si))
519 m_range_analyzer.record_ranges_from_stmt (gsi_stmt (si), false);
520
521 return NULL;
522 }
523
524 /* Process BB after processing the blocks it dominates. */
525
526 void
527 loop_versioning::lv_dom_walker::after_dom_children (basic_block bb)
528 {
529 m_range_analyzer.leave (bb);
530 }
531
532 /* Decide whether to replace VAL with a new value in a versioned loop.
533 Return the new value if so, otherwise return null. */
534
535 tree
536 loop_versioning::name_prop::get_value (tree val)
537 {
538 if (TREE_CODE (val) == SSA_NAME
539 && bitmap_bit_p (&m_li.unity_names, SSA_NAME_VERSION (val)))
540 return build_one_cst (TREE_TYPE (val));
541 return NULL_TREE;
542 }
543
544 /* Initialize the structure to optimize FN. */
545
546 loop_versioning::loop_versioning (function *fn)
547 : m_fn (fn),
548 m_nloops (number_of_loops (fn)),
549 m_num_conditions (0),
550 m_address_table (31)
551 {
552 bitmap_obstack_initialize (&m_bitmap_obstack);
553 gcc_obstack_init (&m_obstack);
554
555 /* Initialize the loop information. */
556 m_loops.safe_grow_cleared (m_nloops);
557 for (unsigned int i = 0; i < m_nloops; ++i)
558 {
559 m_loops[i].outermost = get_loop (m_fn, 0);
560 bitmap_initialize (&m_loops[i].unity_names, &m_bitmap_obstack);
561 }
562
563 /* Initialize the list of blocks that belong to each loop. */
564 unsigned int nbbs = last_basic_block_for_fn (fn);
565 m_next_block_in_loop.safe_grow (nbbs);
566 basic_block bb;
567 FOR_EACH_BB_FN (bb, fn)
568 {
569 loop_info &li = get_loop_info (bb->loop_father);
570 m_next_block_in_loop[bb->index] = li.block_list;
571 li.block_list = bb;
572 }
573
574 /* MAX_FIXED_MODE_SIZE should be a reasonable maximum scale for
575 unvectorizable code, since it is the largest size that can be
576 handled efficiently by scalar code. omp_max_vf calculates the
577 maximum number of bytes in a vector, when such a value is relevant
578 to loop optimization. */
579 m_maximum_scale = estimated_poly_value (omp_max_vf ());
580 m_maximum_scale = MAX (m_maximum_scale, MAX_FIXED_MODE_SIZE);
581 }
582
583 loop_versioning::~loop_versioning ()
584 {
585 bitmap_obstack_release (&m_bitmap_obstack);
586 obstack_free (&m_obstack, NULL);
587 }
588
589 /* Return the maximum number of instructions allowed in LOOP before
590 it becomes too big for versioning.
591
592 There are separate limits for inner and outer loops. The limit for
593 inner loops applies only to loops that benefit directly from versioning.
594 The limit for outer loops applies to all code in the outer loop and
595 its subloops that *doesn't* benefit directly from versioning; such code
596 would be "taken along for the ride". The idea is that if the cost of
597 the latter is small, it is better to version outer loops rather than
598 inner loops, both to reduce the number of repeated checks and to enable
599 more of the loop nest to be optimized as a natural nest (e.g. by loop
600 interchange or outer-loop vectorization). */
601
602 unsigned int
603 loop_versioning::max_insns_for_loop (struct loop *loop)
604 {
605 return (loop->inner
606 ? PARAM_VALUE (PARAM_LOOP_VERSIONING_MAX_OUTER_INSNS)
607 : PARAM_VALUE (PARAM_LOOP_VERSIONING_MAX_INNER_INSNS));
608 }
609
610 /* Return true if for cost reasons we should avoid versioning any loop
611 that contains STMT.
612
613 Note that we don't need to check whether versioning is invalid for
614 correctness reasons, since the versioning process does that for us.
615 The conditions involved are too rare to be worth duplicating here. */
616
617 bool
618 loop_versioning::expensive_stmt_p (gimple *stmt)
619 {
620 if (gcall *call = dyn_cast <gcall *> (stmt))
621 /* Assume for now that the time spent in an "expensive" call would
622 overwhelm any saving from versioning. */
623 return !gimple_inexpensive_call_p (call);
624 return false;
625 }
626
627 /* Record that we want to version the loop that contains STMT for the
628 case in which SSA name NAME is equal to 1. We already know that NAME
629 is invariant in the loop. */
630
631 void
632 loop_versioning::version_for_unity (gimple *stmt, tree name)
633 {
634 struct loop *loop = loop_containing_stmt (stmt);
635 loop_info &li = get_loop_info (loop);
636
637 if (bitmap_set_bit (&li.unity_names, SSA_NAME_VERSION (name)))
638 {
639 /* This is the first time we've wanted to version LOOP for NAME.
640 Keep track of the outermost loop that can handle all versioning
641 checks in LI. */
642 struct loop *outermost
643 = outermost_invariant_loop_for_expr (loop, name);
644 if (loop_depth (li.outermost) < loop_depth (outermost))
645 li.outermost = outermost;
646
647 if (dump_enabled_p ())
648 {
649 dump_printf_loc (MSG_NOTE, stmt, "want to version containing loop"
650 " for when %T == 1", name);
651 if (outermost == loop)
652 dump_printf (MSG_NOTE, "; cannot hoist check further");
653 else
654 {
655 dump_printf (MSG_NOTE, "; could implement the check at loop"
656 " depth %d", loop_depth (outermost));
657 if (loop_depth (li.outermost) > loop_depth (outermost))
658 dump_printf (MSG_NOTE, ", but other checks only allow"
659 " a depth of %d", loop_depth (li.outermost));
660 }
661 dump_printf (MSG_NOTE, "\n");
662 }
663
664 m_num_conditions += 1;
665 }
666 else
667 {
668 /* This is a duplicate request. */
669 if (dump_enabled_p ())
670 dump_printf_loc (MSG_NOTE, stmt, "already asked to version containing"
671 " loop for when %T == 1\n", name);
672 }
673 }
674
675 /* Return true if OP1_TREE is constant and if in principle it is worth
676 versioning an address fragment of the form:
677
678 i * OP1_TREE * OP2 * stride
679
680 for the case in which stride == 1. This in practice means testing
681 whether:
682
683 OP1_TREE * OP2 <= M_MAXIMUM_SCALE.
684
685 If RESULT is nonnull, store OP1_TREE * OP2 there when returning true. */
686
687 bool
688 loop_versioning::acceptable_multiplier_p (tree op1_tree,
689 unsigned HOST_WIDE_INT op2,
690 unsigned HOST_WIDE_INT *result)
691 {
692 if (tree_fits_uhwi_p (op1_tree))
693 {
694 unsigned HOST_WIDE_INT op1 = tree_to_uhwi (op1_tree);
695 /* The first part checks for overflow. */
696 if (op1 * op2 >= op2 && op1 * op2 <= m_maximum_scale)
697 {
698 if (result)
699 *result = op1 * op2;
700 return true;
701 }
702 }
703 return false;
704 }
705
706 /* Return true if it is worth using loop versioning on a memory access
707 of type TYPE. Store the size of the access in *SIZE if so. */
708
709 bool
710 loop_versioning::acceptable_type_p (tree type, unsigned HOST_WIDE_INT *size)
711 {
712 return (TYPE_SIZE_UNIT (type)
713 && acceptable_multiplier_p (TYPE_SIZE_UNIT (type), 1, size));
714 }
715
716 /* See whether OP is constant and whether we can multiply TERM by that
717 constant without exceeding M_MAXIMUM_SCALE. Return true and update
718 TERM if so. */
719
720 bool
721 loop_versioning::multiply_term_by (address_term_info &term, tree op)
722 {
723 return acceptable_multiplier_p (op, term.multiplier, &term.multiplier);
724 }
725
726 /* Decide whether an address fragment of the form STRIDE * MULTIPLIER
727 is likely to be indexing an innermost dimension, returning the result
728 as an INNER_* probability. */
729
730 inner_likelihood
731 loop_versioning::get_inner_likelihood (tree stride,
732 unsigned HOST_WIDE_INT multiplier)
733 {
734 const unsigned int MAX_NITERS = 8;
735
736 /* Iterate over possible values of STRIDE. Return INNER_LIKELY if at
737 least one of those values is likely to be for the innermost dimension.
738 Record in UNLIKELY_P if at least one of those values is unlikely to be
739 for the innermost dimension.
740
741 E.g. for:
742
743 stride = cond ? a * b : 1
744
745 we should treat STRIDE as being a likely inner dimension, since
746 we know that it is 1 under at least some circumstances. (See the
747 Fortran example below.) However:
748
749 stride = a * b
750
751 on its own is unlikely to be for the innermost dimension, since
752 that would require both a and b to be 1 at runtime. */
753 bool unlikely_p = false;
754 tree worklist[MAX_NITERS];
755 unsigned int length = 0;
756 worklist[length++] = stride;
757 for (unsigned int i = 0; i < length; ++i)
758 {
759 tree expr = worklist[i];
760
761 if (CONSTANT_CLASS_P (expr))
762 {
763 /* See if EXPR * MULTIPLIER would be consistent with an individual
764 access or a small grouped access. */
765 if (acceptable_multiplier_p (expr, multiplier))
766 return INNER_LIKELY;
767 else
768 unlikely_p = true;
769 }
770 else if (gimple *stmt = maybe_get_stmt (expr))
771 {
772 /* If EXPR is set by a PHI node, queue its arguments in case
773 we find one that is consistent with an inner dimension.
774
775 An important instance of this is the Fortran handling of array
776 descriptors, which calculates the stride of the inner dimension
777 using a PHI equivalent of:
778
779 raw_stride = a.dim[0].stride;
780 stride = raw_stride != 0 ? raw_stride : 1;
781
782 (Strides for outer dimensions do not treat 0 specially.) */
783 if (gphi *phi = dyn_cast <gphi *> (stmt))
784 {
785 unsigned int nargs = gimple_phi_num_args (phi);
786 for (unsigned int j = 0; j < nargs && length < MAX_NITERS; ++j)
787 worklist[length++] = strip_casts (gimple_phi_arg_def (phi, j));
788 }
789 /* If the value is set by an assignment, expect it to be read
790 from memory (such as an array descriptor) rather than be
791 calculated. */
792 else if (gassign *assign = dyn_cast <gassign *> (stmt))
793 {
794 if (!gimple_assign_load_p (assign))
795 unlikely_p = true;
796 }
797 /* Things like calls don't really tell us anything. */
798 }
799 }
800
801 /* We didn't find any possible values of STRIDE that were likely to be
802 for the innermost dimension. If we found one that was actively
803 unlikely to be for the innermost dimension, assume that that applies
804 to STRIDE too. */
805 return unlikely_p ? INNER_UNLIKELY : INNER_DONT_KNOW;
806 }
807
808 /* Dump the likelihood that TERM's stride is for the innermost dimension.
809 ADDRESS is the address that contains TERM. */
810
811 void
812 loop_versioning::dump_inner_likelihood (address_info &address,
813 address_term_info &term)
814 {
815 if (term.inner_likelihood == INNER_LIKELY)
816 dump_printf_loc (MSG_NOTE, address.stmt, "%T is likely to be the"
817 " innermost dimension\n", term.stride);
818 else if (term.inner_likelihood == INNER_UNLIKELY)
819 dump_printf_loc (MSG_NOTE, address.stmt, "%T is probably not the"
820 " innermost dimension\n", term.stride);
821 else
822 dump_printf_loc (MSG_NOTE, address.stmt, "cannot tell whether %T"
823 " is the innermost dimension\n", term.stride);
824 }
825
826 /* The caller has identified that STRIDE is the stride of interest
827 in TERM, and that the stride is applied in OP_LOOP. Record this
828 information in TERM, deciding whether STRIDE is likely to be for
829 the innermost dimension of an array and whether it represents a
830 versioning opportunity. ADDRESS is the address that contains TERM. */
831
832 void
833 loop_versioning::analyze_stride (address_info &address,
834 address_term_info &term,
835 tree stride, struct loop *op_loop)
836 {
837 term.stride = stride;
838
839 term.inner_likelihood = get_inner_likelihood (stride, term.multiplier);
840 if (dump_enabled_p ())
841 dump_inner_likelihood (address, term);
842
843 /* To be a versioning opportunity we require:
844
845 - The multiplier applied by TERM is equal to the access size,
846 so that when STRIDE is 1, the accesses in successive loop
847 iterations are consecutive.
848
849 This is deliberately conservative. We could relax it to handle
850 other cases (such as those with gaps between iterations) if we
851 find any real testcases for which it's useful.
852
853 - the stride is applied in the same loop as STMT rather than
854 in an outer loop. Although versioning for strides applied in
855 outer loops could help in some cases -- such as enabling
856 more loop interchange -- the savings are much lower than for
857 inner loops.
858
859 - the stride is an SSA name that is invariant in STMT's loop,
860 since otherwise versioning isn't possible. */
861 unsigned HOST_WIDE_INT access_size = address.max_offset - address.min_offset;
862 if (term.multiplier == access_size
863 && address.loop == op_loop
864 && TREE_CODE (stride) == SSA_NAME
865 && expr_invariant_in_loop_p (address.loop, stride))
866 {
867 term.versioning_opportunity_p = true;
868 if (dump_enabled_p ())
869 dump_printf_loc (MSG_NOTE, address.stmt, "%T == 1 is a versioning"
870 " opportunity\n", stride);
871 }
872 }
873
874 /* See whether address term TERM (which belongs to ADDRESS) is the result
875 of multiplying a varying SSA name by a loop-invariant SSA name.
876 Return true and update TERM if so.
877
878 This handles both cases that SCEV might handle, such as:
879
880 for (int i = 0; i < n; ++i)
881 res += a[i * stride];
882
883 and ones in which the term varies arbitrarily between iterations, such as:
884
885 for (int i = 0; i < n; ++i)
886 res += a[index[i] * stride]; */
887
888 bool
889 loop_versioning::find_per_loop_multiplication (address_info &address,
890 address_term_info &term)
891 {
892 gassign *mult = maybe_get_assign (term.expr);
893 if (!mult || gimple_assign_rhs_code (mult) != MULT_EXPR)
894 return false;
895
896 struct loop *mult_loop = loop_containing_stmt (mult);
897 if (!loop_outer (mult_loop))
898 return false;
899
900 tree op1 = strip_casts (gimple_assign_rhs1 (mult));
901 tree op2 = strip_casts (gimple_assign_rhs2 (mult));
902 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
903 return false;
904
905 bool invariant1_p = expr_invariant_in_loop_p (mult_loop, op1);
906 bool invariant2_p = expr_invariant_in_loop_p (mult_loop, op2);
907 if (invariant1_p == invariant2_p)
908 return false;
909
910 /* Make sure that the loop invariant is OP2 rather than OP1. */
911 if (invariant1_p)
912 std::swap (op1, op2);
913
914 if (dump_enabled_p ())
915 dump_printf_loc (MSG_NOTE, address.stmt, "address term %T = varying %T"
916 " * loop-invariant %T\n", term.expr, op1, op2);
917 analyze_stride (address, term, op2, mult_loop);
918 return true;
919 }
920
921 /* Try to use scalar evolutions to find an address stride for TERM,
922 which belongs to ADDRESS. Return true and update TERM if so.
923
924 Here we are interested in any evolution information we can find,
925 not just evolutions wrt ADDRESS->LOOP. For example, if we find that
926 an outer loop obviously iterates over the inner dimension of an array,
927 that information can help us eliminate worthless versioning opportunities
928 in inner loops. */
929
930 bool
931 loop_versioning::analyze_term_using_scevs (address_info &address,
932 address_term_info &term)
933 {
934 gimple *setter = maybe_get_stmt (term.expr);
935 if (!setter)
936 return false;
937
938 struct loop *wrt_loop = loop_containing_stmt (setter);
939 if (!loop_outer (wrt_loop))
940 return false;
941
942 tree chrec = strip_casts (analyze_scalar_evolution (wrt_loop, term.expr));
943 if (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
944 {
945 if (dump_enabled_p ())
946 dump_printf_loc (MSG_NOTE, address.stmt,
947 "address term %T = %T\n", term.expr, chrec);
948
949 /* Peel casts and accumulate constant multiplications, up to the
950 limit allowed by M_MAXIMUM_SCALE. */
951 tree stride = strip_casts (CHREC_RIGHT (chrec));
952 while (TREE_CODE (stride) == MULT_EXPR
953 && multiply_term_by (term, TREE_OPERAND (stride, 1)))
954 stride = strip_casts (TREE_OPERAND (stride, 0));
955
956 gassign *assign;
957 while ((assign = maybe_get_assign (stride))
958 && gimple_assign_rhs_code (assign) == MULT_EXPR
959 && multiply_term_by (term, gimple_assign_rhs2 (assign)))
960 {
961 if (dump_enabled_p ())
962 dump_printf_loc (MSG_NOTE, address.stmt,
963 "looking through %G", assign);
964 stride = strip_casts (gimple_assign_rhs1 (assign));
965 }
966
967 analyze_stride (address, term, stride, get_chrec_loop (chrec));
968 return true;
969 }
970
971 return false;
972 }
973
974 /* Address term TERM is an arbitrary term that provides no versioning
975 opportunities. Analyze it to see whether it contains any likely
976 inner strides, so that we don't mistakenly version for other
977 (less likely) candidates.
978
979 This copes with invariant innermost indices such as:
980
981 x(i, :) = 100
982
983 where the "i" component of the address is invariant in the loop
984 but provides the real inner stride.
985
986 ADDRESS is the address that contains TERM. */
987
988 void
989 loop_versioning::analyze_arbitrary_term (address_info &address,
990 address_term_info &term)
991
992 {
993 /* A multiplication offers two potential strides. Pick the one that
994 is most likely to be an innermost stride. */
995 tree expr = term.expr, alt = NULL_TREE;
996 gassign *mult = maybe_get_assign (expr);
997 if (mult && gimple_assign_rhs_code (mult) == MULT_EXPR)
998 {
999 expr = strip_casts (gimple_assign_rhs1 (mult));
1000 alt = strip_casts (gimple_assign_rhs2 (mult));
1001 }
1002 term.stride = expr;
1003 term.inner_likelihood = get_inner_likelihood (expr, term.multiplier);
1004 if (alt)
1005 {
1006 inner_likelihood alt_l = get_inner_likelihood (alt, term.multiplier);
1007 if (alt_l > term.inner_likelihood)
1008 {
1009 term.stride = alt;
1010 term.inner_likelihood = alt_l;
1011 }
1012 }
1013 if (dump_enabled_p ())
1014 dump_inner_likelihood (address, term);
1015 }
1016
1017 /* Try to identify loop strides in ADDRESS and try to choose realistic
1018 versioning opportunities based on these strides.
1019
1020 The main difficulty here isn't finding strides that could be used
1021 in a version check (that's pretty easy). The problem instead is to
1022 avoid versioning for some stride S that is unlikely ever to be 1 at
1023 runtime. Versioning for S == 1 on its own would lead to unnecessary
1024 code bloat, while adding S == 1 to more realistic version conditions
1025 would lose the optimisation opportunity offered by those other conditions.
1026
1027 For example, versioning for a stride of 1 in the Fortran code:
1028
1029 integer :: a(:,:)
1030 a(1,:) = 1
1031
1032 is not usually a good idea, since the assignment is iterating over
1033 an outer dimension and is relatively unlikely to have a stride of 1.
1034 (It isn't impossible, since the inner dimension might be 1, or the
1035 array might be transposed.) Similarly, in:
1036
1037 integer :: a(:,:), b(:,:)
1038 b(:,1) = a(1,:)
1039
1040 b(:,1) is relatively likely to have a stride of 1 while a(1,:) isn't.
1041 Versioning for when both strides are 1 would lose most of the benefit
1042 of versioning for b's access.
1043
1044 The approach we take is as follows:
1045
1046 - Analyze each term to see whether it has an identifiable stride,
1047 regardless of which loop applies the stride.
1048
1049 - Evaluate the likelihood that each such stride is for the innermost
1050 dimension of an array, on the scale "likely", "don't know" or "unlikely".
1051
1052 - If there is a single "likely" innermost stride, and that stride is
1053 applied in the loop that contains STMT, version the loop for when the
1054 stride is 1. This deals with the cases in which we're fairly
1055 confident of doing the right thing, such as the b(:,1) reference above.
1056
1057 - If there are no "likely" innermost strides, and the loop that contains
1058 STMT uses a stride that we rated as "don't know", version for when
1059 that stride is 1. This is principally used for C code such as:
1060
1061 for (int i = 0; i < n; ++i)
1062 a[i * x] = ...;
1063
1064 and:
1065
1066 for (int j = 0; j < n; ++j)
1067 for (int i = 0; i < n; ++i)
1068 a[i * x + j * y] = ...;
1069
1070 where nothing in the way "x" and "y" are set gives a hint as to
1071 whether "i" iterates over the innermost dimension of the array.
1072 In these situations it seems reasonable to assume the the
1073 programmer has nested the loops appropriately (although of course
1074 there are examples like GEMM in which this assumption doesn't hold
1075 for all accesses in the loop).
1076
1077 This case is also useful for the Fortran equivalent of the
1078 above C code. */
1079
1080 void
1081 loop_versioning::analyze_address_fragment (address_info &address)
1082 {
1083 if (dump_enabled_p ())
1084 {
1085 dump_printf_loc (MSG_NOTE, address.stmt, "analyzing address fragment ");
1086 dump_address_info (MSG_NOTE, address);
1087 dump_printf (MSG_NOTE, "\n");
1088 }
1089
1090 /* Analyze each component of the sum to see whether it involves an
1091 apparent stride.
1092
1093 There is an overlap between the addresses that
1094 find_per_loop_multiplication and analyze_term_using_scevs can handle,
1095 but the former is much cheaper than SCEV analysis, so try it first. */
1096 for (unsigned int i = 0; i < address.terms.length (); ++i)
1097 if (!find_per_loop_multiplication (address, address.terms[i])
1098 && !analyze_term_using_scevs (address, address.terms[i])
1099 && !POINTER_TYPE_P (TREE_TYPE (address.terms[i].expr)))
1100 analyze_arbitrary_term (address, address.terms[i]);
1101
1102 /* Check for strides that are likely to be for the innermost dimension.
1103
1104 1. If there is a single likely inner stride, if it is an SSA name,
1105 and if it is worth versioning the loop for when the SSA name
1106 equals 1, record that we want to do so.
1107
1108 2. Otherwise, if there any likely inner strides, bail out. This means
1109 one of:
1110
1111 (a) There are multiple likely inner strides. This suggests we're
1112 confused and be can't be confident of doing the right thing.
1113
1114 (b) There is a single likely inner stride and it is a constant
1115 rather than an SSA name. This can mean either that the access
1116 is a natural one without any variable strides, such as:
1117
1118 for (int i = 0; i < n; ++i)
1119 a[i] += 1;
1120
1121 or that a variable stride is applied to an outer dimension,
1122 such as:
1123
1124 for (int i = 0; i < n; ++i)
1125 for (int j = 0; j < n; ++j)
1126 a[j * stride][i] += 1;
1127
1128 (c) There is a single likely inner stride, and it is an SSA name,
1129 but it isn't a worthwhile versioning opportunity. This usually
1130 means that the variable stride is applied by an outer loop,
1131 such as:
1132
1133 for (int i = 0; i < n; ++i)
1134 for (int j = 0; j < n; ++j)
1135 a[j][i * stride] += 1;
1136
1137 or (using an example with a more natural loop nesting):
1138
1139 for (int i = 0; i < n; ++i)
1140 for (int j = 0; j < n; ++j)
1141 a[i][j] += b[i * stride];
1142
1143 in cases where b[i * stride] cannot (yet) be hoisted for
1144 aliasing reasons.
1145
1146 3. If there are no likely inner strides, fall through to the next
1147 set of checks.
1148
1149 Pointer equality is enough to check for uniqueness in (1), since we
1150 only care about SSA names. */
1151 tree chosen_stride = NULL_TREE;
1152 tree version_stride = NULL_TREE;
1153 for (unsigned int i = 0; i < address.terms.length (); ++i)
1154 if (chosen_stride != address.terms[i].stride
1155 && address.terms[i].inner_likelihood == INNER_LIKELY)
1156 {
1157 if (chosen_stride)
1158 return;
1159 chosen_stride = address.terms[i].stride;
1160 if (address.terms[i].versioning_opportunity_p)
1161 version_stride = chosen_stride;
1162 }
1163
1164 /* If there are no likely inner strides, see if there is a single
1165 versioning opportunity for a stride that was rated as INNER_DONT_KNOW.
1166 See the comment above the function for the cases that this code
1167 handles. */
1168 if (!chosen_stride)
1169 for (unsigned int i = 0; i < address.terms.length (); ++i)
1170 if (version_stride != address.terms[i].stride
1171 && address.terms[i].inner_likelihood == INNER_DONT_KNOW
1172 && address.terms[i].versioning_opportunity_p)
1173 {
1174 if (version_stride)
1175 return;
1176 version_stride = address.terms[i].stride;
1177 }
1178
1179 if (version_stride)
1180 version_for_unity (address.stmt, version_stride);
1181 }
1182
1183 /* Treat EXPR * MULTIPLIER + OFFSET as a fragment of an address that addresses
1184 TYPE_SIZE bytes and record this address fragment for later processing.
1185 STMT is the statement that contains the address. */
1186
1187 void
1188 loop_versioning::record_address_fragment (gimple *stmt,
1189 unsigned HOST_WIDE_INT type_size,
1190 tree expr,
1191 unsigned HOST_WIDE_INT multiplier,
1192 HOST_WIDE_INT offset)
1193 {
1194 /* We're only interested in computed values. */
1195 if (TREE_CODE (expr) != SSA_NAME)
1196 return;
1197
1198 /* Quick exit if no part of the address is calculated in STMT's loop,
1199 since such addresses have no versioning opportunities. */
1200 struct loop *loop = loop_containing_stmt (stmt);
1201 if (expr_invariant_in_loop_p (loop, expr))
1202 return;
1203
1204 /* Set up an address_info for EXPR * MULTIPLIER. */
1205 address_info *address = XOBNEW (&m_obstack, address_info);
1206 new (address) address_info;
1207 address->stmt = stmt;
1208 address->loop = loop;
1209 address->base = NULL_TREE;
1210 address->terms.quick_grow (1);
1211 address->terms[0].expr = expr;
1212 address->terms[0].multiplier = multiplier;
1213 address->terms[0].stride = NULL_TREE;
1214 address->terms[0].inner_likelihood = INNER_UNLIKELY;
1215 address->terms[0].versioning_opportunity_p = false;
1216 address->min_offset = offset;
1217
1218 /* Peel apart the expression into a sum of address_terms, where each
1219 term is multiplied by a constant. Treat a + b and a - b the same,
1220 since it doesn't matter for our purposes whether an address is
1221 increasing or decreasing. Distribute (a + b) * constant into
1222 a * constant + b * constant.
1223
1224 We don't care which loop each term belongs to, since we want to
1225 examine as many candidate strides as possible when determining
1226 which is likely to be for the innermost dimension. We therefore
1227 don't limit the search to statements in STMT's loop. */
1228 for (unsigned int i = 0; i < address->terms.length (); )
1229 {
1230 if (gassign *assign = maybe_get_assign (address->terms[i].expr))
1231 {
1232 tree_code code = gimple_assign_rhs_code (assign);
1233 if (code == PLUS_EXPR
1234 || code == POINTER_PLUS_EXPR
1235 || code == MINUS_EXPR)
1236 {
1237 tree op1 = gimple_assign_rhs1 (assign);
1238 tree op2 = gimple_assign_rhs2 (assign);
1239 if (TREE_CODE (op2) == INTEGER_CST)
1240 {
1241 address->terms[i].expr = strip_casts (op1);
1242 /* This is heuristic only, so don't worry about truncation
1243 or overflow. */
1244 address->min_offset += (TREE_INT_CST_LOW (op2)
1245 * address->terms[i].multiplier);
1246 continue;
1247 }
1248 else if (address->terms.length () < address_info::MAX_TERMS)
1249 {
1250 unsigned int j = address->terms.length ();
1251 address->terms.quick_push (address->terms[i]);
1252 address->terms[i].expr = strip_casts (op1);
1253 address->terms[j].expr = strip_casts (op2);
1254 continue;
1255 }
1256 }
1257 if (code == MULT_EXPR)
1258 {
1259 tree op1 = gimple_assign_rhs1 (assign);
1260 tree op2 = gimple_assign_rhs2 (assign);
1261 if (multiply_term_by (address->terms[i], op2))
1262 {
1263 address->terms[i].expr = strip_casts (op1);
1264 continue;
1265 }
1266 }
1267 }
1268 i += 1;
1269 }
1270
1271 /* Peel off any symbolic pointer. */
1272 if (TREE_CODE (address->terms[0].expr) != SSA_NAME
1273 && address->terms[0].multiplier == 1)
1274 {
1275 if (address->terms.length () == 1)
1276 {
1277 obstack_free (&m_obstack, address);
1278 return;
1279 }
1280 address->base = address->terms[0].expr;
1281 address->terms.ordered_remove (0);
1282 }
1283
1284 /* Require all remaining terms to be SSA names. (This could be false
1285 for unfolded statements, but they aren't worth dealing with.) */
1286 for (unsigned int i = 0; i < address->terms.length (); ++i)
1287 if (TREE_CODE (address->terms[i].expr) != SSA_NAME)
1288 {
1289 obstack_free (&m_obstack, address);
1290 return;
1291 }
1292
1293 /* The loop above set MIN_OFFSET based on the first byte of the
1294 referenced data. Calculate the end + 1. */
1295 address->max_offset = address->min_offset + type_size;
1296
1297 /* Put the terms into a canonical order for the hash table lookup below. */
1298 address->terms.qsort (compare_address_terms);
1299
1300 if (dump_enabled_p ())
1301 {
1302 dump_printf_loc (MSG_NOTE, stmt, "recording address fragment %T", expr);
1303 if (multiplier != 1)
1304 dump_printf (MSG_NOTE, " * %wd", multiplier);
1305 dump_printf (MSG_NOTE, " = ");
1306 dump_address_info (MSG_NOTE, *address);
1307 dump_printf (MSG_NOTE, "\n");
1308 }
1309
1310 /* Pool address information with the same terms (but potentially
1311 different offsets). */
1312 address_info **slot = m_address_table.find_slot (address, INSERT);
1313 if (address_info *old_address = *slot)
1314 {
1315 /* We've already seen an address with the same terms. Extend the
1316 offset range to account for this access. Doing this can paper
1317 over gaps, such as in:
1318
1319 a[i * stride * 4] + a[i * stride * 4 + 3];
1320
1321 where nothing references "+ 1" or "+ 2". However, the vectorizer
1322 handles such gapped accesses without problems, so it's not worth
1323 trying to exclude them. */
1324 if (old_address->min_offset > address->min_offset)
1325 old_address->min_offset = address->min_offset;
1326 if (old_address->max_offset < address->max_offset)
1327 old_address->max_offset = address->max_offset;
1328 obstack_free (&m_obstack, address);
1329 }
1330 else
1331 {
1332 /* This is the first time we've seen an address with these terms. */
1333 *slot = address;
1334 m_address_list.safe_push (address);
1335 }
1336 }
1337
1338 /* Analyze expression EXPR, which occurs in STMT. */
1339
1340 void
1341 loop_versioning::analyze_expr (gimple *stmt, tree expr)
1342 {
1343 unsigned HOST_WIDE_INT type_size;
1344
1345 while (handled_component_p (expr))
1346 {
1347 /* See whether we can use versioning to avoid a multiplication
1348 in an array index. */
1349 if (TREE_CODE (expr) == ARRAY_REF
1350 && acceptable_type_p (TREE_TYPE (expr), &type_size))
1351 record_address_fragment (stmt, type_size,
1352 TREE_OPERAND (expr, 1), type_size, 0);
1353 expr = TREE_OPERAND (expr, 0);
1354 }
1355
1356 /* See whether we can use versioning to avoid a multiplication
1357 in the pointer calculation of a MEM_REF. */
1358 if (TREE_CODE (expr) == MEM_REF
1359 && acceptable_type_p (TREE_TYPE (expr), &type_size))
1360 record_address_fragment (stmt, type_size, TREE_OPERAND (expr, 0), 1,
1361 /* This is heuristic only, so don't worry
1362 about truncation or overflow. */
1363 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1364
1365 /* These would be easy to handle if they existed at this stage. */
1366 gcc_checking_assert (TREE_CODE (expr) != TARGET_MEM_REF);
1367 }
1368
1369 /* Analyze all the statements in BB looking for useful version checks.
1370 Return true on success, false if something prevents the block from
1371 being versioned. */
1372
1373 bool
1374 loop_versioning::analyze_block (basic_block bb)
1375 {
1376 struct loop *loop = bb->loop_father;
1377 loop_info &li = get_loop_info (loop);
1378 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1379 gsi_next (&gsi))
1380 {
1381 gimple *stmt = gsi_stmt (gsi);
1382 if (is_gimple_debug (stmt))
1383 continue;
1384
1385 if (expensive_stmt_p (stmt))
1386 {
1387 if (dump_enabled_p ())
1388 dump_printf_loc (MSG_NOTE, stmt, "expensive statement"
1389 " prevents versioning: %G", stmt);
1390 return false;
1391 }
1392
1393 /* Only look for direct versioning opportunities in inner loops
1394 since the benefit tends to be much smaller for outer loops. */
1395 if (!loop->inner)
1396 {
1397 unsigned int nops = gimple_num_ops (stmt);
1398 for (unsigned int i = 0; i < nops; ++i)
1399 if (tree op = gimple_op (stmt, i))
1400 analyze_expr (stmt, op);
1401 }
1402
1403 /* The point of the instruction limit is to prevent excessive
1404 code growth, so this is a size-based estimate even though
1405 the optimization is aimed at speed. */
1406 li.num_insns += estimate_num_insns (stmt, &eni_size_weights);
1407 }
1408
1409 return true;
1410 }
1411
1412 /* Analyze all the blocks in the function, looking for useful version checks.
1413 Return true if we found one. */
1414
1415 bool
1416 loop_versioning::analyze_blocks ()
1417 {
1418 AUTO_DUMP_SCOPE ("analyze_blocks",
1419 dump_user_location_t::from_function_decl (m_fn->decl));
1420
1421 /* For now we don't try to version the whole function, although
1422 versioning at that level could be useful in some cases. */
1423 get_loop_info (get_loop (m_fn, 0)).rejected_p = true;
1424
1425 struct loop *loop;
1426 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1427 {
1428 loop_info &linfo = get_loop_info (loop);
1429
1430 /* Ignore cold loops. */
1431 if (!optimize_loop_for_speed_p (loop))
1432 linfo.rejected_p = true;
1433
1434 /* See whether an inner loop prevents versioning of this loop. */
1435 if (!linfo.rejected_p)
1436 for (struct loop *inner = loop->inner; inner; inner = inner->next)
1437 if (get_loop_info (inner).rejected_p)
1438 {
1439 linfo.rejected_p = true;
1440 break;
1441 }
1442
1443 /* If versioning the loop is still a possibility, examine the
1444 statements in the loop to look for versioning opportunities. */
1445 if (!linfo.rejected_p)
1446 {
1447 void *start_point = obstack_alloc (&m_obstack, 0);
1448
1449 for (basic_block bb = linfo.block_list; bb;
1450 bb = m_next_block_in_loop[bb->index])
1451 if (!analyze_block (bb))
1452 {
1453 linfo.rejected_p = true;
1454 break;
1455 }
1456
1457 if (!linfo.rejected_p)
1458 {
1459 /* Process any queued address fragments, now that we have
1460 complete grouping information. */
1461 address_info *address;
1462 unsigned int i;
1463 FOR_EACH_VEC_ELT (m_address_list, i, address)
1464 analyze_address_fragment (*address);
1465 }
1466
1467 m_address_table.empty ();
1468 m_address_list.truncate (0);
1469 obstack_free (&m_obstack, start_point);
1470 }
1471 }
1472
1473 return m_num_conditions != 0;
1474 }
1475
1476 /* Use the ranges in VRS to remove impossible versioning conditions from
1477 LOOP. */
1478
1479 void
1480 loop_versioning::prune_loop_conditions (struct loop *loop, vr_values *vrs)
1481 {
1482 loop_info &li = get_loop_info (loop);
1483
1484 int to_remove = -1;
1485 bitmap_iterator bi;
1486 unsigned int i;
1487 EXECUTE_IF_SET_IN_BITMAP (&li.unity_names, 0, i, bi)
1488 {
1489 tree name = ssa_name (i);
1490 value_range *vr = vrs->get_value_range (name);
1491 if (vr && !range_includes_p (vr, 1))
1492 {
1493 if (dump_enabled_p ())
1494 dump_printf_loc (MSG_NOTE, find_loop_location (loop),
1495 "%T can never be 1 in this loop\n", name);
1496
1497 if (to_remove >= 0)
1498 bitmap_clear_bit (&li.unity_names, to_remove);
1499 to_remove = i;
1500 m_num_conditions -= 1;
1501 }
1502 }
1503 if (to_remove >= 0)
1504 bitmap_clear_bit (&li.unity_names, to_remove);
1505 }
1506
1507 /* Remove any scheduled loop version conditions that will never be true.
1508 Return true if any remain. */
1509
1510 bool
1511 loop_versioning::prune_conditions ()
1512 {
1513 AUTO_DUMP_SCOPE ("prune_loop_conditions",
1514 dump_user_location_t::from_function_decl (m_fn->decl));
1515
1516 calculate_dominance_info (CDI_DOMINATORS);
1517 lv_dom_walker dom_walker (*this);
1518 dom_walker.walk (ENTRY_BLOCK_PTR_FOR_FN (m_fn));
1519 return m_num_conditions != 0;
1520 }
1521
1522 /* Merge the version checks for INNER into immediately-enclosing loop
1523 OUTER. */
1524
1525 void
1526 loop_versioning::merge_loop_info (struct loop *outer, struct loop *inner)
1527 {
1528 loop_info &inner_li = get_loop_info (inner);
1529 loop_info &outer_li = get_loop_info (outer);
1530
1531 if (dump_enabled_p ())
1532 {
1533 bitmap_iterator bi;
1534 unsigned int i;
1535 EXECUTE_IF_SET_IN_BITMAP (&inner_li.unity_names, 0, i, bi)
1536 if (!bitmap_bit_p (&outer_li.unity_names, i))
1537 dump_printf_loc (MSG_NOTE, find_loop_location (inner),
1538 "hoisting check that %T == 1 to outer loop\n",
1539 ssa_name (i));
1540 }
1541
1542 bitmap_ior_into (&outer_li.unity_names, &inner_li.unity_names);
1543 if (loop_depth (outer_li.outermost) < loop_depth (inner_li.outermost))
1544 outer_li.outermost = inner_li.outermost;
1545 }
1546
1547 /* Add LOOP to the queue of loops to version. */
1548
1549 void
1550 loop_versioning::add_loop_to_queue (struct loop *loop)
1551 {
1552 loop_info &li = get_loop_info (loop);
1553
1554 if (dump_enabled_p ())
1555 dump_printf_loc (MSG_NOTE, find_loop_location (loop),
1556 "queuing this loop for versioning\n");
1557 m_loops_to_version.safe_push (loop);
1558
1559 /* Don't try to version superloops. */
1560 li.rejected_p = true;
1561 }
1562
1563 /* Decide whether the cost model would allow us to version LOOP,
1564 either directly or as part of a parent loop, and return true if so.
1565 This does not imply that the loop is actually worth versioning in its
1566 own right, just that it would be valid to version it if something
1567 benefited.
1568
1569 We have already made this decision for all inner loops of LOOP. */
1570
1571 bool
1572 loop_versioning::decide_whether_loop_is_versionable (struct loop *loop)
1573 {
1574 loop_info &li = get_loop_info (loop);
1575
1576 if (li.rejected_p)
1577 return false;
1578
1579 /* Examine the decisions made for inner loops. */
1580 for (struct loop *inner = loop->inner; inner; inner = inner->next)
1581 {
1582 loop_info &inner_li = get_loop_info (inner);
1583 if (inner_li.rejected_p)
1584 {
1585 if (dump_enabled_p ())
1586 dump_printf_loc (MSG_NOTE, find_loop_location (loop),
1587 "not versioning this loop because one of its"
1588 " inner loops should not be versioned\n");
1589 return false;
1590 }
1591
1592 if (inner_li.worth_versioning_p ())
1593 li.subloops_benefit_p = true;
1594
1595 /* Accumulate the number of instructions from subloops that are not
1596 the innermost, or that don't benefit from versioning. Only the
1597 instructions from innermost loops that benefit from versioning
1598 should be weighed against loop-versioning-max-inner-insns;
1599 everything else should be weighed against
1600 loop-versioning-max-outer-insns. */
1601 if (!inner_li.worth_versioning_p () || inner->inner)
1602 {
1603 if (dump_enabled_p ())
1604 dump_printf_loc (MSG_NOTE, find_loop_location (loop),
1605 "counting %d instructions from this loop"
1606 " against its parent loop\n", inner_li.num_insns);
1607 li.num_insns += inner_li.num_insns;
1608 }
1609 }
1610
1611 /* Enforce the size limits. */
1612 if (li.worth_versioning_p ())
1613 {
1614 unsigned int max_num_insns = max_insns_for_loop (loop);
1615 if (dump_enabled_p ())
1616 dump_printf_loc (MSG_NOTE, find_loop_location (loop),
1617 "this loop has %d instructions, against"
1618 " a versioning limit of %d\n",
1619 li.num_insns, max_num_insns);
1620 if (li.num_insns > max_num_insns)
1621 {
1622 if (dump_enabled_p ())
1623 dump_printf_loc (MSG_MISSED_OPTIMIZATION
1624 | MSG_PRIORITY_USER_FACING,
1625 find_loop_location (loop),
1626 "this loop is too big to version");
1627 return false;
1628 }
1629 }
1630
1631 /* Hoist all version checks from subloops to this loop. */
1632 for (struct loop *subloop = loop->inner; subloop; subloop = subloop->next)
1633 merge_loop_info (loop, subloop);
1634
1635 return true;
1636 }
1637
1638 /* Decide which loops to version and add them to the versioning queue.
1639 Return true if there are any loops to version. */
1640
1641 bool
1642 loop_versioning::make_versioning_decisions ()
1643 {
1644 AUTO_DUMP_SCOPE ("make_versioning_decisions",
1645 dump_user_location_t::from_function_decl (m_fn->decl));
1646
1647 struct loop *loop;
1648 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1649 {
1650 loop_info &linfo = get_loop_info (loop);
1651 if (decide_whether_loop_is_versionable (loop))
1652 {
1653 /* Commit to versioning LOOP directly if we can't hoist the
1654 version checks any further. */
1655 if (linfo.worth_versioning_p ()
1656 && (loop_depth (loop) == 1 || linfo.outermost == loop))
1657 add_loop_to_queue (loop);
1658 }
1659 else
1660 {
1661 /* We can't version this loop, so individually version any
1662 subloops that would benefit and haven't been versioned yet. */
1663 linfo.rejected_p = true;
1664 for (struct loop *subloop = loop->inner; subloop;
1665 subloop = subloop->next)
1666 if (get_loop_info (subloop).worth_versioning_p ())
1667 add_loop_to_queue (subloop);
1668 }
1669 }
1670
1671 return !m_loops_to_version.is_empty ();
1672 }
1673
1674 /* Attempt to implement loop versioning for LOOP, using the information
1675 cached in the associated loop_info. Return true on success. */
1676
1677 bool
1678 loop_versioning::version_loop (struct loop *loop)
1679 {
1680 loop_info &li = get_loop_info (loop);
1681
1682 /* Build up a condition that selects the original loop instead of
1683 the simplified loop. */
1684 tree cond = boolean_false_node;
1685 bitmap_iterator bi;
1686 unsigned int i;
1687 EXECUTE_IF_SET_IN_BITMAP (&li.unity_names, 0, i, bi)
1688 {
1689 tree name = ssa_name (i);
1690 tree ne_one = fold_build2 (NE_EXPR, boolean_type_node, name,
1691 build_one_cst (TREE_TYPE (name)));
1692 cond = fold_build2 (TRUTH_OR_EXPR, boolean_type_node, cond, ne_one);
1693 }
1694
1695 /* Convert the condition into a suitable gcond. */
1696 gimple_seq stmts = NULL;
1697 cond = force_gimple_operand_1 (cond, &stmts, is_gimple_condexpr, NULL_TREE);
1698
1699 /* Version the loop. */
1700 initialize_original_copy_tables ();
1701 basic_block cond_bb;
1702 li.optimized_loop = loop_version (loop, cond, &cond_bb,
1703 profile_probability::unlikely (),
1704 profile_probability::likely (),
1705 profile_probability::unlikely (),
1706 profile_probability::likely (), true);
1707 free_original_copy_tables ();
1708 if (!li.optimized_loop)
1709 {
1710 if (dump_enabled_p ())
1711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, find_loop_location (loop),
1712 "tried but failed to version this loop for when"
1713 " certain strides are 1\n");
1714 return false;
1715 }
1716
1717 if (dump_enabled_p ())
1718 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, find_loop_location (loop),
1719 "versioned this loop for when certain strides are 1\n");
1720
1721 /* Insert the statements that feed COND. */
1722 if (stmts)
1723 {
1724 gimple_stmt_iterator gsi = gsi_last_bb (cond_bb);
1725 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1726 }
1727
1728 return true;
1729 }
1730
1731 /* Attempt to version all loops in the versioning queue. */
1732
1733 void
1734 loop_versioning::implement_versioning_decisions ()
1735 {
1736 /* No AUTO_DUMP_SCOPE here since all messages are top-level and
1737 user-facing at this point. */
1738
1739 bool any_succeeded_p = false;
1740 struct loop *loop;
1741 unsigned int i;
1742 FOR_EACH_VEC_ELT (m_loops_to_version, i, loop)
1743 if (version_loop (loop))
1744 any_succeeded_p = true;
1745 if (!any_succeeded_p)
1746 return;
1747
1748 update_ssa (TODO_update_ssa);
1749
1750 /* Simplify the new loop, which is used when COND is false. */
1751 FOR_EACH_VEC_ELT (m_loops_to_version, i, loop)
1752 {
1753 loop_info &linfo = get_loop_info (loop);
1754 if (linfo.optimized_loop)
1755 name_prop (linfo).substitute_and_fold (linfo.optimized_loop->header);
1756 }
1757 }
1758
1759 /* Run the pass and return a set of TODO_* flags. */
1760
1761 unsigned int
1762 loop_versioning::run ()
1763 {
1764 gcc_assert (scev_initialized_p ());
1765
1766 if (analyze_blocks ()
1767 && prune_conditions ()
1768 && make_versioning_decisions ())
1769 implement_versioning_decisions ();
1770
1771 return 0;
1772 }
1773
1774 /* Loop versioning pass. */
1775
1776 const pass_data pass_data_loop_versioning =
1777 {
1778 GIMPLE_PASS, /* type */
1779 "lversion", /* name */
1780 OPTGROUP_LOOP, /* optinfo_flags */
1781 TV_LOOP_VERSIONING, /* tv_id */
1782 PROP_cfg, /* properties_required */
1783 0, /* properties_provided */
1784 0, /* properties_destroyed */
1785 0, /* todo_flags_start */
1786 0, /* todo_flags_finish */
1787 };
1788
1789 class pass_loop_versioning : public gimple_opt_pass
1790 {
1791 public:
1792 pass_loop_versioning (gcc::context *ctxt)
1793 : gimple_opt_pass (pass_data_loop_versioning, ctxt)
1794 {}
1795
1796 /* opt_pass methods: */
1797 virtual bool gate (function *) { return flag_version_loops_for_strides; }
1798 virtual unsigned int execute (function *);
1799 };
1800
1801 unsigned int
1802 pass_loop_versioning::execute (function *fn)
1803 {
1804 if (number_of_loops (fn) <= 1)
1805 return 0;
1806
1807 return loop_versioning (fn).run ();
1808 }
1809
1810 } // anon namespace
1811
1812 gimple_opt_pass *
1813 make_pass_loop_versioning (gcc::context *ctxt)
1814 {
1815 return new pass_loop_versioning (ctxt);
1816 }