]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/gimple.c
Update copyright years.
[thirdparty/gcc.git] / gcc / gimple.c
1 /* Gimple IR support functions.
2
3 Copyright (C) 2007-2016 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "ssa.h"
29 #include "cgraph.h"
30 #include "diagnostic.h"
31 #include "alias.h"
32 #include "fold-const.h"
33 #include "calls.h"
34 #include "stor-layout.h"
35 #include "internal-fn.h"
36 #include "tree-eh.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimplify.h"
40 #include "target.h"
41
42
43 /* All the tuples have their operand vector (if present) at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) \
48 (HAS_TREE_OP ? sizeof (struct STRUCT) - sizeof (tree) : 0),
49 EXPORTED_CONST size_t gimple_ops_offset_[] = {
50 #include "gsstruct.def"
51 };
52 #undef DEFGSSTRUCT
53
54 #define DEFGSSTRUCT(SYM, STRUCT, HAS_TREE_OP) sizeof (struct STRUCT),
55 static const size_t gsstruct_code_size[] = {
56 #include "gsstruct.def"
57 };
58 #undef DEFGSSTRUCT
59
60 #define DEFGSCODE(SYM, NAME, GSSCODE) NAME,
61 const char *const gimple_code_name[] = {
62 #include "gimple.def"
63 };
64 #undef DEFGSCODE
65
66 #define DEFGSCODE(SYM, NAME, GSSCODE) GSSCODE,
67 EXPORTED_CONST enum gimple_statement_structure_enum gss_for_code_[] = {
68 #include "gimple.def"
69 };
70 #undef DEFGSCODE
71
72 /* Gimple stats. */
73
74 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
75 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
76
77 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
78 static const char * const gimple_alloc_kind_names[] = {
79 "assignments",
80 "phi nodes",
81 "conditionals",
82 "everything else"
83 };
84
85 /* Static gimple tuple members. */
86 const enum gimple_code gassign::code_;
87 const enum gimple_code gcall::code_;
88 const enum gimple_code gcond::code_;
89
90
91 /* Gimple tuple constructors.
92 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
93 be passed a NULL to start with an empty sequence. */
94
95 /* Set the code for statement G to CODE. */
96
97 static inline void
98 gimple_set_code (gimple *g, enum gimple_code code)
99 {
100 g->code = code;
101 }
102
103 /* Return the number of bytes needed to hold a GIMPLE statement with
104 code CODE. */
105
106 static inline size_t
107 gimple_size (enum gimple_code code)
108 {
109 return gsstruct_code_size[gss_for_code (code)];
110 }
111
112 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
113 operands. */
114
115 gimple *
116 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
117 {
118 size_t size;
119 gimple *stmt;
120
121 size = gimple_size (code);
122 if (num_ops > 0)
123 size += sizeof (tree) * (num_ops - 1);
124
125 if (GATHER_STATISTICS)
126 {
127 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
128 gimple_alloc_counts[(int) kind]++;
129 gimple_alloc_sizes[(int) kind] += size;
130 }
131
132 stmt = ggc_alloc_cleared_gimple_statement_stat (size PASS_MEM_STAT);
133 gimple_set_code (stmt, code);
134 gimple_set_num_ops (stmt, num_ops);
135
136 /* Do not call gimple_set_modified here as it has other side
137 effects and this tuple is still not completely built. */
138 stmt->modified = 1;
139 gimple_init_singleton (stmt);
140
141 return stmt;
142 }
143
144 /* Set SUBCODE to be the code of the expression computed by statement G. */
145
146 static inline void
147 gimple_set_subcode (gimple *g, unsigned subcode)
148 {
149 /* We only have 16 bits for the RHS code. Assert that we are not
150 overflowing it. */
151 gcc_assert (subcode < (1 << 16));
152 g->subcode = subcode;
153 }
154
155
156
157 /* Build a tuple with operands. CODE is the statement to build (which
158 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the subcode
159 for the new tuple. NUM_OPS is the number of operands to allocate. */
160
161 #define gimple_build_with_ops(c, s, n) \
162 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
163
164 static gimple *
165 gimple_build_with_ops_stat (enum gimple_code code, unsigned subcode,
166 unsigned num_ops MEM_STAT_DECL)
167 {
168 gimple *s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
169 gimple_set_subcode (s, subcode);
170
171 return s;
172 }
173
174
175 /* Build a GIMPLE_RETURN statement returning RETVAL. */
176
177 greturn *
178 gimple_build_return (tree retval)
179 {
180 greturn *s
181 = as_a <greturn *> (gimple_build_with_ops (GIMPLE_RETURN, ERROR_MARK,
182 2));
183 if (retval)
184 gimple_return_set_retval (s, retval);
185 return s;
186 }
187
188 /* Reset alias information on call S. */
189
190 void
191 gimple_call_reset_alias_info (gcall *s)
192 {
193 if (gimple_call_flags (s) & ECF_CONST)
194 memset (gimple_call_use_set (s), 0, sizeof (struct pt_solution));
195 else
196 pt_solution_reset (gimple_call_use_set (s));
197 if (gimple_call_flags (s) & (ECF_CONST|ECF_PURE|ECF_NOVOPS))
198 memset (gimple_call_clobber_set (s), 0, sizeof (struct pt_solution));
199 else
200 pt_solution_reset (gimple_call_clobber_set (s));
201 }
202
203 /* Helper for gimple_build_call, gimple_build_call_valist,
204 gimple_build_call_vec and gimple_build_call_from_tree. Build the basic
205 components of a GIMPLE_CALL statement to function FN with NARGS
206 arguments. */
207
208 static inline gcall *
209 gimple_build_call_1 (tree fn, unsigned nargs)
210 {
211 gcall *s
212 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
213 nargs + 3));
214 if (TREE_CODE (fn) == FUNCTION_DECL)
215 fn = build_fold_addr_expr (fn);
216 gimple_set_op (s, 1, fn);
217 gimple_call_set_fntype (s, TREE_TYPE (TREE_TYPE (fn)));
218 gimple_call_reset_alias_info (s);
219 return s;
220 }
221
222
223 /* Build a GIMPLE_CALL statement to function FN with the arguments
224 specified in vector ARGS. */
225
226 gcall *
227 gimple_build_call_vec (tree fn, vec<tree> args)
228 {
229 unsigned i;
230 unsigned nargs = args.length ();
231 gcall *call = gimple_build_call_1 (fn, nargs);
232
233 for (i = 0; i < nargs; i++)
234 gimple_call_set_arg (call, i, args[i]);
235
236 return call;
237 }
238
239
240 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
241 arguments. The ... are the arguments. */
242
243 gcall *
244 gimple_build_call (tree fn, unsigned nargs, ...)
245 {
246 va_list ap;
247 gcall *call;
248 unsigned i;
249
250 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
251
252 call = gimple_build_call_1 (fn, nargs);
253
254 va_start (ap, nargs);
255 for (i = 0; i < nargs; i++)
256 gimple_call_set_arg (call, i, va_arg (ap, tree));
257 va_end (ap);
258
259 return call;
260 }
261
262
263 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
264 arguments. AP contains the arguments. */
265
266 gcall *
267 gimple_build_call_valist (tree fn, unsigned nargs, va_list ap)
268 {
269 gcall *call;
270 unsigned i;
271
272 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
273
274 call = gimple_build_call_1 (fn, nargs);
275
276 for (i = 0; i < nargs; i++)
277 gimple_call_set_arg (call, i, va_arg (ap, tree));
278
279 return call;
280 }
281
282
283 /* Helper for gimple_build_call_internal and gimple_build_call_internal_vec.
284 Build the basic components of a GIMPLE_CALL statement to internal
285 function FN with NARGS arguments. */
286
287 static inline gcall *
288 gimple_build_call_internal_1 (enum internal_fn fn, unsigned nargs)
289 {
290 gcall *s
291 = as_a <gcall *> (gimple_build_with_ops (GIMPLE_CALL, ERROR_MARK,
292 nargs + 3));
293 s->subcode |= GF_CALL_INTERNAL;
294 gimple_call_set_internal_fn (s, fn);
295 gimple_call_reset_alias_info (s);
296 return s;
297 }
298
299
300 /* Build a GIMPLE_CALL statement to internal function FN. NARGS is
301 the number of arguments. The ... are the arguments. */
302
303 gcall *
304 gimple_build_call_internal (enum internal_fn fn, unsigned nargs, ...)
305 {
306 va_list ap;
307 gcall *call;
308 unsigned i;
309
310 call = gimple_build_call_internal_1 (fn, nargs);
311 va_start (ap, nargs);
312 for (i = 0; i < nargs; i++)
313 gimple_call_set_arg (call, i, va_arg (ap, tree));
314 va_end (ap);
315
316 return call;
317 }
318
319
320 /* Build a GIMPLE_CALL statement to internal function FN with the arguments
321 specified in vector ARGS. */
322
323 gcall *
324 gimple_build_call_internal_vec (enum internal_fn fn, vec<tree> args)
325 {
326 unsigned i, nargs;
327 gcall *call;
328
329 nargs = args.length ();
330 call = gimple_build_call_internal_1 (fn, nargs);
331 for (i = 0; i < nargs; i++)
332 gimple_call_set_arg (call, i, args[i]);
333
334 return call;
335 }
336
337
338 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
339 assumed to be in GIMPLE form already. Minimal checking is done of
340 this fact. */
341
342 gcall *
343 gimple_build_call_from_tree (tree t)
344 {
345 unsigned i, nargs;
346 gcall *call;
347 tree fndecl = get_callee_fndecl (t);
348
349 gcc_assert (TREE_CODE (t) == CALL_EXPR);
350
351 nargs = call_expr_nargs (t);
352 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
353
354 for (i = 0; i < nargs; i++)
355 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
356
357 gimple_set_block (call, TREE_BLOCK (t));
358
359 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
360 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
361 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
362 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
363 if (fndecl
364 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
365 && (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
366 || DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN))
367 gimple_call_set_alloca_for_var (call, CALL_ALLOCA_FOR_VAR_P (t));
368 else
369 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
370 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
371 gimple_call_set_nothrow (call, TREE_NOTHROW (t));
372 gimple_set_no_warning (call, TREE_NO_WARNING (t));
373 gimple_call_set_with_bounds (call, CALL_WITH_BOUNDS_P (t));
374
375 return call;
376 }
377
378
379 /* Build a GIMPLE_ASSIGN statement.
380
381 LHS of the assignment.
382 RHS of the assignment which can be unary or binary. */
383
384 gassign *
385 gimple_build_assign (tree lhs, tree rhs MEM_STAT_DECL)
386 {
387 enum tree_code subcode;
388 tree op1, op2, op3;
389
390 extract_ops_from_tree_1 (rhs, &subcode, &op1, &op2, &op3);
391 return gimple_build_assign (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
392 }
393
394
395 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
396 OP1, OP2 and OP3. */
397
398 static inline gassign *
399 gimple_build_assign_1 (tree lhs, enum tree_code subcode, tree op1,
400 tree op2, tree op3 MEM_STAT_DECL)
401 {
402 unsigned num_ops;
403 gassign *p;
404
405 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
406 code). */
407 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
408
409 p = as_a <gassign *> (
410 gimple_build_with_ops_stat (GIMPLE_ASSIGN, (unsigned)subcode, num_ops
411 PASS_MEM_STAT));
412 gimple_assign_set_lhs (p, lhs);
413 gimple_assign_set_rhs1 (p, op1);
414 if (op2)
415 {
416 gcc_assert (num_ops > 2);
417 gimple_assign_set_rhs2 (p, op2);
418 }
419
420 if (op3)
421 {
422 gcc_assert (num_ops > 3);
423 gimple_assign_set_rhs3 (p, op3);
424 }
425
426 return p;
427 }
428
429 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
430 OP1, OP2 and OP3. */
431
432 gassign *
433 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
434 tree op2, tree op3 MEM_STAT_DECL)
435 {
436 return gimple_build_assign_1 (lhs, subcode, op1, op2, op3 PASS_MEM_STAT);
437 }
438
439 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operands
440 OP1 and OP2. */
441
442 gassign *
443 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1,
444 tree op2 MEM_STAT_DECL)
445 {
446 return gimple_build_assign_1 (lhs, subcode, op1, op2, NULL_TREE
447 PASS_MEM_STAT);
448 }
449
450 /* Build a GIMPLE_ASSIGN statement with subcode SUBCODE and operand OP1. */
451
452 gassign *
453 gimple_build_assign (tree lhs, enum tree_code subcode, tree op1 MEM_STAT_DECL)
454 {
455 return gimple_build_assign_1 (lhs, subcode, op1, NULL_TREE, NULL_TREE
456 PASS_MEM_STAT);
457 }
458
459
460 /* Build a GIMPLE_COND statement.
461
462 PRED is the condition used to compare LHS and the RHS.
463 T_LABEL is the label to jump to if the condition is true.
464 F_LABEL is the label to jump to otherwise. */
465
466 gcond *
467 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
468 tree t_label, tree f_label)
469 {
470 gcond *p;
471
472 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
473 p = as_a <gcond *> (gimple_build_with_ops (GIMPLE_COND, pred_code, 4));
474 gimple_cond_set_lhs (p, lhs);
475 gimple_cond_set_rhs (p, rhs);
476 gimple_cond_set_true_label (p, t_label);
477 gimple_cond_set_false_label (p, f_label);
478 return p;
479 }
480
481 /* Build a GIMPLE_COND statement from the conditional expression tree
482 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
483
484 gcond *
485 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
486 {
487 enum tree_code code;
488 tree lhs, rhs;
489
490 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
491 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
492 }
493
494 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
495 boolean expression tree COND. */
496
497 void
498 gimple_cond_set_condition_from_tree (gcond *stmt, tree cond)
499 {
500 enum tree_code code;
501 tree lhs, rhs;
502
503 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
504 gimple_cond_set_condition (stmt, code, lhs, rhs);
505 }
506
507 /* Build a GIMPLE_LABEL statement for LABEL. */
508
509 glabel *
510 gimple_build_label (tree label)
511 {
512 glabel *p
513 = as_a <glabel *> (gimple_build_with_ops (GIMPLE_LABEL, ERROR_MARK, 1));
514 gimple_label_set_label (p, label);
515 return p;
516 }
517
518 /* Build a GIMPLE_GOTO statement to label DEST. */
519
520 ggoto *
521 gimple_build_goto (tree dest)
522 {
523 ggoto *p
524 = as_a <ggoto *> (gimple_build_with_ops (GIMPLE_GOTO, ERROR_MARK, 1));
525 gimple_goto_set_dest (p, dest);
526 return p;
527 }
528
529
530 /* Build a GIMPLE_NOP statement. */
531
532 gimple *
533 gimple_build_nop (void)
534 {
535 return gimple_alloc (GIMPLE_NOP, 0);
536 }
537
538
539 /* Build a GIMPLE_BIND statement.
540 VARS are the variables in BODY.
541 BLOCK is the containing block. */
542
543 gbind *
544 gimple_build_bind (tree vars, gimple_seq body, tree block)
545 {
546 gbind *p = as_a <gbind *> (gimple_alloc (GIMPLE_BIND, 0));
547 gimple_bind_set_vars (p, vars);
548 if (body)
549 gimple_bind_set_body (p, body);
550 if (block)
551 gimple_bind_set_block (p, block);
552 return p;
553 }
554
555 /* Helper function to set the simple fields of a asm stmt.
556
557 STRING is a pointer to a string that is the asm blocks assembly code.
558 NINPUT is the number of register inputs.
559 NOUTPUT is the number of register outputs.
560 NCLOBBERS is the number of clobbered registers.
561 */
562
563 static inline gasm *
564 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
565 unsigned nclobbers, unsigned nlabels)
566 {
567 gasm *p;
568 int size = strlen (string);
569
570 /* ASMs with labels cannot have outputs. This should have been
571 enforced by the front end. */
572 gcc_assert (nlabels == 0 || noutputs == 0);
573
574 p = as_a <gasm *> (
575 gimple_build_with_ops (GIMPLE_ASM, ERROR_MARK,
576 ninputs + noutputs + nclobbers + nlabels));
577
578 p->ni = ninputs;
579 p->no = noutputs;
580 p->nc = nclobbers;
581 p->nl = nlabels;
582 p->string = ggc_alloc_string (string, size);
583
584 if (GATHER_STATISTICS)
585 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
586
587 return p;
588 }
589
590 /* Build a GIMPLE_ASM statement.
591
592 STRING is the assembly code.
593 NINPUT is the number of register inputs.
594 NOUTPUT is the number of register outputs.
595 NCLOBBERS is the number of clobbered registers.
596 INPUTS is a vector of the input register parameters.
597 OUTPUTS is a vector of the output register parameters.
598 CLOBBERS is a vector of the clobbered register parameters.
599 LABELS is a vector of destination labels. */
600
601 gasm *
602 gimple_build_asm_vec (const char *string, vec<tree, va_gc> *inputs,
603 vec<tree, va_gc> *outputs, vec<tree, va_gc> *clobbers,
604 vec<tree, va_gc> *labels)
605 {
606 gasm *p;
607 unsigned i;
608
609 p = gimple_build_asm_1 (string,
610 vec_safe_length (inputs),
611 vec_safe_length (outputs),
612 vec_safe_length (clobbers),
613 vec_safe_length (labels));
614
615 for (i = 0; i < vec_safe_length (inputs); i++)
616 gimple_asm_set_input_op (p, i, (*inputs)[i]);
617
618 for (i = 0; i < vec_safe_length (outputs); i++)
619 gimple_asm_set_output_op (p, i, (*outputs)[i]);
620
621 for (i = 0; i < vec_safe_length (clobbers); i++)
622 gimple_asm_set_clobber_op (p, i, (*clobbers)[i]);
623
624 for (i = 0; i < vec_safe_length (labels); i++)
625 gimple_asm_set_label_op (p, i, (*labels)[i]);
626
627 return p;
628 }
629
630 /* Build a GIMPLE_CATCH statement.
631
632 TYPES are the catch types.
633 HANDLER is the exception handler. */
634
635 gcatch *
636 gimple_build_catch (tree types, gimple_seq handler)
637 {
638 gcatch *p = as_a <gcatch *> (gimple_alloc (GIMPLE_CATCH, 0));
639 gimple_catch_set_types (p, types);
640 if (handler)
641 gimple_catch_set_handler (p, handler);
642
643 return p;
644 }
645
646 /* Build a GIMPLE_EH_FILTER statement.
647
648 TYPES are the filter's types.
649 FAILURE is the filter's failure action. */
650
651 geh_filter *
652 gimple_build_eh_filter (tree types, gimple_seq failure)
653 {
654 geh_filter *p = as_a <geh_filter *> (gimple_alloc (GIMPLE_EH_FILTER, 0));
655 gimple_eh_filter_set_types (p, types);
656 if (failure)
657 gimple_eh_filter_set_failure (p, failure);
658
659 return p;
660 }
661
662 /* Build a GIMPLE_EH_MUST_NOT_THROW statement. */
663
664 geh_mnt *
665 gimple_build_eh_must_not_throw (tree decl)
666 {
667 geh_mnt *p = as_a <geh_mnt *> (gimple_alloc (GIMPLE_EH_MUST_NOT_THROW, 0));
668
669 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
670 gcc_assert (flags_from_decl_or_type (decl) & ECF_NORETURN);
671 gimple_eh_must_not_throw_set_fndecl (p, decl);
672
673 return p;
674 }
675
676 /* Build a GIMPLE_EH_ELSE statement. */
677
678 geh_else *
679 gimple_build_eh_else (gimple_seq n_body, gimple_seq e_body)
680 {
681 geh_else *p = as_a <geh_else *> (gimple_alloc (GIMPLE_EH_ELSE, 0));
682 gimple_eh_else_set_n_body (p, n_body);
683 gimple_eh_else_set_e_body (p, e_body);
684 return p;
685 }
686
687 /* Build a GIMPLE_TRY statement.
688
689 EVAL is the expression to evaluate.
690 CLEANUP is the cleanup expression.
691 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
692 whether this is a try/catch or a try/finally respectively. */
693
694 gtry *
695 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
696 enum gimple_try_flags kind)
697 {
698 gtry *p;
699
700 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
701 p = as_a <gtry *> (gimple_alloc (GIMPLE_TRY, 0));
702 gimple_set_subcode (p, kind);
703 if (eval)
704 gimple_try_set_eval (p, eval);
705 if (cleanup)
706 gimple_try_set_cleanup (p, cleanup);
707
708 return p;
709 }
710
711 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
712
713 CLEANUP is the cleanup expression. */
714
715 gimple *
716 gimple_build_wce (gimple_seq cleanup)
717 {
718 gimple *p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
719 if (cleanup)
720 gimple_wce_set_cleanup (p, cleanup);
721
722 return p;
723 }
724
725
726 /* Build a GIMPLE_RESX statement. */
727
728 gresx *
729 gimple_build_resx (int region)
730 {
731 gresx *p
732 = as_a <gresx *> (gimple_build_with_ops (GIMPLE_RESX, ERROR_MARK, 0));
733 p->region = region;
734 return p;
735 }
736
737
738 /* The helper for constructing a gimple switch statement.
739 INDEX is the switch's index.
740 NLABELS is the number of labels in the switch excluding the default.
741 DEFAULT_LABEL is the default label for the switch statement. */
742
743 gswitch *
744 gimple_build_switch_nlabels (unsigned nlabels, tree index, tree default_label)
745 {
746 /* nlabels + 1 default label + 1 index. */
747 gcc_checking_assert (default_label);
748 gswitch *p = as_a <gswitch *> (gimple_build_with_ops (GIMPLE_SWITCH,
749 ERROR_MARK,
750 1 + 1 + nlabels));
751 gimple_switch_set_index (p, index);
752 gimple_switch_set_default_label (p, default_label);
753 return p;
754 }
755
756 /* Build a GIMPLE_SWITCH statement.
757
758 INDEX is the switch's index.
759 DEFAULT_LABEL is the default label
760 ARGS is a vector of labels excluding the default. */
761
762 gswitch *
763 gimple_build_switch (tree index, tree default_label, vec<tree> args)
764 {
765 unsigned i, nlabels = args.length ();
766
767 gswitch *p = gimple_build_switch_nlabels (nlabels, index, default_label);
768
769 /* Copy the labels from the vector to the switch statement. */
770 for (i = 0; i < nlabels; i++)
771 gimple_switch_set_label (p, i + 1, args[i]);
772
773 return p;
774 }
775
776 /* Build a GIMPLE_EH_DISPATCH statement. */
777
778 geh_dispatch *
779 gimple_build_eh_dispatch (int region)
780 {
781 geh_dispatch *p
782 = as_a <geh_dispatch *> (
783 gimple_build_with_ops (GIMPLE_EH_DISPATCH, ERROR_MARK, 0));
784 p->region = region;
785 return p;
786 }
787
788 /* Build a new GIMPLE_DEBUG_BIND statement.
789
790 VAR is bound to VALUE; block and location are taken from STMT. */
791
792 gdebug *
793 gimple_build_debug_bind_stat (tree var, tree value, gimple *stmt MEM_STAT_DECL)
794 {
795 gdebug *p
796 = as_a <gdebug *> (gimple_build_with_ops_stat (GIMPLE_DEBUG,
797 (unsigned)GIMPLE_DEBUG_BIND, 2
798 PASS_MEM_STAT));
799 gimple_debug_bind_set_var (p, var);
800 gimple_debug_bind_set_value (p, value);
801 if (stmt)
802 gimple_set_location (p, gimple_location (stmt));
803
804 return p;
805 }
806
807
808 /* Build a new GIMPLE_DEBUG_SOURCE_BIND statement.
809
810 VAR is bound to VALUE; block and location are taken from STMT. */
811
812 gdebug *
813 gimple_build_debug_source_bind_stat (tree var, tree value,
814 gimple *stmt MEM_STAT_DECL)
815 {
816 gdebug *p
817 = as_a <gdebug *> (
818 gimple_build_with_ops_stat (GIMPLE_DEBUG,
819 (unsigned)GIMPLE_DEBUG_SOURCE_BIND, 2
820 PASS_MEM_STAT));
821
822 gimple_debug_source_bind_set_var (p, var);
823 gimple_debug_source_bind_set_value (p, value);
824 if (stmt)
825 gimple_set_location (p, gimple_location (stmt));
826
827 return p;
828 }
829
830
831 /* Build a GIMPLE_OMP_CRITICAL statement.
832
833 BODY is the sequence of statements for which only one thread can execute.
834 NAME is optional identifier for this critical block.
835 CLAUSES are clauses for this critical block. */
836
837 gomp_critical *
838 gimple_build_omp_critical (gimple_seq body, tree name, tree clauses)
839 {
840 gomp_critical *p
841 = as_a <gomp_critical *> (gimple_alloc (GIMPLE_OMP_CRITICAL, 0));
842 gimple_omp_critical_set_name (p, name);
843 gimple_omp_critical_set_clauses (p, clauses);
844 if (body)
845 gimple_omp_set_body (p, body);
846
847 return p;
848 }
849
850 /* Build a GIMPLE_OMP_FOR statement.
851
852 BODY is sequence of statements inside the for loop.
853 KIND is the `for' variant.
854 CLAUSES, are any of the construct's clauses.
855 COLLAPSE is the collapse count.
856 PRE_BODY is the sequence of statements that are loop invariant. */
857
858 gomp_for *
859 gimple_build_omp_for (gimple_seq body, int kind, tree clauses, size_t collapse,
860 gimple_seq pre_body)
861 {
862 gomp_for *p = as_a <gomp_for *> (gimple_alloc (GIMPLE_OMP_FOR, 0));
863 if (body)
864 gimple_omp_set_body (p, body);
865 gimple_omp_for_set_clauses (p, clauses);
866 gimple_omp_for_set_kind (p, kind);
867 p->collapse = collapse;
868 p->iter = ggc_cleared_vec_alloc<gimple_omp_for_iter> (collapse);
869
870 if (pre_body)
871 gimple_omp_for_set_pre_body (p, pre_body);
872
873 return p;
874 }
875
876
877 /* Build a GIMPLE_OMP_PARALLEL statement.
878
879 BODY is sequence of statements which are executed in parallel.
880 CLAUSES, are the OMP parallel construct's clauses.
881 CHILD_FN is the function created for the parallel threads to execute.
882 DATA_ARG are the shared data argument(s). */
883
884 gomp_parallel *
885 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
886 tree data_arg)
887 {
888 gomp_parallel *p
889 = as_a <gomp_parallel *> (gimple_alloc (GIMPLE_OMP_PARALLEL, 0));
890 if (body)
891 gimple_omp_set_body (p, body);
892 gimple_omp_parallel_set_clauses (p, clauses);
893 gimple_omp_parallel_set_child_fn (p, child_fn);
894 gimple_omp_parallel_set_data_arg (p, data_arg);
895
896 return p;
897 }
898
899
900 /* Build a GIMPLE_OMP_TASK statement.
901
902 BODY is sequence of statements which are executed by the explicit task.
903 CLAUSES, are the OMP parallel construct's clauses.
904 CHILD_FN is the function created for the parallel threads to execute.
905 DATA_ARG are the shared data argument(s).
906 COPY_FN is the optional function for firstprivate initialization.
907 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
908
909 gomp_task *
910 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
911 tree data_arg, tree copy_fn, tree arg_size,
912 tree arg_align)
913 {
914 gomp_task *p = as_a <gomp_task *> (gimple_alloc (GIMPLE_OMP_TASK, 0));
915 if (body)
916 gimple_omp_set_body (p, body);
917 gimple_omp_task_set_clauses (p, clauses);
918 gimple_omp_task_set_child_fn (p, child_fn);
919 gimple_omp_task_set_data_arg (p, data_arg);
920 gimple_omp_task_set_copy_fn (p, copy_fn);
921 gimple_omp_task_set_arg_size (p, arg_size);
922 gimple_omp_task_set_arg_align (p, arg_align);
923
924 return p;
925 }
926
927
928 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
929
930 BODY is the sequence of statements in the section. */
931
932 gimple *
933 gimple_build_omp_section (gimple_seq body)
934 {
935 gimple *p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
936 if (body)
937 gimple_omp_set_body (p, body);
938
939 return p;
940 }
941
942
943 /* Build a GIMPLE_OMP_MASTER statement.
944
945 BODY is the sequence of statements to be executed by just the master. */
946
947 gimple *
948 gimple_build_omp_master (gimple_seq body)
949 {
950 gimple *p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
951 if (body)
952 gimple_omp_set_body (p, body);
953
954 return p;
955 }
956
957
958 /* Build a GIMPLE_OMP_TASKGROUP statement.
959
960 BODY is the sequence of statements to be executed by the taskgroup
961 construct. */
962
963 gimple *
964 gimple_build_omp_taskgroup (gimple_seq body)
965 {
966 gimple *p = gimple_alloc (GIMPLE_OMP_TASKGROUP, 0);
967 if (body)
968 gimple_omp_set_body (p, body);
969
970 return p;
971 }
972
973
974 /* Build a GIMPLE_OMP_CONTINUE statement.
975
976 CONTROL_DEF is the definition of the control variable.
977 CONTROL_USE is the use of the control variable. */
978
979 gomp_continue *
980 gimple_build_omp_continue (tree control_def, tree control_use)
981 {
982 gomp_continue *p
983 = as_a <gomp_continue *> (gimple_alloc (GIMPLE_OMP_CONTINUE, 0));
984 gimple_omp_continue_set_control_def (p, control_def);
985 gimple_omp_continue_set_control_use (p, control_use);
986 return p;
987 }
988
989 /* Build a GIMPLE_OMP_ORDERED statement.
990
991 BODY is the sequence of statements inside a loop that will executed in
992 sequence.
993 CLAUSES are clauses for this statement. */
994
995 gomp_ordered *
996 gimple_build_omp_ordered (gimple_seq body, tree clauses)
997 {
998 gomp_ordered *p
999 = as_a <gomp_ordered *> (gimple_alloc (GIMPLE_OMP_ORDERED, 0));
1000 gimple_omp_ordered_set_clauses (p, clauses);
1001 if (body)
1002 gimple_omp_set_body (p, body);
1003
1004 return p;
1005 }
1006
1007
1008 /* Build a GIMPLE_OMP_RETURN statement.
1009 WAIT_P is true if this is a non-waiting return. */
1010
1011 gimple *
1012 gimple_build_omp_return (bool wait_p)
1013 {
1014 gimple *p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
1015 if (wait_p)
1016 gimple_omp_return_set_nowait (p);
1017
1018 return p;
1019 }
1020
1021
1022 /* Build a GIMPLE_OMP_SECTIONS statement.
1023
1024 BODY is a sequence of section statements.
1025 CLAUSES are any of the OMP sections contsruct's clauses: private,
1026 firstprivate, lastprivate, reduction, and nowait. */
1027
1028 gomp_sections *
1029 gimple_build_omp_sections (gimple_seq body, tree clauses)
1030 {
1031 gomp_sections *p
1032 = as_a <gomp_sections *> (gimple_alloc (GIMPLE_OMP_SECTIONS, 0));
1033 if (body)
1034 gimple_omp_set_body (p, body);
1035 gimple_omp_sections_set_clauses (p, clauses);
1036
1037 return p;
1038 }
1039
1040
1041 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1042
1043 gimple *
1044 gimple_build_omp_sections_switch (void)
1045 {
1046 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1047 }
1048
1049
1050 /* Build a GIMPLE_OMP_SINGLE statement.
1051
1052 BODY is the sequence of statements that will be executed once.
1053 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1054 copyprivate, nowait. */
1055
1056 gomp_single *
1057 gimple_build_omp_single (gimple_seq body, tree clauses)
1058 {
1059 gomp_single *p
1060 = as_a <gomp_single *> (gimple_alloc (GIMPLE_OMP_SINGLE, 0));
1061 if (body)
1062 gimple_omp_set_body (p, body);
1063 gimple_omp_single_set_clauses (p, clauses);
1064
1065 return p;
1066 }
1067
1068
1069 /* Build a GIMPLE_OMP_TARGET statement.
1070
1071 BODY is the sequence of statements that will be executed.
1072 KIND is the kind of the region.
1073 CLAUSES are any of the construct's clauses. */
1074
1075 gomp_target *
1076 gimple_build_omp_target (gimple_seq body, int kind, tree clauses)
1077 {
1078 gomp_target *p
1079 = as_a <gomp_target *> (gimple_alloc (GIMPLE_OMP_TARGET, 0));
1080 if (body)
1081 gimple_omp_set_body (p, body);
1082 gimple_omp_target_set_clauses (p, clauses);
1083 gimple_omp_target_set_kind (p, kind);
1084
1085 return p;
1086 }
1087
1088
1089 /* Build a GIMPLE_OMP_TEAMS statement.
1090
1091 BODY is the sequence of statements that will be executed.
1092 CLAUSES are any of the OMP teams construct's clauses. */
1093
1094 gomp_teams *
1095 gimple_build_omp_teams (gimple_seq body, tree clauses)
1096 {
1097 gomp_teams *p = as_a <gomp_teams *> (gimple_alloc (GIMPLE_OMP_TEAMS, 0));
1098 if (body)
1099 gimple_omp_set_body (p, body);
1100 gimple_omp_teams_set_clauses (p, clauses);
1101
1102 return p;
1103 }
1104
1105
1106 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1107
1108 gomp_atomic_load *
1109 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1110 {
1111 gomp_atomic_load *p
1112 = as_a <gomp_atomic_load *> (gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0));
1113 gimple_omp_atomic_load_set_lhs (p, lhs);
1114 gimple_omp_atomic_load_set_rhs (p, rhs);
1115 return p;
1116 }
1117
1118 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1119
1120 VAL is the value we are storing. */
1121
1122 gomp_atomic_store *
1123 gimple_build_omp_atomic_store (tree val)
1124 {
1125 gomp_atomic_store *p
1126 = as_a <gomp_atomic_store *> (gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0));
1127 gimple_omp_atomic_store_set_val (p, val);
1128 return p;
1129 }
1130
1131 /* Build a GIMPLE_TRANSACTION statement. */
1132
1133 gtransaction *
1134 gimple_build_transaction (gimple_seq body)
1135 {
1136 gtransaction *p
1137 = as_a <gtransaction *> (gimple_alloc (GIMPLE_TRANSACTION, 0));
1138 gimple_transaction_set_body (p, body);
1139 gimple_transaction_set_label_norm (p, 0);
1140 gimple_transaction_set_label_uninst (p, 0);
1141 gimple_transaction_set_label_over (p, 0);
1142 return p;
1143 }
1144
1145 #if defined ENABLE_GIMPLE_CHECKING
1146 /* Complain of a gimple type mismatch and die. */
1147
1148 void
1149 gimple_check_failed (const gimple *gs, const char *file, int line,
1150 const char *function, enum gimple_code code,
1151 enum tree_code subcode)
1152 {
1153 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1154 gimple_code_name[code],
1155 get_tree_code_name (subcode),
1156 gimple_code_name[gimple_code (gs)],
1157 gs->subcode > 0
1158 ? get_tree_code_name ((enum tree_code) gs->subcode)
1159 : "",
1160 function, trim_filename (file), line);
1161 }
1162 #endif /* ENABLE_GIMPLE_CHECKING */
1163
1164
1165 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1166 *SEQ_P is NULL, a new sequence is allocated. */
1167
1168 void
1169 gimple_seq_add_stmt (gimple_seq *seq_p, gimple *gs)
1170 {
1171 gimple_stmt_iterator si;
1172 if (gs == NULL)
1173 return;
1174
1175 si = gsi_last (*seq_p);
1176 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1177 }
1178
1179 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1180 *SEQ_P is NULL, a new sequence is allocated. This function is
1181 similar to gimple_seq_add_stmt, but does not scan the operands.
1182 During gimplification, we need to manipulate statement sequences
1183 before the def/use vectors have been constructed. */
1184
1185 void
1186 gimple_seq_add_stmt_without_update (gimple_seq *seq_p, gimple *gs)
1187 {
1188 gimple_stmt_iterator si;
1189
1190 if (gs == NULL)
1191 return;
1192
1193 si = gsi_last (*seq_p);
1194 gsi_insert_after_without_update (&si, gs, GSI_NEW_STMT);
1195 }
1196
1197 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1198 NULL, a new sequence is allocated. */
1199
1200 void
1201 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1202 {
1203 gimple_stmt_iterator si;
1204 if (src == NULL)
1205 return;
1206
1207 si = gsi_last (*dst_p);
1208 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1209 }
1210
1211 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1212 NULL, a new sequence is allocated. This function is
1213 similar to gimple_seq_add_seq, but does not scan the operands. */
1214
1215 void
1216 gimple_seq_add_seq_without_update (gimple_seq *dst_p, gimple_seq src)
1217 {
1218 gimple_stmt_iterator si;
1219 if (src == NULL)
1220 return;
1221
1222 si = gsi_last (*dst_p);
1223 gsi_insert_seq_after_without_update (&si, src, GSI_NEW_STMT);
1224 }
1225
1226 /* Determine whether to assign a location to the statement GS. */
1227
1228 static bool
1229 should_carry_location_p (gimple *gs)
1230 {
1231 /* Don't emit a line note for a label. We particularly don't want to
1232 emit one for the break label, since it doesn't actually correspond
1233 to the beginning of the loop/switch. */
1234 if (gimple_code (gs) == GIMPLE_LABEL)
1235 return false;
1236
1237 return true;
1238 }
1239
1240 /* Set the location for gimple statement GS to LOCATION. */
1241
1242 static void
1243 annotate_one_with_location (gimple *gs, location_t location)
1244 {
1245 if (!gimple_has_location (gs)
1246 && !gimple_do_not_emit_location_p (gs)
1247 && should_carry_location_p (gs))
1248 gimple_set_location (gs, location);
1249 }
1250
1251 /* Set LOCATION for all the statements after iterator GSI in sequence
1252 SEQ. If GSI is pointing to the end of the sequence, start with the
1253 first statement in SEQ. */
1254
1255 void
1256 annotate_all_with_location_after (gimple_seq seq, gimple_stmt_iterator gsi,
1257 location_t location)
1258 {
1259 if (gsi_end_p (gsi))
1260 gsi = gsi_start (seq);
1261 else
1262 gsi_next (&gsi);
1263
1264 for (; !gsi_end_p (gsi); gsi_next (&gsi))
1265 annotate_one_with_location (gsi_stmt (gsi), location);
1266 }
1267
1268 /* Set the location for all the statements in a sequence STMT_P to LOCATION. */
1269
1270 void
1271 annotate_all_with_location (gimple_seq stmt_p, location_t location)
1272 {
1273 gimple_stmt_iterator i;
1274
1275 if (gimple_seq_empty_p (stmt_p))
1276 return;
1277
1278 for (i = gsi_start (stmt_p); !gsi_end_p (i); gsi_next (&i))
1279 {
1280 gimple *gs = gsi_stmt (i);
1281 annotate_one_with_location (gs, location);
1282 }
1283 }
1284
1285 /* Helper function of empty_body_p. Return true if STMT is an empty
1286 statement. */
1287
1288 static bool
1289 empty_stmt_p (gimple *stmt)
1290 {
1291 if (gimple_code (stmt) == GIMPLE_NOP)
1292 return true;
1293 if (gbind *bind_stmt = dyn_cast <gbind *> (stmt))
1294 return empty_body_p (gimple_bind_body (bind_stmt));
1295 return false;
1296 }
1297
1298
1299 /* Return true if BODY contains nothing but empty statements. */
1300
1301 bool
1302 empty_body_p (gimple_seq body)
1303 {
1304 gimple_stmt_iterator i;
1305
1306 if (gimple_seq_empty_p (body))
1307 return true;
1308 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1309 if (!empty_stmt_p (gsi_stmt (i))
1310 && !is_gimple_debug (gsi_stmt (i)))
1311 return false;
1312
1313 return true;
1314 }
1315
1316
1317 /* Perform a deep copy of sequence SRC and return the result. */
1318
1319 gimple_seq
1320 gimple_seq_copy (gimple_seq src)
1321 {
1322 gimple_stmt_iterator gsi;
1323 gimple_seq new_seq = NULL;
1324 gimple *stmt;
1325
1326 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1327 {
1328 stmt = gimple_copy (gsi_stmt (gsi));
1329 gimple_seq_add_stmt (&new_seq, stmt);
1330 }
1331
1332 return new_seq;
1333 }
1334
1335
1336
1337 /* Return true if calls C1 and C2 are known to go to the same function. */
1338
1339 bool
1340 gimple_call_same_target_p (const gimple *c1, const gimple *c2)
1341 {
1342 if (gimple_call_internal_p (c1))
1343 return (gimple_call_internal_p (c2)
1344 && gimple_call_internal_fn (c1) == gimple_call_internal_fn (c2)
1345 && !gimple_call_internal_unique_p (as_a <const gcall *> (c1)));
1346 else
1347 return (gimple_call_fn (c1) == gimple_call_fn (c2)
1348 || (gimple_call_fndecl (c1)
1349 && gimple_call_fndecl (c1) == gimple_call_fndecl (c2)));
1350 }
1351
1352 /* Detect flags from a GIMPLE_CALL. This is just like
1353 call_expr_flags, but for gimple tuples. */
1354
1355 int
1356 gimple_call_flags (const gimple *stmt)
1357 {
1358 int flags;
1359 tree decl = gimple_call_fndecl (stmt);
1360
1361 if (decl)
1362 flags = flags_from_decl_or_type (decl);
1363 else if (gimple_call_internal_p (stmt))
1364 flags = internal_fn_flags (gimple_call_internal_fn (stmt));
1365 else
1366 flags = flags_from_decl_or_type (gimple_call_fntype (stmt));
1367
1368 if (stmt->subcode & GF_CALL_NOTHROW)
1369 flags |= ECF_NOTHROW;
1370
1371 return flags;
1372 }
1373
1374 /* Return the "fn spec" string for call STMT. */
1375
1376 static const_tree
1377 gimple_call_fnspec (const gcall *stmt)
1378 {
1379 tree type, attr;
1380
1381 if (gimple_call_internal_p (stmt))
1382 return internal_fn_fnspec (gimple_call_internal_fn (stmt));
1383
1384 type = gimple_call_fntype (stmt);
1385 if (!type)
1386 return NULL_TREE;
1387
1388 attr = lookup_attribute ("fn spec", TYPE_ATTRIBUTES (type));
1389 if (!attr)
1390 return NULL_TREE;
1391
1392 return TREE_VALUE (TREE_VALUE (attr));
1393 }
1394
1395 /* Detects argument flags for argument number ARG on call STMT. */
1396
1397 int
1398 gimple_call_arg_flags (const gcall *stmt, unsigned arg)
1399 {
1400 const_tree attr = gimple_call_fnspec (stmt);
1401
1402 if (!attr || 1 + arg >= (unsigned) TREE_STRING_LENGTH (attr))
1403 return 0;
1404
1405 switch (TREE_STRING_POINTER (attr)[1 + arg])
1406 {
1407 case 'x':
1408 case 'X':
1409 return EAF_UNUSED;
1410
1411 case 'R':
1412 return EAF_DIRECT | EAF_NOCLOBBER | EAF_NOESCAPE;
1413
1414 case 'r':
1415 return EAF_NOCLOBBER | EAF_NOESCAPE;
1416
1417 case 'W':
1418 return EAF_DIRECT | EAF_NOESCAPE;
1419
1420 case 'w':
1421 return EAF_NOESCAPE;
1422
1423 case '.':
1424 default:
1425 return 0;
1426 }
1427 }
1428
1429 /* Detects return flags for the call STMT. */
1430
1431 int
1432 gimple_call_return_flags (const gcall *stmt)
1433 {
1434 const_tree attr;
1435
1436 if (gimple_call_flags (stmt) & ECF_MALLOC)
1437 return ERF_NOALIAS;
1438
1439 attr = gimple_call_fnspec (stmt);
1440 if (!attr || TREE_STRING_LENGTH (attr) < 1)
1441 return 0;
1442
1443 switch (TREE_STRING_POINTER (attr)[0])
1444 {
1445 case '1':
1446 case '2':
1447 case '3':
1448 case '4':
1449 return ERF_RETURNS_ARG | (TREE_STRING_POINTER (attr)[0] - '1');
1450
1451 case 'm':
1452 return ERF_NOALIAS;
1453
1454 case '.':
1455 default:
1456 return 0;
1457 }
1458 }
1459
1460
1461 /* Return true if GS is a copy assignment. */
1462
1463 bool
1464 gimple_assign_copy_p (gimple *gs)
1465 {
1466 return (gimple_assign_single_p (gs)
1467 && is_gimple_val (gimple_op (gs, 1)));
1468 }
1469
1470
1471 /* Return true if GS is a SSA_NAME copy assignment. */
1472
1473 bool
1474 gimple_assign_ssa_name_copy_p (gimple *gs)
1475 {
1476 return (gimple_assign_single_p (gs)
1477 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1478 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1479 }
1480
1481
1482 /* Return true if GS is an assignment with a unary RHS, but the
1483 operator has no effect on the assigned value. The logic is adapted
1484 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1485 instances in which STRIP_NOPS was previously applied to the RHS of
1486 an assignment.
1487
1488 NOTE: In the use cases that led to the creation of this function
1489 and of gimple_assign_single_p, it is typical to test for either
1490 condition and to proceed in the same manner. In each case, the
1491 assigned value is represented by the single RHS operand of the
1492 assignment. I suspect there may be cases where gimple_assign_copy_p,
1493 gimple_assign_single_p, or equivalent logic is used where a similar
1494 treatment of unary NOPs is appropriate. */
1495
1496 bool
1497 gimple_assign_unary_nop_p (gimple *gs)
1498 {
1499 return (is_gimple_assign (gs)
1500 && (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (gs))
1501 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1502 && gimple_assign_rhs1 (gs) != error_mark_node
1503 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1504 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1505 }
1506
1507 /* Set BB to be the basic block holding G. */
1508
1509 void
1510 gimple_set_bb (gimple *stmt, basic_block bb)
1511 {
1512 stmt->bb = bb;
1513
1514 if (gimple_code (stmt) != GIMPLE_LABEL)
1515 return;
1516
1517 /* If the statement is a label, add the label to block-to-labels map
1518 so that we can speed up edge creation for GIMPLE_GOTOs. */
1519 if (cfun->cfg)
1520 {
1521 tree t;
1522 int uid;
1523
1524 t = gimple_label_label (as_a <glabel *> (stmt));
1525 uid = LABEL_DECL_UID (t);
1526 if (uid == -1)
1527 {
1528 unsigned old_len =
1529 vec_safe_length (label_to_block_map_for_fn (cfun));
1530 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1531 if (old_len <= (unsigned) uid)
1532 {
1533 unsigned new_len = 3 * uid / 2 + 1;
1534
1535 vec_safe_grow_cleared (label_to_block_map_for_fn (cfun),
1536 new_len);
1537 }
1538 }
1539
1540 (*label_to_block_map_for_fn (cfun))[uid] = bb;
1541 }
1542 }
1543
1544
1545 /* Modify the RHS of the assignment pointed-to by GSI using the
1546 operands in the expression tree EXPR.
1547
1548 NOTE: The statement pointed-to by GSI may be reallocated if it
1549 did not have enough operand slots.
1550
1551 This function is useful to convert an existing tree expression into
1552 the flat representation used for the RHS of a GIMPLE assignment.
1553 It will reallocate memory as needed to expand or shrink the number
1554 of operand slots needed to represent EXPR.
1555
1556 NOTE: If you find yourself building a tree and then calling this
1557 function, you are most certainly doing it the slow way. It is much
1558 better to build a new assignment or to use the function
1559 gimple_assign_set_rhs_with_ops, which does not require an
1560 expression tree to be built. */
1561
1562 void
1563 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
1564 {
1565 enum tree_code subcode;
1566 tree op1, op2, op3;
1567
1568 extract_ops_from_tree_1 (expr, &subcode, &op1, &op2, &op3);
1569 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2, op3);
1570 }
1571
1572
1573 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
1574 operands OP1, OP2 and OP3.
1575
1576 NOTE: The statement pointed-to by GSI may be reallocated if it
1577 did not have enough operand slots. */
1578
1579 void
1580 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
1581 tree op1, tree op2, tree op3)
1582 {
1583 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
1584 gimple *stmt = gsi_stmt (*gsi);
1585
1586 /* If the new CODE needs more operands, allocate a new statement. */
1587 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
1588 {
1589 tree lhs = gimple_assign_lhs (stmt);
1590 gimple *new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
1591 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
1592 gimple_init_singleton (new_stmt);
1593 gsi_replace (gsi, new_stmt, true);
1594 stmt = new_stmt;
1595
1596 /* The LHS needs to be reset as this also changes the SSA name
1597 on the LHS. */
1598 gimple_assign_set_lhs (stmt, lhs);
1599 }
1600
1601 gimple_set_num_ops (stmt, new_rhs_ops + 1);
1602 gimple_set_subcode (stmt, code);
1603 gimple_assign_set_rhs1 (stmt, op1);
1604 if (new_rhs_ops > 1)
1605 gimple_assign_set_rhs2 (stmt, op2);
1606 if (new_rhs_ops > 2)
1607 gimple_assign_set_rhs3 (stmt, op3);
1608 }
1609
1610
1611 /* Return the LHS of a statement that performs an assignment,
1612 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
1613 for a call to a function that returns no value, or for a
1614 statement other than an assignment or a call. */
1615
1616 tree
1617 gimple_get_lhs (const gimple *stmt)
1618 {
1619 enum gimple_code code = gimple_code (stmt);
1620
1621 if (code == GIMPLE_ASSIGN)
1622 return gimple_assign_lhs (stmt);
1623 else if (code == GIMPLE_CALL)
1624 return gimple_call_lhs (stmt);
1625 else
1626 return NULL_TREE;
1627 }
1628
1629
1630 /* Set the LHS of a statement that performs an assignment,
1631 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
1632
1633 void
1634 gimple_set_lhs (gimple *stmt, tree lhs)
1635 {
1636 enum gimple_code code = gimple_code (stmt);
1637
1638 if (code == GIMPLE_ASSIGN)
1639 gimple_assign_set_lhs (stmt, lhs);
1640 else if (code == GIMPLE_CALL)
1641 gimple_call_set_lhs (stmt, lhs);
1642 else
1643 gcc_unreachable ();
1644 }
1645
1646
1647 /* Return a deep copy of statement STMT. All the operands from STMT
1648 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
1649 and VUSE operand arrays are set to empty in the new copy. The new
1650 copy isn't part of any sequence. */
1651
1652 gimple *
1653 gimple_copy (gimple *stmt)
1654 {
1655 enum gimple_code code = gimple_code (stmt);
1656 unsigned num_ops = gimple_num_ops (stmt);
1657 gimple *copy = gimple_alloc (code, num_ops);
1658 unsigned i;
1659
1660 /* Shallow copy all the fields from STMT. */
1661 memcpy (copy, stmt, gimple_size (code));
1662 gimple_init_singleton (copy);
1663
1664 /* If STMT has sub-statements, deep-copy them as well. */
1665 if (gimple_has_substatements (stmt))
1666 {
1667 gimple_seq new_seq;
1668 tree t;
1669
1670 switch (gimple_code (stmt))
1671 {
1672 case GIMPLE_BIND:
1673 {
1674 gbind *bind_stmt = as_a <gbind *> (stmt);
1675 gbind *bind_copy = as_a <gbind *> (copy);
1676 new_seq = gimple_seq_copy (gimple_bind_body (bind_stmt));
1677 gimple_bind_set_body (bind_copy, new_seq);
1678 gimple_bind_set_vars (bind_copy,
1679 unshare_expr (gimple_bind_vars (bind_stmt)));
1680 gimple_bind_set_block (bind_copy, gimple_bind_block (bind_stmt));
1681 }
1682 break;
1683
1684 case GIMPLE_CATCH:
1685 {
1686 gcatch *catch_stmt = as_a <gcatch *> (stmt);
1687 gcatch *catch_copy = as_a <gcatch *> (copy);
1688 new_seq = gimple_seq_copy (gimple_catch_handler (catch_stmt));
1689 gimple_catch_set_handler (catch_copy, new_seq);
1690 t = unshare_expr (gimple_catch_types (catch_stmt));
1691 gimple_catch_set_types (catch_copy, t);
1692 }
1693 break;
1694
1695 case GIMPLE_EH_FILTER:
1696 {
1697 geh_filter *eh_filter_stmt = as_a <geh_filter *> (stmt);
1698 geh_filter *eh_filter_copy = as_a <geh_filter *> (copy);
1699 new_seq
1700 = gimple_seq_copy (gimple_eh_filter_failure (eh_filter_stmt));
1701 gimple_eh_filter_set_failure (eh_filter_copy, new_seq);
1702 t = unshare_expr (gimple_eh_filter_types (eh_filter_stmt));
1703 gimple_eh_filter_set_types (eh_filter_copy, t);
1704 }
1705 break;
1706
1707 case GIMPLE_EH_ELSE:
1708 {
1709 geh_else *eh_else_stmt = as_a <geh_else *> (stmt);
1710 geh_else *eh_else_copy = as_a <geh_else *> (copy);
1711 new_seq = gimple_seq_copy (gimple_eh_else_n_body (eh_else_stmt));
1712 gimple_eh_else_set_n_body (eh_else_copy, new_seq);
1713 new_seq = gimple_seq_copy (gimple_eh_else_e_body (eh_else_stmt));
1714 gimple_eh_else_set_e_body (eh_else_copy, new_seq);
1715 }
1716 break;
1717
1718 case GIMPLE_TRY:
1719 {
1720 gtry *try_stmt = as_a <gtry *> (stmt);
1721 gtry *try_copy = as_a <gtry *> (copy);
1722 new_seq = gimple_seq_copy (gimple_try_eval (try_stmt));
1723 gimple_try_set_eval (try_copy, new_seq);
1724 new_seq = gimple_seq_copy (gimple_try_cleanup (try_stmt));
1725 gimple_try_set_cleanup (try_copy, new_seq);
1726 }
1727 break;
1728
1729 case GIMPLE_OMP_FOR:
1730 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
1731 gimple_omp_for_set_pre_body (copy, new_seq);
1732 t = unshare_expr (gimple_omp_for_clauses (stmt));
1733 gimple_omp_for_set_clauses (copy, t);
1734 {
1735 gomp_for *omp_for_copy = as_a <gomp_for *> (copy);
1736 omp_for_copy->iter = ggc_vec_alloc<gimple_omp_for_iter>
1737 ( gimple_omp_for_collapse (stmt));
1738 }
1739 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1740 {
1741 gimple_omp_for_set_cond (copy, i,
1742 gimple_omp_for_cond (stmt, i));
1743 gimple_omp_for_set_index (copy, i,
1744 gimple_omp_for_index (stmt, i));
1745 t = unshare_expr (gimple_omp_for_initial (stmt, i));
1746 gimple_omp_for_set_initial (copy, i, t);
1747 t = unshare_expr (gimple_omp_for_final (stmt, i));
1748 gimple_omp_for_set_final (copy, i, t);
1749 t = unshare_expr (gimple_omp_for_incr (stmt, i));
1750 gimple_omp_for_set_incr (copy, i, t);
1751 }
1752 goto copy_omp_body;
1753
1754 case GIMPLE_OMP_PARALLEL:
1755 {
1756 gomp_parallel *omp_par_stmt = as_a <gomp_parallel *> (stmt);
1757 gomp_parallel *omp_par_copy = as_a <gomp_parallel *> (copy);
1758 t = unshare_expr (gimple_omp_parallel_clauses (omp_par_stmt));
1759 gimple_omp_parallel_set_clauses (omp_par_copy, t);
1760 t = unshare_expr (gimple_omp_parallel_child_fn (omp_par_stmt));
1761 gimple_omp_parallel_set_child_fn (omp_par_copy, t);
1762 t = unshare_expr (gimple_omp_parallel_data_arg (omp_par_stmt));
1763 gimple_omp_parallel_set_data_arg (omp_par_copy, t);
1764 }
1765 goto copy_omp_body;
1766
1767 case GIMPLE_OMP_TASK:
1768 t = unshare_expr (gimple_omp_task_clauses (stmt));
1769 gimple_omp_task_set_clauses (copy, t);
1770 t = unshare_expr (gimple_omp_task_child_fn (stmt));
1771 gimple_omp_task_set_child_fn (copy, t);
1772 t = unshare_expr (gimple_omp_task_data_arg (stmt));
1773 gimple_omp_task_set_data_arg (copy, t);
1774 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
1775 gimple_omp_task_set_copy_fn (copy, t);
1776 t = unshare_expr (gimple_omp_task_arg_size (stmt));
1777 gimple_omp_task_set_arg_size (copy, t);
1778 t = unshare_expr (gimple_omp_task_arg_align (stmt));
1779 gimple_omp_task_set_arg_align (copy, t);
1780 goto copy_omp_body;
1781
1782 case GIMPLE_OMP_CRITICAL:
1783 t = unshare_expr (gimple_omp_critical_name
1784 (as_a <gomp_critical *> (stmt)));
1785 gimple_omp_critical_set_name (as_a <gomp_critical *> (copy), t);
1786 t = unshare_expr (gimple_omp_critical_clauses
1787 (as_a <gomp_critical *> (stmt)));
1788 gimple_omp_critical_set_clauses (as_a <gomp_critical *> (copy), t);
1789 goto copy_omp_body;
1790
1791 case GIMPLE_OMP_ORDERED:
1792 t = unshare_expr (gimple_omp_ordered_clauses
1793 (as_a <gomp_ordered *> (stmt)));
1794 gimple_omp_ordered_set_clauses (as_a <gomp_ordered *> (copy), t);
1795 goto copy_omp_body;
1796
1797 case GIMPLE_OMP_SECTIONS:
1798 t = unshare_expr (gimple_omp_sections_clauses (stmt));
1799 gimple_omp_sections_set_clauses (copy, t);
1800 t = unshare_expr (gimple_omp_sections_control (stmt));
1801 gimple_omp_sections_set_control (copy, t);
1802 /* FALLTHRU */
1803
1804 case GIMPLE_OMP_SINGLE:
1805 case GIMPLE_OMP_TARGET:
1806 case GIMPLE_OMP_TEAMS:
1807 case GIMPLE_OMP_SECTION:
1808 case GIMPLE_OMP_MASTER:
1809 case GIMPLE_OMP_TASKGROUP:
1810 copy_omp_body:
1811 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
1812 gimple_omp_set_body (copy, new_seq);
1813 break;
1814
1815 case GIMPLE_TRANSACTION:
1816 new_seq = gimple_seq_copy (gimple_transaction_body (
1817 as_a <gtransaction *> (stmt)));
1818 gimple_transaction_set_body (as_a <gtransaction *> (copy),
1819 new_seq);
1820 break;
1821
1822 case GIMPLE_WITH_CLEANUP_EXPR:
1823 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
1824 gimple_wce_set_cleanup (copy, new_seq);
1825 break;
1826
1827 default:
1828 gcc_unreachable ();
1829 }
1830 }
1831
1832 /* Make copy of operands. */
1833 for (i = 0; i < num_ops; i++)
1834 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
1835
1836 if (gimple_has_mem_ops (stmt))
1837 {
1838 gimple_set_vdef (copy, gimple_vdef (stmt));
1839 gimple_set_vuse (copy, gimple_vuse (stmt));
1840 }
1841
1842 /* Clear out SSA operand vectors on COPY. */
1843 if (gimple_has_ops (stmt))
1844 {
1845 gimple_set_use_ops (copy, NULL);
1846
1847 /* SSA operands need to be updated. */
1848 gimple_set_modified (copy, true);
1849 }
1850
1851 return copy;
1852 }
1853
1854
1855 /* Return true if statement S has side-effects. We consider a
1856 statement to have side effects if:
1857
1858 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
1859 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
1860
1861 bool
1862 gimple_has_side_effects (const gimple *s)
1863 {
1864 if (is_gimple_debug (s))
1865 return false;
1866
1867 /* We don't have to scan the arguments to check for
1868 volatile arguments, though, at present, we still
1869 do a scan to check for TREE_SIDE_EFFECTS. */
1870 if (gimple_has_volatile_ops (s))
1871 return true;
1872
1873 if (gimple_code (s) == GIMPLE_ASM
1874 && gimple_asm_volatile_p (as_a <const gasm *> (s)))
1875 return true;
1876
1877 if (is_gimple_call (s))
1878 {
1879 int flags = gimple_call_flags (s);
1880
1881 /* An infinite loop is considered a side effect. */
1882 if (!(flags & (ECF_CONST | ECF_PURE))
1883 || (flags & ECF_LOOPING_CONST_OR_PURE))
1884 return true;
1885
1886 return false;
1887 }
1888
1889 return false;
1890 }
1891
1892 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
1893 Return true if S can trap. When INCLUDE_MEM is true, check whether
1894 the memory operations could trap. When INCLUDE_STORES is true and
1895 S is a GIMPLE_ASSIGN, the LHS of the assignment is also checked. */
1896
1897 bool
1898 gimple_could_trap_p_1 (gimple *s, bool include_mem, bool include_stores)
1899 {
1900 tree t, div = NULL_TREE;
1901 enum tree_code op;
1902
1903 if (include_mem)
1904 {
1905 unsigned i, start = (is_gimple_assign (s) && !include_stores) ? 1 : 0;
1906
1907 for (i = start; i < gimple_num_ops (s); i++)
1908 if (tree_could_trap_p (gimple_op (s, i)))
1909 return true;
1910 }
1911
1912 switch (gimple_code (s))
1913 {
1914 case GIMPLE_ASM:
1915 return gimple_asm_volatile_p (as_a <gasm *> (s));
1916
1917 case GIMPLE_CALL:
1918 t = gimple_call_fndecl (s);
1919 /* Assume that calls to weak functions may trap. */
1920 if (!t || !DECL_P (t) || DECL_WEAK (t))
1921 return true;
1922 return false;
1923
1924 case GIMPLE_ASSIGN:
1925 t = gimple_expr_type (s);
1926 op = gimple_assign_rhs_code (s);
1927 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
1928 div = gimple_assign_rhs2 (s);
1929 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
1930 (INTEGRAL_TYPE_P (t)
1931 && TYPE_OVERFLOW_TRAPS (t)),
1932 div));
1933
1934 default:
1935 break;
1936 }
1937
1938 return false;
1939 }
1940
1941 /* Return true if statement S can trap. */
1942
1943 bool
1944 gimple_could_trap_p (gimple *s)
1945 {
1946 return gimple_could_trap_p_1 (s, true, true);
1947 }
1948
1949 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
1950
1951 bool
1952 gimple_assign_rhs_could_trap_p (gimple *s)
1953 {
1954 gcc_assert (is_gimple_assign (s));
1955 return gimple_could_trap_p_1 (s, true, false);
1956 }
1957
1958
1959 /* Print debugging information for gimple stmts generated. */
1960
1961 void
1962 dump_gimple_statistics (void)
1963 {
1964 int i, total_tuples = 0, total_bytes = 0;
1965
1966 if (! GATHER_STATISTICS)
1967 {
1968 fprintf (stderr, "No gimple statistics\n");
1969 return;
1970 }
1971
1972 fprintf (stderr, "\nGIMPLE statements\n");
1973 fprintf (stderr, "Kind Stmts Bytes\n");
1974 fprintf (stderr, "---------------------------------------\n");
1975 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
1976 {
1977 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
1978 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
1979 total_tuples += gimple_alloc_counts[i];
1980 total_bytes += gimple_alloc_sizes[i];
1981 }
1982 fprintf (stderr, "---------------------------------------\n");
1983 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
1984 fprintf (stderr, "---------------------------------------\n");
1985 }
1986
1987
1988 /* Return the number of operands needed on the RHS of a GIMPLE
1989 assignment for an expression with tree code CODE. */
1990
1991 unsigned
1992 get_gimple_rhs_num_ops (enum tree_code code)
1993 {
1994 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
1995
1996 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
1997 return 1;
1998 else if (rhs_class == GIMPLE_BINARY_RHS)
1999 return 2;
2000 else if (rhs_class == GIMPLE_TERNARY_RHS)
2001 return 3;
2002 else
2003 gcc_unreachable ();
2004 }
2005
2006 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2007 (unsigned char) \
2008 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2009 : ((TYPE) == tcc_binary \
2010 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2011 : ((TYPE) == tcc_constant \
2012 || (TYPE) == tcc_declaration \
2013 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2014 : ((SYM) == TRUTH_AND_EXPR \
2015 || (SYM) == TRUTH_OR_EXPR \
2016 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2017 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2018 : ((SYM) == COND_EXPR \
2019 || (SYM) == WIDEN_MULT_PLUS_EXPR \
2020 || (SYM) == WIDEN_MULT_MINUS_EXPR \
2021 || (SYM) == DOT_PROD_EXPR \
2022 || (SYM) == SAD_EXPR \
2023 || (SYM) == REALIGN_LOAD_EXPR \
2024 || (SYM) == VEC_COND_EXPR \
2025 || (SYM) == VEC_PERM_EXPR \
2026 || (SYM) == FMA_EXPR) ? GIMPLE_TERNARY_RHS \
2027 : ((SYM) == CONSTRUCTOR \
2028 || (SYM) == OBJ_TYPE_REF \
2029 || (SYM) == ASSERT_EXPR \
2030 || (SYM) == ADDR_EXPR \
2031 || (SYM) == WITH_SIZE_EXPR \
2032 || (SYM) == SSA_NAME) ? GIMPLE_SINGLE_RHS \
2033 : GIMPLE_INVALID_RHS),
2034 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2035
2036 const unsigned char gimple_rhs_class_table[] = {
2037 #include "all-tree.def"
2038 };
2039
2040 #undef DEFTREECODE
2041 #undef END_OF_BASE_TREE_CODES
2042
2043 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
2044 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
2045 we failed to create one. */
2046
2047 tree
2048 canonicalize_cond_expr_cond (tree t)
2049 {
2050 /* Strip conversions around boolean operations. */
2051 if (CONVERT_EXPR_P (t)
2052 && (truth_value_p (TREE_CODE (TREE_OPERAND (t, 0)))
2053 || TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0)))
2054 == BOOLEAN_TYPE))
2055 t = TREE_OPERAND (t, 0);
2056
2057 /* For !x use x == 0. */
2058 if (TREE_CODE (t) == TRUTH_NOT_EXPR)
2059 {
2060 tree top0 = TREE_OPERAND (t, 0);
2061 t = build2 (EQ_EXPR, TREE_TYPE (t),
2062 top0, build_int_cst (TREE_TYPE (top0), 0));
2063 }
2064 /* For cmp ? 1 : 0 use cmp. */
2065 else if (TREE_CODE (t) == COND_EXPR
2066 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
2067 && integer_onep (TREE_OPERAND (t, 1))
2068 && integer_zerop (TREE_OPERAND (t, 2)))
2069 {
2070 tree top0 = TREE_OPERAND (t, 0);
2071 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
2072 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
2073 }
2074 /* For x ^ y use x != y. */
2075 else if (TREE_CODE (t) == BIT_XOR_EXPR)
2076 t = build2 (NE_EXPR, TREE_TYPE (t),
2077 TREE_OPERAND (t, 0), TREE_OPERAND (t, 1));
2078
2079 if (is_gimple_condexpr (t))
2080 return t;
2081
2082 return NULL_TREE;
2083 }
2084
2085 /* Build a GIMPLE_CALL identical to STMT but skipping the arguments in
2086 the positions marked by the set ARGS_TO_SKIP. */
2087
2088 gcall *
2089 gimple_call_copy_skip_args (gcall *stmt, bitmap args_to_skip)
2090 {
2091 int i;
2092 int nargs = gimple_call_num_args (stmt);
2093 auto_vec<tree> vargs (nargs);
2094 gcall *new_stmt;
2095
2096 for (i = 0; i < nargs; i++)
2097 if (!bitmap_bit_p (args_to_skip, i))
2098 vargs.quick_push (gimple_call_arg (stmt, i));
2099
2100 if (gimple_call_internal_p (stmt))
2101 new_stmt = gimple_build_call_internal_vec (gimple_call_internal_fn (stmt),
2102 vargs);
2103 else
2104 new_stmt = gimple_build_call_vec (gimple_call_fn (stmt), vargs);
2105
2106 if (gimple_call_lhs (stmt))
2107 gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
2108
2109 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2110 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
2111
2112 if (gimple_has_location (stmt))
2113 gimple_set_location (new_stmt, gimple_location (stmt));
2114 gimple_call_copy_flags (new_stmt, stmt);
2115 gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
2116
2117 gimple_set_modified (new_stmt, true);
2118
2119 return new_stmt;
2120 }
2121
2122
2123
2124 /* Return true if the field decls F1 and F2 are at the same offset.
2125
2126 This is intended to be used on GIMPLE types only. */
2127
2128 bool
2129 gimple_compare_field_offset (tree f1, tree f2)
2130 {
2131 if (DECL_OFFSET_ALIGN (f1) == DECL_OFFSET_ALIGN (f2))
2132 {
2133 tree offset1 = DECL_FIELD_OFFSET (f1);
2134 tree offset2 = DECL_FIELD_OFFSET (f2);
2135 return ((offset1 == offset2
2136 /* Once gimplification is done, self-referential offsets are
2137 instantiated as operand #2 of the COMPONENT_REF built for
2138 each access and reset. Therefore, they are not relevant
2139 anymore and fields are interchangeable provided that they
2140 represent the same access. */
2141 || (TREE_CODE (offset1) == PLACEHOLDER_EXPR
2142 && TREE_CODE (offset2) == PLACEHOLDER_EXPR
2143 && (DECL_SIZE (f1) == DECL_SIZE (f2)
2144 || (TREE_CODE (DECL_SIZE (f1)) == PLACEHOLDER_EXPR
2145 && TREE_CODE (DECL_SIZE (f2)) == PLACEHOLDER_EXPR)
2146 || operand_equal_p (DECL_SIZE (f1), DECL_SIZE (f2), 0))
2147 && DECL_ALIGN (f1) == DECL_ALIGN (f2))
2148 || operand_equal_p (offset1, offset2, 0))
2149 && tree_int_cst_equal (DECL_FIELD_BIT_OFFSET (f1),
2150 DECL_FIELD_BIT_OFFSET (f2)));
2151 }
2152
2153 /* Fortran and C do not always agree on what DECL_OFFSET_ALIGN
2154 should be, so handle differing ones specially by decomposing
2155 the offset into a byte and bit offset manually. */
2156 if (tree_fits_shwi_p (DECL_FIELD_OFFSET (f1))
2157 && tree_fits_shwi_p (DECL_FIELD_OFFSET (f2)))
2158 {
2159 unsigned HOST_WIDE_INT byte_offset1, byte_offset2;
2160 unsigned HOST_WIDE_INT bit_offset1, bit_offset2;
2161 bit_offset1 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f1));
2162 byte_offset1 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f1))
2163 + bit_offset1 / BITS_PER_UNIT);
2164 bit_offset2 = TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (f2));
2165 byte_offset2 = (TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f2))
2166 + bit_offset2 / BITS_PER_UNIT);
2167 if (byte_offset1 != byte_offset2)
2168 return false;
2169 return bit_offset1 % BITS_PER_UNIT == bit_offset2 % BITS_PER_UNIT;
2170 }
2171
2172 return false;
2173 }
2174
2175
2176 /* Return a type the same as TYPE except unsigned or
2177 signed according to UNSIGNEDP. */
2178
2179 static tree
2180 gimple_signed_or_unsigned_type (bool unsignedp, tree type)
2181 {
2182 tree type1;
2183 int i;
2184
2185 type1 = TYPE_MAIN_VARIANT (type);
2186 if (type1 == signed_char_type_node
2187 || type1 == char_type_node
2188 || type1 == unsigned_char_type_node)
2189 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2190 if (type1 == integer_type_node || type1 == unsigned_type_node)
2191 return unsignedp ? unsigned_type_node : integer_type_node;
2192 if (type1 == short_integer_type_node || type1 == short_unsigned_type_node)
2193 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2194 if (type1 == long_integer_type_node || type1 == long_unsigned_type_node)
2195 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2196 if (type1 == long_long_integer_type_node
2197 || type1 == long_long_unsigned_type_node)
2198 return unsignedp
2199 ? long_long_unsigned_type_node
2200 : long_long_integer_type_node;
2201
2202 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2203 if (int_n_enabled_p[i]
2204 && (type1 == int_n_trees[i].unsigned_type
2205 || type1 == int_n_trees[i].signed_type))
2206 return unsignedp
2207 ? int_n_trees[i].unsigned_type
2208 : int_n_trees[i].signed_type;
2209
2210 #if HOST_BITS_PER_WIDE_INT >= 64
2211 if (type1 == intTI_type_node || type1 == unsigned_intTI_type_node)
2212 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2213 #endif
2214 if (type1 == intDI_type_node || type1 == unsigned_intDI_type_node)
2215 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2216 if (type1 == intSI_type_node || type1 == unsigned_intSI_type_node)
2217 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2218 if (type1 == intHI_type_node || type1 == unsigned_intHI_type_node)
2219 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2220 if (type1 == intQI_type_node || type1 == unsigned_intQI_type_node)
2221 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2222
2223 #define GIMPLE_FIXED_TYPES(NAME) \
2224 if (type1 == short_ ## NAME ## _type_node \
2225 || type1 == unsigned_short_ ## NAME ## _type_node) \
2226 return unsignedp ? unsigned_short_ ## NAME ## _type_node \
2227 : short_ ## NAME ## _type_node; \
2228 if (type1 == NAME ## _type_node \
2229 || type1 == unsigned_ ## NAME ## _type_node) \
2230 return unsignedp ? unsigned_ ## NAME ## _type_node \
2231 : NAME ## _type_node; \
2232 if (type1 == long_ ## NAME ## _type_node \
2233 || type1 == unsigned_long_ ## NAME ## _type_node) \
2234 return unsignedp ? unsigned_long_ ## NAME ## _type_node \
2235 : long_ ## NAME ## _type_node; \
2236 if (type1 == long_long_ ## NAME ## _type_node \
2237 || type1 == unsigned_long_long_ ## NAME ## _type_node) \
2238 return unsignedp ? unsigned_long_long_ ## NAME ## _type_node \
2239 : long_long_ ## NAME ## _type_node;
2240
2241 #define GIMPLE_FIXED_MODE_TYPES(NAME) \
2242 if (type1 == NAME ## _type_node \
2243 || type1 == u ## NAME ## _type_node) \
2244 return unsignedp ? u ## NAME ## _type_node \
2245 : NAME ## _type_node;
2246
2247 #define GIMPLE_FIXED_TYPES_SAT(NAME) \
2248 if (type1 == sat_ ## short_ ## NAME ## _type_node \
2249 || type1 == sat_ ## unsigned_short_ ## NAME ## _type_node) \
2250 return unsignedp ? sat_ ## unsigned_short_ ## NAME ## _type_node \
2251 : sat_ ## short_ ## NAME ## _type_node; \
2252 if (type1 == sat_ ## NAME ## _type_node \
2253 || type1 == sat_ ## unsigned_ ## NAME ## _type_node) \
2254 return unsignedp ? sat_ ## unsigned_ ## NAME ## _type_node \
2255 : sat_ ## NAME ## _type_node; \
2256 if (type1 == sat_ ## long_ ## NAME ## _type_node \
2257 || type1 == sat_ ## unsigned_long_ ## NAME ## _type_node) \
2258 return unsignedp ? sat_ ## unsigned_long_ ## NAME ## _type_node \
2259 : sat_ ## long_ ## NAME ## _type_node; \
2260 if (type1 == sat_ ## long_long_ ## NAME ## _type_node \
2261 || type1 == sat_ ## unsigned_long_long_ ## NAME ## _type_node) \
2262 return unsignedp ? sat_ ## unsigned_long_long_ ## NAME ## _type_node \
2263 : sat_ ## long_long_ ## NAME ## _type_node;
2264
2265 #define GIMPLE_FIXED_MODE_TYPES_SAT(NAME) \
2266 if (type1 == sat_ ## NAME ## _type_node \
2267 || type1 == sat_ ## u ## NAME ## _type_node) \
2268 return unsignedp ? sat_ ## u ## NAME ## _type_node \
2269 : sat_ ## NAME ## _type_node;
2270
2271 GIMPLE_FIXED_TYPES (fract);
2272 GIMPLE_FIXED_TYPES_SAT (fract);
2273 GIMPLE_FIXED_TYPES (accum);
2274 GIMPLE_FIXED_TYPES_SAT (accum);
2275
2276 GIMPLE_FIXED_MODE_TYPES (qq);
2277 GIMPLE_FIXED_MODE_TYPES (hq);
2278 GIMPLE_FIXED_MODE_TYPES (sq);
2279 GIMPLE_FIXED_MODE_TYPES (dq);
2280 GIMPLE_FIXED_MODE_TYPES (tq);
2281 GIMPLE_FIXED_MODE_TYPES_SAT (qq);
2282 GIMPLE_FIXED_MODE_TYPES_SAT (hq);
2283 GIMPLE_FIXED_MODE_TYPES_SAT (sq);
2284 GIMPLE_FIXED_MODE_TYPES_SAT (dq);
2285 GIMPLE_FIXED_MODE_TYPES_SAT (tq);
2286 GIMPLE_FIXED_MODE_TYPES (ha);
2287 GIMPLE_FIXED_MODE_TYPES (sa);
2288 GIMPLE_FIXED_MODE_TYPES (da);
2289 GIMPLE_FIXED_MODE_TYPES (ta);
2290 GIMPLE_FIXED_MODE_TYPES_SAT (ha);
2291 GIMPLE_FIXED_MODE_TYPES_SAT (sa);
2292 GIMPLE_FIXED_MODE_TYPES_SAT (da);
2293 GIMPLE_FIXED_MODE_TYPES_SAT (ta);
2294
2295 /* For ENUMERAL_TYPEs in C++, must check the mode of the types, not
2296 the precision; they have precision set to match their range, but
2297 may use a wider mode to match an ABI. If we change modes, we may
2298 wind up with bad conversions. For INTEGER_TYPEs in C, must check
2299 the precision as well, so as to yield correct results for
2300 bit-field types. C++ does not have these separate bit-field
2301 types, and producing a signed or unsigned variant of an
2302 ENUMERAL_TYPE may cause other problems as well. */
2303 if (!INTEGRAL_TYPE_P (type)
2304 || TYPE_UNSIGNED (type) == unsignedp)
2305 return type;
2306
2307 #define TYPE_OK(node) \
2308 (TYPE_MODE (type) == TYPE_MODE (node) \
2309 && TYPE_PRECISION (type) == TYPE_PRECISION (node))
2310 if (TYPE_OK (signed_char_type_node))
2311 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
2312 if (TYPE_OK (integer_type_node))
2313 return unsignedp ? unsigned_type_node : integer_type_node;
2314 if (TYPE_OK (short_integer_type_node))
2315 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
2316 if (TYPE_OK (long_integer_type_node))
2317 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
2318 if (TYPE_OK (long_long_integer_type_node))
2319 return (unsignedp
2320 ? long_long_unsigned_type_node
2321 : long_long_integer_type_node);
2322
2323 for (i = 0; i < NUM_INT_N_ENTS; i ++)
2324 if (int_n_enabled_p[i]
2325 && TYPE_MODE (type) == int_n_data[i].m
2326 && TYPE_PRECISION (type) == int_n_data[i].bitsize)
2327 return unsignedp
2328 ? int_n_trees[i].unsigned_type
2329 : int_n_trees[i].signed_type;
2330
2331 #if HOST_BITS_PER_WIDE_INT >= 64
2332 if (TYPE_OK (intTI_type_node))
2333 return unsignedp ? unsigned_intTI_type_node : intTI_type_node;
2334 #endif
2335 if (TYPE_OK (intDI_type_node))
2336 return unsignedp ? unsigned_intDI_type_node : intDI_type_node;
2337 if (TYPE_OK (intSI_type_node))
2338 return unsignedp ? unsigned_intSI_type_node : intSI_type_node;
2339 if (TYPE_OK (intHI_type_node))
2340 return unsignedp ? unsigned_intHI_type_node : intHI_type_node;
2341 if (TYPE_OK (intQI_type_node))
2342 return unsignedp ? unsigned_intQI_type_node : intQI_type_node;
2343
2344 #undef GIMPLE_FIXED_TYPES
2345 #undef GIMPLE_FIXED_MODE_TYPES
2346 #undef GIMPLE_FIXED_TYPES_SAT
2347 #undef GIMPLE_FIXED_MODE_TYPES_SAT
2348 #undef TYPE_OK
2349
2350 return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
2351 }
2352
2353
2354 /* Return an unsigned type the same as TYPE in other respects. */
2355
2356 tree
2357 gimple_unsigned_type (tree type)
2358 {
2359 return gimple_signed_or_unsigned_type (true, type);
2360 }
2361
2362
2363 /* Return a signed type the same as TYPE in other respects. */
2364
2365 tree
2366 gimple_signed_type (tree type)
2367 {
2368 return gimple_signed_or_unsigned_type (false, type);
2369 }
2370
2371
2372 /* Return the typed-based alias set for T, which may be an expression
2373 or a type. Return -1 if we don't do anything special. */
2374
2375 alias_set_type
2376 gimple_get_alias_set (tree t)
2377 {
2378 tree u;
2379
2380 /* Permit type-punning when accessing a union, provided the access
2381 is directly through the union. For example, this code does not
2382 permit taking the address of a union member and then storing
2383 through it. Even the type-punning allowed here is a GCC
2384 extension, albeit a common and useful one; the C standard says
2385 that such accesses have implementation-defined behavior. */
2386 for (u = t;
2387 TREE_CODE (u) == COMPONENT_REF || TREE_CODE (u) == ARRAY_REF;
2388 u = TREE_OPERAND (u, 0))
2389 if (TREE_CODE (u) == COMPONENT_REF
2390 && TREE_CODE (TREE_TYPE (TREE_OPERAND (u, 0))) == UNION_TYPE)
2391 return 0;
2392
2393 /* That's all the expressions we handle specially. */
2394 if (!TYPE_P (t))
2395 return -1;
2396
2397 /* For convenience, follow the C standard when dealing with
2398 character types. Any object may be accessed via an lvalue that
2399 has character type. */
2400 if (t == char_type_node
2401 || t == signed_char_type_node
2402 || t == unsigned_char_type_node)
2403 return 0;
2404
2405 /* Allow aliasing between signed and unsigned variants of the same
2406 type. We treat the signed variant as canonical. */
2407 if (TREE_CODE (t) == INTEGER_TYPE && TYPE_UNSIGNED (t))
2408 {
2409 tree t1 = gimple_signed_type (t);
2410
2411 /* t1 == t can happen for boolean nodes which are always unsigned. */
2412 if (t1 != t)
2413 return get_alias_set (t1);
2414 }
2415
2416 return -1;
2417 }
2418
2419
2420 /* Helper for gimple_ior_addresses_taken_1. */
2421
2422 static bool
2423 gimple_ior_addresses_taken_1 (gimple *, tree addr, tree, void *data)
2424 {
2425 bitmap addresses_taken = (bitmap)data;
2426 addr = get_base_address (addr);
2427 if (addr
2428 && DECL_P (addr))
2429 {
2430 bitmap_set_bit (addresses_taken, DECL_UID (addr));
2431 return true;
2432 }
2433 return false;
2434 }
2435
2436 /* Set the bit for the uid of all decls that have their address taken
2437 in STMT in the ADDRESSES_TAKEN bitmap. Returns true if there
2438 were any in this stmt. */
2439
2440 bool
2441 gimple_ior_addresses_taken (bitmap addresses_taken, gimple *stmt)
2442 {
2443 return walk_stmt_load_store_addr_ops (stmt, addresses_taken, NULL, NULL,
2444 gimple_ior_addresses_taken_1);
2445 }
2446
2447
2448 /* Return true if TYPE1 and TYPE2 are compatible enough for builtin
2449 processing. */
2450
2451 static bool
2452 validate_type (tree type1, tree type2)
2453 {
2454 if (INTEGRAL_TYPE_P (type1)
2455 && INTEGRAL_TYPE_P (type2))
2456 ;
2457 else if (POINTER_TYPE_P (type1)
2458 && POINTER_TYPE_P (type2))
2459 ;
2460 else if (TREE_CODE (type1)
2461 != TREE_CODE (type2))
2462 return false;
2463 return true;
2464 }
2465
2466 /* Return true when STMTs arguments and return value match those of FNDECL,
2467 a decl of a builtin function. */
2468
2469 bool
2470 gimple_builtin_call_types_compatible_p (const gimple *stmt, tree fndecl)
2471 {
2472 gcc_checking_assert (DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN);
2473
2474 tree ret = gimple_call_lhs (stmt);
2475 if (ret
2476 && !validate_type (TREE_TYPE (ret), TREE_TYPE (TREE_TYPE (fndecl))))
2477 return false;
2478
2479 tree targs = TYPE_ARG_TYPES (TREE_TYPE (fndecl));
2480 unsigned nargs = gimple_call_num_args (stmt);
2481 for (unsigned i = 0; i < nargs; ++i)
2482 {
2483 /* Variadic args follow. */
2484 if (!targs)
2485 return true;
2486 tree arg = gimple_call_arg (stmt, i);
2487 if (!validate_type (TREE_TYPE (arg), TREE_VALUE (targs)))
2488 return false;
2489 targs = TREE_CHAIN (targs);
2490 }
2491 if (targs && !VOID_TYPE_P (TREE_VALUE (targs)))
2492 return false;
2493 return true;
2494 }
2495
2496 /* Return true when STMT is builtins call. */
2497
2498 bool
2499 gimple_call_builtin_p (const gimple *stmt)
2500 {
2501 tree fndecl;
2502 if (is_gimple_call (stmt)
2503 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2504 && DECL_BUILT_IN_CLASS (fndecl) != NOT_BUILT_IN)
2505 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2506 return false;
2507 }
2508
2509 /* Return true when STMT is builtins call to CLASS. */
2510
2511 bool
2512 gimple_call_builtin_p (const gimple *stmt, enum built_in_class klass)
2513 {
2514 tree fndecl;
2515 if (is_gimple_call (stmt)
2516 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2517 && DECL_BUILT_IN_CLASS (fndecl) == klass)
2518 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2519 return false;
2520 }
2521
2522 /* Return true when STMT is builtins call to CODE of CLASS. */
2523
2524 bool
2525 gimple_call_builtin_p (const gimple *stmt, enum built_in_function code)
2526 {
2527 tree fndecl;
2528 if (is_gimple_call (stmt)
2529 && (fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
2530 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2531 && DECL_FUNCTION_CODE (fndecl) == code)
2532 return gimple_builtin_call_types_compatible_p (stmt, fndecl);
2533 return false;
2534 }
2535
2536 /* If CALL is a call to a combined_fn (i.e. an internal function or
2537 a normal built-in function), return its code, otherwise return
2538 CFN_LAST. */
2539
2540 combined_fn
2541 gimple_call_combined_fn (const gimple *stmt)
2542 {
2543 if (const gcall *call = dyn_cast <const gcall *> (stmt))
2544 {
2545 if (gimple_call_internal_p (call))
2546 return as_combined_fn (gimple_call_internal_fn (call));
2547
2548 tree fndecl = gimple_call_fndecl (stmt);
2549 if (fndecl
2550 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
2551 && gimple_builtin_call_types_compatible_p (stmt, fndecl))
2552 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
2553 }
2554 return CFN_LAST;
2555 }
2556
2557 /* Return true if STMT clobbers memory. STMT is required to be a
2558 GIMPLE_ASM. */
2559
2560 bool
2561 gimple_asm_clobbers_memory_p (const gasm *stmt)
2562 {
2563 unsigned i;
2564
2565 for (i = 0; i < gimple_asm_nclobbers (stmt); i++)
2566 {
2567 tree op = gimple_asm_clobber_op (stmt, i);
2568 if (strcmp (TREE_STRING_POINTER (TREE_VALUE (op)), "memory") == 0)
2569 return true;
2570 }
2571
2572 return false;
2573 }
2574
2575 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
2576
2577 void
2578 dump_decl_set (FILE *file, bitmap set)
2579 {
2580 if (set)
2581 {
2582 bitmap_iterator bi;
2583 unsigned i;
2584
2585 fprintf (file, "{ ");
2586
2587 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2588 {
2589 fprintf (file, "D.%u", i);
2590 fprintf (file, " ");
2591 }
2592
2593 fprintf (file, "}");
2594 }
2595 else
2596 fprintf (file, "NIL");
2597 }
2598
2599 /* Return true when CALL is a call stmt that definitely doesn't
2600 free any memory or makes it unavailable otherwise. */
2601 bool
2602 nonfreeing_call_p (gimple *call)
2603 {
2604 if (gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2605 && gimple_call_flags (call) & ECF_LEAF)
2606 switch (DECL_FUNCTION_CODE (gimple_call_fndecl (call)))
2607 {
2608 /* Just in case these become ECF_LEAF in the future. */
2609 case BUILT_IN_FREE:
2610 case BUILT_IN_TM_FREE:
2611 case BUILT_IN_REALLOC:
2612 case BUILT_IN_STACK_RESTORE:
2613 return false;
2614 default:
2615 return true;
2616 }
2617 else if (gimple_call_internal_p (call))
2618 switch (gimple_call_internal_fn (call))
2619 {
2620 case IFN_ABNORMAL_DISPATCHER:
2621 return true;
2622 default:
2623 if (gimple_call_flags (call) & ECF_LEAF)
2624 return true;
2625 return false;
2626 }
2627
2628 tree fndecl = gimple_call_fndecl (call);
2629 if (!fndecl)
2630 return false;
2631 struct cgraph_node *n = cgraph_node::get (fndecl);
2632 if (!n)
2633 return false;
2634 enum availability availability;
2635 n = n->function_symbol (&availability);
2636 if (!n || availability <= AVAIL_INTERPOSABLE)
2637 return false;
2638 return n->nonfreeing_fn;
2639 }
2640
2641 /* Return true when CALL is a call stmt that definitely need not
2642 be considered to be a memory barrier. */
2643 bool
2644 nonbarrier_call_p (gimple *call)
2645 {
2646 if (gimple_call_flags (call) & (ECF_PURE | ECF_CONST))
2647 return true;
2648 /* Should extend this to have a nonbarrier_fn flag, just as above in
2649 the nonfreeing case. */
2650 return false;
2651 }
2652
2653 /* Callback for walk_stmt_load_store_ops.
2654
2655 Return TRUE if OP will dereference the tree stored in DATA, FALSE
2656 otherwise.
2657
2658 This routine only makes a superficial check for a dereference. Thus
2659 it must only be used if it is safe to return a false negative. */
2660 static bool
2661 check_loadstore (gimple *, tree op, tree, void *data)
2662 {
2663 if (TREE_CODE (op) == MEM_REF || TREE_CODE (op) == TARGET_MEM_REF)
2664 {
2665 /* Some address spaces may legitimately dereference zero. */
2666 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (op));
2667 if (targetm.addr_space.zero_address_valid (as))
2668 return false;
2669
2670 return operand_equal_p (TREE_OPERAND (op, 0), (tree)data, 0);
2671 }
2672 return false;
2673 }
2674
2675
2676 /* Return true if OP can be inferred to be non-NULL after STMT executes,
2677 either by using a pointer dereference or attributes. */
2678 bool
2679 infer_nonnull_range (gimple *stmt, tree op)
2680 {
2681 return infer_nonnull_range_by_dereference (stmt, op)
2682 || infer_nonnull_range_by_attribute (stmt, op);
2683 }
2684
2685 /* Return true if OP can be inferred to be non-NULL after STMT
2686 executes by using a pointer dereference. */
2687 bool
2688 infer_nonnull_range_by_dereference (gimple *stmt, tree op)
2689 {
2690 /* We can only assume that a pointer dereference will yield
2691 non-NULL if -fdelete-null-pointer-checks is enabled. */
2692 if (!flag_delete_null_pointer_checks
2693 || !POINTER_TYPE_P (TREE_TYPE (op))
2694 || gimple_code (stmt) == GIMPLE_ASM)
2695 return false;
2696
2697 if (walk_stmt_load_store_ops (stmt, (void *)op,
2698 check_loadstore, check_loadstore))
2699 return true;
2700
2701 return false;
2702 }
2703
2704 /* Return true if OP can be inferred to be a non-NULL after STMT
2705 executes by using attributes. */
2706 bool
2707 infer_nonnull_range_by_attribute (gimple *stmt, tree op)
2708 {
2709 /* We can only assume that a pointer dereference will yield
2710 non-NULL if -fdelete-null-pointer-checks is enabled. */
2711 if (!flag_delete_null_pointer_checks
2712 || !POINTER_TYPE_P (TREE_TYPE (op))
2713 || gimple_code (stmt) == GIMPLE_ASM)
2714 return false;
2715
2716 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
2717 {
2718 tree fntype = gimple_call_fntype (stmt);
2719 tree attrs = TYPE_ATTRIBUTES (fntype);
2720 for (; attrs; attrs = TREE_CHAIN (attrs))
2721 {
2722 attrs = lookup_attribute ("nonnull", attrs);
2723
2724 /* If "nonnull" wasn't specified, we know nothing about
2725 the argument. */
2726 if (attrs == NULL_TREE)
2727 return false;
2728
2729 /* If "nonnull" applies to all the arguments, then ARG
2730 is non-null if it's in the argument list. */
2731 if (TREE_VALUE (attrs) == NULL_TREE)
2732 {
2733 for (unsigned int i = 0; i < gimple_call_num_args (stmt); i++)
2734 {
2735 if (POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (stmt, i)))
2736 && operand_equal_p (op, gimple_call_arg (stmt, i), 0))
2737 return true;
2738 }
2739 return false;
2740 }
2741
2742 /* Now see if op appears in the nonnull list. */
2743 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
2744 {
2745 unsigned int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
2746 if (idx < gimple_call_num_args (stmt))
2747 {
2748 tree arg = gimple_call_arg (stmt, idx);
2749 if (operand_equal_p (op, arg, 0))
2750 return true;
2751 }
2752 }
2753 }
2754 }
2755
2756 /* If this function is marked as returning non-null, then we can
2757 infer OP is non-null if it is used in the return statement. */
2758 if (greturn *return_stmt = dyn_cast <greturn *> (stmt))
2759 if (gimple_return_retval (return_stmt)
2760 && operand_equal_p (gimple_return_retval (return_stmt), op, 0)
2761 && lookup_attribute ("returns_nonnull",
2762 TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
2763 return true;
2764
2765 return false;
2766 }
2767
2768 /* Compare two case labels. Because the front end should already have
2769 made sure that case ranges do not overlap, it is enough to only compare
2770 the CASE_LOW values of each case label. */
2771
2772 static int
2773 compare_case_labels (const void *p1, const void *p2)
2774 {
2775 const_tree const case1 = *(const_tree const*)p1;
2776 const_tree const case2 = *(const_tree const*)p2;
2777
2778 /* The 'default' case label always goes first. */
2779 if (!CASE_LOW (case1))
2780 return -1;
2781 else if (!CASE_LOW (case2))
2782 return 1;
2783 else
2784 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
2785 }
2786
2787 /* Sort the case labels in LABEL_VEC in place in ascending order. */
2788
2789 void
2790 sort_case_labels (vec<tree> label_vec)
2791 {
2792 label_vec.qsort (compare_case_labels);
2793 }
2794 \f
2795 /* Prepare a vector of case labels to be used in a GIMPLE_SWITCH statement.
2796
2797 LABELS is a vector that contains all case labels to look at.
2798
2799 INDEX_TYPE is the type of the switch index expression. Case labels
2800 in LABELS are discarded if their values are not in the value range
2801 covered by INDEX_TYPE. The remaining case label values are folded
2802 to INDEX_TYPE.
2803
2804 If a default case exists in LABELS, it is removed from LABELS and
2805 returned in DEFAULT_CASEP. If no default case exists, but the
2806 case labels already cover the whole range of INDEX_TYPE, a default
2807 case is returned pointing to one of the existing case labels.
2808 Otherwise DEFAULT_CASEP is set to NULL_TREE.
2809
2810 DEFAULT_CASEP may be NULL, in which case the above comment doesn't
2811 apply and no action is taken regardless of whether a default case is
2812 found or not. */
2813
2814 void
2815 preprocess_case_label_vec_for_gimple (vec<tree> labels,
2816 tree index_type,
2817 tree *default_casep)
2818 {
2819 tree min_value, max_value;
2820 tree default_case = NULL_TREE;
2821 size_t i, len;
2822
2823 i = 0;
2824 min_value = TYPE_MIN_VALUE (index_type);
2825 max_value = TYPE_MAX_VALUE (index_type);
2826 while (i < labels.length ())
2827 {
2828 tree elt = labels[i];
2829 tree low = CASE_LOW (elt);
2830 tree high = CASE_HIGH (elt);
2831 bool remove_element = FALSE;
2832
2833 if (low)
2834 {
2835 gcc_checking_assert (TREE_CODE (low) == INTEGER_CST);
2836 gcc_checking_assert (!high || TREE_CODE (high) == INTEGER_CST);
2837
2838 /* This is a non-default case label, i.e. it has a value.
2839
2840 See if the case label is reachable within the range of
2841 the index type. Remove out-of-range case values. Turn
2842 case ranges into a canonical form (high > low strictly)
2843 and convert the case label values to the index type.
2844
2845 NB: The type of gimple_switch_index() may be the promoted
2846 type, but the case labels retain the original type. */
2847
2848 if (high)
2849 {
2850 /* This is a case range. Discard empty ranges.
2851 If the bounds or the range are equal, turn this
2852 into a simple (one-value) case. */
2853 int cmp = tree_int_cst_compare (high, low);
2854 if (cmp < 0)
2855 remove_element = TRUE;
2856 else if (cmp == 0)
2857 high = NULL_TREE;
2858 }
2859
2860 if (! high)
2861 {
2862 /* If the simple case value is unreachable, ignore it. */
2863 if ((TREE_CODE (min_value) == INTEGER_CST
2864 && tree_int_cst_compare (low, min_value) < 0)
2865 || (TREE_CODE (max_value) == INTEGER_CST
2866 && tree_int_cst_compare (low, max_value) > 0))
2867 remove_element = TRUE;
2868 else
2869 low = fold_convert (index_type, low);
2870 }
2871 else
2872 {
2873 /* If the entire case range is unreachable, ignore it. */
2874 if ((TREE_CODE (min_value) == INTEGER_CST
2875 && tree_int_cst_compare (high, min_value) < 0)
2876 || (TREE_CODE (max_value) == INTEGER_CST
2877 && tree_int_cst_compare (low, max_value) > 0))
2878 remove_element = TRUE;
2879 else
2880 {
2881 /* If the lower bound is less than the index type's
2882 minimum value, truncate the range bounds. */
2883 if (TREE_CODE (min_value) == INTEGER_CST
2884 && tree_int_cst_compare (low, min_value) < 0)
2885 low = min_value;
2886 low = fold_convert (index_type, low);
2887
2888 /* If the upper bound is greater than the index type's
2889 maximum value, truncate the range bounds. */
2890 if (TREE_CODE (max_value) == INTEGER_CST
2891 && tree_int_cst_compare (high, max_value) > 0)
2892 high = max_value;
2893 high = fold_convert (index_type, high);
2894
2895 /* We may have folded a case range to a one-value case. */
2896 if (tree_int_cst_equal (low, high))
2897 high = NULL_TREE;
2898 }
2899 }
2900
2901 CASE_LOW (elt) = low;
2902 CASE_HIGH (elt) = high;
2903 }
2904 else
2905 {
2906 gcc_assert (!default_case);
2907 default_case = elt;
2908 /* The default case must be passed separately to the
2909 gimple_build_switch routine. But if DEFAULT_CASEP
2910 is NULL, we do not remove the default case (it would
2911 be completely lost). */
2912 if (default_casep)
2913 remove_element = TRUE;
2914 }
2915
2916 if (remove_element)
2917 labels.ordered_remove (i);
2918 else
2919 i++;
2920 }
2921 len = i;
2922
2923 if (!labels.is_empty ())
2924 sort_case_labels (labels);
2925
2926 if (default_casep && !default_case)
2927 {
2928 /* If the switch has no default label, add one, so that we jump
2929 around the switch body. If the labels already cover the whole
2930 range of the switch index_type, add the default label pointing
2931 to one of the existing labels. */
2932 if (len
2933 && TYPE_MIN_VALUE (index_type)
2934 && TYPE_MAX_VALUE (index_type)
2935 && tree_int_cst_equal (CASE_LOW (labels[0]),
2936 TYPE_MIN_VALUE (index_type)))
2937 {
2938 tree low, high = CASE_HIGH (labels[len - 1]);
2939 if (!high)
2940 high = CASE_LOW (labels[len - 1]);
2941 if (tree_int_cst_equal (high, TYPE_MAX_VALUE (index_type)))
2942 {
2943 for (i = 1; i < len; i++)
2944 {
2945 high = CASE_LOW (labels[i]);
2946 low = CASE_HIGH (labels[i - 1]);
2947 if (!low)
2948 low = CASE_LOW (labels[i - 1]);
2949 if (wi::add (low, 1) != high)
2950 break;
2951 }
2952 if (i == len)
2953 {
2954 tree label = CASE_LABEL (labels[0]);
2955 default_case = build_case_label (NULL_TREE, NULL_TREE,
2956 label);
2957 }
2958 }
2959 }
2960 }
2961
2962 if (default_casep)
2963 *default_casep = default_case;
2964 }
2965
2966 /* Set the location of all statements in SEQ to LOC. */
2967
2968 void
2969 gimple_seq_set_location (gimple_seq seq, location_t loc)
2970 {
2971 for (gimple_stmt_iterator i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
2972 gimple_set_location (gsi_stmt (i), loc);
2973 }
2974
2975 /* Release SSA_NAMEs in SEQ as well as the GIMPLE statements. */
2976
2977 void
2978 gimple_seq_discard (gimple_seq seq)
2979 {
2980 gimple_stmt_iterator gsi;
2981
2982 for (gsi = gsi_start (seq); !gsi_end_p (gsi); )
2983 {
2984 gimple *stmt = gsi_stmt (gsi);
2985 gsi_remove (&gsi, true);
2986 release_defs (stmt);
2987 ggc_free (stmt);
2988 }
2989 }
2990
2991 /* See if STMT now calls function that takes no parameters and if so, drop
2992 call arguments. This is used when devirtualization machinery redirects
2993 to __builtiln_unreacahble or __cxa_pure_virutal. */
2994
2995 void
2996 maybe_remove_unused_call_args (struct function *fn, gimple *stmt)
2997 {
2998 tree decl = gimple_call_fndecl (stmt);
2999 if (TYPE_ARG_TYPES (TREE_TYPE (decl))
3000 && TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl))) == void_type_node
3001 && gimple_call_num_args (stmt))
3002 {
3003 gimple_set_num_ops (stmt, 3);
3004 update_stmt_fn (fn, stmt);
3005 }
3006 }