]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
recog.h (operand_alternative): Convert reg_class, reject, matched and matches into...
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "params.h"
37 #include "df.h"
38 #include "sbitmap.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for
67 pressure classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Objects live at current point in the scan. */
71 static sparseset objects_live;
72
73 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
74 multiple times. */
75 static sparseset allocnos_processed;
76
77 /* Set of hard regs (except eliminable ones) currently live. */
78 static HARD_REG_SET hard_regs_live;
79
80 /* The loop tree node corresponding to the current basic block. */
81 static ira_loop_tree_node_t curr_bb_node;
82
83 /* The number of the last processed call. */
84 static int last_call_num;
85 /* The number of last call at which given allocno was saved. */
86 static int *allocno_saved_at_call;
87
88 /* Record the birth of hard register REGNO, updating hard_regs_live and
89 hard reg conflict information for living allocnos. */
90 static void
91 make_hard_regno_born (int regno)
92 {
93 unsigned int i;
94
95 SET_HARD_REG_BIT (hard_regs_live, regno);
96 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
97 {
98 ira_object_t obj = ira_object_id_map[i];
99
100 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
101 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
102 }
103 }
104
105 /* Process the death of hard register REGNO. This updates
106 hard_regs_live. */
107 static void
108 make_hard_regno_dead (int regno)
109 {
110 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
111 }
112
113 /* Record the birth of object OBJ. Set a bit for it in objects_live,
114 start a new live range for it if necessary and update hard register
115 conflicts. */
116 static void
117 make_object_born (ira_object_t obj)
118 {
119 live_range_t lr = OBJECT_LIVE_RANGES (obj);
120
121 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
122 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
124
125 if (lr == NULL
126 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
127 ira_add_live_range_to_object (obj, curr_point, -1);
128 }
129
130 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
131 associated with object OBJ. */
132 static void
133 update_allocno_pressure_excess_length (ira_object_t obj)
134 {
135 ira_allocno_t a = OBJECT_ALLOCNO (obj);
136 int start, i;
137 enum reg_class aclass, pclass, cl;
138 live_range_t p;
139
140 aclass = ALLOCNO_CLASS (a);
141 pclass = ira_pressure_class_translate[aclass];
142 for (i = 0;
143 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
144 i++)
145 {
146 if (! ira_reg_pressure_class_p[cl])
147 continue;
148 if (high_pressure_start_point[cl] < 0)
149 continue;
150 p = OBJECT_LIVE_RANGES (obj);
151 ira_assert (p != NULL);
152 start = (high_pressure_start_point[cl] > p->start
153 ? high_pressure_start_point[cl] : p->start);
154 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
155 }
156 }
157
158 /* Process the death of object OBJ, which is associated with allocno
159 A. This finishes the current live range for it. */
160 static void
161 make_object_dead (ira_object_t obj)
162 {
163 live_range_t lr;
164
165 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
166 lr = OBJECT_LIVE_RANGES (obj);
167 ira_assert (lr != NULL);
168 lr->finish = curr_point;
169 update_allocno_pressure_excess_length (obj);
170 }
171
172 /* The current register pressures for each pressure class for the current
173 basic block. */
174 static int curr_reg_pressure[N_REG_CLASSES];
175
176 /* Record that register pressure for PCLASS increased by N registers.
177 Update the current register pressure, maximal register pressure for
178 the current BB and the start point of the register pressure
179 excess. */
180 static void
181 inc_register_pressure (enum reg_class pclass, int n)
182 {
183 int i;
184 enum reg_class cl;
185
186 for (i = 0;
187 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
188 i++)
189 {
190 if (! ira_reg_pressure_class_p[cl])
191 continue;
192 curr_reg_pressure[cl] += n;
193 if (high_pressure_start_point[cl] < 0
194 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
195 high_pressure_start_point[cl] = curr_point;
196 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
197 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
198 }
199 }
200
201 /* Record that register pressure for PCLASS has decreased by NREGS
202 registers; update current register pressure, start point of the
203 register pressure excess, and register pressure excess length for
204 living allocnos. */
205
206 static void
207 dec_register_pressure (enum reg_class pclass, int nregs)
208 {
209 int i;
210 unsigned int j;
211 enum reg_class cl;
212 bool set_p = false;
213
214 for (i = 0;
215 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
216 i++)
217 {
218 if (! ira_reg_pressure_class_p[cl])
219 continue;
220 curr_reg_pressure[cl] -= nregs;
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
229 update_allocno_pressure_excess_length (ira_object_id_map[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
232 i++)
233 {
234 if (! ira_reg_pressure_class_p[cl])
235 continue;
236 if (high_pressure_start_point[cl] >= 0
237 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
238 high_pressure_start_point[cl] = -1;
239 }
240 }
241 }
242
243 /* Determine from the objects_live bitmap whether REGNO is currently live,
244 and occupies only one object. Return false if we have no information. */
245 static bool
246 pseudo_regno_single_word_and_live_p (int regno)
247 {
248 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
249 ira_object_t obj;
250
251 if (a == NULL)
252 return false;
253 if (ALLOCNO_NUM_OBJECTS (a) > 1)
254 return false;
255
256 obj = ALLOCNO_OBJECT (a, 0);
257
258 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
259 }
260
261 /* Mark the pseudo register REGNO as live. Update all information about
262 live ranges and register pressure. */
263 static void
264 mark_pseudo_regno_live (int regno)
265 {
266 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
267 enum reg_class pclass;
268 int i, n, nregs;
269
270 if (a == NULL)
271 return;
272
273 /* Invalidate because it is referenced. */
274 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
275
276 n = ALLOCNO_NUM_OBJECTS (a);
277 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
278 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
279 if (n > 1)
280 {
281 /* We track every subobject separately. */
282 gcc_assert (nregs == n);
283 nregs = 1;
284 }
285
286 for (i = 0; i < n; i++)
287 {
288 ira_object_t obj = ALLOCNO_OBJECT (a, i);
289
290 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
291 continue;
292
293 inc_register_pressure (pclass, nregs);
294 make_object_born (obj);
295 }
296 }
297
298 /* Like mark_pseudo_regno_live, but try to only mark one subword of
299 the pseudo as live. SUBWORD indicates which; a value of 0
300 indicates the low part. */
301 static void
302 mark_pseudo_regno_subword_live (int regno, int subword)
303 {
304 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
305 int n;
306 enum reg_class pclass;
307 ira_object_t obj;
308
309 if (a == NULL)
310 return;
311
312 /* Invalidate because it is referenced. */
313 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
314
315 n = ALLOCNO_NUM_OBJECTS (a);
316 if (n == 1)
317 {
318 mark_pseudo_regno_live (regno);
319 return;
320 }
321
322 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
323 gcc_assert
324 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
325 obj = ALLOCNO_OBJECT (a, subword);
326
327 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
328 return;
329
330 inc_register_pressure (pclass, 1);
331 make_object_born (obj);
332 }
333
334 /* Mark the register REG as live. Store a 1 in hard_regs_live for
335 this register, record how many consecutive hardware registers it
336 actually needs. */
337 static void
338 mark_hard_reg_live (rtx reg)
339 {
340 int regno = REGNO (reg);
341
342 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
343 {
344 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
345 enum reg_class aclass, pclass;
346
347 while (regno < last)
348 {
349 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
350 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
351 {
352 aclass = ira_hard_regno_allocno_class[regno];
353 pclass = ira_pressure_class_translate[aclass];
354 inc_register_pressure (pclass, 1);
355 make_hard_regno_born (regno);
356 }
357 regno++;
358 }
359 }
360 }
361
362 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
363 register number; ORIG_REG is the access in the insn, which may be a
364 subreg. */
365 static void
366 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
367 {
368 if (df_read_modify_subreg_p (orig_reg))
369 {
370 mark_pseudo_regno_subword_live (regno,
371 subreg_lowpart_p (orig_reg) ? 0 : 1);
372 }
373 else
374 mark_pseudo_regno_live (regno);
375 }
376
377 /* Mark the register referenced by use or def REF as live. */
378 static void
379 mark_ref_live (df_ref ref)
380 {
381 rtx reg = DF_REF_REG (ref);
382 rtx orig_reg = reg;
383
384 if (GET_CODE (reg) == SUBREG)
385 reg = SUBREG_REG (reg);
386
387 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
388 mark_pseudo_reg_live (orig_reg, REGNO (reg));
389 else
390 mark_hard_reg_live (reg);
391 }
392
393 /* Mark the pseudo register REGNO as dead. Update all information about
394 live ranges and register pressure. */
395 static void
396 mark_pseudo_regno_dead (int regno)
397 {
398 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
399 int n, i, nregs;
400 enum reg_class cl;
401
402 if (a == NULL)
403 return;
404
405 /* Invalidate because it is referenced. */
406 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
407
408 n = ALLOCNO_NUM_OBJECTS (a);
409 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
410 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
411 if (n > 1)
412 {
413 /* We track every subobject separately. */
414 gcc_assert (nregs == n);
415 nregs = 1;
416 }
417 for (i = 0; i < n; i++)
418 {
419 ira_object_t obj = ALLOCNO_OBJECT (a, i);
420 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
421 continue;
422
423 dec_register_pressure (cl, nregs);
424 make_object_dead (obj);
425 }
426 }
427
428 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
429 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
430 static void
431 mark_pseudo_regno_subword_dead (int regno, int subword)
432 {
433 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
434 int n;
435 enum reg_class cl;
436 ira_object_t obj;
437
438 if (a == NULL)
439 return;
440
441 /* Invalidate because it is referenced. */
442 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
443
444 n = ALLOCNO_NUM_OBJECTS (a);
445 if (n == 1)
446 /* The allocno as a whole doesn't die in this case. */
447 return;
448
449 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
450 gcc_assert
451 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
452
453 obj = ALLOCNO_OBJECT (a, subword);
454 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
455 return;
456
457 dec_register_pressure (cl, 1);
458 make_object_dead (obj);
459 }
460
461 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
462 register. */
463 static void
464 mark_hard_reg_dead (rtx reg)
465 {
466 int regno = REGNO (reg);
467
468 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
469 {
470 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
471 enum reg_class aclass, pclass;
472
473 while (regno < last)
474 {
475 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
476 {
477 aclass = ira_hard_regno_allocno_class[regno];
478 pclass = ira_pressure_class_translate[aclass];
479 dec_register_pressure (pclass, 1);
480 make_hard_regno_dead (regno);
481 }
482 regno++;
483 }
484 }
485 }
486
487 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
488 register number; ORIG_REG is the access in the insn, which may be a
489 subreg. */
490 static void
491 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
492 {
493 if (df_read_modify_subreg_p (orig_reg))
494 {
495 mark_pseudo_regno_subword_dead (regno,
496 subreg_lowpart_p (orig_reg) ? 0 : 1);
497 }
498 else
499 mark_pseudo_regno_dead (regno);
500 }
501
502 /* Mark the register referenced by definition DEF as dead, if the
503 definition is a total one. */
504 static void
505 mark_ref_dead (df_ref def)
506 {
507 rtx reg = DF_REF_REG (def);
508 rtx orig_reg = reg;
509
510 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
511 return;
512
513 if (GET_CODE (reg) == SUBREG)
514 reg = SUBREG_REG (reg);
515
516 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
517 && (GET_CODE (orig_reg) != SUBREG
518 || REGNO (reg) < FIRST_PSEUDO_REGISTER
519 || !df_read_modify_subreg_p (orig_reg)))
520 return;
521
522 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
523 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
524 else
525 mark_hard_reg_dead (reg);
526 }
527
528 /* If REG is a pseudo or a subreg of it, and the class of its allocno
529 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
530 rtx actually accessed, it may be identical to DREG or a subreg of it.
531 Advance the current program point before making the conflict if
532 ADVANCE_P. Return TRUE if we will need to advance the current
533 program point. */
534 static bool
535 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
536 bool advance_p)
537 {
538 rtx orig_reg = reg;
539 ira_allocno_t a;
540
541 if (GET_CODE (reg) == SUBREG)
542 reg = SUBREG_REG (reg);
543
544 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
545 return advance_p;
546
547 a = ira_curr_regno_allocno_map[REGNO (reg)];
548 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
549 return advance_p;
550
551 if (advance_p)
552 curr_point++;
553
554 mark_pseudo_reg_live (orig_reg, REGNO (reg));
555 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
556 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
557 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
558
559 return false;
560 }
561
562 /* Check and make if necessary conflicts for pseudo DREG of class
563 DEF_CL of the current insn with input operand USE of class USE_CL.
564 ORIG_DREG is the rtx actually accessed, it may be identical to
565 DREG or a subreg of it. Advance the current program point before
566 making the conflict if ADVANCE_P. Return TRUE if we will need to
567 advance the current program point. */
568 static bool
569 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
570 enum reg_class def_cl, int use,
571 enum reg_class use_cl, bool advance_p)
572 {
573 if (! reg_classes_intersect_p (def_cl, use_cl))
574 return advance_p;
575
576 advance_p = make_pseudo_conflict (recog_data.operand[use],
577 use_cl, dreg, orig_dreg, advance_p);
578
579 /* Reload may end up swapping commutative operands, so you
580 have to take both orderings into account. The
581 constraints for the two operands can be completely
582 different. (Indeed, if the constraints for the two
583 operands are the same for all alternatives, there's no
584 point marking them as commutative.) */
585 if (use < recog_data.n_operands - 1
586 && recog_data.constraints[use][0] == '%')
587 advance_p
588 = make_pseudo_conflict (recog_data.operand[use + 1],
589 use_cl, dreg, orig_dreg, advance_p);
590 if (use >= 1
591 && recog_data.constraints[use - 1][0] == '%')
592 advance_p
593 = make_pseudo_conflict (recog_data.operand[use - 1],
594 use_cl, dreg, orig_dreg, advance_p);
595 return advance_p;
596 }
597
598 /* Check and make if necessary conflicts for definition DEF of class
599 DEF_CL of the current insn with input operands. Process only
600 constraints of alternative ALT. */
601 static void
602 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
603 {
604 int use, use_match;
605 ira_allocno_t a;
606 enum reg_class use_cl, acl;
607 bool advance_p;
608 rtx dreg = recog_data.operand[def];
609 rtx orig_dreg = dreg;
610
611 if (def_cl == NO_REGS)
612 return;
613
614 if (GET_CODE (dreg) == SUBREG)
615 dreg = SUBREG_REG (dreg);
616
617 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
618 return;
619
620 a = ira_curr_regno_allocno_map[REGNO (dreg)];
621 acl = ALLOCNO_CLASS (a);
622 if (! reg_classes_intersect_p (acl, def_cl))
623 return;
624
625 advance_p = true;
626
627 int n_operands = recog_data.n_operands;
628 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
629 for (use = 0; use < n_operands; use++)
630 {
631 int alt1;
632
633 if (use == def || recog_data.operand_type[use] == OP_OUT)
634 continue;
635
636 if (op_alt[use].anything_ok)
637 use_cl = ALL_REGS;
638 else
639 use_cl = op_alt[use].cl;
640
641 /* If there's any alternative that allows USE to match DEF, do not
642 record a conflict. If that causes us to create an invalid
643 instruction due to the earlyclobber, reload must fix it up. */
644 alternative_mask enabled = recog_data.enabled_alternatives;
645 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
646 {
647 if (!TEST_BIT (enabled, alt1))
648 continue;
649 const operand_alternative *op_alt1
650 = &recog_op_alt[alt1 * n_operands];
651 if (op_alt1[use].matches == def
652 || (use < n_operands - 1
653 && recog_data.constraints[use][0] == '%'
654 && op_alt1[use + 1].matches == def)
655 || (use >= 1
656 && recog_data.constraints[use - 1][0] == '%'
657 && op_alt1[use - 1].matches == def))
658 break;
659 }
660
661 if (alt1 < recog_data.n_alternatives)
662 continue;
663
664 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
665 use, use_cl, advance_p);
666
667 if ((use_match = op_alt[use].matches) >= 0)
668 {
669 if (use_match == def)
670 continue;
671
672 if (op_alt[use_match].anything_ok)
673 use_cl = ALL_REGS;
674 else
675 use_cl = op_alt[use_match].cl;
676 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
677 use, use_cl, advance_p);
678 }
679 }
680 }
681
682 /* Make conflicts of early clobber pseudo registers of the current
683 insn with its inputs. Avoid introducing unnecessary conflicts by
684 checking classes of the constraints and pseudos because otherwise
685 significant code degradation is possible for some targets. */
686 static void
687 make_early_clobber_and_input_conflicts (void)
688 {
689 int alt;
690 int def, def_match;
691 enum reg_class def_cl;
692
693 int n_alternatives = recog_data.n_alternatives;
694 int n_operands = recog_data.n_operands;
695 alternative_mask enabled = recog_data.enabled_alternatives;
696 const operand_alternative *op_alt = recog_op_alt;
697 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
698 if (TEST_BIT (enabled, alt))
699 for (def = 0; def < n_operands; def++)
700 {
701 def_cl = NO_REGS;
702 if (op_alt[def].earlyclobber)
703 {
704 if (op_alt[def].anything_ok)
705 def_cl = ALL_REGS;
706 else
707 def_cl = op_alt[def].cl;
708 check_and_make_def_conflict (alt, def, def_cl);
709 }
710 if ((def_match = op_alt[def].matches) >= 0
711 && (op_alt[def_match].earlyclobber
712 || op_alt[def].earlyclobber))
713 {
714 if (op_alt[def_match].anything_ok)
715 def_cl = ALL_REGS;
716 else
717 def_cl = op_alt[def_match].cl;
718 check_and_make_def_conflict (alt, def, def_cl);
719 }
720 }
721 }
722
723 /* Mark early clobber hard registers of the current INSN as live (if
724 LIVE_P) or dead. Return true if there are such registers. */
725 static bool
726 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
727 {
728 df_ref *def_rec;
729 bool set_p = false;
730
731 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
732 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
733 {
734 rtx dreg = DF_REF_REG (*def_rec);
735
736 if (GET_CODE (dreg) == SUBREG)
737 dreg = SUBREG_REG (dreg);
738 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
739 continue;
740
741 /* Hard register clobbers are believed to be early clobber
742 because there is no way to say that non-operand hard
743 register clobbers are not early ones. */
744 if (live_p)
745 mark_ref_live (*def_rec);
746 else
747 mark_ref_dead (*def_rec);
748 set_p = true;
749 }
750
751 return set_p;
752 }
753
754 /* Checks that CONSTRAINTS permits to use only one hard register. If
755 it is so, the function returns the class of the hard register.
756 Otherwise it returns NO_REGS. */
757 static enum reg_class
758 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
759 {
760 int c;
761 enum reg_class cl, next_cl;
762
763 cl = NO_REGS;
764 alternative_mask enabled = recog_data.enabled_alternatives;
765 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
766 if (c == '#')
767 enabled &= ~ALTERNATIVE_BIT (0);
768 else if (c == ',')
769 enabled >>= 1;
770 else if (enabled & 1)
771 switch (c)
772 {
773 case ' ':
774 case '\t':
775 case '=':
776 case '+':
777 case '*':
778 case '&':
779 case '%':
780 case '!':
781 case '?':
782 break;
783 case 'i':
784 if (CONSTANT_P (op)
785 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
786 return NO_REGS;
787 break;
788
789 case 'n':
790 if (CONST_SCALAR_INT_P (op)
791 || (equiv_const != NULL_RTX && CONST_SCALAR_INT_P (equiv_const)))
792 return NO_REGS;
793 break;
794
795 case 's':
796 if ((CONSTANT_P (op) && !CONST_SCALAR_INT_P (op))
797 || (equiv_const != NULL_RTX
798 && CONSTANT_P (equiv_const)
799 && !CONST_SCALAR_INT_P (equiv_const)))
800 return NO_REGS;
801 break;
802
803 case 'I':
804 case 'J':
805 case 'K':
806 case 'L':
807 case 'M':
808 case 'N':
809 case 'O':
810 case 'P':
811 if ((CONST_INT_P (op)
812 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
813 || (equiv_const != NULL_RTX
814 && CONST_INT_P (equiv_const)
815 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
816 c, constraints)))
817 return NO_REGS;
818 break;
819
820 case 'E':
821 case 'F':
822 if (CONST_DOUBLE_AS_FLOAT_P (op)
823 || (GET_CODE (op) == CONST_VECTOR
824 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
825 || (equiv_const != NULL_RTX
826 && (CONST_DOUBLE_AS_FLOAT_P (equiv_const)
827 || (GET_CODE (equiv_const) == CONST_VECTOR
828 && (GET_MODE_CLASS (GET_MODE (equiv_const))
829 == MODE_VECTOR_FLOAT)))))
830 return NO_REGS;
831 break;
832
833 case 'G':
834 case 'H':
835 if ((CONST_DOUBLE_AS_FLOAT_P (op)
836 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
837 || (equiv_const != NULL_RTX
838 && CONST_DOUBLE_AS_FLOAT_P (equiv_const)
839 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
840 c, constraints)))
841 return NO_REGS;
842 /* ??? what about memory */
843 case 'r':
844 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
845 case 'h': case 'j': case 'k': case 'l':
846 case 'q': case 't': case 'u':
847 case 'v': case 'w': case 'x': case 'y': case 'z':
848 case 'A': case 'B': case 'C': case 'D':
849 case 'Q': case 'R': case 'S': case 'T': case 'U':
850 case 'W': case 'Y': case 'Z':
851 next_cl = (c == 'r'
852 ? GENERAL_REGS
853 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
854 if (cl == NO_REGS
855 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
856 : (ira_class_singleton[cl][GET_MODE (op)]
857 != ira_class_singleton[next_cl][GET_MODE (op)]))
858 return NO_REGS;
859 cl = next_cl;
860 break;
861
862 case '0': case '1': case '2': case '3': case '4':
863 case '5': case '6': case '7': case '8': case '9':
864 next_cl
865 = single_reg_class (recog_data.constraints[c - '0'],
866 recog_data.operand[c - '0'], NULL_RTX);
867 if (cl == NO_REGS
868 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
869 : (ira_class_singleton[cl][GET_MODE (op)]
870 != ira_class_singleton[next_cl][GET_MODE (op)]))
871 return NO_REGS;
872 cl = next_cl;
873 break;
874
875 default:
876 return NO_REGS;
877 }
878 return cl;
879 }
880
881 /* The function checks that operand OP_NUM of the current insn can use
882 only one hard register. If it is so, the function returns the
883 class of the hard register. Otherwise it returns NO_REGS. */
884 static enum reg_class
885 single_reg_operand_class (int op_num)
886 {
887 if (op_num < 0 || recog_data.n_alternatives == 0)
888 return NO_REGS;
889 return single_reg_class (recog_data.constraints[op_num],
890 recog_data.operand[op_num], NULL_RTX);
891 }
892
893 /* The function sets up hard register set *SET to hard registers which
894 might be used by insn reloads because the constraints are too
895 strict. */
896 void
897 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
898 {
899 int i, c, regno = 0;
900 enum reg_class cl;
901 rtx op;
902 enum machine_mode mode;
903
904 CLEAR_HARD_REG_SET (*set);
905 for (i = 0; i < recog_data.n_operands; i++)
906 {
907 op = recog_data.operand[i];
908
909 if (GET_CODE (op) == SUBREG)
910 op = SUBREG_REG (op);
911
912 if (GET_CODE (op) == SCRATCH
913 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
914 {
915 const char *p = recog_data.constraints[i];
916
917 mode = (GET_CODE (op) == SCRATCH
918 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
919 cl = NO_REGS;
920 alternative_mask enabled = recog_data.enabled_alternatives;
921 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
922 if (c == '#')
923 enabled &= ~ALTERNATIVE_BIT (0);
924 else if (c == ',')
925 enabled >>= 1;
926 else if (enabled & 1)
927 switch (c)
928 {
929 case 'r':
930 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
931 case 'h': case 'j': case 'k': case 'l':
932 case 'q': case 't': case 'u':
933 case 'v': case 'w': case 'x': case 'y': case 'z':
934 case 'A': case 'B': case 'C': case 'D':
935 case 'Q': case 'R': case 'S': case 'T': case 'U':
936 case 'W': case 'Y': case 'Z':
937 cl = (c == 'r'
938 ? GENERAL_REGS
939 : REG_CLASS_FROM_CONSTRAINT (c, p));
940 if (cl != NO_REGS)
941 {
942 /* There is no register pressure problem if all of the
943 regs in this class are fixed. */
944 int regno = ira_class_singleton[cl][mode];
945 if (regno >= 0)
946 add_to_hard_reg_set (set, mode, regno);
947 }
948 break;
949 }
950 }
951 }
952 }
953 /* Processes input operands, if IN_P, or output operands otherwise of
954 the current insn with FREQ to find allocno which can use only one
955 hard register and makes other currently living allocnos conflicting
956 with the hard register. */
957 static void
958 process_single_reg_class_operands (bool in_p, int freq)
959 {
960 int i, regno;
961 unsigned int px;
962 enum reg_class cl;
963 rtx operand;
964 ira_allocno_t operand_a, a;
965
966 for (i = 0; i < recog_data.n_operands; i++)
967 {
968 operand = recog_data.operand[i];
969 if (in_p && recog_data.operand_type[i] != OP_IN
970 && recog_data.operand_type[i] != OP_INOUT)
971 continue;
972 if (! in_p && recog_data.operand_type[i] != OP_OUT
973 && recog_data.operand_type[i] != OP_INOUT)
974 continue;
975 cl = single_reg_operand_class (i);
976 if (cl == NO_REGS)
977 continue;
978
979 operand_a = NULL;
980
981 if (GET_CODE (operand) == SUBREG)
982 operand = SUBREG_REG (operand);
983
984 if (REG_P (operand)
985 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
986 {
987 enum reg_class aclass;
988
989 operand_a = ira_curr_regno_allocno_map[regno];
990 aclass = ALLOCNO_CLASS (operand_a);
991 if (ira_class_subset_p[cl][aclass])
992 {
993 /* View the desired allocation of OPERAND as:
994
995 (REG:YMODE YREGNO),
996
997 a simplification of:
998
999 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
1000 enum machine_mode ymode, xmode;
1001 int xregno, yregno;
1002 HOST_WIDE_INT offset;
1003
1004 xmode = recog_data.operand_mode[i];
1005 xregno = ira_class_singleton[cl][xmode];
1006 gcc_assert (xregno >= 0);
1007 ymode = ALLOCNO_MODE (operand_a);
1008 offset = subreg_lowpart_offset (ymode, xmode);
1009 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
1010 if (yregno >= 0
1011 && ira_class_hard_reg_index[aclass][yregno] >= 0)
1012 {
1013 int cost;
1014
1015 ira_allocate_and_set_costs
1016 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
1017 aclass, 0);
1018 ira_init_register_move_cost_if_necessary (xmode);
1019 cost = freq * (in_p
1020 ? ira_register_move_cost[xmode][aclass][cl]
1021 : ira_register_move_cost[xmode][cl][aclass]);
1022 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
1023 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
1024 }
1025 }
1026 }
1027
1028 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1029 {
1030 ira_object_t obj = ira_object_id_map[px];
1031 a = OBJECT_ALLOCNO (obj);
1032 if (a != operand_a)
1033 {
1034 /* We could increase costs of A instead of making it
1035 conflicting with the hard register. But it works worse
1036 because it will be spilled in reload in anyway. */
1037 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1038 reg_class_contents[cl]);
1039 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1040 reg_class_contents[cl]);
1041 }
1042 }
1043 }
1044 }
1045
1046 /* Return true when one of the predecessor edges of BB is marked with
1047 EDGE_ABNORMAL_CALL or EDGE_EH. */
1048 static bool
1049 bb_has_abnormal_call_pred (basic_block bb)
1050 {
1051 edge e;
1052 edge_iterator ei;
1053
1054 FOR_EACH_EDGE (e, ei, bb->preds)
1055 {
1056 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1057 return true;
1058 }
1059 return false;
1060 }
1061
1062 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1063 we find a SET rtx that we can use to deduce that a register can be cheaply
1064 caller-saved. Return such a register, or NULL_RTX if none is found. */
1065 static rtx
1066 find_call_crossed_cheap_reg (rtx insn)
1067 {
1068 rtx cheap_reg = NULL_RTX;
1069 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1070
1071 while (exp != NULL)
1072 {
1073 rtx x = XEXP (exp, 0);
1074 if (GET_CODE (x) == SET)
1075 {
1076 exp = x;
1077 break;
1078 }
1079 exp = XEXP (exp, 1);
1080 }
1081 if (exp != NULL)
1082 {
1083 basic_block bb = BLOCK_FOR_INSN (insn);
1084 rtx reg = SET_SRC (exp);
1085 rtx prev = PREV_INSN (insn);
1086 while (prev && !(INSN_P (prev)
1087 && BLOCK_FOR_INSN (prev) != bb))
1088 {
1089 if (NONDEBUG_INSN_P (prev))
1090 {
1091 rtx set = single_set (prev);
1092
1093 if (set && rtx_equal_p (SET_DEST (set), reg))
1094 {
1095 rtx src = SET_SRC (set);
1096 if (!REG_P (src) || HARD_REGISTER_P (src)
1097 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1098 break;
1099 if (!modified_between_p (src, prev, insn))
1100 cheap_reg = src;
1101 break;
1102 }
1103 if (set && rtx_equal_p (SET_SRC (set), reg))
1104 {
1105 rtx dest = SET_DEST (set);
1106 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1107 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1108 break;
1109 if (!modified_between_p (dest, prev, insn))
1110 cheap_reg = dest;
1111 break;
1112 }
1113
1114 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1115 break;
1116 }
1117 prev = PREV_INSN (prev);
1118 }
1119 }
1120 return cheap_reg;
1121 }
1122
1123 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1124 update allocno live ranges, allocno hard register conflicts,
1125 intersected calls, and register pressure info for allocnos for the
1126 basic block for and regions containing the basic block. */
1127 static void
1128 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1129 {
1130 int i, freq;
1131 unsigned int j;
1132 basic_block bb;
1133 rtx insn;
1134 bitmap_iterator bi;
1135 bitmap reg_live_out;
1136 unsigned int px;
1137 bool set_p;
1138
1139 bb = loop_tree_node->bb;
1140 if (bb != NULL)
1141 {
1142 for (i = 0; i < ira_pressure_classes_num; i++)
1143 {
1144 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1145 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1146 }
1147 curr_bb_node = loop_tree_node;
1148 reg_live_out = df_get_live_out (bb);
1149 sparseset_clear (objects_live);
1150 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1151 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1152 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1153 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1154 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1155 {
1156 enum reg_class aclass, pclass, cl;
1157
1158 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1159 pclass = ira_pressure_class_translate[aclass];
1160 for (j = 0;
1161 (cl = ira_reg_class_super_classes[pclass][j])
1162 != LIM_REG_CLASSES;
1163 j++)
1164 {
1165 if (! ira_reg_pressure_class_p[cl])
1166 continue;
1167 curr_reg_pressure[cl]++;
1168 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1169 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1170 ira_assert (curr_reg_pressure[cl]
1171 <= ira_class_hard_regs_num[cl]);
1172 }
1173 }
1174 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1175 mark_pseudo_regno_live (j);
1176
1177 freq = REG_FREQ_FROM_BB (bb);
1178 if (freq == 0)
1179 freq = 1;
1180
1181 /* Invalidate all allocno_saved_at_call entries. */
1182 last_call_num++;
1183
1184 /* Scan the code of this basic block, noting which allocnos and
1185 hard regs are born or die.
1186
1187 Note that this loop treats uninitialized values as live until
1188 the beginning of the block. For example, if an instruction
1189 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1190 set, FOO will remain live until the beginning of the block.
1191 Likewise if FOO is not set at all. This is unnecessarily
1192 pessimistic, but it probably doesn't matter much in practice. */
1193 FOR_BB_INSNS_REVERSE (bb, insn)
1194 {
1195 df_ref *def_rec, *use_rec;
1196 bool call_p;
1197
1198 if (!NONDEBUG_INSN_P (insn))
1199 continue;
1200
1201 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1202 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1203 INSN_UID (insn), loop_tree_node->parent->loop_num,
1204 curr_point);
1205
1206 /* Mark each defined value as live. We need to do this for
1207 unused values because they still conflict with quantities
1208 that are live at the time of the definition.
1209
1210 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1211 references represent the effect of the called function
1212 on a call-clobbered register. Marking the register as
1213 live would stop us from allocating it to a call-crossing
1214 allocno. */
1215 call_p = CALL_P (insn);
1216 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1217 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1218 mark_ref_live (*def_rec);
1219
1220 /* If INSN has multiple outputs, then any value used in one
1221 of the outputs conflicts with the other outputs. Model this
1222 by making the used value live during the output phase.
1223
1224 It is unsafe to use !single_set here since it will ignore
1225 an unused output. Just because an output is unused does
1226 not mean the compiler can assume the side effect will not
1227 occur. Consider if ALLOCNO appears in the address of an
1228 output and we reload the output. If we allocate ALLOCNO
1229 to the same hard register as an unused output we could
1230 set the hard register before the output reload insn. */
1231 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1232 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1233 {
1234 int i;
1235 rtx reg;
1236
1237 reg = DF_REF_REG (*use_rec);
1238 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1239 {
1240 rtx set;
1241
1242 set = XVECEXP (PATTERN (insn), 0, i);
1243 if (GET_CODE (set) == SET
1244 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1245 {
1246 /* After the previous loop, this is a no-op if
1247 REG is contained within SET_DEST (SET). */
1248 mark_ref_live (*use_rec);
1249 break;
1250 }
1251 }
1252 }
1253
1254 extract_insn (insn);
1255 preprocess_constraints (insn);
1256 process_single_reg_class_operands (false, freq);
1257
1258 /* See which defined values die here. */
1259 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1260 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1261 mark_ref_dead (*def_rec);
1262
1263 if (call_p)
1264 {
1265 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1266 there, try to find a pseudo that is live across the call but
1267 can be cheaply reconstructed from the return value. */
1268 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1269 if (cheap_reg != NULL_RTX)
1270 add_reg_note (insn, REG_RETURNED, cheap_reg);
1271
1272 last_call_num++;
1273 sparseset_clear (allocnos_processed);
1274 /* The current set of live allocnos are live across the call. */
1275 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1276 {
1277 ira_object_t obj = ira_object_id_map[i];
1278 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1279 int num = ALLOCNO_NUM (a);
1280 HARD_REG_SET this_call_used_reg_set;
1281
1282 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1283 call_used_reg_set);
1284
1285 /* Don't allocate allocnos that cross setjmps or any
1286 call, if this function receives a nonlocal
1287 goto. */
1288 if (cfun->has_nonlocal_label
1289 || find_reg_note (insn, REG_SETJMP,
1290 NULL_RTX) != NULL_RTX)
1291 {
1292 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1293 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1294 }
1295 if (can_throw_internal (insn))
1296 {
1297 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1298 this_call_used_reg_set);
1299 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1300 this_call_used_reg_set);
1301 }
1302
1303 if (sparseset_bit_p (allocnos_processed, num))
1304 continue;
1305 sparseset_set_bit (allocnos_processed, num);
1306
1307 if (allocno_saved_at_call[num] != last_call_num)
1308 /* Here we are mimicking caller-save.c behaviour
1309 which does not save hard register at a call if
1310 it was saved on previous call in the same basic
1311 block and the hard register was not mentioned
1312 between the two calls. */
1313 ALLOCNO_CALL_FREQ (a) += freq;
1314 /* Mark it as saved at the next call. */
1315 allocno_saved_at_call[num] = last_call_num + 1;
1316 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1317 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1318 this_call_used_reg_set);
1319 if (cheap_reg != NULL_RTX
1320 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1321 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1322 }
1323 }
1324
1325 make_early_clobber_and_input_conflicts ();
1326
1327 curr_point++;
1328
1329 /* Mark each used value as live. */
1330 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1331 mark_ref_live (*use_rec);
1332
1333 process_single_reg_class_operands (true, freq);
1334
1335 set_p = mark_hard_reg_early_clobbers (insn, true);
1336
1337 if (set_p)
1338 {
1339 mark_hard_reg_early_clobbers (insn, false);
1340
1341 /* Mark each hard reg as live again. For example, a
1342 hard register can be in clobber and in an insn
1343 input. */
1344 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1345 {
1346 rtx ureg = DF_REF_REG (*use_rec);
1347
1348 if (GET_CODE (ureg) == SUBREG)
1349 ureg = SUBREG_REG (ureg);
1350 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1351 continue;
1352
1353 mark_ref_live (*use_rec);
1354 }
1355 }
1356
1357 curr_point++;
1358 }
1359
1360 #ifdef EH_RETURN_DATA_REGNO
1361 if (bb_has_eh_pred (bb))
1362 for (j = 0; ; ++j)
1363 {
1364 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1365 if (regno == INVALID_REGNUM)
1366 break;
1367 make_hard_regno_born (regno);
1368 }
1369 #endif
1370
1371 /* Allocnos can't go in stack regs at the start of a basic block
1372 that is reached by an abnormal edge. Likewise for call
1373 clobbered regs, because caller-save, fixup_abnormal_edges and
1374 possibly the table driven EH machinery are not quite ready to
1375 handle such allocnos live across such edges. */
1376 if (bb_has_abnormal_pred (bb))
1377 {
1378 #ifdef STACK_REGS
1379 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1380 {
1381 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1382
1383 ALLOCNO_NO_STACK_REG_P (a) = true;
1384 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1385 }
1386 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1387 make_hard_regno_born (px);
1388 #endif
1389 /* No need to record conflicts for call clobbered regs if we
1390 have nonlocal labels around, as we don't ever try to
1391 allocate such regs in this case. */
1392 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1393 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1394 if (call_used_regs[px])
1395 make_hard_regno_born (px);
1396 }
1397
1398 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1399 make_object_dead (ira_object_id_map[i]);
1400
1401 curr_point++;
1402
1403 }
1404 /* Propagate register pressure to upper loop tree nodes: */
1405 if (loop_tree_node != ira_loop_tree_root)
1406 for (i = 0; i < ira_pressure_classes_num; i++)
1407 {
1408 enum reg_class pclass;
1409
1410 pclass = ira_pressure_classes[i];
1411 if (loop_tree_node->reg_pressure[pclass]
1412 > loop_tree_node->parent->reg_pressure[pclass])
1413 loop_tree_node->parent->reg_pressure[pclass]
1414 = loop_tree_node->reg_pressure[pclass];
1415 }
1416 }
1417
1418 /* Create and set up IRA_START_POINT_RANGES and
1419 IRA_FINISH_POINT_RANGES. */
1420 static void
1421 create_start_finish_chains (void)
1422 {
1423 ira_object_t obj;
1424 ira_object_iterator oi;
1425 live_range_t r;
1426
1427 ira_start_point_ranges
1428 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1429 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1430 ira_finish_point_ranges
1431 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1432 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1433 FOR_EACH_OBJECT (obj, oi)
1434 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1435 {
1436 r->start_next = ira_start_point_ranges[r->start];
1437 ira_start_point_ranges[r->start] = r;
1438 r->finish_next = ira_finish_point_ranges[r->finish];
1439 ira_finish_point_ranges[r->finish] = r;
1440 }
1441 }
1442
1443 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1444 new live ranges and program points were added as a result if new
1445 insn generation. */
1446 void
1447 ira_rebuild_start_finish_chains (void)
1448 {
1449 ira_free (ira_finish_point_ranges);
1450 ira_free (ira_start_point_ranges);
1451 create_start_finish_chains ();
1452 }
1453
1454 /* Compress allocno live ranges by removing program points where
1455 nothing happens. */
1456 static void
1457 remove_some_program_points_and_update_live_ranges (void)
1458 {
1459 unsigned i;
1460 int n;
1461 int *map;
1462 ira_object_t obj;
1463 ira_object_iterator oi;
1464 live_range_t r, prev_r, next_r;
1465 sbitmap born_or_dead, born, dead;
1466 sbitmap_iterator sbi;
1467 bool born_p, dead_p, prev_born_p, prev_dead_p;
1468
1469 born = sbitmap_alloc (ira_max_point);
1470 dead = sbitmap_alloc (ira_max_point);
1471 bitmap_clear (born);
1472 bitmap_clear (dead);
1473 FOR_EACH_OBJECT (obj, oi)
1474 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1475 {
1476 ira_assert (r->start <= r->finish);
1477 bitmap_set_bit (born, r->start);
1478 bitmap_set_bit (dead, r->finish);
1479 }
1480
1481 born_or_dead = sbitmap_alloc (ira_max_point);
1482 bitmap_ior (born_or_dead, born, dead);
1483 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1484 n = -1;
1485 prev_born_p = prev_dead_p = false;
1486 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1487 {
1488 born_p = bitmap_bit_p (born, i);
1489 dead_p = bitmap_bit_p (dead, i);
1490 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1491 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1492 map[i] = n;
1493 else
1494 map[i] = ++n;
1495 prev_born_p = born_p;
1496 prev_dead_p = dead_p;
1497 }
1498 sbitmap_free (born_or_dead);
1499 sbitmap_free (born);
1500 sbitmap_free (dead);
1501 n++;
1502 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1503 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1504 ira_max_point, n, 100 * n / ira_max_point);
1505 ira_max_point = n;
1506
1507 FOR_EACH_OBJECT (obj, oi)
1508 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1509 {
1510 next_r = r->next;
1511 r->start = map[r->start];
1512 r->finish = map[r->finish];
1513 if (prev_r == NULL || prev_r->start > r->finish + 1)
1514 {
1515 prev_r = r;
1516 continue;
1517 }
1518 prev_r->start = r->start;
1519 prev_r->next = next_r;
1520 ira_finish_live_range (r);
1521 }
1522
1523 ira_free (map);
1524 }
1525
1526 /* Print live ranges R to file F. */
1527 void
1528 ira_print_live_range_list (FILE *f, live_range_t r)
1529 {
1530 for (; r != NULL; r = r->next)
1531 fprintf (f, " [%d..%d]", r->start, r->finish);
1532 fprintf (f, "\n");
1533 }
1534
1535 DEBUG_FUNCTION void
1536 debug (live_range &ref)
1537 {
1538 ira_print_live_range_list (stderr, &ref);
1539 }
1540
1541 DEBUG_FUNCTION void
1542 debug (live_range *ptr)
1543 {
1544 if (ptr)
1545 debug (*ptr);
1546 else
1547 fprintf (stderr, "<nil>\n");
1548 }
1549
1550 /* Print live ranges R to stderr. */
1551 void
1552 ira_debug_live_range_list (live_range_t r)
1553 {
1554 ira_print_live_range_list (stderr, r);
1555 }
1556
1557 /* Print live ranges of object OBJ to file F. */
1558 static void
1559 print_object_live_ranges (FILE *f, ira_object_t obj)
1560 {
1561 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1562 }
1563
1564 /* Print live ranges of allocno A to file F. */
1565 static void
1566 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1567 {
1568 int n = ALLOCNO_NUM_OBJECTS (a);
1569 int i;
1570
1571 for (i = 0; i < n; i++)
1572 {
1573 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1574 if (n > 1)
1575 fprintf (f, " [%d]", i);
1576 fprintf (f, "):");
1577 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1578 }
1579 }
1580
1581 /* Print live ranges of allocno A to stderr. */
1582 void
1583 ira_debug_allocno_live_ranges (ira_allocno_t a)
1584 {
1585 print_allocno_live_ranges (stderr, a);
1586 }
1587
1588 /* Print live ranges of all allocnos to file F. */
1589 static void
1590 print_live_ranges (FILE *f)
1591 {
1592 ira_allocno_t a;
1593 ira_allocno_iterator ai;
1594
1595 FOR_EACH_ALLOCNO (a, ai)
1596 print_allocno_live_ranges (f, a);
1597 }
1598
1599 /* Print live ranges of all allocnos to stderr. */
1600 void
1601 ira_debug_live_ranges (void)
1602 {
1603 print_live_ranges (stderr);
1604 }
1605
1606 /* The main entry function creates live ranges, set up
1607 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1608 calculate register pressure info. */
1609 void
1610 ira_create_allocno_live_ranges (void)
1611 {
1612 objects_live = sparseset_alloc (ira_objects_num);
1613 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1614 curr_point = 0;
1615 last_call_num = 0;
1616 allocno_saved_at_call
1617 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1618 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1619 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1620 process_bb_node_lives);
1621 ira_max_point = curr_point;
1622 create_start_finish_chains ();
1623 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1624 print_live_ranges (ira_dump_file);
1625 /* Clean up. */
1626 ira_free (allocno_saved_at_call);
1627 sparseset_free (objects_live);
1628 sparseset_free (allocnos_processed);
1629 }
1630
1631 /* Compress allocno live ranges. */
1632 void
1633 ira_compress_allocno_live_ranges (void)
1634 {
1635 remove_some_program_points_and_update_live_ranges ();
1636 ira_rebuild_start_finish_chains ();
1637 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1638 {
1639 fprintf (ira_dump_file, "Ranges after the compression:\n");
1640 print_live_ranges (ira_dump_file);
1641 }
1642 }
1643
1644 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1645 void
1646 ira_finish_allocno_live_ranges (void)
1647 {
1648 ira_free (ira_finish_point_ranges);
1649 ira_free (ira_start_point_ranges);
1650 }