]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/graphite-scop-detection.c
graphite-scop-detection.c (loop_ivs_can_be_represented): Remove.
[thirdparty/gcc.git] / gcc / graphite-scop-detection.c
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2017 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #define USES_ISL
23
24 #include "config.h"
25
26 #ifdef HAVE_isl
27
28 #include "system.h"
29 #include "coretypes.h"
30 #include "backend.h"
31 #include "cfghooks.h"
32 #include "domwalk.h"
33 #include "params.h"
34 #include "tree.h"
35 #include "gimple.h"
36 #include "ssa.h"
37 #include "fold-const.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
44 #include "tree-ssa.h"
45 #include "cfgloop.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "tree-ssa-propagate.h"
50 #include "gimple-pretty-print.h"
51 #include "cfganal.h"
52 #include "graphite.h"
53
54 class debug_printer
55 {
56 private:
57 FILE *dump_file;
58
59 public:
60 void
61 set_dump_file (FILE *f)
62 {
63 gcc_assert (f);
64 dump_file = f;
65 }
66
67 friend debug_printer &
68 operator<< (debug_printer &output, int i)
69 {
70 fprintf (output.dump_file, "%d", i);
71 return output;
72 }
73 friend debug_printer &
74 operator<< (debug_printer &output, const char *s)
75 {
76 fprintf (output.dump_file, "%s", s);
77 return output;
78 }
79 } dp;
80
81 #define DEBUG_PRINT(args) do \
82 { \
83 if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
84 } while (0);
85
86 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
87 different colors. If there are not enough colors, paint the
88 remaining SCoPs in gray.
89
90 Special nodes:
91 - "*" after the node number denotes the entry of a SCoP,
92 - "#" after the node number denotes the exit of a SCoP,
93 - "()" around the node number denotes the entry or the
94 exit nodes of the SCOP. These are not part of SCoP. */
95
96 DEBUG_FUNCTION void
97 dot_all_sese (FILE *file, vec<sese_l>& scops)
98 {
99 /* Disable debugging while printing graph. */
100 dump_flags_t tmp_dump_flags = dump_flags;
101 dump_flags = TDF_NONE;
102
103 fprintf (file, "digraph all {\n");
104
105 basic_block bb;
106 FOR_ALL_BB_FN (bb, cfun)
107 {
108 int part_of_scop = false;
109
110 /* Use HTML for every bb label. So we are able to print bbs
111 which are part of two different SCoPs, with two different
112 background colors. */
113 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
114 bb->index);
115 fprintf (file, "CELLSPACING=\"0\">\n");
116
117 /* Select color for SCoP. */
118 sese_l *region;
119 int i;
120 FOR_EACH_VEC_ELT (scops, i, region)
121 {
122 bool sese_in_region = bb_in_sese_p (bb, *region);
123 if (sese_in_region || (region->exit->dest == bb)
124 || (region->entry->dest == bb))
125 {
126 const char *color;
127 switch (i % 17)
128 {
129 case 0: /* red */
130 color = "#e41a1c";
131 break;
132 case 1: /* blue */
133 color = "#377eb8";
134 break;
135 case 2: /* green */
136 color = "#4daf4a";
137 break;
138 case 3: /* purple */
139 color = "#984ea3";
140 break;
141 case 4: /* orange */
142 color = "#ff7f00";
143 break;
144 case 5: /* yellow */
145 color = "#ffff33";
146 break;
147 case 6: /* brown */
148 color = "#a65628";
149 break;
150 case 7: /* rose */
151 color = "#f781bf";
152 break;
153 case 8:
154 color = "#8dd3c7";
155 break;
156 case 9:
157 color = "#ffffb3";
158 break;
159 case 10:
160 color = "#bebada";
161 break;
162 case 11:
163 color = "#fb8072";
164 break;
165 case 12:
166 color = "#80b1d3";
167 break;
168 case 13:
169 color = "#fdb462";
170 break;
171 case 14:
172 color = "#b3de69";
173 break;
174 case 15:
175 color = "#fccde5";
176 break;
177 case 16:
178 color = "#bc80bd";
179 break;
180 default: /* gray */
181 color = "#999999";
182 }
183
184 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
185 color);
186
187 if (!sese_in_region)
188 fprintf (file, " (");
189
190 if (bb == region->entry->dest && bb == region->exit->dest)
191 fprintf (file, " %d*# ", bb->index);
192 else if (bb == region->entry->dest)
193 fprintf (file, " %d* ", bb->index);
194 else if (bb == region->exit->dest)
195 fprintf (file, " %d# ", bb->index);
196 else
197 fprintf (file, " %d ", bb->index);
198
199 fprintf (file, "{lp_%d}", bb->loop_father->num);
200
201 if (!sese_in_region)
202 fprintf (file, ")");
203
204 fprintf (file, "</TD></TR>\n");
205 part_of_scop = true;
206 }
207 }
208
209 if (!part_of_scop)
210 {
211 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
212 fprintf (file, " %d {lp_%d} </TD></TR>\n", bb->index,
213 bb->loop_father->num);
214 }
215 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
216 }
217
218 FOR_ALL_BB_FN (bb, cfun)
219 {
220 edge e;
221 edge_iterator ei;
222 FOR_EACH_EDGE (e, ei, bb->succs)
223 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
224 }
225
226 fputs ("}\n\n", file);
227
228 /* Enable debugging again. */
229 dump_flags = tmp_dump_flags;
230 }
231
232 /* Display SCoP on stderr. */
233
234 DEBUG_FUNCTION void
235 dot_sese (sese_l& scop)
236 {
237 vec<sese_l> scops;
238 scops.create (1);
239
240 if (scop)
241 scops.safe_push (scop);
242
243 dot_all_sese (stderr, scops);
244
245 scops.release ();
246 }
247
248 DEBUG_FUNCTION void
249 dot_cfg ()
250 {
251 vec<sese_l> scops;
252 scops.create (1);
253 dot_all_sese (stderr, scops);
254 scops.release ();
255 }
256
257 /* Returns a COND_EXPR statement when BB has a single predecessor, the
258 edge between BB and its predecessor is not a loop exit edge, and
259 the last statement of the single predecessor is a COND_EXPR. */
260
261 static gcond *
262 single_pred_cond_non_loop_exit (basic_block bb)
263 {
264 if (single_pred_p (bb))
265 {
266 edge e = single_pred_edge (bb);
267 basic_block pred = e->src;
268 gimple *stmt;
269
270 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
271 return NULL;
272
273 stmt = last_stmt (pred);
274
275 if (stmt && gimple_code (stmt) == GIMPLE_COND)
276 return as_a<gcond *> (stmt);
277 }
278
279 return NULL;
280 }
281
282 namespace
283 {
284
285 /* Build the maximal scop containing LOOPs and add it to SCOPS. */
286
287 class scop_detection
288 {
289 public:
290 scop_detection () : scops (vNULL) {}
291
292 ~scop_detection ()
293 {
294 scops.release ();
295 }
296
297 /* A marker for invalid sese_l. */
298 static sese_l invalid_sese;
299
300 /* Return the SCOPS in this SCOP_DETECTION. */
301
302 vec<sese_l>
303 get_scops ()
304 {
305 return scops;
306 }
307
308 /* Return an sese_l around the LOOP. */
309
310 sese_l get_sese (loop_p loop);
311
312 /* Return the closest dominator with a single entry edge. In case of a
313 back-loop the back-edge is not counted. */
314
315 static edge get_nearest_dom_with_single_entry (basic_block dom);
316
317 /* Return the closest post-dominator with a single exit edge. In case of a
318 back-loop the back-edge is not counted. */
319
320 static edge get_nearest_pdom_with_single_exit (basic_block dom);
321
322 /* Merge scops at same loop depth and returns the new sese.
323 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
324
325 sese_l merge_sese (sese_l first, sese_l second) const;
326
327 /* Build scop outer->inner if possible. */
328
329 void build_scop_depth (loop_p loop);
330
331 /* Return true when BEGIN is the preheader edge of a loop with a single exit
332 END. */
333
334 static bool region_has_one_loop (sese_l s);
335
336 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
337
338 void add_scop (sese_l s);
339
340 /* Returns true if S1 subsumes/surrounds S2. */
341 static bool subsumes (sese_l s1, sese_l s2);
342
343 /* Remove a SCoP which is subsumed by S1. */
344 void remove_subscops (sese_l s1);
345
346 /* Returns true if S1 intersects with S2. Since we already know that S1 does
347 not subsume S2 or vice-versa, we only check for entry bbs. */
348
349 static bool intersects (sese_l s1, sese_l s2);
350
351 /* Remove one of the scops when it intersects with any other. */
352
353 void remove_intersecting_scops (sese_l s1);
354
355 /* Return true when a statement in SCOP cannot be represented by Graphite. */
356
357 bool harmful_loop_in_region (sese_l scop) const;
358
359 /* Return true only when STMT is simple enough for being handled by Graphite.
360 This depends on SCOP, as the parameters are initialized relatively to
361 this basic block, the linear functions are initialized based on the
362 outermost loop containing STMT inside the SCOP. BB is the place where we
363 try to evaluate the STMT. */
364
365 bool stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
366 basic_block bb) const;
367
368 /* Something like "n * m" is not allowed. */
369
370 static bool graphite_can_represent_init (tree e);
371
372 /* Return true when SCEV can be represented in the polyhedral model.
373
374 An expression can be represented, if it can be expressed as an
375 affine expression. For loops (i, j) and parameters (m, n) all
376 affine expressions are of the form:
377
378 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
379
380 1 i + 20 j + (-2) m + 25
381
382 Something like "i * n" or "n * m" is not allowed. */
383
384 static bool graphite_can_represent_scev (tree scev);
385
386 /* Return true when EXPR can be represented in the polyhedral model.
387
388 This means an expression can be represented, if it is linear with respect
389 to the loops and the strides are non parametric. LOOP is the place where
390 the expr will be evaluated. SCOP defines the region we analyse. */
391
392 static bool graphite_can_represent_expr (sese_l scop, loop_p loop,
393 tree expr);
394
395 /* Return true if the data references of STMT can be represented by Graphite.
396 We try to analyze the data references in a loop contained in the SCOP. */
397
398 static bool stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt);
399
400 /* Remove the close phi node at GSI and replace its rhs with the rhs
401 of PHI. */
402
403 static void remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi);
404
405 /* Returns true when Graphite can represent LOOP in SCOP.
406 FIXME: For the moment, graphite cannot be used on loops that iterate using
407 induction variables that wrap. */
408
409 static bool can_represent_loop (loop_p loop, sese_l scop);
410
411 /* Returns the number of pbbs that are in loops contained in SCOP. */
412
413 static int nb_pbbs_in_loops (scop_p scop);
414
415 private:
416 vec<sese_l> scops;
417 };
418
419 sese_l scop_detection::invalid_sese (NULL, NULL);
420
421 /* Return an sese_l around the LOOP. */
422
423 sese_l
424 scop_detection::get_sese (loop_p loop)
425 {
426 if (!loop)
427 return invalid_sese;
428
429 edge scop_begin = loop_preheader_edge (loop);
430 edge scop_end = single_exit (loop);
431 if (!scop_end || (scop_end->flags & EDGE_COMPLEX))
432 return invalid_sese;
433 /* Include the BB with the loop-closed SSA PHI nodes.
434 canonicalize_loop_closed_ssa makes sure that is in proper shape. */
435 if (! single_pred_p (scop_end->dest)
436 || ! single_succ_p (scop_end->dest)
437 || ! sese_trivially_empty_bb_p (scop_end->dest))
438 gcc_unreachable ();
439 scop_end = single_succ_edge (scop_end->dest);
440
441 return sese_l (scop_begin, scop_end);
442 }
443
444 /* Return the closest dominator with a single entry edge. */
445
446 edge
447 scop_detection::get_nearest_dom_with_single_entry (basic_block dom)
448 {
449 if (!dom->preds)
450 return NULL;
451
452 /* If any of the dominators has two predecessors but one of them is a back
453 edge, then that basic block also qualifies as a dominator with single
454 entry. */
455 if (dom->preds->length () == 2)
456 {
457 /* If e1->src dominates e2->src then e1->src will also dominate dom. */
458 edge e1 = (*dom->preds)[0];
459 edge e2 = (*dom->preds)[1];
460 loop_p l = dom->loop_father;
461 loop_p l1 = e1->src->loop_father;
462 loop_p l2 = e2->src->loop_father;
463 if (l != l1 && l == l2
464 && dominated_by_p (CDI_DOMINATORS, e2->src, e1->src))
465 return e1;
466 if (l != l2 && l == l1
467 && dominated_by_p (CDI_DOMINATORS, e1->src, e2->src))
468 return e2;
469 }
470
471 while (dom->preds->length () != 1)
472 {
473 if (dom->preds->length () < 1)
474 return NULL;
475 dom = get_immediate_dominator (CDI_DOMINATORS, dom);
476 if (!dom->preds)
477 return NULL;
478 }
479 return (*dom->preds)[0];
480 }
481
482 /* Return the closest post-dominator with a single exit edge. In case of a
483 back-loop the back-edge is not counted. */
484
485 edge
486 scop_detection::get_nearest_pdom_with_single_exit (basic_block pdom)
487 {
488 if (!pdom->succs)
489 return NULL;
490
491 /* If any of the post-dominators has two successors but one of them is a back
492 edge, then that basic block also qualifies as a post-dominator with single
493 exit. */
494 if (pdom->succs->length () == 2)
495 {
496 /* If e1->dest post-dominates e2->dest then e1->dest will also
497 post-dominate pdom. */
498 edge e1 = (*pdom->succs)[0];
499 edge e2 = (*pdom->succs)[1];
500 loop_p l = pdom->loop_father;
501 loop_p l1 = e1->dest->loop_father;
502 loop_p l2 = e2->dest->loop_father;
503 if (l != l1 && l == l2
504 && dominated_by_p (CDI_POST_DOMINATORS, e2->dest, e1->dest))
505 return e1;
506 if (l != l2 && l == l1
507 && dominated_by_p (CDI_POST_DOMINATORS, e1->dest, e2->dest))
508 return e2;
509 }
510
511 while (pdom->succs->length () != 1)
512 {
513 if (pdom->succs->length () < 1)
514 return NULL;
515 pdom = get_immediate_dominator (CDI_POST_DOMINATORS, pdom);
516 if (!pdom->succs)
517 return NULL;
518 }
519
520 return (*pdom->succs)[0];
521 }
522
523 /* Merge scops at same loop depth and returns the new sese.
524 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
525
526 sese_l
527 scop_detection::merge_sese (sese_l first, sese_l second) const
528 {
529 /* In the trivial case first/second may be NULL. */
530 if (!first)
531 return second;
532 if (!second)
533 return first;
534
535 DEBUG_PRINT (dp << "[scop-detection] try merging sese s1: ";
536 print_sese (dump_file, first);
537 dp << "[scop-detection] try merging sese s2: ";
538 print_sese (dump_file, second));
539
540 /* Assumption: Both the sese's should be at the same loop depth or one scop
541 should subsume the other like in case of nested loops. */
542
543 /* Find the common dominators for entry,
544 and common post-dominators for the exit. */
545 basic_block dom = nearest_common_dominator (CDI_DOMINATORS,
546 get_entry_bb (first),
547 get_entry_bb (second));
548
549 edge entry = get_nearest_dom_with_single_entry (dom);
550
551 if (!entry || (entry->flags & EDGE_IRREDUCIBLE_LOOP))
552 return invalid_sese;
553
554 basic_block pdom = nearest_common_dominator (CDI_POST_DOMINATORS,
555 get_exit_bb (first),
556 get_exit_bb (second));
557 pdom = nearest_common_dominator (CDI_POST_DOMINATORS, dom, pdom);
558
559 edge exit = get_nearest_pdom_with_single_exit (pdom);
560
561 if (!exit || (exit->flags & EDGE_IRREDUCIBLE_LOOP))
562 return invalid_sese;
563
564 sese_l combined (entry, exit);
565
566 DEBUG_PRINT (dp << "[scop-detection] checking combined sese: ";
567 print_sese (dump_file, combined));
568
569 /* FIXME: We could iterate to find the dom which dominates pdom, and pdom
570 which post-dominates dom, until it stabilizes. Also, ENTRY->SRC and
571 EXIT->DEST should be in the same loop nest. */
572 if (!dominated_by_p (CDI_DOMINATORS, pdom, dom)
573 || loop_depth (entry->src->loop_father)
574 != loop_depth (exit->dest->loop_father))
575 return invalid_sese;
576
577 /* For now we just bail out when there is a loop exit in the region
578 that is not also the exit of the region. We could enlarge the
579 region to cover the loop that region exits to. See PR79977. */
580 if (loop_outer (entry->src->loop_father))
581 {
582 vec<edge> exits = get_loop_exit_edges (entry->src->loop_father);
583 for (unsigned i = 0; i < exits.length (); ++i)
584 {
585 if (exits[i] != exit
586 && bb_in_region (exits[i]->src, entry->dest, exit->src))
587 {
588 DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
589 exits.release ();
590 return invalid_sese;
591 }
592 }
593 exits.release ();
594 }
595
596 /* For now we just want to bail out when exit does not post-dominate entry.
597 TODO: We might just add a basic_block at the exit to make exit
598 post-dominate entry (the entire region). */
599 if (!dominated_by_p (CDI_POST_DOMINATORS, get_entry_bb (combined),
600 get_exit_bb (combined))
601 || !dominated_by_p (CDI_DOMINATORS, get_exit_bb (combined),
602 get_entry_bb (combined)))
603 {
604 DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
605 return invalid_sese;
606 }
607
608 DEBUG_PRINT (dp << "[merged-sese] s1: "; print_sese (dump_file, combined));
609
610 return combined;
611 }
612
613 /* Build scop outer->inner if possible. */
614
615 void
616 scop_detection::build_scop_depth (loop_p loop)
617 {
618 sese_l s = invalid_sese;
619 loop = loop->inner;
620 while (loop)
621 {
622 sese_l next = get_sese (loop);
623 if (! next
624 || harmful_loop_in_region (next))
625 {
626 if (s)
627 add_scop (s);
628 build_scop_depth (loop);
629 s = invalid_sese;
630 }
631 else if (! s)
632 s = next;
633 else
634 {
635 sese_l combined = merge_sese (s, next);
636 if (! combined
637 || harmful_loop_in_region (combined))
638 {
639 add_scop (s);
640 s = next;
641 }
642 else
643 s = combined;
644 }
645 loop = loop->next;
646 }
647 if (s)
648 add_scop (s);
649 }
650
651 /* Returns true when Graphite can represent LOOP in SCOP.
652 FIXME: For the moment, graphite cannot be used on loops that iterate using
653 induction variables that wrap. */
654
655 bool
656 scop_detection::can_represent_loop (loop_p loop, sese_l scop)
657 {
658 tree niter;
659 struct tree_niter_desc niter_desc;
660
661 return single_exit (loop)
662 && !(loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
663 && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
664 && niter_desc.control.no_overflow
665 && (niter = number_of_latch_executions (loop))
666 && !chrec_contains_undetermined (niter)
667 && !chrec_contains_undetermined (scalar_evolution_in_region (scop,
668 loop, niter))
669 && graphite_can_represent_expr (scop, loop, niter);
670 }
671
672 /* Return true when BEGIN is the preheader edge of a loop with a single exit
673 END. */
674
675 bool
676 scop_detection::region_has_one_loop (sese_l s)
677 {
678 edge begin = s.entry;
679 edge end = s.exit;
680 /* Check for a single perfectly nested loop. */
681 if (begin->dest->loop_father->inner)
682 return false;
683
684 /* Otherwise, check whether we have adjacent loops. */
685 return (single_pred_p (end->src)
686 && begin->dest->loop_father == single_pred (end->src)->loop_father);
687 }
688
689 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
690
691 void
692 scop_detection::add_scop (sese_l s)
693 {
694 gcc_assert (s);
695
696 /* Do not add scops with only one loop. */
697 if (region_has_one_loop (s))
698 {
699 DEBUG_PRINT (dp << "[scop-detection-fail] Discarding one loop SCoP: ";
700 print_sese (dump_file, s));
701 return;
702 }
703
704 if (get_exit_bb (s) == EXIT_BLOCK_PTR_FOR_FN (cfun))
705 {
706 DEBUG_PRINT (dp << "[scop-detection-fail] "
707 << "Discarding SCoP exiting to return: ";
708 print_sese (dump_file, s));
709 return;
710 }
711
712 /* Remove all the scops which are subsumed by s. */
713 remove_subscops (s);
714
715 /* Remove intersecting scops. FIXME: It will be a good idea to keep
716 the non-intersecting part of the scop already in the list. */
717 remove_intersecting_scops (s);
718
719 scops.safe_push (s);
720 DEBUG_PRINT (dp << "[scop-detection] Adding SCoP: "; print_sese (dump_file, s));
721 }
722
723 /* Return true when a statement in SCOP cannot be represented by Graphite. */
724
725 bool
726 scop_detection::harmful_loop_in_region (sese_l scop) const
727 {
728 basic_block exit_bb = get_exit_bb (scop);
729 basic_block entry_bb = get_entry_bb (scop);
730
731 DEBUG_PRINT (dp << "[checking-harmful-bbs] ";
732 print_sese (dump_file, scop));
733 gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));
734
735 auto_vec<basic_block> worklist;
736 auto_bitmap loops;
737
738 worklist.safe_push (entry_bb);
739 while (! worklist.is_empty ())
740 {
741 basic_block bb = worklist.pop ();
742 DEBUG_PRINT (dp << "Visiting bb_" << bb->index << "\n");
743
744 /* The basic block should not be part of an irreducible loop. */
745 if (bb->flags & BB_IRREDUCIBLE_LOOP)
746 return true;
747
748 /* Check for unstructured control flow: CFG not generated by structured
749 if-then-else. */
750 if (bb->succs->length () > 1)
751 {
752 edge e;
753 edge_iterator ei;
754 FOR_EACH_EDGE (e, ei, bb->succs)
755 if (!dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest)
756 && !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
757 return true;
758 }
759
760 /* Collect all loops in the current region. */
761 loop_p loop = bb->loop_father;
762 if (loop_in_sese_p (loop, scop))
763 bitmap_set_bit (loops, loop->num);
764
765 /* Check for harmful statements in basic blocks part of the region. */
766 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
767 !gsi_end_p (gsi); gsi_next (&gsi))
768 if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
769 return true;
770
771 if (bb != exit_bb)
772 for (basic_block dom = first_dom_son (CDI_DOMINATORS, bb);
773 dom;
774 dom = next_dom_son (CDI_DOMINATORS, dom))
775 worklist.safe_push (dom);
776 }
777
778 /* Go through all loops and check that they are still valid in the combined
779 scop. */
780 unsigned j;
781 bitmap_iterator bi;
782 EXECUTE_IF_SET_IN_BITMAP (loops, 0, j, bi)
783 {
784 loop_p loop = (*current_loops->larray)[j];
785 gcc_assert (loop->num == (int) j);
786
787 /* Check if the loop nests are to be optimized for speed. */
788 if (! loop->inner
789 && ! optimize_loop_for_speed_p (loop))
790 {
791 DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
792 << loop->num << " is not on a hot path.\n");
793 return true;
794 }
795
796 if (! can_represent_loop (loop, scop))
797 {
798 DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
799 << loop->num << "\n");
800 return true;
801 }
802
803 /* Check if all loop nests have at least one data reference.
804 ??? This check is expensive and loops premature at this point.
805 If important to retain we can pre-compute this for all innermost
806 loops and reject those when we build a SESE region for a loop
807 during SESE discovery. */
808 if (! loop->inner
809 && ! loop_nest_has_data_refs (loop))
810 {
811 DEBUG_PRINT (dp << "[scop-detection-fail] loop_" << loop->num
812 << "does not have any data reference.\n");
813 return true;
814 }
815 }
816
817 return false;
818 }
819
820 /* Returns true if S1 subsumes/surrounds S2. */
821 bool
822 scop_detection::subsumes (sese_l s1, sese_l s2)
823 {
824 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
825 get_entry_bb (s1))
826 && dominated_by_p (CDI_POST_DOMINATORS, s2.exit->dest,
827 s1.exit->dest))
828 return true;
829 return false;
830 }
831
832 /* Remove a SCoP which is subsumed by S1. */
833 void
834 scop_detection::remove_subscops (sese_l s1)
835 {
836 int j;
837 sese_l *s2;
838 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
839 {
840 if (subsumes (s1, *s2))
841 {
842 DEBUG_PRINT (dp << "Removing sub-SCoP";
843 print_sese (dump_file, *s2));
844 scops.unordered_remove (j);
845 }
846 }
847 }
848
849 /* Returns true if S1 intersects with S2. Since we already know that S1 does
850 not subsume S2 or vice-versa, we only check for entry bbs. */
851
852 bool
853 scop_detection::intersects (sese_l s1, sese_l s2)
854 {
855 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
856 get_entry_bb (s1))
857 && !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
858 get_exit_bb (s1)))
859 return true;
860 if ((s1.exit == s2.entry) || (s2.exit == s1.entry))
861 return true;
862
863 return false;
864 }
865
866 /* Remove one of the scops when it intersects with any other. */
867
868 void
869 scop_detection::remove_intersecting_scops (sese_l s1)
870 {
871 int j;
872 sese_l *s2;
873 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
874 {
875 if (intersects (s1, *s2))
876 {
877 DEBUG_PRINT (dp << "Removing intersecting SCoP";
878 print_sese (dump_file, *s2);
879 dp << "Intersects with:";
880 print_sese (dump_file, s1));
881 scops.unordered_remove (j);
882 }
883 }
884 }
885
886 /* Something like "n * m" is not allowed. */
887
888 bool
889 scop_detection::graphite_can_represent_init (tree e)
890 {
891 switch (TREE_CODE (e))
892 {
893 case POLYNOMIAL_CHREC:
894 return graphite_can_represent_init (CHREC_LEFT (e))
895 && graphite_can_represent_init (CHREC_RIGHT (e));
896
897 case MULT_EXPR:
898 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
899 return graphite_can_represent_init (TREE_OPERAND (e, 0))
900 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
901 else
902 return graphite_can_represent_init (TREE_OPERAND (e, 1))
903 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
904
905 case PLUS_EXPR:
906 case POINTER_PLUS_EXPR:
907 case MINUS_EXPR:
908 return graphite_can_represent_init (TREE_OPERAND (e, 0))
909 && graphite_can_represent_init (TREE_OPERAND (e, 1));
910
911 case NEGATE_EXPR:
912 case BIT_NOT_EXPR:
913 CASE_CONVERT:
914 case NON_LVALUE_EXPR:
915 return graphite_can_represent_init (TREE_OPERAND (e, 0));
916
917 default:
918 break;
919 }
920
921 return true;
922 }
923
924 /* Return true when SCEV can be represented in the polyhedral model.
925
926 An expression can be represented, if it can be expressed as an
927 affine expression. For loops (i, j) and parameters (m, n) all
928 affine expressions are of the form:
929
930 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
931
932 1 i + 20 j + (-2) m + 25
933
934 Something like "i * n" or "n * m" is not allowed. */
935
936 bool
937 scop_detection::graphite_can_represent_scev (tree scev)
938 {
939 if (chrec_contains_undetermined (scev))
940 return false;
941
942 switch (TREE_CODE (scev))
943 {
944 case NEGATE_EXPR:
945 case BIT_NOT_EXPR:
946 CASE_CONVERT:
947 case NON_LVALUE_EXPR:
948 return graphite_can_represent_scev (TREE_OPERAND (scev, 0));
949
950 case PLUS_EXPR:
951 case POINTER_PLUS_EXPR:
952 case MINUS_EXPR:
953 return graphite_can_represent_scev (TREE_OPERAND (scev, 0))
954 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
955
956 case MULT_EXPR:
957 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
958 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
959 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
960 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
961 && graphite_can_represent_init (scev)
962 && graphite_can_represent_scev (TREE_OPERAND (scev, 0))
963 && graphite_can_represent_scev (TREE_OPERAND (scev, 1));
964
965 case POLYNOMIAL_CHREC:
966 /* Check for constant strides. With a non constant stride of
967 'n' we would have a value of 'iv * n'. Also check that the
968 initial value can represented: for example 'n * m' cannot be
969 represented. */
970 if (!evolution_function_right_is_integer_cst (scev)
971 || !graphite_can_represent_init (scev))
972 return false;
973 return graphite_can_represent_scev (CHREC_LEFT (scev));
974
975 default:
976 break;
977 }
978
979 /* Only affine functions can be represented. */
980 if (tree_contains_chrecs (scev, NULL) || !scev_is_linear_expression (scev))
981 return false;
982
983 return true;
984 }
985
986 /* Return true when EXPR can be represented in the polyhedral model.
987
988 This means an expression can be represented, if it is linear with respect to
989 the loops and the strides are non parametric. LOOP is the place where the
990 expr will be evaluated. SCOP defines the region we analyse. */
991
992 bool
993 scop_detection::graphite_can_represent_expr (sese_l scop, loop_p loop,
994 tree expr)
995 {
996 tree scev = scalar_evolution_in_region (scop, loop, expr);
997 return graphite_can_represent_scev (scev);
998 }
999
1000 /* Return true if the data references of STMT can be represented by Graphite.
1001 We try to analyze the data references in a loop contained in the SCOP. */
1002
1003 bool
1004 scop_detection::stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
1005 {
1006 loop_p nest;
1007 loop_p loop = loop_containing_stmt (stmt);
1008 if (!loop_in_sese_p (loop, scop))
1009 nest = loop;
1010 else
1011 nest = outermost_loop_in_sese (scop, gimple_bb (stmt));
1012
1013 auto_vec<data_reference_p> drs;
1014 if (! graphite_find_data_references_in_stmt (nest, loop, stmt, &drs))
1015 return false;
1016
1017 int j;
1018 data_reference_p dr;
1019 FOR_EACH_VEC_ELT (drs, j, dr)
1020 {
1021 for (unsigned i = 0; i < DR_NUM_DIMENSIONS (dr); ++i)
1022 if (! graphite_can_represent_scev (DR_ACCESS_FN (dr, i)))
1023 return false;
1024 }
1025
1026 return true;
1027 }
1028
1029 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
1030 Calls have side-effects, except those to const or pure
1031 functions. */
1032
1033 static bool
1034 stmt_has_side_effects (gimple *stmt)
1035 {
1036 if (gimple_has_volatile_ops (stmt)
1037 || (gimple_code (stmt) == GIMPLE_CALL
1038 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
1039 || (gimple_code (stmt) == GIMPLE_ASM))
1040 {
1041 DEBUG_PRINT (dp << "[scop-detection-fail] "
1042 << "Statement has side-effects:\n";
1043 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
1044 return true;
1045 }
1046 return false;
1047 }
1048
1049 /* Return true only when STMT is simple enough for being handled by Graphite.
1050 This depends on SCOP, as the parameters are initialized relatively to
1051 this basic block, the linear functions are initialized based on the outermost
1052 loop containing STMT inside the SCOP. BB is the place where we try to
1053 evaluate the STMT. */
1054
1055 bool
1056 scop_detection::stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
1057 basic_block bb) const
1058 {
1059 gcc_assert (scop);
1060
1061 if (is_gimple_debug (stmt))
1062 return true;
1063
1064 if (stmt_has_side_effects (stmt))
1065 return false;
1066
1067 if (!stmt_has_simple_data_refs_p (scop, stmt))
1068 {
1069 DEBUG_PRINT (dp << "[scop-detection-fail] "
1070 << "Graphite cannot handle data-refs in stmt:\n";
1071 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
1072 return false;
1073 }
1074
1075 switch (gimple_code (stmt))
1076 {
1077 case GIMPLE_LABEL:
1078 return true;
1079
1080 case GIMPLE_COND:
1081 {
1082 /* We can handle all binary comparisons. Inequalities are
1083 also supported as they can be represented with union of
1084 polyhedra. */
1085 enum tree_code code = gimple_cond_code (stmt);
1086 if (!(code == LT_EXPR
1087 || code == GT_EXPR
1088 || code == LE_EXPR
1089 || code == GE_EXPR
1090 || code == EQ_EXPR
1091 || code == NE_EXPR))
1092 {
1093 DEBUG_PRINT (dp << "[scop-detection-fail] "
1094 << "Graphite cannot handle cond stmt:\n";
1095 print_gimple_stmt (dump_file, stmt, 0,
1096 TDF_VOPS | TDF_MEMSYMS));
1097 return false;
1098 }
1099
1100 loop_p loop = bb->loop_father;
1101 for (unsigned i = 0; i < 2; ++i)
1102 {
1103 tree op = gimple_op (stmt, i);
1104 if (!graphite_can_represent_expr (scop, loop, op)
1105 /* We can only constrain on integer type. */
1106 || (TREE_CODE (TREE_TYPE (op)) != INTEGER_TYPE))
1107 {
1108 DEBUG_PRINT (dp << "[scop-detection-fail] "
1109 << "Graphite cannot represent stmt:\n";
1110 print_gimple_stmt (dump_file, stmt, 0,
1111 TDF_VOPS | TDF_MEMSYMS));
1112 return false;
1113 }
1114 }
1115
1116 return true;
1117 }
1118
1119 case GIMPLE_ASSIGN:
1120 case GIMPLE_CALL:
1121 return true;
1122
1123 default:
1124 /* These nodes cut a new scope. */
1125 DEBUG_PRINT (
1126 dp << "[scop-detection-fail] "
1127 << "Gimple stmt not handled in Graphite:\n";
1128 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
1129 return false;
1130 }
1131 }
1132
1133 /* Returns the number of pbbs that are in loops contained in SCOP. */
1134
1135 int
1136 scop_detection::nb_pbbs_in_loops (scop_p scop)
1137 {
1138 int i;
1139 poly_bb_p pbb;
1140 int res = 0;
1141
1142 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1143 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), scop->scop_info->region))
1144 res++;
1145
1146 return res;
1147 }
1148
1149 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
1150 Otherwise returns -1. */
1151
1152 static inline int
1153 parameter_index_in_region_1 (tree name, sese_info_p region)
1154 {
1155 int i;
1156 tree p;
1157
1158 gcc_assert (TREE_CODE (name) == SSA_NAME);
1159
1160 FOR_EACH_VEC_ELT (region->params, i, p)
1161 if (p == name)
1162 return i;
1163
1164 return -1;
1165 }
1166
1167 /* When the parameter NAME is in REGION, returns its index in
1168 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
1169 and returns the index of NAME. */
1170
1171 static int
1172 parameter_index_in_region (tree name, sese_info_p region)
1173 {
1174 int i;
1175
1176 gcc_assert (TREE_CODE (name) == SSA_NAME);
1177
1178 /* Cannot constrain on anything else than INTEGER_TYPE parameters. */
1179 if (TREE_CODE (TREE_TYPE (name)) != INTEGER_TYPE)
1180 return -1;
1181
1182 if (!invariant_in_sese_p_rec (name, region->region, NULL))
1183 return -1;
1184
1185 i = parameter_index_in_region_1 (name, region);
1186 if (i != -1)
1187 return i;
1188
1189 i = region->params.length ();
1190 region->params.safe_push (name);
1191 return i;
1192 }
1193
1194 /* In the context of sese S, scan the expression E and translate it to
1195 a linear expression C. When parsing a symbolic multiplication, K
1196 represents the constant multiplier of an expression containing
1197 parameters. */
1198
1199 static void
1200 scan_tree_for_params (sese_info_p s, tree e)
1201 {
1202 if (e == chrec_dont_know)
1203 return;
1204
1205 switch (TREE_CODE (e))
1206 {
1207 case POLYNOMIAL_CHREC:
1208 scan_tree_for_params (s, CHREC_LEFT (e));
1209 break;
1210
1211 case MULT_EXPR:
1212 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
1213 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1214 else
1215 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1216 break;
1217
1218 case PLUS_EXPR:
1219 case POINTER_PLUS_EXPR:
1220 case MINUS_EXPR:
1221 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1222 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1223 break;
1224
1225 case NEGATE_EXPR:
1226 case BIT_NOT_EXPR:
1227 CASE_CONVERT:
1228 case NON_LVALUE_EXPR:
1229 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1230 break;
1231
1232 case SSA_NAME:
1233 parameter_index_in_region (e, s);
1234 break;
1235
1236 case INTEGER_CST:
1237 case ADDR_EXPR:
1238 case REAL_CST:
1239 case COMPLEX_CST:
1240 case VECTOR_CST:
1241 break;
1242
1243 default:
1244 gcc_unreachable ();
1245 break;
1246 }
1247 }
1248
1249 /* Find parameters with respect to REGION in BB. We are looking in memory
1250 access functions, conditions and loop bounds. */
1251
1252 static void
1253 find_params_in_bb (sese_info_p region, gimple_poly_bb_p gbb)
1254 {
1255 /* Find parameters in the access functions of data references. */
1256 int i;
1257 data_reference_p dr;
1258 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
1259 for (unsigned j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
1260 scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
1261
1262 /* Find parameters in conditional statements. */
1263 gimple *stmt;
1264 loop_p loop = GBB_BB (gbb)->loop_father;
1265 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
1266 {
1267 tree lhs = scalar_evolution_in_region (region->region, loop,
1268 gimple_cond_lhs (stmt));
1269 tree rhs = scalar_evolution_in_region (region->region, loop,
1270 gimple_cond_rhs (stmt));
1271
1272 scan_tree_for_params (region, lhs);
1273 scan_tree_for_params (region, rhs);
1274 }
1275 }
1276
1277 /* Record the parameters used in the SCOP BBs. A variable is a parameter
1278 in a scop if it does not vary during the execution of that scop. */
1279
1280 static void
1281 find_scop_parameters (scop_p scop)
1282 {
1283 unsigned i;
1284 sese_info_p region = scop->scop_info;
1285
1286 /* Parameters used in loop bounds are processed during gather_bbs. */
1287
1288 /* Find the parameters used in data accesses. */
1289 poly_bb_p pbb;
1290 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1291 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
1292
1293 int nbp = sese_nb_params (region);
1294 scop_set_nb_params (scop, nbp);
1295 }
1296
1297 static void
1298 add_write (vec<tree> *writes, tree def)
1299 {
1300 writes->safe_push (def);
1301 DEBUG_PRINT (dp << "Adding scalar write: ";
1302 print_generic_expr (dump_file, def);
1303 dp << "\nFrom stmt: ";
1304 print_gimple_stmt (dump_file,
1305 SSA_NAME_DEF_STMT (def), 0));
1306 }
1307
1308 static void
1309 add_read (vec<scalar_use> *reads, tree use, gimple *use_stmt)
1310 {
1311 DEBUG_PRINT (dp << "Adding scalar read: ";
1312 print_generic_expr (dump_file, use);
1313 dp << "\nFrom stmt: ";
1314 print_gimple_stmt (dump_file, use_stmt, 0));
1315 reads->safe_push (std::make_pair (use_stmt, use));
1316 }
1317
1318
1319 /* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
1320
1321 static void
1322 build_cross_bb_scalars_def (scop_p scop, tree def, basic_block def_bb,
1323 vec<tree> *writes)
1324 {
1325 if (!is_gimple_reg (def))
1326 return;
1327
1328 bool scev_analyzable = scev_analyzable_p (def, scop->scop_info->region);
1329
1330 gimple *use_stmt;
1331 imm_use_iterator imm_iter;
1332 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1333 /* Do not gather scalar variables that can be analyzed by SCEV as they can
1334 be generated out of the induction variables. */
1335 if ((! scev_analyzable
1336 /* But gather SESE liveouts as we otherwise fail to rewrite their
1337 exit PHIs. */
1338 || ! bb_in_sese_p (gimple_bb (use_stmt), scop->scop_info->region))
1339 && (def_bb != gimple_bb (use_stmt) && !is_gimple_debug (use_stmt)))
1340 {
1341 add_write (writes, def);
1342 /* This is required by the FOR_EACH_IMM_USE_STMT when we want to break
1343 before all the uses have been visited. */
1344 BREAK_FROM_IMM_USE_STMT (imm_iter);
1345 }
1346 }
1347
1348 /* Record USE if it is defined in other bbs different than USE_STMT
1349 in the SCOP. */
1350
1351 static void
1352 build_cross_bb_scalars_use (scop_p scop, tree use, gimple *use_stmt,
1353 vec<scalar_use> *reads)
1354 {
1355 if (!is_gimple_reg (use))
1356 return;
1357
1358 /* Do not gather scalar variables that can be analyzed by SCEV as they can be
1359 generated out of the induction variables. */
1360 if (scev_analyzable_p (use, scop->scop_info->region))
1361 return;
1362
1363 gimple *def_stmt = SSA_NAME_DEF_STMT (use);
1364 if (gimple_bb (def_stmt) != gimple_bb (use_stmt))
1365 add_read (reads, use, use_stmt);
1366 }
1367
1368 /* Generates a polyhedral black box only if the bb contains interesting
1369 information. */
1370
1371 static gimple_poly_bb_p
1372 try_generate_gimple_bb (scop_p scop, basic_block bb)
1373 {
1374 vec<data_reference_p> drs = vNULL;
1375 vec<tree> writes = vNULL;
1376 vec<scalar_use> reads = vNULL;
1377
1378 sese_l region = scop->scop_info->region;
1379 loop_p nest;
1380 loop_p loop = bb->loop_father;
1381 if (!loop_in_sese_p (loop, region))
1382 nest = loop;
1383 else
1384 nest = outermost_loop_in_sese (region, bb);
1385
1386 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1387 gsi_next (&gsi))
1388 {
1389 gimple *stmt = gsi_stmt (gsi);
1390 if (is_gimple_debug (stmt))
1391 continue;
1392
1393 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
1394
1395 tree def = gimple_get_lhs (stmt);
1396 if (def)
1397 build_cross_bb_scalars_def (scop, def, gimple_bb (stmt), &writes);
1398
1399 ssa_op_iter iter;
1400 tree use;
1401 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1402 build_cross_bb_scalars_use (scop, use, stmt, &reads);
1403 }
1404
1405 /* Handle defs and uses in PHIs. Those need special treatment given
1406 that we have to present ISL with sth that looks like we've rewritten
1407 the IL out-of-SSA. */
1408 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1409 gsi_next (&psi))
1410 {
1411 gphi *phi = psi.phi ();
1412 tree res = gimple_phi_result (phi);
1413 if (virtual_operand_p (res)
1414 || scev_analyzable_p (res, scop->scop_info->region))
1415 continue;
1416 /* To simulate out-of-SSA the block containing the PHI node has
1417 reads of the PHI destination. And to preserve SSA dependences
1418 we also write to it (the out-of-SSA decl and the SSA result
1419 are coalesced for dependence purposes which is good enough). */
1420 add_read (&reads, res, phi);
1421 add_write (&writes, res);
1422 }
1423 basic_block bb_for_succs = bb;
1424 if (bb_for_succs == bb_for_succs->loop_father->latch
1425 && bb_in_sese_p (bb_for_succs, scop->scop_info->region)
1426 && sese_trivially_empty_bb_p (bb_for_succs))
1427 bb_for_succs = NULL;
1428 while (bb_for_succs)
1429 {
1430 basic_block latch = NULL;
1431 edge_iterator ei;
1432 edge e;
1433 FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
1434 {
1435 for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
1436 gsi_next (&psi))
1437 {
1438 gphi *phi = psi.phi ();
1439 tree res = gimple_phi_result (phi);
1440 if (virtual_operand_p (res))
1441 continue;
1442 /* To simulate out-of-SSA the predecessor of edges into PHI nodes
1443 has a copy from the PHI argument to the PHI destination. */
1444 if (! scev_analyzable_p (res, scop->scop_info->region))
1445 add_write (&writes, res);
1446 tree use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1447 if (TREE_CODE (use) == SSA_NAME
1448 && ! SSA_NAME_IS_DEFAULT_DEF (use)
1449 && gimple_bb (SSA_NAME_DEF_STMT (use)) != bb_for_succs
1450 && ! scev_analyzable_p (use, scop->scop_info->region))
1451 add_read (&reads, use, phi);
1452 }
1453 if (e->dest == bb_for_succs->loop_father->latch
1454 && bb_in_sese_p (e->dest, scop->scop_info->region)
1455 && sese_trivially_empty_bb_p (e->dest))
1456 latch = e->dest;
1457 }
1458 /* Handle empty latch block PHIs here, otherwise we confuse ISL
1459 with extra conditional code where it then peels off the last
1460 iteration just because of that. It would be simplest if we
1461 just didn't force simple latches (thus remove the forwarder). */
1462 bb_for_succs = latch;
1463 }
1464
1465 /* For the region exit block add reads for all live-out vars. */
1466 if (bb == scop->scop_info->region.exit->src)
1467 {
1468 sese_build_liveouts (scop->scop_info);
1469 unsigned i;
1470 bitmap_iterator bi;
1471 EXECUTE_IF_SET_IN_BITMAP (scop->scop_info->liveout, 0, i, bi)
1472 {
1473 tree use = ssa_name (i);
1474 add_read (&reads, use, NULL);
1475 }
1476 }
1477
1478 if (drs.is_empty () && writes.is_empty () && reads.is_empty ())
1479 return NULL;
1480
1481 return new_gimple_poly_bb (bb, drs, reads, writes);
1482 }
1483
1484 /* Compute alias-sets for all data references in DRS. */
1485
1486 static bool
1487 build_alias_set (scop_p scop)
1488 {
1489 int num_vertices = scop->drs.length ();
1490 struct graph *g = new_graph (num_vertices);
1491 dr_info *dr1, *dr2;
1492 int i, j;
1493 int *all_vertices;
1494
1495 FOR_EACH_VEC_ELT (scop->drs, i, dr1)
1496 for (j = i+1; scop->drs.iterate (j, &dr2); j++)
1497 if (dr_may_alias_p (dr1->dr, dr2->dr, true))
1498 {
1499 /* Dependences in the same alias set need to be handled
1500 by just looking at DR_ACCESS_FNs. */
1501 if (DR_NUM_DIMENSIONS (dr1->dr) == 0
1502 || DR_NUM_DIMENSIONS (dr1->dr) != DR_NUM_DIMENSIONS (dr2->dr)
1503 || ! operand_equal_p (DR_BASE_OBJECT (dr1->dr),
1504 DR_BASE_OBJECT (dr2->dr),
1505 OEP_ADDRESS_OF)
1506 || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1->dr)),
1507 TREE_TYPE (DR_BASE_OBJECT (dr2->dr))))
1508 {
1509 free_graph (g);
1510 return false;
1511 }
1512 add_edge (g, i, j);
1513 add_edge (g, j, i);
1514 }
1515
1516 all_vertices = XNEWVEC (int, num_vertices);
1517 for (i = 0; i < num_vertices; i++)
1518 all_vertices[i] = i;
1519
1520 scop->max_alias_set
1521 = graphds_dfs (g, all_vertices, num_vertices, NULL, true, NULL) + 1;
1522 free (all_vertices);
1523
1524 for (i = 0; i < g->n_vertices; i++)
1525 scop->drs[i].alias_set = g->vertices[i].component + 1;
1526
1527 free_graph (g);
1528 return true;
1529 }
1530
1531 /* Gather BBs and conditions for a SCOP. */
1532 class gather_bbs : public dom_walker
1533 {
1534 public:
1535 gather_bbs (cdi_direction, scop_p, int *);
1536
1537 virtual edge before_dom_children (basic_block);
1538 virtual void after_dom_children (basic_block);
1539
1540 private:
1541 auto_vec<gimple *, 3> conditions, cases;
1542 scop_p scop;
1543 };
1544 }
1545 gather_bbs::gather_bbs (cdi_direction direction, scop_p scop, int *bb_to_rpo)
1546 : dom_walker (direction, false, bb_to_rpo), scop (scop)
1547 {
1548 }
1549
1550 /* Call-back for dom_walk executed before visiting the dominated
1551 blocks. */
1552
1553 edge
1554 gather_bbs::before_dom_children (basic_block bb)
1555 {
1556 sese_info_p region = scop->scop_info;
1557 if (!bb_in_sese_p (bb, region->region))
1558 return dom_walker::STOP;
1559
1560 /* For loops fully contained in the region record parameters in the
1561 loop bounds. */
1562 loop_p loop = bb->loop_father;
1563 if (loop->header == bb
1564 && loop_in_sese_p (loop, region->region))
1565 {
1566 tree nb_iters = number_of_latch_executions (loop);
1567 if (chrec_contains_symbols (nb_iters))
1568 {
1569 nb_iters = scalar_evolution_in_region (region->region,
1570 loop, nb_iters);
1571 scan_tree_for_params (region, nb_iters);
1572 }
1573 }
1574
1575 gcond *stmt = single_pred_cond_non_loop_exit (bb);
1576
1577 if (stmt)
1578 {
1579 edge e = single_pred_edge (bb);
1580
1581 conditions.safe_push (stmt);
1582
1583 if (e->flags & EDGE_TRUE_VALUE)
1584 cases.safe_push (stmt);
1585 else
1586 cases.safe_push (NULL);
1587 }
1588
1589 scop->scop_info->bbs.safe_push (bb);
1590
1591 gimple_poly_bb_p gbb = try_generate_gimple_bb (scop, bb);
1592 if (!gbb)
1593 return NULL;
1594
1595 GBB_CONDITIONS (gbb) = conditions.copy ();
1596 GBB_CONDITION_CASES (gbb) = cases.copy ();
1597
1598 poly_bb_p pbb = new_poly_bb (scop, gbb);
1599 scop->pbbs.safe_push (pbb);
1600
1601 int i;
1602 data_reference_p dr;
1603 FOR_EACH_VEC_ELT (gbb->data_refs, i, dr)
1604 {
1605 DEBUG_PRINT (dp << "Adding memory ";
1606 if (dr->is_read)
1607 dp << "read: ";
1608 else
1609 dp << "write: ";
1610 print_generic_expr (dump_file, dr->ref);
1611 dp << "\nFrom stmt: ";
1612 print_gimple_stmt (dump_file, dr->stmt, 0));
1613
1614 scop->drs.safe_push (dr_info (dr, pbb));
1615 }
1616
1617 return NULL;
1618 }
1619
1620 /* Call-back for dom_walk executed after visiting the dominated
1621 blocks. */
1622
1623 void
1624 gather_bbs::after_dom_children (basic_block bb)
1625 {
1626 if (!bb_in_sese_p (bb, scop->scop_info->region))
1627 return;
1628
1629 if (single_pred_cond_non_loop_exit (bb))
1630 {
1631 conditions.pop ();
1632 cases.pop ();
1633 }
1634 }
1635
1636
1637 /* Compute sth like an execution order, dominator order with first executing
1638 edges that stay inside the current loop, delaying processing exit edges. */
1639
1640 static vec<unsigned> order;
1641
1642 static void
1643 get_order (scop_p scop, basic_block bb, vec<unsigned> *order, unsigned *dfs_num)
1644 {
1645 if (! bb_in_sese_p (bb, scop->scop_info->region))
1646 return;
1647
1648 (*order)[bb->index] = (*dfs_num)++;
1649 for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
1650 son;
1651 son = next_dom_son (CDI_DOMINATORS, son))
1652 if (flow_bb_inside_loop_p (bb->loop_father, son))
1653 get_order (scop, son, order, dfs_num);
1654 for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
1655 son;
1656 son = next_dom_son (CDI_DOMINATORS, son))
1657 if (! flow_bb_inside_loop_p (bb->loop_father, son))
1658 get_order (scop, son, order, dfs_num);
1659 }
1660
1661 /* Helper for qsort, sorting after order above. */
1662
1663 static int
1664 cmp_pbbs (const void *pa, const void *pb)
1665 {
1666 poly_bb_p bb1 = *((const poly_bb_p *)pa);
1667 poly_bb_p bb2 = *((const poly_bb_p *)pb);
1668 if (order[bb1->black_box->bb->index] < order[bb2->black_box->bb->index])
1669 return -1;
1670 else if (order[bb1->black_box->bb->index] > order[bb2->black_box->bb->index])
1671 return 1;
1672 else
1673 return 0;
1674 }
1675
1676 /* Find Static Control Parts (SCoP) in the current function and pushes
1677 them to SCOPS. */
1678
1679 void
1680 build_scops (vec<scop_p> *scops)
1681 {
1682 if (dump_file)
1683 dp.set_dump_file (dump_file);
1684
1685 scop_detection sb;
1686 sb.build_scop_depth (current_loops->tree_root);
1687
1688 /* Now create scops from the lightweight SESEs. */
1689 vec<sese_l> scops_l = sb.get_scops ();
1690
1691 /* Domwalk needs a bb to RPO mapping. Compute it once here. */
1692 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1693 int postorder_num = pre_and_rev_post_order_compute (NULL, postorder, true);
1694 int *bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1695 for (int i = 0; i < postorder_num; ++i)
1696 bb_to_rpo[postorder[i]] = i;
1697 free (postorder);
1698
1699 int i;
1700 sese_l *s;
1701 FOR_EACH_VEC_ELT (scops_l, i, s)
1702 {
1703 /* For our out-of-SSA we need a block on s->entry, similar to how
1704 we include the LCSSA block in the region. */
1705 s->entry = single_pred_edge (split_edge (s->entry));
1706
1707 scop_p scop = new_scop (s->entry, s->exit);
1708
1709 /* Record all basic blocks and their conditions in REGION. */
1710 gather_bbs (CDI_DOMINATORS, scop, bb_to_rpo).walk (s->entry->dest);
1711
1712 /* domwalk does not fulfil our code-generations constraints on the
1713 order of pbb which is to produce sth like execution order, delaying
1714 exection of loop exit edges. So compute such order and sort after
1715 that. */
1716 order.create (last_basic_block_for_fn (cfun));
1717 order.quick_grow (last_basic_block_for_fn (cfun));
1718 unsigned dfs_num = 0;
1719 get_order (scop, s->entry->dest, &order, &dfs_num);
1720 scop->pbbs.qsort (cmp_pbbs);
1721 order.release ();
1722
1723 if (! build_alias_set (scop))
1724 {
1725 DEBUG_PRINT (dp << "[scop-detection-fail] cannot handle dependences\n");
1726 free_scop (scop);
1727 continue;
1728 }
1729
1730 /* Do not optimize a scop containing only PBBs that do not belong
1731 to any loops. */
1732 if (sb.nb_pbbs_in_loops (scop) == 0)
1733 {
1734 DEBUG_PRINT (dp << "[scop-detection-fail] no data references.\n");
1735 free_scop (scop);
1736 continue;
1737 }
1738
1739 unsigned max_arrays = PARAM_VALUE (PARAM_GRAPHITE_MAX_ARRAYS_PER_SCOP);
1740 if (max_arrays > 0
1741 && scop->drs.length () >= max_arrays)
1742 {
1743 DEBUG_PRINT (dp << "[scop-detection-fail] too many data references: "
1744 << scop->drs.length ()
1745 << " is larger than --param graphite-max-arrays-per-scop="
1746 << max_arrays << ".\n");
1747 free_scop (scop);
1748 continue;
1749 }
1750
1751 find_scop_parameters (scop);
1752 graphite_dim_t max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
1753 if (max_dim > 0
1754 && scop_nb_params (scop) > max_dim)
1755 {
1756 DEBUG_PRINT (dp << "[scop-detection-fail] too many parameters: "
1757 << scop_nb_params (scop)
1758 << " larger than --param graphite-max-nb-scop-params="
1759 << max_dim << ".\n");
1760 free_scop (scop);
1761 continue;
1762 }
1763
1764 scops->safe_push (scop);
1765 }
1766
1767 free (bb_to_rpo);
1768 DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
1769 }
1770
1771 #endif /* HAVE_isl */