]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
* doc/extend.texi (Common Function Attributes): Clarify
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2019 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41 #include "builtins.h"
42 #include "selftest.h"
43 #include "gimple-pretty-print.h"
44 #include "stringpool.h"
45 #include "attribs.h"
46 #include "asan.h"
47 #include "langhooks.h"
48
49
50 /* All the tuples have their operand vector (if present) at the very bottom
51 of the structure. Therefore, the offset required to find the
52 operands vector the size of the structure minus the size of the 1
53 element tree array at the end (see gimple_ops). */
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
55 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
56 EXPORTED_CONST size_t gimple_ops_offset_[] = {
57 #include "gsstruct.def"
58 };
59 #undef DEFGSSTRUCT
60
61 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
62 static const size_t gsstruct_code_size[] = {
63 #include "gsstruct.def"
64 };
65 #undef DEFGSSTRUCT
66
67 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
68 const char *const gimple_code_name[] = {
69 #include "gimple.def"
70 };
71 #undef DEFGSCODE
72
73 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
74 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
75 #include "gimple.def"
76 };
77 #undef DEFGSCODE
78
79 /* Gimple stats. */
80
81 uint64_t gimple_alloc_counts[(int) gimple_alloc_kind_all];
82 uint64_t gimple_alloc_sizes[(int) gimple_alloc_kind_all];
83
84 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
85 static const char * const gimple_alloc_kind_names[] = {
86 "assignments",
87 "phi nodes",
88 "conditionals",
89 "everything else"
90 };
91
92 /* Static gimple tuple members. */
93 const enum gimple_code gassign::code_;
94 const enum gimple_code gcall::code_;
95 const enum gimple_code gcond::code_;
96
97
98 /* Gimple tuple constructors.
99 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
100 be passed a NULL to start with an empty sequence. */
101
102 /* Set the code for statement G to CODE. */
103
104 static inline void
105 gimple_set_code (gimple *g, enum gimple_code code)
106 {
107 g->code = code;
108 }
109
110 /* Return the number of bytes needed to hold a GIMPLE statement with
111 code CODE. */
112
113 static inline size_t
114 gimple_size (enum gimple_code code)
115 {
116 return gsstruct_code_size[gss_for_code (code)];
117 }
118
119 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
120 operands. */
121
122 gimple *
123 gimple_alloc (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
124 {
125 size_t size;
126 gimple *stmt;
127
128 size = gimple_size (code);
129 if (num_ops > 0)
130 size += sizeof (tree) * (num_ops - 1);
131
132 if (GATHER_STATISTICS)
133 {
134 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
135 gimple_alloc_counts[(int) kind]++;
136 gimple_alloc_sizes[(int) kind] += size;
137 }
138
139 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
140 gimple_set_code (stmt, code);
141 gimple_set_num_ops (stmt, num_ops);
142
143 /* Do not call gimple_set_modified here as it has other side
144 effects and this tuple is still not completely built. */
145 stmt->modified = 1;
146 gimple_init_singleton (stmt);
147
148 return stmt;
149 }
150
151 /* Set SUBCODE to be the code of the expression computed by statement G. */
152
153 static inline void
154 gimple_set_subcode (gimple *g, unsigned subcode)
155 {
156 /* We only have 16 bits for the RHS code. Assert that we are not
157 overflowing it. */
158 gcc_assert (subcode < (1 << 16));
159 g->subcode = subcode;
160 }
161
162
163
164 /* Build a tuple with operands. CODE is the statement to build (which
165 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
166 for the new tuple. NUM_OPS is the number of operands to allocate. */
167
168 #define gimple_build_with_ops(c, s, n) \
169 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
170
171 static gimple *
172 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
173 unsigned num_ops MEM_STAT_DECL)
174 {
175 gimple *s = gimple_alloc (code, num_ops PASS_MEM_STAT);
176 gimple_set_subcode (s, subcode);
177
178 return s;
179 }
180
181
182 /* Build a GIMPLE_RETURN statement returning RETVAL. */
183
184 greturn *
185 gimple_build_return (tree retval)
186 {
187 greturn *s
188 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
189 2));
190 if (retval)
191 gimple_return_set_retval (s, retval);
192 return s;
193 }
194
195 /* Reset alias information on call S. */
196
197 void
198 gimple_call_reset_alias_info (gcall *s)
199 {
200 if (gimple_call_flags (s) & ECF_CONST)
201 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
202 else
203 pt_solution_reset (gimple_call_use_set (s));
204 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
205 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
206 else
207 pt_solution_reset (gimple_call_clobber_set (s));
208 }
209
210 /* Helper for gimple_build_call, gimple_build_call_valist,
211 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
212 components of a GIMPLE_CALL statement to function FN with NARGS
213 arguments. */
214
215 static inline gcall *
216 gimple_build_call_1 (tree fn, unsigned nargs)
217 {
218 gcall *s
219 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
220 nargs + 3));
221 if (TREE_CODE (fn) == FUNCTION_DECL)
222 fn = build_fold_addr_expr (fn);
223 gimple_set_op (s, 1, fn);
224 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
225 gimple_call_reset_alias_info (s);
226 return s;
227 }
228
229
230 /* Build a GIMPLE_CALL statement to function FN with the arguments
231 specified in vector ARGS. */
232
233 gcall *
234 gimple_build_call_vec (tree fn, vec<tree> args)
235 {
236 unsigned i;
237 unsigned nargs = args.length ();
238 gcall *call = gimple_build_call_1 (fn, nargs);
239
240 for (i = 0; i < nargs; i++)
241 gimple_call_set_arg (call, i, args[i]);
242
243 return call;
244 }
245
246
247 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
248 arguments. The ... are the arguments. */
249
250 gcall *
251 gimple_build_call (tree fn, unsigned nargs, ...)
252 {
253 va_list ap;
254 gcall *call;
255 unsigned i;
256
257 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
258
259 call = gimple_build_call_1 (fn, nargs);
260
261 va_start (ap, nargs);
262 for (i = 0; i < nargs; i++)
263 gimple_call_set_arg (call, i, va_arg (ap, tree));
264 va_end (ap);
265
266 return call;
267 }
268
269
270 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
271 arguments. AP contains the arguments. */
272
273 gcall *
274 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
275 {
276 gcall *call;
277 unsigned i;
278
279 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
280
281 call = gimple_build_call_1 (fn, nargs);
282
283 for (i = 0; i < nargs; i++)
284 gimple_call_set_arg (call, i, va_arg (ap, tree));
285
286 return call;
287 }
288
289
290 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
291 Build the basic components of a GIMPLE_CALL statement to internal
292 function FN with NARGS arguments. */
293
294 static inline gcall *
295 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
296 {
297 gcall *s
298 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
299 nargs + 3));
300 s->subcode |= GF_CALL_INTERNAL;
301 gimple_call_set_internal_fn (s, fn);
302 gimple_call_reset_alias_info (s);
303 return s;
304 }
305
306
307 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
308 the number of arguments. The ... are the arguments. */
309
310 gcall *
311 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
312 {
313 va_list ap;
314 gcall *call;
315 unsigned i;
316
317 call = gimple_build_call_internal_1 (fn, nargs);
318 va_start (ap, nargs);
319 for (i = 0; i < nargs; i++)
320 gimple_call_set_arg (call, i, va_arg (ap, tree));
321 va_end (ap);
322
323 return call;
324 }
325
326
327 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
328 specified in vector ARGS. */
329
330 gcall *
331 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
332 {
333 unsigned i, nargs;
334 gcall *call;
335
336 nargs = args.length ();
337 call = gimple_build_call_internal_1 (fn, nargs);
338 for (i = 0; i < nargs; i++)
339 gimple_call_set_arg (call, i, args[i]);
340
341 return call;
342 }
343
344
345 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
346 assumed to be in GIMPLE form already. Minimal checking is done of
347 this fact. */
348
349 gcall *
350 gimple_build_call_from_tree (tree t, tree fnptrtype)
351 {
352 unsigned i, nargs;
353 gcall *call;
354
355 gcc_assert (TREE_CODE (t) == CALL_EXPR);
356
357 nargs = call_expr_nargs (t);
358
359 tree fndecl = NULL_TREE;
360 if (CALL_EXPR_FN (t) == NULL_TREE)
361 call = gimple_build_call_internal_1 (CALL_EXPR_IFN (t), nargs);
362 else
363 {
364 fndecl = get_callee_fndecl (t);
365 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
366 }
367
368 for (i = 0; i < nargs; i++)
369 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
370
371 gimple_set_block (call, TREE_BLOCK (t));
372 gimple_set_location (call, EXPR_LOCATION (t));
373
374 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
375 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
376 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
377 gimple_call_set_must_tail (call, CALL_EXPR_MUST_TAIL_CALL (t));
378 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
379 if (fndecl
380 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
381 && ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (fndecl)))
382 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
383 else
384 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
385 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
386 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
387 gimple_call_set_by_descriptor (call, CALL_EXPR_BY_DESCRIPTOR (t));
388 gimple_set_no_warning (call, TREE_NO_WARNING (t));
389
390 if (fnptrtype)
391 {
392 gimple_call_set_fntype (call, TREE_TYPE (fnptrtype));
393
394 /* Check if it's an indirect CALL and the type has the
395 nocf_check attribute. In that case propagate the information
396 to the gimple CALL insn. */
397 if (!fndecl)
398 {
399 gcc_assert (POINTER_TYPE_P (fnptrtype));
400 tree fntype = TREE_TYPE (fnptrtype);
401
402 if (lookup_attribute ("nocf_check", TYPE_ATTRIBUTES (fntype)))
403 gimple_call_set_nocf_check (call, TRUE);
404 }
405 }
406
407 return call;
408 }
409
410
411 /* Build a GIMPLE_ASSIGN statement.
412
413 LHS of the assignment.
414 RHS of the assignment which can be unary or binary. */
415
416 gassign *
417 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
418 {
419 enum tree_code subcode;
420 tree op1, op2, op3;
421
422 extract_ops_from_tree (rhs, &subcode, &op1, &op2, &op3);
423 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
424 }
425
426
427 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
428 OP1, OP2 and OP3. */
429
430 static inline gassign *
431 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
432 tree op2, tree op3 MEM_STAT_DECL)
433 {
434 unsigned num_ops;
435 gassign *p;
436
437 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
438 code). */
439 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
440
441 p = as_a <gassign *> (
442 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
443 PASS_MEM_STAT));
444 gimple_assign_set_lhs (p, lhs);
445 gimple_assign_set_rhs1 (p, op1);
446 if (op2)
447 {
448 gcc_assert (num_ops > 2);
449 gimple_assign_set_rhs2 (p, op2);
450 }
451
452 if (op3)
453 {
454 gcc_assert (num_ops > 3);
455 gimple_assign_set_rhs3 (p, op3);
456 }
457
458 return p;
459 }
460
461 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
462 OP1, OP2 and OP3. */
463
464 gassign *
465 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
466 tree op2, tree op3 MEM_STAT_DECL)
467 {
468 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
469 }
470
471 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
472 OP1 and OP2. */
473
474 gassign *
475 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
476 tree op2 MEM_STAT_DECL)
477 {
478 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
479 PASS_MEM_STAT);
480 }
481
482 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
483
484 gassign *
485 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
486 {
487 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
488 PASS_MEM_STAT);
489 }
490
491
492 /* Build a GIMPLE_COND statement.
493
494 PRED is the condition used to compare LHS and the RHS.
495 T_LABEL is the label to jump to if the condition is true.
496 F_LABEL is the label to jump to otherwise. */
497
498 gcond *
499 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
500 tree t_label, tree f_label)
501 {
502 gcond *p;
503
504 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
505 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
506 gimple_cond_set_lhs (p, lhs);
507 gimple_cond_set_rhs (p, rhs);
508 gimple_cond_set_true_label (p, t_label);
509 gimple_cond_set_false_label (p, f_label);
510 return p;
511 }
512
513 /* Build a GIMPLE_COND statement from the conditional expression tree
514 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
515
516 gcond *
517 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
518 {
519 enum tree_code code;
520 tree lhs, rhs;
521
522 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
523 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
524 }
525
526 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
527 boolean expression tree COND. */
528
529 void
530 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
531 {
532 enum tree_code code;
533 tree lhs, rhs;
534
535 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
536 gimple_cond_set_condition (stmt, code, lhs, rhs);
537 }
538
539 /* Build a GIMPLE_LABEL statement for LABEL. */
540
541 glabel *
542 gimple_build_label (tree label)
543 {
544 glabel *p
545 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
546 gimple_label_set_label (p, label);
547 return p;
548 }
549
550 /* Build a GIMPLE_GOTO statement to label DEST. */
551
552 ggoto *
553 gimple_build_goto (tree dest)
554 {
555 ggoto *p
556 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
557 gimple_goto_set_dest (p, dest);
558 return p;
559 }
560
561
562 /* Build a GIMPLE_NOP statement. */
563
564 gimple *
565 gimple_build_nop (void)
566 {
567 return gimple_alloc (GIMPLE_NOP, 0);
568 }
569
570
571 /* Build a GIMPLE_BIND statement.
572 VARS are the variables in BODY.
573 BLOCK is the containing block. */
574
575 gbind *
576 gimple_build_bind (tree vars, gimple_seq body, tree block)
577 {
578 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
579 gimple_bind_set_vars (p, vars);
580 if (body)
581 gimple_bind_set_body (p, body);
582 if (block)
583 gimple_bind_set_block (p, block);
584 return p;
585 }
586
587 /* Helper function to set the simple fields of a asm stmt.
588
589 STRING is a pointer to a string that is the asm blocks assembly code.
590 NINPUT is the number of register inputs.
591 NOUTPUT is the number of register outputs.
592 NCLOBBERS is the number of clobbered registers.
593 */
594
595 static inline gasm *
596 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
597 unsigned nclobbers, unsigned nlabels)
598 {
599 gasm *p;
600 int size = strlen (string);
601
602 /* ASMs with labels cannot have outputs. This should have been
603 enforced by the front end. */
604 gcc_assert (nlabels == 0 || noutputs == 0);
605
606 p = as_a <gasm *> (
607 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
608 ninputs + noutputs + nclobbers + nlabels));
609
610 p->ni = ninputs;
611 p->no = noutputs;
612 p->nc = nclobbers;
613 p->nl = nlabels;
614 p->string = ggc_alloc_string (string, size);
615
616 if (GATHER_STATISTICS)
617 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
618
619 return p;
620 }
621
622 /* Build a GIMPLE_ASM statement.
623
624 STRING is the assembly code.
625 NINPUT is the number of register inputs.
626 NOUTPUT is the number of register outputs.
627 NCLOBBERS is the number of clobbered registers.
628 INPUTS is a vector of the input register parameters.
629 OUTPUTS is a vector of the output register parameters.
630 CLOBBERS is a vector of the clobbered register parameters.
631 LABELS is a vector of destination labels. */
632
633 gasm *
634 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
635 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
636 vec<tree, va_gc> *labels)
637 {
638 gasm *p;
639 unsigned i;
640
641 p = gimple_build_asm_1 (string,
642 vec_safe_length (inputs),
643 vec_safe_length (outputs),
644 vec_safe_length (clobbers),
645 vec_safe_length (labels));
646
647 for (i = 0; i < vec_safe_length (inputs); i++)
648 gimple_asm_set_input_op (p, i, (*inputs)[i]);
649
650 for (i = 0; i < vec_safe_length (outputs); i++)
651 gimple_asm_set_output_op (p, i, (*outputs)[i]);
652
653 for (i = 0; i < vec_safe_length (clobbers); i++)
654 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
655
656 for (i = 0; i < vec_safe_length (labels); i++)
657 gimple_asm_set_label_op (p, i, (*labels)[i]);
658
659 return p;
660 }
661
662 /* Build a GIMPLE_CATCH statement.
663
664 TYPES are the catch types.
665 HANDLER is the exception handler. */
666
667 gcatch *
668 gimple_build_catch (tree types, gimple_seq handler)
669 {
670 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
671 gimple_catch_set_types (p, types);
672 if (handler)
673 gimple_catch_set_handler (p, handler);
674
675 return p;
676 }
677
678 /* Build a GIMPLE_EH_FILTER statement.
679
680 TYPES are the filter's types.
681 FAILURE is the filter's failure action. */
682
683 geh_filter *
684 gimple_build_eh_filter (tree types, gimple_seq failure)
685 {
686 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
687 gimple_eh_filter_set_types (p, types);
688 if (failure)
689 gimple_eh_filter_set_failure (p, failure);
690
691 return p;
692 }
693
694 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
695
696 geh_mnt *
697 gimple_build_eh_must_not_throw (tree decl)
698 {
699 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
700
701 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
702 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
703 gimple_eh_must_not_throw_set_fndecl (p, decl);
704
705 return p;
706 }
707
708 /* Build a GIMPLE_EH_ELSE statement. */
709
710 geh_else *
711 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
712 {
713 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
714 gimple_eh_else_set_n_body (p, n_body);
715 gimple_eh_else_set_e_body (p, e_body);
716 return p;
717 }
718
719 /* Build a GIMPLE_TRY statement.
720
721 EVAL is the expression to evaluate.
722 CLEANUP is the cleanup expression.
723 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
724 whether this is a try/catch or a try/finally respectively. */
725
726 gtry *
727 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
728 enum gimple_try_flags kind)
729 {
730 gtry *p;
731
732 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
733 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
734 gimple_set_subcode (p, kind);
735 if (eval)
736 gimple_try_set_eval (p, eval);
737 if (cleanup)
738 gimple_try_set_cleanup (p, cleanup);
739
740 return p;
741 }
742
743 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
744
745 CLEANUP is the cleanup expression. */
746
747 gimple *
748 gimple_build_wce (gimple_seq cleanup)
749 {
750 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
751 if (cleanup)
752 gimple_wce_set_cleanup (p, cleanup);
753
754 return p;
755 }
756
757
758 /* Build a GIMPLE_RESX statement. */
759
760 gresx *
761 gimple_build_resx (int region)
762 {
763 gresx *p
764 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
765 p->region = region;
766 return p;
767 }
768
769
770 /* The helper for constructing a gimple switch statement.
771 INDEX is the switch's index.
772 NLABELS is the number of labels in the switch excluding the default.
773 DEFAULT_LABEL is the default label for the switch statement. */
774
775 gswitch *
776 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
777 {
778 /* nlabels + 1 default label + 1 index. */
779 gcc_checking_assert (default_label);
780 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
781 ERROR_MARK,
782 1 + 1 + nlabels));
783 gimple_switch_set_index (p, index);
784 gimple_switch_set_default_label (p, default_label);
785 return p;
786 }
787
788 /* Build a GIMPLE_SWITCH statement.
789
790 INDEX is the switch's index.
791 DEFAULT_LABEL is the default label
792 ARGS is a vector of labels excluding the default. */
793
794 gswitch *
795 gimple_build_switch (tree index, tree default_label, vec<tree> args)
796 {
797 unsigned i, nlabels = args.length ();
798
799 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
800
801 /* Copy the labels from the vector to the switch statement. */
802 for (i = 0; i < nlabels; i++)
803 gimple_switch_set_label (p, i + 1, args[i]);
804
805 return p;
806 }
807
808 /* Build a GIMPLE_EH_DISPATCH statement. */
809
810 geh_dispatch *
811 gimple_build_eh_dispatch (int region)
812 {
813 geh_dispatch *p
814 = as_a <geh_dispatch *> (
815 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
816 p->region = region;
817 return p;
818 }
819
820 /* Build a new GIMPLE_DEBUG_BIND statement.
821
822 VAR is bound to VALUE; block and location are taken from STMT. */
823
824 gdebug *
825 gimple_build_debug_bind (tree var, tree value, gimple *stmt MEM_STAT_DECL)
826 {
827 gdebug *p
828 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
829 (unsigned)GIMPLE_DEBUG_BIND, 2
830 PASS_MEM_STAT));
831 gimple_debug_bind_set_var (p, var);
832 gimple_debug_bind_set_value (p, value);
833 if (stmt)
834 gimple_set_location (p, gimple_location (stmt));
835
836 return p;
837 }
838
839
840 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
841
842 VAR is bound to VALUE; block and location are taken from STMT. */
843
844 gdebug *
845 gimple_build_debug_source_bind (tree var, tree value,
846 gimple *stmt MEM_STAT_DECL)
847 {
848 gdebug *p
849 = as_a <gdebug *> (
850 gimple_build_with_ops_stat (GIMPLE_DEBUG,
851 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
852 PASS_MEM_STAT));
853
854 gimple_debug_source_bind_set_var (p, var);
855 gimple_debug_source_bind_set_value (p, value);
856 if (stmt)
857 gimple_set_location (p, gimple_location (stmt));
858
859 return p;
860 }
861
862
863 /* Build a new GIMPLE_DEBUG_BEGIN_STMT statement in BLOCK at
864 LOCATION. */
865
866 gdebug *
867 gimple_build_debug_begin_stmt (tree block, location_t location
868 MEM_STAT_DECL)
869 {
870 gdebug *p
871 = as_a <gdebug *> (
872 gimple_build_with_ops_stat (GIMPLE_DEBUG,
873 (unsigned)GIMPLE_DEBUG_BEGIN_STMT, 0
874 PASS_MEM_STAT));
875
876 gimple_set_location (p, location);
877 gimple_set_block (p, block);
878 cfun->debug_marker_count++;
879
880 return p;
881 }
882
883
884 /* Build a new GIMPLE_DEBUG_INLINE_ENTRY statement in BLOCK at
885 LOCATION. The BLOCK links to the inlined function. */
886
887 gdebug *
888 gimple_build_debug_inline_entry (tree block, location_t location
889 MEM_STAT_DECL)
890 {
891 gdebug *p
892 = as_a <gdebug *> (
893 gimple_build_with_ops_stat (GIMPLE_DEBUG,
894 (unsigned)GIMPLE_DEBUG_INLINE_ENTRY, 0
895 PASS_MEM_STAT));
896
897 gimple_set_location (p, location);
898 gimple_set_block (p, block);
899 cfun->debug_marker_count++;
900
901 return p;
902 }
903
904
905 /* Build a GIMPLE_OMP_CRITICAL statement.
906
907 BODY is the sequence of statements for which only one thread can execute.
908 NAME is optional identifier for this critical block.
909 CLAUSES are clauses for this critical block. */
910
911 gomp_critical *
912 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
913 {
914 gomp_critical *p
915 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
916 gimple_omp_critical_set_name (p, name);
917 gimple_omp_critical_set_clauses (p, clauses);
918 if (body)
919 gimple_omp_set_body (p, body);
920
921 return p;
922 }
923
924 /* Build a GIMPLE_OMP_FOR statement.
925
926 BODY is sequence of statements inside the for loop.
927 KIND is the `for' variant.
928 CLAUSES are any of the construct's clauses.
929 COLLAPSE is the collapse count.
930 PRE_BODY is the sequence of statements that are loop invariant. */
931
932 gomp_for *
933 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
934 gimple_seq pre_body)
935 {
936 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
937 if (body)
938 gimple_omp_set_body (p, body);
939 gimple_omp_for_set_clauses (p, clauses);
940 gimple_omp_for_set_kind (p, kind);
941 p->collapse = collapse;
942 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
943
944 if (pre_body)
945 gimple_omp_for_set_pre_body (p, pre_body);
946
947 return p;
948 }
949
950
951 /* Build a GIMPLE_OMP_PARALLEL statement.
952
953 BODY is sequence of statements which are executed in parallel.
954 CLAUSES are the OMP parallel construct's clauses.
955 CHILD_FN is the function created for the parallel threads to execute.
956 DATA_ARG are the shared data argument(s). */
957
958 gomp_parallel *
959 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
960 tree data_arg)
961 {
962 gomp_parallel *p
963 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
964 if (body)
965 gimple_omp_set_body (p, body);
966 gimple_omp_parallel_set_clauses (p, clauses);
967 gimple_omp_parallel_set_child_fn (p, child_fn);
968 gimple_omp_parallel_set_data_arg (p, data_arg);
969
970 return p;
971 }
972
973
974 /* Build a GIMPLE_OMP_TASK statement.
975
976 BODY is sequence of statements which are executed by the explicit task.
977 CLAUSES are the OMP task construct's clauses.
978 CHILD_FN is the function created for the parallel threads to execute.
979 DATA_ARG are the shared data argument(s).
980 COPY_FN is the optional function for firstprivate initialization.
981 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
982
983 gomp_task *
984 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
985 tree data_arg, tree copy_fn, tree arg_size,
986 tree arg_align)
987 {
988 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
989 if (body)
990 gimple_omp_set_body (p, body);
991 gimple_omp_task_set_clauses (p, clauses);
992 gimple_omp_task_set_child_fn (p, child_fn);
993 gimple_omp_task_set_data_arg (p, data_arg);
994 gimple_omp_task_set_copy_fn (p, copy_fn);
995 gimple_omp_task_set_arg_size (p, arg_size);
996 gimple_omp_task_set_arg_align (p, arg_align);
997
998 return p;
999 }
1000
1001
1002 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
1003
1004 BODY is the sequence of statements in the section. */
1005
1006 gimple *
1007 gimple_build_omp_section (gimple_seq body)
1008 {
1009 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
1010 if (body)
1011 gimple_omp_set_body (p, body);
1012
1013 return p;
1014 }
1015
1016
1017 /* Build a GIMPLE_OMP_MASTER statement.
1018
1019 BODY is the sequence of statements to be executed by just the master. */
1020
1021 gimple *
1022 gimple_build_omp_master (gimple_seq body)
1023 {
1024 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
1025 if (body)
1026 gimple_omp_set_body (p, body);
1027
1028 return p;
1029 }
1030
1031 /* Build a GIMPLE_OMP_GRID_BODY statement.
1032
1033 BODY is the sequence of statements to be executed by the kernel. */
1034
1035 gimple *
1036 gimple_build_omp_grid_body (gimple_seq body)
1037 {
1038 gimple *p = gimple_alloc (GIMPLE_OMP_GRID_BODY, 0);
1039 if (body)
1040 gimple_omp_set_body (p, body);
1041
1042 return p;
1043 }
1044
1045 /* Build a GIMPLE_OMP_TASKGROUP statement.
1046
1047 BODY is the sequence of statements to be executed by the taskgroup
1048 construct.
1049 CLAUSES are any of the construct's clauses. */
1050
1051 gimple *
1052 gimple_build_omp_taskgroup (gimple_seq body, tree clauses)
1053 {
1054 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
1055 gimple_omp_taskgroup_set_clauses (p, clauses);
1056 if (body)
1057 gimple_omp_set_body (p, body);
1058
1059 return p;
1060 }
1061
1062
1063 /* Build a GIMPLE_OMP_CONTINUE statement.
1064
1065 CONTROL_DEF is the definition of the control variable.
1066 CONTROL_USE is the use of the control variable. */
1067
1068 gomp_continue *
1069 gimple_build_omp_continue (tree control_def, tree control_use)
1070 {
1071 gomp_continue *p
1072 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
1073 gimple_omp_continue_set_control_def (p, control_def);
1074 gimple_omp_continue_set_control_use (p, control_use);
1075 return p;
1076 }
1077
1078 /* Build a GIMPLE_OMP_ORDERED statement.
1079
1080 BODY is the sequence of statements inside a loop that will executed in
1081 sequence.
1082 CLAUSES are clauses for this statement. */
1083
1084 gomp_ordered *
1085 gimple_build_omp_ordered (gimple_seq body, tree clauses)
1086 {
1087 gomp_ordered *p
1088 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1089 gimple_omp_ordered_set_clauses (p, clauses);
1090 if (body)
1091 gimple_omp_set_body (p, body);
1092
1093 return p;
1094 }
1095
1096
1097 /* Build a GIMPLE_OMP_RETURN statement.
1098 WAIT_P is true if this is a non-waiting return. */
1099
1100 gimple *
1101 gimple_build_omp_return (bool wait_p)
1102 {
1103 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1104 if (wait_p)
1105 gimple_omp_return_set_nowait (p);
1106
1107 return p;
1108 }
1109
1110
1111 /* Build a GIMPLE_OMP_SCAN statement.
1112
1113 BODY is the sequence of statements to be executed by the scan
1114 construct.
1115 CLAUSES are any of the construct's clauses. */
1116
1117 gomp_scan *
1118 gimple_build_omp_scan (gimple_seq body, tree clauses)
1119 {
1120 gomp_scan *p
1121 = as_a <gomp_scan *> (gimple_alloc (GIMPLE_OMP_SCAN, 0));
1122 gimple_omp_scan_set_clauses (p, clauses);
1123 if (body)
1124 gimple_omp_set_body (p, body);
1125
1126 return p;
1127 }
1128
1129
1130 /* Build a GIMPLE_OMP_SECTIONS statement.
1131
1132 BODY is a sequence of section statements.
1133 CLAUSES are any of the OMP sections contsruct's clauses: private,
1134 firstprivate, lastprivate, reduction, and nowait. */
1135
1136 gomp_sections *
1137 gimple_build_omp_sections (gimple_seq body, tree clauses)
1138 {
1139 gomp_sections *p
1140 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1141 if (body)
1142 gimple_omp_set_body (p, body);
1143 gimple_omp_sections_set_clauses (p, clauses);
1144
1145 return p;
1146 }
1147
1148
1149 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1150
1151 gimple *
1152 gimple_build_omp_sections_switch (void)
1153 {
1154 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1155 }
1156
1157
1158 /* Build a GIMPLE_OMP_SINGLE statement.
1159
1160 BODY is the sequence of statements that will be executed once.
1161 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1162 copyprivate, nowait. */
1163
1164 gomp_single *
1165 gimple_build_omp_single (gimple_seq body, tree clauses)
1166 {
1167 gomp_single *p
1168 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1169 if (body)
1170 gimple_omp_set_body (p, body);
1171 gimple_omp_single_set_clauses (p, clauses);
1172
1173 return p;
1174 }
1175
1176
1177 /* Build a GIMPLE_OMP_TARGET statement.
1178
1179 BODY is the sequence of statements that will be executed.
1180 KIND is the kind of the region.
1181 CLAUSES are any of the construct's clauses. */
1182
1183 gomp_target *
1184 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1185 {
1186 gomp_target *p
1187 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1188 if (body)
1189 gimple_omp_set_body (p, body);
1190 gimple_omp_target_set_clauses (p, clauses);
1191 gimple_omp_target_set_kind (p, kind);
1192
1193 return p;
1194 }
1195
1196
1197 /* Build a GIMPLE_OMP_TEAMS statement.
1198
1199 BODY is the sequence of statements that will be executed.
1200 CLAUSES are any of the OMP teams construct's clauses. */
1201
1202 gomp_teams *
1203 gimple_build_omp_teams (gimple_seq body, tree clauses)
1204 {
1205 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1206 if (body)
1207 gimple_omp_set_body (p, body);
1208 gimple_omp_teams_set_clauses (p, clauses);
1209
1210 return p;
1211 }
1212
1213
1214 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1215
1216 gomp_atomic_load *
1217 gimple_build_omp_atomic_load (tree lhs, tree rhs, enum omp_memory_order mo)
1218 {
1219 gomp_atomic_load *p
1220 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1221 gimple_omp_atomic_load_set_lhs (p, lhs);
1222 gimple_omp_atomic_load_set_rhs (p, rhs);
1223 gimple_omp_atomic_set_memory_order (p, mo);
1224 return p;
1225 }
1226
1227 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1228
1229 VAL is the value we are storing. */
1230
1231 gomp_atomic_store *
1232 gimple_build_omp_atomic_store (tree val, enum omp_memory_order mo)
1233 {
1234 gomp_atomic_store *p
1235 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1236 gimple_omp_atomic_store_set_val (p, val);
1237 gimple_omp_atomic_set_memory_order (p, mo);
1238 return p;
1239 }
1240
1241 /* Build a GIMPLE_TRANSACTION statement. */
1242
1243 gtransaction *
1244 gimple_build_transaction (gimple_seq body)
1245 {
1246 gtransaction *p
1247 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1248 gimple_transaction_set_body (p, body);
1249 gimple_transaction_set_label_norm (p, 0);
1250 gimple_transaction_set_label_uninst (p, 0);
1251 gimple_transaction_set_label_over (p, 0);
1252 return p;
1253 }
1254
1255 #if defined ENABLE_GIMPLE_CHECKING
1256 /* Complain of a gimple type mismatch and die. */
1257
1258 void
1259 gimple_check_failed (const gimple *gs, const char *file, int line,
1260 const char *function, enum gimple_code code,
1261 enum tree_code subcode)
1262 {
1263 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1264 gimple_code_name[code],
1265 get_tree_code_name (subcode),
1266 gimple_code_name[gimple_code (gs)],
1267 gs->subcode > 0
1268 ? get_tree_code_name ((enum tree_code) gs->subcode)
1269 : "",
1270 function, trim_filename (file), line);
1271 }
1272 #endif /* ENABLE_GIMPLE_CHECKING */
1273
1274
1275 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1276 *SEQ_P is NULL, a new sequence is allocated. */
1277
1278 void
1279 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1280 {
1281 gimple_stmt_iterator si;
1282 if (gs == NULL)
1283 return;
1284
1285 si = gsi_last (*seq_p);
1286 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1287 }
1288
1289 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1290 *SEQ_P is NULL, a new sequence is allocated. This function is
1291 similar to gimple_seq_add_stmt, but does not scan the operands.
1292 During gimplification, we need to manipulate statement sequences
1293 before the def/use vectors have been constructed. */
1294
1295 void
1296 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1297 {
1298 gimple_stmt_iterator si;
1299
1300 if (gs == NULL)
1301 return;
1302
1303 si = gsi_last (*seq_p);
1304 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1305 }
1306
1307 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1308 NULL, a new sequence is allocated. */
1309
1310 void
1311 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1312 {
1313 gimple_stmt_iterator si;
1314 if (src == NULL)
1315 return;
1316
1317 si = gsi_last (*dst_p);
1318 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1319 }
1320
1321 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1322 NULL, a new sequence is allocated. This function is
1323 similar to gimple_seq_add_seq, but does not scan the operands. */
1324
1325 void
1326 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1327 {
1328 gimple_stmt_iterator si;
1329 if (src == NULL)
1330 return;
1331
1332 si = gsi_last (*dst_p);
1333 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1334 }
1335
1336 /* Determine whether to assign a location to the statement GS. */
1337
1338 static bool
1339 should_carry_location_p (gimple *gs)
1340 {
1341 /* Don't emit a line note for a label. We particularly don't want to
1342 emit one for the break label, since it doesn't actually correspond
1343 to the beginning of the loop/switch. */
1344 if (gimple_code (gs) == GIMPLE_LABEL)
1345 return false;
1346
1347 return true;
1348 }
1349
1350 /* Set the location for gimple statement GS to LOCATION. */
1351
1352 static void
1353 annotate_one_with_location (gimple *gs, location_t location)
1354 {
1355 if (!gimple_has_location (gs)
1356 && !gimple_do_not_emit_location_p (gs)
1357 && should_carry_location_p (gs))
1358 gimple_set_location (gs, location);
1359 }
1360
1361 /* Set LOCATION for all the statements after iterator GSI in sequence
1362 SEQ. If GSI is pointing to the end of the sequence, start with the
1363 first statement in SEQ. */
1364
1365 void
1366 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1367 location_t location)
1368 {
1369 if (gsi_end_p (gsi))
1370 gsi = gsi_start (seq);
1371 else
1372 gsi_next (&gsi);
1373
1374 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1375 annotate_one_with_location (gsi_stmt (gsi), location);
1376 }
1377
1378 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1379
1380 void
1381 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1382 {
1383 gimple_stmt_iterator i;
1384
1385 if (gimple_seq_empty_p (stmt_p))
1386 return;
1387
1388 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1389 {
1390 gimple *gs = gsi_stmt (i);
1391 annotate_one_with_location (gs, location);
1392 }
1393 }
1394
1395 /* Helper function of empty_body_p. Return true if STMT is an empty
1396 statement. */
1397
1398 static bool
1399 empty_stmt_p (gimple *stmt)
1400 {
1401 if (gimple_code (stmt) == GIMPLE_NOP)
1402 return true;
1403 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1404 return empty_body_p (gimple_bind_body (bind_stmt));
1405 return false;
1406 }
1407
1408
1409 /* Return true if BODY contains nothing but empty statements. */
1410
1411 bool
1412 empty_body_p (gimple_seq body)
1413 {
1414 gimple_stmt_iterator i;
1415
1416 if (gimple_seq_empty_p (body))
1417 return true;
1418 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1419 if (!empty_stmt_p (gsi_stmt (i))
1420 && !is_gimple_debug (gsi_stmt (i)))
1421 return false;
1422
1423 return true;
1424 }
1425
1426
1427 /* Perform a deep copy of sequence SRC and return the result. */
1428
1429 gimple_seq
1430 gimple_seq_copy (gimple_seq src)
1431 {
1432 gimple_stmt_iterator gsi;
1433 gimple_seq new_seq = NULL;
1434 gimple *stmt;
1435
1436 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1437 {
1438 stmt = gimple_copy (gsi_stmt (gsi));
1439 gimple_seq_add_stmt (&new_seq, stmt);
1440 }
1441
1442 return new_seq;
1443 }
1444
1445
1446
1447 /* Return true if calls C1 and C2 are known to go to the same function. */
1448
1449 bool
1450 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1451 {
1452 if (gimple_call_internal_p (c1))
1453 return (gimple_call_internal_p (c2)
1454 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1455 && (!gimple_call_internal_unique_p (as_a <const gcall *> (c1))
1456 || c1 == c2));
1457 else
1458 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1459 || (gimple_call_fndecl (c1)
1460 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1461 }
1462
1463 /* Detect flags from a GIMPLE_CALL. This is just like
1464 call_expr_flags, but for gimple tuples. */
1465
1466 int
1467 gimple_call_flags (const gimple *stmt)
1468 {
1469 int flags = 0;
1470
1471 if (gimple_call_internal_p (stmt))
1472 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1473 else
1474 {
1475 tree decl = gimple_call_fndecl (stmt);
1476 if (decl)
1477 flags = flags_from_decl_or_type (decl);
1478 flags |= flags_from_decl_or_type (gimple_call_fntype (stmt));
1479 }
1480
1481 if (stmt->subcode & GF_CALL_NOTHROW)
1482 flags |= ECF_NOTHROW;
1483
1484 if (stmt->subcode & GF_CALL_BY_DESCRIPTOR)
1485 flags |= ECF_BY_DESCRIPTOR;
1486
1487 return flags;
1488 }
1489
1490 /* Return the "fn spec" string for call STMT. */
1491
1492 static const_tree
1493 gimple_call_fnspec (const gcall *stmt)
1494 {
1495 tree type, attr;
1496
1497 if (gimple_call_internal_p (stmt))
1498 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1499
1500 type = gimple_call_fntype (stmt);
1501 if (!type)
1502 return NULL_TREE;
1503
1504 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1505 if (!attr)
1506 return NULL_TREE;
1507
1508 return TREE_VALUE (TREE_VALUE (attr));
1509 }
1510
1511 /* Detects argument flags for argument number ARG on call STMT. */
1512
1513 int
1514 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1515 {
1516 const_tree attr = gimple_call_fnspec (stmt);
1517
1518 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1519 return 0;
1520
1521 switch (TREE_STRING_POINTER (attr)[1 + arg])
1522 {
1523 case 'x':
1524 case 'X':
1525 return EAF_UNUSED;
1526
1527 case 'R':
1528 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1529
1530 case 'r':
1531 return EAF_NOCLOBBER | EAF_NOESCAPE;
1532
1533 case 'W':
1534 return EAF_DIRECT | EAF_NOESCAPE;
1535
1536 case 'w':
1537 return EAF_NOESCAPE;
1538
1539 case '.':
1540 default:
1541 return 0;
1542 }
1543 }
1544
1545 /* Detects return flags for the call STMT. */
1546
1547 int
1548 gimple_call_return_flags (const gcall *stmt)
1549 {
1550 const_tree attr;
1551
1552 if (gimple_call_flags (stmt) & ECF_MALLOC)
1553 return ERF_NOALIAS;
1554
1555 attr = gimple_call_fnspec (stmt);
1556 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1557 return 0;
1558
1559 switch (TREE_STRING_POINTER (attr)[0])
1560 {
1561 case '1':
1562 case '2':
1563 case '3':
1564 case '4':
1565 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1566
1567 case 'm':
1568 return ERF_NOALIAS;
1569
1570 case '.':
1571 default:
1572 return 0;
1573 }
1574 }
1575
1576
1577 /* Return true if call STMT is known to return a non-zero result. */
1578
1579 bool
1580 gimple_call_nonnull_result_p (gcall *call)
1581 {
1582 tree fndecl = gimple_call_fndecl (call);
1583 if (!fndecl)
1584 return false;
1585 if (flag_delete_null_pointer_checks && !flag_check_new
1586 && DECL_IS_OPERATOR_NEW (fndecl)
1587 && !TREE_NOTHROW (fndecl))
1588 return true;
1589
1590 /* References are always non-NULL. */
1591 if (flag_delete_null_pointer_checks
1592 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1593 return true;
1594
1595 if (flag_delete_null_pointer_checks
1596 && lookup_attribute ("returns_nonnull",
1597 TYPE_ATTRIBUTES (gimple_call_fntype (call))))
1598 return true;
1599 return gimple_alloca_call_p (call);
1600 }
1601
1602
1603 /* If CALL returns a non-null result in an argument, return that arg. */
1604
1605 tree
1606 gimple_call_nonnull_arg (gcall *call)
1607 {
1608 tree fndecl = gimple_call_fndecl (call);
1609 if (!fndecl)
1610 return NULL_TREE;
1611
1612 unsigned rf = gimple_call_return_flags (call);
1613 if (rf & ERF_RETURNS_ARG)
1614 {
1615 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1616 if (argnum < gimple_call_num_args (call))
1617 {
1618 tree arg = gimple_call_arg (call, argnum);
1619 if (SSA_VAR_P (arg)
1620 && infer_nonnull_range_by_attribute (call, arg))
1621 return arg;
1622 }
1623 }
1624 return NULL_TREE;
1625 }
1626
1627
1628 /* Return true if GS is a copy assignment. */
1629
1630 bool
1631 gimple_assign_copy_p (gimple *gs)
1632 {
1633 return (gimple_assign_single_p (gs)
1634 && is_gimple_val (gimple_op (gs, 1)));
1635 }
1636
1637
1638 /* Return true if GS is a SSA_NAME copy assignment. */
1639
1640 bool
1641 gimple_assign_ssa_name_copy_p (gimple *gs)
1642 {
1643 return (gimple_assign_single_p (gs)
1644 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1645 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1646 }
1647
1648
1649 /* Return true if GS is an assignment with a unary RHS, but the
1650 operator has no effect on the assigned value. The logic is adapted
1651 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1652 instances in which STRIP_NOPS was previously applied to the RHS of
1653 an assignment.
1654
1655 NOTE: In the use cases that led to the creation of this function
1656 and of gimple_assign_single_p, it is typical to test for either
1657 condition and to proceed in the same manner. In each case, the
1658 assigned value is represented by the single RHS operand of the
1659 assignment. I suspect there may be cases where gimple_assign_copy_p,
1660 gimple_assign_single_p, or equivalent logic is used where a similar
1661 treatment of unary NOPs is appropriate. */
1662
1663 bool
1664 gimple_assign_unary_nop_p (gimple *gs)
1665 {
1666 return (is_gimple_assign (gs)
1667 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1668 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1669 && gimple_assign_rhs1 (gs) != error_mark_node
1670 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1671 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1672 }
1673
1674 /* Set BB to be the basic block holding G. */
1675
1676 void
1677 gimple_set_bb (gimple *stmt, basic_block bb)
1678 {
1679 stmt->bb = bb;
1680
1681 if (gimple_code (stmt) != GIMPLE_LABEL)
1682 return;
1683
1684 /* If the statement is a label, add the label to block-to-labels map
1685 so that we can speed up edge creation for GIMPLE_GOTOs. */
1686 if (cfun->cfg)
1687 {
1688 tree t;
1689 int uid;
1690
1691 t = gimple_label_label (as_a <glabel *> (stmt));
1692 uid = LABEL_DECL_UID (t);
1693 if (uid == -1)
1694 {
1695 unsigned old_len =
1696 vec_safe_length (label_to_block_map_for_fn (cfun));
1697 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1698 if (old_len <= (unsigned) uid)
1699 {
1700 unsigned new_len = 3 * uid / 2 + 1;
1701
1702 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1703 new_len);
1704 }
1705 }
1706
1707 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1708 }
1709 }
1710
1711
1712 /* Modify the RHS of the assignment pointed-to by GSI using the
1713 operands in the expression tree EXPR.
1714
1715 NOTE: The statement pointed-to by GSI may be reallocated if it
1716 did not have enough operand slots.
1717
1718 This function is useful to convert an existing tree expression into
1719 the flat representation used for the RHS of a GIMPLE assignment.
1720 It will reallocate memory as needed to expand or shrink the number
1721 of operand slots needed to represent EXPR.
1722
1723 NOTE: If you find yourself building a tree and then calling this
1724 function, you are most certainly doing it the slow way. It is much
1725 better to build a new assignment or to use the function
1726 gimple_assign_set_rhs_with_ops, which does not require an
1727 expression tree to be built. */
1728
1729 void
1730 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1731 {
1732 enum tree_code subcode;
1733 tree op1, op2, op3;
1734
1735 extract_ops_from_tree (expr, &subcode, &op1, &op2, &op3);
1736 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1737 }
1738
1739
1740 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1741 operands OP1, OP2 and OP3.
1742
1743 NOTE: The statement pointed-to by GSI may be reallocated if it
1744 did not have enough operand slots. */
1745
1746 void
1747 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1748 tree op1, tree op2, tree op3)
1749 {
1750 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1751 gimple *stmt = gsi_stmt (*gsi);
1752 gimple *old_stmt = stmt;
1753
1754 /* If the new CODE needs more operands, allocate a new statement. */
1755 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1756 {
1757 tree lhs = gimple_assign_lhs (old_stmt);
1758 stmt = gimple_alloc (gimple_code (old_stmt), new_rhs_ops + 1);
1759 memcpy (stmt, old_stmt, gimple_size (gimple_code (old_stmt)));
1760 gimple_init_singleton (stmt);
1761
1762 /* The LHS needs to be reset as this also changes the SSA name
1763 on the LHS. */
1764 gimple_assign_set_lhs (stmt, lhs);
1765 }
1766
1767 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1768 gimple_set_subcode (stmt, code);
1769 gimple_assign_set_rhs1 (stmt, op1);
1770 if (new_rhs_ops > 1)
1771 gimple_assign_set_rhs2 (stmt, op2);
1772 if (new_rhs_ops > 2)
1773 gimple_assign_set_rhs3 (stmt, op3);
1774 if (stmt != old_stmt)
1775 gsi_replace (gsi, stmt, false);
1776 }
1777
1778
1779 /* Return the LHS of a statement that performs an assignment,
1780 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1781 for a call to a function that returns no value, or for a
1782 statement other than an assignment or a call. */
1783
1784 tree
1785 gimple_get_lhs (const gimple *stmt)
1786 {
1787 enum gimple_code code = gimple_code (stmt);
1788
1789 if (code == GIMPLE_ASSIGN)
1790 return gimple_assign_lhs (stmt);
1791 else if (code == GIMPLE_CALL)
1792 return gimple_call_lhs (stmt);
1793 else
1794 return NULL_TREE;
1795 }
1796
1797
1798 /* Set the LHS of a statement that performs an assignment,
1799 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1800
1801 void
1802 gimple_set_lhs (gimple *stmt, tree lhs)
1803 {
1804 enum gimple_code code = gimple_code (stmt);
1805
1806 if (code == GIMPLE_ASSIGN)
1807 gimple_assign_set_lhs (stmt, lhs);
1808 else if (code == GIMPLE_CALL)
1809 gimple_call_set_lhs (stmt, lhs);
1810 else
1811 gcc_unreachable ();
1812 }
1813
1814
1815 /* Return a deep copy of statement STMT. All the operands from STMT
1816 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1817 and VUSE operand arrays are set to empty in the new copy. The new
1818 copy isn't part of any sequence. */
1819
1820 gimple *
1821 gimple_copy (gimple *stmt)
1822 {
1823 enum gimple_code code = gimple_code (stmt);
1824 unsigned num_ops = gimple_num_ops (stmt);
1825 gimple *copy = gimple_alloc (code, num_ops);
1826 unsigned i;
1827
1828 /* Shallow copy all the fields from STMT. */
1829 memcpy (copy, stmt, gimple_size (code));
1830 gimple_init_singleton (copy);
1831
1832 /* If STMT has sub-statements, deep-copy them as well. */
1833 if (gimple_has_substatements (stmt))
1834 {
1835 gimple_seq new_seq;
1836 tree t;
1837
1838 switch (gimple_code (stmt))
1839 {
1840 case GIMPLE_BIND:
1841 {
1842 gbind *bind_stmt = as_a <gbind *> (stmt);
1843 gbind *bind_copy = as_a <gbind *> (copy);
1844 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1845 gimple_bind_set_body (bind_copy, new_seq);
1846 gimple_bind_set_vars (bind_copy,
1847 unshare_expr (gimple_bind_vars (bind_stmt)));
1848 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1849 }
1850 break;
1851
1852 case GIMPLE_CATCH:
1853 {
1854 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1855 gcatch *catch_copy = as_a <gcatch *> (copy);
1856 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1857 gimple_catch_set_handler (catch_copy, new_seq);
1858 t = unshare_expr (gimple_catch_types (catch_stmt));
1859 gimple_catch_set_types (catch_copy, t);
1860 }
1861 break;
1862
1863 case GIMPLE_EH_FILTER:
1864 {
1865 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1866 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1867 new_seq
1868 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1869 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1870 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1871 gimple_eh_filter_set_types (eh_filter_copy, t);
1872 }
1873 break;
1874
1875 case GIMPLE_EH_ELSE:
1876 {
1877 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1878 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1879 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1880 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1881 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1882 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1883 }
1884 break;
1885
1886 case GIMPLE_TRY:
1887 {
1888 gtry *try_stmt = as_a <gtry *> (stmt);
1889 gtry *try_copy = as_a <gtry *> (copy);
1890 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1891 gimple_try_set_eval (try_copy, new_seq);
1892 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1893 gimple_try_set_cleanup (try_copy, new_seq);
1894 }
1895 break;
1896
1897 case GIMPLE_OMP_FOR:
1898 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1899 gimple_omp_for_set_pre_body (copy, new_seq);
1900 t = unshare_expr (gimple_omp_for_clauses (stmt));
1901 gimple_omp_for_set_clauses (copy, t);
1902 {
1903 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1904 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1905 ( gimple_omp_for_collapse (stmt));
1906 }
1907 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1908 {
1909 gimple_omp_for_set_cond (copy, i,
1910 gimple_omp_for_cond (stmt, i));
1911 gimple_omp_for_set_index (copy, i,
1912 gimple_omp_for_index (stmt, i));
1913 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1914 gimple_omp_for_set_initial (copy, i, t);
1915 t = unshare_expr (gimple_omp_for_final (stmt, i));
1916 gimple_omp_for_set_final (copy, i, t);
1917 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1918 gimple_omp_for_set_incr (copy, i, t);
1919 }
1920 goto copy_omp_body;
1921
1922 case GIMPLE_OMP_PARALLEL:
1923 {
1924 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1925 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1926 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1927 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1928 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1929 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1930 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1931 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1932 }
1933 goto copy_omp_body;
1934
1935 case GIMPLE_OMP_TASK:
1936 t = unshare_expr (gimple_omp_task_clauses (stmt));
1937 gimple_omp_task_set_clauses (copy, t);
1938 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1939 gimple_omp_task_set_child_fn (copy, t);
1940 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1941 gimple_omp_task_set_data_arg (copy, t);
1942 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1943 gimple_omp_task_set_copy_fn (copy, t);
1944 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1945 gimple_omp_task_set_arg_size (copy, t);
1946 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1947 gimple_omp_task_set_arg_align (copy, t);
1948 goto copy_omp_body;
1949
1950 case GIMPLE_OMP_CRITICAL:
1951 t = unshare_expr (gimple_omp_critical_name
1952 (as_a <gomp_critical *> (stmt)));
1953 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1954 t = unshare_expr (gimple_omp_critical_clauses
1955 (as_a <gomp_critical *> (stmt)));
1956 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1957 goto copy_omp_body;
1958
1959 case GIMPLE_OMP_ORDERED:
1960 t = unshare_expr (gimple_omp_ordered_clauses
1961 (as_a <gomp_ordered *> (stmt)));
1962 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1963 goto copy_omp_body;
1964
1965 case GIMPLE_OMP_SCAN:
1966 t = gimple_omp_scan_clauses (as_a <gomp_scan *> (stmt));
1967 t = unshare_expr (t);
1968 gimple_omp_scan_set_clauses (as_a <gomp_scan *> (copy), t);
1969 goto copy_omp_body;
1970
1971 case GIMPLE_OMP_TASKGROUP:
1972 t = unshare_expr (gimple_omp_taskgroup_clauses (stmt));
1973 gimple_omp_taskgroup_set_clauses (copy, t);
1974 goto copy_omp_body;
1975
1976 case GIMPLE_OMP_SECTIONS:
1977 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1978 gimple_omp_sections_set_clauses (copy, t);
1979 t = unshare_expr (gimple_omp_sections_control (stmt));
1980 gimple_omp_sections_set_control (copy, t);
1981 goto copy_omp_body;
1982
1983 case GIMPLE_OMP_SINGLE:
1984 {
1985 gomp_single *omp_single_copy = as_a <gomp_single *> (copy);
1986 t = unshare_expr (gimple_omp_single_clauses (stmt));
1987 gimple_omp_single_set_clauses (omp_single_copy, t);
1988 }
1989 goto copy_omp_body;
1990
1991 case GIMPLE_OMP_TARGET:
1992 {
1993 gomp_target *omp_target_stmt = as_a <gomp_target *> (stmt);
1994 gomp_target *omp_target_copy = as_a <gomp_target *> (copy);
1995 t = unshare_expr (gimple_omp_target_clauses (omp_target_stmt));
1996 gimple_omp_target_set_clauses (omp_target_copy, t);
1997 t = unshare_expr (gimple_omp_target_data_arg (omp_target_stmt));
1998 gimple_omp_target_set_data_arg (omp_target_copy, t);
1999 }
2000 goto copy_omp_body;
2001
2002 case GIMPLE_OMP_TEAMS:
2003 {
2004 gomp_teams *omp_teams_copy = as_a <gomp_teams *> (copy);
2005 t = unshare_expr (gimple_omp_teams_clauses (stmt));
2006 gimple_omp_teams_set_clauses (omp_teams_copy, t);
2007 }
2008 /* FALLTHRU */
2009
2010 case GIMPLE_OMP_SECTION:
2011 case GIMPLE_OMP_MASTER:
2012 case GIMPLE_OMP_GRID_BODY:
2013 copy_omp_body:
2014 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2015 gimple_omp_set_body (copy, new_seq);
2016 break;
2017
2018 case GIMPLE_TRANSACTION:
2019 new_seq = gimple_seq_copy (gimple_transaction_body (
2020 as_a <gtransaction *> (stmt)));
2021 gimple_transaction_set_body (as_a <gtransaction *> (copy),
2022 new_seq);
2023 break;
2024
2025 case GIMPLE_WITH_CLEANUP_EXPR:
2026 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2027 gimple_wce_set_cleanup (copy, new_seq);
2028 break;
2029
2030 default:
2031 gcc_unreachable ();
2032 }
2033 }
2034
2035 /* Make copy of operands. */
2036 for (i = 0; i < num_ops; i++)
2037 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2038
2039 if (gimple_has_mem_ops (stmt))
2040 {
2041 gimple_set_vdef (copy, gimple_vdef (stmt));
2042 gimple_set_vuse (copy, gimple_vuse (stmt));
2043 }
2044
2045 /* Clear out SSA operand vectors on COPY. */
2046 if (gimple_has_ops (stmt))
2047 {
2048 gimple_set_use_ops (copy, NULL);
2049
2050 /* SSA operands need to be updated. */
2051 gimple_set_modified (copy, true);
2052 }
2053
2054 if (gimple_debug_nonbind_marker_p (stmt))
2055 cfun->debug_marker_count++;
2056
2057 return copy;
2058 }
2059
2060
2061 /* Return true if statement S has side-effects. We consider a
2062 statement to have side effects if:
2063
2064 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2065 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2066
2067 bool
2068 gimple_has_side_effects (const gimple *s)
2069 {
2070 if (is_gimple_debug (s))
2071 return false;
2072
2073 /* We don't have to scan the arguments to check for
2074 volatile arguments, though, at present, we still
2075 do a scan to check for TREE_SIDE_EFFECTS. */
2076 if (gimple_has_volatile_ops (s))
2077 return true;
2078
2079 if (gimple_code (s) == GIMPLE_ASM
2080 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
2081 return true;
2082
2083 if (is_gimple_call (s))
2084 {
2085 int flags = gimple_call_flags (s);
2086
2087 /* An infinite loop is considered a side effect. */
2088 if (!(flags & (ECF_CONST | ECF_PURE))
2089 || (flags & ECF_LOOPING_CONST_OR_PURE))
2090 return true;
2091
2092 return false;
2093 }
2094
2095 return false;
2096 }
2097
2098 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2099 Return true if S can trap. When INCLUDE_MEM is true, check whether
2100 the memory operations could trap. When INCLUDE_STORES is true and
2101 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
2102
2103 bool
2104 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
2105 {
2106 tree t, div = NULL_TREE;
2107 enum tree_code op;
2108
2109 if (include_mem)
2110 {
2111 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
2112
2113 for (i = start; i < gimple_num_ops (s); i++)
2114 if (tree_could_trap_p (gimple_op (s, i)))
2115 return true;
2116 }
2117
2118 switch (gimple_code (s))
2119 {
2120 case GIMPLE_ASM:
2121 return gimple_asm_volatile_p (as_a <gasm *> (s));
2122
2123 case GIMPLE_CALL:
2124 t = gimple_call_fndecl (s);
2125 /* Assume that calls to weak functions may trap. */
2126 if (!t || !DECL_P (t) || DECL_WEAK (t))
2127 return true;
2128 return false;
2129
2130 case GIMPLE_ASSIGN:
2131 t = gimple_expr_type (s);
2132 op = gimple_assign_rhs_code (s);
2133 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2134 div = gimple_assign_rhs2 (s);
2135 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2136 (INTEGRAL_TYPE_P (t)
2137 && TYPE_OVERFLOW_TRAPS (t)),
2138 div));
2139
2140 case GIMPLE_COND:
2141 t = TREE_TYPE (gimple_cond_lhs (s));
2142 return operation_could_trap_p (gimple_cond_code (s),
2143 FLOAT_TYPE_P (t), false, NULL_TREE);
2144
2145 default:
2146 break;
2147 }
2148
2149 return false;
2150 }
2151
2152 /* Return true if statement S can trap. */
2153
2154 bool
2155 gimple_could_trap_p (gimple *s)
2156 {
2157 return gimple_could_trap_p_1 (s, true, true);
2158 }
2159
2160 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2161
2162 bool
2163 gimple_assign_rhs_could_trap_p (gimple *s)
2164 {
2165 gcc_assert (is_gimple_assign (s));
2166 return gimple_could_trap_p_1 (s, true, false);
2167 }
2168
2169
2170 /* Print debugging information for gimple stmts generated. */
2171
2172 void
2173 dump_gimple_statistics (void)
2174 {
2175 int i;
2176 uint64_t total_tuples = 0, total_bytes = 0;
2177
2178 if (! GATHER_STATISTICS)
2179 {
2180 fprintf (stderr, "No GIMPLE statistics\n");
2181 return;
2182 }
2183
2184 fprintf (stderr, "\nGIMPLE statements\n");
2185 fprintf (stderr, "Kind Stmts Bytes\n");
2186 fprintf (stderr, "---------------------------------------\n");
2187 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2188 {
2189 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n",
2190 gimple_alloc_kind_names[i],
2191 SIZE_AMOUNT (gimple_alloc_counts[i]),
2192 SIZE_AMOUNT (gimple_alloc_sizes[i]));
2193 total_tuples += gimple_alloc_counts[i];
2194 total_bytes += gimple_alloc_sizes[i];
2195 }
2196 fprintf (stderr, "---------------------------------------\n");
2197 fprintf (stderr, "%-20s %7" PRIu64 "%c %10" PRIu64 "%c\n", "Total",
2198 SIZE_AMOUNT (total_tuples), SIZE_AMOUNT (total_bytes));
2199 fprintf (stderr, "---------------------------------------\n");
2200 }
2201
2202
2203 /* Return the number of operands needed on the RHS of a GIMPLE
2204 assignment for an expression with tree code CODE. */
2205
2206 unsigned
2207 get_gimple_rhs_num_ops (enum tree_code code)
2208 {
2209 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2210
2211 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2212 return 1;
2213 else if (rhs_class == GIMPLE_BINARY_RHS)
2214 return 2;
2215 else if (rhs_class == GIMPLE_TERNARY_RHS)
2216 return 3;
2217 else
2218 gcc_unreachable ();
2219 }
2220
2221 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2222 (unsigned char) \
2223 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2224 : ((TYPE) == tcc_binary \
2225 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2226 : ((TYPE) == tcc_constant \
2227 || (TYPE) == tcc_declaration \
2228 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2229 : ((SYM) == TRUTH_AND_EXPR \
2230 || (SYM) == TRUTH_OR_EXPR \
2231 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2232 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2233 : ((SYM) == COND_EXPR \
2234 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2235 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2236 || (SYM) == DOT_PROD_EXPR \
2237 || (SYM) == SAD_EXPR \
2238 || (SYM) == REALIGN_LOAD_EXPR \
2239 || (SYM) == VEC_COND_EXPR \
2240 || (SYM) == VEC_PERM_EXPR \
2241 || (SYM) == BIT_INSERT_EXPR) ? GIMPLE_TERNARY_RHS \
2242 : ((SYM) == CONSTRUCTOR \
2243 || (SYM) == OBJ_TYPE_REF \
2244 || (SYM) == ASSERT_EXPR \
2245 || (SYM) == ADDR_EXPR \
2246 || (SYM) == WITH_SIZE_EXPR \
2247 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2248 : GIMPLE_INVALID_RHS),
2249 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2250
2251 const unsigned char gimple_rhs_class_table[] = {
2252 #include "all-tree.def"
2253 };
2254
2255 #undef DEFTREECODE
2256 #undef END_OF_BASE_TREE_CODES
2257
2258 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2259 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2260 we failed to create one. */
2261
2262 tree
2263 canonicalize_cond_expr_cond (tree t)
2264 {
2265 /* Strip conversions around boolean operations. */
2266 if (CONVERT_EXPR_P (t)
2267 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2268 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2269 == BOOLEAN_TYPE))
2270 t = TREE_OPERAND (t, 0);
2271
2272 /* For !x use x == 0. */
2273 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2274 {
2275 tree top0 = TREE_OPERAND (t, 0);
2276 t = build2 (EQ_EXPR, TREE_TYPE (t),
2277 top0, build_int_cst (TREE_TYPE (top0), 0));
2278 }
2279 /* For cmp ? 1 : 0 use cmp. */
2280 else if (TREE_CODE (t) == COND_EXPR
2281 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2282 && integer_onep (TREE_OPERAND (t, 1))
2283 && integer_zerop (TREE_OPERAND (t, 2)))
2284 {
2285 tree top0 = TREE_OPERAND (t, 0);
2286 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2287 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2288 }
2289 /* For x ^ y use x != y. */
2290 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2291 t = build2 (NE_EXPR, TREE_TYPE (t),
2292 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2293
2294 if (is_gimple_condexpr (t))
2295 return t;
2296
2297 return NULL_TREE;
2298 }
2299
2300 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2301 the positions marked by the set ARGS_TO_SKIP. */
2302
2303 gcall *
2304 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2305 {
2306 int i;
2307 int nargs = gimple_call_num_args (stmt);
2308 auto_vec<tree> vargs (nargs);
2309 gcall *new_stmt;
2310
2311 for (i = 0; i < nargs; i++)
2312 if (!bitmap_bit_p (args_to_skip, i))
2313 vargs.quick_push (gimple_call_arg (stmt, i));
2314
2315 if (gimple_call_internal_p (stmt))
2316 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2317 vargs);
2318 else
2319 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2320
2321 if (gimple_call_lhs (stmt))
2322 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2323
2324 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2325 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2326
2327 if (gimple_has_location (stmt))
2328 gimple_set_location (new_stmt, gimple_location (stmt));
2329 gimple_call_copy_flags (new_stmt, stmt);
2330 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2331
2332 gimple_set_modified (new_stmt, true);
2333
2334 return new_stmt;
2335 }
2336
2337
2338
2339 /* Return true if the field decls F1 and F2 are at the same offset.
2340
2341 This is intended to be used on GIMPLE types only. */
2342
2343 bool
2344 gimple_compare_field_offset (tree f1, tree f2)
2345 {
2346 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2347 {
2348 tree offset1 = DECL_FIELD_OFFSET (f1);
2349 tree offset2 = DECL_FIELD_OFFSET (f2);
2350 return ((offset1 == offset2
2351 /* Once gimplification is done, self-referential offsets are
2352 instantiated as operand #2 of the COMPONENT_REF built for
2353 each access and reset. Therefore, they are not relevant
2354 anymore and fields are interchangeable provided that they
2355 represent the same access. */
2356 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2357 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2358 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2359 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2360 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2361 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2362 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2363 || operand_equal_p (offset1, offset2, 0))
2364 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2365 DECL_FIELD_BIT_OFFSET (f2)));
2366 }
2367
2368 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2369 should be, so handle differing ones specially by decomposing
2370 the offset into a byte and bit offset manually. */
2371 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2372 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2373 {
2374 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2375 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2376 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2377 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2378 + bit_offset1 / BITS_PER_UNIT);
2379 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2380 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2381 + bit_offset2 / BITS_PER_UNIT);
2382 if (byte_offset1 != byte_offset2)
2383 return false;
2384 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2385 }
2386
2387 return false;
2388 }
2389
2390
2391 /* Return a type the same as TYPE except unsigned or
2392 signed according to UNSIGNEDP. */
2393
2394 static tree
2395 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2396 {
2397 tree type1;
2398 int i;
2399
2400 type1 = TYPE_MAIN_VARIANT (type);
2401 if (type1 == signed_char_type_node
2402 || type1 == char_type_node
2403 || type1 == unsigned_char_type_node)
2404 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2405 if (type1 == integer_type_node || type1 == unsigned_type_node)
2406 return unsignedp ? unsigned_type_node : integer_type_node;
2407 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2408 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2409 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2410 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2411 if (type1 == long_long_integer_type_node
2412 || type1 == long_long_unsigned_type_node)
2413 return unsignedp
2414 ? long_long_unsigned_type_node
2415 : long_long_integer_type_node;
2416
2417 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2418 if (int_n_enabled_p[i]
2419 && (type1 == int_n_trees[i].unsigned_type
2420 || type1 == int_n_trees[i].signed_type))
2421 return unsignedp
2422 ? int_n_trees[i].unsigned_type
2423 : int_n_trees[i].signed_type;
2424
2425 #if HOST_BITS_PER_WIDE_INT >= 64
2426 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2427 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2428 #endif
2429 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2430 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2431 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2432 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2433 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2434 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2435 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2436 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2437
2438 #define GIMPLE_FIXED_TYPES(NAME) \
2439 if (type1 == short_ ## NAME ## _type_node \
2440 || type1 == unsigned_short_ ## NAME ## _type_node) \
2441 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2442 : short_ ## NAME ## _type_node; \
2443 if (type1 == NAME ## _type_node \
2444 || type1 == unsigned_ ## NAME ## _type_node) \
2445 return unsignedp ? unsigned_ ## NAME ## _type_node \
2446 : NAME ## _type_node; \
2447 if (type1 == long_ ## NAME ## _type_node \
2448 || type1 == unsigned_long_ ## NAME ## _type_node) \
2449 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2450 : long_ ## NAME ## _type_node; \
2451 if (type1 == long_long_ ## NAME ## _type_node \
2452 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2453 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2454 : long_long_ ## NAME ## _type_node;
2455
2456 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2457 if (type1 == NAME ## _type_node \
2458 || type1 == u ## NAME ## _type_node) \
2459 return unsignedp ? u ## NAME ## _type_node \
2460 : NAME ## _type_node;
2461
2462 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2463 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2464 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2465 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2466 : sat_ ## short_ ## NAME ## _type_node; \
2467 if (type1 == sat_ ## NAME ## _type_node \
2468 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2469 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2470 : sat_ ## NAME ## _type_node; \
2471 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2472 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2473 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2474 : sat_ ## long_ ## NAME ## _type_node; \
2475 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2476 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2477 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2478 : sat_ ## long_long_ ## NAME ## _type_node;
2479
2480 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2481 if (type1 == sat_ ## NAME ## _type_node \
2482 || type1 == sat_ ## u ## NAME ## _type_node) \
2483 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2484 : sat_ ## NAME ## _type_node;
2485
2486 GIMPLE_FIXED_TYPES (fract);
2487 GIMPLE_FIXED_TYPES_SAT (fract);
2488 GIMPLE_FIXED_TYPES (accum);
2489 GIMPLE_FIXED_TYPES_SAT (accum);
2490
2491 GIMPLE_FIXED_MODE_TYPES (qq);
2492 GIMPLE_FIXED_MODE_TYPES (hq);
2493 GIMPLE_FIXED_MODE_TYPES (sq);
2494 GIMPLE_FIXED_MODE_TYPES (dq);
2495 GIMPLE_FIXED_MODE_TYPES (tq);
2496 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2497 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2498 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2499 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2500 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2501 GIMPLE_FIXED_MODE_TYPES (ha);
2502 GIMPLE_FIXED_MODE_TYPES (sa);
2503 GIMPLE_FIXED_MODE_TYPES (da);
2504 GIMPLE_FIXED_MODE_TYPES (ta);
2505 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2506 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2507 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2508 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2509
2510 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2511 the precision; they have precision set to match their range, but
2512 may use a wider mode to match an ABI. If we change modes, we may
2513 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2514 the precision as well, so as to yield correct results for
2515 bit-field types. C++ does not have these separate bit-field
2516 types, and producing a signed or unsigned variant of an
2517 ENUMERAL_TYPE may cause other problems as well. */
2518 if (!INTEGRAL_TYPE_P (type)
2519 || TYPE_UNSIGNED (type) == unsignedp)
2520 return type;
2521
2522 #define TYPE_OK(node) \
2523 (TYPE_MODE (type) == TYPE_MODE (node) \
2524 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2525 if (TYPE_OK (signed_char_type_node))
2526 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2527 if (TYPE_OK (integer_type_node))
2528 return unsignedp ? unsigned_type_node : integer_type_node;
2529 if (TYPE_OK (short_integer_type_node))
2530 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2531 if (TYPE_OK (long_integer_type_node))
2532 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2533 if (TYPE_OK (long_long_integer_type_node))
2534 return (unsignedp
2535 ? long_long_unsigned_type_node
2536 : long_long_integer_type_node);
2537
2538 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2539 if (int_n_enabled_p[i]
2540 && TYPE_MODE (type) == int_n_data[i].m
2541 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2542 return unsignedp
2543 ? int_n_trees[i].unsigned_type
2544 : int_n_trees[i].signed_type;
2545
2546 #if HOST_BITS_PER_WIDE_INT >= 64
2547 if (TYPE_OK (intTI_type_node))
2548 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2549 #endif
2550 if (TYPE_OK (intDI_type_node))
2551 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2552 if (TYPE_OK (intSI_type_node))
2553 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2554 if (TYPE_OK (intHI_type_node))
2555 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2556 if (TYPE_OK (intQI_type_node))
2557 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2558
2559 #undef GIMPLE_FIXED_TYPES
2560 #undef GIMPLE_FIXED_MODE_TYPES
2561 #undef GIMPLE_FIXED_TYPES_SAT
2562 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2563 #undef TYPE_OK
2564
2565 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2566 }
2567
2568
2569 /* Return an unsigned type the same as TYPE in other respects. */
2570
2571 tree
2572 gimple_unsigned_type (tree type)
2573 {
2574 return gimple_signed_or_unsigned_type (true, type);
2575 }
2576
2577
2578 /* Return a signed type the same as TYPE in other respects. */
2579
2580 tree
2581 gimple_signed_type (tree type)
2582 {
2583 return gimple_signed_or_unsigned_type (false, type);
2584 }
2585
2586
2587 /* Return the typed-based alias set for T, which may be an expression
2588 or a type. Return -1 if we don't do anything special. */
2589
2590 alias_set_type
2591 gimple_get_alias_set (tree t)
2592 {
2593 /* That's all the expressions we handle specially. */
2594 if (!TYPE_P (t))
2595 return -1;
2596
2597 /* For convenience, follow the C standard when dealing with
2598 character types. Any object may be accessed via an lvalue that
2599 has character type. */
2600 if (t == char_type_node
2601 || t == signed_char_type_node
2602 || t == unsigned_char_type_node)
2603 return 0;
2604
2605 /* Allow aliasing between signed and unsigned variants of the same
2606 type. We treat the signed variant as canonical. */
2607 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2608 {
2609 tree t1 = gimple_signed_type (t);
2610
2611 /* t1 == t can happen for boolean nodes which are always unsigned. */
2612 if (t1 != t)
2613 return get_alias_set (t1);
2614 }
2615
2616 /* Allow aliasing between enumeral types and the underlying
2617 integer type. This is required for C since those are
2618 compatible types. */
2619 else if (TREE_CODE (t) == ENUMERAL_TYPE)
2620 {
2621 tree t1 = lang_hooks.types.type_for_size (tree_to_uhwi (TYPE_SIZE (t)),
2622 false /* short-cut above */);
2623 return get_alias_set (t1);
2624 }
2625
2626 return -1;
2627 }
2628
2629
2630 /* Helper for gimple_ior_addresses_taken_1. */
2631
2632 static bool
2633 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2634 {
2635 bitmap addresses_taken = (bitmap)data;
2636 addr = get_base_address (addr);
2637 if (addr
2638 && DECL_P (addr))
2639 {
2640 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2641 return true;
2642 }
2643 return false;
2644 }
2645
2646 /* Set the bit for the uid of all decls that have their address taken
2647 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2648 were any in this stmt. */
2649
2650 bool
2651 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2652 {
2653 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2654 gimple_ior_addresses_taken_1);
2655 }
2656
2657
2658 /* Return true when STMTs arguments and return value match those of FNDECL,
2659 a decl of a builtin function. */
2660
2661 bool
2662 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2663 {
2664 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2665
2666 tree ret = gimple_call_lhs (stmt);
2667 if (ret
2668 && !useless_type_conversion_p (TREE_TYPE (ret),
2669 TREE_TYPE (TREE_TYPE (fndecl))))
2670 return false;
2671
2672 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2673 unsigned nargs = gimple_call_num_args (stmt);
2674 for (unsigned i = 0; i < nargs; ++i)
2675 {
2676 /* Variadic args follow. */
2677 if (!targs)
2678 return true;
2679 tree arg = gimple_call_arg (stmt, i);
2680 tree type = TREE_VALUE (targs);
2681 if (!useless_type_conversion_p (type, TREE_TYPE (arg))
2682 /* char/short integral arguments are promoted to int
2683 by several frontends if targetm.calls.promote_prototypes
2684 is true. Allow such promotion too. */
2685 && !(INTEGRAL_TYPE_P (type)
2686 && TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)
2687 && targetm.calls.promote_prototypes (TREE_TYPE (fndecl))
2688 && useless_type_conversion_p (integer_type_node,
2689 TREE_TYPE (arg))))
2690 return false;
2691 targs = TREE_CHAIN (targs);
2692 }
2693 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2694 return false;
2695 return true;
2696 }
2697
2698 /* Return true when STMT is builtins call. */
2699
2700 bool
2701 gimple_call_builtin_p (const gimple *stmt)
2702 {
2703 tree fndecl;
2704 if (is_gimple_call (stmt)
2705 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2706 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2707 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2708 return false;
2709 }
2710
2711 /* Return true when STMT is builtins call to CLASS. */
2712
2713 bool
2714 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2715 {
2716 tree fndecl;
2717 if (is_gimple_call (stmt)
2718 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2719 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2720 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2721 return false;
2722 }
2723
2724 /* Return true when STMT is builtins call to CODE of CLASS. */
2725
2726 bool
2727 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2728 {
2729 tree fndecl;
2730 if (is_gimple_call (stmt)
2731 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2732 && fndecl_built_in_p (fndecl, code))
2733 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2734 return false;
2735 }
2736
2737 /* If CALL is a call to a combined_fn (i.e. an internal function or
2738 a normal built-in function), return its code, otherwise return
2739 CFN_LAST. */
2740
2741 combined_fn
2742 gimple_call_combined_fn (const gimple *stmt)
2743 {
2744 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2745 {
2746 if (gimple_call_internal_p (call))
2747 return as_combined_fn (gimple_call_internal_fn (call));
2748
2749 tree fndecl = gimple_call_fndecl (stmt);
2750 if (fndecl
2751 && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL)
2752 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2753 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2754 }
2755 return CFN_LAST;
2756 }
2757
2758 /* Return true if STMT clobbers memory. STMT is required to be a
2759 GIMPLE_ASM. */
2760
2761 bool
2762 gimple_asm_clobbers_memory_p (const gasm *stmt)
2763 {
2764 unsigned i;
2765
2766 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2767 {
2768 tree op = gimple_asm_clobber_op (stmt, i);
2769 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2770 return true;
2771 }
2772
2773 /* Non-empty basic ASM implicitly clobbers memory. */
2774 if (gimple_asm_input_p (stmt) && strlen (gimple_asm_string (stmt)) != 0)
2775 return true;
2776
2777 return false;
2778 }
2779
2780 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2781
2782 void
2783 dump_decl_set (FILE *file, bitmap set)
2784 {
2785 if (set)
2786 {
2787 bitmap_iterator bi;
2788 unsigned i;
2789
2790 fprintf (file, "{ ");
2791
2792 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2793 {
2794 fprintf (file, "D.%u", i);
2795 fprintf (file, " ");
2796 }
2797
2798 fprintf (file, "}");
2799 }
2800 else
2801 fprintf (file, "NIL");
2802 }
2803
2804 /* Return true when CALL is a call stmt that definitely doesn't
2805 free any memory or makes it unavailable otherwise. */
2806 bool
2807 nonfreeing_call_p (gimple *call)
2808 {
2809 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2810 && gimple_call_flags (call) & ECF_LEAF)
2811 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2812 {
2813 /* Just in case these become ECF_LEAF in the future. */
2814 case BUILT_IN_FREE:
2815 case BUILT_IN_TM_FREE:
2816 case BUILT_IN_REALLOC:
2817 case BUILT_IN_STACK_RESTORE:
2818 return false;
2819 default:
2820 return true;
2821 }
2822 else if (gimple_call_internal_p (call))
2823 switch (gimple_call_internal_fn (call))
2824 {
2825 case IFN_ABNORMAL_DISPATCHER:
2826 return true;
2827 case IFN_ASAN_MARK:
2828 return tree_to_uhwi (gimple_call_arg (call, 0)) == ASAN_MARK_UNPOISON;
2829 default:
2830 if (gimple_call_flags (call) & ECF_LEAF)
2831 return true;
2832 return false;
2833 }
2834
2835 tree fndecl = gimple_call_fndecl (call);
2836 if (!fndecl)
2837 return false;
2838 struct cgraph_node *n = cgraph_node::get (fndecl);
2839 if (!n)
2840 return false;
2841 enum availability availability;
2842 n = n->function_symbol (&availability);
2843 if (!n || availability <= AVAIL_INTERPOSABLE)
2844 return false;
2845 return n->nonfreeing_fn;
2846 }
2847
2848 /* Return true when CALL is a call stmt that definitely need not
2849 be considered to be a memory barrier. */
2850 bool
2851 nonbarrier_call_p (gimple *call)
2852 {
2853 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2854 return true;
2855 /* Should extend this to have a nonbarrier_fn flag, just as above in
2856 the nonfreeing case. */
2857 return false;
2858 }
2859
2860 /* Callback for walk_stmt_load_store_ops.
2861
2862 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2863 otherwise.
2864
2865 This routine only makes a superficial check for a dereference. Thus
2866 it must only be used if it is safe to return a false negative. */
2867 static bool
2868 check_loadstore (gimple *, tree op, tree, void *data)
2869 {
2870 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2871 {
2872 /* Some address spaces may legitimately dereference zero. */
2873 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2874 if (targetm.addr_space.zero_address_valid (as))
2875 return false;
2876
2877 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2878 }
2879 return false;
2880 }
2881
2882
2883 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2884 either by using a pointer dereference or attributes. */
2885 bool
2886 infer_nonnull_range (gimple *stmt, tree op)
2887 {
2888 return infer_nonnull_range_by_dereference (stmt, op)
2889 || infer_nonnull_range_by_attribute (stmt, op);
2890 }
2891
2892 /* Return true if OP can be inferred to be non-NULL after STMT
2893 executes by using a pointer dereference. */
2894 bool
2895 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2896 {
2897 /* We can only assume that a pointer dereference will yield
2898 non-NULL if -fdelete-null-pointer-checks is enabled. */
2899 if (!flag_delete_null_pointer_checks
2900 || !POINTER_TYPE_P (TREE_TYPE (op))
2901 || gimple_code (stmt) == GIMPLE_ASM)
2902 return false;
2903
2904 if (walk_stmt_load_store_ops (stmt, (void *)op,
2905 check_loadstore, check_loadstore))
2906 return true;
2907
2908 return false;
2909 }
2910
2911 /* Return true if OP can be inferred to be a non-NULL after STMT
2912 executes by using attributes. */
2913 bool
2914 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2915 {
2916 /* We can only assume that a pointer dereference will yield
2917 non-NULL if -fdelete-null-pointer-checks is enabled. */
2918 if (!flag_delete_null_pointer_checks
2919 || !POINTER_TYPE_P (TREE_TYPE (op))
2920 || gimple_code (stmt) == GIMPLE_ASM)
2921 return false;
2922
2923 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2924 {
2925 tree fntype = gimple_call_fntype (stmt);
2926 tree attrs = TYPE_ATTRIBUTES (fntype);
2927 for (; attrs; attrs = TREE_CHAIN (attrs))
2928 {
2929 attrs = lookup_attribute ("nonnull", attrs);
2930
2931 /* If "nonnull" wasn't specified, we know nothing about
2932 the argument. */
2933 if (attrs == NULL_TREE)
2934 return false;
2935
2936 /* If "nonnull" applies to all the arguments, then ARG
2937 is non-null if it's in the argument list. */
2938 if (TREE_VALUE (attrs) == NULL_TREE)
2939 {
2940 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2941 {
2942 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2943 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2944 return true;
2945 }
2946 return false;
2947 }
2948
2949 /* Now see if op appears in the nonnull list. */
2950 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2951 {
2952 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2953 if (idx < gimple_call_num_args (stmt))
2954 {
2955 tree arg = gimple_call_arg (stmt, idx);
2956 if (operand_equal_p (op, arg, 0))
2957 return true;
2958 }
2959 }
2960 }
2961 }
2962
2963 /* If this function is marked as returning non-null, then we can
2964 infer OP is non-null if it is used in the return statement. */
2965 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2966 if (gimple_return_retval (return_stmt)
2967 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2968 && lookup_attribute ("returns_nonnull",
2969 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2970 return true;
2971
2972 return false;
2973 }
2974
2975 /* Compare two case labels. Because the front end should already have
2976 made sure that case ranges do not overlap, it is enough to only compare
2977 the CASE_LOW values of each case label. */
2978
2979 static int
2980 compare_case_labels (const void *p1, const void *p2)
2981 {
2982 const_tree const case1 = *(const_tree const*)p1;
2983 const_tree const case2 = *(const_tree const*)p2;
2984
2985 /* The 'default' case label always goes first. */
2986 if (!CASE_LOW (case1))
2987 return -1;
2988 else if (!CASE_LOW (case2))
2989 return 1;
2990 else
2991 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2992 }
2993
2994 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2995
2996 void
2997 sort_case_labels (vec<tree> label_vec)
2998 {
2999 label_vec.qsort (compare_case_labels);
3000 }
3001 \f
3002 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
3003
3004 LABELS is a vector that contains all case labels to look at.
3005
3006 INDEX_TYPE is the type of the switch index expression. Case labels
3007 in LABELS are discarded if their values are not in the value range
3008 covered by INDEX_TYPE. The remaining case label values are folded
3009 to INDEX_TYPE.
3010
3011 If a default case exists in LABELS, it is removed from LABELS and
3012 returned in DEFAULT_CASEP. If no default case exists, but the
3013 case labels already cover the whole range of INDEX_TYPE, a default
3014 case is returned pointing to one of the existing case labels.
3015 Otherwise DEFAULT_CASEP is set to NULL_TREE.
3016
3017 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
3018 apply and no action is taken regardless of whether a default case is
3019 found or not. */
3020
3021 void
3022 preprocess_case_label_vec_for_gimple (vec<tree> labels,
3023 tree index_type,
3024 tree *default_casep)
3025 {
3026 tree min_value, max_value;
3027 tree default_case = NULL_TREE;
3028 size_t i, len;
3029
3030 i = 0;
3031 min_value = TYPE_MIN_VALUE (index_type);
3032 max_value = TYPE_MAX_VALUE (index_type);
3033 while (i < labels.length ())
3034 {
3035 tree elt = labels[i];
3036 tree low = CASE_LOW (elt);
3037 tree high = CASE_HIGH (elt);
3038 bool remove_element = FALSE;
3039
3040 if (low)
3041 {
3042 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
3043 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
3044
3045 /* This is a non-default case label, i.e. it has a value.
3046
3047 See if the case label is reachable within the range of
3048 the index type. Remove out-of-range case values. Turn
3049 case ranges into a canonical form (high > low strictly)
3050 and convert the case label values to the index type.
3051
3052 NB: The type of gimple_switch_index() may be the promoted
3053 type, but the case labels retain the original type. */
3054
3055 if (high)
3056 {
3057 /* This is a case range. Discard empty ranges.
3058 If the bounds or the range are equal, turn this
3059 into a simple (one-value) case. */
3060 int cmp = tree_int_cst_compare (high, low);
3061 if (cmp < 0)
3062 remove_element = TRUE;
3063 else if (cmp == 0)
3064 high = NULL_TREE;
3065 }
3066
3067 if (! high)
3068 {
3069 /* If the simple case value is unreachable, ignore it. */
3070 if ((TREE_CODE (min_value) == INTEGER_CST
3071 && tree_int_cst_compare (low, min_value) < 0)
3072 || (TREE_CODE (max_value) == INTEGER_CST
3073 && tree_int_cst_compare (low, max_value) > 0))
3074 remove_element = TRUE;
3075 else
3076 low = fold_convert (index_type, low);
3077 }
3078 else
3079 {
3080 /* If the entire case range is unreachable, ignore it. */
3081 if ((TREE_CODE (min_value) == INTEGER_CST
3082 && tree_int_cst_compare (high, min_value) < 0)
3083 || (TREE_CODE (max_value) == INTEGER_CST
3084 && tree_int_cst_compare (low, max_value) > 0))
3085 remove_element = TRUE;
3086 else
3087 {
3088 /* If the lower bound is less than the index type's
3089 minimum value, truncate the range bounds. */
3090 if (TREE_CODE (min_value) == INTEGER_CST
3091 && tree_int_cst_compare (low, min_value) < 0)
3092 low = min_value;
3093 low = fold_convert (index_type, low);
3094
3095 /* If the upper bound is greater than the index type's
3096 maximum value, truncate the range bounds. */
3097 if (TREE_CODE (max_value) == INTEGER_CST
3098 && tree_int_cst_compare (high, max_value) > 0)
3099 high = max_value;
3100 high = fold_convert (index_type, high);
3101
3102 /* We may have folded a case range to a one-value case. */
3103 if (tree_int_cst_equal (low, high))
3104 high = NULL_TREE;
3105 }
3106 }
3107
3108 CASE_LOW (elt) = low;
3109 CASE_HIGH (elt) = high;
3110 }
3111 else
3112 {
3113 gcc_assert (!default_case);
3114 default_case = elt;
3115 /* The default case must be passed separately to the
3116 gimple_build_switch routine. But if DEFAULT_CASEP
3117 is NULL, we do not remove the default case (it would
3118 be completely lost). */
3119 if (default_casep)
3120 remove_element = TRUE;
3121 }
3122
3123 if (remove_element)
3124 labels.ordered_remove (i);
3125 else
3126 i++;
3127 }
3128 len = i;
3129
3130 if (!labels.is_empty ())
3131 sort_case_labels (labels);
3132
3133 if (default_casep && !default_case)
3134 {
3135 /* If the switch has no default label, add one, so that we jump
3136 around the switch body. If the labels already cover the whole
3137 range of the switch index_type, add the default label pointing
3138 to one of the existing labels. */
3139 if (len
3140 && TYPE_MIN_VALUE (index_type)
3141 && TYPE_MAX_VALUE (index_type)
3142 && tree_int_cst_equal (CASE_LOW (labels[0]),
3143 TYPE_MIN_VALUE (index_type)))
3144 {
3145 tree low, high = CASE_HIGH (labels[len - 1]);
3146 if (!high)
3147 high = CASE_LOW (labels[len - 1]);
3148 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
3149 {
3150 tree widest_label = labels[0];
3151 for (i = 1; i < len; i++)
3152 {
3153 high = CASE_LOW (labels[i]);
3154 low = CASE_HIGH (labels[i - 1]);
3155 if (!low)
3156 low = CASE_LOW (labels[i - 1]);
3157
3158 if (CASE_HIGH (labels[i]) != NULL_TREE
3159 && (CASE_HIGH (widest_label) == NULL_TREE
3160 || (wi::gtu_p
3161 (wi::to_wide (CASE_HIGH (labels[i]))
3162 - wi::to_wide (CASE_LOW (labels[i])),
3163 wi::to_wide (CASE_HIGH (widest_label))
3164 - wi::to_wide (CASE_LOW (widest_label))))))
3165 widest_label = labels[i];
3166
3167 if (wi::to_wide (low) + 1 != wi::to_wide (high))
3168 break;
3169 }
3170 if (i == len)
3171 {
3172 /* Designate the label with the widest range to be the
3173 default label. */
3174 tree label = CASE_LABEL (widest_label);
3175 default_case = build_case_label (NULL_TREE, NULL_TREE,
3176 label);
3177 }
3178 }
3179 }
3180 }
3181
3182 if (default_casep)
3183 *default_casep = default_case;
3184 }
3185
3186 /* Set the location of all statements in SEQ to LOC. */
3187
3188 void
3189 gimple_seq_set_location (gimple_seq seq, location_t loc)
3190 {
3191 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
3192 gimple_set_location (gsi_stmt (i), loc);
3193 }
3194
3195 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
3196
3197 void
3198 gimple_seq_discard (gimple_seq seq)
3199 {
3200 gimple_stmt_iterator gsi;
3201
3202 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
3203 {
3204 gimple *stmt = gsi_stmt (gsi);
3205 gsi_remove (&gsi, true);
3206 release_defs (stmt);
3207 ggc_free (stmt);
3208 }
3209 }
3210
3211 /* See if STMT now calls function that takes no parameters and if so, drop
3212 call arguments. This is used when devirtualization machinery redirects
3213 to __builtin_unreachable or __cxa_pure_virtual. */
3214
3215 void
3216 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
3217 {
3218 tree decl = gimple_call_fndecl (stmt);
3219 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3220 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3221 && gimple_call_num_args (stmt))
3222 {
3223 gimple_set_num_ops (stmt, 3);
3224 update_stmt_fn (fn, stmt);
3225 }
3226 }
3227
3228 /* Return false if STMT will likely expand to real function call. */
3229
3230 bool
3231 gimple_inexpensive_call_p (gcall *stmt)
3232 {
3233 if (gimple_call_internal_p (stmt))
3234 return true;
3235 tree decl = gimple_call_fndecl (stmt);
3236 if (decl && is_inexpensive_builtin (decl))
3237 return true;
3238 return false;
3239 }
3240
3241 #if CHECKING_P
3242
3243 namespace selftest {
3244
3245 /* Selftests for core gimple structures. */
3246
3247 /* Verify that STMT is pretty-printed as EXPECTED.
3248 Helper function for selftests. */
3249
3250 static void
3251 verify_gimple_pp (const char *expected, gimple *stmt)
3252 {
3253 pretty_printer pp;
3254 pp_gimple_stmt_1 (&pp, stmt, 0 /* spc */, TDF_NONE /* flags */);
3255 ASSERT_STREQ (expected, pp_formatted_text (&pp));
3256 }
3257
3258 /* Build a GIMPLE_ASSIGN equivalent to
3259 tmp = 5;
3260 and verify various properties of it. */
3261
3262 static void
3263 test_assign_single ()
3264 {
3265 tree type = integer_type_node;
3266 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3267 get_identifier ("tmp"),
3268 type);
3269 tree rhs = build_int_cst (type, 5);
3270 gassign *stmt = gimple_build_assign (lhs, rhs);
3271 verify_gimple_pp ("tmp = 5;", stmt);
3272
3273 ASSERT_TRUE (is_gimple_assign (stmt));
3274 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3275 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3276 ASSERT_EQ (rhs, gimple_assign_rhs1 (stmt));
3277 ASSERT_EQ (NULL, gimple_assign_rhs2 (stmt));
3278 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3279 ASSERT_TRUE (gimple_assign_single_p (stmt));
3280 ASSERT_EQ (INTEGER_CST, gimple_assign_rhs_code (stmt));
3281 }
3282
3283 /* Build a GIMPLE_ASSIGN equivalent to
3284 tmp = a * b;
3285 and verify various properties of it. */
3286
3287 static void
3288 test_assign_binop ()
3289 {
3290 tree type = integer_type_node;
3291 tree lhs = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3292 get_identifier ("tmp"),
3293 type);
3294 tree a = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3295 get_identifier ("a"),
3296 type);
3297 tree b = build_decl (UNKNOWN_LOCATION, VAR_DECL,
3298 get_identifier ("b"),
3299 type);
3300 gassign *stmt = gimple_build_assign (lhs, MULT_EXPR, a, b);
3301 verify_gimple_pp ("tmp = a * b;", stmt);
3302
3303 ASSERT_TRUE (is_gimple_assign (stmt));
3304 ASSERT_EQ (lhs, gimple_assign_lhs (stmt));
3305 ASSERT_EQ (lhs, gimple_get_lhs (stmt));
3306 ASSERT_EQ (a, gimple_assign_rhs1 (stmt));
3307 ASSERT_EQ (b, gimple_assign_rhs2 (stmt));
3308 ASSERT_EQ (NULL, gimple_assign_rhs3 (stmt));
3309 ASSERT_FALSE (gimple_assign_single_p (stmt));
3310 ASSERT_EQ (MULT_EXPR, gimple_assign_rhs_code (stmt));
3311 }
3312
3313 /* Build a GIMPLE_NOP and verify various properties of it. */
3314
3315 static void
3316 test_nop_stmt ()
3317 {
3318 gimple *stmt = gimple_build_nop ();
3319 verify_gimple_pp ("GIMPLE_NOP", stmt);
3320 ASSERT_EQ (GIMPLE_NOP, gimple_code (stmt));
3321 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3322 ASSERT_FALSE (gimple_assign_single_p (stmt));
3323 }
3324
3325 /* Build a GIMPLE_RETURN equivalent to
3326 return 7;
3327 and verify various properties of it. */
3328
3329 static void
3330 test_return_stmt ()
3331 {
3332 tree type = integer_type_node;
3333 tree val = build_int_cst (type, 7);
3334 greturn *stmt = gimple_build_return (val);
3335 verify_gimple_pp ("return 7;", stmt);
3336
3337 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3338 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3339 ASSERT_EQ (val, gimple_return_retval (stmt));
3340 ASSERT_FALSE (gimple_assign_single_p (stmt));
3341 }
3342
3343 /* Build a GIMPLE_RETURN equivalent to
3344 return;
3345 and verify various properties of it. */
3346
3347 static void
3348 test_return_without_value ()
3349 {
3350 greturn *stmt = gimple_build_return (NULL);
3351 verify_gimple_pp ("return;", stmt);
3352
3353 ASSERT_EQ (GIMPLE_RETURN, gimple_code (stmt));
3354 ASSERT_EQ (NULL, gimple_get_lhs (stmt));
3355 ASSERT_EQ (NULL, gimple_return_retval (stmt));
3356 ASSERT_FALSE (gimple_assign_single_p (stmt));
3357 }
3358
3359 /* Run all of the selftests within this file. */
3360
3361 void
3362 gimple_c_tests ()
3363 {
3364 test_assign_single ();
3365 test_assign_binop ();
3366 test_nop_stmt ();
3367 test_return_stmt ();
3368 test_return_without_value ();
3369 }
3370
3371 } // namespace selftest
3372
3373
3374 #endif /* CHECKING_P */