]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira-lives.c
system.h (TEST_BIT): New macro.
[thirdparty/gcc.git] / gcc / ira-lives.c
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "params.h"
37 #include "df.h"
38 #include "sbitmap.h"
39 #include "sparseset.h"
40 #include "ira-int.h"
41
42 /* The code in this file is similar to one in global but the code
43 works on the allocno basis and creates live ranges instead of
44 pseudo-register conflicts. */
45
46 /* Program points are enumerated by numbers from range
47 0..IRA_MAX_POINT-1. There are approximately two times more program
48 points than insns. Program points are places in the program where
49 liveness info can be changed. In most general case (there are more
50 complicated cases too) some program points correspond to places
51 where input operand dies and other ones correspond to places where
52 output operands are born. */
53 int ira_max_point;
54
55 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
56 live ranges with given start/finish point. */
57 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
58
59 /* Number of the current program point. */
60 static int curr_point;
61
62 /* Point where register pressure excess started or -1 if there is no
63 register pressure excess. Excess pressure for a register class at
64 some point means that there are more allocnos of given register
65 class living at the point than number of hard-registers of the
66 class available for the allocation. It is defined only for
67 pressure classes. */
68 static int high_pressure_start_point[N_REG_CLASSES];
69
70 /* Objects live at current point in the scan. */
71 static sparseset objects_live;
72
73 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
74 multiple times. */
75 static sparseset allocnos_processed;
76
77 /* Set of hard regs (except eliminable ones) currently live. */
78 static HARD_REG_SET hard_regs_live;
79
80 /* The loop tree node corresponding to the current basic block. */
81 static ira_loop_tree_node_t curr_bb_node;
82
83 /* The number of the last processed call. */
84 static int last_call_num;
85 /* The number of last call at which given allocno was saved. */
86 static int *allocno_saved_at_call;
87
88 /* Record the birth of hard register REGNO, updating hard_regs_live and
89 hard reg conflict information for living allocnos. */
90 static void
91 make_hard_regno_born (int regno)
92 {
93 unsigned int i;
94
95 SET_HARD_REG_BIT (hard_regs_live, regno);
96 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
97 {
98 ira_object_t obj = ira_object_id_map[i];
99
100 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
101 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
102 }
103 }
104
105 /* Process the death of hard register REGNO. This updates
106 hard_regs_live. */
107 static void
108 make_hard_regno_dead (int regno)
109 {
110 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
111 }
112
113 /* Record the birth of object OBJ. Set a bit for it in objects_live,
114 start a new live range for it if necessary and update hard register
115 conflicts. */
116 static void
117 make_object_born (ira_object_t obj)
118 {
119 live_range_t lr = OBJECT_LIVE_RANGES (obj);
120
121 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
122 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
123 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
124
125 if (lr == NULL
126 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
127 ira_add_live_range_to_object (obj, curr_point, -1);
128 }
129
130 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
131 associated with object OBJ. */
132 static void
133 update_allocno_pressure_excess_length (ira_object_t obj)
134 {
135 ira_allocno_t a = OBJECT_ALLOCNO (obj);
136 int start, i;
137 enum reg_class aclass, pclass, cl;
138 live_range_t p;
139
140 aclass = ALLOCNO_CLASS (a);
141 pclass = ira_pressure_class_translate[aclass];
142 for (i = 0;
143 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
144 i++)
145 {
146 if (! ira_reg_pressure_class_p[cl])
147 continue;
148 if (high_pressure_start_point[cl] < 0)
149 continue;
150 p = OBJECT_LIVE_RANGES (obj);
151 ira_assert (p != NULL);
152 start = (high_pressure_start_point[cl] > p->start
153 ? high_pressure_start_point[cl] : p->start);
154 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
155 }
156 }
157
158 /* Process the death of object OBJ, which is associated with allocno
159 A. This finishes the current live range for it. */
160 static void
161 make_object_dead (ira_object_t obj)
162 {
163 live_range_t lr;
164
165 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
166 lr = OBJECT_LIVE_RANGES (obj);
167 ira_assert (lr != NULL);
168 lr->finish = curr_point;
169 update_allocno_pressure_excess_length (obj);
170 }
171
172 /* The current register pressures for each pressure class for the current
173 basic block. */
174 static int curr_reg_pressure[N_REG_CLASSES];
175
176 /* Record that register pressure for PCLASS increased by N registers.
177 Update the current register pressure, maximal register pressure for
178 the current BB and the start point of the register pressure
179 excess. */
180 static void
181 inc_register_pressure (enum reg_class pclass, int n)
182 {
183 int i;
184 enum reg_class cl;
185
186 for (i = 0;
187 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
188 i++)
189 {
190 if (! ira_reg_pressure_class_p[cl])
191 continue;
192 curr_reg_pressure[cl] += n;
193 if (high_pressure_start_point[cl] < 0
194 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
195 high_pressure_start_point[cl] = curr_point;
196 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
197 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
198 }
199 }
200
201 /* Record that register pressure for PCLASS has decreased by NREGS
202 registers; update current register pressure, start point of the
203 register pressure excess, and register pressure excess length for
204 living allocnos. */
205
206 static void
207 dec_register_pressure (enum reg_class pclass, int nregs)
208 {
209 int i;
210 unsigned int j;
211 enum reg_class cl;
212 bool set_p = false;
213
214 for (i = 0;
215 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
216 i++)
217 {
218 if (! ira_reg_pressure_class_p[cl])
219 continue;
220 curr_reg_pressure[cl] -= nregs;
221 ira_assert (curr_reg_pressure[cl] >= 0);
222 if (high_pressure_start_point[cl] >= 0
223 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
224 set_p = true;
225 }
226 if (set_p)
227 {
228 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
229 update_allocno_pressure_excess_length (ira_object_id_map[j]);
230 for (i = 0;
231 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
232 i++)
233 {
234 if (! ira_reg_pressure_class_p[cl])
235 continue;
236 if (high_pressure_start_point[cl] >= 0
237 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
238 high_pressure_start_point[cl] = -1;
239 }
240 }
241 }
242
243 /* Determine from the objects_live bitmap whether REGNO is currently live,
244 and occupies only one object. Return false if we have no information. */
245 static bool
246 pseudo_regno_single_word_and_live_p (int regno)
247 {
248 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
249 ira_object_t obj;
250
251 if (a == NULL)
252 return false;
253 if (ALLOCNO_NUM_OBJECTS (a) > 1)
254 return false;
255
256 obj = ALLOCNO_OBJECT (a, 0);
257
258 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
259 }
260
261 /* Mark the pseudo register REGNO as live. Update all information about
262 live ranges and register pressure. */
263 static void
264 mark_pseudo_regno_live (int regno)
265 {
266 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
267 enum reg_class pclass;
268 int i, n, nregs;
269
270 if (a == NULL)
271 return;
272
273 /* Invalidate because it is referenced. */
274 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
275
276 n = ALLOCNO_NUM_OBJECTS (a);
277 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
278 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
279 if (n > 1)
280 {
281 /* We track every subobject separately. */
282 gcc_assert (nregs == n);
283 nregs = 1;
284 }
285
286 for (i = 0; i < n; i++)
287 {
288 ira_object_t obj = ALLOCNO_OBJECT (a, i);
289
290 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
291 continue;
292
293 inc_register_pressure (pclass, nregs);
294 make_object_born (obj);
295 }
296 }
297
298 /* Like mark_pseudo_regno_live, but try to only mark one subword of
299 the pseudo as live. SUBWORD indicates which; a value of 0
300 indicates the low part. */
301 static void
302 mark_pseudo_regno_subword_live (int regno, int subword)
303 {
304 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
305 int n;
306 enum reg_class pclass;
307 ira_object_t obj;
308
309 if (a == NULL)
310 return;
311
312 /* Invalidate because it is referenced. */
313 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
314
315 n = ALLOCNO_NUM_OBJECTS (a);
316 if (n == 1)
317 {
318 mark_pseudo_regno_live (regno);
319 return;
320 }
321
322 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
323 gcc_assert
324 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
325 obj = ALLOCNO_OBJECT (a, subword);
326
327 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
328 return;
329
330 inc_register_pressure (pclass, 1);
331 make_object_born (obj);
332 }
333
334 /* Mark the register REG as live. Store a 1 in hard_regs_live for
335 this register, record how many consecutive hardware registers it
336 actually needs. */
337 static void
338 mark_hard_reg_live (rtx reg)
339 {
340 int regno = REGNO (reg);
341
342 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
343 {
344 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
345 enum reg_class aclass, pclass;
346
347 while (regno < last)
348 {
349 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
350 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
351 {
352 aclass = ira_hard_regno_allocno_class[regno];
353 pclass = ira_pressure_class_translate[aclass];
354 inc_register_pressure (pclass, 1);
355 make_hard_regno_born (regno);
356 }
357 regno++;
358 }
359 }
360 }
361
362 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
363 register number; ORIG_REG is the access in the insn, which may be a
364 subreg. */
365 static void
366 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
367 {
368 if (df_read_modify_subreg_p (orig_reg))
369 {
370 mark_pseudo_regno_subword_live (regno,
371 subreg_lowpart_p (orig_reg) ? 0 : 1);
372 }
373 else
374 mark_pseudo_regno_live (regno);
375 }
376
377 /* Mark the register referenced by use or def REF as live. */
378 static void
379 mark_ref_live (df_ref ref)
380 {
381 rtx reg = DF_REF_REG (ref);
382 rtx orig_reg = reg;
383
384 if (GET_CODE (reg) == SUBREG)
385 reg = SUBREG_REG (reg);
386
387 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
388 mark_pseudo_reg_live (orig_reg, REGNO (reg));
389 else
390 mark_hard_reg_live (reg);
391 }
392
393 /* Mark the pseudo register REGNO as dead. Update all information about
394 live ranges and register pressure. */
395 static void
396 mark_pseudo_regno_dead (int regno)
397 {
398 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
399 int n, i, nregs;
400 enum reg_class cl;
401
402 if (a == NULL)
403 return;
404
405 /* Invalidate because it is referenced. */
406 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
407
408 n = ALLOCNO_NUM_OBJECTS (a);
409 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
410 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
411 if (n > 1)
412 {
413 /* We track every subobject separately. */
414 gcc_assert (nregs == n);
415 nregs = 1;
416 }
417 for (i = 0; i < n; i++)
418 {
419 ira_object_t obj = ALLOCNO_OBJECT (a, i);
420 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
421 continue;
422
423 dec_register_pressure (cl, nregs);
424 make_object_dead (obj);
425 }
426 }
427
428 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
429 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
430 static void
431 mark_pseudo_regno_subword_dead (int regno, int subword)
432 {
433 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
434 int n;
435 enum reg_class cl;
436 ira_object_t obj;
437
438 if (a == NULL)
439 return;
440
441 /* Invalidate because it is referenced. */
442 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
443
444 n = ALLOCNO_NUM_OBJECTS (a);
445 if (n == 1)
446 /* The allocno as a whole doesn't die in this case. */
447 return;
448
449 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
450 gcc_assert
451 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
452
453 obj = ALLOCNO_OBJECT (a, subword);
454 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
455 return;
456
457 dec_register_pressure (cl, 1);
458 make_object_dead (obj);
459 }
460
461 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
462 register. */
463 static void
464 mark_hard_reg_dead (rtx reg)
465 {
466 int regno = REGNO (reg);
467
468 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
469 {
470 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
471 enum reg_class aclass, pclass;
472
473 while (regno < last)
474 {
475 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
476 {
477 aclass = ira_hard_regno_allocno_class[regno];
478 pclass = ira_pressure_class_translate[aclass];
479 dec_register_pressure (pclass, 1);
480 make_hard_regno_dead (regno);
481 }
482 regno++;
483 }
484 }
485 }
486
487 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
488 register number; ORIG_REG is the access in the insn, which may be a
489 subreg. */
490 static void
491 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
492 {
493 if (df_read_modify_subreg_p (orig_reg))
494 {
495 mark_pseudo_regno_subword_dead (regno,
496 subreg_lowpart_p (orig_reg) ? 0 : 1);
497 }
498 else
499 mark_pseudo_regno_dead (regno);
500 }
501
502 /* Mark the register referenced by definition DEF as dead, if the
503 definition is a total one. */
504 static void
505 mark_ref_dead (df_ref def)
506 {
507 rtx reg = DF_REF_REG (def);
508 rtx orig_reg = reg;
509
510 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
511 return;
512
513 if (GET_CODE (reg) == SUBREG)
514 reg = SUBREG_REG (reg);
515
516 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
517 && (GET_CODE (orig_reg) != SUBREG
518 || REGNO (reg) < FIRST_PSEUDO_REGISTER
519 || !df_read_modify_subreg_p (orig_reg)))
520 return;
521
522 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
523 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
524 else
525 mark_hard_reg_dead (reg);
526 }
527
528 /* If REG is a pseudo or a subreg of it, and the class of its allocno
529 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
530 rtx actually accessed, it may be identical to DREG or a subreg of it.
531 Advance the current program point before making the conflict if
532 ADVANCE_P. Return TRUE if we will need to advance the current
533 program point. */
534 static bool
535 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
536 bool advance_p)
537 {
538 rtx orig_reg = reg;
539 ira_allocno_t a;
540
541 if (GET_CODE (reg) == SUBREG)
542 reg = SUBREG_REG (reg);
543
544 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
545 return advance_p;
546
547 a = ira_curr_regno_allocno_map[REGNO (reg)];
548 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
549 return advance_p;
550
551 if (advance_p)
552 curr_point++;
553
554 mark_pseudo_reg_live (orig_reg, REGNO (reg));
555 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
556 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
557 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
558
559 return false;
560 }
561
562 /* Check and make if necessary conflicts for pseudo DREG of class
563 DEF_CL of the current insn with input operand USE of class USE_CL.
564 ORIG_DREG is the rtx actually accessed, it may be identical to
565 DREG or a subreg of it. Advance the current program point before
566 making the conflict if ADVANCE_P. Return TRUE if we will need to
567 advance the current program point. */
568 static bool
569 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
570 enum reg_class def_cl, int use,
571 enum reg_class use_cl, bool advance_p)
572 {
573 if (! reg_classes_intersect_p (def_cl, use_cl))
574 return advance_p;
575
576 advance_p = make_pseudo_conflict (recog_data.operand[use],
577 use_cl, dreg, orig_dreg, advance_p);
578
579 /* Reload may end up swapping commutative operands, so you
580 have to take both orderings into account. The
581 constraints for the two operands can be completely
582 different. (Indeed, if the constraints for the two
583 operands are the same for all alternatives, there's no
584 point marking them as commutative.) */
585 if (use < recog_data.n_operands - 1
586 && recog_data.constraints[use][0] == '%')
587 advance_p
588 = make_pseudo_conflict (recog_data.operand[use + 1],
589 use_cl, dreg, orig_dreg, advance_p);
590 if (use >= 1
591 && recog_data.constraints[use - 1][0] == '%')
592 advance_p
593 = make_pseudo_conflict (recog_data.operand[use - 1],
594 use_cl, dreg, orig_dreg, advance_p);
595 return advance_p;
596 }
597
598 /* Check and make if necessary conflicts for definition DEF of class
599 DEF_CL of the current insn with input operands. Process only
600 constraints of alternative ALT. */
601 static void
602 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
603 {
604 int use, use_match;
605 ira_allocno_t a;
606 enum reg_class use_cl, acl;
607 bool advance_p;
608 rtx dreg = recog_data.operand[def];
609 rtx orig_dreg = dreg;
610
611 if (def_cl == NO_REGS)
612 return;
613
614 if (GET_CODE (dreg) == SUBREG)
615 dreg = SUBREG_REG (dreg);
616
617 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
618 return;
619
620 a = ira_curr_regno_allocno_map[REGNO (dreg)];
621 acl = ALLOCNO_CLASS (a);
622 if (! reg_classes_intersect_p (acl, def_cl))
623 return;
624
625 advance_p = true;
626
627 for (use = 0; use < recog_data.n_operands; use++)
628 {
629 int alt1;
630
631 if (use == def || recog_data.operand_type[use] == OP_OUT)
632 continue;
633
634 if (recog_op_alt[use][alt].anything_ok)
635 use_cl = ALL_REGS;
636 else
637 use_cl = recog_op_alt[use][alt].cl;
638
639 /* If there's any alternative that allows USE to match DEF, do not
640 record a conflict. If that causes us to create an invalid
641 instruction due to the earlyclobber, reload must fix it up. */
642 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
643 if (recog_op_alt[use][alt1].matches == def
644 || (use < recog_data.n_operands - 1
645 && recog_data.constraints[use][0] == '%'
646 && recog_op_alt[use + 1][alt1].matches == def)
647 || (use >= 1
648 && recog_data.constraints[use - 1][0] == '%'
649 && recog_op_alt[use - 1][alt1].matches == def))
650 break;
651
652 if (alt1 < recog_data.n_alternatives)
653 continue;
654
655 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
656 use, use_cl, advance_p);
657
658 if ((use_match = recog_op_alt[use][alt].matches) >= 0)
659 {
660 if (use_match == def)
661 continue;
662
663 if (recog_op_alt[use_match][alt].anything_ok)
664 use_cl = ALL_REGS;
665 else
666 use_cl = recog_op_alt[use_match][alt].cl;
667 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
668 use, use_cl, advance_p);
669 }
670 }
671 }
672
673 /* Make conflicts of early clobber pseudo registers of the current
674 insn with its inputs. Avoid introducing unnecessary conflicts by
675 checking classes of the constraints and pseudos because otherwise
676 significant code degradation is possible for some targets. */
677 static void
678 make_early_clobber_and_input_conflicts (void)
679 {
680 int alt;
681 int def, def_match;
682 enum reg_class def_cl;
683
684 for (alt = 0; alt < recog_data.n_alternatives; alt++)
685 for (def = 0; def < recog_data.n_operands; def++)
686 {
687 def_cl = NO_REGS;
688 if (recog_op_alt[def][alt].earlyclobber)
689 {
690 if (recog_op_alt[def][alt].anything_ok)
691 def_cl = ALL_REGS;
692 else
693 def_cl = recog_op_alt[def][alt].cl;
694 check_and_make_def_conflict (alt, def, def_cl);
695 }
696 if ((def_match = recog_op_alt[def][alt].matches) >= 0
697 && (recog_op_alt[def_match][alt].earlyclobber
698 || recog_op_alt[def][alt].earlyclobber))
699 {
700 if (recog_op_alt[def_match][alt].anything_ok)
701 def_cl = ALL_REGS;
702 else
703 def_cl = recog_op_alt[def_match][alt].cl;
704 check_and_make_def_conflict (alt, def, def_cl);
705 }
706 }
707 }
708
709 /* Mark early clobber hard registers of the current INSN as live (if
710 LIVE_P) or dead. Return true if there are such registers. */
711 static bool
712 mark_hard_reg_early_clobbers (rtx insn, bool live_p)
713 {
714 df_ref *def_rec;
715 bool set_p = false;
716
717 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
718 if (DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MUST_CLOBBER))
719 {
720 rtx dreg = DF_REF_REG (*def_rec);
721
722 if (GET_CODE (dreg) == SUBREG)
723 dreg = SUBREG_REG (dreg);
724 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
725 continue;
726
727 /* Hard register clobbers are believed to be early clobber
728 because there is no way to say that non-operand hard
729 register clobbers are not early ones. */
730 if (live_p)
731 mark_ref_live (*def_rec);
732 else
733 mark_ref_dead (*def_rec);
734 set_p = true;
735 }
736
737 return set_p;
738 }
739
740 /* Checks that CONSTRAINTS permits to use only one hard register. If
741 it is so, the function returns the class of the hard register.
742 Otherwise it returns NO_REGS. */
743 static enum reg_class
744 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
745 {
746 int c;
747 enum reg_class cl, next_cl;
748
749 cl = NO_REGS;
750 alternative_mask enabled = recog_data.enabled_alternatives;
751 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
752 if (c == '#')
753 enabled &= ~ALTERNATIVE_BIT (0);
754 else if (c == ',')
755 enabled >>= 1;
756 else if (enabled & 1)
757 switch (c)
758 {
759 case ' ':
760 case '\t':
761 case '=':
762 case '+':
763 case '*':
764 case '&':
765 case '%':
766 case '!':
767 case '?':
768 break;
769 case 'i':
770 if (CONSTANT_P (op)
771 || (equiv_const != NULL_RTX && CONSTANT_P (equiv_const)))
772 return NO_REGS;
773 break;
774
775 case 'n':
776 if (CONST_SCALAR_INT_P (op)
777 || (equiv_const != NULL_RTX && CONST_SCALAR_INT_P (equiv_const)))
778 return NO_REGS;
779 break;
780
781 case 's':
782 if ((CONSTANT_P (op) && !CONST_SCALAR_INT_P (op))
783 || (equiv_const != NULL_RTX
784 && CONSTANT_P (equiv_const)
785 && !CONST_SCALAR_INT_P (equiv_const)))
786 return NO_REGS;
787 break;
788
789 case 'I':
790 case 'J':
791 case 'K':
792 case 'L':
793 case 'M':
794 case 'N':
795 case 'O':
796 case 'P':
797 if ((CONST_INT_P (op)
798 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, constraints))
799 || (equiv_const != NULL_RTX
800 && CONST_INT_P (equiv_const)
801 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (equiv_const),
802 c, constraints)))
803 return NO_REGS;
804 break;
805
806 case 'E':
807 case 'F':
808 if (CONST_DOUBLE_AS_FLOAT_P (op)
809 || (GET_CODE (op) == CONST_VECTOR
810 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT)
811 || (equiv_const != NULL_RTX
812 && (CONST_DOUBLE_AS_FLOAT_P (equiv_const)
813 || (GET_CODE (equiv_const) == CONST_VECTOR
814 && (GET_MODE_CLASS (GET_MODE (equiv_const))
815 == MODE_VECTOR_FLOAT)))))
816 return NO_REGS;
817 break;
818
819 case 'G':
820 case 'H':
821 if ((CONST_DOUBLE_AS_FLOAT_P (op)
822 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, constraints))
823 || (equiv_const != NULL_RTX
824 && CONST_DOUBLE_AS_FLOAT_P (equiv_const)
825 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (equiv_const,
826 c, constraints)))
827 return NO_REGS;
828 /* ??? what about memory */
829 case 'r':
830 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
831 case 'h': case 'j': case 'k': case 'l':
832 case 'q': case 't': case 'u':
833 case 'v': case 'w': case 'x': case 'y': case 'z':
834 case 'A': case 'B': case 'C': case 'D':
835 case 'Q': case 'R': case 'S': case 'T': case 'U':
836 case 'W': case 'Y': case 'Z':
837 next_cl = (c == 'r'
838 ? GENERAL_REGS
839 : REG_CLASS_FROM_CONSTRAINT (c, constraints));
840 if (cl == NO_REGS
841 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
842 : (ira_class_singleton[cl][GET_MODE (op)]
843 != ira_class_singleton[next_cl][GET_MODE (op)]))
844 return NO_REGS;
845 cl = next_cl;
846 break;
847
848 case '0': case '1': case '2': case '3': case '4':
849 case '5': case '6': case '7': case '8': case '9':
850 next_cl
851 = single_reg_class (recog_data.constraints[c - '0'],
852 recog_data.operand[c - '0'], NULL_RTX);
853 if (cl == NO_REGS
854 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
855 : (ira_class_singleton[cl][GET_MODE (op)]
856 != ira_class_singleton[next_cl][GET_MODE (op)]))
857 return NO_REGS;
858 cl = next_cl;
859 break;
860
861 default:
862 return NO_REGS;
863 }
864 return cl;
865 }
866
867 /* The function checks that operand OP_NUM of the current insn can use
868 only one hard register. If it is so, the function returns the
869 class of the hard register. Otherwise it returns NO_REGS. */
870 static enum reg_class
871 single_reg_operand_class (int op_num)
872 {
873 if (op_num < 0 || recog_data.n_alternatives == 0)
874 return NO_REGS;
875 return single_reg_class (recog_data.constraints[op_num],
876 recog_data.operand[op_num], NULL_RTX);
877 }
878
879 /* The function sets up hard register set *SET to hard registers which
880 might be used by insn reloads because the constraints are too
881 strict. */
882 void
883 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
884 {
885 int i, c, regno = 0;
886 enum reg_class cl;
887 rtx op;
888 enum machine_mode mode;
889
890 CLEAR_HARD_REG_SET (*set);
891 for (i = 0; i < recog_data.n_operands; i++)
892 {
893 op = recog_data.operand[i];
894
895 if (GET_CODE (op) == SUBREG)
896 op = SUBREG_REG (op);
897
898 if (GET_CODE (op) == SCRATCH
899 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
900 {
901 const char *p = recog_data.constraints[i];
902
903 mode = (GET_CODE (op) == SCRATCH
904 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
905 cl = NO_REGS;
906 alternative_mask enabled = recog_data.enabled_alternatives;
907 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
908 if (c == '#')
909 enabled &= ~ALTERNATIVE_BIT (0);
910 else if (c == ',')
911 enabled >>= 1;
912 else if (enabled & 1)
913 switch (c)
914 {
915 case 'r':
916 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
917 case 'h': case 'j': case 'k': case 'l':
918 case 'q': case 't': case 'u':
919 case 'v': case 'w': case 'x': case 'y': case 'z':
920 case 'A': case 'B': case 'C': case 'D':
921 case 'Q': case 'R': case 'S': case 'T': case 'U':
922 case 'W': case 'Y': case 'Z':
923 cl = (c == 'r'
924 ? GENERAL_REGS
925 : REG_CLASS_FROM_CONSTRAINT (c, p));
926 if (cl != NO_REGS)
927 {
928 /* There is no register pressure problem if all of the
929 regs in this class are fixed. */
930 int regno = ira_class_singleton[cl][mode];
931 if (regno >= 0)
932 add_to_hard_reg_set (set, mode, regno);
933 }
934 break;
935 }
936 }
937 }
938 }
939 /* Processes input operands, if IN_P, or output operands otherwise of
940 the current insn with FREQ to find allocno which can use only one
941 hard register and makes other currently living allocnos conflicting
942 with the hard register. */
943 static void
944 process_single_reg_class_operands (bool in_p, int freq)
945 {
946 int i, regno;
947 unsigned int px;
948 enum reg_class cl;
949 rtx operand;
950 ira_allocno_t operand_a, a;
951
952 for (i = 0; i < recog_data.n_operands; i++)
953 {
954 operand = recog_data.operand[i];
955 if (in_p && recog_data.operand_type[i] != OP_IN
956 && recog_data.operand_type[i] != OP_INOUT)
957 continue;
958 if (! in_p && recog_data.operand_type[i] != OP_OUT
959 && recog_data.operand_type[i] != OP_INOUT)
960 continue;
961 cl = single_reg_operand_class (i);
962 if (cl == NO_REGS)
963 continue;
964
965 operand_a = NULL;
966
967 if (GET_CODE (operand) == SUBREG)
968 operand = SUBREG_REG (operand);
969
970 if (REG_P (operand)
971 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
972 {
973 enum reg_class aclass;
974
975 operand_a = ira_curr_regno_allocno_map[regno];
976 aclass = ALLOCNO_CLASS (operand_a);
977 if (ira_class_subset_p[cl][aclass])
978 {
979 /* View the desired allocation of OPERAND as:
980
981 (REG:YMODE YREGNO),
982
983 a simplification of:
984
985 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
986 enum machine_mode ymode, xmode;
987 int xregno, yregno;
988 HOST_WIDE_INT offset;
989
990 xmode = recog_data.operand_mode[i];
991 xregno = ira_class_singleton[cl][xmode];
992 gcc_assert (xregno >= 0);
993 ymode = ALLOCNO_MODE (operand_a);
994 offset = subreg_lowpart_offset (ymode, xmode);
995 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
996 if (yregno >= 0
997 && ira_class_hard_reg_index[aclass][yregno] >= 0)
998 {
999 int cost;
1000
1001 ira_allocate_and_set_costs
1002 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
1003 aclass, 0);
1004 ira_init_register_move_cost_if_necessary (xmode);
1005 cost = freq * (in_p
1006 ? ira_register_move_cost[xmode][aclass][cl]
1007 : ira_register_move_cost[xmode][cl][aclass]);
1008 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
1009 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
1010 }
1011 }
1012 }
1013
1014 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1015 {
1016 ira_object_t obj = ira_object_id_map[px];
1017 a = OBJECT_ALLOCNO (obj);
1018 if (a != operand_a)
1019 {
1020 /* We could increase costs of A instead of making it
1021 conflicting with the hard register. But it works worse
1022 because it will be spilled in reload in anyway. */
1023 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1024 reg_class_contents[cl]);
1025 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1026 reg_class_contents[cl]);
1027 }
1028 }
1029 }
1030 }
1031
1032 /* Return true when one of the predecessor edges of BB is marked with
1033 EDGE_ABNORMAL_CALL or EDGE_EH. */
1034 static bool
1035 bb_has_abnormal_call_pred (basic_block bb)
1036 {
1037 edge e;
1038 edge_iterator ei;
1039
1040 FOR_EACH_EDGE (e, ei, bb->preds)
1041 {
1042 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
1043 return true;
1044 }
1045 return false;
1046 }
1047
1048 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
1049 we find a SET rtx that we can use to deduce that a register can be cheaply
1050 caller-saved. Return such a register, or NULL_RTX if none is found. */
1051 static rtx
1052 find_call_crossed_cheap_reg (rtx insn)
1053 {
1054 rtx cheap_reg = NULL_RTX;
1055 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1056
1057 while (exp != NULL)
1058 {
1059 rtx x = XEXP (exp, 0);
1060 if (GET_CODE (x) == SET)
1061 {
1062 exp = x;
1063 break;
1064 }
1065 exp = XEXP (exp, 1);
1066 }
1067 if (exp != NULL)
1068 {
1069 basic_block bb = BLOCK_FOR_INSN (insn);
1070 rtx reg = SET_SRC (exp);
1071 rtx prev = PREV_INSN (insn);
1072 while (prev && !(INSN_P (prev)
1073 && BLOCK_FOR_INSN (prev) != bb))
1074 {
1075 if (NONDEBUG_INSN_P (prev))
1076 {
1077 rtx set = single_set (prev);
1078
1079 if (set && rtx_equal_p (SET_DEST (set), reg))
1080 {
1081 rtx src = SET_SRC (set);
1082 if (!REG_P (src) || HARD_REGISTER_P (src)
1083 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1084 break;
1085 if (!modified_between_p (src, prev, insn))
1086 cheap_reg = src;
1087 break;
1088 }
1089 if (set && rtx_equal_p (SET_SRC (set), reg))
1090 {
1091 rtx dest = SET_DEST (set);
1092 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1093 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1094 break;
1095 if (!modified_between_p (dest, prev, insn))
1096 cheap_reg = dest;
1097 break;
1098 }
1099
1100 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1101 break;
1102 }
1103 prev = PREV_INSN (prev);
1104 }
1105 }
1106 return cheap_reg;
1107 }
1108
1109 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1110 update allocno live ranges, allocno hard register conflicts,
1111 intersected calls, and register pressure info for allocnos for the
1112 basic block for and regions containing the basic block. */
1113 static void
1114 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1115 {
1116 int i, freq;
1117 unsigned int j;
1118 basic_block bb;
1119 rtx insn;
1120 bitmap_iterator bi;
1121 bitmap reg_live_out;
1122 unsigned int px;
1123 bool set_p;
1124
1125 bb = loop_tree_node->bb;
1126 if (bb != NULL)
1127 {
1128 for (i = 0; i < ira_pressure_classes_num; i++)
1129 {
1130 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1131 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1132 }
1133 curr_bb_node = loop_tree_node;
1134 reg_live_out = df_get_live_out (bb);
1135 sparseset_clear (objects_live);
1136 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1137 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1138 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1139 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1140 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1141 {
1142 enum reg_class aclass, pclass, cl;
1143
1144 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1145 pclass = ira_pressure_class_translate[aclass];
1146 for (j = 0;
1147 (cl = ira_reg_class_super_classes[pclass][j])
1148 != LIM_REG_CLASSES;
1149 j++)
1150 {
1151 if (! ira_reg_pressure_class_p[cl])
1152 continue;
1153 curr_reg_pressure[cl]++;
1154 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1155 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1156 ira_assert (curr_reg_pressure[cl]
1157 <= ira_class_hard_regs_num[cl]);
1158 }
1159 }
1160 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1161 mark_pseudo_regno_live (j);
1162
1163 freq = REG_FREQ_FROM_BB (bb);
1164 if (freq == 0)
1165 freq = 1;
1166
1167 /* Invalidate all allocno_saved_at_call entries. */
1168 last_call_num++;
1169
1170 /* Scan the code of this basic block, noting which allocnos and
1171 hard regs are born or die.
1172
1173 Note that this loop treats uninitialized values as live until
1174 the beginning of the block. For example, if an instruction
1175 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1176 set, FOO will remain live until the beginning of the block.
1177 Likewise if FOO is not set at all. This is unnecessarily
1178 pessimistic, but it probably doesn't matter much in practice. */
1179 FOR_BB_INSNS_REVERSE (bb, insn)
1180 {
1181 df_ref *def_rec, *use_rec;
1182 bool call_p;
1183
1184 if (!NONDEBUG_INSN_P (insn))
1185 continue;
1186
1187 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1188 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1189 INSN_UID (insn), loop_tree_node->parent->loop_num,
1190 curr_point);
1191
1192 /* Mark each defined value as live. We need to do this for
1193 unused values because they still conflict with quantities
1194 that are live at the time of the definition.
1195
1196 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1197 references represent the effect of the called function
1198 on a call-clobbered register. Marking the register as
1199 live would stop us from allocating it to a call-crossing
1200 allocno. */
1201 call_p = CALL_P (insn);
1202 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1203 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1204 mark_ref_live (*def_rec);
1205
1206 /* If INSN has multiple outputs, then any value used in one
1207 of the outputs conflicts with the other outputs. Model this
1208 by making the used value live during the output phase.
1209
1210 It is unsafe to use !single_set here since it will ignore
1211 an unused output. Just because an output is unused does
1212 not mean the compiler can assume the side effect will not
1213 occur. Consider if ALLOCNO appears in the address of an
1214 output and we reload the output. If we allocate ALLOCNO
1215 to the same hard register as an unused output we could
1216 set the hard register before the output reload insn. */
1217 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1218 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1219 {
1220 int i;
1221 rtx reg;
1222
1223 reg = DF_REF_REG (*use_rec);
1224 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1225 {
1226 rtx set;
1227
1228 set = XVECEXP (PATTERN (insn), 0, i);
1229 if (GET_CODE (set) == SET
1230 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1231 {
1232 /* After the previous loop, this is a no-op if
1233 REG is contained within SET_DEST (SET). */
1234 mark_ref_live (*use_rec);
1235 break;
1236 }
1237 }
1238 }
1239
1240 extract_insn (insn);
1241 preprocess_constraints ();
1242 process_single_reg_class_operands (false, freq);
1243
1244 /* See which defined values die here. */
1245 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1246 if (!call_p || !DF_REF_FLAGS_IS_SET (*def_rec, DF_REF_MAY_CLOBBER))
1247 mark_ref_dead (*def_rec);
1248
1249 if (call_p)
1250 {
1251 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1252 there, try to find a pseudo that is live across the call but
1253 can be cheaply reconstructed from the return value. */
1254 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1255 if (cheap_reg != NULL_RTX)
1256 add_reg_note (insn, REG_RETURNED, cheap_reg);
1257
1258 last_call_num++;
1259 sparseset_clear (allocnos_processed);
1260 /* The current set of live allocnos are live across the call. */
1261 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1262 {
1263 ira_object_t obj = ira_object_id_map[i];
1264 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1265 int num = ALLOCNO_NUM (a);
1266
1267 /* Don't allocate allocnos that cross setjmps or any
1268 call, if this function receives a nonlocal
1269 goto. */
1270 if (cfun->has_nonlocal_label
1271 || find_reg_note (insn, REG_SETJMP,
1272 NULL_RTX) != NULL_RTX)
1273 {
1274 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1275 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1276 }
1277 if (can_throw_internal (insn))
1278 {
1279 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1280 call_used_reg_set);
1281 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1282 call_used_reg_set);
1283 }
1284
1285 if (sparseset_bit_p (allocnos_processed, num))
1286 continue;
1287 sparseset_set_bit (allocnos_processed, num);
1288
1289 if (allocno_saved_at_call[num] != last_call_num)
1290 /* Here we are mimicking caller-save.c behaviour
1291 which does not save hard register at a call if
1292 it was saved on previous call in the same basic
1293 block and the hard register was not mentioned
1294 between the two calls. */
1295 ALLOCNO_CALL_FREQ (a) += freq;
1296 /* Mark it as saved at the next call. */
1297 allocno_saved_at_call[num] = last_call_num + 1;
1298 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1299 if (cheap_reg != NULL_RTX
1300 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1301 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1302 }
1303 }
1304
1305 make_early_clobber_and_input_conflicts ();
1306
1307 curr_point++;
1308
1309 /* Mark each used value as live. */
1310 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1311 mark_ref_live (*use_rec);
1312
1313 process_single_reg_class_operands (true, freq);
1314
1315 set_p = mark_hard_reg_early_clobbers (insn, true);
1316
1317 if (set_p)
1318 {
1319 mark_hard_reg_early_clobbers (insn, false);
1320
1321 /* Mark each hard reg as live again. For example, a
1322 hard register can be in clobber and in an insn
1323 input. */
1324 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
1325 {
1326 rtx ureg = DF_REF_REG (*use_rec);
1327
1328 if (GET_CODE (ureg) == SUBREG)
1329 ureg = SUBREG_REG (ureg);
1330 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1331 continue;
1332
1333 mark_ref_live (*use_rec);
1334 }
1335 }
1336
1337 curr_point++;
1338 }
1339
1340 #ifdef EH_RETURN_DATA_REGNO
1341 if (bb_has_eh_pred (bb))
1342 for (j = 0; ; ++j)
1343 {
1344 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1345 if (regno == INVALID_REGNUM)
1346 break;
1347 make_hard_regno_born (regno);
1348 }
1349 #endif
1350
1351 /* Allocnos can't go in stack regs at the start of a basic block
1352 that is reached by an abnormal edge. Likewise for call
1353 clobbered regs, because caller-save, fixup_abnormal_edges and
1354 possibly the table driven EH machinery are not quite ready to
1355 handle such allocnos live across such edges. */
1356 if (bb_has_abnormal_pred (bb))
1357 {
1358 #ifdef STACK_REGS
1359 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1360 {
1361 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1362
1363 ALLOCNO_NO_STACK_REG_P (a) = true;
1364 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1365 }
1366 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1367 make_hard_regno_born (px);
1368 #endif
1369 /* No need to record conflicts for call clobbered regs if we
1370 have nonlocal labels around, as we don't ever try to
1371 allocate such regs in this case. */
1372 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1373 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1374 if (call_used_regs[px])
1375 make_hard_regno_born (px);
1376 }
1377
1378 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1379 make_object_dead (ira_object_id_map[i]);
1380
1381 curr_point++;
1382
1383 }
1384 /* Propagate register pressure to upper loop tree nodes: */
1385 if (loop_tree_node != ira_loop_tree_root)
1386 for (i = 0; i < ira_pressure_classes_num; i++)
1387 {
1388 enum reg_class pclass;
1389
1390 pclass = ira_pressure_classes[i];
1391 if (loop_tree_node->reg_pressure[pclass]
1392 > loop_tree_node->parent->reg_pressure[pclass])
1393 loop_tree_node->parent->reg_pressure[pclass]
1394 = loop_tree_node->reg_pressure[pclass];
1395 }
1396 }
1397
1398 /* Create and set up IRA_START_POINT_RANGES and
1399 IRA_FINISH_POINT_RANGES. */
1400 static void
1401 create_start_finish_chains (void)
1402 {
1403 ira_object_t obj;
1404 ira_object_iterator oi;
1405 live_range_t r;
1406
1407 ira_start_point_ranges
1408 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1409 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1410 ira_finish_point_ranges
1411 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1412 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1413 FOR_EACH_OBJECT (obj, oi)
1414 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1415 {
1416 r->start_next = ira_start_point_ranges[r->start];
1417 ira_start_point_ranges[r->start] = r;
1418 r->finish_next = ira_finish_point_ranges[r->finish];
1419 ira_finish_point_ranges[r->finish] = r;
1420 }
1421 }
1422
1423 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1424 new live ranges and program points were added as a result if new
1425 insn generation. */
1426 void
1427 ira_rebuild_start_finish_chains (void)
1428 {
1429 ira_free (ira_finish_point_ranges);
1430 ira_free (ira_start_point_ranges);
1431 create_start_finish_chains ();
1432 }
1433
1434 /* Compress allocno live ranges by removing program points where
1435 nothing happens. */
1436 static void
1437 remove_some_program_points_and_update_live_ranges (void)
1438 {
1439 unsigned i;
1440 int n;
1441 int *map;
1442 ira_object_t obj;
1443 ira_object_iterator oi;
1444 live_range_t r, prev_r, next_r;
1445 sbitmap born_or_dead, born, dead;
1446 sbitmap_iterator sbi;
1447 bool born_p, dead_p, prev_born_p, prev_dead_p;
1448
1449 born = sbitmap_alloc (ira_max_point);
1450 dead = sbitmap_alloc (ira_max_point);
1451 bitmap_clear (born);
1452 bitmap_clear (dead);
1453 FOR_EACH_OBJECT (obj, oi)
1454 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1455 {
1456 ira_assert (r->start <= r->finish);
1457 bitmap_set_bit (born, r->start);
1458 bitmap_set_bit (dead, r->finish);
1459 }
1460
1461 born_or_dead = sbitmap_alloc (ira_max_point);
1462 bitmap_ior (born_or_dead, born, dead);
1463 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1464 n = -1;
1465 prev_born_p = prev_dead_p = false;
1466 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1467 {
1468 born_p = bitmap_bit_p (born, i);
1469 dead_p = bitmap_bit_p (dead, i);
1470 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1471 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1472 map[i] = n;
1473 else
1474 map[i] = ++n;
1475 prev_born_p = born_p;
1476 prev_dead_p = dead_p;
1477 }
1478 sbitmap_free (born_or_dead);
1479 sbitmap_free (born);
1480 sbitmap_free (dead);
1481 n++;
1482 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1483 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1484 ira_max_point, n, 100 * n / ira_max_point);
1485 ira_max_point = n;
1486
1487 FOR_EACH_OBJECT (obj, oi)
1488 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1489 {
1490 next_r = r->next;
1491 r->start = map[r->start];
1492 r->finish = map[r->finish];
1493 if (prev_r == NULL || prev_r->start > r->finish + 1)
1494 {
1495 prev_r = r;
1496 continue;
1497 }
1498 prev_r->start = r->start;
1499 prev_r->next = next_r;
1500 ira_finish_live_range (r);
1501 }
1502
1503 ira_free (map);
1504 }
1505
1506 /* Print live ranges R to file F. */
1507 void
1508 ira_print_live_range_list (FILE *f, live_range_t r)
1509 {
1510 for (; r != NULL; r = r->next)
1511 fprintf (f, " [%d..%d]", r->start, r->finish);
1512 fprintf (f, "\n");
1513 }
1514
1515 DEBUG_FUNCTION void
1516 debug (live_range &ref)
1517 {
1518 ira_print_live_range_list (stderr, &ref);
1519 }
1520
1521 DEBUG_FUNCTION void
1522 debug (live_range *ptr)
1523 {
1524 if (ptr)
1525 debug (*ptr);
1526 else
1527 fprintf (stderr, "<nil>\n");
1528 }
1529
1530 /* Print live ranges R to stderr. */
1531 void
1532 ira_debug_live_range_list (live_range_t r)
1533 {
1534 ira_print_live_range_list (stderr, r);
1535 }
1536
1537 /* Print live ranges of object OBJ to file F. */
1538 static void
1539 print_object_live_ranges (FILE *f, ira_object_t obj)
1540 {
1541 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1542 }
1543
1544 /* Print live ranges of allocno A to file F. */
1545 static void
1546 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1547 {
1548 int n = ALLOCNO_NUM_OBJECTS (a);
1549 int i;
1550
1551 for (i = 0; i < n; i++)
1552 {
1553 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1554 if (n > 1)
1555 fprintf (f, " [%d]", i);
1556 fprintf (f, "):");
1557 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1558 }
1559 }
1560
1561 /* Print live ranges of allocno A to stderr. */
1562 void
1563 ira_debug_allocno_live_ranges (ira_allocno_t a)
1564 {
1565 print_allocno_live_ranges (stderr, a);
1566 }
1567
1568 /* Print live ranges of all allocnos to file F. */
1569 static void
1570 print_live_ranges (FILE *f)
1571 {
1572 ira_allocno_t a;
1573 ira_allocno_iterator ai;
1574
1575 FOR_EACH_ALLOCNO (a, ai)
1576 print_allocno_live_ranges (f, a);
1577 }
1578
1579 /* Print live ranges of all allocnos to stderr. */
1580 void
1581 ira_debug_live_ranges (void)
1582 {
1583 print_live_ranges (stderr);
1584 }
1585
1586 /* The main entry function creates live ranges, set up
1587 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1588 calculate register pressure info. */
1589 void
1590 ira_create_allocno_live_ranges (void)
1591 {
1592 objects_live = sparseset_alloc (ira_objects_num);
1593 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1594 curr_point = 0;
1595 last_call_num = 0;
1596 allocno_saved_at_call
1597 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1598 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1599 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1600 process_bb_node_lives);
1601 ira_max_point = curr_point;
1602 create_start_finish_chains ();
1603 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1604 print_live_ranges (ira_dump_file);
1605 /* Clean up. */
1606 ira_free (allocno_saved_at_call);
1607 sparseset_free (objects_live);
1608 sparseset_free (allocnos_processed);
1609 }
1610
1611 /* Compress allocno live ranges. */
1612 void
1613 ira_compress_allocno_live_ranges (void)
1614 {
1615 remove_some_program_points_and_update_live_ranges ();
1616 ira_rebuild_start_finish_chains ();
1617 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1618 {
1619 fprintf (ira_dump_file, "Ranges after the compression:\n");
1620 print_live_ranges (ira_dump_file);
1621 }
1622 }
1623
1624 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1625 void
1626 ira_finish_allocno_live_ranges (void)
1627 {
1628 ira_free (ira_finish_point_ranges);
1629 ira_free (ira_start_point_ranges);
1630 }