]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
[Ada] Small improvement to Expand_N_Unchecked_Type_Conversion
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2020 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47 #include "langhooks.h"
48
49
50 /* All the tuples have their operand vector (if present) at the very bottom
51 of the structure. Therefore, the offset required to find the
52 operands vector the size of the structure minus the size of the 1
53 element tree array at the end (see gimple_ops). */
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
55 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
56 EXPORTED_CONST size_t gimple_ops_offset_[] = {
57 #include "gsstruct.def"
58 };
59 #undef DEFGSSTRUCT
60
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
62 static const size_t gsstruct_code_size[] = {
63 #include "gsstruct.def"
64 };
65 #undef DEFGSSTRUCT
66
67 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
68 const char *const gimple_code_name[] = {
69 #include "gimple.def"
70 };
71 #undef DEFGSCODE
72
73 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
74 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75 #include "gimple.def"
76 };
77 #undef DEFGSCODE
78
79 /* Gimple stats. */
80
81 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
82 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
83
84 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
85 static const char * const gimple_alloc_kind_names[] = {
86 "assignments",
87 "phi nodes",
88 "conditionals",
89 "everything else"
90 };
91
92 /* Static gimple tuple members. */
93 const enum gimple_code gassign::code_;
94 const enum gimple_code gcall::code_;
95 const enum gimple_code gcond::code_;
96
97
98 /* Gimple tuple constructors.
99 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
100 be passed a NULL to start with an empty sequence. */
101
102 /* Set the code for statement G to CODE. */
103
104 static inline void
105 gimple_set_code (gimple *g, enum gimple_code code)
106 {
107 g->code = code;
108 }
109
110 /* Return the number of bytes needed to hold a GIMPLE statement with
111 code CODE. */
112
113 size_t
114 gimple_size (enum gimple_code code, unsigned num_ops)
115 {
116 size_t size = gsstruct_code_size[gss_for_code (code)];
117 if (num_ops > 0)
118 size += (sizeof (tree) * (num_ops - 1));
119 return size;
120 }
121
122 /* Initialize GIMPLE statement G with CODE and NUM_OPS. */
123
124 void
125 gimple_init (gimple *g, enum gimple_code code, unsigned num_ops)
126 {
127 gimple_set_code (g, code);
128 gimple_set_num_ops (g, num_ops);
129
130 /* Do not call gimple_set_modified here as it has other side
131 effects and this tuple is still not completely built. */
132 g->modified = 1;
133 gimple_init_singleton (g);
134 }
135
136 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
137 operands. */
138
139 gimple *
140 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
141 {
142 size_t size;
143 gimple *stmt;
144
145 size = gimple_size (code, num_ops);
146 if (GATHER_STATISTICS)
147 {
148 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
149 gimple_alloc_counts[(int) kind]++;
150 gimple_alloc_sizes[(int) kind] += size;
151 }
152
153 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
154 gimple_init (stmt, code, num_ops);
155 return stmt;
156 }
157
158 /* Set SUBCODE to be the code of the expression computed by statement G. */
159
160 static inline void
161 gimple_set_subcode (gimple *g, unsigned subcode)
162 {
163 /* We only have 16 bits for the RHS code. Assert that we are not
164 overflowing it. */
165 gcc_assert (subcode < (1 << 16));
166 g->subcode = subcode;
167 }
168
169
170
171 /* Build a tuple with operands. CODE is the statement to build (which
172 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
173 for the new tuple. NUM_OPS is the number of operands to allocate. */
174
175 #define gimple_build_with_ops(c, s, n) \
176 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
177
178 static gimple *
179 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
180 unsigned num_ops MEM_STAT_DECL)
181 {
182 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
183 gimple_set_subcode (s, subcode);
184
185 return s;
186 }
187
188
189 /* Build a GIMPLE_RETURN statement returning RETVAL. */
190
191 greturn *
192 gimple_build_return (tree retval)
193 {
194 greturn *s
195 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
196 2));
197 if (retval)
198 gimple_return_set_retval (s, retval);
199 return s;
200 }
201
202 /* Reset alias information on call S. */
203
204 void
205 gimple_call_reset_alias_info (gcall *s)
206 {
207 if (gimple_call_flags (s) & ECF_CONST)
208 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
209 else
210 pt_solution_reset (gimple_call_use_set (s));
211 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
212 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
213 else
214 pt_solution_reset (gimple_call_clobber_set (s));
215 }
216
217 /* Helper for gimple_build_call, gimple_build_call_valist,
218 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
219 components of a GIMPLE_CALL statement to function FN with NARGS
220 arguments. */
221
222 static inline gcall *
223 gimple_build_call_1 (tree fn, unsigned nargs)
224 {
225 gcall *s
226 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
227 nargs + 3));
228 if (TREE_CODE (fn) == FUNCTION_DECL)
229 fn = build_fold_addr_expr (fn);
230 gimple_set_op (s, 1, fn);
231 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
232 gimple_call_reset_alias_info (s);
233 return s;
234 }
235
236
237 /* Build a GIMPLE_CALL statement to function FN with the arguments
238 specified in vector ARGS. */
239
240 gcall *
241 gimple_build_call_vec (tree fn, vec<tree> args)
242 {
243 unsigned i;
244 unsigned nargs = args.length ();
245 gcall *call = gimple_build_call_1 (fn, nargs);
246
247 for (i = 0; i < nargs; i++)
248 gimple_call_set_arg (call, i, args[i]);
249
250 return call;
251 }
252
253
254 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
255 arguments. The ... are the arguments. */
256
257 gcall *
258 gimple_build_call (tree fn, unsigned nargs, ...)
259 {
260 va_list ap;
261 gcall *call;
262 unsigned i;
263
264 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
265
266 call = gimple_build_call_1 (fn, nargs);
267
268 va_start (ap, nargs);
269 for (i = 0; i < nargs; i++)
270 gimple_call_set_arg (call, i, va_arg (ap, tree));
271 va_end (ap);
272
273 return call;
274 }
275
276
277 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
278 arguments. AP contains the arguments. */
279
280 gcall *
281 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
282 {
283 gcall *call;
284 unsigned i;
285
286 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
287
288 call = gimple_build_call_1 (fn, nargs);
289
290 for (i = 0; i < nargs; i++)
291 gimple_call_set_arg (call, i, va_arg (ap, tree));
292
293 return call;
294 }
295
296
297 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
298 Build the basic components of a GIMPLE_CALL statement to internal
299 function FN with NARGS arguments. */
300
301 static inline gcall *
302 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
303 {
304 gcall *s
305 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
306 nargs + 3));
307 s->subcode |= GF_CALL_INTERNAL;
308 gimple_call_set_internal_fn (s, fn);
309 gimple_call_reset_alias_info (s);
310 return s;
311 }
312
313
314 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
315 the number of arguments. The ... are the arguments. */
316
317 gcall *
318 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
319 {
320 va_list ap;
321 gcall *call;
322 unsigned i;
323
324 call = gimple_build_call_internal_1 (fn, nargs);
325 va_start (ap, nargs);
326 for (i = 0; i < nargs; i++)
327 gimple_call_set_arg (call, i, va_arg (ap, tree));
328 va_end (ap);
329
330 return call;
331 }
332
333
334 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
335 specified in vector ARGS. */
336
337 gcall *
338 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
339 {
340 unsigned i, nargs;
341 gcall *call;
342
343 nargs = args.length ();
344 call = gimple_build_call_internal_1 (fn, nargs);
345 for (i = 0; i < nargs; i++)
346 gimple_call_set_arg (call, i, args[i]);
347
348 return call;
349 }
350
351
352 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
353 assumed to be in GIMPLE form already. Minimal checking is done of
354 this fact. */
355
356 gcall *
357 gimple_build_call_from_tree (tree t, tree fnptrtype)
358 {
359 unsigned i, nargs;
360 gcall *call;
361
362 gcc_assert (TREE_CODE (t) == CALL_EXPR);
363
364 nargs = call_expr_nargs (t);
365
366 tree fndecl = NULL_TREE;
367 if (CALL_EXPR_FN (t) == NULL_TREE)
368 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
369 else
370 {
371 fndecl = get_callee_fndecl (t);
372 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
373 }
374
375 for (i = 0; i < nargs; i++)
376 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
377
378 gimple_set_block (call, TREE_BLOCK (t));
379 gimple_set_location (call, EXPR_LOCATION (t));
380
381 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
382 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
383 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
384 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
385 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
386 if (fndecl
387 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
388 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
389 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
390 else
391 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
392 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
393 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
394 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
395 gimple_set_no_warning (call, TREE_NO_WARNING (t));
396
397 if (fnptrtype)
398 {
399 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
400
401 /* Check if it's an indirect CALL and the type has the
402 nocf_check attribute. In that case propagate the information
403 to the gimple CALL insn. */
404 if (!fndecl)
405 {
406 gcc_assert (POINTER_TYPE_P (fnptrtype));
407 tree fntype = TREE_TYPE (fnptrtype);
408
409 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
410 gimple_call_set_nocf_check (call, TRUE);
411 }
412 }
413
414 return call;
415 }
416
417
418 /* Build a GIMPLE_ASSIGN statement.
419
420 LHS of the assignment.
421 RHS of the assignment which can be unary or binary. */
422
423 gassign *
424 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
425 {
426 enum tree_code subcode;
427 tree op1, op2, op3;
428
429 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
430 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
431 }
432
433
434 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
435 OP1, OP2 and OP3. */
436
437 static inline gassign *
438 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
439 tree op2, tree op3 MEM_STAT_DECL)
440 {
441 unsigned num_ops;
442 gassign *p;
443
444 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
445 code). */
446 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
447
448 p = as_a <gassign *> (
449 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
450 PASS_MEM_STAT));
451 gimple_assign_set_lhs (p, lhs);
452 gimple_assign_set_rhs1 (p, op1);
453 if (op2)
454 {
455 gcc_assert (num_ops > 2);
456 gimple_assign_set_rhs2 (p, op2);
457 }
458
459 if (op3)
460 {
461 gcc_assert (num_ops > 3);
462 gimple_assign_set_rhs3 (p, op3);
463 }
464
465 return p;
466 }
467
468 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
469 OP1, OP2 and OP3. */
470
471 gassign *
472 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
473 tree op2, tree op3 MEM_STAT_DECL)
474 {
475 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
476 }
477
478 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
479 OP1 and OP2. */
480
481 gassign *
482 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
483 tree op2 MEM_STAT_DECL)
484 {
485 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
486 PASS_MEM_STAT);
487 }
488
489 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
490
491 gassign *
492 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
493 {
494 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
495 PASS_MEM_STAT);
496 }
497
498
499 /* Build a GIMPLE_COND statement.
500
501 PRED is the condition used to compare LHS and the RHS.
502 T_LABEL is the label to jump to if the condition is true.
503 F_LABEL is the label to jump to otherwise. */
504
505 gcond *
506 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
507 tree t_label, tree f_label)
508 {
509 gcond *p;
510
511 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
512 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
513 gimple_cond_set_lhs (p, lhs);
514 gimple_cond_set_rhs (p, rhs);
515 gimple_cond_set_true_label (p, t_label);
516 gimple_cond_set_false_label (p, f_label);
517 return p;
518 }
519
520 /* Build a GIMPLE_COND statement from the conditional expression tree
521 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
522
523 gcond *
524 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
525 {
526 enum tree_code code;
527 tree lhs, rhs;
528
529 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
530 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
531 }
532
533 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
534 boolean expression tree COND. */
535
536 void
537 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
538 {
539 enum tree_code code;
540 tree lhs, rhs;
541
542 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
543 gimple_cond_set_condition (stmt, code, lhs, rhs);
544 }
545
546 /* Build a GIMPLE_LABEL statement for LABEL. */
547
548 glabel *
549 gimple_build_label (tree label)
550 {
551 glabel *p
552 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
553 gimple_label_set_label (p, label);
554 return p;
555 }
556
557 /* Build a GIMPLE_GOTO statement to label DEST. */
558
559 ggoto *
560 gimple_build_goto (tree dest)
561 {
562 ggoto *p
563 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
564 gimple_goto_set_dest (p, dest);
565 return p;
566 }
567
568
569 /* Build a GIMPLE_NOP statement. */
570
571 gimple *
572 gimple_build_nop (void)
573 {
574 return gimple_alloc (GIMPLE_NOP, 0);
575 }
576
577
578 /* Build a GIMPLE_BIND statement.
579 VARS are the variables in BODY.
580 BLOCK is the containing block. */
581
582 gbind *
583 gimple_build_bind (tree vars, gimple_seq body, tree block)
584 {
585 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
586 gimple_bind_set_vars (p, vars);
587 if (body)
588 gimple_bind_set_body (p, body);
589 if (block)
590 gimple_bind_set_block (p, block);
591 return p;
592 }
593
594 /* Helper function to set the simple fields of a asm stmt.
595
596 STRING is a pointer to a string that is the asm blocks assembly code.
597 NINPUT is the number of register inputs.
598 NOUTPUT is the number of register outputs.
599 NCLOBBERS is the number of clobbered registers.
600 */
601
602 static inline gasm *
603 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
604 unsigned nclobbers, unsigned nlabels)
605 {
606 gasm *p;
607 int size = strlen (string);
608
609 /* ASMs with labels cannot have outputs. This should have been
610 enforced by the front end. */
611 gcc_assert (nlabels == 0 || noutputs == 0);
612
613 p = as_a <gasm *> (
614 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
615 ninputs + noutputs + nclobbers + nlabels));
616
617 p->ni = ninputs;
618 p->no = noutputs;
619 p->nc = nclobbers;
620 p->nl = nlabels;
621 p->string = ggc_alloc_string (string, size);
622
623 if (GATHER_STATISTICS)
624 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
625
626 return p;
627 }
628
629 /* Build a GIMPLE_ASM statement.
630
631 STRING is the assembly code.
632 NINPUT is the number of register inputs.
633 NOUTPUT is the number of register outputs.
634 NCLOBBERS is the number of clobbered registers.
635 INPUTS is a vector of the input register parameters.
636 OUTPUTS is a vector of the output register parameters.
637 CLOBBERS is a vector of the clobbered register parameters.
638 LABELS is a vector of destination labels. */
639
640 gasm *
641 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
642 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
643 vec<tree, va_gc> *labels)
644 {
645 gasm *p;
646 unsigned i;
647
648 p = gimple_build_asm_1 (string,
649 vec_safe_length (inputs),
650 vec_safe_length (outputs),
651 vec_safe_length (clobbers),
652 vec_safe_length (labels));
653
654 for (i = 0; i < vec_safe_length (inputs); i++)
655 gimple_asm_set_input_op (p, i, (*inputs)[i]);
656
657 for (i = 0; i < vec_safe_length (outputs); i++)
658 gimple_asm_set_output_op (p, i, (*outputs)[i]);
659
660 for (i = 0; i < vec_safe_length (clobbers); i++)
661 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
662
663 for (i = 0; i < vec_safe_length (labels); i++)
664 gimple_asm_set_label_op (p, i, (*labels)[i]);
665
666 return p;
667 }
668
669 /* Build a GIMPLE_CATCH statement.
670
671 TYPES are the catch types.
672 HANDLER is the exception handler. */
673
674 gcatch *
675 gimple_build_catch (tree types, gimple_seq handler)
676 {
677 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
678 gimple_catch_set_types (p, types);
679 if (handler)
680 gimple_catch_set_handler (p, handler);
681
682 return p;
683 }
684
685 /* Build a GIMPLE_EH_FILTER statement.
686
687 TYPES are the filter's types.
688 FAILURE is the filter's failure action. */
689
690 geh_filter *
691 gimple_build_eh_filter (tree types, gimple_seq failure)
692 {
693 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
694 gimple_eh_filter_set_types (p, types);
695 if (failure)
696 gimple_eh_filter_set_failure (p, failure);
697
698 return p;
699 }
700
701 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
702
703 geh_mnt *
704 gimple_build_eh_must_not_throw (tree decl)
705 {
706 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
707
708 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
709 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
710 gimple_eh_must_not_throw_set_fndecl (p, decl);
711
712 return p;
713 }
714
715 /* Build a GIMPLE_EH_ELSE statement. */
716
717 geh_else *
718 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
719 {
720 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
721 gimple_eh_else_set_n_body (p, n_body);
722 gimple_eh_else_set_e_body (p, e_body);
723 return p;
724 }
725
726 /* Build a GIMPLE_TRY statement.
727
728 EVAL is the expression to evaluate.
729 CLEANUP is the cleanup expression.
730 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
731 whether this is a try/catch or a try/finally respectively. */
732
733 gtry *
734 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
735 enum gimple_try_flags kind)
736 {
737 gtry *p;
738
739 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
740 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
741 gimple_set_subcode (p, kind);
742 if (eval)
743 gimple_try_set_eval (p, eval);
744 if (cleanup)
745 gimple_try_set_cleanup (p, cleanup);
746
747 return p;
748 }
749
750 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
751
752 CLEANUP is the cleanup expression. */
753
754 gimple *
755 gimple_build_wce (gimple_seq cleanup)
756 {
757 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
758 if (cleanup)
759 gimple_wce_set_cleanup (p, cleanup);
760
761 return p;
762 }
763
764
765 /* Build a GIMPLE_RESX statement. */
766
767 gresx *
768 gimple_build_resx (int region)
769 {
770 gresx *p
771 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
772 p->region = region;
773 return p;
774 }
775
776
777 /* The helper for constructing a gimple switch statement.
778 INDEX is the switch's index.
779 NLABELS is the number of labels in the switch excluding the default.
780 DEFAULT_LABEL is the default label for the switch statement. */
781
782 gswitch *
783 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
784 {
785 /* nlabels + 1 default label + 1 index. */
786 gcc_checking_assert (default_label);
787 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
788 ERROR_MARK,
789 1 + 1 + nlabels));
790 gimple_switch_set_index (p, index);
791 gimple_switch_set_default_label (p, default_label);
792 return p;
793 }
794
795 /* Build a GIMPLE_SWITCH statement.
796
797 INDEX is the switch's index.
798 DEFAULT_LABEL is the default label
799 ARGS is a vector of labels excluding the default. */
800
801 gswitch *
802 gimple_build_switch (tree index, tree default_label, vec<tree> args)
803 {
804 unsigned i, nlabels = args.length ();
805
806 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
807
808 /* Copy the labels from the vector to the switch statement. */
809 for (i = 0; i < nlabels; i++)
810 gimple_switch_set_label (p, i + 1, args[i]);
811
812 return p;
813 }
814
815 /* Build a GIMPLE_EH_DISPATCH statement. */
816
817 geh_dispatch *
818 gimple_build_eh_dispatch (int region)
819 {
820 geh_dispatch *p
821 = as_a <geh_dispatch *> (
822 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
823 p->region = region;
824 return p;
825 }
826
827 /* Build a new GIMPLE_DEBUG_BIND statement.
828
829 VAR is bound to VALUE; block and location are taken from STMT. */
830
831 gdebug *
832 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
833 {
834 gdebug *p
835 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
836 (unsigned)GIMPLE_DEBUG_BIND, 2
837 PASS_MEM_STAT));
838 gimple_debug_bind_set_var (p, var);
839 gimple_debug_bind_set_value (p, value);
840 if (stmt)
841 gimple_set_location (p, gimple_location (stmt));
842
843 return p;
844 }
845
846
847 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
848
849 VAR is bound to VALUE; block and location are taken from STMT. */
850
851 gdebug *
852 gimple_build_debug_source_bind (tree var, tree value,
853 gimple *stmt MEM_STAT_DECL)
854 {
855 gdebug *p
856 = as_a <gdebug *> (
857 gimple_build_with_ops_stat (GIMPLE_DEBUG,
858 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
859 PASS_MEM_STAT));
860
861 gimple_debug_source_bind_set_var (p, var);
862 gimple_debug_source_bind_set_value (p, value);
863 if (stmt)
864 gimple_set_location (p, gimple_location (stmt));
865
866 return p;
867 }
868
869
870 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
871 LOCATION. */
872
873 gdebug *
874 gimple_build_debug_begin_stmt (tree block, location_t location
875 MEM_STAT_DECL)
876 {
877 gdebug *p
878 = as_a <gdebug *> (
879 gimple_build_with_ops_stat (GIMPLE_DEBUG,
880 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
881 PASS_MEM_STAT));
882
883 gimple_set_location (p, location);
884 gimple_set_block (p, block);
885 cfun->debug_marker_count++;
886
887 return p;
888 }
889
890
891 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
892 LOCATION. The BLOCK links to the inlined function. */
893
894 gdebug *
895 gimple_build_debug_inline_entry (tree block, location_t location
896 MEM_STAT_DECL)
897 {
898 gdebug *p
899 = as_a <gdebug *> (
900 gimple_build_with_ops_stat (GIMPLE_DEBUG,
901 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
902 PASS_MEM_STAT));
903
904 gimple_set_location (p, location);
905 gimple_set_block (p, block);
906 cfun->debug_marker_count++;
907
908 return p;
909 }
910
911
912 /* Build a GIMPLE_OMP_CRITICAL statement.
913
914 BODY is the sequence of statements for which only one thread can execute.
915 NAME is optional identifier for this critical block.
916 CLAUSES are clauses for this critical block. */
917
918 gomp_critical *
919 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
920 {
921 gomp_critical *p
922 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
923 gimple_omp_critical_set_name (p, name);
924 gimple_omp_critical_set_clauses (p, clauses);
925 if (body)
926 gimple_omp_set_body (p, body);
927
928 return p;
929 }
930
931 /* Build a GIMPLE_OMP_FOR statement.
932
933 BODY is sequence of statements inside the for loop.
934 KIND is the `for' variant.
935 CLAUSES are any of the construct's clauses.
936 COLLAPSE is the collapse count.
937 PRE_BODY is the sequence of statements that are loop invariant. */
938
939 gomp_for *
940 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
941 gimple_seq pre_body)
942 {
943 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
944 if (body)
945 gimple_omp_set_body (p, body);
946 gimple_omp_for_set_clauses (p, clauses);
947 gimple_omp_for_set_kind (p, kind);
948 p->collapse = collapse;
949 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
950
951 if (pre_body)
952 gimple_omp_for_set_pre_body (p, pre_body);
953
954 return p;
955 }
956
957
958 /* Build a GIMPLE_OMP_PARALLEL statement.
959
960 BODY is sequence of statements which are executed in parallel.
961 CLAUSES are the OMP parallel construct's clauses.
962 CHILD_FN is the function created for the parallel threads to execute.
963 DATA_ARG are the shared data argument(s). */
964
965 gomp_parallel *
966 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
967 tree data_arg)
968 {
969 gomp_parallel *p
970 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
971 if (body)
972 gimple_omp_set_body (p, body);
973 gimple_omp_parallel_set_clauses (p, clauses);
974 gimple_omp_parallel_set_child_fn (p, child_fn);
975 gimple_omp_parallel_set_data_arg (p, data_arg);
976
977 return p;
978 }
979
980
981 /* Build a GIMPLE_OMP_TASK statement.
982
983 BODY is sequence of statements which are executed by the explicit task.
984 CLAUSES are the OMP task construct's clauses.
985 CHILD_FN is the function created for the parallel threads to execute.
986 DATA_ARG are the shared data argument(s).
987 COPY_FN is the optional function for firstprivate initialization.
988 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
989
990 gomp_task *
991 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
992 tree data_arg, tree copy_fn, tree arg_size,
993 tree arg_align)
994 {
995 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
996 if (body)
997 gimple_omp_set_body (p, body);
998 gimple_omp_task_set_clauses (p, clauses);
999 gimple_omp_task_set_child_fn (p, child_fn);
1000 gimple_omp_task_set_data_arg (p, data_arg);
1001 gimple_omp_task_set_copy_fn (p, copy_fn);
1002 gimple_omp_task_set_arg_size (p, arg_size);
1003 gimple_omp_task_set_arg_align (p, arg_align);
1004
1005 return p;
1006 }
1007
1008
1009 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1010
1011 BODY is the sequence of statements in the section. */
1012
1013 gimple *
1014 gimple_build_omp_section (gimple_seq body)
1015 {
1016 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1017 if (body)
1018 gimple_omp_set_body (p, body);
1019
1020 return p;
1021 }
1022
1023
1024 /* Build a GIMPLE_OMP_MASTER statement.
1025
1026 BODY is the sequence of statements to be executed by just the master. */
1027
1028 gimple *
1029 gimple_build_omp_master (gimple_seq body)
1030 {
1031 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1032 if (body)
1033 gimple_omp_set_body (p, body);
1034
1035 return p;
1036 }
1037
1038 /* Build a GIMPLE_OMP_GRID_BODY statement.
1039
1040 BODY is the sequence of statements to be executed by the kernel. */
1041
1042 gimple *
1043 gimple_build_omp_grid_body (gimple_seq body)
1044 {
1045 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
1046 if (body)
1047 gimple_omp_set_body (p, body);
1048
1049 return p;
1050 }
1051
1052 /* Build a GIMPLE_OMP_TASKGROUP statement.
1053
1054 BODY is the sequence of statements to be executed by the taskgroup
1055 construct.
1056 CLAUSES are any of the construct's clauses. */
1057
1058 gimple *
1059 gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
1060 {
1061 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1062 gimple_omp_taskgroup_set_clauses (p, clauses);
1063 if (body)
1064 gimple_omp_set_body (p, body);
1065
1066 return p;
1067 }
1068
1069
1070 /* Build a GIMPLE_OMP_CONTINUE statement.
1071
1072 CONTROL_DEF is the definition of the control variable.
1073 CONTROL_USE is the use of the control variable. */
1074
1075 gomp_continue *
1076 gimple_build_omp_continue (tree control_def, tree control_use)
1077 {
1078 gomp_continue *p
1079 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1080 gimple_omp_continue_set_control_def (p, control_def);
1081 gimple_omp_continue_set_control_use (p, control_use);
1082 return p;
1083 }
1084
1085 /* Build a GIMPLE_OMP_ORDERED statement.
1086
1087 BODY is the sequence of statements inside a loop that will executed in
1088 sequence.
1089 CLAUSES are clauses for this statement. */
1090
1091 gomp_ordered *
1092 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1093 {
1094 gomp_ordered *p
1095 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1096 gimple_omp_ordered_set_clauses (p, clauses);
1097 if (body)
1098 gimple_omp_set_body (p, body);
1099
1100 return p;
1101 }
1102
1103
1104 /* Build a GIMPLE_OMP_RETURN statement.
1105 WAIT_P is true if this is a non-waiting return. */
1106
1107 gimple *
1108 gimple_build_omp_return (bool wait_p)
1109 {
1110 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1111 if (wait_p)
1112 gimple_omp_return_set_nowait (p);
1113
1114 return p;
1115 }
1116
1117
1118 /* Build a GIMPLE_OMP_SCAN statement.
1119
1120 BODY is the sequence of statements to be executed by the scan
1121 construct.
1122 CLAUSES are any of the construct's clauses. */
1123
1124 gomp_scan *
1125 gimple_build_omp_scan (gimple_seq body, tree clauses)
1126 {
1127 gomp_scan *p
1128 = as_a <gomp_scan *> (gimple_alloc (GIMPLE_OMP_SCAN, 0));
1129 gimple_omp_scan_set_clauses (p, clauses);
1130 if (body)
1131 gimple_omp_set_body (p, body);
1132
1133 return p;
1134 }
1135
1136
1137 /* Build a GIMPLE_OMP_SECTIONS statement.
1138
1139 BODY is a sequence of section statements.
1140 CLAUSES are any of the OMP sections contsruct's clauses: private,
1141 firstprivate, lastprivate, reduction, and nowait. */
1142
1143 gomp_sections *
1144 gimple_build_omp_sections (gimple_seq body, tree clauses)
1145 {
1146 gomp_sections *p
1147 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1148 if (body)
1149 gimple_omp_set_body (p, body);
1150 gimple_omp_sections_set_clauses (p, clauses);
1151
1152 return p;
1153 }
1154
1155
1156 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1157
1158 gimple *
1159 gimple_build_omp_sections_switch (void)
1160 {
1161 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1162 }
1163
1164
1165 /* Build a GIMPLE_OMP_SINGLE statement.
1166
1167 BODY is the sequence of statements that will be executed once.
1168 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1169 copyprivate, nowait. */
1170
1171 gomp_single *
1172 gimple_build_omp_single (gimple_seq body, tree clauses)
1173 {
1174 gomp_single *p
1175 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1176 if (body)
1177 gimple_omp_set_body (p, body);
1178 gimple_omp_single_set_clauses (p, clauses);
1179
1180 return p;
1181 }
1182
1183
1184 /* Build a GIMPLE_OMP_TARGET statement.
1185
1186 BODY is the sequence of statements that will be executed.
1187 KIND is the kind of the region.
1188 CLAUSES are any of the construct's clauses. */
1189
1190 gomp_target *
1191 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1192 {
1193 gomp_target *p
1194 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1195 if (body)
1196 gimple_omp_set_body (p, body);
1197 gimple_omp_target_set_clauses (p, clauses);
1198 gimple_omp_target_set_kind (p, kind);
1199
1200 return p;
1201 }
1202
1203
1204 /* Build a GIMPLE_OMP_TEAMS statement.
1205
1206 BODY is the sequence of statements that will be executed.
1207 CLAUSES are any of the OMP teams construct's clauses. */
1208
1209 gomp_teams *
1210 gimple_build_omp_teams (gimple_seq body, tree clauses)
1211 {
1212 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1213 if (body)
1214 gimple_omp_set_body (p, body);
1215 gimple_omp_teams_set_clauses (p, clauses);
1216
1217 return p;
1218 }
1219
1220
1221 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1222
1223 gomp_atomic_load *
1224 gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1225 {
1226 gomp_atomic_load *p
1227 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1228 gimple_omp_atomic_load_set_lhs (p, lhs);
1229 gimple_omp_atomic_load_set_rhs (p, rhs);
1230 gimple_omp_atomic_set_memory_order (p, mo);
1231 return p;
1232 }
1233
1234 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1235
1236 VAL is the value we are storing. */
1237
1238 gomp_atomic_store *
1239 gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1240 {
1241 gomp_atomic_store *p
1242 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1243 gimple_omp_atomic_store_set_val (p, val);
1244 gimple_omp_atomic_set_memory_order (p, mo);
1245 return p;
1246 }
1247
1248 /* Build a GIMPLE_TRANSACTION statement. */
1249
1250 gtransaction *
1251 gimple_build_transaction (gimple_seq body)
1252 {
1253 gtransaction *p
1254 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1255 gimple_transaction_set_body (p, body);
1256 gimple_transaction_set_label_norm (p, 0);
1257 gimple_transaction_set_label_uninst (p, 0);
1258 gimple_transaction_set_label_over (p, 0);
1259 return p;
1260 }
1261
1262 #if defined ENABLE_GIMPLE_CHECKING
1263 /* Complain of a gimple type mismatch and die. */
1264
1265 void
1266 gimple_check_failed (const gimple *gs, const char *file, int line,
1267 const char *function, enum gimple_code code,
1268 enum tree_code subcode)
1269 {
1270 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1271 gimple_code_name[code],
1272 get_tree_code_name (subcode),
1273 gimple_code_name[gimple_code (gs)],
1274 gs->subcode > 0
1275 ? get_tree_code_name ((enum tree_code) gs->subcode)
1276 : "",
1277 function, trim_filename (file), line);
1278 }
1279 #endif /* ENABLE_GIMPLE_CHECKING */
1280
1281
1282 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1283 *SEQ_P is NULL, a new sequence is allocated. */
1284
1285 void
1286 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1287 {
1288 gimple_stmt_iterator si;
1289 if (gs == NULL)
1290 return;
1291
1292 si = gsi_last (*seq_p);
1293 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1294 }
1295
1296 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1297 *SEQ_P is NULL, a new sequence is allocated. This function is
1298 similar to gimple_seq_add_stmt, but does not scan the operands.
1299 During gimplification, we need to manipulate statement sequences
1300 before the def/use vectors have been constructed. */
1301
1302 void
1303 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1304 {
1305 gimple_stmt_iterator si;
1306
1307 if (gs == NULL)
1308 return;
1309
1310 si = gsi_last (*seq_p);
1311 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1312 }
1313
1314 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1315 NULL, a new sequence is allocated. */
1316
1317 void
1318 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1319 {
1320 gimple_stmt_iterator si;
1321 if (src == NULL)
1322 return;
1323
1324 si = gsi_last (*dst_p);
1325 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1326 }
1327
1328 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1329 NULL, a new sequence is allocated. This function is
1330 similar to gimple_seq_add_seq, but does not scan the operands. */
1331
1332 void
1333 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1334 {
1335 gimple_stmt_iterator si;
1336 if (src == NULL)
1337 return;
1338
1339 si = gsi_last (*dst_p);
1340 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1341 }
1342
1343 /* Determine whether to assign a location to the statement GS. */
1344
1345 static bool
1346 should_carry_location_p (gimple *gs)
1347 {
1348 /* Don't emit a line note for a label. We particularly don't want to
1349 emit one for the break label, since it doesn't actually correspond
1350 to the beginning of the loop/switch. */
1351 if (gimple_code (gs) == GIMPLE_LABEL)
1352 return false;
1353
1354 return true;
1355 }
1356
1357 /* Set the location for gimple statement GS to LOCATION. */
1358
1359 static void
1360 annotate_one_with_location (gimple *gs, location_t location)
1361 {
1362 if (!gimple_has_location (gs)
1363 && !gimple_do_not_emit_location_p (gs)
1364 && should_carry_location_p (gs))
1365 gimple_set_location (gs, location);
1366 }
1367
1368 /* Set LOCATION for all the statements after iterator GSI in sequence
1369 SEQ. If GSI is pointing to the end of the sequence, start with the
1370 first statement in SEQ. */
1371
1372 void
1373 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1374 location_t location)
1375 {
1376 if (gsi_end_p (gsi))
1377 gsi = gsi_start (seq);
1378 else
1379 gsi_next (&gsi);
1380
1381 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1382 annotate_one_with_location (gsi_stmt (gsi), location);
1383 }
1384
1385 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1386
1387 void
1388 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1389 {
1390 gimple_stmt_iterator i;
1391
1392 if (gimple_seq_empty_p (stmt_p))
1393 return;
1394
1395 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1396 {
1397 gimple *gs = gsi_stmt (i);
1398 annotate_one_with_location (gs, location);
1399 }
1400 }
1401
1402 /* Helper function of empty_body_p. Return true if STMT is an empty
1403 statement. */
1404
1405 static bool
1406 empty_stmt_p (gimple *stmt)
1407 {
1408 if (gimple_code (stmt) == GIMPLE_NOP)
1409 return true;
1410 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1411 return empty_body_p (gimple_bind_body (bind_stmt));
1412 return false;
1413 }
1414
1415
1416 /* Return true if BODY contains nothing but empty statements. */
1417
1418 bool
1419 empty_body_p (gimple_seq body)
1420 {
1421 gimple_stmt_iterator i;
1422
1423 if (gimple_seq_empty_p (body))
1424 return true;
1425 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1426 if (!empty_stmt_p (gsi_stmt (i))
1427 && !is_gimple_debug (gsi_stmt (i)))
1428 return false;
1429
1430 return true;
1431 }
1432
1433
1434 /* Perform a deep copy of sequence SRC and return the result. */
1435
1436 gimple_seq
1437 gimple_seq_copy (gimple_seq src)
1438 {
1439 gimple_stmt_iterator gsi;
1440 gimple_seq new_seq = NULL;
1441 gimple *stmt;
1442
1443 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1444 {
1445 stmt = gimple_copy (gsi_stmt (gsi));
1446 gimple_seq_add_stmt (&new_seq, stmt);
1447 }
1448
1449 return new_seq;
1450 }
1451
1452
1453
1454 /* Return true if calls C1 and C2 are known to go to the same function. */
1455
1456 bool
1457 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1458 {
1459 if (gimple_call_internal_p (c1))
1460 return (gimple_call_internal_p (c2)
1461 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1462 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1463 || c1 == c2));
1464 else
1465 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1466 || (gimple_call_fndecl (c1)
1467 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1468 }
1469
1470 /* Detect flags from a GIMPLE_CALL. This is just like
1471 call_expr_flags, but for gimple tuples. */
1472
1473 int
1474 gimple_call_flags (const gimple *stmt)
1475 {
1476 int flags = 0;
1477
1478 if (gimple_call_internal_p (stmt))
1479 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1480 else
1481 {
1482 tree decl = gimple_call_fndecl (stmt);
1483 if (decl)
1484 flags = flags_from_decl_or_type (decl);
1485 flags |= flags_from_decl_or_type (gimple_call_fntype (stmt));
1486 }
1487
1488 if (stmt->subcode & GF_CALL_NOTHROW)
1489 flags |= ECF_NOTHROW;
1490
1491 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1492 flags |= ECF_BY_DESCRIPTOR;
1493
1494 return flags;
1495 }
1496
1497 /* Return the "fn spec" string for call STMT. */
1498
1499 static const_tree
1500 gimple_call_fnspec (const gcall *stmt)
1501 {
1502 tree type, attr;
1503
1504 if (gimple_call_internal_p (stmt))
1505 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1506
1507 type = gimple_call_fntype (stmt);
1508 if (!type)
1509 return NULL_TREE;
1510
1511 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1512 if (!attr)
1513 return NULL_TREE;
1514
1515 return TREE_VALUE (TREE_VALUE (attr));
1516 }
1517
1518 /* Detects argument flags for argument number ARG on call STMT. */
1519
1520 int
1521 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1522 {
1523 const_tree attr = gimple_call_fnspec (stmt);
1524
1525 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1526 return 0;
1527
1528 switch (TREE_STRING_POINTER (attr)[1 + arg])
1529 {
1530 case 'x':
1531 case 'X':
1532 return EAF_UNUSED;
1533
1534 case 'R':
1535 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1536
1537 case 'r':
1538 return EAF_NOCLOBBER | EAF_NOESCAPE;
1539
1540 case 'W':
1541 return EAF_DIRECT | EAF_NOESCAPE;
1542
1543 case 'w':
1544 return EAF_NOESCAPE;
1545
1546 case '.':
1547 default:
1548 return 0;
1549 }
1550 }
1551
1552 /* Detects return flags for the call STMT. */
1553
1554 int
1555 gimple_call_return_flags (const gcall *stmt)
1556 {
1557 const_tree attr;
1558
1559 if (gimple_call_flags (stmt) & ECF_MALLOC)
1560 return ERF_NOALIAS;
1561
1562 attr = gimple_call_fnspec (stmt);
1563 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1564 return 0;
1565
1566 switch (TREE_STRING_POINTER (attr)[0])
1567 {
1568 case '1':
1569 case '2':
1570 case '3':
1571 case '4':
1572 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1573
1574 case 'm':
1575 return ERF_NOALIAS;
1576
1577 case '.':
1578 default:
1579 return 0;
1580 }
1581 }
1582
1583
1584 /* Return true if call STMT is known to return a non-zero result. */
1585
1586 bool
1587 gimple_call_nonnull_result_p (gcall *call)
1588 {
1589 tree fndecl = gimple_call_fndecl (call);
1590 if (!fndecl)
1591 return false;
1592 if (flag_delete_null_pointer_checks && !flag_check_new
1593 && DECL_IS_OPERATOR_NEW_P (fndecl)
1594 && !TREE_NOTHROW (fndecl))
1595 return true;
1596
1597 /* References are always non-NULL. */
1598 if (flag_delete_null_pointer_checks
1599 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1600 return true;
1601
1602 if (flag_delete_null_pointer_checks
1603 && lookup_attribute ("returns_nonnull",
1604 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1605 return true;
1606 return gimple_alloca_call_p (call);
1607 }
1608
1609
1610 /* If CALL returns a non-null result in an argument, return that arg. */
1611
1612 tree
1613 gimple_call_nonnull_arg (gcall *call)
1614 {
1615 tree fndecl = gimple_call_fndecl (call);
1616 if (!fndecl)
1617 return NULL_TREE;
1618
1619 unsigned rf = gimple_call_return_flags (call);
1620 if (rf & ERF_RETURNS_ARG)
1621 {
1622 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1623 if (argnum < gimple_call_num_args (call))
1624 {
1625 tree arg = gimple_call_arg (call, argnum);
1626 if (SSA_VAR_P (arg)
1627 && infer_nonnull_range_by_attribute (call, arg))
1628 return arg;
1629 }
1630 }
1631 return NULL_TREE;
1632 }
1633
1634
1635 /* Return true if GS is a copy assignment. */
1636
1637 bool
1638 gimple_assign_copy_p (gimple *gs)
1639 {
1640 return (gimple_assign_single_p (gs)
1641 && is_gimple_val (gimple_op (gs, 1)));
1642 }
1643
1644
1645 /* Return true if GS is a SSA_NAME copy assignment. */
1646
1647 bool
1648 gimple_assign_ssa_name_copy_p (gimple *gs)
1649 {
1650 return (gimple_assign_single_p (gs)
1651 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1652 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1653 }
1654
1655
1656 /* Return true if GS is an assignment with a unary RHS, but the
1657 operator has no effect on the assigned value. The logic is adapted
1658 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1659 instances in which STRIP_NOPS was previously applied to the RHS of
1660 an assignment.
1661
1662 NOTE: In the use cases that led to the creation of this function
1663 and of gimple_assign_single_p, it is typical to test for either
1664 condition and to proceed in the same manner. In each case, the
1665 assigned value is represented by the single RHS operand of the
1666 assignment. I suspect there may be cases where gimple_assign_copy_p,
1667 gimple_assign_single_p, or equivalent logic is used where a similar
1668 treatment of unary NOPs is appropriate. */
1669
1670 bool
1671 gimple_assign_unary_nop_p (gimple *gs)
1672 {
1673 return (is_gimple_assign (gs)
1674 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1675 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1676 && gimple_assign_rhs1 (gs) != error_mark_node
1677 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1678 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1679 }
1680
1681 /* Set BB to be the basic block holding G. */
1682
1683 void
1684 gimple_set_bb (gimple *stmt, basic_block bb)
1685 {
1686 stmt->bb = bb;
1687
1688 if (gimple_code (stmt) != GIMPLE_LABEL)
1689 return;
1690
1691 /* If the statement is a label, add the label to block-to-labels map
1692 so that we can speed up edge creation for GIMPLE_GOTOs. */
1693 if (cfun->cfg)
1694 {
1695 tree t;
1696 int uid;
1697
1698 t = gimple_label_label (as_a <glabel *> (stmt));
1699 uid = LABEL_DECL_UID (t);
1700 if (uid == -1)
1701 {
1702 unsigned old_len =
1703 vec_safe_length (label_to_block_map_for_fn (cfun));
1704 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1705 if (old_len <= (unsigned) uid)
1706 {
1707 unsigned new_len = 3 * uid / 2 + 1;
1708
1709 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1710 new_len);
1711 }
1712 }
1713
1714 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1715 }
1716 }
1717
1718
1719 /* Modify the RHS of the assignment pointed-to by GSI using the
1720 operands in the expression tree EXPR.
1721
1722 NOTE: The statement pointed-to by GSI may be reallocated if it
1723 did not have enough operand slots.
1724
1725 This function is useful to convert an existing tree expression into
1726 the flat representation used for the RHS of a GIMPLE assignment.
1727 It will reallocate memory as needed to expand or shrink the number
1728 of operand slots needed to represent EXPR.
1729
1730 NOTE: If you find yourself building a tree and then calling this
1731 function, you are most certainly doing it the slow way. It is much
1732 better to build a new assignment or to use the function
1733 gimple_assign_set_rhs_with_ops, which does not require an
1734 expression tree to be built. */
1735
1736 void
1737 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1738 {
1739 enum tree_code subcode;
1740 tree op1, op2, op3;
1741
1742 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1743 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1744 }
1745
1746
1747 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1748 operands OP1, OP2 and OP3.
1749
1750 NOTE: The statement pointed-to by GSI may be reallocated if it
1751 did not have enough operand slots. */
1752
1753 void
1754 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1755 tree op1, tree op2, tree op3)
1756 {
1757 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1758 gimple *stmt = gsi_stmt (*gsi);
1759 gimple *old_stmt = stmt;
1760
1761 /* If the new CODE needs more operands, allocate a new statement. */
1762 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1763 {
1764 tree lhs = gimple_assign_lhs (old_stmt);
1765 stmt = gimple_alloc (gimple_code (old_stmt), new_rhs_ops + 1);
1766 memcpy (stmt, old_stmt, gimple_size (gimple_code (old_stmt)));
1767 gimple_init_singleton (stmt);
1768
1769 /* The LHS needs to be reset as this also changes the SSA name
1770 on the LHS. */
1771 gimple_assign_set_lhs (stmt, lhs);
1772 }
1773
1774 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1775 gimple_set_subcode (stmt, code);
1776 gimple_assign_set_rhs1 (stmt, op1);
1777 if (new_rhs_ops > 1)
1778 gimple_assign_set_rhs2 (stmt, op2);
1779 if (new_rhs_ops > 2)
1780 gimple_assign_set_rhs3 (stmt, op3);
1781 if (stmt != old_stmt)
1782 gsi_replace (gsi, stmt, false);
1783 }
1784
1785
1786 /* Return the LHS of a statement that performs an assignment,
1787 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1788 for a call to a function that returns no value, or for a
1789 statement other than an assignment or a call. */
1790
1791 tree
1792 gimple_get_lhs (const gimple *stmt)
1793 {
1794 enum gimple_code code = gimple_code (stmt);
1795
1796 if (code == GIMPLE_ASSIGN)
1797 return gimple_assign_lhs (stmt);
1798 else if (code == GIMPLE_CALL)
1799 return gimple_call_lhs (stmt);
1800 else if (code == GIMPLE_PHI)
1801 return gimple_phi_result (stmt);
1802 else
1803 return NULL_TREE;
1804 }
1805
1806
1807 /* Set the LHS of a statement that performs an assignment,
1808 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1809
1810 void
1811 gimple_set_lhs (gimple *stmt, tree lhs)
1812 {
1813 enum gimple_code code = gimple_code (stmt);
1814
1815 if (code == GIMPLE_ASSIGN)
1816 gimple_assign_set_lhs (stmt, lhs);
1817 else if (code == GIMPLE_CALL)
1818 gimple_call_set_lhs (stmt, lhs);
1819 else
1820 gcc_unreachable ();
1821 }
1822
1823
1824 /* Return a deep copy of statement STMT. All the operands from STMT
1825 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1826 and VUSE operand arrays are set to empty in the new copy. The new
1827 copy isn't part of any sequence. */
1828
1829 gimple *
1830 gimple_copy (gimple *stmt)
1831 {
1832 enum gimple_code code = gimple_code (stmt);
1833 unsigned num_ops = gimple_num_ops (stmt);
1834 gimple *copy = gimple_alloc (code, num_ops);
1835 unsigned i;
1836
1837 /* Shallow copy all the fields from STMT. */
1838 memcpy (copy, stmt, gimple_size (code));
1839 gimple_init_singleton (copy);
1840
1841 /* If STMT has sub-statements, deep-copy them as well. */
1842 if (gimple_has_substatements (stmt))
1843 {
1844 gimple_seq new_seq;
1845 tree t;
1846
1847 switch (gimple_code (stmt))
1848 {
1849 case GIMPLE_BIND:
1850 {
1851 gbind *bind_stmt = as_a <gbind *> (stmt);
1852 gbind *bind_copy = as_a <gbind *> (copy);
1853 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1854 gimple_bind_set_body (bind_copy, new_seq);
1855 gimple_bind_set_vars (bind_copy,
1856 unshare_expr (gimple_bind_vars (bind_stmt)));
1857 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1858 }
1859 break;
1860
1861 case GIMPLE_CATCH:
1862 {
1863 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1864 gcatch *catch_copy = as_a <gcatch *> (copy);
1865 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1866 gimple_catch_set_handler (catch_copy, new_seq);
1867 t = unshare_expr (gimple_catch_types (catch_stmt));
1868 gimple_catch_set_types (catch_copy, t);
1869 }
1870 break;
1871
1872 case GIMPLE_EH_FILTER:
1873 {
1874 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1875 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1876 new_seq
1877 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1878 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1879 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1880 gimple_eh_filter_set_types (eh_filter_copy, t);
1881 }
1882 break;
1883
1884 case GIMPLE_EH_ELSE:
1885 {
1886 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1887 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1888 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1889 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1890 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1891 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1892 }
1893 break;
1894
1895 case GIMPLE_TRY:
1896 {
1897 gtry *try_stmt = as_a <gtry *> (stmt);
1898 gtry *try_copy = as_a <gtry *> (copy);
1899 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1900 gimple_try_set_eval (try_copy, new_seq);
1901 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1902 gimple_try_set_cleanup (try_copy, new_seq);
1903 }
1904 break;
1905
1906 case GIMPLE_OMP_FOR:
1907 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1908 gimple_omp_for_set_pre_body (copy, new_seq);
1909 t = unshare_expr (gimple_omp_for_clauses (stmt));
1910 gimple_omp_for_set_clauses (copy, t);
1911 {
1912 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1913 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1914 ( gimple_omp_for_collapse (stmt));
1915 }
1916 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1917 {
1918 gimple_omp_for_set_cond (copy, i,
1919 gimple_omp_for_cond (stmt, i));
1920 gimple_omp_for_set_index (copy, i,
1921 gimple_omp_for_index (stmt, i));
1922 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1923 gimple_omp_for_set_initial (copy, i, t);
1924 t = unshare_expr (gimple_omp_for_final (stmt, i));
1925 gimple_omp_for_set_final (copy, i, t);
1926 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1927 gimple_omp_for_set_incr (copy, i, t);
1928 }
1929 goto copy_omp_body;
1930
1931 case GIMPLE_OMP_PARALLEL:
1932 {
1933 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1934 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1935 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1936 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1937 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1938 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1939 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1940 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1941 }
1942 goto copy_omp_body;
1943
1944 case GIMPLE_OMP_TASK:
1945 t = unshare_expr (gimple_omp_task_clauses (stmt));
1946 gimple_omp_task_set_clauses (copy, t);
1947 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1948 gimple_omp_task_set_child_fn (copy, t);
1949 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1950 gimple_omp_task_set_data_arg (copy, t);
1951 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1952 gimple_omp_task_set_copy_fn (copy, t);
1953 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1954 gimple_omp_task_set_arg_size (copy, t);
1955 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1956 gimple_omp_task_set_arg_align (copy, t);
1957 goto copy_omp_body;
1958
1959 case GIMPLE_OMP_CRITICAL:
1960 t = unshare_expr (gimple_omp_critical_name
1961 (as_a <gomp_critical *> (stmt)));
1962 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1963 t = unshare_expr (gimple_omp_critical_clauses
1964 (as_a <gomp_critical *> (stmt)));
1965 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1966 goto copy_omp_body;
1967
1968 case GIMPLE_OMP_ORDERED:
1969 t = unshare_expr (gimple_omp_ordered_clauses
1970 (as_a <gomp_ordered *> (stmt)));
1971 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1972 goto copy_omp_body;
1973
1974 case GIMPLE_OMP_SCAN:
1975 t = gimple_omp_scan_clauses (as_a <gomp_scan *> (stmt));
1976 t = unshare_expr (t);
1977 gimple_omp_scan_set_clauses (as_a <gomp_scan *> (copy), t);
1978 goto copy_omp_body;
1979
1980 case GIMPLE_OMP_TASKGROUP:
1981 t = unshare_expr (gimple_omp_taskgroup_clauses (stmt));
1982 gimple_omp_taskgroup_set_clauses (copy, t);
1983 goto copy_omp_body;
1984
1985 case GIMPLE_OMP_SECTIONS:
1986 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1987 gimple_omp_sections_set_clauses (copy, t);
1988 t = unshare_expr (gimple_omp_sections_control (stmt));
1989 gimple_omp_sections_set_control (copy, t);
1990 goto copy_omp_body;
1991
1992 case GIMPLE_OMP_SINGLE:
1993 {
1994 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1995 t = unshare_expr (gimple_omp_single_clauses (stmt));
1996 gimple_omp_single_set_clauses (omp_single_copy, t);
1997 }
1998 goto copy_omp_body;
1999
2000 case GIMPLE_OMP_TARGET:
2001 {
2002 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
2003 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
2004 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
2005 gimple_omp_target_set_clauses (omp_target_copy, t);
2006 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
2007 gimple_omp_target_set_data_arg (omp_target_copy, t);
2008 }
2009 goto copy_omp_body;
2010
2011 case GIMPLE_OMP_TEAMS:
2012 {
2013 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
2014 t = unshare_expr (gimple_omp_teams_clauses (stmt));
2015 gimple_omp_teams_set_clauses (omp_teams_copy, t);
2016 }
2017 /* FALLTHRU */
2018
2019 case GIMPLE_OMP_SECTION:
2020 case GIMPLE_OMP_MASTER:
2021 case GIMPLE_OMP_GRID_BODY:
2022 copy_omp_body:
2023 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2024 gimple_omp_set_body (copy, new_seq);
2025 break;
2026
2027 case GIMPLE_TRANSACTION:
2028 new_seq = gimple_seq_copy (gimple_transaction_body (
2029 as_a <gtransaction *> (stmt)));
2030 gimple_transaction_set_body (as_a <gtransaction *> (copy),
2031 new_seq);
2032 break;
2033
2034 case GIMPLE_WITH_CLEANUP_EXPR:
2035 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2036 gimple_wce_set_cleanup (copy, new_seq);
2037 break;
2038
2039 default:
2040 gcc_unreachable ();
2041 }
2042 }
2043
2044 /* Make copy of operands. */
2045 for (i = 0; i < num_ops; i++)
2046 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2047
2048 if (gimple_has_mem_ops (stmt))
2049 {
2050 gimple_set_vdef (copy, gimple_vdef (stmt));
2051 gimple_set_vuse (copy, gimple_vuse (stmt));
2052 }
2053
2054 /* Clear out SSA operand vectors on COPY. */
2055 if (gimple_has_ops (stmt))
2056 {
2057 gimple_set_use_ops (copy, NULL);
2058
2059 /* SSA operands need to be updated. */
2060 gimple_set_modified (copy, true);
2061 }
2062
2063 if (gimple_debug_nonbind_marker_p (stmt))
2064 cfun->debug_marker_count++;
2065
2066 return copy;
2067 }
2068
2069 /* Move OLD_STMT's vuse and vdef operands to NEW_STMT, on the assumption
2070 that OLD_STMT is about to be removed. */
2071
2072 void
2073 gimple_move_vops (gimple *new_stmt, gimple *old_stmt)
2074 {
2075 tree vdef = gimple_vdef (old_stmt);
2076 gimple_set_vuse (new_stmt, gimple_vuse (old_stmt));
2077 gimple_set_vdef (new_stmt, vdef);
2078 if (vdef && TREE_CODE (vdef) == SSA_NAME)
2079 SSA_NAME_DEF_STMT (vdef) = new_stmt;
2080 }
2081
2082 /* Return true if statement S has side-effects. We consider a
2083 statement to have side effects if:
2084
2085 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2086 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2087
2088 bool
2089 gimple_has_side_effects (const gimple *s)
2090 {
2091 if (is_gimple_debug (s))
2092 return false;
2093
2094 /* We don't have to scan the arguments to check for
2095 volatile arguments, though, at present, we still
2096 do a scan to check for TREE_SIDE_EFFECTS. */
2097 if (gimple_has_volatile_ops (s))
2098 return true;
2099
2100 if (gimple_code (s) == GIMPLE_ASM
2101 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2102 return true;
2103
2104 if (is_gimple_call (s))
2105 {
2106 int flags = gimple_call_flags (s);
2107
2108 /* An infinite loop is considered a side effect. */
2109 if (!(flags & (ECF_CONST | ECF_PURE))
2110 || (flags & ECF_LOOPING_CONST_OR_PURE))
2111 return true;
2112
2113 return false;
2114 }
2115
2116 return false;
2117 }
2118
2119 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2120 Return true if S can trap. When INCLUDE_MEM is true, check whether
2121 the memory operations could trap. When INCLUDE_STORES is true and
2122 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2123
2124 bool
2125 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2126 {
2127 tree t, div = NULL_TREE;
2128 enum tree_code op;
2129
2130 if (include_mem)
2131 {
2132 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2133
2134 for (i = start; i < gimple_num_ops (s); i++)
2135 if (tree_could_trap_p (gimple_op (s, i)))
2136 return true;
2137 }
2138
2139 switch (gimple_code (s))
2140 {
2141 case GIMPLE_ASM:
2142 return gimple_asm_volatile_p (as_a <gasm *> (s));
2143
2144 case GIMPLE_CALL:
2145 t = gimple_call_fndecl (s);
2146 /* Assume that calls to weak functions may trap. */
2147 if (!t || !DECL_P (t) || DECL_WEAK (t))
2148 return true;
2149 return false;
2150
2151 case GIMPLE_ASSIGN:
2152 op = gimple_assign_rhs_code (s);
2153
2154 /* For COND_EXPR and VEC_COND_EXPR only the condition may trap. */
2155 if (op == COND_EXPR || op == VEC_COND_EXPR)
2156 return tree_could_trap_p (gimple_assign_rhs1 (s));
2157
2158 /* For comparisons we need to check rhs operand types instead of rhs type
2159 (which is BOOLEAN_TYPE). */
2160 if (TREE_CODE_CLASS (op) == tcc_comparison)
2161 t = TREE_TYPE (gimple_assign_rhs1 (s));
2162 else
2163 t = gimple_expr_type (s);
2164
2165 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2166 div = gimple_assign_rhs2 (s);
2167
2168 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2169 (INTEGRAL_TYPE_P (t)
2170 && TYPE_OVERFLOW_TRAPS (t)),
2171 div));
2172
2173 case GIMPLE_COND:
2174 t = TREE_TYPE (gimple_cond_lhs (s));
2175 return operation_could_trap_p (gimple_cond_code (s),
2176 FLOAT_TYPE_P (t), false, NULL_TREE);
2177
2178 default:
2179 break;
2180 }
2181
2182 return false;
2183 }
2184
2185 /* Return true if statement S can trap. */
2186
2187 bool
2188 gimple_could_trap_p (gimple *s)
2189 {
2190 return gimple_could_trap_p_1 (s, true, true);
2191 }
2192
2193 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2194
2195 bool
2196 gimple_assign_rhs_could_trap_p (gimple *s)
2197 {
2198 gcc_assert (is_gimple_assign (s));
2199 return gimple_could_trap_p_1 (s, true, false);
2200 }
2201
2202
2203 /* Print debugging information for gimple stmts generated. */
2204
2205 void
2206 dump_gimple_statistics (void)
2207 {
2208 int i;
2209 uint64_t total_tuples = 0, total_bytes = 0;
2210
2211 if (! GATHER_STATISTICS)
2212 {
2213 fprintf (stderr, "No GIMPLE statistics\n");
2214 return;
2215 }
2216
2217 fprintf (stderr, "\nGIMPLE statements\n");
2218 fprintf (stderr, "Kind Stmts Bytes\n");
2219 fprintf (stderr, "---------------------------------------\n");
2220 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2221 {
2222 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
2223 gimple_alloc_kind_names[i],
2224 SIZE_AMOUNT (gimple_alloc_counts[i]),
2225 SIZE_AMOUNT (gimple_alloc_sizes[i]));
2226 total_tuples += gimple_alloc_counts[i];
2227 total_bytes += gimple_alloc_sizes[i];
2228 }
2229 fprintf (stderr, "---------------------------------------\n");
2230 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
2231 SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2232 fprintf (stderr, "---------------------------------------\n");
2233 }
2234
2235
2236 /* Return the number of operands needed on the RHS of a GIMPLE
2237 assignment for an expression with tree code CODE. */
2238
2239 unsigned
2240 get_gimple_rhs_num_ops (enum tree_code code)
2241 {
2242 switch (get_gimple_rhs_class (code))
2243 {
2244 case GIMPLE_UNARY_RHS:
2245 case GIMPLE_SINGLE_RHS:
2246 return 1;
2247 case GIMPLE_BINARY_RHS:
2248 return 2;
2249 case GIMPLE_TERNARY_RHS:
2250 return 3;
2251 default:
2252 gcc_unreachable ();
2253 }
2254 }
2255
2256 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2257 (unsigned char) \
2258 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2259 : ((TYPE) == tcc_binary \
2260 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2261 : ((TYPE) == tcc_constant \
2262 || (TYPE) == tcc_declaration \
2263 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2264 : ((SYM) == TRUTH_AND_EXPR \
2265 || (SYM) == TRUTH_OR_EXPR \
2266 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2267 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2268 : ((SYM) == COND_EXPR \
2269 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2270 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2271 || (SYM) == DOT_PROD_EXPR \
2272 || (SYM) == SAD_EXPR \
2273 || (SYM) == REALIGN_LOAD_EXPR \
2274 || (SYM) == VEC_COND_EXPR \
2275 || (SYM) == VEC_PERM_EXPR \
2276 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2277 : ((SYM) == CONSTRUCTOR \
2278 || (SYM) == OBJ_TYPE_REF \
2279 || (SYM) == ASSERT_EXPR \
2280 || (SYM) == ADDR_EXPR \
2281 || (SYM) == WITH_SIZE_EXPR \
2282 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2283 : GIMPLE_INVALID_RHS),
2284 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2285
2286 const unsigned char gimple_rhs_class_table[] = {
2287 #include "all-tree.def"
2288 };
2289
2290 #undef DEFTREECODE
2291 #undef END_OF_BASE_TREE_CODES
2292
2293 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2294 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2295 we failed to create one. */
2296
2297 tree
2298 canonicalize_cond_expr_cond (tree t)
2299 {
2300 /* Strip conversions around boolean operations. */
2301 if (CONVERT_EXPR_P (t)
2302 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2303 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2304 == BOOLEAN_TYPE))
2305 t = TREE_OPERAND (t, 0);
2306
2307 /* For !x use x == 0. */
2308 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2309 {
2310 tree top0 = TREE_OPERAND (t, 0);
2311 t = build2 (EQ_EXPR, TREE_TYPE (t),
2312 top0, build_int_cst (TREE_TYPE (top0), 0));
2313 }
2314 /* For cmp ? 1 : 0 use cmp. */
2315 else if (TREE_CODE (t) == COND_EXPR
2316 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2317 && integer_onep (TREE_OPERAND (t, 1))
2318 && integer_zerop (TREE_OPERAND (t, 2)))
2319 {
2320 tree top0 = TREE_OPERAND (t, 0);
2321 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2322 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2323 }
2324 /* For x ^ y use x != y. */
2325 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2326 t = build2 (NE_EXPR, TREE_TYPE (t),
2327 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2328
2329 if (is_gimple_condexpr (t))
2330 return t;
2331
2332 return NULL_TREE;
2333 }
2334
2335 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2336 the positions marked by the set ARGS_TO_SKIP. */
2337
2338 gcall *
2339 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2340 {
2341 int i;
2342 int nargs = gimple_call_num_args (stmt);
2343 auto_vec<tree> vargs (nargs);
2344 gcall *new_stmt;
2345
2346 for (i = 0; i < nargs; i++)
2347 if (!bitmap_bit_p (args_to_skip, i))
2348 vargs.quick_push (gimple_call_arg (stmt, i));
2349
2350 if (gimple_call_internal_p (stmt))
2351 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2352 vargs);
2353 else
2354 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2355
2356 if (gimple_call_lhs (stmt))
2357 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2358
2359 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2360 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2361
2362 if (gimple_has_location (stmt))
2363 gimple_set_location (new_stmt, gimple_location (stmt));
2364 gimple_call_copy_flags (new_stmt, stmt);
2365 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2366
2367 gimple_set_modified (new_stmt, true);
2368
2369 return new_stmt;
2370 }
2371
2372
2373
2374 /* Return true if the field decls F1 and F2 are at the same offset.
2375
2376 This is intended to be used on GIMPLE types only. */
2377
2378 bool
2379 gimple_compare_field_offset (tree f1, tree f2)
2380 {
2381 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2382 {
2383 tree offset1 = DECL_FIELD_OFFSET (f1);
2384 tree offset2 = DECL_FIELD_OFFSET (f2);
2385 return ((offset1 == offset2
2386 /* Once gimplification is done, self-referential offsets are
2387 instantiated as operand #2 of the COMPONENT_REF built for
2388 each access and reset. Therefore, they are not relevant
2389 anymore and fields are interchangeable provided that they
2390 represent the same access. */
2391 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2392 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2393 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2394 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2395 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2396 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2397 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2398 || operand_equal_p (offset1, offset2, 0))
2399 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2400 DECL_FIELD_BIT_OFFSET (f2)));
2401 }
2402
2403 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2404 should be, so handle differing ones specially by decomposing
2405 the offset into a byte and bit offset manually. */
2406 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2407 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2408 {
2409 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2410 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2411 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2412 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2413 + bit_offset1 / BITS_PER_UNIT);
2414 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2415 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2416 + bit_offset2 / BITS_PER_UNIT);
2417 if (byte_offset1 != byte_offset2)
2418 return false;
2419 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2420 }
2421
2422 return false;
2423 }
2424
2425
2426 /* Return a type the same as TYPE except unsigned or
2427 signed according to UNSIGNEDP. */
2428
2429 static tree
2430 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2431 {
2432 tree type1;
2433 int i;
2434
2435 type1 = TYPE_MAIN_VARIANT (type);
2436 if (type1 == signed_char_type_node
2437 || type1 == char_type_node
2438 || type1 == unsigned_char_type_node)
2439 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2440 if (type1 == integer_type_node || type1 == unsigned_type_node)
2441 return unsignedp ? unsigned_type_node : integer_type_node;
2442 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2443 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2444 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2445 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2446 if (type1 == long_long_integer_type_node
2447 || type1 == long_long_unsigned_type_node)
2448 return unsignedp
2449 ? long_long_unsigned_type_node
2450 : long_long_integer_type_node;
2451
2452 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2453 if (int_n_enabled_p[i]
2454 && (type1 == int_n_trees[i].unsigned_type
2455 || type1 == int_n_trees[i].signed_type))
2456 return unsignedp
2457 ? int_n_trees[i].unsigned_type
2458 : int_n_trees[i].signed_type;
2459
2460 #if HOST_BITS_PER_WIDE_INT >= 64
2461 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2462 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2463 #endif
2464 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2465 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2466 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2467 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2468 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2469 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2470 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2471 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2472
2473 #define GIMPLE_FIXED_TYPES(NAME) \
2474 if (type1 == short_ ## NAME ## _type_node \
2475 || type1 == unsigned_short_ ## NAME ## _type_node) \
2476 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2477 : short_ ## NAME ## _type_node; \
2478 if (type1 == NAME ## _type_node \
2479 || type1 == unsigned_ ## NAME ## _type_node) \
2480 return unsignedp ? unsigned_ ## NAME ## _type_node \
2481 : NAME ## _type_node; \
2482 if (type1 == long_ ## NAME ## _type_node \
2483 || type1 == unsigned_long_ ## NAME ## _type_node) \
2484 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2485 : long_ ## NAME ## _type_node; \
2486 if (type1 == long_long_ ## NAME ## _type_node \
2487 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2488 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2489 : long_long_ ## NAME ## _type_node;
2490
2491 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2492 if (type1 == NAME ## _type_node \
2493 || type1 == u ## NAME ## _type_node) \
2494 return unsignedp ? u ## NAME ## _type_node \
2495 : NAME ## _type_node;
2496
2497 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2498 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2499 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2500 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2501 : sat_ ## short_ ## NAME ## _type_node; \
2502 if (type1 == sat_ ## NAME ## _type_node \
2503 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2504 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2505 : sat_ ## NAME ## _type_node; \
2506 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2507 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2508 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2509 : sat_ ## long_ ## NAME ## _type_node; \
2510 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2511 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2512 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2513 : sat_ ## long_long_ ## NAME ## _type_node;
2514
2515 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2516 if (type1 == sat_ ## NAME ## _type_node \
2517 || type1 == sat_ ## u ## NAME ## _type_node) \
2518 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2519 : sat_ ## NAME ## _type_node;
2520
2521 GIMPLE_FIXED_TYPES (fract);
2522 GIMPLE_FIXED_TYPES_SAT (fract);
2523 GIMPLE_FIXED_TYPES (accum);
2524 GIMPLE_FIXED_TYPES_SAT (accum);
2525
2526 GIMPLE_FIXED_MODE_TYPES (qq);
2527 GIMPLE_FIXED_MODE_TYPES (hq);
2528 GIMPLE_FIXED_MODE_TYPES (sq);
2529 GIMPLE_FIXED_MODE_TYPES (dq);
2530 GIMPLE_FIXED_MODE_TYPES (tq);
2531 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2532 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2533 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2534 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2535 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2536 GIMPLE_FIXED_MODE_TYPES (ha);
2537 GIMPLE_FIXED_MODE_TYPES (sa);
2538 GIMPLE_FIXED_MODE_TYPES (da);
2539 GIMPLE_FIXED_MODE_TYPES (ta);
2540 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2541 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2542 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2543 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2544
2545 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2546 the precision; they have precision set to match their range, but
2547 may use a wider mode to match an ABI. If we change modes, we may
2548 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2549 the precision as well, so as to yield correct results for
2550 bit-field types. C++ does not have these separate bit-field
2551 types, and producing a signed or unsigned variant of an
2552 ENUMERAL_TYPE may cause other problems as well. */
2553 if (!INTEGRAL_TYPE_P (type)
2554 || TYPE_UNSIGNED (type) == unsignedp)
2555 return type;
2556
2557 #define TYPE_OK(node) \
2558 (TYPE_MODE (type) == TYPE_MODE (node) \
2559 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2560 if (TYPE_OK (signed_char_type_node))
2561 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2562 if (TYPE_OK (integer_type_node))
2563 return unsignedp ? unsigned_type_node : integer_type_node;
2564 if (TYPE_OK (short_integer_type_node))
2565 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2566 if (TYPE_OK (long_integer_type_node))
2567 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2568 if (TYPE_OK (long_long_integer_type_node))
2569 return (unsignedp
2570 ? long_long_unsigned_type_node
2571 : long_long_integer_type_node);
2572
2573 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2574 if (int_n_enabled_p[i]
2575 && TYPE_MODE (type) == int_n_data[i].m
2576 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2577 return unsignedp
2578 ? int_n_trees[i].unsigned_type
2579 : int_n_trees[i].signed_type;
2580
2581 #if HOST_BITS_PER_WIDE_INT >= 64
2582 if (TYPE_OK (intTI_type_node))
2583 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2584 #endif
2585 if (TYPE_OK (intDI_type_node))
2586 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2587 if (TYPE_OK (intSI_type_node))
2588 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2589 if (TYPE_OK (intHI_type_node))
2590 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2591 if (TYPE_OK (intQI_type_node))
2592 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2593
2594 #undef GIMPLE_FIXED_TYPES
2595 #undef GIMPLE_FIXED_MODE_TYPES
2596 #undef GIMPLE_FIXED_TYPES_SAT
2597 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2598 #undef TYPE_OK
2599
2600 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2601 }
2602
2603
2604 /* Return an unsigned type the same as TYPE in other respects. */
2605
2606 tree
2607 gimple_unsigned_type (tree type)
2608 {
2609 return gimple_signed_or_unsigned_type (true, type);
2610 }
2611
2612
2613 /* Return a signed type the same as TYPE in other respects. */
2614
2615 tree
2616 gimple_signed_type (tree type)
2617 {
2618 return gimple_signed_or_unsigned_type (false, type);
2619 }
2620
2621
2622 /* Return the typed-based alias set for T, which may be an expression
2623 or a type. Return -1 if we don't do anything special. */
2624
2625 alias_set_type
2626 gimple_get_alias_set (tree t)
2627 {
2628 /* That's all the expressions we handle specially. */
2629 if (!TYPE_P (t))
2630 return -1;
2631
2632 /* For convenience, follow the C standard when dealing with
2633 character types. Any object may be accessed via an lvalue that
2634 has character type. */
2635 if (t == char_type_node
2636 || t == signed_char_type_node
2637 || t == unsigned_char_type_node)
2638 return 0;
2639
2640 /* Allow aliasing between signed and unsigned variants of the same
2641 type. We treat the signed variant as canonical. */
2642 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2643 {
2644 tree t1 = gimple_signed_type (t);
2645
2646 /* t1 == t can happen for boolean nodes which are always unsigned. */
2647 if (t1 != t)
2648 return get_alias_set (t1);
2649 }
2650
2651 /* Allow aliasing between enumeral types and the underlying
2652 integer type. This is required for C since those are
2653 compatible types. */
2654 else if (TREE_CODE (t) == ENUMERAL_TYPE)
2655 {
2656 tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
2657 false /* short-cut above */);
2658 return get_alias_set (t1);
2659 }
2660
2661 return -1;
2662 }
2663
2664
2665 /* Helper for gimple_ior_addresses_taken_1. */
2666
2667 static bool
2668 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2669 {
2670 bitmap addresses_taken = (bitmap)data;
2671 addr = get_base_address (addr);
2672 if (addr
2673 && DECL_P (addr))
2674 {
2675 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2676 return true;
2677 }
2678 return false;
2679 }
2680
2681 /* Set the bit for the uid of all decls that have their address taken
2682 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2683 were any in this stmt. */
2684
2685 bool
2686 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2687 {
2688 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2689 gimple_ior_addresses_taken_1);
2690 }
2691
2692
2693 /* Return true when STMTs arguments and return value match those of FNDECL,
2694 a decl of a builtin function. */
2695
2696 bool
2697 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2698 {
2699 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2700
2701 tree ret = gimple_call_lhs (stmt);
2702 if (ret
2703 && !useless_type_conversion_p (TREE_TYPE (ret),
2704 TREE_TYPE (TREE_TYPE (fndecl))))
2705 return false;
2706
2707 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2708 unsigned nargs = gimple_call_num_args (stmt);
2709 for (unsigned i = 0; i < nargs; ++i)
2710 {
2711 /* Variadic args follow. */
2712 if (!targs)
2713 return true;
2714 tree arg = gimple_call_arg (stmt, i);
2715 tree type = TREE_VALUE (targs);
2716 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2717 /* char/short integral arguments are promoted to int
2718 by several frontends if targetm.calls.promote_prototypes
2719 is true. Allow such promotion too. */
2720 && !(INTEGRAL_TYPE_P (type)
2721 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2722 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2723 && useless_type_conversion_p (integer_type_node,
2724 TREE_TYPE (arg))))
2725 return false;
2726 targs = TREE_CHAIN (targs);
2727 }
2728 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2729 return false;
2730 return true;
2731 }
2732
2733 /* Return true when STMT is operator a replaceable delete call. */
2734
2735 bool
2736 gimple_call_replaceable_operator_delete_p (const gcall *stmt)
2737 {
2738 tree fndecl;
2739
2740 if ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE)
2741 return DECL_IS_REPLACEABLE_OPERATOR_DELETE_P (fndecl);
2742 return false;
2743 }
2744
2745 /* Return true when STMT is builtins call. */
2746
2747 bool
2748 gimple_call_builtin_p (const gimple *stmt)
2749 {
2750 tree fndecl;
2751 if (is_gimple_call (stmt)
2752 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2753 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2754 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2755 return false;
2756 }
2757
2758 /* Return true when STMT is builtins call to CLASS. */
2759
2760 bool
2761 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2762 {
2763 tree fndecl;
2764 if (is_gimple_call (stmt)
2765 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2766 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2767 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2768 return false;
2769 }
2770
2771 /* Return true when STMT is builtins call to CODE of CLASS. */
2772
2773 bool
2774 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2775 {
2776 tree fndecl;
2777 if (is_gimple_call (stmt)
2778 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2779 && fndecl_built_in_p (fndecl, code))
2780 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2781 return false;
2782 }
2783
2784 /* If CALL is a call to a combined_fn (i.e. an internal function or
2785 a normal built-in function), return its code, otherwise return
2786 CFN_LAST. */
2787
2788 combined_fn
2789 gimple_call_combined_fn (const gimple *stmt)
2790 {
2791 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2792 {
2793 if (gimple_call_internal_p (call))
2794 return as_combined_fn (gimple_call_internal_fn (call));
2795
2796 tree fndecl = gimple_call_fndecl (stmt);
2797 if (fndecl
2798 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2799 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2800 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2801 }
2802 return CFN_LAST;
2803 }
2804
2805 /* Return true if STMT clobbers memory. STMT is required to be a
2806 GIMPLE_ASM. */
2807
2808 bool
2809 gimple_asm_clobbers_memory_p (const gasm *stmt)
2810 {
2811 unsigned i;
2812
2813 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2814 {
2815 tree op = gimple_asm_clobber_op (stmt, i);
2816 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2817 return true;
2818 }
2819
2820 /* Non-empty basic ASM implicitly clobbers memory. */
2821 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2822 return true;
2823
2824 return false;
2825 }
2826
2827 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2828
2829 void
2830 dump_decl_set (FILE *file, bitmap set)
2831 {
2832 if (set)
2833 {
2834 bitmap_iterator bi;
2835 unsigned i;
2836
2837 fprintf (file, "{ ");
2838
2839 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2840 {
2841 fprintf (file, "D.%u", i);
2842 fprintf (file, " ");
2843 }
2844
2845 fprintf (file, "}");
2846 }
2847 else
2848 fprintf (file, "NIL");
2849 }
2850
2851 /* Return true when CALL is a call stmt that definitely doesn't
2852 free any memory or makes it unavailable otherwise. */
2853 bool
2854 nonfreeing_call_p (gimple *call)
2855 {
2856 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2857 && gimple_call_flags (call) & ECF_LEAF)
2858 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2859 {
2860 /* Just in case these become ECF_LEAF in the future. */
2861 case BUILT_IN_FREE:
2862 case BUILT_IN_TM_FREE:
2863 case BUILT_IN_REALLOC:
2864 case BUILT_IN_STACK_RESTORE:
2865 return false;
2866 default:
2867 return true;
2868 }
2869 else if (gimple_call_internal_p (call))
2870 switch (gimple_call_internal_fn (call))
2871 {
2872 case IFN_ABNORMAL_DISPATCHER:
2873 return true;
2874 case IFN_ASAN_MARK:
2875 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2876 default:
2877 if (gimple_call_flags (call) & ECF_LEAF)
2878 return true;
2879 return false;
2880 }
2881
2882 tree fndecl = gimple_call_fndecl (call);
2883 if (!fndecl)
2884 return false;
2885 struct cgraph_node *n = cgraph_node::get (fndecl);
2886 if (!n)
2887 return false;
2888 enum availability availability;
2889 n = n->function_symbol (&availability);
2890 if (!n || availability <= AVAIL_INTERPOSABLE)
2891 return false;
2892 return n->nonfreeing_fn;
2893 }
2894
2895 /* Return true when CALL is a call stmt that definitely need not
2896 be considered to be a memory barrier. */
2897 bool
2898 nonbarrier_call_p (gimple *call)
2899 {
2900 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2901 return true;
2902 /* Should extend this to have a nonbarrier_fn flag, just as above in
2903 the nonfreeing case. */
2904 return false;
2905 }
2906
2907 /* Callback for walk_stmt_load_store_ops.
2908
2909 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2910 otherwise.
2911
2912 This routine only makes a superficial check for a dereference. Thus
2913 it must only be used if it is safe to return a false negative. */
2914 static bool
2915 check_loadstore (gimple *, tree op, tree, void *data)
2916 {
2917 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2918 {
2919 /* Some address spaces may legitimately dereference zero. */
2920 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2921 if (targetm.addr_space.zero_address_valid (as))
2922 return false;
2923
2924 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2925 }
2926 return false;
2927 }
2928
2929
2930 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2931 either by using a pointer dereference or attributes. */
2932 bool
2933 infer_nonnull_range (gimple *stmt, tree op)
2934 {
2935 return infer_nonnull_range_by_dereference (stmt, op)
2936 || infer_nonnull_range_by_attribute (stmt, op);
2937 }
2938
2939 /* Return true if OP can be inferred to be non-NULL after STMT
2940 executes by using a pointer dereference. */
2941 bool
2942 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2943 {
2944 /* We can only assume that a pointer dereference will yield
2945 non-NULL if -fdelete-null-pointer-checks is enabled. */
2946 if (!flag_delete_null_pointer_checks
2947 || !POINTER_TYPE_P (TREE_TYPE (op))
2948 || gimple_code (stmt) == GIMPLE_ASM)
2949 return false;
2950
2951 if (walk_stmt_load_store_ops (stmt, (void *)op,
2952 check_loadstore, check_loadstore))
2953 return true;
2954
2955 return false;
2956 }
2957
2958 /* Return true if OP can be inferred to be a non-NULL after STMT
2959 executes by using attributes. */
2960 bool
2961 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2962 {
2963 /* We can only assume that a pointer dereference will yield
2964 non-NULL if -fdelete-null-pointer-checks is enabled. */
2965 if (!flag_delete_null_pointer_checks
2966 || !POINTER_TYPE_P (TREE_TYPE (op))
2967 || gimple_code (stmt) == GIMPLE_ASM)
2968 return false;
2969
2970 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2971 {
2972 tree fntype = gimple_call_fntype (stmt);
2973 tree attrs = TYPE_ATTRIBUTES (fntype);
2974 for (; attrs; attrs = TREE_CHAIN (attrs))
2975 {
2976 attrs = lookup_attribute ("nonnull", attrs);
2977
2978 /* If "nonnull" wasn't specified, we know nothing about
2979 the argument. */
2980 if (attrs == NULL_TREE)
2981 return false;
2982
2983 /* If "nonnull" applies to all the arguments, then ARG
2984 is non-null if it's in the argument list. */
2985 if (TREE_VALUE (attrs) == NULL_TREE)
2986 {
2987 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2988 {
2989 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2990 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2991 return true;
2992 }
2993 return false;
2994 }
2995
2996 /* Now see if op appears in the nonnull list. */
2997 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2998 {
2999 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
3000 if (idx < gimple_call_num_args (stmt))
3001 {
3002 tree arg = gimple_call_arg (stmt, idx);
3003 if (operand_equal_p (op, arg, 0))
3004 return true;
3005 }
3006 }
3007 }
3008 }
3009
3010 /* If this function is marked as returning non-null, then we can
3011 infer OP is non-null if it is used in the return statement. */
3012 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
3013 if (gimple_return_retval (return_stmt)
3014 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
3015 && lookup_attribute ("returns_nonnull",
3016 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
3017 return true;
3018
3019 return false;
3020 }
3021
3022 /* Compare two case labels. Because the front end should already have
3023 made sure that case ranges do not overlap, it is enough to only compare
3024 the CASE_LOW values of each case label. */
3025
3026 static int
3027 compare_case_labels (const void *p1, const void *p2)
3028 {
3029 const_tree const case1 = *(const_tree const*)p1;
3030 const_tree const case2 = *(const_tree const*)p2;
3031
3032 /* The 'default' case label always goes first. */
3033 if (!CASE_LOW (case1))
3034 return -1;
3035 else if (!CASE_LOW (case2))
3036 return 1;
3037 else
3038 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3039 }
3040
3041 /* Sort the case labels in LABEL_VEC in place in ascending order. */
3042
3043 void
3044 sort_case_labels (vec<tree> label_vec)
3045 {
3046 label_vec.qsort (compare_case_labels);
3047 }
3048 \f
3049 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
3050
3051 LABELS is a vector that contains all case labels to look at.
3052
3053 INDEX_TYPE is the type of the switch index expression. Case labels
3054 in LABELS are discarded if their values are not in the value range
3055 covered by INDEX_TYPE. The remaining case label values are folded
3056 to INDEX_TYPE.
3057
3058 If a default case exists in LABELS, it is removed from LABELS and
3059 returned in DEFAULT_CASEP. If no default case exists, but the
3060 case labels already cover the whole range of INDEX_TYPE, a default
3061 case is returned pointing to one of the existing case labels.
3062 Otherwise DEFAULT_CASEP is set to NULL_TREE.
3063
3064 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
3065 apply and no action is taken regardless of whether a default case is
3066 found or not. */
3067
3068 void
3069 preprocess_case_label_vec_for_gimple (vec<tree> labels,
3070 tree index_type,
3071 tree *default_casep)
3072 {
3073 tree min_value, max_value;
3074 tree default_case = NULL_TREE;
3075 size_t i, len;
3076
3077 i = 0;
3078 min_value = TYPE_MIN_VALUE (index_type);
3079 max_value = TYPE_MAX_VALUE (index_type);
3080 while (i < labels.length ())
3081 {
3082 tree elt = labels[i];
3083 tree low = CASE_LOW (elt);
3084 tree high = CASE_HIGH (elt);
3085 bool remove_element = FALSE;
3086
3087 if (low)
3088 {
3089 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
3090 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
3091
3092 /* This is a non-default case label, i.e. it has a value.
3093
3094 See if the case label is reachable within the range of
3095 the index type. Remove out-of-range case values. Turn
3096 case ranges into a canonical form (high > low strictly)
3097 and convert the case label values to the index type.
3098
3099 NB: The type of gimple_switch_index() may be the promoted
3100 type, but the case labels retain the original type. */
3101
3102 if (high)
3103 {
3104 /* This is a case range. Discard empty ranges.
3105 If the bounds or the range are equal, turn this
3106 into a simple (one-value) case. */
3107 int cmp = tree_int_cst_compare (high, low);
3108 if (cmp < 0)
3109 remove_element = TRUE;
3110 else if (cmp == 0)
3111 high = NULL_TREE;
3112 }
3113
3114 if (! high)
3115 {
3116 /* If the simple case value is unreachable, ignore it. */
3117 if ((TREE_CODE (min_value) == INTEGER_CST
3118 && tree_int_cst_compare (low, min_value) < 0)
3119 || (TREE_CODE (max_value) == INTEGER_CST
3120 && tree_int_cst_compare (low, max_value) > 0))
3121 remove_element = TRUE;
3122 else
3123 low = fold_convert (index_type, low);
3124 }
3125 else
3126 {
3127 /* If the entire case range is unreachable, ignore it. */
3128 if ((TREE_CODE (min_value) == INTEGER_CST
3129 && tree_int_cst_compare (high, min_value) < 0)
3130 || (TREE_CODE (max_value) == INTEGER_CST
3131 && tree_int_cst_compare (low, max_value) > 0))
3132 remove_element = TRUE;
3133 else
3134 {
3135 /* If the lower bound is less than the index type's
3136 minimum value, truncate the range bounds. */
3137 if (TREE_CODE (min_value) == INTEGER_CST
3138 && tree_int_cst_compare (low, min_value) < 0)
3139 low = min_value;
3140 low = fold_convert (index_type, low);
3141
3142 /* If the upper bound is greater than the index type's
3143 maximum value, truncate the range bounds. */
3144 if (TREE_CODE (max_value) == INTEGER_CST
3145 && tree_int_cst_compare (high, max_value) > 0)
3146 high = max_value;
3147 high = fold_convert (index_type, high);
3148
3149 /* We may have folded a case range to a one-value case. */
3150 if (tree_int_cst_equal (low, high))
3151 high = NULL_TREE;
3152 }
3153 }
3154
3155 CASE_LOW (elt) = low;
3156 CASE_HIGH (elt) = high;
3157 }
3158 else
3159 {
3160 gcc_assert (!default_case);
3161 default_case = elt;
3162 /* The default case must be passed separately to the
3163 gimple_build_switch routine. But if DEFAULT_CASEP
3164 is NULL, we do not remove the default case (it would
3165 be completely lost). */
3166 if (default_casep)
3167 remove_element = TRUE;
3168 }
3169
3170 if (remove_element)
3171 labels.ordered_remove (i);
3172 else
3173 i++;
3174 }
3175 len = i;
3176
3177 if (!labels.is_empty ())
3178 sort_case_labels (labels);
3179
3180 if (default_casep && !default_case)
3181 {
3182 /* If the switch has no default label, add one, so that we jump
3183 around the switch body. If the labels already cover the whole
3184 range of the switch index_type, add the default label pointing
3185 to one of the existing labels. */
3186 if (len
3187 && TYPE_MIN_VALUE (index_type)
3188 && TYPE_MAX_VALUE (index_type)
3189 && tree_int_cst_equal (CASE_LOW (labels[0]),
3190 TYPE_MIN_VALUE (index_type)))
3191 {
3192 tree low, high = CASE_HIGH (labels[len - 1]);
3193 if (!high)
3194 high = CASE_LOW (labels[len - 1]);
3195 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3196 {
3197 tree widest_label = labels[0];
3198 for (i = 1; i < len; i++)
3199 {
3200 high = CASE_LOW (labels[i]);
3201 low = CASE_HIGH (labels[i - 1]);
3202 if (!low)
3203 low = CASE_LOW (labels[i - 1]);
3204
3205 if (CASE_HIGH (labels[i]) != NULL_TREE
3206 && (CASE_HIGH (widest_label) == NULL_TREE
3207 || (wi::gtu_p
3208 (wi::to_wide (CASE_HIGH (labels[i]))
3209 - wi::to_wide (CASE_LOW (labels[i])),
3210 wi::to_wide (CASE_HIGH (widest_label))
3211 - wi::to_wide (CASE_LOW (widest_label))))))
3212 widest_label = labels[i];
3213
3214 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3215 break;
3216 }
3217 if (i == len)
3218 {
3219 /* Designate the label with the widest range to be the
3220 default label. */
3221 tree label = CASE_LABEL (widest_label);
3222 default_case = build_case_label (NULL_TREE, NULL_TREE,
3223 label);
3224 }
3225 }
3226 }
3227 }
3228
3229 if (default_casep)
3230 *default_casep = default_case;
3231 }
3232
3233 /* Set the location of all statements in SEQ to LOC. */
3234
3235 void
3236 gimple_seq_set_location (gimple_seq seq, location_t loc)
3237 {
3238 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3239 gimple_set_location (gsi_stmt (i), loc);
3240 }
3241
3242 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3243
3244 void
3245 gimple_seq_discard (gimple_seq seq)
3246 {
3247 gimple_stmt_iterator gsi;
3248
3249 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3250 {
3251 gimple *stmt = gsi_stmt (gsi);
3252 gsi_remove (&gsi, true);
3253 release_defs (stmt);
3254 ggc_free (stmt);
3255 }
3256 }
3257
3258 /* See if STMT now calls function that takes no parameters and if so, drop
3259 call arguments. This is used when devirtualization machinery redirects
3260 to __builtin_unreachable or __cxa_pure_virtual. */
3261
3262 void
3263 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3264 {
3265 tree decl = gimple_call_fndecl (stmt);
3266 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3267 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3268 && gimple_call_num_args (stmt))
3269 {
3270 gimple_set_num_ops (stmt, 3);
3271 update_stmt_fn (fn, stmt);
3272 }
3273 }
3274
3275 /* Return false if STMT will likely expand to real function call. */
3276
3277 bool
3278 gimple_inexpensive_call_p (gcall *stmt)
3279 {
3280 if (gimple_call_internal_p (stmt))
3281 return true;
3282 tree decl = gimple_call_fndecl (stmt);
3283 if (decl && is_inexpensive_builtin (decl))
3284 return true;
3285 return false;
3286 }
3287
3288 /* Return a non-artificial location for STMT. If STMT does not have
3289 location information, get the location from EXPR. */
3290
3291 location_t
3292 gimple_or_expr_nonartificial_location (gimple *stmt, tree expr)
3293 {
3294 location_t loc = gimple_nonartificial_location (stmt);
3295 if (loc == UNKNOWN_LOCATION && EXPR_HAS_LOCATION (expr))
3296 loc = tree_nonartificial_location (expr);
3297 return expansion_point_location_if_in_system_header (loc);
3298 }
3299
3300
3301 #if CHECKING_P
3302
3303 namespace selftest {
3304
3305 /* Selftests for core gimple structures. */
3306
3307 /* Verify that STMT is pretty-printed as EXPECTED.
3308 Helper function for selftests. */
3309
3310 static void
3311 verify_gimple_pp (const char *expected, gimple *stmt)
3312 {
3313 pretty_printer pp;
3314 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3315 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3316 }
3317
3318 /* Build a GIMPLE_ASSIGN equivalent to
3319 tmp = 5;
3320 and verify various properties of it. */
3321
3322 static void
3323 test_assign_single ()
3324 {
3325 tree type = integer_type_node;
3326 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3327 get_identifier ("tmp"),
3328 type);
3329 tree rhs = build_int_cst (type, 5);
3330 gassign *stmt = gimple_build_assign (lhs, rhs);
3331 verify_gimple_pp ("tmp = 5;", stmt);
3332
3333 ASSERT_TRUE (is_gimple_assign (stmt));
3334 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3335 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3336 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3337 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3338 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3339 ASSERT_TRUE (gimple_assign_single_p (stmt));
3340 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3341 }
3342
3343 /* Build a GIMPLE_ASSIGN equivalent to
3344 tmp = a * b;
3345 and verify various properties of it. */
3346
3347 static void
3348 test_assign_binop ()
3349 {
3350 tree type = integer_type_node;
3351 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3352 get_identifier ("tmp"),
3353 type);
3354 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3355 get_identifier ("a"),
3356 type);
3357 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3358 get_identifier ("b"),
3359 type);
3360 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3361 verify_gimple_pp ("tmp = a * b;", stmt);
3362
3363 ASSERT_TRUE (is_gimple_assign (stmt));
3364 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3365 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3366 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3367 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3368 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3369 ASSERT_FALSE (gimple_assign_single_p (stmt));
3370 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3371 }
3372
3373 /* Build a GIMPLE_NOP and verify various properties of it. */
3374
3375 static void
3376 test_nop_stmt ()
3377 {
3378 gimple *stmt = gimple_build_nop ();
3379 verify_gimple_pp ("GIMPLE_NOP", stmt);
3380 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3381 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3382 ASSERT_FALSE (gimple_assign_single_p (stmt));
3383 }
3384
3385 /* Build a GIMPLE_RETURN equivalent to
3386 return 7;
3387 and verify various properties of it. */
3388
3389 static void
3390 test_return_stmt ()
3391 {
3392 tree type = integer_type_node;
3393 tree val = build_int_cst (type, 7);
3394 greturn *stmt = gimple_build_return (val);
3395 verify_gimple_pp ("return 7;", stmt);
3396
3397 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3398 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3399 ASSERT_EQ (val, gimple_return_retval (stmt));
3400 ASSERT_FALSE (gimple_assign_single_p (stmt));
3401 }
3402
3403 /* Build a GIMPLE_RETURN equivalent to
3404 return;
3405 and verify various properties of it. */
3406
3407 static void
3408 test_return_without_value ()
3409 {
3410 greturn *stmt = gimple_build_return (NULL);
3411 verify_gimple_pp ("return;", stmt);
3412
3413 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3414 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3415 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3416 ASSERT_FALSE (gimple_assign_single_p (stmt));
3417 }
3418
3419 /* Run all of the selftests within this file. */
3420
3421 void
3422 gimple_c_tests ()
3423 {
3424 test_assign_single ();
3425 test_assign_binop ();
3426 test_nop_stmt ();
3427 test_return_stmt ();
3428 test_return_without_value ();
3429 }
3430
3431 } // namespace selftest
3432
3433
3434 #endif /* CHECKING_P */