]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
LANGUAGES: Fix typos.
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "regs.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "target.h"
30 #include "flags.h"
31 #include "except.h"
32 #include "hard-reg-set.h"
33 #include "basic-block.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "diagnostic-core.h"
37 #include "params.h"
38 #include "df.h"
39 #include "sbitmap.h"
40 #include "sparseset.h"
41 #include "ira-int.h"
42
43 /* The code in this file is similar to one in global but the code
44 works on the allocno basis and creates live ranges instead of
45 pseudo-register conflicts. */
46
47 /* Program points are enumerated by numbers from range
48 0..IRA_MAX_POINT-1. There are approximately two times more program
49 points than insns. Program points are places in the program where
50 liveness info can be changed. In most general case (there are more
51 complicated cases too) some program points correspond to places
52 where input operand dies and other ones correspond to places where
53 output operands are born. */
54 int ira_max_point;
55
56 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
57 live ranges with given start/finish point. */
58 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
59
60 /* Number of the current program point. */
61 static int curr_point;
62
63 /* Point where register pressure excess started or -1 if there is no
64 register pressure excess. Excess pressure for a register class at
65 some point means that there are more allocnos of given register
66 class living at the point than number of hard-registers of the
67 class available for the allocation. It is defined only for
68 pressure classes. */
69 static int high_pressure_start_point[N_REG_CLASSES];
70
71 /* Objects live at current point in the scan. */
72 static sparseset objects_live;
73
74 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
75 multiple times. */
76 static sparseset allocnos_processed;
77
78 /* Set of hard regs (except eliminable ones) currently live. */
79 static HARD_REG_SET hard_regs_live;
80
81 /* The loop tree node corresponding to the current basic block. */
82 static ira_loop_tree_node_t curr_bb_node;
83
84 /* The number of the last processed call. */
85 static int last_call_num;
86 /* The number of last call at which given allocno was saved. */
87 static int *allocno_saved_at_call;
88
89 /* Record the birth of hard register REGNO, updating hard_regs_live and
90 hard reg conflict information for living allocnos. */
91 static void
92 make_hard_regno_born (int regno)
93 {
94 unsigned int i;
95
96 SET_HARD_REG_BIT (hard_regs_live, regno);
97 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
98 {
99 ira_object_t obj = ira_object_id_map[i];
100
101 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
102 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
103 }
104 }
105
106 /* Process the death of hard register REGNO. This updates
107 hard_regs_live. */
108 static void
109 make_hard_regno_dead (int regno)
110 {
111 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
112 }
113
114 /* Record the birth of object OBJ. Set a bit for it in objects_live,
115 start a new live range for it if necessary and update hard register
116 conflicts. */
117 static void
118 make_object_born (ira_object_t obj)
119 {
120 live_range_t lr = OBJECT_LIVE_RANGES (obj);
121
122 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
123 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
124 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
125
126 if (lr == NULL
127 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
128 ira_add_live_range_to_object (obj, curr_point, -1);
129 }
130
131 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
132 associated with object OBJ. */
133 static void
134 update_allocno_pressure_excess_length (ira_object_t obj)
135 {
136 ira_allocno_t a = OBJECT_ALLOCNO (obj);
137 int start, i;
138 enum reg_class aclass, pclass, cl;
139 live_range_t p;
140
141 aclass = ALLOCNO_CLASS (a);
142 pclass = ira_pressure_class_translate[aclass];
143 for (i = 0;
144 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
145 i++)
146 {
147 if (! ira_reg_pressure_class_p[cl])
148 continue;
149 if (high_pressure_start_point[cl] < 0)
150 continue;
151 p = OBJECT_LIVE_RANGES (obj);
152 ira_assert (p != NULL);
153 start = (high_pressure_start_point[cl] > p->start
154 ? high_pressure_start_point[cl] : p->start);
155 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
156 }
157 }
158
159 /* Process the death of object OBJ, which is associated with allocno
160 A. This finishes the current live range for it. */
161 static void
162 make_object_dead (ira_object_t obj)
163 {
164 live_range_t lr;
165
166 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
167 lr = OBJECT_LIVE_RANGES (obj);
168 ira_assert (lr != NULL);
169 lr->finish = curr_point;
170 update_allocno_pressure_excess_length (obj);
171 }
172
173 /* The current register pressures for each pressure class for the current
174 basic block. */
175 static int curr_reg_pressure[N_REG_CLASSES];
176
177 /* Record that register pressure for PCLASS increased by N registers.
178 Update the current register pressure, maximal register pressure for
179 the current BB and the start point of the register pressure
180 excess. */
181 static void
182 inc_register_pressure (enum reg_class pclass, int n)
183 {
184 int i;
185 enum reg_class cl;
186
187 for (i = 0;
188 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
189 i++)
190 {
191 if (! ira_reg_pressure_class_p[cl])
192 continue;
193 curr_reg_pressure[cl] += n;
194 if (high_pressure_start_point[cl] < 0
195 && (curr_reg_pressure[cl] > ira_available_class_regs[cl]))
196 high_pressure_start_point[cl] = curr_point;
197 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
198 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
199 }
200 }
201
202 /* Record that register pressure for PCLASS has decreased by NREGS
203 registers; update current register pressure, start point of the
204 register pressure excess, and register pressure excess length for
205 living allocnos. */
206
207 static void
208 dec_register_pressure (enum reg_class pclass, int nregs)
209 {
210 int i;
211 unsigned int j;
212 enum reg_class cl;
213 bool set_p = false;
214
215 for (i = 0;
216 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
217 i++)
218 {
219 if (! ira_reg_pressure_class_p[cl])
220 continue;
221 curr_reg_pressure[cl] -= nregs;
222 ira_assert (curr_reg_pressure[cl] >= 0);
223 if (high_pressure_start_point[cl] >= 0
224 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
225 set_p = true;
226 }
227 if (set_p)
228 {
229 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
230 update_allocno_pressure_excess_length (ira_object_id_map[j]);
231 for (i = 0;
232 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
233 i++)
234 {
235 if (! ira_reg_pressure_class_p[cl])
236 continue;
237 if (high_pressure_start_point[cl] >= 0
238 && curr_reg_pressure[cl] <= ira_available_class_regs[cl])
239 high_pressure_start_point[cl] = -1;
240 }
241 }
242 }
243
244 /* Determine from the objects_live bitmap whether REGNO is currently live,
245 and occupies only one object. Return false if we have no information. */
246 static bool
247 pseudo_regno_single_word_and_live_p (int regno)
248 {
249 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
250 ira_object_t obj;
251
252 if (a == NULL)
253 return false;
254 if (ALLOCNO_NUM_OBJECTS (a) > 1)
255 return false;
256
257 obj = ALLOCNO_OBJECT (a, 0);
258
259 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
260 }
261
262 /* Mark the pseudo register REGNO as live. Update all information about
263 live ranges and register pressure. */
264 static void
265 mark_pseudo_regno_live (int regno)
266 {
267 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
268 enum reg_class pclass;
269 int i, n, nregs;
270
271 if (a == NULL)
272 return;
273
274 /* Invalidate because it is referenced. */
275 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
276
277 n = ALLOCNO_NUM_OBJECTS (a);
278 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
279 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
280 if (n > 1)
281 {
282 /* We track every subobject separately. */
283 gcc_assert (nregs == n);
284 nregs = 1;
285 }
286
287 for (i = 0; i < n; i++)
288 {
289 ira_object_t obj = ALLOCNO_OBJECT (a, i);
290
291 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
292 continue;
293
294 inc_register_pressure (pclass, nregs);
295 make_object_born (obj);
296 }
297 }
298
299 /* Like mark_pseudo_regno_live, but try to only mark one subword of
300 the pseudo as live. SUBWORD indicates which; a value of 0
301 indicates the low part. */
302 static void
303 mark_pseudo_regno_subword_live (int regno, int subword)
304 {
305 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
306 int n;
307 enum reg_class pclass;
308 ira_object_t obj;
309
310 if (a == NULL)
311 return;
312
313 /* Invalidate because it is referenced. */
314 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
315
316 n = ALLOCNO_NUM_OBJECTS (a);
317 if (n == 1)
318 {
319 mark_pseudo_regno_live (regno);
320 return;
321 }
322
323 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
324 gcc_assert
325 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
326 obj = ALLOCNO_OBJECT (a, subword);
327
328 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
329 return;
330
331 inc_register_pressure (pclass, 1);
332 make_object_born (obj);
333 }
334
335 /* Mark the register REG as live. Store a 1 in hard_regs_live for
336 this register, record how many consecutive hardware registers it
337 actually needs. */
338 static void
339 mark_hard_reg_live (rtx reg)
340 {
341 int regno = REGNO (reg);
342
343 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
344 {
345 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
346 enum reg_class aclass, pclass;
347
348 while (regno < last)
349 {
350 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
351 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
352 {
353 aclass = ira_hard_regno_allocno_class[regno];
354 pclass = ira_pressure_class_translate[aclass];
355 inc_register_pressure (pclass, 1);
356 make_hard_regno_born (regno);
357 }
358 regno++;
359 }
360 }
361 }
362
363 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
364 register number; ORIG_REG is the access in the insn, which may be a
365 subreg. */
366 static void
367 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
368 {
369 if (df_read_modify_subreg_p (orig_reg))
370 {
371 mark_pseudo_regno_subword_live (regno,
372 subreg_lowpart_p (orig_reg) ? 0 : 1);
373 }
374 else
375 mark_pseudo_regno_live (regno);
376 }
377
378 /* Mark the register referenced by use or def REF as live. */
379 static void
380 mark_ref_live (df_ref ref)
381 {
382 rtx reg = DF_REF_REG (ref);
383 rtx orig_reg = reg;
384
385 if (GET_CODE (reg) == SUBREG)
386 reg = SUBREG_REG (reg);
387
388 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
389 mark_pseudo_reg_live (orig_reg, REGNO (reg));
390 else
391 mark_hard_reg_live (reg);
392 }
393
394 /* Mark the pseudo register REGNO as dead. Update all information about
395 live ranges and register pressure. */
396 static void
397 mark_pseudo_regno_dead (int regno)
398 {
399 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
400 int n, i, nregs;
401 enum reg_class cl;
402
403 if (a == NULL)
404 return;
405
406 /* Invalidate because it is referenced. */
407 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
408
409 n = ALLOCNO_NUM_OBJECTS (a);
410 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
411 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
412 if (n > 1)
413 {
414 /* We track every subobject separately. */
415 gcc_assert (nregs == n);
416 nregs = 1;
417 }
418 for (i = 0; i < n; i++)
419 {
420 ira_object_t obj = ALLOCNO_OBJECT (a, i);
421 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
422 continue;
423
424 dec_register_pressure (cl, nregs);
425 make_object_dead (obj);
426 }
427 }
428
429 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
430 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
431 static void
432 mark_pseudo_regno_subword_dead (int regno, int subword)
433 {
434 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
435 int n;
436 enum reg_class cl;
437 ira_object_t obj;
438
439 if (a == NULL)
440 return;
441
442 /* Invalidate because it is referenced. */
443 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
444
445 n = ALLOCNO_NUM_OBJECTS (a);
446 if (n == 1)
447 /* The allocno as a whole doesn't die in this case. */
448 return;
449
450 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
451 gcc_assert
452 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
453
454 obj = ALLOCNO_OBJECT (a, subword);
455 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
456 return;
457
458 dec_register_pressure (cl, 1);
459 make_object_dead (obj);
460 }
461
462 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
463 register. */
464 static void
465 mark_hard_reg_dead (rtx reg)
466 {
467 int regno = REGNO (reg);
468
469 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
470 {
471 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
472 enum reg_class aclass, pclass;
473
474 while (regno < last)
475 {
476 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
477 {
478 aclass = ira_hard_regno_allocno_class[regno];
479 pclass = ira_pressure_class_translate[aclass];
480 dec_register_pressure (pclass, 1);
481 make_hard_regno_dead (regno);
482 }
483 regno++;
484 }
485 }
486 }
487
488 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
489 register number; ORIG_REG is the access in the insn, which may be a
490 subreg. */
491 static void
492 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
493 {
494 if (df_read_modify_subreg_p (orig_reg))
495 {
496 mark_pseudo_regno_subword_dead (regno,
497 subreg_lowpart_p (orig_reg) ? 0 : 1);
498 }
499 else
500 mark_pseudo_regno_dead (regno);
501 }
502
503 /* Mark the register referenced by definition DEF as dead, if the
504 definition is a total one. */
505 static void
506 mark_ref_dead (df_ref def)
507 {
508 rtx reg = DF_REF_REG (def);
509 rtx orig_reg = reg;
510
511 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
512 return;
513
514 if (GET_CODE (reg) == SUBREG)
515 reg = SUBREG_REG (reg);
516
517 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
518 && (GET_CODE (orig_reg) != SUBREG
519 || REGNO (reg) < FIRST_PSEUDO_REGISTER
520 || !df_read_modify_subreg_p (orig_reg)))
521 return;
522
523 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
524 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
525 else
526 mark_hard_reg_dead (reg);
527 }
528
529 /* If REG is a pseudo or a subreg of it, and the class of its allocno
530 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
531 rtx actually accessed, it may be identical to DREG or a subreg of it.
532 Advance the current program point before making the conflict if
533 ADVANCE_P. Return TRUE if we will need to advance the current
534 program point. */
535 static bool
536 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
537 bool advance_p)
538 {
539 rtx orig_reg = reg;
540 ira_allocno_t a;
541
542 if (GET_CODE (reg) == SUBREG)
543 reg = SUBREG_REG (reg);
544
545 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
546 return advance_p;
547
548 a = ira_curr_regno_allocno_map[REGNO (reg)];
549 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
550 return advance_p;
551
552 if (advance_p)
553 curr_point++;
554
555 mark_pseudo_reg_live (orig_reg, REGNO (reg));
556 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
557 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
558 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
559
560 return false;
561 }
562
563 /* Check and make if necessary conflicts for pseudo DREG of class
564 DEF_CL of the current insn with input operand USE of class USE_CL.
565 ORIG_DREG is the rtx actually accessed, it may be identical to
566 DREG or a subreg of it. Advance the current program point before
567 making the conflict if ADVANCE_P. Return TRUE if we will need to
568 advance the current program point. */
569 static bool
570 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
571 enum reg_class def_cl, int use,
572 enum reg_class use_cl, bool advance_p)
573 {
574 if (! reg_classes_intersect_p (def_cl, use_cl))
575 return advance_p;
576
577 advance_p = make_pseudo_conflict (recog_data.operand[use],
578 use_cl, dreg, orig_dreg, advance_p);
579
580 /* Reload may end up swapping commutative operands, so you
581 have to take both orderings into account. The
582 constraints for the two operands can be completely
583 different. (Indeed, if the constraints for the two
584 operands are the same for all alternatives, there's no
585 point marking them as commutative.) */
586 if (use < recog_data.n_operands - 1
587 && recog_data.constraints[use][0] == '%')
588 advance_p
589 = make_pseudo_conflict (recog_data.operand[use + 1],
590 use_cl, dreg, orig_dreg, advance_p);
591 if (use >= 1
592 && recog_data.constraints[use - 1][0] == '%')
593 advance_p
594 = make_pseudo_conflict (recog_data.operand[use - 1],
595 use_cl, dreg, orig_dreg, advance_p);
596 return advance_p;
597 }
598
599 /* Check and make if necessary conflicts for definition DEF of class
600 DEF_CL of the current insn with input operands. Process only
601 constraints of alternative ALT. */
602 static void
603 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
604 {
605 int use, use_match;
606 ira_allocno_t a;
607 enum reg_class use_cl, acl;
608 bool advance_p;
609 rtx dreg = recog_data.operand[def];
610 rtx orig_dreg = dreg;
611
612 if (def_cl == NO_REGS)
613 return;
614
615 if (GET_CODE (dreg) == SUBREG)
616 dreg = SUBREG_REG (dreg);
617
618 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
619 return;
620
621 a = ira_curr_regno_allocno_map[REGNO (dreg)];
622 acl = ALLOCNO_CLASS (a);
623 if (! reg_classes_intersect_p (acl, def_cl))
624 return;
625
626 advance_p = true;
627
628 for (use = 0; use < recog_data.n_operands; use++)
629 {
630 int alt1;
631
632 if (use == def || recog_data.operand_type[use] == OP_OUT)
633 continue;
634
635 if (recog_op_alt[use][alt].anything_ok)
636 use_cl = ALL_REGS;
637 else
638 use_cl = recog_op_alt[use][alt].cl;
639
640 /* If there's any alternative that allows USE to match DEF, do not
641 record a conflict. If that causes us to create an invalid
642 instruction due to the earlyclobber, reload must fix it up. */
643 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
644 if (recog_op_alt[use][alt1].matches == def
645 || (use < recog_data.n_operands - 1
646 && recog_data.constraints[use][0] == '%'
647 && recog_op_alt[use + 1][alt1].matches == def)
648 || (use >= 1
649 && recog_data.constraints[use - 1][0] == '%'
650 && recog_op_alt[use - 1][alt1].matches == def))
651 break;
652
653 if (alt1 < recog_data.n_alternatives)
654 continue;
655
656 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
657 use, use_cl, advance_p);
658
659 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
660 {
661 if (use_match == def)
662 continue;
663
664 if (recog_op_alt[use_match][alt].anything_ok)
665 use_cl = ALL_REGS;
666 else
667 use_cl = recog_op_alt[use_match][alt].cl;
668 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
669 use, use_cl, advance_p);
670 }
671 }
672 }
673
674 /* Make conflicts of early clobber pseudo registers of the current
675 insn with its inputs. Avoid introducing unnecessary conflicts by
676 checking classes of the constraints and pseudos because otherwise
677 significant code degradation is possible for some targets. */
678 static void
679 make_early_clobber_and_input_conflicts (void)
680 {
681 int alt;
682 int def, def_match;
683 enum reg_class def_cl;
684
685 for (alt = 0; alt < recog_data.n_alternatives; alt++)
686 for (def = 0; def < recog_data.n_operands; def++)
687 {
688 def_cl = NO_REGS;
689 if (recog_op_alt[def][alt].earlyclobber)
690 {
691 if (recog_op_alt[def][alt].anything_ok)
692 def_cl = ALL_REGS;
693 else
694 def_cl = recog_op_alt[def][alt].cl;
695 check_and_make_def_conflict (alt, def, def_cl);
696 }
697 if ((def_match = recog_op_alt[def][alt].matches) >= 0
698 && (recog_op_alt[def_match][alt].earlyclobber
699 || recog_op_alt[def][alt].earlyclobber))
700 {
701 if (recog_op_alt[def_match][alt].anything_ok)
702 def_cl = ALL_REGS;
703 else
704 def_cl = recog_op_alt[def_match][alt].cl;
705 check_and_make_def_conflict (alt, def, def_cl);
706 }
707 }
708 }
709
710 /* Mark early clobber hard registers of the current INSN as live (if
711 LIVE_P) or dead. Return true if there are such registers. */
712 static bool
713 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
714 {
715 df_ref *def_rec;
716 bool set_p = false;
717
718 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
719 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
720 {
721 rtx dreg = DF_REF_REG (*def_rec);
722
723 if (GET_CODE (dreg) == SUBREG)
724 dreg = SUBREG_REG (dreg);
725 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
726 continue;
727
728 /* Hard register clobbers are believed to be early clobber
729 because there is no way to say that non-operand hard
730 register clobbers are not early ones. */
731 if (live_p)
732 mark_ref_live (*def_rec);
733 else
734 mark_ref_dead (*def_rec);
735 set_p = true;
736 }
737
738 return set_p;
739 }
740
741 /* Checks that CONSTRAINTS permits to use only one hard register. If
742 it is so, the function returns the class of the hard register.
743 Otherwise it returns NO_REGS. */
744 static enum reg_class
745 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
746 {
747 int curr_alt, c;
748 bool ignore_p;
749 enum reg_class cl, next_cl;
750
751 cl = NO_REGS;
752 for (ignore_p = false, curr_alt = 0;
753 (c = *constraints);
754 constraints += CONSTRAINT_LEN (c, constraints))
755 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
756 ignore_p = true;
757 else if (c == ',')
758 {
759 curr_alt++;
760 ignore_p = false;
761 }
762 else if (! ignore_p)
763 switch (c)
764 {
765 case ' ':
766 case '\t':
767 case '=':
768 case '+':
769 case '*':
770 case '&':
771 case '%':
772 case '!':
773 case '?':
774 break;
775 case 'i':
776 if (CONSTANT_P (op)
777 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
778 return NO_REGS;
779 break;
780
781 case 'n':
782 if (CONST_INT_P (op)
783 || (GET_CODE (op) == CONST_DOUBLE && GET_MODE (op) == VOIDmode)
784 || (equiv_const != NULL_RTX
785 && (CONST_INT_P (equiv_const)
786 || (GET_CODE (equiv_const) == CONST_DOUBLE
787 && GET_MODE (equiv_const) == VOIDmode))))
788 return NO_REGS;
789 break;
790
791 case 's':
792 if ((CONSTANT_P (op) && !CONST_INT_P (op)
793 && (GET_CODE (op) != CONST_DOUBLE || GET_MODE (op) != VOIDmode))
794 || (equiv_const != NULL_RTX
795 && CONSTANT_P (equiv_const)
796 && !CONST_INT_P (equiv_const)
797 && (GET_CODE (equiv_const) != CONST_DOUBLE
798 || GET_MODE (equiv_const) != VOIDmode)))
799 return NO_REGS;
800 break;
801
802 case 'I':
803 case 'J':
804 case 'K':
805 case 'L':
806 case 'M':
807 case 'N':
808 case 'O':
809 case 'P':
810 if ((CONST_INT_P (op)
811 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
812 || (equiv_const != NULL_RTX
813 && CONST_INT_P (equiv_const)
814 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
815 c, constraints)))
816 return NO_REGS;
817 break;
818
819 case 'E':
820 case 'F':
821 if (GET_CODE (op) == CONST_DOUBLE
822 || (GET_CODE (op) == CONST_VECTOR
823 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
824 || (equiv_const != NULL_RTX
825 && (GET_CODE (equiv_const) == CONST_DOUBLE
826 || (GET_CODE (equiv_const) == CONST_VECTOR
827 && (GET_MODE_CLASS (GET_MODE (equiv_const))
828 == MODE_VECTOR_FLOAT)))))
829 return NO_REGS;
830 break;
831
832 case 'G':
833 case 'H':
834 if ((GET_CODE (op) == CONST_DOUBLE
835 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
836 || (equiv_const != NULL_RTX
837 && GET_CODE (equiv_const) == CONST_DOUBLE
838 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
839 c, constraints)))
840 return NO_REGS;
841 /* ??? what about memory */
842 case 'r':
843 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
844 case 'h': case 'j': case 'k': case 'l':
845 case 'q': case 't': case 'u':
846 case 'v': case 'w': case 'x': case 'y': case 'z':
847 case 'A': case 'B': case 'C': case 'D':
848 case 'Q': case 'R': case 'S': case 'T': case 'U':
849 case 'W': case 'Y': case 'Z':
850 next_cl = (c == 'r'
851 ? GENERAL_REGS
852 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
853 if ((cl != NO_REGS && next_cl != cl)
854 || (ira_available_class_regs[next_cl]
855 > ira_reg_class_max_nregs[next_cl][GET_MODE (op)]))
856 return NO_REGS;
857 cl = next_cl;
858 break;
859
860 case '0': case '1': case '2': case '3': case '4':
861 case '5': case '6': case '7': case '8': case '9':
862 next_cl
863 = single_reg_class (recog_data.constraints[c - '0'],
864 recog_data.operand[c - '0'], NULL_RTX);
865 if ((cl != NO_REGS && next_cl != cl)
866 || next_cl == NO_REGS
867 || (ira_available_class_regs[next_cl]
868 > ira_reg_class_max_nregs[next_cl][GET_MODE (op)]))
869 return NO_REGS;
870 cl = next_cl;
871 break;
872
873 default:
874 return NO_REGS;
875 }
876 return cl;
877 }
878
879 /* The function checks that operand OP_NUM of the current insn can use
880 only one hard register. If it is so, the function returns the
881 class of the hard register. Otherwise it returns NO_REGS. */
882 static enum reg_class
883 single_reg_operand_class (int op_num)
884 {
885 if (op_num < 0 || recog_data.n_alternatives == 0)
886 return NO_REGS;
887 return single_reg_class (recog_data.constraints[op_num],
888 recog_data.operand[op_num], NULL_RTX);
889 }
890
891 /* The function sets up hard register set *SET to hard registers which
892 might be used by insn reloads because the constraints are too
893 strict. */
894 void
895 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
896 {
897 int i, curr_alt, c, regno = 0;
898 bool ignore_p;
899 enum reg_class cl;
900 rtx op;
901 enum machine_mode mode;
902
903 CLEAR_HARD_REG_SET (*set);
904 for (i = 0; i < recog_data.n_operands; i++)
905 {
906 op = recog_data.operand[i];
907
908 if (GET_CODE (op) == SUBREG)
909 op = SUBREG_REG (op);
910
911 if (GET_CODE (op) == SCRATCH
912 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
913 {
914 const char *p = recog_data.constraints[i];
915
916 mode = (GET_CODE (op) == SCRATCH
917 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
918 cl = NO_REGS;
919 for (ignore_p = false, curr_alt = 0;
920 (c = *p);
921 p += CONSTRAINT_LEN (c, p))
922 if (c == '#' || !recog_data.alternative_enabled_p[curr_alt])
923 ignore_p = true;
924 else if (c == ',')
925 {
926 curr_alt++;
927 ignore_p = false;
928 }
929 else if (! ignore_p)
930 switch (c)
931 {
932 case 'r':
933 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
934 case 'h': case 'j': case 'k': case 'l':
935 case 'q': case 't': case 'u':
936 case 'v': case 'w': case 'x': case 'y': case 'z':
937 case 'A': case 'B': case 'C': case 'D':
938 case 'Q': case 'R': case 'S': case 'T': case 'U':
939 case 'W': case 'Y': case 'Z':
940 cl = (c == 'r'
941 ? GENERAL_REGS
942 : REG_CLASS_FROM_CONSTRAINT (c, p));
943 if (cl != NO_REGS
944 /* There is no register pressure problem if all of the
945 regs in this class are fixed. */
946 && ira_available_class_regs[cl] != 0
947 && (ira_available_class_regs[cl]
948 <= ira_reg_class_max_nregs[cl][mode]))
949 IOR_HARD_REG_SET (*set, reg_class_contents[cl]);
950 break;
951 }
952 }
953 }
954 }
955 /* Processes input operands, if IN_P, or output operands otherwise of
956 the current insn with FREQ to find allocno which can use only one
957 hard register and makes other currently living allocnos conflicting
958 with the hard register. */
959 static void
960 process_single_reg_class_operands (bool in_p, int freq)
961 {
962 int i, regno;
963 unsigned int px;
964 enum reg_class cl;
965 rtx operand;
966 ira_allocno_t operand_a, a;
967
968 for (i = 0; i < recog_data.n_operands; i++)
969 {
970 operand = recog_data.operand[i];
971 if (in_p && recog_data.operand_type[i] != OP_IN
972 && recog_data.operand_type[i] != OP_INOUT)
973 continue;
974 if (! in_p && recog_data.operand_type[i] != OP_OUT
975 && recog_data.operand_type[i] != OP_INOUT)
976 continue;
977 cl = single_reg_operand_class (i);
978 if (cl == NO_REGS)
979 continue;
980
981 operand_a = NULL;
982
983 if (GET_CODE (operand) == SUBREG)
984 operand = SUBREG_REG (operand);
985
986 if (REG_P (operand)
987 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
988 {
989 enum reg_class aclass;
990
991 operand_a = ira_curr_regno_allocno_map[regno];
992 aclass = ALLOCNO_CLASS (operand_a);
993 if (ira_class_subset_p[cl][aclass]
994 && ira_class_hard_regs_num[cl] != 0)
995 {
996 /* View the desired allocation of OPERAND as:
997
998 (REG:YMODE YREGNO),
999
1000 a simplification of:
1001
1002 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
1003 enum machine_mode ymode, xmode;
1004 int xregno, yregno;
1005 HOST_WIDE_INT offset;
1006
1007 xmode = recog_data.operand_mode[i];
1008 xregno = ira_class_hard_regs[cl][0];
1009 ymode = ALLOCNO_MODE (operand_a);
1010 offset = subreg_lowpart_offset (ymode, xmode);
1011 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
1012 if (yregno >= 0
1013 && ira_class_hard_reg_index[aclass][yregno] >= 0)
1014 {
1015 int cost;
1016
1017 ira_allocate_and_set_costs
1018 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
1019 aclass, 0);
1020 ira_init_register_move_cost_if_necessary (xmode);
1021 cost = freq * (in_p
1022 ? ira_register_move_cost[xmode][aclass][cl]
1023 : ira_register_move_cost[xmode][cl][aclass]);
1024 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
1025 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
1026 }
1027 }
1028 }
1029
1030 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1031 {
1032 ira_object_t obj = ira_object_id_map[px];
1033 a = OBJECT_ALLOCNO (obj);
1034 if (a != operand_a)
1035 {
1036 /* We could increase costs of A instead of making it
1037 conflicting with the hard register. But it works worse
1038 because it will be spilled in reload in anyway. */
1039 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1040 reg_class_contents[cl]);
1041 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1042 reg_class_contents[cl]);
1043 }
1044 }
1045 }
1046 }
1047
1048 /* Return true when one of the predecessor edges of BB is marked with
1049 EDGE_ABNORMAL_CALL or EDGE_EH. */
1050 static bool
1051 bb_has_abnormal_call_pred (basic_block bb)
1052 {
1053 edge e;
1054 edge_iterator ei;
1055
1056 FOR_EACH_EDGE (e, ei, bb->preds)
1057 {
1058 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1059 return true;
1060 }
1061 return false;
1062 }
1063
1064 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1065 we find a SET rtx that we can use to deduce that a register can be cheaply
1066 caller-saved. Return such a register, or NULL_RTX if none is found. */
1067 static rtx
1068 find_call_crossed_cheap_reg (rtx insn)
1069 {
1070 rtx cheap_reg = NULL_RTX;
1071 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1072
1073 while (exp != NULL)
1074 {
1075 rtx x = XEXP (exp, 0);
1076 if (GET_CODE (x) == SET)
1077 {
1078 exp = x;
1079 break;
1080 }
1081 exp = XEXP (exp, 1);
1082 }
1083 if (exp != NULL)
1084 {
1085 basic_block bb = BLOCK_FOR_INSN (insn);
1086 rtx reg = SET_SRC (exp);
1087 rtx prev = PREV_INSN (insn);
1088 while (prev && !(INSN_P (prev)
1089 && BLOCK_FOR_INSN (prev) != bb))
1090 {
1091 if (NONDEBUG_INSN_P (prev))
1092 {
1093 rtx set = single_set (prev);
1094
1095 if (set && rtx_equal_p (SET_DEST (set), reg))
1096 {
1097 rtx src = SET_SRC (set);
1098 if (!REG_P (src) || HARD_REGISTER_P (src)
1099 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1100 break;
1101 if (!modified_between_p (src, prev, insn))
1102 cheap_reg = src;
1103 break;
1104 }
1105 if (set && rtx_equal_p (SET_SRC (set), reg))
1106 {
1107 rtx dest = SET_DEST (set);
1108 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1109 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1110 break;
1111 if (!modified_between_p (dest, prev, insn))
1112 cheap_reg = dest;
1113 break;
1114 }
1115
1116 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1117 break;
1118 }
1119 prev = PREV_INSN (prev);
1120 }
1121 }
1122 return cheap_reg;
1123 }
1124
1125 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1126 update allocno live ranges, allocno hard register conflicts,
1127 intersected calls, and register pressure info for allocnos for the
1128 basic block for and regions containing the basic block. */
1129 static void
1130 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1131 {
1132 int i, freq;
1133 unsigned int j;
1134 basic_block bb;
1135 rtx insn;
1136 bitmap_iterator bi;
1137 bitmap reg_live_out;
1138 unsigned int px;
1139 bool set_p;
1140
1141 bb = loop_tree_node->bb;
1142 if (bb != NULL)
1143 {
1144 for (i = 0; i < ira_pressure_classes_num; i++)
1145 {
1146 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1147 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1148 }
1149 curr_bb_node = loop_tree_node;
1150 reg_live_out = DF_LR_OUT (bb);
1151 sparseset_clear (objects_live);
1152 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1153 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1154 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1155 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1156 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1157 {
1158 enum reg_class aclass, pclass, cl;
1159
1160 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1161 pclass = ira_pressure_class_translate[aclass];
1162 for (j = 0;
1163 (cl = ira_reg_class_super_classes[pclass][j])
1164 != LIM_REG_CLASSES;
1165 j++)
1166 {
1167 if (! ira_reg_pressure_class_p[cl])
1168 continue;
1169 curr_reg_pressure[cl]++;
1170 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1171 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1172 ira_assert (curr_reg_pressure[cl]
1173 <= ira_available_class_regs[cl]);
1174 }
1175 }
1176 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1177 mark_pseudo_regno_live (j);
1178
1179 freq = REG_FREQ_FROM_BB (bb);
1180 if (freq == 0)
1181 freq = 1;
1182
1183 /* Invalidate all allocno_saved_at_call entries. */
1184 last_call_num++;
1185
1186 /* Scan the code of this basic block, noting which allocnos and
1187 hard regs are born or die.
1188
1189 Note that this loop treats uninitialized values as live until
1190 the beginning of the block. For example, if an instruction
1191 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1192 set, FOO will remain live until the beginning of the block.
1193 Likewise if FOO is not set at all. This is unnecessarily
1194 pessimistic, but it probably doesn't matter much in practice. */
1195 FOR_BB_INSNS_REVERSE (bb, insn)
1196 {
1197 df_ref *def_rec, *use_rec;
1198 bool call_p;
1199
1200 if (!NONDEBUG_INSN_P (insn))
1201 continue;
1202
1203 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1204 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1205 INSN_UID (insn), loop_tree_node->parent->loop_num,
1206 curr_point);
1207
1208 /* Mark each defined value as live. We need to do this for
1209 unused values because they still conflict with quantities
1210 that are live at the time of the definition.
1211
1212 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1213 references represent the effect of the called function
1214 on a call-clobbered register. Marking the register as
1215 live would stop us from allocating it to a call-crossing
1216 allocno. */
1217 call_p = CALL_P (insn);
1218 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1219 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1220 mark_ref_live (*def_rec);
1221
1222 /* If INSN has multiple outputs, then any value used in one
1223 of the outputs conflicts with the other outputs. Model this
1224 by making the used value live during the output phase.
1225
1226 It is unsafe to use !single_set here since it will ignore
1227 an unused output. Just because an output is unused does
1228 not mean the compiler can assume the side effect will not
1229 occur. Consider if ALLOCNO appears in the address of an
1230 output and we reload the output. If we allocate ALLOCNO
1231 to the same hard register as an unused output we could
1232 set the hard register before the output reload insn. */
1233 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1234 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1235 {
1236 int i;
1237 rtx reg;
1238
1239 reg = DF_REF_REG (*use_rec);
1240 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1241 {
1242 rtx set;
1243
1244 set = XVECEXP (PATTERN (insn), 0, i);
1245 if (GET_CODE (set) == SET
1246 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1247 {
1248 /* After the previous loop, this is a no-op if
1249 REG is contained within SET_DEST (SET). */
1250 mark_ref_live (*use_rec);
1251 break;
1252 }
1253 }
1254 }
1255
1256 extract_insn (insn);
1257 preprocess_constraints ();
1258 process_single_reg_class_operands (false, freq);
1259
1260 /* See which defined values die here. */
1261 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1262 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1263 mark_ref_dead (*def_rec);
1264
1265 if (call_p)
1266 {
1267 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1268 there, try to find a pseudo that is live across the call but
1269 can be cheaply reconstructed from the return value. */
1270 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1271 if (cheap_reg != NULL_RTX)
1272 add_reg_note (insn, REG_RETURNED, cheap_reg);
1273
1274 last_call_num++;
1275 sparseset_clear (allocnos_processed);
1276 /* The current set of live allocnos are live across the call. */
1277 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1278 {
1279 ira_object_t obj = ira_object_id_map[i];
1280 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1281 int num = ALLOCNO_NUM (a);
1282
1283 /* Don't allocate allocnos that cross setjmps or any
1284 call, if this function receives a nonlocal
1285 goto. */
1286 if (cfun->has_nonlocal_label
1287 || find_reg_note (insn, REG_SETJMP,
1288 NULL_RTX) != NULL_RTX)
1289 {
1290 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1291 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1292 }
1293 if (can_throw_internal (insn))
1294 {
1295 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1296 call_used_reg_set);
1297 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1298 call_used_reg_set);
1299 }
1300
1301 if (sparseset_bit_p (allocnos_processed, num))
1302 continue;
1303 sparseset_set_bit (allocnos_processed, num);
1304
1305 if (allocno_saved_at_call[num] != last_call_num)
1306 /* Here we are mimicking caller-save.c behaviour
1307 which does not save hard register at a call if
1308 it was saved on previous call in the same basic
1309 block and the hard register was not mentioned
1310 between the two calls. */
1311 ALLOCNO_CALL_FREQ (a) += freq;
1312 /* Mark it as saved at the next call. */
1313 allocno_saved_at_call[num] = last_call_num + 1;
1314 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1315 if (cheap_reg != NULL_RTX
1316 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1317 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1318 }
1319 }
1320
1321 make_early_clobber_and_input_conflicts ();
1322
1323 curr_point++;
1324
1325 /* Mark each used value as live. */
1326 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1327 mark_ref_live (*use_rec);
1328
1329 process_single_reg_class_operands (true, freq);
1330
1331 set_p = mark_hard_reg_early_clobbers (insn, true);
1332
1333 if (set_p)
1334 {
1335 mark_hard_reg_early_clobbers (insn, false);
1336
1337 /* Mark each hard reg as live again. For example, a
1338 hard register can be in clobber and in an insn
1339 input. */
1340 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1341 {
1342 rtx ureg = DF_REF_REG (*use_rec);
1343
1344 if (GET_CODE (ureg) == SUBREG)
1345 ureg = SUBREG_REG (ureg);
1346 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1347 continue;
1348
1349 mark_ref_live (*use_rec);
1350 }
1351 }
1352
1353 curr_point++;
1354 }
1355
1356 #ifdef EH_RETURN_DATA_REGNO
1357 if (bb_has_eh_pred (bb))
1358 for (j = 0; ; ++j)
1359 {
1360 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1361 if (regno == INVALID_REGNUM)
1362 break;
1363 make_hard_regno_born (regno);
1364 }
1365 #endif
1366
1367 /* Allocnos can't go in stack regs at the start of a basic block
1368 that is reached by an abnormal edge. Likewise for call
1369 clobbered regs, because caller-save, fixup_abnormal_edges and
1370 possibly the table driven EH machinery are not quite ready to
1371 handle such allocnos live across such edges. */
1372 if (bb_has_abnormal_pred (bb))
1373 {
1374 #ifdef STACK_REGS
1375 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1376 {
1377 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1378
1379 ALLOCNO_NO_STACK_REG_P (a) = true;
1380 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1381 }
1382 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1383 make_hard_regno_born (px);
1384 #endif
1385 /* No need to record conflicts for call clobbered regs if we
1386 have nonlocal labels around, as we don't ever try to
1387 allocate such regs in this case. */
1388 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1389 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1390 if (call_used_regs[px])
1391 make_hard_regno_born (px);
1392 }
1393
1394 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1395 make_object_dead (ira_object_id_map[i]);
1396
1397 curr_point++;
1398
1399 }
1400 /* Propagate register pressure to upper loop tree nodes: */
1401 if (loop_tree_node != ira_loop_tree_root)
1402 for (i = 0; i < ira_pressure_classes_num; i++)
1403 {
1404 enum reg_class pclass;
1405
1406 pclass = ira_pressure_classes[i];
1407 if (loop_tree_node->reg_pressure[pclass]
1408 > loop_tree_node->parent->reg_pressure[pclass])
1409 loop_tree_node->parent->reg_pressure[pclass]
1410 = loop_tree_node->reg_pressure[pclass];
1411 }
1412 }
1413
1414 /* Create and set up IRA_START_POINT_RANGES and
1415 IRA_FINISH_POINT_RANGES. */
1416 static void
1417 create_start_finish_chains (void)
1418 {
1419 ira_object_t obj;
1420 ira_object_iterator oi;
1421 live_range_t r;
1422
1423 ira_start_point_ranges
1424 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1425 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1426 ira_finish_point_ranges
1427 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1428 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1429 FOR_EACH_OBJECT (obj, oi)
1430 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1431 {
1432 r->start_next = ira_start_point_ranges[r->start];
1433 ira_start_point_ranges[r->start] = r;
1434 r->finish_next = ira_finish_point_ranges[r->finish];
1435 ira_finish_point_ranges[r->finish] = r;
1436 }
1437 }
1438
1439 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1440 new live ranges and program points were added as a result if new
1441 insn generation. */
1442 void
1443 ira_rebuild_start_finish_chains (void)
1444 {
1445 ira_free (ira_finish_point_ranges);
1446 ira_free (ira_start_point_ranges);
1447 create_start_finish_chains ();
1448 }
1449
1450 /* Compress allocno live ranges by removing program points where
1451 nothing happens. */
1452 static void
1453 remove_some_program_points_and_update_live_ranges (void)
1454 {
1455 unsigned i;
1456 int n;
1457 int *map;
1458 ira_object_t obj;
1459 ira_object_iterator oi;
1460 live_range_t r;
1461 sbitmap born_or_dead, born, dead;
1462 sbitmap_iterator sbi;
1463 bool born_p, dead_p, prev_born_p, prev_dead_p;
1464
1465 born = sbitmap_alloc (ira_max_point);
1466 dead = sbitmap_alloc (ira_max_point);
1467 sbitmap_zero (born);
1468 sbitmap_zero (dead);
1469 FOR_EACH_OBJECT (obj, oi)
1470 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1471 {
1472 ira_assert (r->start <= r->finish);
1473 SET_BIT (born, r->start);
1474 SET_BIT (dead, r->finish);
1475 }
1476
1477 born_or_dead = sbitmap_alloc (ira_max_point);
1478 sbitmap_a_or_b (born_or_dead, born, dead);
1479 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1480 n = -1;
1481 prev_born_p = prev_dead_p = false;
1482 EXECUTE_IF_SET_IN_SBITMAP (born_or_dead, 0, i, sbi)
1483 {
1484 born_p = TEST_BIT (born, i);
1485 dead_p = TEST_BIT (dead, i);
1486 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1487 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1488 map[i] = n;
1489 else
1490 map[i] = ++n;
1491 prev_born_p = born_p;
1492 prev_dead_p = dead_p;
1493 }
1494 sbitmap_free (born_or_dead);
1495 sbitmap_free (born);
1496 sbitmap_free (dead);
1497 n++;
1498 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1499 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1500 ira_max_point, n, 100 * n / ira_max_point);
1501 ira_max_point = n;
1502
1503 FOR_EACH_OBJECT (obj, oi)
1504 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1505 {
1506 r->start = map[r->start];
1507 r->finish = map[r->finish];
1508 }
1509
1510 ira_free (map);
1511 }
1512
1513 /* Print live ranges R to file F. */
1514 void
1515 ira_print_live_range_list (FILE *f, live_range_t r)
1516 {
1517 for (; r != NULL; r = r->next)
1518 fprintf (f, " [%d..%d]", r->start, r->finish);
1519 fprintf (f, "\n");
1520 }
1521
1522 /* Print live ranges R to stderr. */
1523 void
1524 ira_debug_live_range_list (live_range_t r)
1525 {
1526 ira_print_live_range_list (stderr, r);
1527 }
1528
1529 /* Print live ranges of object OBJ to file F. */
1530 static void
1531 print_object_live_ranges (FILE *f, ira_object_t obj)
1532 {
1533 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1534 }
1535
1536 /* Print live ranges of allocno A to file F. */
1537 static void
1538 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1539 {
1540 int n = ALLOCNO_NUM_OBJECTS (a);
1541 int i;
1542
1543 for (i = 0; i < n; i++)
1544 {
1545 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1546 if (n > 1)
1547 fprintf (f, " [%d]", i);
1548 fprintf (f, "):");
1549 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1550 }
1551 }
1552
1553 /* Print live ranges of allocno A to stderr. */
1554 void
1555 ira_debug_allocno_live_ranges (ira_allocno_t a)
1556 {
1557 print_allocno_live_ranges (stderr, a);
1558 }
1559
1560 /* Print live ranges of all allocnos to file F. */
1561 static void
1562 print_live_ranges (FILE *f)
1563 {
1564 ira_allocno_t a;
1565 ira_allocno_iterator ai;
1566
1567 FOR_EACH_ALLOCNO (a, ai)
1568 print_allocno_live_ranges (f, a);
1569 }
1570
1571 /* Print live ranges of all allocnos to stderr. */
1572 void
1573 ira_debug_live_ranges (void)
1574 {
1575 print_live_ranges (stderr);
1576 }
1577
1578 /* The main entry function creates live ranges, set up
1579 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1580 calculate register pressure info. */
1581 void
1582 ira_create_allocno_live_ranges (void)
1583 {
1584 objects_live = sparseset_alloc (ira_objects_num);
1585 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1586 curr_point = 0;
1587 last_call_num = 0;
1588 allocno_saved_at_call
1589 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1590 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1591 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1592 process_bb_node_lives);
1593 ira_max_point = curr_point;
1594 create_start_finish_chains ();
1595 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1596 print_live_ranges (ira_dump_file);
1597 /* Clean up. */
1598 ira_free (allocno_saved_at_call);
1599 sparseset_free (objects_live);
1600 sparseset_free (allocnos_processed);
1601 }
1602
1603 /* Compress allocno live ranges. */
1604 void
1605 ira_compress_allocno_live_ranges (void)
1606 {
1607 remove_some_program_points_and_update_live_ranges ();
1608 ira_rebuild_start_finish_chains ();
1609 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1610 {
1611 fprintf (ira_dump_file, "Ranges after the compression:\n");
1612 print_live_ranges (ira_dump_file);
1613 }
1614 }
1615
1616 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1617 void
1618 ira_finish_allocno_live_ranges (void)
1619 {
1620 ira_free (ira_finish_point_ranges);
1621 ira_free (ira_start_point_ranges);
1622 }