]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/ira.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / ira.c
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* The integrated register allocator (IRA) is a
22 regional register allocator performing graph coloring on a top-down
23 traversal of nested regions. Graph coloring in a region is based
24 on Chaitin-Briggs algorithm. It is called integrated because
25 register coalescing, register live range splitting, and choosing a
26 better hard register are done on-the-fly during coloring. Register
27 coalescing and choosing a cheaper hard register is done by hard
28 register preferencing during hard register assigning. The live
29 range splitting is a byproduct of the regional register allocation.
30
31 Major IRA notions are:
32
33 o *Region* is a part of CFG where graph coloring based on
34 Chaitin-Briggs algorithm is done. IRA can work on any set of
35 nested CFG regions forming a tree. Currently the regions are
36 the entire function for the root region and natural loops for
37 the other regions. Therefore data structure representing a
38 region is called loop_tree_node.
39
40 o *Allocno class* is a register class used for allocation of
41 given allocno. It means that only hard register of given
42 register class can be assigned to given allocno. In reality,
43 even smaller subset of (*profitable*) hard registers can be
44 assigned. In rare cases, the subset can be even smaller
45 because our modification of Chaitin-Briggs algorithm requires
46 that sets of hard registers can be assigned to allocnos forms a
47 forest, i.e. the sets can be ordered in a way where any
48 previous set is not intersected with given set or is a superset
49 of given set.
50
51 o *Pressure class* is a register class belonging to a set of
52 register classes containing all of the hard-registers available
53 for register allocation. The set of all pressure classes for a
54 target is defined in the corresponding machine-description file
55 according some criteria. Register pressure is calculated only
56 for pressure classes and it affects some IRA decisions as
57 forming allocation regions.
58
59 o *Allocno* represents the live range of a pseudo-register in a
60 region. Besides the obvious attributes like the corresponding
61 pseudo-register number, allocno class, conflicting allocnos and
62 conflicting hard-registers, there are a few allocno attributes
63 which are important for understanding the allocation algorithm:
64
65 - *Live ranges*. This is a list of ranges of *program points*
66 where the allocno lives. Program points represent places
67 where a pseudo can be born or become dead (there are
68 approximately two times more program points than the insns)
69 and they are represented by integers starting with 0. The
70 live ranges are used to find conflicts between allocnos.
71 They also play very important role for the transformation of
72 the IRA internal representation of several regions into a one
73 region representation. The later is used during the reload
74 pass work because each allocno represents all of the
75 corresponding pseudo-registers.
76
77 - *Hard-register costs*. This is a vector of size equal to the
78 number of available hard-registers of the allocno class. The
79 cost of a callee-clobbered hard-register for an allocno is
80 increased by the cost of save/restore code around the calls
81 through the given allocno's life. If the allocno is a move
82 instruction operand and another operand is a hard-register of
83 the allocno class, the cost of the hard-register is decreased
84 by the move cost.
85
86 When an allocno is assigned, the hard-register with minimal
87 full cost is used. Initially, a hard-register's full cost is
88 the corresponding value from the hard-register's cost vector.
89 If the allocno is connected by a *copy* (see below) to
90 another allocno which has just received a hard-register, the
91 cost of the hard-register is decreased. Before choosing a
92 hard-register for an allocno, the allocno's current costs of
93 the hard-registers are modified by the conflict hard-register
94 costs of all of the conflicting allocnos which are not
95 assigned yet.
96
97 - *Conflict hard-register costs*. This is a vector of the same
98 size as the hard-register costs vector. To permit an
99 unassigned allocno to get a better hard-register, IRA uses
100 this vector to calculate the final full cost of the
101 available hard-registers. Conflict hard-register costs of an
102 unassigned allocno are also changed with a change of the
103 hard-register cost of the allocno when a copy involving the
104 allocno is processed as described above. This is done to
105 show other unassigned allocnos that a given allocno prefers
106 some hard-registers in order to remove the move instruction
107 corresponding to the copy.
108
109 o *Cap*. If a pseudo-register does not live in a region but
110 lives in a nested region, IRA creates a special allocno called
111 a cap in the outer region. A region cap is also created for a
112 subregion cap.
113
114 o *Copy*. Allocnos can be connected by copies. Copies are used
115 to modify hard-register costs for allocnos during coloring.
116 Such modifications reflects a preference to use the same
117 hard-register for the allocnos connected by copies. Usually
118 copies are created for move insns (in this case it results in
119 register coalescing). But IRA also creates copies for operands
120 of an insn which should be assigned to the same hard-register
121 due to constraints in the machine description (it usually
122 results in removing a move generated in reload to satisfy
123 the constraints) and copies referring to the allocno which is
124 the output operand of an instruction and the allocno which is
125 an input operand dying in the instruction (creation of such
126 copies results in less register shuffling). IRA *does not*
127 create copies between the same register allocnos from different
128 regions because we use another technique for propagating
129 hard-register preference on the borders of regions.
130
131 Allocnos (including caps) for the upper region in the region tree
132 *accumulate* information important for coloring from allocnos with
133 the same pseudo-register from nested regions. This includes
134 hard-register and memory costs, conflicts with hard-registers,
135 allocno conflicts, allocno copies and more. *Thus, attributes for
136 allocnos in a region have the same values as if the region had no
137 subregions*. It means that attributes for allocnos in the
138 outermost region corresponding to the function have the same values
139 as though the allocation used only one region which is the entire
140 function. It also means that we can look at IRA work as if the
141 first IRA did allocation for all function then it improved the
142 allocation for loops then their subloops and so on.
143
144 IRA major passes are:
145
146 o Building IRA internal representation which consists of the
147 following subpasses:
148
149 * First, IRA builds regions and creates allocnos (file
150 ira-build.c) and initializes most of their attributes.
151
152 * Then IRA finds an allocno class for each allocno and
153 calculates its initial (non-accumulated) cost of memory and
154 each hard-register of its allocno class (file ira-cost.c).
155
156 * IRA creates live ranges of each allocno, calculates register
157 pressure for each pressure class in each region, sets up
158 conflict hard registers for each allocno and info about calls
159 the allocno lives through (file ira-lives.c).
160
161 * IRA removes low register pressure loops from the regions
162 mostly to speed IRA up (file ira-build.c).
163
164 * IRA propagates accumulated allocno info from lower region
165 allocnos to corresponding upper region allocnos (file
166 ira-build.c).
167
168 * IRA creates all caps (file ira-build.c).
169
170 * Having live-ranges of allocnos and their classes, IRA creates
171 conflicting allocnos for each allocno. Conflicting allocnos
172 are stored as a bit vector or array of pointers to the
173 conflicting allocnos whatever is more profitable (file
174 ira-conflicts.c). At this point IRA creates allocno copies.
175
176 o Coloring. Now IRA has all necessary info to start graph coloring
177 process. It is done in each region on top-down traverse of the
178 region tree (file ira-color.c). There are following subpasses:
179
180 * Finding profitable hard registers of corresponding allocno
181 class for each allocno. For example, only callee-saved hard
182 registers are frequently profitable for allocnos living
183 through colors. If the profitable hard register set of
184 allocno does not form a tree based on subset relation, we use
185 some approximation to form the tree. This approximation is
186 used to figure out trivial colorability of allocnos. The
187 approximation is a pretty rare case.
188
189 * Putting allocnos onto the coloring stack. IRA uses Briggs
190 optimistic coloring which is a major improvement over
191 Chaitin's coloring. Therefore IRA does not spill allocnos at
192 this point. There is some freedom in the order of putting
193 allocnos on the stack which can affect the final result of
194 the allocation. IRA uses some heuristics to improve the
195 order. The major one is to form *threads* from colorable
196 allocnos and push them on the stack by threads. Thread is a
197 set of non-conflicting colorable allocnos connected by
198 copies. The thread contains allocnos from the colorable
199 bucket or colorable allocnos already pushed onto the coloring
200 stack. Pushing thread allocnos one after another onto the
201 stack increases chances of removing copies when the allocnos
202 get the same hard reg.
203
204 We also use a modification of Chaitin-Briggs algorithm which
205 works for intersected register classes of allocnos. To
206 figure out trivial colorability of allocnos, the mentioned
207 above tree of hard register sets is used. To get an idea how
208 the algorithm works in i386 example, let us consider an
209 allocno to which any general hard register can be assigned.
210 If the allocno conflicts with eight allocnos to which only
211 EAX register can be assigned, given allocno is still
212 trivially colorable because all conflicting allocnos might be
213 assigned only to EAX and all other general hard registers are
214 still free.
215
216 To get an idea of the used trivial colorability criterion, it
217 is also useful to read article "Graph-Coloring Register
218 Allocation for Irregular Architectures" by Michael D. Smith
219 and Glen Holloway. Major difference between the article
220 approach and approach used in IRA is that Smith's approach
221 takes register classes only from machine description and IRA
222 calculate register classes from intermediate code too
223 (e.g. an explicit usage of hard registers in RTL code for
224 parameter passing can result in creation of additional
225 register classes which contain or exclude the hard
226 registers). That makes IRA approach useful for improving
227 coloring even for architectures with regular register files
228 and in fact some benchmarking shows the improvement for
229 regular class architectures is even bigger than for irregular
230 ones. Another difference is that Smith's approach chooses
231 intersection of classes of all insn operands in which a given
232 pseudo occurs. IRA can use bigger classes if it is still
233 more profitable than memory usage.
234
235 * Popping the allocnos from the stack and assigning them hard
236 registers. If IRA cannot assign a hard register to an
237 allocno and the allocno is coalesced, IRA undoes the
238 coalescing and puts the uncoalesced allocnos onto the stack in
239 the hope that some such allocnos will get a hard register
240 separately. If IRA fails to assign hard register or memory
241 is more profitable for it, IRA spills the allocno. IRA
242 assigns the allocno the hard-register with minimal full
243 allocation cost which reflects the cost of usage of the
244 hard-register for the allocno and cost of usage of the
245 hard-register for allocnos conflicting with given allocno.
246
247 * Chaitin-Briggs coloring assigns as many pseudos as possible
248 to hard registers. After coloring we try to improve
249 allocation with cost point of view. We improve the
250 allocation by spilling some allocnos and assigning the freed
251 hard registers to other allocnos if it decreases the overall
252 allocation cost.
253
254 * After allocno assigning in the region, IRA modifies the hard
255 register and memory costs for the corresponding allocnos in
256 the subregions to reflect the cost of possible loads, stores,
257 or moves on the border of the region and its subregions.
258 When default regional allocation algorithm is used
259 (-fira-algorithm=mixed), IRA just propagates the assignment
260 for allocnos if the register pressure in the region for the
261 corresponding pressure class is less than number of available
262 hard registers for given pressure class.
263
264 o Spill/restore code moving. When IRA performs an allocation
265 by traversing regions in top-down order, it does not know what
266 happens below in the region tree. Therefore, sometimes IRA
267 misses opportunities to perform a better allocation. A simple
268 optimization tries to improve allocation in a region having
269 subregions and containing in another region. If the
270 corresponding allocnos in the subregion are spilled, it spills
271 the region allocno if it is profitable. The optimization
272 implements a simple iterative algorithm performing profitable
273 transformations while they are still possible. It is fast in
274 practice, so there is no real need for a better time complexity
275 algorithm.
276
277 o Code change. After coloring, two allocnos representing the
278 same pseudo-register outside and inside a region respectively
279 may be assigned to different locations (hard-registers or
280 memory). In this case IRA creates and uses a new
281 pseudo-register inside the region and adds code to move allocno
282 values on the region's borders. This is done during top-down
283 traversal of the regions (file ira-emit.c). In some
284 complicated cases IRA can create a new allocno to move allocno
285 values (e.g. when a swap of values stored in two hard-registers
286 is needed). At this stage, the new allocno is marked as
287 spilled. IRA still creates the pseudo-register and the moves
288 on the region borders even when both allocnos were assigned to
289 the same hard-register. If the reload pass spills a
290 pseudo-register for some reason, the effect will be smaller
291 because another allocno will still be in the hard-register. In
292 most cases, this is better then spilling both allocnos. If
293 reload does not change the allocation for the two
294 pseudo-registers, the trivial move will be removed by
295 post-reload optimizations. IRA does not generate moves for
296 allocnos assigned to the same hard register when the default
297 regional allocation algorithm is used and the register pressure
298 in the region for the corresponding pressure class is less than
299 number of available hard registers for given pressure class.
300 IRA also does some optimizations to remove redundant stores and
301 to reduce code duplication on the region borders.
302
303 o Flattening internal representation. After changing code, IRA
304 transforms its internal representation for several regions into
305 one region representation (file ira-build.c). This process is
306 called IR flattening. Such process is more complicated than IR
307 rebuilding would be, but is much faster.
308
309 o After IR flattening, IRA tries to assign hard registers to all
310 spilled allocnos. This is implemented by a simple and fast
311 priority coloring algorithm (see function
312 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
313 created during the code change pass can be assigned to hard
314 registers.
315
316 o At the end IRA calls the reload pass. The reload pass
317 communicates with IRA through several functions in file
318 ira-color.c to improve its decisions in
319
320 * sharing stack slots for the spilled pseudos based on IRA info
321 about pseudo-register conflicts.
322
323 * reassigning hard-registers to all spilled pseudos at the end
324 of each reload iteration.
325
326 * choosing a better hard-register to spill based on IRA info
327 about pseudo-register live ranges and the register pressure
328 in places where the pseudo-register lives.
329
330 IRA uses a lot of data representing the target processors. These
331 data are initialized in file ira.c.
332
333 If function has no loops (or the loops are ignored when
334 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
335 coloring (only instead of separate pass of coalescing, we use hard
336 register preferencing). In such case, IRA works much faster
337 because many things are not made (like IR flattening, the
338 spill/restore optimization, and the code change).
339
340 Literature is worth to read for better understanding the code:
341
342 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
343 Graph Coloring Register Allocation.
344
345 o David Callahan, Brian Koblenz. Register allocation via
346 hierarchical graph coloring.
347
348 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
349 Coloring Register Allocation: A Study of the Chaitin-Briggs and
350 Callahan-Koblenz Algorithms.
351
352 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
353 Register Allocation Based on Graph Fusion.
354
355 o Michael D. Smith and Glenn Holloway. Graph-Coloring Register
356 Allocation for Irregular Architectures
357
358 o Vladimir Makarov. The Integrated Register Allocator for GCC.
359
360 o Vladimir Makarov. The top-down register allocator for irregular
361 register file architectures.
362
363 */
364
365
366 #include "config.h"
367 #include "system.h"
368 #include "coretypes.h"
369 #include "backend.h"
370 #include "target.h"
371 #include "rtl.h"
372 #include "tree.h"
373 #include "df.h"
374 #include "memmodel.h"
375 #include "tm_p.h"
376 #include "insn-config.h"
377 #include "regs.h"
378 #include "ira.h"
379 #include "ira-int.h"
380 #include "diagnostic-core.h"
381 #include "cfgrtl.h"
382 #include "cfgbuild.h"
383 #include "cfgcleanup.h"
384 #include "expr.h"
385 #include "tree-pass.h"
386 #include "output.h"
387 #include "reload.h"
388 #include "cfgloop.h"
389 #include "lra.h"
390 #include "dce.h"
391 #include "dbgcnt.h"
392 #include "rtl-iter.h"
393 #include "shrink-wrap.h"
394 #include "print-rtl.h"
395
396 struct target_ira default_target_ira;
397 class target_ira_int default_target_ira_int;
398 #if SWITCHABLE_TARGET
399 struct target_ira *this_target_ira = &default_target_ira;
400 class target_ira_int *this_target_ira_int = &default_target_ira_int;
401 #endif
402
403 /* A modified value of flag `-fira-verbose' used internally. */
404 int internal_flag_ira_verbose;
405
406 /* Dump file of the allocator if it is not NULL. */
407 FILE *ira_dump_file;
408
409 /* The number of elements in the following array. */
410 int ira_spilled_reg_stack_slots_num;
411
412 /* The following array contains info about spilled pseudo-registers
413 stack slots used in current function so far. */
414 class ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
415
416 /* Correspondingly overall cost of the allocation, overall cost before
417 reload, cost of the allocnos assigned to hard-registers, cost of
418 the allocnos assigned to memory, cost of loads, stores and register
419 move insns generated for pseudo-register live range splitting (see
420 ira-emit.c). */
421 int64_t ira_overall_cost, overall_cost_before;
422 int64_t ira_reg_cost, ira_mem_cost;
423 int64_t ira_load_cost, ira_store_cost, ira_shuffle_cost;
424 int ira_move_loops_num, ira_additional_jumps_num;
425
426 /* All registers that can be eliminated. */
427
428 HARD_REG_SET eliminable_regset;
429
430 /* Value of max_reg_num () before IRA work start. This value helps
431 us to recognize a situation when new pseudos were created during
432 IRA work. */
433 static int max_regno_before_ira;
434
435 /* Temporary hard reg set used for a different calculation. */
436 static HARD_REG_SET temp_hard_regset;
437
438 #define last_mode_for_init_move_cost \
439 (this_target_ira_int->x_last_mode_for_init_move_cost)
440 \f
441
442 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
443 static void
444 setup_reg_mode_hard_regset (void)
445 {
446 int i, m, hard_regno;
447
448 for (m = 0; m < NUM_MACHINE_MODES; m++)
449 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
450 {
451 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
452 for (i = hard_regno_nregs (hard_regno, (machine_mode) m) - 1;
453 i >= 0; i--)
454 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
455 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
456 hard_regno + i);
457 }
458 }
459
460 \f
461 #define no_unit_alloc_regs \
462 (this_target_ira_int->x_no_unit_alloc_regs)
463
464 /* The function sets up the three arrays declared above. */
465 static void
466 setup_class_hard_regs (void)
467 {
468 int cl, i, hard_regno, n;
469 HARD_REG_SET processed_hard_reg_set;
470
471 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
472 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
473 {
474 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
475 CLEAR_HARD_REG_SET (processed_hard_reg_set);
476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
477 {
478 ira_non_ordered_class_hard_regs[cl][i] = -1;
479 ira_class_hard_reg_index[cl][i] = -1;
480 }
481 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
482 {
483 #ifdef REG_ALLOC_ORDER
484 hard_regno = reg_alloc_order[i];
485 #else
486 hard_regno = i;
487 #endif
488 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
489 continue;
490 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
491 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
492 ira_class_hard_reg_index[cl][hard_regno] = -1;
493 else
494 {
495 ira_class_hard_reg_index[cl][hard_regno] = n;
496 ira_class_hard_regs[cl][n++] = hard_regno;
497 }
498 }
499 ira_class_hard_regs_num[cl] = n;
500 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
501 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
502 ira_non_ordered_class_hard_regs[cl][n++] = i;
503 ira_assert (ira_class_hard_regs_num[cl] == n);
504 }
505 }
506
507 /* Set up global variables defining info about hard registers for the
508 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
509 that we can use the hard frame pointer for the allocation. */
510 static void
511 setup_alloc_regs (bool use_hard_frame_p)
512 {
513 #ifdef ADJUST_REG_ALLOC_ORDER
514 ADJUST_REG_ALLOC_ORDER;
515 #endif
516 no_unit_alloc_regs = fixed_nonglobal_reg_set;
517 if (! use_hard_frame_p)
518 add_to_hard_reg_set (&no_unit_alloc_regs, Pmode,
519 HARD_FRAME_POINTER_REGNUM);
520 setup_class_hard_regs ();
521 }
522
523 \f
524
525 #define alloc_reg_class_subclasses \
526 (this_target_ira_int->x_alloc_reg_class_subclasses)
527
528 /* Initialize the table of subclasses of each reg class. */
529 static void
530 setup_reg_subclasses (void)
531 {
532 int i, j;
533 HARD_REG_SET temp_hard_regset2;
534
535 for (i = 0; i < N_REG_CLASSES; i++)
536 for (j = 0; j < N_REG_CLASSES; j++)
537 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
538
539 for (i = 0; i < N_REG_CLASSES; i++)
540 {
541 if (i == (int) NO_REGS)
542 continue;
543
544 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
545 if (hard_reg_set_empty_p (temp_hard_regset))
546 continue;
547 for (j = 0; j < N_REG_CLASSES; j++)
548 if (i != j)
549 {
550 enum reg_class *p;
551
552 temp_hard_regset2 = reg_class_contents[j] & ~no_unit_alloc_regs;
553 if (! hard_reg_set_subset_p (temp_hard_regset,
554 temp_hard_regset2))
555 continue;
556 p = &alloc_reg_class_subclasses[j][0];
557 while (*p != LIM_REG_CLASSES) p++;
558 *p = (enum reg_class) i;
559 }
560 }
561 }
562
563 \f
564
565 /* Set up IRA_MEMORY_MOVE_COST and IRA_MAX_MEMORY_MOVE_COST. */
566 static void
567 setup_class_subset_and_memory_move_costs (void)
568 {
569 int cl, cl2, mode, cost;
570 HARD_REG_SET temp_hard_regset2;
571
572 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
573 ira_memory_move_cost[mode][NO_REGS][0]
574 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
575 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
576 {
577 if (cl != (int) NO_REGS)
578 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
579 {
580 ira_max_memory_move_cost[mode][cl][0]
581 = ira_memory_move_cost[mode][cl][0]
582 = memory_move_cost ((machine_mode) mode,
583 (reg_class_t) cl, false);
584 ira_max_memory_move_cost[mode][cl][1]
585 = ira_memory_move_cost[mode][cl][1]
586 = memory_move_cost ((machine_mode) mode,
587 (reg_class_t) cl, true);
588 /* Costs for NO_REGS are used in cost calculation on the
589 1st pass when the preferred register classes are not
590 known yet. In this case we take the best scenario. */
591 if (ira_memory_move_cost[mode][NO_REGS][0]
592 > ira_memory_move_cost[mode][cl][0])
593 ira_max_memory_move_cost[mode][NO_REGS][0]
594 = ira_memory_move_cost[mode][NO_REGS][0]
595 = ira_memory_move_cost[mode][cl][0];
596 if (ira_memory_move_cost[mode][NO_REGS][1]
597 > ira_memory_move_cost[mode][cl][1])
598 ira_max_memory_move_cost[mode][NO_REGS][1]
599 = ira_memory_move_cost[mode][NO_REGS][1]
600 = ira_memory_move_cost[mode][cl][1];
601 }
602 }
603 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
604 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
605 {
606 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
607 temp_hard_regset2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
608 ira_class_subset_p[cl][cl2]
609 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
610 if (! hard_reg_set_empty_p (temp_hard_regset2)
611 && hard_reg_set_subset_p (reg_class_contents[cl2],
612 reg_class_contents[cl]))
613 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
614 {
615 cost = ira_memory_move_cost[mode][cl2][0];
616 if (cost > ira_max_memory_move_cost[mode][cl][0])
617 ira_max_memory_move_cost[mode][cl][0] = cost;
618 cost = ira_memory_move_cost[mode][cl2][1];
619 if (cost > ira_max_memory_move_cost[mode][cl][1])
620 ira_max_memory_move_cost[mode][cl][1] = cost;
621 }
622 }
623 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
624 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
625 {
626 ira_memory_move_cost[mode][cl][0]
627 = ira_max_memory_move_cost[mode][cl][0];
628 ira_memory_move_cost[mode][cl][1]
629 = ira_max_memory_move_cost[mode][cl][1];
630 }
631 setup_reg_subclasses ();
632 }
633
634 \f
635
636 /* Define the following macro if allocation through malloc if
637 preferable. */
638 #define IRA_NO_OBSTACK
639
640 #ifndef IRA_NO_OBSTACK
641 /* Obstack used for storing all dynamic data (except bitmaps) of the
642 IRA. */
643 static struct obstack ira_obstack;
644 #endif
645
646 /* Obstack used for storing all bitmaps of the IRA. */
647 static struct bitmap_obstack ira_bitmap_obstack;
648
649 /* Allocate memory of size LEN for IRA data. */
650 void *
651 ira_allocate (size_t len)
652 {
653 void *res;
654
655 #ifndef IRA_NO_OBSTACK
656 res = obstack_alloc (&ira_obstack, len);
657 #else
658 res = xmalloc (len);
659 #endif
660 return res;
661 }
662
663 /* Free memory ADDR allocated for IRA data. */
664 void
665 ira_free (void *addr ATTRIBUTE_UNUSED)
666 {
667 #ifndef IRA_NO_OBSTACK
668 /* do nothing */
669 #else
670 free (addr);
671 #endif
672 }
673
674
675 /* Allocate and returns bitmap for IRA. */
676 bitmap
677 ira_allocate_bitmap (void)
678 {
679 return BITMAP_ALLOC (&ira_bitmap_obstack);
680 }
681
682 /* Free bitmap B allocated for IRA. */
683 void
684 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
685 {
686 /* do nothing */
687 }
688
689 \f
690
691 /* Output information about allocation of all allocnos (except for
692 caps) into file F. */
693 void
694 ira_print_disposition (FILE *f)
695 {
696 int i, n, max_regno;
697 ira_allocno_t a;
698 basic_block bb;
699
700 fprintf (f, "Disposition:");
701 max_regno = max_reg_num ();
702 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
703 for (a = ira_regno_allocno_map[i];
704 a != NULL;
705 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
706 {
707 if (n % 4 == 0)
708 fprintf (f, "\n");
709 n++;
710 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
711 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
712 fprintf (f, "b%-3d", bb->index);
713 else
714 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
715 if (ALLOCNO_HARD_REGNO (a) >= 0)
716 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
717 else
718 fprintf (f, " mem");
719 }
720 fprintf (f, "\n");
721 }
722
723 /* Outputs information about allocation of all allocnos into
724 stderr. */
725 void
726 ira_debug_disposition (void)
727 {
728 ira_print_disposition (stderr);
729 }
730
731 \f
732
733 /* Set up ira_stack_reg_pressure_class which is the biggest pressure
734 register class containing stack registers or NO_REGS if there are
735 no stack registers. To find this class, we iterate through all
736 register pressure classes and choose the first register pressure
737 class containing all the stack registers and having the biggest
738 size. */
739 static void
740 setup_stack_reg_pressure_class (void)
741 {
742 ira_stack_reg_pressure_class = NO_REGS;
743 #ifdef STACK_REGS
744 {
745 int i, best, size;
746 enum reg_class cl;
747 HARD_REG_SET temp_hard_regset2;
748
749 CLEAR_HARD_REG_SET (temp_hard_regset);
750 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
751 SET_HARD_REG_BIT (temp_hard_regset, i);
752 best = 0;
753 for (i = 0; i < ira_pressure_classes_num; i++)
754 {
755 cl = ira_pressure_classes[i];
756 temp_hard_regset2 = temp_hard_regset & reg_class_contents[cl];
757 size = hard_reg_set_size (temp_hard_regset2);
758 if (best < size)
759 {
760 best = size;
761 ira_stack_reg_pressure_class = cl;
762 }
763 }
764 }
765 #endif
766 }
767
768 /* Find pressure classes which are register classes for which we
769 calculate register pressure in IRA, register pressure sensitive
770 insn scheduling, and register pressure sensitive loop invariant
771 motion.
772
773 To make register pressure calculation easy, we always use
774 non-intersected register pressure classes. A move of hard
775 registers from one register pressure class is not more expensive
776 than load and store of the hard registers. Most likely an allocno
777 class will be a subset of a register pressure class and in many
778 cases a register pressure class. That makes usage of register
779 pressure classes a good approximation to find a high register
780 pressure. */
781 static void
782 setup_pressure_classes (void)
783 {
784 int cost, i, n, curr;
785 int cl, cl2;
786 enum reg_class pressure_classes[N_REG_CLASSES];
787 int m;
788 HARD_REG_SET temp_hard_regset2;
789 bool insert_p;
790
791 if (targetm.compute_pressure_classes)
792 n = targetm.compute_pressure_classes (pressure_classes);
793 else
794 {
795 n = 0;
796 for (cl = 0; cl < N_REG_CLASSES; cl++)
797 {
798 if (ira_class_hard_regs_num[cl] == 0)
799 continue;
800 if (ira_class_hard_regs_num[cl] != 1
801 /* A register class without subclasses may contain a few
802 hard registers and movement between them is costly
803 (e.g. SPARC FPCC registers). We still should consider it
804 as a candidate for a pressure class. */
805 && alloc_reg_class_subclasses[cl][0] < cl)
806 {
807 /* Check that the moves between any hard registers of the
808 current class are not more expensive for a legal mode
809 than load/store of the hard registers of the current
810 class. Such class is a potential candidate to be a
811 register pressure class. */
812 for (m = 0; m < NUM_MACHINE_MODES; m++)
813 {
814 temp_hard_regset
815 = (reg_class_contents[cl]
816 & ~(no_unit_alloc_regs
817 | ira_prohibited_class_mode_regs[cl][m]));
818 if (hard_reg_set_empty_p (temp_hard_regset))
819 continue;
820 ira_init_register_move_cost_if_necessary ((machine_mode) m);
821 cost = ira_register_move_cost[m][cl][cl];
822 if (cost <= ira_max_memory_move_cost[m][cl][1]
823 || cost <= ira_max_memory_move_cost[m][cl][0])
824 break;
825 }
826 if (m >= NUM_MACHINE_MODES)
827 continue;
828 }
829 curr = 0;
830 insert_p = true;
831 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
832 /* Remove so far added pressure classes which are subset of the
833 current candidate class. Prefer GENERAL_REGS as a pressure
834 register class to another class containing the same
835 allocatable hard registers. We do this because machine
836 dependent cost hooks might give wrong costs for the latter
837 class but always give the right cost for the former class
838 (GENERAL_REGS). */
839 for (i = 0; i < n; i++)
840 {
841 cl2 = pressure_classes[i];
842 temp_hard_regset2 = (reg_class_contents[cl2]
843 & ~no_unit_alloc_regs);
844 if (hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2)
845 && (temp_hard_regset != temp_hard_regset2
846 || cl2 == (int) GENERAL_REGS))
847 {
848 pressure_classes[curr++] = (enum reg_class) cl2;
849 insert_p = false;
850 continue;
851 }
852 if (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset)
853 && (temp_hard_regset2 != temp_hard_regset
854 || cl == (int) GENERAL_REGS))
855 continue;
856 if (temp_hard_regset2 == temp_hard_regset)
857 insert_p = false;
858 pressure_classes[curr++] = (enum reg_class) cl2;
859 }
860 /* If the current candidate is a subset of a so far added
861 pressure class, don't add it to the list of the pressure
862 classes. */
863 if (insert_p)
864 pressure_classes[curr++] = (enum reg_class) cl;
865 n = curr;
866 }
867 }
868 #ifdef ENABLE_IRA_CHECKING
869 {
870 HARD_REG_SET ignore_hard_regs;
871
872 /* Check pressure classes correctness: here we check that hard
873 registers from all register pressure classes contains all hard
874 registers available for the allocation. */
875 CLEAR_HARD_REG_SET (temp_hard_regset);
876 CLEAR_HARD_REG_SET (temp_hard_regset2);
877 ignore_hard_regs = no_unit_alloc_regs;
878 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
879 {
880 /* For some targets (like MIPS with MD_REGS), there are some
881 classes with hard registers available for allocation but
882 not able to hold value of any mode. */
883 for (m = 0; m < NUM_MACHINE_MODES; m++)
884 if (contains_reg_of_mode[cl][m])
885 break;
886 if (m >= NUM_MACHINE_MODES)
887 {
888 ignore_hard_regs |= reg_class_contents[cl];
889 continue;
890 }
891 for (i = 0; i < n; i++)
892 if ((int) pressure_classes[i] == cl)
893 break;
894 temp_hard_regset2 |= reg_class_contents[cl];
895 if (i < n)
896 temp_hard_regset |= reg_class_contents[cl];
897 }
898 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
899 /* Some targets (like SPARC with ICC reg) have allocatable regs
900 for which no reg class is defined. */
901 if (REGNO_REG_CLASS (i) == NO_REGS)
902 SET_HARD_REG_BIT (ignore_hard_regs, i);
903 temp_hard_regset &= ~ignore_hard_regs;
904 temp_hard_regset2 &= ~ignore_hard_regs;
905 ira_assert (hard_reg_set_subset_p (temp_hard_regset2, temp_hard_regset));
906 }
907 #endif
908 ira_pressure_classes_num = 0;
909 for (i = 0; i < n; i++)
910 {
911 cl = (int) pressure_classes[i];
912 ira_reg_pressure_class_p[cl] = true;
913 ira_pressure_classes[ira_pressure_classes_num++] = (enum reg_class) cl;
914 }
915 setup_stack_reg_pressure_class ();
916 }
917
918 /* Set up IRA_UNIFORM_CLASS_P. Uniform class is a register class
919 whose register move cost between any registers of the class is the
920 same as for all its subclasses. We use the data to speed up the
921 2nd pass of calculations of allocno costs. */
922 static void
923 setup_uniform_class_p (void)
924 {
925 int i, cl, cl2, m;
926
927 for (cl = 0; cl < N_REG_CLASSES; cl++)
928 {
929 ira_uniform_class_p[cl] = false;
930 if (ira_class_hard_regs_num[cl] == 0)
931 continue;
932 /* We cannot use alloc_reg_class_subclasses here because move
933 cost hooks does not take into account that some registers are
934 unavailable for the subtarget. E.g. for i686, INT_SSE_REGS
935 is element of alloc_reg_class_subclasses for GENERAL_REGS
936 because SSE regs are unavailable. */
937 for (i = 0; (cl2 = reg_class_subclasses[cl][i]) != LIM_REG_CLASSES; i++)
938 {
939 if (ira_class_hard_regs_num[cl2] == 0)
940 continue;
941 for (m = 0; m < NUM_MACHINE_MODES; m++)
942 if (contains_reg_of_mode[cl][m] && contains_reg_of_mode[cl2][m])
943 {
944 ira_init_register_move_cost_if_necessary ((machine_mode) m);
945 if (ira_register_move_cost[m][cl][cl]
946 != ira_register_move_cost[m][cl2][cl2])
947 break;
948 }
949 if (m < NUM_MACHINE_MODES)
950 break;
951 }
952 if (cl2 == LIM_REG_CLASSES)
953 ira_uniform_class_p[cl] = true;
954 }
955 }
956
957 /* Set up IRA_ALLOCNO_CLASSES, IRA_ALLOCNO_CLASSES_NUM,
958 IRA_IMPORTANT_CLASSES, and IRA_IMPORTANT_CLASSES_NUM.
959
960 Target may have many subtargets and not all target hard registers can
961 be used for allocation, e.g. x86 port in 32-bit mode cannot use
962 hard registers introduced in x86-64 like r8-r15). Some classes
963 might have the same allocatable hard registers, e.g. INDEX_REGS
964 and GENERAL_REGS in x86 port in 32-bit mode. To decrease different
965 calculations efforts we introduce allocno classes which contain
966 unique non-empty sets of allocatable hard-registers.
967
968 Pseudo class cost calculation in ira-costs.c is very expensive.
969 Therefore we are trying to decrease number of classes involved in
970 such calculation. Register classes used in the cost calculation
971 are called important classes. They are allocno classes and other
972 non-empty classes whose allocatable hard register sets are inside
973 of an allocno class hard register set. From the first sight, it
974 looks like that they are just allocno classes. It is not true. In
975 example of x86-port in 32-bit mode, allocno classes will contain
976 GENERAL_REGS but not LEGACY_REGS (because allocatable hard
977 registers are the same for the both classes). The important
978 classes will contain GENERAL_REGS and LEGACY_REGS. It is done
979 because a machine description insn constraint may refers for
980 LEGACY_REGS and code in ira-costs.c is mostly base on investigation
981 of the insn constraints. */
982 static void
983 setup_allocno_and_important_classes (void)
984 {
985 int i, j, n, cl;
986 bool set_p;
987 HARD_REG_SET temp_hard_regset2;
988 static enum reg_class classes[LIM_REG_CLASSES + 1];
989
990 n = 0;
991 /* Collect classes which contain unique sets of allocatable hard
992 registers. Prefer GENERAL_REGS to other classes containing the
993 same set of hard registers. */
994 for (i = 0; i < LIM_REG_CLASSES; i++)
995 {
996 temp_hard_regset = reg_class_contents[i] & ~no_unit_alloc_regs;
997 for (j = 0; j < n; j++)
998 {
999 cl = classes[j];
1000 temp_hard_regset2 = reg_class_contents[cl] & ~no_unit_alloc_regs;
1001 if (temp_hard_regset == temp_hard_regset2)
1002 break;
1003 }
1004 if (j >= n || targetm.additional_allocno_class_p (i))
1005 classes[n++] = (enum reg_class) i;
1006 else if (i == GENERAL_REGS)
1007 /* Prefer general regs. For i386 example, it means that
1008 we prefer GENERAL_REGS over INDEX_REGS or LEGACY_REGS
1009 (all of them consists of the same available hard
1010 registers). */
1011 classes[j] = (enum reg_class) i;
1012 }
1013 classes[n] = LIM_REG_CLASSES;
1014
1015 /* Set up classes which can be used for allocnos as classes
1016 containing non-empty unique sets of allocatable hard
1017 registers. */
1018 ira_allocno_classes_num = 0;
1019 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
1020 if (ira_class_hard_regs_num[cl] > 0)
1021 ira_allocno_classes[ira_allocno_classes_num++] = (enum reg_class) cl;
1022 ira_important_classes_num = 0;
1023 /* Add non-allocno classes containing to non-empty set of
1024 allocatable hard regs. */
1025 for (cl = 0; cl < N_REG_CLASSES; cl++)
1026 if (ira_class_hard_regs_num[cl] > 0)
1027 {
1028 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1029 set_p = false;
1030 for (j = 0; j < ira_allocno_classes_num; j++)
1031 {
1032 temp_hard_regset2 = (reg_class_contents[ira_allocno_classes[j]]
1033 & ~no_unit_alloc_regs);
1034 if ((enum reg_class) cl == ira_allocno_classes[j])
1035 break;
1036 else if (hard_reg_set_subset_p (temp_hard_regset,
1037 temp_hard_regset2))
1038 set_p = true;
1039 }
1040 if (set_p && j >= ira_allocno_classes_num)
1041 ira_important_classes[ira_important_classes_num++]
1042 = (enum reg_class) cl;
1043 }
1044 /* Now add allocno classes to the important classes. */
1045 for (j = 0; j < ira_allocno_classes_num; j++)
1046 ira_important_classes[ira_important_classes_num++]
1047 = ira_allocno_classes[j];
1048 for (cl = 0; cl < N_REG_CLASSES; cl++)
1049 {
1050 ira_reg_allocno_class_p[cl] = false;
1051 ira_reg_pressure_class_p[cl] = false;
1052 }
1053 for (j = 0; j < ira_allocno_classes_num; j++)
1054 ira_reg_allocno_class_p[ira_allocno_classes[j]] = true;
1055 setup_pressure_classes ();
1056 setup_uniform_class_p ();
1057 }
1058
1059 /* Setup translation in CLASS_TRANSLATE of all classes into a class
1060 given by array CLASSES of length CLASSES_NUM. The function is used
1061 make translation any reg class to an allocno class or to an
1062 pressure class. This translation is necessary for some
1063 calculations when we can use only allocno or pressure classes and
1064 such translation represents an approximate representation of all
1065 classes.
1066
1067 The translation in case when allocatable hard register set of a
1068 given class is subset of allocatable hard register set of a class
1069 in CLASSES is pretty simple. We use smallest classes from CLASSES
1070 containing a given class. If allocatable hard register set of a
1071 given class is not a subset of any corresponding set of a class
1072 from CLASSES, we use the cheapest (with load/store point of view)
1073 class from CLASSES whose set intersects with given class set. */
1074 static void
1075 setup_class_translate_array (enum reg_class *class_translate,
1076 int classes_num, enum reg_class *classes)
1077 {
1078 int cl, mode;
1079 enum reg_class aclass, best_class, *cl_ptr;
1080 int i, cost, min_cost, best_cost;
1081
1082 for (cl = 0; cl < N_REG_CLASSES; cl++)
1083 class_translate[cl] = NO_REGS;
1084
1085 for (i = 0; i < classes_num; i++)
1086 {
1087 aclass = classes[i];
1088 for (cl_ptr = &alloc_reg_class_subclasses[aclass][0];
1089 (cl = *cl_ptr) != LIM_REG_CLASSES;
1090 cl_ptr++)
1091 if (class_translate[cl] == NO_REGS)
1092 class_translate[cl] = aclass;
1093 class_translate[aclass] = aclass;
1094 }
1095 /* For classes which are not fully covered by one of given classes
1096 (in other words covered by more one given class), use the
1097 cheapest class. */
1098 for (cl = 0; cl < N_REG_CLASSES; cl++)
1099 {
1100 if (cl == NO_REGS || class_translate[cl] != NO_REGS)
1101 continue;
1102 best_class = NO_REGS;
1103 best_cost = INT_MAX;
1104 for (i = 0; i < classes_num; i++)
1105 {
1106 aclass = classes[i];
1107 temp_hard_regset = (reg_class_contents[aclass]
1108 & reg_class_contents[cl]
1109 & ~no_unit_alloc_regs);
1110 if (! hard_reg_set_empty_p (temp_hard_regset))
1111 {
1112 min_cost = INT_MAX;
1113 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1114 {
1115 cost = (ira_memory_move_cost[mode][aclass][0]
1116 + ira_memory_move_cost[mode][aclass][1]);
1117 if (min_cost > cost)
1118 min_cost = cost;
1119 }
1120 if (best_class == NO_REGS || best_cost > min_cost)
1121 {
1122 best_class = aclass;
1123 best_cost = min_cost;
1124 }
1125 }
1126 }
1127 class_translate[cl] = best_class;
1128 }
1129 }
1130
1131 /* Set up array IRA_ALLOCNO_CLASS_TRANSLATE and
1132 IRA_PRESSURE_CLASS_TRANSLATE. */
1133 static void
1134 setup_class_translate (void)
1135 {
1136 setup_class_translate_array (ira_allocno_class_translate,
1137 ira_allocno_classes_num, ira_allocno_classes);
1138 setup_class_translate_array (ira_pressure_class_translate,
1139 ira_pressure_classes_num, ira_pressure_classes);
1140 }
1141
1142 /* Order numbers of allocno classes in original target allocno class
1143 array, -1 for non-allocno classes. */
1144 static int allocno_class_order[N_REG_CLASSES];
1145
1146 /* The function used to sort the important classes. */
1147 static int
1148 comp_reg_classes_func (const void *v1p, const void *v2p)
1149 {
1150 enum reg_class cl1 = *(const enum reg_class *) v1p;
1151 enum reg_class cl2 = *(const enum reg_class *) v2p;
1152 enum reg_class tcl1, tcl2;
1153 int diff;
1154
1155 tcl1 = ira_allocno_class_translate[cl1];
1156 tcl2 = ira_allocno_class_translate[cl2];
1157 if (tcl1 != NO_REGS && tcl2 != NO_REGS
1158 && (diff = allocno_class_order[tcl1] - allocno_class_order[tcl2]) != 0)
1159 return diff;
1160 return (int) cl1 - (int) cl2;
1161 }
1162
1163 /* For correct work of function setup_reg_class_relation we need to
1164 reorder important classes according to the order of their allocno
1165 classes. It places important classes containing the same
1166 allocatable hard register set adjacent to each other and allocno
1167 class with the allocatable hard register set right after the other
1168 important classes with the same set.
1169
1170 In example from comments of function
1171 setup_allocno_and_important_classes, it places LEGACY_REGS and
1172 GENERAL_REGS close to each other and GENERAL_REGS is after
1173 LEGACY_REGS. */
1174 static void
1175 reorder_important_classes (void)
1176 {
1177 int i;
1178
1179 for (i = 0; i < N_REG_CLASSES; i++)
1180 allocno_class_order[i] = -1;
1181 for (i = 0; i < ira_allocno_classes_num; i++)
1182 allocno_class_order[ira_allocno_classes[i]] = i;
1183 qsort (ira_important_classes, ira_important_classes_num,
1184 sizeof (enum reg_class), comp_reg_classes_func);
1185 for (i = 0; i < ira_important_classes_num; i++)
1186 ira_important_class_nums[ira_important_classes[i]] = i;
1187 }
1188
1189 /* Set up IRA_REG_CLASS_SUBUNION, IRA_REG_CLASS_SUPERUNION,
1190 IRA_REG_CLASS_SUPER_CLASSES, IRA_REG_CLASSES_INTERSECT, and
1191 IRA_REG_CLASSES_INTERSECT_P. For the meaning of the relations,
1192 please see corresponding comments in ira-int.h. */
1193 static void
1194 setup_reg_class_relations (void)
1195 {
1196 int i, cl1, cl2, cl3;
1197 HARD_REG_SET intersection_set, union_set, temp_set2;
1198 bool important_class_p[N_REG_CLASSES];
1199
1200 memset (important_class_p, 0, sizeof (important_class_p));
1201 for (i = 0; i < ira_important_classes_num; i++)
1202 important_class_p[ira_important_classes[i]] = true;
1203 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1204 {
1205 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1206 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1207 {
1208 ira_reg_classes_intersect_p[cl1][cl2] = false;
1209 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1210 ira_reg_class_subset[cl1][cl2] = NO_REGS;
1211 temp_hard_regset = reg_class_contents[cl1] & ~no_unit_alloc_regs;
1212 temp_set2 = reg_class_contents[cl2] & ~no_unit_alloc_regs;
1213 if (hard_reg_set_empty_p (temp_hard_regset)
1214 && hard_reg_set_empty_p (temp_set2))
1215 {
1216 /* The both classes have no allocatable hard registers
1217 -- take all class hard registers into account and use
1218 reg_class_subunion and reg_class_superunion. */
1219 for (i = 0;; i++)
1220 {
1221 cl3 = reg_class_subclasses[cl1][i];
1222 if (cl3 == LIM_REG_CLASSES)
1223 break;
1224 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1225 (enum reg_class) cl3))
1226 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1227 }
1228 ira_reg_class_subunion[cl1][cl2] = reg_class_subunion[cl1][cl2];
1229 ira_reg_class_superunion[cl1][cl2] = reg_class_superunion[cl1][cl2];
1230 continue;
1231 }
1232 ira_reg_classes_intersect_p[cl1][cl2]
1233 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1234 if (important_class_p[cl1] && important_class_p[cl2]
1235 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1236 {
1237 /* CL1 and CL2 are important classes and CL1 allocatable
1238 hard register set is inside of CL2 allocatable hard
1239 registers -- make CL1 a superset of CL2. */
1240 enum reg_class *p;
1241
1242 p = &ira_reg_class_super_classes[cl1][0];
1243 while (*p != LIM_REG_CLASSES)
1244 p++;
1245 *p++ = (enum reg_class) cl2;
1246 *p = LIM_REG_CLASSES;
1247 }
1248 ira_reg_class_subunion[cl1][cl2] = NO_REGS;
1249 ira_reg_class_superunion[cl1][cl2] = NO_REGS;
1250 intersection_set = (reg_class_contents[cl1]
1251 & reg_class_contents[cl2]
1252 & ~no_unit_alloc_regs);
1253 union_set = ((reg_class_contents[cl1] | reg_class_contents[cl2])
1254 & ~no_unit_alloc_regs);
1255 for (cl3 = 0; cl3 < N_REG_CLASSES; cl3++)
1256 {
1257 temp_hard_regset = reg_class_contents[cl3] & ~no_unit_alloc_regs;
1258 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1259 {
1260 /* CL3 allocatable hard register set is inside of
1261 intersection of allocatable hard register sets
1262 of CL1 and CL2. */
1263 if (important_class_p[cl3])
1264 {
1265 temp_set2
1266 = (reg_class_contents
1267 [ira_reg_class_intersect[cl1][cl2]]);
1268 temp_set2 &= ~no_unit_alloc_regs;
1269 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1270 /* If the allocatable hard register sets are
1271 the same, prefer GENERAL_REGS or the
1272 smallest class for debugging
1273 purposes. */
1274 || (temp_hard_regset == temp_set2
1275 && (cl3 == GENERAL_REGS
1276 || ((ira_reg_class_intersect[cl1][cl2]
1277 != GENERAL_REGS)
1278 && hard_reg_set_subset_p
1279 (reg_class_contents[cl3],
1280 reg_class_contents
1281 [(int)
1282 ira_reg_class_intersect[cl1][cl2]])))))
1283 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1284 }
1285 temp_set2
1286 = (reg_class_contents[ira_reg_class_subset[cl1][cl2]]
1287 & ~no_unit_alloc_regs);
1288 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1289 /* Ignore unavailable hard registers and prefer
1290 smallest class for debugging purposes. */
1291 || (temp_hard_regset == temp_set2
1292 && hard_reg_set_subset_p
1293 (reg_class_contents[cl3],
1294 reg_class_contents
1295 [(int) ira_reg_class_subset[cl1][cl2]])))
1296 ira_reg_class_subset[cl1][cl2] = (enum reg_class) cl3;
1297 }
1298 if (important_class_p[cl3]
1299 && hard_reg_set_subset_p (temp_hard_regset, union_set))
1300 {
1301 /* CL3 allocatable hard register set is inside of
1302 union of allocatable hard register sets of CL1
1303 and CL2. */
1304 temp_set2
1305 = (reg_class_contents[ira_reg_class_subunion[cl1][cl2]]
1306 & ~no_unit_alloc_regs);
1307 if (ira_reg_class_subunion[cl1][cl2] == NO_REGS
1308 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1309
1310 && (temp_set2 != temp_hard_regset
1311 || cl3 == GENERAL_REGS
1312 /* If the allocatable hard register sets are the
1313 same, prefer GENERAL_REGS or the smallest
1314 class for debugging purposes. */
1315 || (ira_reg_class_subunion[cl1][cl2] != GENERAL_REGS
1316 && hard_reg_set_subset_p
1317 (reg_class_contents[cl3],
1318 reg_class_contents
1319 [(int) ira_reg_class_subunion[cl1][cl2]])))))
1320 ira_reg_class_subunion[cl1][cl2] = (enum reg_class) cl3;
1321 }
1322 if (hard_reg_set_subset_p (union_set, temp_hard_regset))
1323 {
1324 /* CL3 allocatable hard register set contains union
1325 of allocatable hard register sets of CL1 and
1326 CL2. */
1327 temp_set2
1328 = (reg_class_contents[ira_reg_class_superunion[cl1][cl2]]
1329 & ~no_unit_alloc_regs);
1330 if (ira_reg_class_superunion[cl1][cl2] == NO_REGS
1331 || (hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1332
1333 && (temp_set2 != temp_hard_regset
1334 || cl3 == GENERAL_REGS
1335 /* If the allocatable hard register sets are the
1336 same, prefer GENERAL_REGS or the smallest
1337 class for debugging purposes. */
1338 || (ira_reg_class_superunion[cl1][cl2] != GENERAL_REGS
1339 && hard_reg_set_subset_p
1340 (reg_class_contents[cl3],
1341 reg_class_contents
1342 [(int) ira_reg_class_superunion[cl1][cl2]])))))
1343 ira_reg_class_superunion[cl1][cl2] = (enum reg_class) cl3;
1344 }
1345 }
1346 }
1347 }
1348 }
1349
1350 /* Output all uniform and important classes into file F. */
1351 static void
1352 print_uniform_and_important_classes (FILE *f)
1353 {
1354 int i, cl;
1355
1356 fprintf (f, "Uniform classes:\n");
1357 for (cl = 0; cl < N_REG_CLASSES; cl++)
1358 if (ira_uniform_class_p[cl])
1359 fprintf (f, " %s", reg_class_names[cl]);
1360 fprintf (f, "\nImportant classes:\n");
1361 for (i = 0; i < ira_important_classes_num; i++)
1362 fprintf (f, " %s", reg_class_names[ira_important_classes[i]]);
1363 fprintf (f, "\n");
1364 }
1365
1366 /* Output all possible allocno or pressure classes and their
1367 translation map into file F. */
1368 static void
1369 print_translated_classes (FILE *f, bool pressure_p)
1370 {
1371 int classes_num = (pressure_p
1372 ? ira_pressure_classes_num : ira_allocno_classes_num);
1373 enum reg_class *classes = (pressure_p
1374 ? ira_pressure_classes : ira_allocno_classes);
1375 enum reg_class *class_translate = (pressure_p
1376 ? ira_pressure_class_translate
1377 : ira_allocno_class_translate);
1378 int i;
1379
1380 fprintf (f, "%s classes:\n", pressure_p ? "Pressure" : "Allocno");
1381 for (i = 0; i < classes_num; i++)
1382 fprintf (f, " %s", reg_class_names[classes[i]]);
1383 fprintf (f, "\nClass translation:\n");
1384 for (i = 0; i < N_REG_CLASSES; i++)
1385 fprintf (f, " %s -> %s\n", reg_class_names[i],
1386 reg_class_names[class_translate[i]]);
1387 }
1388
1389 /* Output all possible allocno and translation classes and the
1390 translation maps into stderr. */
1391 void
1392 ira_debug_allocno_classes (void)
1393 {
1394 print_uniform_and_important_classes (stderr);
1395 print_translated_classes (stderr, false);
1396 print_translated_classes (stderr, true);
1397 }
1398
1399 /* Set up different arrays concerning class subsets, allocno and
1400 important classes. */
1401 static void
1402 find_reg_classes (void)
1403 {
1404 setup_allocno_and_important_classes ();
1405 setup_class_translate ();
1406 reorder_important_classes ();
1407 setup_reg_class_relations ();
1408 }
1409
1410 \f
1411
1412 /* Set up the array above. */
1413 static void
1414 setup_hard_regno_aclass (void)
1415 {
1416 int i;
1417
1418 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1419 {
1420 #if 1
1421 ira_hard_regno_allocno_class[i]
1422 = (TEST_HARD_REG_BIT (no_unit_alloc_regs, i)
1423 ? NO_REGS
1424 : ira_allocno_class_translate[REGNO_REG_CLASS (i)]);
1425 #else
1426 int j;
1427 enum reg_class cl;
1428 ira_hard_regno_allocno_class[i] = NO_REGS;
1429 for (j = 0; j < ira_allocno_classes_num; j++)
1430 {
1431 cl = ira_allocno_classes[j];
1432 if (ira_class_hard_reg_index[cl][i] >= 0)
1433 {
1434 ira_hard_regno_allocno_class[i] = cl;
1435 break;
1436 }
1437 }
1438 #endif
1439 }
1440 }
1441
1442 \f
1443
1444 /* Form IRA_REG_CLASS_MAX_NREGS and IRA_REG_CLASS_MIN_NREGS maps. */
1445 static void
1446 setup_reg_class_nregs (void)
1447 {
1448 int i, cl, cl2, m;
1449
1450 for (m = 0; m < MAX_MACHINE_MODE; m++)
1451 {
1452 for (cl = 0; cl < N_REG_CLASSES; cl++)
1453 ira_reg_class_max_nregs[cl][m]
1454 = ira_reg_class_min_nregs[cl][m]
1455 = targetm.class_max_nregs ((reg_class_t) cl, (machine_mode) m);
1456 for (cl = 0; cl < N_REG_CLASSES; cl++)
1457 for (i = 0;
1458 (cl2 = alloc_reg_class_subclasses[cl][i]) != LIM_REG_CLASSES;
1459 i++)
1460 if (ira_reg_class_min_nregs[cl2][m]
1461 < ira_reg_class_min_nregs[cl][m])
1462 ira_reg_class_min_nregs[cl][m] = ira_reg_class_min_nregs[cl2][m];
1463 }
1464 }
1465
1466 \f
1467
1468 /* Set up IRA_PROHIBITED_CLASS_MODE_REGS and IRA_CLASS_SINGLETON.
1469 This function is called once IRA_CLASS_HARD_REGS has been initialized. */
1470 static void
1471 setup_prohibited_class_mode_regs (void)
1472 {
1473 int j, k, hard_regno, cl, last_hard_regno, count;
1474
1475 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1476 {
1477 temp_hard_regset = reg_class_contents[cl] & ~no_unit_alloc_regs;
1478 for (j = 0; j < NUM_MACHINE_MODES; j++)
1479 {
1480 count = 0;
1481 last_hard_regno = -1;
1482 CLEAR_HARD_REG_SET (ira_prohibited_class_mode_regs[cl][j]);
1483 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1484 {
1485 hard_regno = ira_class_hard_regs[cl][k];
1486 if (!targetm.hard_regno_mode_ok (hard_regno, (machine_mode) j))
1487 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1488 hard_regno);
1489 else if (in_hard_reg_set_p (temp_hard_regset,
1490 (machine_mode) j, hard_regno))
1491 {
1492 last_hard_regno = hard_regno;
1493 count++;
1494 }
1495 }
1496 ira_class_singleton[cl][j] = (count == 1 ? last_hard_regno : -1);
1497 }
1498 }
1499 }
1500
1501 /* Clarify IRA_PROHIBITED_CLASS_MODE_REGS by excluding hard registers
1502 spanning from one register pressure class to another one. It is
1503 called after defining the pressure classes. */
1504 static void
1505 clarify_prohibited_class_mode_regs (void)
1506 {
1507 int j, k, hard_regno, cl, pclass, nregs;
1508
1509 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
1510 for (j = 0; j < NUM_MACHINE_MODES; j++)
1511 {
1512 CLEAR_HARD_REG_SET (ira_useful_class_mode_regs[cl][j]);
1513 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1514 {
1515 hard_regno = ira_class_hard_regs[cl][k];
1516 if (TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j], hard_regno))
1517 continue;
1518 nregs = hard_regno_nregs (hard_regno, (machine_mode) j);
1519 if (hard_regno + nregs > FIRST_PSEUDO_REGISTER)
1520 {
1521 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1522 hard_regno);
1523 continue;
1524 }
1525 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
1526 for (nregs-- ;nregs >= 0; nregs--)
1527 if (((enum reg_class) pclass
1528 != ira_pressure_class_translate[REGNO_REG_CLASS
1529 (hard_regno + nregs)]))
1530 {
1531 SET_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1532 hard_regno);
1533 break;
1534 }
1535 if (!TEST_HARD_REG_BIT (ira_prohibited_class_mode_regs[cl][j],
1536 hard_regno))
1537 add_to_hard_reg_set (&ira_useful_class_mode_regs[cl][j],
1538 (machine_mode) j, hard_regno);
1539 }
1540 }
1541 }
1542 \f
1543 /* Allocate and initialize IRA_REGISTER_MOVE_COST, IRA_MAY_MOVE_IN_COST
1544 and IRA_MAY_MOVE_OUT_COST for MODE. */
1545 void
1546 ira_init_register_move_cost (machine_mode mode)
1547 {
1548 static unsigned short last_move_cost[N_REG_CLASSES][N_REG_CLASSES];
1549 bool all_match = true;
1550 unsigned int i, cl1, cl2;
1551 HARD_REG_SET ok_regs;
1552
1553 ira_assert (ira_register_move_cost[mode] == NULL
1554 && ira_may_move_in_cost[mode] == NULL
1555 && ira_may_move_out_cost[mode] == NULL);
1556 CLEAR_HARD_REG_SET (ok_regs);
1557 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1558 if (targetm.hard_regno_mode_ok (i, mode))
1559 SET_HARD_REG_BIT (ok_regs, i);
1560
1561 /* Note that we might be asked about the move costs of modes that
1562 cannot be stored in any hard register, for example if an inline
1563 asm tries to create a register operand with an impossible mode.
1564 We therefore can't assert have_regs_of_mode[mode] here. */
1565 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1566 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1567 {
1568 int cost;
1569 if (!hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl1])
1570 || !hard_reg_set_intersect_p (ok_regs, reg_class_contents[cl2]))
1571 {
1572 if ((ira_reg_class_max_nregs[cl1][mode]
1573 > ira_class_hard_regs_num[cl1])
1574 || (ira_reg_class_max_nregs[cl2][mode]
1575 > ira_class_hard_regs_num[cl2]))
1576 cost = 65535;
1577 else
1578 cost = (ira_memory_move_cost[mode][cl1][0]
1579 + ira_memory_move_cost[mode][cl2][1]) * 2;
1580 }
1581 else
1582 {
1583 cost = register_move_cost (mode, (enum reg_class) cl1,
1584 (enum reg_class) cl2);
1585 ira_assert (cost < 65535);
1586 }
1587 all_match &= (last_move_cost[cl1][cl2] == cost);
1588 last_move_cost[cl1][cl2] = cost;
1589 }
1590 if (all_match && last_mode_for_init_move_cost != -1)
1591 {
1592 ira_register_move_cost[mode]
1593 = ira_register_move_cost[last_mode_for_init_move_cost];
1594 ira_may_move_in_cost[mode]
1595 = ira_may_move_in_cost[last_mode_for_init_move_cost];
1596 ira_may_move_out_cost[mode]
1597 = ira_may_move_out_cost[last_mode_for_init_move_cost];
1598 return;
1599 }
1600 last_mode_for_init_move_cost = mode;
1601 ira_register_move_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1602 ira_may_move_in_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1603 ira_may_move_out_cost[mode] = XNEWVEC (move_table, N_REG_CLASSES);
1604 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1605 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1606 {
1607 int cost;
1608 enum reg_class *p1, *p2;
1609
1610 if (last_move_cost[cl1][cl2] == 65535)
1611 {
1612 ira_register_move_cost[mode][cl1][cl2] = 65535;
1613 ira_may_move_in_cost[mode][cl1][cl2] = 65535;
1614 ira_may_move_out_cost[mode][cl1][cl2] = 65535;
1615 }
1616 else
1617 {
1618 cost = last_move_cost[cl1][cl2];
1619
1620 for (p2 = &reg_class_subclasses[cl2][0];
1621 *p2 != LIM_REG_CLASSES; p2++)
1622 if (ira_class_hard_regs_num[*p2] > 0
1623 && (ira_reg_class_max_nregs[*p2][mode]
1624 <= ira_class_hard_regs_num[*p2]))
1625 cost = MAX (cost, ira_register_move_cost[mode][cl1][*p2]);
1626
1627 for (p1 = &reg_class_subclasses[cl1][0];
1628 *p1 != LIM_REG_CLASSES; p1++)
1629 if (ira_class_hard_regs_num[*p1] > 0
1630 && (ira_reg_class_max_nregs[*p1][mode]
1631 <= ira_class_hard_regs_num[*p1]))
1632 cost = MAX (cost, ira_register_move_cost[mode][*p1][cl2]);
1633
1634 ira_assert (cost <= 65535);
1635 ira_register_move_cost[mode][cl1][cl2] = cost;
1636
1637 if (ira_class_subset_p[cl1][cl2])
1638 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1639 else
1640 ira_may_move_in_cost[mode][cl1][cl2] = cost;
1641
1642 if (ira_class_subset_p[cl2][cl1])
1643 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1644 else
1645 ira_may_move_out_cost[mode][cl1][cl2] = cost;
1646 }
1647 }
1648 }
1649
1650 \f
1651
1652 /* This is called once during compiler work. It sets up
1653 different arrays whose values don't depend on the compiled
1654 function. */
1655 void
1656 ira_init_once (void)
1657 {
1658 ira_init_costs_once ();
1659 lra_init_once ();
1660
1661 ira_use_lra_p = targetm.lra_p ();
1662 }
1663
1664 /* Free ira_max_register_move_cost, ira_may_move_in_cost and
1665 ira_may_move_out_cost for each mode. */
1666 void
1667 target_ira_int::free_register_move_costs (void)
1668 {
1669 int mode, i;
1670
1671 /* Reset move_cost and friends, making sure we only free shared
1672 table entries once. */
1673 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1674 if (x_ira_register_move_cost[mode])
1675 {
1676 for (i = 0;
1677 i < mode && (x_ira_register_move_cost[i]
1678 != x_ira_register_move_cost[mode]);
1679 i++)
1680 ;
1681 if (i == mode)
1682 {
1683 free (x_ira_register_move_cost[mode]);
1684 free (x_ira_may_move_in_cost[mode]);
1685 free (x_ira_may_move_out_cost[mode]);
1686 }
1687 }
1688 memset (x_ira_register_move_cost, 0, sizeof x_ira_register_move_cost);
1689 memset (x_ira_may_move_in_cost, 0, sizeof x_ira_may_move_in_cost);
1690 memset (x_ira_may_move_out_cost, 0, sizeof x_ira_may_move_out_cost);
1691 last_mode_for_init_move_cost = -1;
1692 }
1693
1694 target_ira_int::~target_ira_int ()
1695 {
1696 free_ira_costs ();
1697 free_register_move_costs ();
1698 }
1699
1700 /* This is called every time when register related information is
1701 changed. */
1702 void
1703 ira_init (void)
1704 {
1705 this_target_ira_int->free_register_move_costs ();
1706 setup_reg_mode_hard_regset ();
1707 setup_alloc_regs (flag_omit_frame_pointer != 0);
1708 setup_class_subset_and_memory_move_costs ();
1709 setup_reg_class_nregs ();
1710 setup_prohibited_class_mode_regs ();
1711 find_reg_classes ();
1712 clarify_prohibited_class_mode_regs ();
1713 setup_hard_regno_aclass ();
1714 ira_init_costs ();
1715 }
1716
1717 \f
1718 #define ira_prohibited_mode_move_regs_initialized_p \
1719 (this_target_ira_int->x_ira_prohibited_mode_move_regs_initialized_p)
1720
1721 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1722 static void
1723 setup_prohibited_mode_move_regs (void)
1724 {
1725 int i, j;
1726 rtx test_reg1, test_reg2, move_pat;
1727 rtx_insn *move_insn;
1728
1729 if (ira_prohibited_mode_move_regs_initialized_p)
1730 return;
1731 ira_prohibited_mode_move_regs_initialized_p = true;
1732 test_reg1 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
1733 test_reg2 = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 2);
1734 move_pat = gen_rtx_SET (test_reg1, test_reg2);
1735 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, move_pat, 0, -1, 0);
1736 for (i = 0; i < NUM_MACHINE_MODES; i++)
1737 {
1738 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1739 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1740 {
1741 if (!targetm.hard_regno_mode_ok (j, (machine_mode) i))
1742 continue;
1743 set_mode_and_regno (test_reg1, (machine_mode) i, j);
1744 set_mode_and_regno (test_reg2, (machine_mode) i, j);
1745 INSN_CODE (move_insn) = -1;
1746 recog_memoized (move_insn);
1747 if (INSN_CODE (move_insn) < 0)
1748 continue;
1749 extract_insn (move_insn);
1750 /* We don't know whether the move will be in code that is optimized
1751 for size or speed, so consider all enabled alternatives. */
1752 if (! constrain_operands (1, get_enabled_alternatives (move_insn)))
1753 continue;
1754 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1755 }
1756 }
1757 }
1758
1759 \f
1760
1761 /* Extract INSN and return the set of alternatives that we should consider.
1762 This excludes any alternatives whose constraints are obviously impossible
1763 to meet (e.g. because the constraint requires a constant and the operand
1764 is nonconstant). It also excludes alternatives that are bound to need
1765 a spill or reload, as long as we have other alternatives that match
1766 exactly. */
1767 alternative_mask
1768 ira_setup_alts (rtx_insn *insn)
1769 {
1770 int nop, nalt;
1771 bool curr_swapped;
1772 const char *p;
1773 int commutative = -1;
1774
1775 extract_insn (insn);
1776 preprocess_constraints (insn);
1777 alternative_mask preferred = get_preferred_alternatives (insn);
1778 alternative_mask alts = 0;
1779 alternative_mask exact_alts = 0;
1780 /* Check that the hard reg set is enough for holding all
1781 alternatives. It is hard to imagine the situation when the
1782 assertion is wrong. */
1783 ira_assert (recog_data.n_alternatives
1784 <= (int) MAX (sizeof (HARD_REG_ELT_TYPE) * CHAR_BIT,
1785 FIRST_PSEUDO_REGISTER));
1786 for (nop = 0; nop < recog_data.n_operands; nop++)
1787 if (recog_data.constraints[nop][0] == '%')
1788 {
1789 commutative = nop;
1790 break;
1791 }
1792 for (curr_swapped = false;; curr_swapped = true)
1793 {
1794 for (nalt = 0; nalt < recog_data.n_alternatives; nalt++)
1795 {
1796 if (!TEST_BIT (preferred, nalt) || TEST_BIT (exact_alts, nalt))
1797 continue;
1798
1799 const operand_alternative *op_alt
1800 = &recog_op_alt[nalt * recog_data.n_operands];
1801 int this_reject = 0;
1802 for (nop = 0; nop < recog_data.n_operands; nop++)
1803 {
1804 int c, len;
1805
1806 this_reject += op_alt[nop].reject;
1807
1808 rtx op = recog_data.operand[nop];
1809 p = op_alt[nop].constraint;
1810 if (*p == 0 || *p == ',')
1811 continue;
1812
1813 bool win_p = false;
1814 do
1815 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
1816 {
1817 case '#':
1818 case ',':
1819 c = '\0';
1820 /* FALLTHRU */
1821 case '\0':
1822 len = 0;
1823 break;
1824
1825 case '%':
1826 /* The commutative modifier is handled above. */
1827 break;
1828
1829 case '0': case '1': case '2': case '3': case '4':
1830 case '5': case '6': case '7': case '8': case '9':
1831 {
1832 rtx other = recog_data.operand[c - '0'];
1833 if (MEM_P (other)
1834 ? rtx_equal_p (other, op)
1835 : REG_P (op) || SUBREG_P (op))
1836 goto op_success;
1837 win_p = true;
1838 }
1839 break;
1840
1841 case 'g':
1842 goto op_success;
1843 break;
1844
1845 default:
1846 {
1847 enum constraint_num cn = lookup_constraint (p);
1848 switch (get_constraint_type (cn))
1849 {
1850 case CT_REGISTER:
1851 if (reg_class_for_constraint (cn) != NO_REGS)
1852 {
1853 if (REG_P (op) || SUBREG_P (op))
1854 goto op_success;
1855 win_p = true;
1856 }
1857 break;
1858
1859 case CT_CONST_INT:
1860 if (CONST_INT_P (op)
1861 && (insn_const_int_ok_for_constraint
1862 (INTVAL (op), cn)))
1863 goto op_success;
1864 break;
1865
1866 case CT_ADDRESS:
1867 goto op_success;
1868
1869 case CT_MEMORY:
1870 case CT_SPECIAL_MEMORY:
1871 if (MEM_P (op))
1872 goto op_success;
1873 win_p = true;
1874 break;
1875
1876 case CT_FIXED_FORM:
1877 if (constraint_satisfied_p (op, cn))
1878 goto op_success;
1879 break;
1880 }
1881 break;
1882 }
1883 }
1884 while (p += len, c);
1885 if (!win_p)
1886 break;
1887 /* We can make the alternative match by spilling a register
1888 to memory or loading something into a register. Count a
1889 cost of one reload (the equivalent of the '?' constraint). */
1890 this_reject += 6;
1891 op_success:
1892 ;
1893 }
1894
1895 if (nop >= recog_data.n_operands)
1896 {
1897 alts |= ALTERNATIVE_BIT (nalt);
1898 if (this_reject == 0)
1899 exact_alts |= ALTERNATIVE_BIT (nalt);
1900 }
1901 }
1902 if (commutative < 0)
1903 break;
1904 /* Swap forth and back to avoid changing recog_data. */
1905 std::swap (recog_data.operand[commutative],
1906 recog_data.operand[commutative + 1]);
1907 if (curr_swapped)
1908 break;
1909 }
1910 return exact_alts ? exact_alts : alts;
1911 }
1912
1913 /* Return the number of the output non-early clobber operand which
1914 should be the same in any case as operand with number OP_NUM (or
1915 negative value if there is no such operand). ALTS is the mask
1916 of alternatives that we should consider. */
1917 int
1918 ira_get_dup_out_num (int op_num, alternative_mask alts)
1919 {
1920 int curr_alt, c, original, dup;
1921 bool ignore_p, use_commut_op_p;
1922 const char *str;
1923
1924 if (op_num < 0 || recog_data.n_alternatives == 0)
1925 return -1;
1926 /* We should find duplications only for input operands. */
1927 if (recog_data.operand_type[op_num] != OP_IN)
1928 return -1;
1929 str = recog_data.constraints[op_num];
1930 use_commut_op_p = false;
1931 for (;;)
1932 {
1933 rtx op = recog_data.operand[op_num];
1934
1935 for (curr_alt = 0, ignore_p = !TEST_BIT (alts, curr_alt),
1936 original = -1;;)
1937 {
1938 c = *str;
1939 if (c == '\0')
1940 break;
1941 if (c == '#')
1942 ignore_p = true;
1943 else if (c == ',')
1944 {
1945 curr_alt++;
1946 ignore_p = !TEST_BIT (alts, curr_alt);
1947 }
1948 else if (! ignore_p)
1949 switch (c)
1950 {
1951 case 'g':
1952 goto fail;
1953 default:
1954 {
1955 enum constraint_num cn = lookup_constraint (str);
1956 enum reg_class cl = reg_class_for_constraint (cn);
1957 if (cl != NO_REGS
1958 && !targetm.class_likely_spilled_p (cl))
1959 goto fail;
1960 if (constraint_satisfied_p (op, cn))
1961 goto fail;
1962 break;
1963 }
1964
1965 case '0': case '1': case '2': case '3': case '4':
1966 case '5': case '6': case '7': case '8': case '9':
1967 if (original != -1 && original != c)
1968 goto fail;
1969 original = c;
1970 break;
1971 }
1972 str += CONSTRAINT_LEN (c, str);
1973 }
1974 if (original == -1)
1975 goto fail;
1976 dup = original - '0';
1977 if (recog_data.operand_type[dup] == OP_OUT)
1978 return dup;
1979 fail:
1980 if (use_commut_op_p)
1981 break;
1982 use_commut_op_p = true;
1983 if (recog_data.constraints[op_num][0] == '%')
1984 str = recog_data.constraints[op_num + 1];
1985 else if (op_num > 0 && recog_data.constraints[op_num - 1][0] == '%')
1986 str = recog_data.constraints[op_num - 1];
1987 else
1988 break;
1989 }
1990 return -1;
1991 }
1992
1993 \f
1994
1995 /* Search forward to see if the source register of a copy insn dies
1996 before either it or the destination register is modified, but don't
1997 scan past the end of the basic block. If so, we can replace the
1998 source with the destination and let the source die in the copy
1999 insn.
2000
2001 This will reduce the number of registers live in that range and may
2002 enable the destination and the source coalescing, thus often saving
2003 one register in addition to a register-register copy. */
2004
2005 static void
2006 decrease_live_ranges_number (void)
2007 {
2008 basic_block bb;
2009 rtx_insn *insn;
2010 rtx set, src, dest, dest_death, note;
2011 rtx_insn *p, *q;
2012 int sregno, dregno;
2013
2014 if (! flag_expensive_optimizations)
2015 return;
2016
2017 if (ira_dump_file)
2018 fprintf (ira_dump_file, "Starting decreasing number of live ranges...\n");
2019
2020 FOR_EACH_BB_FN (bb, cfun)
2021 FOR_BB_INSNS (bb, insn)
2022 {
2023 set = single_set (insn);
2024 if (! set)
2025 continue;
2026 src = SET_SRC (set);
2027 dest = SET_DEST (set);
2028 if (! REG_P (src) || ! REG_P (dest)
2029 || find_reg_note (insn, REG_DEAD, src))
2030 continue;
2031 sregno = REGNO (src);
2032 dregno = REGNO (dest);
2033
2034 /* We don't want to mess with hard regs if register classes
2035 are small. */
2036 if (sregno == dregno
2037 || (targetm.small_register_classes_for_mode_p (GET_MODE (src))
2038 && (sregno < FIRST_PSEUDO_REGISTER
2039 || dregno < FIRST_PSEUDO_REGISTER))
2040 /* We don't see all updates to SP if they are in an
2041 auto-inc memory reference, so we must disallow this
2042 optimization on them. */
2043 || sregno == STACK_POINTER_REGNUM
2044 || dregno == STACK_POINTER_REGNUM)
2045 continue;
2046
2047 dest_death = NULL_RTX;
2048
2049 for (p = NEXT_INSN (insn); p; p = NEXT_INSN (p))
2050 {
2051 if (! INSN_P (p))
2052 continue;
2053 if (BLOCK_FOR_INSN (p) != bb)
2054 break;
2055
2056 if (reg_set_p (src, p) || reg_set_p (dest, p)
2057 /* If SRC is an asm-declared register, it must not be
2058 replaced in any asm. Unfortunately, the REG_EXPR
2059 tree for the asm variable may be absent in the SRC
2060 rtx, so we can't check the actual register
2061 declaration easily (the asm operand will have it,
2062 though). To avoid complicating the test for a rare
2063 case, we just don't perform register replacement
2064 for a hard reg mentioned in an asm. */
2065 || (sregno < FIRST_PSEUDO_REGISTER
2066 && asm_noperands (PATTERN (p)) >= 0
2067 && reg_overlap_mentioned_p (src, PATTERN (p)))
2068 /* Don't change hard registers used by a call. */
2069 || (CALL_P (p) && sregno < FIRST_PSEUDO_REGISTER
2070 && find_reg_fusage (p, USE, src))
2071 /* Don't change a USE of a register. */
2072 || (GET_CODE (PATTERN (p)) == USE
2073 && reg_overlap_mentioned_p (src, XEXP (PATTERN (p), 0))))
2074 break;
2075
2076 /* See if all of SRC dies in P. This test is slightly
2077 more conservative than it needs to be. */
2078 if ((note = find_regno_note (p, REG_DEAD, sregno))
2079 && GET_MODE (XEXP (note, 0)) == GET_MODE (src))
2080 {
2081 int failed = 0;
2082
2083 /* We can do the optimization. Scan forward from INSN
2084 again, replacing regs as we go. Set FAILED if a
2085 replacement can't be done. In that case, we can't
2086 move the death note for SRC. This should be
2087 rare. */
2088
2089 /* Set to stop at next insn. */
2090 for (q = next_real_insn (insn);
2091 q != next_real_insn (p);
2092 q = next_real_insn (q))
2093 {
2094 if (reg_overlap_mentioned_p (src, PATTERN (q)))
2095 {
2096 /* If SRC is a hard register, we might miss
2097 some overlapping registers with
2098 validate_replace_rtx, so we would have to
2099 undo it. We can't if DEST is present in
2100 the insn, so fail in that combination of
2101 cases. */
2102 if (sregno < FIRST_PSEUDO_REGISTER
2103 && reg_mentioned_p (dest, PATTERN (q)))
2104 failed = 1;
2105
2106 /* Attempt to replace all uses. */
2107 else if (!validate_replace_rtx (src, dest, q))
2108 failed = 1;
2109
2110 /* If this succeeded, but some part of the
2111 register is still present, undo the
2112 replacement. */
2113 else if (sregno < FIRST_PSEUDO_REGISTER
2114 && reg_overlap_mentioned_p (src, PATTERN (q)))
2115 {
2116 validate_replace_rtx (dest, src, q);
2117 failed = 1;
2118 }
2119 }
2120
2121 /* If DEST dies here, remove the death note and
2122 save it for later. Make sure ALL of DEST dies
2123 here; again, this is overly conservative. */
2124 if (! dest_death
2125 && (dest_death = find_regno_note (q, REG_DEAD, dregno)))
2126 {
2127 if (GET_MODE (XEXP (dest_death, 0)) == GET_MODE (dest))
2128 remove_note (q, dest_death);
2129 else
2130 {
2131 failed = 1;
2132 dest_death = 0;
2133 }
2134 }
2135 }
2136
2137 if (! failed)
2138 {
2139 /* Move death note of SRC from P to INSN. */
2140 remove_note (p, note);
2141 XEXP (note, 1) = REG_NOTES (insn);
2142 REG_NOTES (insn) = note;
2143 }
2144
2145 /* DEST is also dead if INSN has a REG_UNUSED note for
2146 DEST. */
2147 if (! dest_death
2148 && (dest_death
2149 = find_regno_note (insn, REG_UNUSED, dregno)))
2150 {
2151 PUT_REG_NOTE_KIND (dest_death, REG_DEAD);
2152 remove_note (insn, dest_death);
2153 }
2154
2155 /* Put death note of DEST on P if we saw it die. */
2156 if (dest_death)
2157 {
2158 XEXP (dest_death, 1) = REG_NOTES (p);
2159 REG_NOTES (p) = dest_death;
2160 }
2161 break;
2162 }
2163
2164 /* If SRC is a hard register which is set or killed in
2165 some other way, we can't do this optimization. */
2166 else if (sregno < FIRST_PSEUDO_REGISTER && dead_or_set_p (p, src))
2167 break;
2168 }
2169 }
2170 }
2171
2172 \f
2173
2174 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
2175 static bool
2176 ira_bad_reload_regno_1 (int regno, rtx x)
2177 {
2178 int x_regno, n, i;
2179 ira_allocno_t a;
2180 enum reg_class pref;
2181
2182 /* We only deal with pseudo regs. */
2183 if (! x || GET_CODE (x) != REG)
2184 return false;
2185
2186 x_regno = REGNO (x);
2187 if (x_regno < FIRST_PSEUDO_REGISTER)
2188 return false;
2189
2190 /* If the pseudo prefers REGNO explicitly, then do not consider
2191 REGNO a bad spill choice. */
2192 pref = reg_preferred_class (x_regno);
2193 if (reg_class_size[pref] == 1)
2194 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
2195
2196 /* If the pseudo conflicts with REGNO, then we consider REGNO a
2197 poor choice for a reload regno. */
2198 a = ira_regno_allocno_map[x_regno];
2199 n = ALLOCNO_NUM_OBJECTS (a);
2200 for (i = 0; i < n; i++)
2201 {
2202 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2203 if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
2204 return true;
2205 }
2206 return false;
2207 }
2208
2209 /* Return nonzero if REGNO is a particularly bad choice for reloading
2210 IN or OUT. */
2211 bool
2212 ira_bad_reload_regno (int regno, rtx in, rtx out)
2213 {
2214 return (ira_bad_reload_regno_1 (regno, in)
2215 || ira_bad_reload_regno_1 (regno, out));
2216 }
2217
2218 /* Add register clobbers from asm statements. */
2219 static void
2220 compute_regs_asm_clobbered (void)
2221 {
2222 basic_block bb;
2223
2224 FOR_EACH_BB_FN (bb, cfun)
2225 {
2226 rtx_insn *insn;
2227 FOR_BB_INSNS_REVERSE (bb, insn)
2228 {
2229 df_ref def;
2230
2231 if (NONDEBUG_INSN_P (insn) && asm_noperands (PATTERN (insn)) >= 0)
2232 FOR_EACH_INSN_DEF (def, insn)
2233 {
2234 unsigned int dregno = DF_REF_REGNO (def);
2235 if (HARD_REGISTER_NUM_P (dregno))
2236 add_to_hard_reg_set (&crtl->asm_clobbers,
2237 GET_MODE (DF_REF_REAL_REG (def)),
2238 dregno);
2239 }
2240 }
2241 }
2242 }
2243
2244
2245 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and
2246 REGS_EVER_LIVE. */
2247 void
2248 ira_setup_eliminable_regset (void)
2249 {
2250 int i;
2251 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
2252 int fp_reg_count = hard_regno_nregs (HARD_FRAME_POINTER_REGNUM, Pmode);
2253
2254 /* Setup is_leaf as frame_pointer_required may use it. This function
2255 is called by sched_init before ira if scheduling is enabled. */
2256 crtl->is_leaf = leaf_function_p ();
2257
2258 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
2259 sp for alloca. So we can't eliminate the frame pointer in that
2260 case. At some point, we should improve this by emitting the
2261 sp-adjusting insns for this case. */
2262 frame_pointer_needed
2263 = (! flag_omit_frame_pointer
2264 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
2265 /* We need the frame pointer to catch stack overflow exceptions if
2266 the stack pointer is moving (as for the alloca case just above). */
2267 || (STACK_CHECK_MOVING_SP
2268 && flag_stack_check
2269 && flag_exceptions
2270 && cfun->can_throw_non_call_exceptions)
2271 || crtl->accesses_prior_frames
2272 || (SUPPORTS_STACK_ALIGNMENT && crtl->stack_realign_needed)
2273 || targetm.frame_pointer_required ());
2274
2275 /* The chance that FRAME_POINTER_NEEDED is changed from inspecting
2276 RTL is very small. So if we use frame pointer for RA and RTL
2277 actually prevents this, we will spill pseudos assigned to the
2278 frame pointer in LRA. */
2279
2280 if (frame_pointer_needed)
2281 for (i = 0; i < fp_reg_count; i++)
2282 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2283
2284 ira_no_alloc_regs = no_unit_alloc_regs;
2285 CLEAR_HARD_REG_SET (eliminable_regset);
2286
2287 compute_regs_asm_clobbered ();
2288
2289 /* Build the regset of all eliminable registers and show we can't
2290 use those that we already know won't be eliminated. */
2291 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
2292 {
2293 bool cannot_elim
2294 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
2295 || (eliminables[i].to == STACK_POINTER_REGNUM && frame_pointer_needed));
2296
2297 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
2298 {
2299 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
2300
2301 if (cannot_elim)
2302 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
2303 }
2304 else if (cannot_elim)
2305 error ("%s cannot be used in %<asm%> here",
2306 reg_names[eliminables[i].from]);
2307 else
2308 df_set_regs_ever_live (eliminables[i].from, true);
2309 }
2310 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
2311 {
2312 for (i = 0; i < fp_reg_count; i++)
2313 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers,
2314 HARD_FRAME_POINTER_REGNUM + i))
2315 {
2316 SET_HARD_REG_BIT (eliminable_regset,
2317 HARD_FRAME_POINTER_REGNUM + i);
2318 if (frame_pointer_needed)
2319 SET_HARD_REG_BIT (ira_no_alloc_regs,
2320 HARD_FRAME_POINTER_REGNUM + i);
2321 }
2322 else if (frame_pointer_needed)
2323 error ("%s cannot be used in %<asm%> here",
2324 reg_names[HARD_FRAME_POINTER_REGNUM + i]);
2325 else
2326 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM + i, true);
2327 }
2328 }
2329
2330 \f
2331
2332 /* Vector of substitutions of register numbers,
2333 used to map pseudo regs into hardware regs.
2334 This is set up as a result of register allocation.
2335 Element N is the hard reg assigned to pseudo reg N,
2336 or is -1 if no hard reg was assigned.
2337 If N is a hard reg number, element N is N. */
2338 short *reg_renumber;
2339
2340 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
2341 the allocation found by IRA. */
2342 static void
2343 setup_reg_renumber (void)
2344 {
2345 int regno, hard_regno;
2346 ira_allocno_t a;
2347 ira_allocno_iterator ai;
2348
2349 caller_save_needed = 0;
2350 FOR_EACH_ALLOCNO (a, ai)
2351 {
2352 if (ira_use_lra_p && ALLOCNO_CAP_MEMBER (a) != NULL)
2353 continue;
2354 /* There are no caps at this point. */
2355 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2356 if (! ALLOCNO_ASSIGNED_P (a))
2357 /* It can happen if A is not referenced but partially anticipated
2358 somewhere in a region. */
2359 ALLOCNO_ASSIGNED_P (a) = true;
2360 ira_free_allocno_updated_costs (a);
2361 hard_regno = ALLOCNO_HARD_REGNO (a);
2362 regno = ALLOCNO_REGNO (a);
2363 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
2364 if (hard_regno >= 0)
2365 {
2366 int i, nwords;
2367 enum reg_class pclass;
2368 ira_object_t obj;
2369
2370 pclass = ira_pressure_class_translate[REGNO_REG_CLASS (hard_regno)];
2371 nwords = ALLOCNO_NUM_OBJECTS (a);
2372 for (i = 0; i < nwords; i++)
2373 {
2374 obj = ALLOCNO_OBJECT (a, i);
2375 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
2376 |= ~reg_class_contents[pclass];
2377 }
2378 if (ira_need_caller_save_p (a, hard_regno))
2379 {
2380 ira_assert (!optimize || flag_caller_saves
2381 || (ALLOCNO_CALLS_CROSSED_NUM (a)
2382 == ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2383 || regno >= ira_reg_equiv_len
2384 || ira_equiv_no_lvalue_p (regno));
2385 caller_save_needed = 1;
2386 }
2387 }
2388 }
2389 }
2390
2391 /* Set up allocno assignment flags for further allocation
2392 improvements. */
2393 static void
2394 setup_allocno_assignment_flags (void)
2395 {
2396 int hard_regno;
2397 ira_allocno_t a;
2398 ira_allocno_iterator ai;
2399
2400 FOR_EACH_ALLOCNO (a, ai)
2401 {
2402 if (! ALLOCNO_ASSIGNED_P (a))
2403 /* It can happen if A is not referenced but partially anticipated
2404 somewhere in a region. */
2405 ira_free_allocno_updated_costs (a);
2406 hard_regno = ALLOCNO_HARD_REGNO (a);
2407 /* Don't assign hard registers to allocnos which are destination
2408 of removed store at the end of loop. It has no sense to keep
2409 the same value in different hard registers. It is also
2410 impossible to assign hard registers correctly to such
2411 allocnos because the cost info and info about intersected
2412 calls are incorrect for them. */
2413 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
2414 || ALLOCNO_EMIT_DATA (a)->mem_optimized_dest_p
2415 || (ALLOCNO_MEMORY_COST (a)
2416 - ALLOCNO_CLASS_COST (a)) < 0);
2417 ira_assert
2418 (hard_regno < 0
2419 || ira_hard_reg_in_set_p (hard_regno, ALLOCNO_MODE (a),
2420 reg_class_contents[ALLOCNO_CLASS (a)]));
2421 }
2422 }
2423
2424 /* Evaluate overall allocation cost and the costs for using hard
2425 registers and memory for allocnos. */
2426 static void
2427 calculate_allocation_cost (void)
2428 {
2429 int hard_regno, cost;
2430 ira_allocno_t a;
2431 ira_allocno_iterator ai;
2432
2433 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
2434 FOR_EACH_ALLOCNO (a, ai)
2435 {
2436 hard_regno = ALLOCNO_HARD_REGNO (a);
2437 ira_assert (hard_regno < 0
2438 || (ira_hard_reg_in_set_p
2439 (hard_regno, ALLOCNO_MODE (a),
2440 reg_class_contents[ALLOCNO_CLASS (a)])));
2441 if (hard_regno < 0)
2442 {
2443 cost = ALLOCNO_MEMORY_COST (a);
2444 ira_mem_cost += cost;
2445 }
2446 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
2447 {
2448 cost = (ALLOCNO_HARD_REG_COSTS (a)
2449 [ira_class_hard_reg_index
2450 [ALLOCNO_CLASS (a)][hard_regno]]);
2451 ira_reg_cost += cost;
2452 }
2453 else
2454 {
2455 cost = ALLOCNO_CLASS_COST (a);
2456 ira_reg_cost += cost;
2457 }
2458 ira_overall_cost += cost;
2459 }
2460
2461 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
2462 {
2463 fprintf (ira_dump_file,
2464 "+++Costs: overall %" PRId64
2465 ", reg %" PRId64
2466 ", mem %" PRId64
2467 ", ld %" PRId64
2468 ", st %" PRId64
2469 ", move %" PRId64,
2470 ira_overall_cost, ira_reg_cost, ira_mem_cost,
2471 ira_load_cost, ira_store_cost, ira_shuffle_cost);
2472 fprintf (ira_dump_file, "\n+++ move loops %d, new jumps %d\n",
2473 ira_move_loops_num, ira_additional_jumps_num);
2474 }
2475
2476 }
2477
2478 #ifdef ENABLE_IRA_CHECKING
2479 /* Check the correctness of the allocation. We do need this because
2480 of complicated code to transform more one region internal
2481 representation into one region representation. */
2482 static void
2483 check_allocation (void)
2484 {
2485 ira_allocno_t a;
2486 int hard_regno, nregs, conflict_nregs;
2487 ira_allocno_iterator ai;
2488
2489 FOR_EACH_ALLOCNO (a, ai)
2490 {
2491 int n = ALLOCNO_NUM_OBJECTS (a);
2492 int i;
2493
2494 if (ALLOCNO_CAP_MEMBER (a) != NULL
2495 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
2496 continue;
2497 nregs = hard_regno_nregs (hard_regno, ALLOCNO_MODE (a));
2498 if (nregs == 1)
2499 /* We allocated a single hard register. */
2500 n = 1;
2501 else if (n > 1)
2502 /* We allocated multiple hard registers, and we will test
2503 conflicts in a granularity of single hard regs. */
2504 nregs = 1;
2505
2506 for (i = 0; i < n; i++)
2507 {
2508 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2509 ira_object_t conflict_obj;
2510 ira_object_conflict_iterator oci;
2511 int this_regno = hard_regno;
2512 if (n > 1)
2513 {
2514 if (REG_WORDS_BIG_ENDIAN)
2515 this_regno += n - i - 1;
2516 else
2517 this_regno += i;
2518 }
2519 FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
2520 {
2521 ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
2522 int conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
2523 if (conflict_hard_regno < 0)
2524 continue;
2525
2526 conflict_nregs = hard_regno_nregs (conflict_hard_regno,
2527 ALLOCNO_MODE (conflict_a));
2528
2529 if (ALLOCNO_NUM_OBJECTS (conflict_a) > 1
2530 && conflict_nregs == ALLOCNO_NUM_OBJECTS (conflict_a))
2531 {
2532 if (REG_WORDS_BIG_ENDIAN)
2533 conflict_hard_regno += (ALLOCNO_NUM_OBJECTS (conflict_a)
2534 - OBJECT_SUBWORD (conflict_obj) - 1);
2535 else
2536 conflict_hard_regno += OBJECT_SUBWORD (conflict_obj);
2537 conflict_nregs = 1;
2538 }
2539
2540 if ((conflict_hard_regno <= this_regno
2541 && this_regno < conflict_hard_regno + conflict_nregs)
2542 || (this_regno <= conflict_hard_regno
2543 && conflict_hard_regno < this_regno + nregs))
2544 {
2545 fprintf (stderr, "bad allocation for %d and %d\n",
2546 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
2547 gcc_unreachable ();
2548 }
2549 }
2550 }
2551 }
2552 }
2553 #endif
2554
2555 /* Allocate REG_EQUIV_INIT. Set up it from IRA_REG_EQUIV which should
2556 be already calculated. */
2557 static void
2558 setup_reg_equiv_init (void)
2559 {
2560 int i;
2561 int max_regno = max_reg_num ();
2562
2563 for (i = 0; i < max_regno; i++)
2564 reg_equiv_init (i) = ira_reg_equiv[i].init_insns;
2565 }
2566
2567 /* Update equiv regno from movement of FROM_REGNO to TO_REGNO. INSNS
2568 are insns which were generated for such movement. It is assumed
2569 that FROM_REGNO and TO_REGNO always have the same value at the
2570 point of any move containing such registers. This function is used
2571 to update equiv info for register shuffles on the region borders
2572 and for caller save/restore insns. */
2573 void
2574 ira_update_equiv_info_by_shuffle_insn (int to_regno, int from_regno, rtx_insn *insns)
2575 {
2576 rtx_insn *insn;
2577 rtx x, note;
2578
2579 if (! ira_reg_equiv[from_regno].defined_p
2580 && (! ira_reg_equiv[to_regno].defined_p
2581 || ((x = ira_reg_equiv[to_regno].memory) != NULL_RTX
2582 && ! MEM_READONLY_P (x))))
2583 return;
2584 insn = insns;
2585 if (NEXT_INSN (insn) != NULL_RTX)
2586 {
2587 if (! ira_reg_equiv[to_regno].defined_p)
2588 {
2589 ira_assert (ira_reg_equiv[to_regno].init_insns == NULL_RTX);
2590 return;
2591 }
2592 ira_reg_equiv[to_regno].defined_p = false;
2593 ira_reg_equiv[to_regno].memory
2594 = ira_reg_equiv[to_regno].constant
2595 = ira_reg_equiv[to_regno].invariant
2596 = ira_reg_equiv[to_regno].init_insns = NULL;
2597 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2598 fprintf (ira_dump_file,
2599 " Invalidating equiv info for reg %d\n", to_regno);
2600 return;
2601 }
2602 /* It is possible that FROM_REGNO still has no equivalence because
2603 in shuffles to_regno<-from_regno and from_regno<-to_regno the 2nd
2604 insn was not processed yet. */
2605 if (ira_reg_equiv[from_regno].defined_p)
2606 {
2607 ira_reg_equiv[to_regno].defined_p = true;
2608 if ((x = ira_reg_equiv[from_regno].memory) != NULL_RTX)
2609 {
2610 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX
2611 && ira_reg_equiv[from_regno].constant == NULL_RTX);
2612 ira_assert (ira_reg_equiv[to_regno].memory == NULL_RTX
2613 || rtx_equal_p (ira_reg_equiv[to_regno].memory, x));
2614 ira_reg_equiv[to_regno].memory = x;
2615 if (! MEM_READONLY_P (x))
2616 /* We don't add the insn to insn init list because memory
2617 equivalence is just to say what memory is better to use
2618 when the pseudo is spilled. */
2619 return;
2620 }
2621 else if ((x = ira_reg_equiv[from_regno].constant) != NULL_RTX)
2622 {
2623 ira_assert (ira_reg_equiv[from_regno].invariant == NULL_RTX);
2624 ira_assert (ira_reg_equiv[to_regno].constant == NULL_RTX
2625 || rtx_equal_p (ira_reg_equiv[to_regno].constant, x));
2626 ira_reg_equiv[to_regno].constant = x;
2627 }
2628 else
2629 {
2630 x = ira_reg_equiv[from_regno].invariant;
2631 ira_assert (x != NULL_RTX);
2632 ira_assert (ira_reg_equiv[to_regno].invariant == NULL_RTX
2633 || rtx_equal_p (ira_reg_equiv[to_regno].invariant, x));
2634 ira_reg_equiv[to_regno].invariant = x;
2635 }
2636 if (find_reg_note (insn, REG_EQUIV, x) == NULL_RTX)
2637 {
2638 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (x));
2639 gcc_assert (note != NULL_RTX);
2640 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2641 {
2642 fprintf (ira_dump_file,
2643 " Adding equiv note to insn %u for reg %d ",
2644 INSN_UID (insn), to_regno);
2645 dump_value_slim (ira_dump_file, x, 1);
2646 fprintf (ira_dump_file, "\n");
2647 }
2648 }
2649 }
2650 ira_reg_equiv[to_regno].init_insns
2651 = gen_rtx_INSN_LIST (VOIDmode, insn,
2652 ira_reg_equiv[to_regno].init_insns);
2653 if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
2654 fprintf (ira_dump_file,
2655 " Adding equiv init move insn %u to reg %d\n",
2656 INSN_UID (insn), to_regno);
2657 }
2658
2659 /* Fix values of array REG_EQUIV_INIT after live range splitting done
2660 by IRA. */
2661 static void
2662 fix_reg_equiv_init (void)
2663 {
2664 int max_regno = max_reg_num ();
2665 int i, new_regno, max;
2666 rtx set;
2667 rtx_insn_list *x, *next, *prev;
2668 rtx_insn *insn;
2669
2670 if (max_regno_before_ira < max_regno)
2671 {
2672 max = vec_safe_length (reg_equivs);
2673 grow_reg_equivs ();
2674 for (i = FIRST_PSEUDO_REGISTER; i < max; i++)
2675 for (prev = NULL, x = reg_equiv_init (i);
2676 x != NULL_RTX;
2677 x = next)
2678 {
2679 next = x->next ();
2680 insn = x->insn ();
2681 set = single_set (insn);
2682 ira_assert (set != NULL_RTX
2683 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
2684 if (REG_P (SET_DEST (set))
2685 && ((int) REGNO (SET_DEST (set)) == i
2686 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
2687 new_regno = REGNO (SET_DEST (set));
2688 else if (REG_P (SET_SRC (set))
2689 && ((int) REGNO (SET_SRC (set)) == i
2690 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
2691 new_regno = REGNO (SET_SRC (set));
2692 else
2693 gcc_unreachable ();
2694 if (new_regno == i)
2695 prev = x;
2696 else
2697 {
2698 /* Remove the wrong list element. */
2699 if (prev == NULL_RTX)
2700 reg_equiv_init (i) = next;
2701 else
2702 XEXP (prev, 1) = next;
2703 XEXP (x, 1) = reg_equiv_init (new_regno);
2704 reg_equiv_init (new_regno) = x;
2705 }
2706 }
2707 }
2708 }
2709
2710 #ifdef ENABLE_IRA_CHECKING
2711 /* Print redundant memory-memory copies. */
2712 static void
2713 print_redundant_copies (void)
2714 {
2715 int hard_regno;
2716 ira_allocno_t a;
2717 ira_copy_t cp, next_cp;
2718 ira_allocno_iterator ai;
2719
2720 FOR_EACH_ALLOCNO (a, ai)
2721 {
2722 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2723 /* It is a cap. */
2724 continue;
2725 hard_regno = ALLOCNO_HARD_REGNO (a);
2726 if (hard_regno >= 0)
2727 continue;
2728 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
2729 if (cp->first == a)
2730 next_cp = cp->next_first_allocno_copy;
2731 else
2732 {
2733 next_cp = cp->next_second_allocno_copy;
2734 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
2735 && cp->insn != NULL_RTX
2736 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
2737 fprintf (ira_dump_file,
2738 " Redundant move from %d(freq %d):%d\n",
2739 INSN_UID (cp->insn), cp->freq, hard_regno);
2740 }
2741 }
2742 }
2743 #endif
2744
2745 /* Setup preferred and alternative classes for new pseudo-registers
2746 created by IRA starting with START. */
2747 static void
2748 setup_preferred_alternate_classes_for_new_pseudos (int start)
2749 {
2750 int i, old_regno;
2751 int max_regno = max_reg_num ();
2752
2753 for (i = start; i < max_regno; i++)
2754 {
2755 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
2756 ira_assert (i != old_regno);
2757 setup_reg_classes (i, reg_preferred_class (old_regno),
2758 reg_alternate_class (old_regno),
2759 reg_allocno_class (old_regno));
2760 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
2761 fprintf (ira_dump_file,
2762 " New r%d: setting preferred %s, alternative %s\n",
2763 i, reg_class_names[reg_preferred_class (old_regno)],
2764 reg_class_names[reg_alternate_class (old_regno)]);
2765 }
2766 }
2767
2768 \f
2769 /* The number of entries allocated in reg_info. */
2770 static int allocated_reg_info_size;
2771
2772 /* Regional allocation can create new pseudo-registers. This function
2773 expands some arrays for pseudo-registers. */
2774 static void
2775 expand_reg_info (void)
2776 {
2777 int i;
2778 int size = max_reg_num ();
2779
2780 resize_reg_info ();
2781 for (i = allocated_reg_info_size; i < size; i++)
2782 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
2783 setup_preferred_alternate_classes_for_new_pseudos (allocated_reg_info_size);
2784 allocated_reg_info_size = size;
2785 }
2786
2787 /* Return TRUE if there is too high register pressure in the function.
2788 It is used to decide when stack slot sharing is worth to do. */
2789 static bool
2790 too_high_register_pressure_p (void)
2791 {
2792 int i;
2793 enum reg_class pclass;
2794
2795 for (i = 0; i < ira_pressure_classes_num; i++)
2796 {
2797 pclass = ira_pressure_classes[i];
2798 if (ira_loop_tree_root->reg_pressure[pclass] > 10000)
2799 return true;
2800 }
2801 return false;
2802 }
2803
2804 \f
2805
2806 /* Indicate that hard register number FROM was eliminated and replaced with
2807 an offset from hard register number TO. The status of hard registers live
2808 at the start of a basic block is updated by replacing a use of FROM with
2809 a use of TO. */
2810
2811 void
2812 mark_elimination (int from, int to)
2813 {
2814 basic_block bb;
2815 bitmap r;
2816
2817 FOR_EACH_BB_FN (bb, cfun)
2818 {
2819 r = DF_LR_IN (bb);
2820 if (bitmap_bit_p (r, from))
2821 {
2822 bitmap_clear_bit (r, from);
2823 bitmap_set_bit (r, to);
2824 }
2825 if (! df_live)
2826 continue;
2827 r = DF_LIVE_IN (bb);
2828 if (bitmap_bit_p (r, from))
2829 {
2830 bitmap_clear_bit (r, from);
2831 bitmap_set_bit (r, to);
2832 }
2833 }
2834 }
2835
2836 \f
2837
2838 /* The length of the following array. */
2839 int ira_reg_equiv_len;
2840
2841 /* Info about equiv. info for each register. */
2842 struct ira_reg_equiv_s *ira_reg_equiv;
2843
2844 /* Expand ira_reg_equiv if necessary. */
2845 void
2846 ira_expand_reg_equiv (void)
2847 {
2848 int old = ira_reg_equiv_len;
2849
2850 if (ira_reg_equiv_len > max_reg_num ())
2851 return;
2852 ira_reg_equiv_len = max_reg_num () * 3 / 2 + 1;
2853 ira_reg_equiv
2854 = (struct ira_reg_equiv_s *) xrealloc (ira_reg_equiv,
2855 ira_reg_equiv_len
2856 * sizeof (struct ira_reg_equiv_s));
2857 gcc_assert (old < ira_reg_equiv_len);
2858 memset (ira_reg_equiv + old, 0,
2859 sizeof (struct ira_reg_equiv_s) * (ira_reg_equiv_len - old));
2860 }
2861
2862 static void
2863 init_reg_equiv (void)
2864 {
2865 ira_reg_equiv_len = 0;
2866 ira_reg_equiv = NULL;
2867 ira_expand_reg_equiv ();
2868 }
2869
2870 static void
2871 finish_reg_equiv (void)
2872 {
2873 free (ira_reg_equiv);
2874 }
2875
2876 \f
2877
2878 struct equivalence
2879 {
2880 /* Set when a REG_EQUIV note is found or created. Use to
2881 keep track of what memory accesses might be created later,
2882 e.g. by reload. */
2883 rtx replacement;
2884 rtx *src_p;
2885
2886 /* The list of each instruction which initializes this register.
2887
2888 NULL indicates we know nothing about this register's equivalence
2889 properties.
2890
2891 An INSN_LIST with a NULL insn indicates this pseudo is already
2892 known to not have a valid equivalence. */
2893 rtx_insn_list *init_insns;
2894
2895 /* Loop depth is used to recognize equivalences which appear
2896 to be present within the same loop (or in an inner loop). */
2897 short loop_depth;
2898 /* Nonzero if this had a preexisting REG_EQUIV note. */
2899 unsigned char is_arg_equivalence : 1;
2900 /* Set when an attempt should be made to replace a register
2901 with the associated src_p entry. */
2902 unsigned char replace : 1;
2903 /* Set if this register has no known equivalence. */
2904 unsigned char no_equiv : 1;
2905 /* Set if this register is mentioned in a paradoxical subreg. */
2906 unsigned char pdx_subregs : 1;
2907 };
2908
2909 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
2910 structure for that register. */
2911 static struct equivalence *reg_equiv;
2912
2913 /* Used for communication between the following two functions. */
2914 struct equiv_mem_data
2915 {
2916 /* A MEM that we wish to ensure remains unchanged. */
2917 rtx equiv_mem;
2918
2919 /* Set true if EQUIV_MEM is modified. */
2920 bool equiv_mem_modified;
2921 };
2922
2923 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
2924 Called via note_stores. */
2925 static void
2926 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
2927 void *data)
2928 {
2929 struct equiv_mem_data *info = (struct equiv_mem_data *) data;
2930
2931 if ((REG_P (dest)
2932 && reg_overlap_mentioned_p (dest, info->equiv_mem))
2933 || (MEM_P (dest)
2934 && anti_dependence (info->equiv_mem, dest)))
2935 info->equiv_mem_modified = true;
2936 }
2937
2938 enum valid_equiv { valid_none, valid_combine, valid_reload };
2939
2940 /* Verify that no store between START and the death of REG invalidates
2941 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
2942 by storing into an overlapping memory location, or with a non-const
2943 CALL_INSN.
2944
2945 Return VALID_RELOAD if MEMREF remains valid for both reload and
2946 combine_and_move insns, VALID_COMBINE if only valid for
2947 combine_and_move_insns, and VALID_NONE otherwise. */
2948 static enum valid_equiv
2949 validate_equiv_mem (rtx_insn *start, rtx reg, rtx memref)
2950 {
2951 rtx_insn *insn;
2952 rtx note;
2953 struct equiv_mem_data info = { memref, false };
2954 enum valid_equiv ret = valid_reload;
2955
2956 /* If the memory reference has side effects or is volatile, it isn't a
2957 valid equivalence. */
2958 if (side_effects_p (memref))
2959 return valid_none;
2960
2961 for (insn = start; insn; insn = NEXT_INSN (insn))
2962 {
2963 if (!INSN_P (insn))
2964 continue;
2965
2966 if (find_reg_note (insn, REG_DEAD, reg))
2967 return ret;
2968
2969 if (CALL_P (insn))
2970 {
2971 /* We can combine a reg def from one insn into a reg use in
2972 another over a call if the memory is readonly or the call
2973 const/pure. However, we can't set reg_equiv notes up for
2974 reload over any call. The problem is the equivalent form
2975 may reference a pseudo which gets assigned a call
2976 clobbered hard reg. When we later replace REG with its
2977 equivalent form, the value in the call-clobbered reg has
2978 been changed and all hell breaks loose. */
2979 ret = valid_combine;
2980 if (!MEM_READONLY_P (memref)
2981 && !RTL_CONST_OR_PURE_CALL_P (insn))
2982 return valid_none;
2983 }
2984
2985 note_stores (insn, validate_equiv_mem_from_store, &info);
2986 if (info.equiv_mem_modified)
2987 return valid_none;
2988
2989 /* If a register mentioned in MEMREF is modified via an
2990 auto-increment, we lose the equivalence. Do the same if one
2991 dies; although we could extend the life, it doesn't seem worth
2992 the trouble. */
2993
2994 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2995 if ((REG_NOTE_KIND (note) == REG_INC
2996 || REG_NOTE_KIND (note) == REG_DEAD)
2997 && REG_P (XEXP (note, 0))
2998 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2999 return valid_none;
3000 }
3001
3002 return valid_none;
3003 }
3004
3005 /* Returns zero if X is known to be invariant. */
3006 static int
3007 equiv_init_varies_p (rtx x)
3008 {
3009 RTX_CODE code = GET_CODE (x);
3010 int i;
3011 const char *fmt;
3012
3013 switch (code)
3014 {
3015 case MEM:
3016 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
3017
3018 case CONST:
3019 CASE_CONST_ANY:
3020 case SYMBOL_REF:
3021 case LABEL_REF:
3022 return 0;
3023
3024 case REG:
3025 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
3026
3027 case ASM_OPERANDS:
3028 if (MEM_VOLATILE_P (x))
3029 return 1;
3030
3031 /* Fall through. */
3032
3033 default:
3034 break;
3035 }
3036
3037 fmt = GET_RTX_FORMAT (code);
3038 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3039 if (fmt[i] == 'e')
3040 {
3041 if (equiv_init_varies_p (XEXP (x, i)))
3042 return 1;
3043 }
3044 else if (fmt[i] == 'E')
3045 {
3046 int j;
3047 for (j = 0; j < XVECLEN (x, i); j++)
3048 if (equiv_init_varies_p (XVECEXP (x, i, j)))
3049 return 1;
3050 }
3051
3052 return 0;
3053 }
3054
3055 /* Returns nonzero if X (used to initialize register REGNO) is movable.
3056 X is only movable if the registers it uses have equivalent initializations
3057 which appear to be within the same loop (or in an inner loop) and movable
3058 or if they are not candidates for local_alloc and don't vary. */
3059 static int
3060 equiv_init_movable_p (rtx x, int regno)
3061 {
3062 int i, j;
3063 const char *fmt;
3064 enum rtx_code code = GET_CODE (x);
3065
3066 switch (code)
3067 {
3068 case SET:
3069 return equiv_init_movable_p (SET_SRC (x), regno);
3070
3071 case CC0:
3072 case CLOBBER:
3073 return 0;
3074
3075 case PRE_INC:
3076 case PRE_DEC:
3077 case POST_INC:
3078 case POST_DEC:
3079 case PRE_MODIFY:
3080 case POST_MODIFY:
3081 return 0;
3082
3083 case REG:
3084 return ((reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
3085 && reg_equiv[REGNO (x)].replace)
3086 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS
3087 && ! rtx_varies_p (x, 0)));
3088
3089 case UNSPEC_VOLATILE:
3090 return 0;
3091
3092 case ASM_OPERANDS:
3093 if (MEM_VOLATILE_P (x))
3094 return 0;
3095
3096 /* Fall through. */
3097
3098 default:
3099 break;
3100 }
3101
3102 fmt = GET_RTX_FORMAT (code);
3103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3104 switch (fmt[i])
3105 {
3106 case 'e':
3107 if (! equiv_init_movable_p (XEXP (x, i), regno))
3108 return 0;
3109 break;
3110 case 'E':
3111 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3112 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
3113 return 0;
3114 break;
3115 }
3116
3117 return 1;
3118 }
3119
3120 static bool memref_referenced_p (rtx memref, rtx x, bool read_p);
3121
3122 /* Auxiliary function for memref_referenced_p. Process setting X for
3123 MEMREF store. */
3124 static bool
3125 process_set_for_memref_referenced_p (rtx memref, rtx x)
3126 {
3127 /* If we are setting a MEM, it doesn't count (its address does), but any
3128 other SET_DEST that has a MEM in it is referencing the MEM. */
3129 if (MEM_P (x))
3130 {
3131 if (memref_referenced_p (memref, XEXP (x, 0), true))
3132 return true;
3133 }
3134 else if (memref_referenced_p (memref, x, false))
3135 return true;
3136
3137 return false;
3138 }
3139
3140 /* TRUE if X references a memory location (as a read if READ_P) that
3141 would be affected by a store to MEMREF. */
3142 static bool
3143 memref_referenced_p (rtx memref, rtx x, bool read_p)
3144 {
3145 int i, j;
3146 const char *fmt;
3147 enum rtx_code code = GET_CODE (x);
3148
3149 switch (code)
3150 {
3151 case CONST:
3152 case LABEL_REF:
3153 case SYMBOL_REF:
3154 CASE_CONST_ANY:
3155 case PC:
3156 case CC0:
3157 case HIGH:
3158 case LO_SUM:
3159 return false;
3160
3161 case REG:
3162 return (reg_equiv[REGNO (x)].replacement
3163 && memref_referenced_p (memref,
3164 reg_equiv[REGNO (x)].replacement, read_p));
3165
3166 case MEM:
3167 /* Memory X might have another effective type than MEMREF. */
3168 if (read_p || true_dependence (memref, VOIDmode, x))
3169 return true;
3170 break;
3171
3172 case SET:
3173 if (process_set_for_memref_referenced_p (memref, SET_DEST (x)))
3174 return true;
3175
3176 return memref_referenced_p (memref, SET_SRC (x), true);
3177
3178 case CLOBBER:
3179 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3180 return true;
3181
3182 return false;
3183
3184 case PRE_DEC:
3185 case POST_DEC:
3186 case PRE_INC:
3187 case POST_INC:
3188 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3189 return true;
3190
3191 return memref_referenced_p (memref, XEXP (x, 0), true);
3192
3193 case POST_MODIFY:
3194 case PRE_MODIFY:
3195 /* op0 = op0 + op1 */
3196 if (process_set_for_memref_referenced_p (memref, XEXP (x, 0)))
3197 return true;
3198
3199 if (memref_referenced_p (memref, XEXP (x, 0), true))
3200 return true;
3201
3202 return memref_referenced_p (memref, XEXP (x, 1), true);
3203
3204 default:
3205 break;
3206 }
3207
3208 fmt = GET_RTX_FORMAT (code);
3209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3210 switch (fmt[i])
3211 {
3212 case 'e':
3213 if (memref_referenced_p (memref, XEXP (x, i), read_p))
3214 return true;
3215 break;
3216 case 'E':
3217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3218 if (memref_referenced_p (memref, XVECEXP (x, i, j), read_p))
3219 return true;
3220 break;
3221 }
3222
3223 return false;
3224 }
3225
3226 /* TRUE if some insn in the range (START, END] references a memory location
3227 that would be affected by a store to MEMREF.
3228
3229 Callers should not call this routine if START is after END in the
3230 RTL chain. */
3231
3232 static int
3233 memref_used_between_p (rtx memref, rtx_insn *start, rtx_insn *end)
3234 {
3235 rtx_insn *insn;
3236
3237 for (insn = NEXT_INSN (start);
3238 insn && insn != NEXT_INSN (end);
3239 insn = NEXT_INSN (insn))
3240 {
3241 if (!NONDEBUG_INSN_P (insn))
3242 continue;
3243
3244 if (memref_referenced_p (memref, PATTERN (insn), false))
3245 return 1;
3246
3247 /* Nonconst functions may access memory. */
3248 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
3249 return 1;
3250 }
3251
3252 gcc_assert (insn == NEXT_INSN (end));
3253 return 0;
3254 }
3255
3256 /* Mark REG as having no known equivalence.
3257 Some instructions might have been processed before and furnished
3258 with REG_EQUIV notes for this register; these notes will have to be
3259 removed.
3260 STORE is the piece of RTL that does the non-constant / conflicting
3261 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
3262 but needs to be there because this function is called from note_stores. */
3263 static void
3264 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED,
3265 void *data ATTRIBUTE_UNUSED)
3266 {
3267 int regno;
3268 rtx_insn_list *list;
3269
3270 if (!REG_P (reg))
3271 return;
3272 regno = REGNO (reg);
3273 reg_equiv[regno].no_equiv = 1;
3274 list = reg_equiv[regno].init_insns;
3275 if (list && list->insn () == NULL)
3276 return;
3277 reg_equiv[regno].init_insns = gen_rtx_INSN_LIST (VOIDmode, NULL_RTX, NULL);
3278 reg_equiv[regno].replacement = NULL_RTX;
3279 /* This doesn't matter for equivalences made for argument registers, we
3280 should keep their initialization insns. */
3281 if (reg_equiv[regno].is_arg_equivalence)
3282 return;
3283 ira_reg_equiv[regno].defined_p = false;
3284 ira_reg_equiv[regno].init_insns = NULL;
3285 for (; list; list = list->next ())
3286 {
3287 rtx_insn *insn = list->insn ();
3288 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
3289 }
3290 }
3291
3292 /* Check whether the SUBREG is a paradoxical subreg and set the result
3293 in PDX_SUBREGS. */
3294
3295 static void
3296 set_paradoxical_subreg (rtx_insn *insn)
3297 {
3298 subrtx_iterator::array_type array;
3299 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), NONCONST)
3300 {
3301 const_rtx subreg = *iter;
3302 if (GET_CODE (subreg) == SUBREG)
3303 {
3304 const_rtx reg = SUBREG_REG (subreg);
3305 if (REG_P (reg) && paradoxical_subreg_p (subreg))
3306 reg_equiv[REGNO (reg)].pdx_subregs = true;
3307 }
3308 }
3309 }
3310
3311 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
3312 equivalent replacement. */
3313
3314 static rtx
3315 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
3316 {
3317 if (REG_P (loc))
3318 {
3319 bitmap cleared_regs = (bitmap) data;
3320 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
3321 return simplify_replace_fn_rtx (copy_rtx (*reg_equiv[REGNO (loc)].src_p),
3322 NULL_RTX, adjust_cleared_regs, data);
3323 }
3324 return NULL_RTX;
3325 }
3326
3327 /* Given register REGNO is set only once, return true if the defining
3328 insn dominates all uses. */
3329
3330 static bool
3331 def_dominates_uses (int regno)
3332 {
3333 df_ref def = DF_REG_DEF_CHAIN (regno);
3334
3335 struct df_insn_info *def_info = DF_REF_INSN_INFO (def);
3336 /* If this is an artificial def (eh handler regs, hard frame pointer
3337 for non-local goto, regs defined on function entry) then def_info
3338 is NULL and the reg is always live before any use. We might
3339 reasonably return true in that case, but since the only call
3340 of this function is currently here in ira.c when we are looking
3341 at a defining insn we can't have an artificial def as that would
3342 bump DF_REG_DEF_COUNT. */
3343 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && def_info != NULL);
3344
3345 rtx_insn *def_insn = DF_REF_INSN (def);
3346 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3347
3348 for (df_ref use = DF_REG_USE_CHAIN (regno);
3349 use;
3350 use = DF_REF_NEXT_REG (use))
3351 {
3352 struct df_insn_info *use_info = DF_REF_INSN_INFO (use);
3353 /* Only check real uses, not artificial ones. */
3354 if (use_info)
3355 {
3356 rtx_insn *use_insn = DF_REF_INSN (use);
3357 if (!DEBUG_INSN_P (use_insn))
3358 {
3359 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3360 if (use_bb != def_bb
3361 ? !dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)
3362 : DF_INSN_INFO_LUID (use_info) < DF_INSN_INFO_LUID (def_info))
3363 return false;
3364 }
3365 }
3366 }
3367 return true;
3368 }
3369
3370 /* Scan the instructions before update_equiv_regs. Record which registers
3371 are referenced as paradoxical subregs. Also check for cases in which
3372 the current function needs to save a register that one of its call
3373 instructions clobbers.
3374
3375 These things are logically unrelated, but it's more efficient to do
3376 them together. */
3377
3378 static void
3379 update_equiv_regs_prescan (void)
3380 {
3381 basic_block bb;
3382 rtx_insn *insn;
3383 function_abi_aggregator callee_abis;
3384
3385 FOR_EACH_BB_FN (bb, cfun)
3386 FOR_BB_INSNS (bb, insn)
3387 if (NONDEBUG_INSN_P (insn))
3388 {
3389 set_paradoxical_subreg (insn);
3390 if (CALL_P (insn))
3391 callee_abis.note_callee_abi (insn_callee_abi (insn));
3392 }
3393
3394 HARD_REG_SET extra_caller_saves = callee_abis.caller_save_regs (*crtl->abi);
3395 if (!hard_reg_set_empty_p (extra_caller_saves))
3396 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
3397 if (TEST_HARD_REG_BIT (extra_caller_saves, regno))
3398 df_set_regs_ever_live (regno, true);
3399 }
3400
3401 /* Find registers that are equivalent to a single value throughout the
3402 compilation (either because they can be referenced in memory or are
3403 set once from a single constant). Lower their priority for a
3404 register.
3405
3406 If such a register is only referenced once, try substituting its
3407 value into the using insn. If it succeeds, we can eliminate the
3408 register completely.
3409
3410 Initialize init_insns in ira_reg_equiv array. */
3411 static void
3412 update_equiv_regs (void)
3413 {
3414 rtx_insn *insn;
3415 basic_block bb;
3416
3417 /* Scan the insns and find which registers have equivalences. Do this
3418 in a separate scan of the insns because (due to -fcse-follow-jumps)
3419 a register can be set below its use. */
3420 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3421 FOR_EACH_BB_FN (bb, cfun)
3422 {
3423 int loop_depth = bb_loop_depth (bb);
3424
3425 for (insn = BB_HEAD (bb);
3426 insn != NEXT_INSN (BB_END (bb));
3427 insn = NEXT_INSN (insn))
3428 {
3429 rtx note;
3430 rtx set;
3431 rtx dest, src;
3432 int regno;
3433
3434 if (! INSN_P (insn))
3435 continue;
3436
3437 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3438 if (REG_NOTE_KIND (note) == REG_INC)
3439 no_equiv (XEXP (note, 0), note, NULL);
3440
3441 set = single_set (insn);
3442
3443 /* If this insn contains more (or less) than a single SET,
3444 only mark all destinations as having no known equivalence. */
3445 if (set == NULL_RTX
3446 || side_effects_p (SET_SRC (set)))
3447 {
3448 note_pattern_stores (PATTERN (insn), no_equiv, NULL);
3449 continue;
3450 }
3451 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
3452 {
3453 int i;
3454
3455 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
3456 {
3457 rtx part = XVECEXP (PATTERN (insn), 0, i);
3458 if (part != set)
3459 note_pattern_stores (part, no_equiv, NULL);
3460 }
3461 }
3462
3463 dest = SET_DEST (set);
3464 src = SET_SRC (set);
3465
3466 /* See if this is setting up the equivalence between an argument
3467 register and its stack slot. */
3468 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3469 if (note)
3470 {
3471 gcc_assert (REG_P (dest));
3472 regno = REGNO (dest);
3473
3474 /* Note that we don't want to clear init_insns in
3475 ira_reg_equiv even if there are multiple sets of this
3476 register. */
3477 reg_equiv[regno].is_arg_equivalence = 1;
3478
3479 /* The insn result can have equivalence memory although
3480 the equivalence is not set up by the insn. We add
3481 this insn to init insns as it is a flag for now that
3482 regno has an equivalence. We will remove the insn
3483 from init insn list later. */
3484 if (rtx_equal_p (src, XEXP (note, 0)) || MEM_P (XEXP (note, 0)))
3485 ira_reg_equiv[regno].init_insns
3486 = gen_rtx_INSN_LIST (VOIDmode, insn,
3487 ira_reg_equiv[regno].init_insns);
3488
3489 /* Continue normally in case this is a candidate for
3490 replacements. */
3491 }
3492
3493 if (!optimize)
3494 continue;
3495
3496 /* We only handle the case of a pseudo register being set
3497 once, or always to the same value. */
3498 /* ??? The mn10200 port breaks if we add equivalences for
3499 values that need an ADDRESS_REGS register and set them equivalent
3500 to a MEM of a pseudo. The actual problem is in the over-conservative
3501 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
3502 calculate_needs, but we traditionally work around this problem
3503 here by rejecting equivalences when the destination is in a register
3504 that's likely spilled. This is fragile, of course, since the
3505 preferred class of a pseudo depends on all instructions that set
3506 or use it. */
3507
3508 if (!REG_P (dest)
3509 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
3510 || (reg_equiv[regno].init_insns
3511 && reg_equiv[regno].init_insns->insn () == NULL)
3512 || (targetm.class_likely_spilled_p (reg_preferred_class (regno))
3513 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
3514 {
3515 /* This might be setting a SUBREG of a pseudo, a pseudo that is
3516 also set somewhere else to a constant. */
3517 note_pattern_stores (set, no_equiv, NULL);
3518 continue;
3519 }
3520
3521 /* Don't set reg mentioned in a paradoxical subreg
3522 equivalent to a mem. */
3523 if (MEM_P (src) && reg_equiv[regno].pdx_subregs)
3524 {
3525 note_pattern_stores (set, no_equiv, NULL);
3526 continue;
3527 }
3528
3529 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3530
3531 /* cse sometimes generates function invariants, but doesn't put a
3532 REG_EQUAL note on the insn. Since this note would be redundant,
3533 there's no point creating it earlier than here. */
3534 if (! note && ! rtx_varies_p (src, 0))
3535 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
3536
3537 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
3538 since it represents a function call. */
3539 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
3540 note = NULL_RTX;
3541
3542 if (DF_REG_DEF_COUNT (regno) != 1)
3543 {
3544 bool equal_p = true;
3545 rtx_insn_list *list;
3546
3547 /* If we have already processed this pseudo and determined it
3548 cannot have an equivalence, then honor that decision. */
3549 if (reg_equiv[regno].no_equiv)
3550 continue;
3551
3552 if (! note
3553 || rtx_varies_p (XEXP (note, 0), 0)
3554 || (reg_equiv[regno].replacement
3555 && ! rtx_equal_p (XEXP (note, 0),
3556 reg_equiv[regno].replacement)))
3557 {
3558 no_equiv (dest, set, NULL);
3559 continue;
3560 }
3561
3562 list = reg_equiv[regno].init_insns;
3563 for (; list; list = list->next ())
3564 {
3565 rtx note_tmp;
3566 rtx_insn *insn_tmp;
3567
3568 insn_tmp = list->insn ();
3569 note_tmp = find_reg_note (insn_tmp, REG_EQUAL, NULL_RTX);
3570 gcc_assert (note_tmp);
3571 if (! rtx_equal_p (XEXP (note, 0), XEXP (note_tmp, 0)))
3572 {
3573 equal_p = false;
3574 break;
3575 }
3576 }
3577
3578 if (! equal_p)
3579 {
3580 no_equiv (dest, set, NULL);
3581 continue;
3582 }
3583 }
3584
3585 /* Record this insn as initializing this register. */
3586 reg_equiv[regno].init_insns
3587 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
3588
3589 /* If this register is known to be equal to a constant, record that
3590 it is always equivalent to the constant.
3591 Note that it is possible to have a register use before
3592 the def in loops (see gcc.c-torture/execute/pr79286.c)
3593 where the reg is undefined on first use. If the def insn
3594 won't trap we can use it as an equivalence, effectively
3595 choosing the "undefined" value for the reg to be the
3596 same as the value set by the def. */
3597 if (DF_REG_DEF_COUNT (regno) == 1
3598 && note
3599 && !rtx_varies_p (XEXP (note, 0), 0)
3600 && (!may_trap_or_fault_p (XEXP (note, 0))
3601 || def_dominates_uses (regno)))
3602 {
3603 rtx note_value = XEXP (note, 0);
3604 remove_note (insn, note);
3605 set_unique_reg_note (insn, REG_EQUIV, note_value);
3606 }
3607
3608 /* If this insn introduces a "constant" register, decrease the priority
3609 of that register. Record this insn if the register is only used once
3610 more and the equivalence value is the same as our source.
3611
3612 The latter condition is checked for two reasons: First, it is an
3613 indication that it may be more efficient to actually emit the insn
3614 as written (if no registers are available, reload will substitute
3615 the equivalence). Secondly, it avoids problems with any registers
3616 dying in this insn whose death notes would be missed.
3617
3618 If we don't have a REG_EQUIV note, see if this insn is loading
3619 a register used only in one basic block from a MEM. If so, and the
3620 MEM remains unchanged for the life of the register, add a REG_EQUIV
3621 note. */
3622 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
3623
3624 rtx replacement = NULL_RTX;
3625 if (note)
3626 replacement = XEXP (note, 0);
3627 else if (REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3628 && MEM_P (SET_SRC (set)))
3629 {
3630 enum valid_equiv validity;
3631 validity = validate_equiv_mem (insn, dest, SET_SRC (set));
3632 if (validity != valid_none)
3633 {
3634 replacement = copy_rtx (SET_SRC (set));
3635 if (validity == valid_reload)
3636 note = set_unique_reg_note (insn, REG_EQUIV, replacement);
3637 }
3638 }
3639
3640 /* If we haven't done so, record for reload that this is an
3641 equivalencing insn. */
3642 if (note && !reg_equiv[regno].is_arg_equivalence)
3643 ira_reg_equiv[regno].init_insns
3644 = gen_rtx_INSN_LIST (VOIDmode, insn,
3645 ira_reg_equiv[regno].init_insns);
3646
3647 if (replacement)
3648 {
3649 reg_equiv[regno].replacement = replacement;
3650 reg_equiv[regno].src_p = &SET_SRC (set);
3651 reg_equiv[regno].loop_depth = (short) loop_depth;
3652
3653 /* Don't mess with things live during setjmp. */
3654 if (optimize && !bitmap_bit_p (setjmp_crosses, regno))
3655 {
3656 /* If the register is referenced exactly twice, meaning it is
3657 set once and used once, indicate that the reference may be
3658 replaced by the equivalence we computed above. Do this
3659 even if the register is only used in one block so that
3660 dependencies can be handled where the last register is
3661 used in a different block (i.e. HIGH / LO_SUM sequences)
3662 and to reduce the number of registers alive across
3663 calls. */
3664
3665 if (REG_N_REFS (regno) == 2
3666 && (rtx_equal_p (replacement, src)
3667 || ! equiv_init_varies_p (src))
3668 && NONJUMP_INSN_P (insn)
3669 && equiv_init_movable_p (PATTERN (insn), regno))
3670 reg_equiv[regno].replace = 1;
3671 }
3672 }
3673 }
3674 }
3675 }
3676
3677 /* For insns that set a MEM to the contents of a REG that is only used
3678 in a single basic block, see if the register is always equivalent
3679 to that memory location and if moving the store from INSN to the
3680 insn that sets REG is safe. If so, put a REG_EQUIV note on the
3681 initializing insn. */
3682 static void
3683 add_store_equivs (void)
3684 {
3685 auto_bitmap seen_insns;
3686
3687 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3688 {
3689 rtx set, src, dest;
3690 unsigned regno;
3691 rtx_insn *init_insn;
3692
3693 bitmap_set_bit (seen_insns, INSN_UID (insn));
3694
3695 if (! INSN_P (insn))
3696 continue;
3697
3698 set = single_set (insn);
3699 if (! set)
3700 continue;
3701
3702 dest = SET_DEST (set);
3703 src = SET_SRC (set);
3704
3705 /* Don't add a REG_EQUIV note if the insn already has one. The existing
3706 REG_EQUIV is likely more useful than the one we are adding. */
3707 if (MEM_P (dest) && REG_P (src)
3708 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
3709 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
3710 && DF_REG_DEF_COUNT (regno) == 1
3711 && ! reg_equiv[regno].pdx_subregs
3712 && reg_equiv[regno].init_insns != NULL
3713 && (init_insn = reg_equiv[regno].init_insns->insn ()) != 0
3714 && bitmap_bit_p (seen_insns, INSN_UID (init_insn))
3715 && ! find_reg_note (init_insn, REG_EQUIV, NULL_RTX)
3716 && validate_equiv_mem (init_insn, src, dest) == valid_reload
3717 && ! memref_used_between_p (dest, init_insn, insn)
3718 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
3719 multiple sets. */
3720 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
3721 {
3722 /* This insn makes the equivalence, not the one initializing
3723 the register. */
3724 ira_reg_equiv[regno].init_insns
3725 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
3726 df_notes_rescan (init_insn);
3727 if (dump_file)
3728 fprintf (dump_file,
3729 "Adding REG_EQUIV to insn %d for source of insn %d\n",
3730 INSN_UID (init_insn),
3731 INSN_UID (insn));
3732 }
3733 }
3734 }
3735
3736 /* Scan all regs killed in an insn to see if any of them are registers
3737 only used that once. If so, see if we can replace the reference
3738 with the equivalent form. If we can, delete the initializing
3739 reference and this register will go away. If we can't replace the
3740 reference, and the initializing reference is within the same loop
3741 (or in an inner loop), then move the register initialization just
3742 before the use, so that they are in the same basic block. */
3743 static void
3744 combine_and_move_insns (void)
3745 {
3746 auto_bitmap cleared_regs;
3747 int max = max_reg_num ();
3748
3749 for (int regno = FIRST_PSEUDO_REGISTER; regno < max; regno++)
3750 {
3751 if (!reg_equiv[regno].replace)
3752 continue;
3753
3754 rtx_insn *use_insn = 0;
3755 for (df_ref use = DF_REG_USE_CHAIN (regno);
3756 use;
3757 use = DF_REF_NEXT_REG (use))
3758 if (DF_REF_INSN_INFO (use))
3759 {
3760 if (DEBUG_INSN_P (DF_REF_INSN (use)))
3761 continue;
3762 gcc_assert (!use_insn);
3763 use_insn = DF_REF_INSN (use);
3764 }
3765 gcc_assert (use_insn);
3766
3767 /* Don't substitute into jumps. indirect_jump_optimize does
3768 this for anything we are prepared to handle. */
3769 if (JUMP_P (use_insn))
3770 continue;
3771
3772 /* Also don't substitute into a conditional trap insn -- it can become
3773 an unconditional trap, and that is a flow control insn. */
3774 if (GET_CODE (PATTERN (use_insn)) == TRAP_IF)
3775 continue;
3776
3777 df_ref def = DF_REG_DEF_CHAIN (regno);
3778 gcc_assert (DF_REG_DEF_COUNT (regno) == 1 && DF_REF_INSN_INFO (def));
3779 rtx_insn *def_insn = DF_REF_INSN (def);
3780
3781 /* We may not move instructions that can throw, since that
3782 changes basic block boundaries and we are not prepared to
3783 adjust the CFG to match. */
3784 if (can_throw_internal (def_insn))
3785 continue;
3786
3787 /* Instructions with multiple sets can only be moved if DF analysis is
3788 performed for all of the registers set. See PR91052. */
3789 if (multiple_sets (def_insn))
3790 continue;
3791
3792 basic_block use_bb = BLOCK_FOR_INSN (use_insn);
3793 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
3794 if (bb_loop_depth (use_bb) > bb_loop_depth (def_bb))
3795 continue;
3796
3797 if (asm_noperands (PATTERN (def_insn)) < 0
3798 && validate_replace_rtx (regno_reg_rtx[regno],
3799 *reg_equiv[regno].src_p, use_insn))
3800 {
3801 rtx link;
3802 /* Append the REG_DEAD notes from def_insn. */
3803 for (rtx *p = &REG_NOTES (def_insn); (link = *p) != 0; )
3804 {
3805 if (REG_NOTE_KIND (XEXP (link, 0)) == REG_DEAD)
3806 {
3807 *p = XEXP (link, 1);
3808 XEXP (link, 1) = REG_NOTES (use_insn);
3809 REG_NOTES (use_insn) = link;
3810 }
3811 else
3812 p = &XEXP (link, 1);
3813 }
3814
3815 remove_death (regno, use_insn);
3816 SET_REG_N_REFS (regno, 0);
3817 REG_FREQ (regno) = 0;
3818 df_ref use;
3819 FOR_EACH_INSN_USE (use, def_insn)
3820 {
3821 unsigned int use_regno = DF_REF_REGNO (use);
3822 if (!HARD_REGISTER_NUM_P (use_regno))
3823 reg_equiv[use_regno].replace = 0;
3824 }
3825
3826 delete_insn (def_insn);
3827
3828 reg_equiv[regno].init_insns = NULL;
3829 ira_reg_equiv[regno].init_insns = NULL;
3830 bitmap_set_bit (cleared_regs, regno);
3831 }
3832
3833 /* Move the initialization of the register to just before
3834 USE_INSN. Update the flow information. */
3835 else if (prev_nondebug_insn (use_insn) != def_insn)
3836 {
3837 rtx_insn *new_insn;
3838
3839 new_insn = emit_insn_before (PATTERN (def_insn), use_insn);
3840 REG_NOTES (new_insn) = REG_NOTES (def_insn);
3841 REG_NOTES (def_insn) = 0;
3842 /* Rescan it to process the notes. */
3843 df_insn_rescan (new_insn);
3844
3845 /* Make sure this insn is recognized before reload begins,
3846 otherwise eliminate_regs_in_insn will die. */
3847 INSN_CODE (new_insn) = INSN_CODE (def_insn);
3848
3849 delete_insn (def_insn);
3850
3851 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
3852
3853 REG_BASIC_BLOCK (regno) = use_bb->index;
3854 REG_N_CALLS_CROSSED (regno) = 0;
3855
3856 if (use_insn == BB_HEAD (use_bb))
3857 BB_HEAD (use_bb) = new_insn;
3858
3859 /* We know regno dies in use_insn, but inside a loop
3860 REG_DEAD notes might be missing when def_insn was in
3861 another basic block. However, when we move def_insn into
3862 this bb we'll definitely get a REG_DEAD note and reload
3863 will see the death. It's possible that update_equiv_regs
3864 set up an equivalence referencing regno for a reg set by
3865 use_insn, when regno was seen as non-local. Now that
3866 regno is local to this block, and dies, such an
3867 equivalence is invalid. */
3868 if (find_reg_note (use_insn, REG_EQUIV, regno_reg_rtx[regno]))
3869 {
3870 rtx set = single_set (use_insn);
3871 if (set && REG_P (SET_DEST (set)))
3872 no_equiv (SET_DEST (set), set, NULL);
3873 }
3874
3875 ira_reg_equiv[regno].init_insns
3876 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
3877 bitmap_set_bit (cleared_regs, regno);
3878 }
3879 }
3880
3881 if (!bitmap_empty_p (cleared_regs))
3882 {
3883 basic_block bb;
3884
3885 FOR_EACH_BB_FN (bb, cfun)
3886 {
3887 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
3888 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
3889 if (!df_live)
3890 continue;
3891 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
3892 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
3893 }
3894
3895 /* Last pass - adjust debug insns referencing cleared regs. */
3896 if (MAY_HAVE_DEBUG_BIND_INSNS)
3897 for (rtx_insn *insn = get_insns (); insn; insn = NEXT_INSN (insn))
3898 if (DEBUG_BIND_INSN_P (insn))
3899 {
3900 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
3901 INSN_VAR_LOCATION_LOC (insn)
3902 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
3903 adjust_cleared_regs,
3904 (void *) cleared_regs);
3905 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
3906 df_insn_rescan (insn);
3907 }
3908 }
3909 }
3910
3911 /* A pass over indirect jumps, converting simple cases to direct jumps.
3912 Combine does this optimization too, but only within a basic block. */
3913 static void
3914 indirect_jump_optimize (void)
3915 {
3916 basic_block bb;
3917 bool rebuild_p = false;
3918
3919 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3920 {
3921 rtx_insn *insn = BB_END (bb);
3922 if (!JUMP_P (insn)
3923 || find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
3924 continue;
3925
3926 rtx x = pc_set (insn);
3927 if (!x || !REG_P (SET_SRC (x)))
3928 continue;
3929
3930 int regno = REGNO (SET_SRC (x));
3931 if (DF_REG_DEF_COUNT (regno) == 1)
3932 {
3933 df_ref def = DF_REG_DEF_CHAIN (regno);
3934 if (!DF_REF_IS_ARTIFICIAL (def))
3935 {
3936 rtx_insn *def_insn = DF_REF_INSN (def);
3937 rtx lab = NULL_RTX;
3938 rtx set = single_set (def_insn);
3939 if (set && GET_CODE (SET_SRC (set)) == LABEL_REF)
3940 lab = SET_SRC (set);
3941 else
3942 {
3943 rtx eqnote = find_reg_note (def_insn, REG_EQUAL, NULL_RTX);
3944 if (eqnote && GET_CODE (XEXP (eqnote, 0)) == LABEL_REF)
3945 lab = XEXP (eqnote, 0);
3946 }
3947 if (lab && validate_replace_rtx (SET_SRC (x), lab, insn))
3948 rebuild_p = true;
3949 }
3950 }
3951 }
3952
3953 if (rebuild_p)
3954 {
3955 timevar_push (TV_JUMP);
3956 rebuild_jump_labels (get_insns ());
3957 if (purge_all_dead_edges ())
3958 delete_unreachable_blocks ();
3959 timevar_pop (TV_JUMP);
3960 }
3961 }
3962 \f
3963 /* Set up fields memory, constant, and invariant from init_insns in
3964 the structures of array ira_reg_equiv. */
3965 static void
3966 setup_reg_equiv (void)
3967 {
3968 int i;
3969 rtx_insn_list *elem, *prev_elem, *next_elem;
3970 rtx_insn *insn;
3971 rtx set, x;
3972
3973 for (i = FIRST_PSEUDO_REGISTER; i < ira_reg_equiv_len; i++)
3974 for (prev_elem = NULL, elem = ira_reg_equiv[i].init_insns;
3975 elem;
3976 prev_elem = elem, elem = next_elem)
3977 {
3978 next_elem = elem->next ();
3979 insn = elem->insn ();
3980 set = single_set (insn);
3981
3982 /* Init insns can set up equivalence when the reg is a destination or
3983 a source (in this case the destination is memory). */
3984 if (set != 0 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))))
3985 {
3986 if ((x = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL)
3987 {
3988 x = XEXP (x, 0);
3989 if (REG_P (SET_DEST (set))
3990 && REGNO (SET_DEST (set)) == (unsigned int) i
3991 && ! rtx_equal_p (SET_SRC (set), x) && MEM_P (x))
3992 {
3993 /* This insn reporting the equivalence but
3994 actually not setting it. Remove it from the
3995 list. */
3996 if (prev_elem == NULL)
3997 ira_reg_equiv[i].init_insns = next_elem;
3998 else
3999 XEXP (prev_elem, 1) = next_elem;
4000 elem = prev_elem;
4001 }
4002 }
4003 else if (REG_P (SET_DEST (set))
4004 && REGNO (SET_DEST (set)) == (unsigned int) i)
4005 x = SET_SRC (set);
4006 else
4007 {
4008 gcc_assert (REG_P (SET_SRC (set))
4009 && REGNO (SET_SRC (set)) == (unsigned int) i);
4010 x = SET_DEST (set);
4011 }
4012 if (! function_invariant_p (x)
4013 || ! flag_pic
4014 /* A function invariant is often CONSTANT_P but may
4015 include a register. We promise to only pass
4016 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
4017 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
4018 {
4019 /* It can happen that a REG_EQUIV note contains a MEM
4020 that is not a legitimate memory operand. As later
4021 stages of reload assume that all addresses found in
4022 the lra_regno_equiv_* arrays were originally
4023 legitimate, we ignore such REG_EQUIV notes. */
4024 if (memory_operand (x, VOIDmode))
4025 {
4026 ira_reg_equiv[i].defined_p = true;
4027 ira_reg_equiv[i].memory = x;
4028 continue;
4029 }
4030 else if (function_invariant_p (x))
4031 {
4032 machine_mode mode;
4033
4034 mode = GET_MODE (SET_DEST (set));
4035 if (GET_CODE (x) == PLUS
4036 || x == frame_pointer_rtx || x == arg_pointer_rtx)
4037 /* This is PLUS of frame pointer and a constant,
4038 or fp, or argp. */
4039 ira_reg_equiv[i].invariant = x;
4040 else if (targetm.legitimate_constant_p (mode, x))
4041 ira_reg_equiv[i].constant = x;
4042 else
4043 {
4044 ira_reg_equiv[i].memory = force_const_mem (mode, x);
4045 if (ira_reg_equiv[i].memory == NULL_RTX)
4046 {
4047 ira_reg_equiv[i].defined_p = false;
4048 ira_reg_equiv[i].init_insns = NULL;
4049 break;
4050 }
4051 }
4052 ira_reg_equiv[i].defined_p = true;
4053 continue;
4054 }
4055 }
4056 }
4057 ira_reg_equiv[i].defined_p = false;
4058 ira_reg_equiv[i].init_insns = NULL;
4059 break;
4060 }
4061 }
4062
4063 \f
4064
4065 /* Print chain C to FILE. */
4066 static void
4067 print_insn_chain (FILE *file, class insn_chain *c)
4068 {
4069 fprintf (file, "insn=%d, ", INSN_UID (c->insn));
4070 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
4071 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
4072 }
4073
4074
4075 /* Print all reload_insn_chains to FILE. */
4076 static void
4077 print_insn_chains (FILE *file)
4078 {
4079 class insn_chain *c;
4080 for (c = reload_insn_chain; c ; c = c->next)
4081 print_insn_chain (file, c);
4082 }
4083
4084 /* Return true if pseudo REGNO should be added to set live_throughout
4085 or dead_or_set of the insn chains for reload consideration. */
4086 static bool
4087 pseudo_for_reload_consideration_p (int regno)
4088 {
4089 /* Consider spilled pseudos too for IRA because they still have a
4090 chance to get hard-registers in the reload when IRA is used. */
4091 return (reg_renumber[regno] >= 0 || ira_conflicts_p);
4092 }
4093
4094 /* Return true if we can track the individual bytes of subreg X.
4095 When returning true, set *OUTER_SIZE to the number of bytes in
4096 X itself, *INNER_SIZE to the number of bytes in the inner register
4097 and *START to the offset of the first byte. */
4098 static bool
4099 get_subreg_tracking_sizes (rtx x, HOST_WIDE_INT *outer_size,
4100 HOST_WIDE_INT *inner_size, HOST_WIDE_INT *start)
4101 {
4102 rtx reg = regno_reg_rtx[REGNO (SUBREG_REG (x))];
4103 return (GET_MODE_SIZE (GET_MODE (x)).is_constant (outer_size)
4104 && GET_MODE_SIZE (GET_MODE (reg)).is_constant (inner_size)
4105 && SUBREG_BYTE (x).is_constant (start));
4106 }
4107
4108 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] for
4109 a register with SIZE bytes, making the register live if INIT_VALUE. */
4110 static void
4111 init_live_subregs (bool init_value, sbitmap *live_subregs,
4112 bitmap live_subregs_used, int allocnum, int size)
4113 {
4114 gcc_assert (size > 0);
4115
4116 /* Been there, done that. */
4117 if (bitmap_bit_p (live_subregs_used, allocnum))
4118 return;
4119
4120 /* Create a new one. */
4121 if (live_subregs[allocnum] == NULL)
4122 live_subregs[allocnum] = sbitmap_alloc (size);
4123
4124 /* If the entire reg was live before blasting into subregs, we need
4125 to init all of the subregs to ones else init to 0. */
4126 if (init_value)
4127 bitmap_ones (live_subregs[allocnum]);
4128 else
4129 bitmap_clear (live_subregs[allocnum]);
4130
4131 bitmap_set_bit (live_subregs_used, allocnum);
4132 }
4133
4134 /* Walk the insns of the current function and build reload_insn_chain,
4135 and record register life information. */
4136 static void
4137 build_insn_chain (void)
4138 {
4139 unsigned int i;
4140 class insn_chain **p = &reload_insn_chain;
4141 basic_block bb;
4142 class insn_chain *c = NULL;
4143 class insn_chain *next = NULL;
4144 auto_bitmap live_relevant_regs;
4145 auto_bitmap elim_regset;
4146 /* live_subregs is a vector used to keep accurate information about
4147 which hardregs are live in multiword pseudos. live_subregs and
4148 live_subregs_used are indexed by pseudo number. The live_subreg
4149 entry for a particular pseudo is only used if the corresponding
4150 element is non zero in live_subregs_used. The sbitmap size of
4151 live_subreg[allocno] is number of bytes that the pseudo can
4152 occupy. */
4153 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
4154 auto_bitmap live_subregs_used;
4155
4156 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4157 if (TEST_HARD_REG_BIT (eliminable_regset, i))
4158 bitmap_set_bit (elim_regset, i);
4159 FOR_EACH_BB_REVERSE_FN (bb, cfun)
4160 {
4161 bitmap_iterator bi;
4162 rtx_insn *insn;
4163
4164 CLEAR_REG_SET (live_relevant_regs);
4165 bitmap_clear (live_subregs_used);
4166
4167 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
4168 {
4169 if (i >= FIRST_PSEUDO_REGISTER)
4170 break;
4171 bitmap_set_bit (live_relevant_regs, i);
4172 }
4173
4174 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
4175 FIRST_PSEUDO_REGISTER, i, bi)
4176 {
4177 if (pseudo_for_reload_consideration_p (i))
4178 bitmap_set_bit (live_relevant_regs, i);
4179 }
4180
4181 FOR_BB_INSNS_REVERSE (bb, insn)
4182 {
4183 if (!NOTE_P (insn) && !BARRIER_P (insn))
4184 {
4185 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4186 df_ref def, use;
4187
4188 c = new_insn_chain ();
4189 c->next = next;
4190 next = c;
4191 *p = c;
4192 p = &c->prev;
4193
4194 c->insn = insn;
4195 c->block = bb->index;
4196
4197 if (NONDEBUG_INSN_P (insn))
4198 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4199 {
4200 unsigned int regno = DF_REF_REGNO (def);
4201
4202 /* Ignore may clobbers because these are generated
4203 from calls. However, every other kind of def is
4204 added to dead_or_set. */
4205 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
4206 {
4207 if (regno < FIRST_PSEUDO_REGISTER)
4208 {
4209 if (!fixed_regs[regno])
4210 bitmap_set_bit (&c->dead_or_set, regno);
4211 }
4212 else if (pseudo_for_reload_consideration_p (regno))
4213 bitmap_set_bit (&c->dead_or_set, regno);
4214 }
4215
4216 if ((regno < FIRST_PSEUDO_REGISTER
4217 || reg_renumber[regno] >= 0
4218 || ira_conflicts_p)
4219 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
4220 {
4221 rtx reg = DF_REF_REG (def);
4222 HOST_WIDE_INT outer_size, inner_size, start;
4223
4224 /* We can usually track the liveness of individual
4225 bytes within a subreg. The only exceptions are
4226 subregs wrapped in ZERO_EXTRACTs and subregs whose
4227 size is not known; in those cases we need to be
4228 conservative and treat the definition as a partial
4229 definition of the full register rather than a full
4230 definition of a specific part of the register. */
4231 if (GET_CODE (reg) == SUBREG
4232 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT)
4233 && get_subreg_tracking_sizes (reg, &outer_size,
4234 &inner_size, &start))
4235 {
4236 HOST_WIDE_INT last = start + outer_size;
4237
4238 init_live_subregs
4239 (bitmap_bit_p (live_relevant_regs, regno),
4240 live_subregs, live_subregs_used, regno,
4241 inner_size);
4242
4243 if (!DF_REF_FLAGS_IS_SET
4244 (def, DF_REF_STRICT_LOW_PART))
4245 {
4246 /* Expand the range to cover entire words.
4247 Bytes added here are "don't care". */
4248 start
4249 = start / UNITS_PER_WORD * UNITS_PER_WORD;
4250 last = ((last + UNITS_PER_WORD - 1)
4251 / UNITS_PER_WORD * UNITS_PER_WORD);
4252 }
4253
4254 /* Ignore the paradoxical bits. */
4255 if (last > SBITMAP_SIZE (live_subregs[regno]))
4256 last = SBITMAP_SIZE (live_subregs[regno]);
4257
4258 while (start < last)
4259 {
4260 bitmap_clear_bit (live_subregs[regno], start);
4261 start++;
4262 }
4263
4264 if (bitmap_empty_p (live_subregs[regno]))
4265 {
4266 bitmap_clear_bit (live_subregs_used, regno);
4267 bitmap_clear_bit (live_relevant_regs, regno);
4268 }
4269 else
4270 /* Set live_relevant_regs here because
4271 that bit has to be true to get us to
4272 look at the live_subregs fields. */
4273 bitmap_set_bit (live_relevant_regs, regno);
4274 }
4275 else
4276 {
4277 /* DF_REF_PARTIAL is generated for
4278 subregs, STRICT_LOW_PART, and
4279 ZERO_EXTRACT. We handle the subreg
4280 case above so here we have to keep from
4281 modeling the def as a killing def. */
4282 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
4283 {
4284 bitmap_clear_bit (live_subregs_used, regno);
4285 bitmap_clear_bit (live_relevant_regs, regno);
4286 }
4287 }
4288 }
4289 }
4290
4291 bitmap_and_compl_into (live_relevant_regs, elim_regset);
4292 bitmap_copy (&c->live_throughout, live_relevant_regs);
4293
4294 if (NONDEBUG_INSN_P (insn))
4295 FOR_EACH_INSN_INFO_USE (use, insn_info)
4296 {
4297 unsigned int regno = DF_REF_REGNO (use);
4298 rtx reg = DF_REF_REG (use);
4299
4300 /* DF_REF_READ_WRITE on a use means that this use
4301 is fabricated from a def that is a partial set
4302 to a multiword reg. Here, we only model the
4303 subreg case that is not wrapped in ZERO_EXTRACT
4304 precisely so we do not need to look at the
4305 fabricated use. */
4306 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
4307 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
4308 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
4309 continue;
4310
4311 /* Add the last use of each var to dead_or_set. */
4312 if (!bitmap_bit_p (live_relevant_regs, regno))
4313 {
4314 if (regno < FIRST_PSEUDO_REGISTER)
4315 {
4316 if (!fixed_regs[regno])
4317 bitmap_set_bit (&c->dead_or_set, regno);
4318 }
4319 else if (pseudo_for_reload_consideration_p (regno))
4320 bitmap_set_bit (&c->dead_or_set, regno);
4321 }
4322
4323 if (regno < FIRST_PSEUDO_REGISTER
4324 || pseudo_for_reload_consideration_p (regno))
4325 {
4326 HOST_WIDE_INT outer_size, inner_size, start;
4327 if (GET_CODE (reg) == SUBREG
4328 && !DF_REF_FLAGS_IS_SET (use,
4329 DF_REF_SIGN_EXTRACT
4330 | DF_REF_ZERO_EXTRACT)
4331 && get_subreg_tracking_sizes (reg, &outer_size,
4332 &inner_size, &start))
4333 {
4334 HOST_WIDE_INT last = start + outer_size;
4335
4336 init_live_subregs
4337 (bitmap_bit_p (live_relevant_regs, regno),
4338 live_subregs, live_subregs_used, regno,
4339 inner_size);
4340
4341 /* Ignore the paradoxical bits. */
4342 if (last > SBITMAP_SIZE (live_subregs[regno]))
4343 last = SBITMAP_SIZE (live_subregs[regno]);
4344
4345 while (start < last)
4346 {
4347 bitmap_set_bit (live_subregs[regno], start);
4348 start++;
4349 }
4350 }
4351 else
4352 /* Resetting the live_subregs_used is
4353 effectively saying do not use the subregs
4354 because we are reading the whole
4355 pseudo. */
4356 bitmap_clear_bit (live_subregs_used, regno);
4357 bitmap_set_bit (live_relevant_regs, regno);
4358 }
4359 }
4360 }
4361 }
4362
4363 /* FIXME!! The following code is a disaster. Reload needs to see the
4364 labels and jump tables that are just hanging out in between
4365 the basic blocks. See pr33676. */
4366 insn = BB_HEAD (bb);
4367
4368 /* Skip over the barriers and cruft. */
4369 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
4370 || BLOCK_FOR_INSN (insn) == bb))
4371 insn = PREV_INSN (insn);
4372
4373 /* While we add anything except barriers and notes, the focus is
4374 to get the labels and jump tables into the
4375 reload_insn_chain. */
4376 while (insn)
4377 {
4378 if (!NOTE_P (insn) && !BARRIER_P (insn))
4379 {
4380 if (BLOCK_FOR_INSN (insn))
4381 break;
4382
4383 c = new_insn_chain ();
4384 c->next = next;
4385 next = c;
4386 *p = c;
4387 p = &c->prev;
4388
4389 /* The block makes no sense here, but it is what the old
4390 code did. */
4391 c->block = bb->index;
4392 c->insn = insn;
4393 bitmap_copy (&c->live_throughout, live_relevant_regs);
4394 }
4395 insn = PREV_INSN (insn);
4396 }
4397 }
4398
4399 reload_insn_chain = c;
4400 *p = NULL;
4401
4402 for (i = 0; i < (unsigned int) max_regno; i++)
4403 if (live_subregs[i] != NULL)
4404 sbitmap_free (live_subregs[i]);
4405 free (live_subregs);
4406
4407 if (dump_file)
4408 print_insn_chains (dump_file);
4409 }
4410 \f
4411 /* Examine the rtx found in *LOC, which is read or written to as determined
4412 by TYPE. Return false if we find a reason why an insn containing this
4413 rtx should not be moved (such as accesses to non-constant memory), true
4414 otherwise. */
4415 static bool
4416 rtx_moveable_p (rtx *loc, enum op_type type)
4417 {
4418 const char *fmt;
4419 rtx x = *loc;
4420 int i, j;
4421
4422 enum rtx_code code = GET_CODE (x);
4423 switch (code)
4424 {
4425 case CONST:
4426 CASE_CONST_ANY:
4427 case SYMBOL_REF:
4428 case LABEL_REF:
4429 return true;
4430
4431 case PC:
4432 return type == OP_IN;
4433
4434 case CC0:
4435 return false;
4436
4437 case REG:
4438 if (x == frame_pointer_rtx)
4439 return true;
4440 if (HARD_REGISTER_P (x))
4441 return false;
4442
4443 return true;
4444
4445 case MEM:
4446 if (type == OP_IN && MEM_READONLY_P (x))
4447 return rtx_moveable_p (&XEXP (x, 0), OP_IN);
4448 return false;
4449
4450 case SET:
4451 return (rtx_moveable_p (&SET_SRC (x), OP_IN)
4452 && rtx_moveable_p (&SET_DEST (x), OP_OUT));
4453
4454 case STRICT_LOW_PART:
4455 return rtx_moveable_p (&XEXP (x, 0), OP_OUT);
4456
4457 case ZERO_EXTRACT:
4458 case SIGN_EXTRACT:
4459 return (rtx_moveable_p (&XEXP (x, 0), type)
4460 && rtx_moveable_p (&XEXP (x, 1), OP_IN)
4461 && rtx_moveable_p (&XEXP (x, 2), OP_IN));
4462
4463 case CLOBBER:
4464 return rtx_moveable_p (&SET_DEST (x), OP_OUT);
4465
4466 case UNSPEC_VOLATILE:
4467 /* It is a bad idea to consider insns with such rtl
4468 as moveable ones. The insn scheduler also considers them as barrier
4469 for a reason. */
4470 return false;
4471
4472 case ASM_OPERANDS:
4473 /* The same is true for volatile asm: it has unknown side effects, it
4474 cannot be moved at will. */
4475 if (MEM_VOLATILE_P (x))
4476 return false;
4477
4478 default:
4479 break;
4480 }
4481
4482 fmt = GET_RTX_FORMAT (code);
4483 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4484 {
4485 if (fmt[i] == 'e')
4486 {
4487 if (!rtx_moveable_p (&XEXP (x, i), type))
4488 return false;
4489 }
4490 else if (fmt[i] == 'E')
4491 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4492 {
4493 if (!rtx_moveable_p (&XVECEXP (x, i, j), type))
4494 return false;
4495 }
4496 }
4497 return true;
4498 }
4499
4500 /* A wrapper around dominated_by_p, which uses the information in UID_LUID
4501 to give dominance relationships between two insns I1 and I2. */
4502 static bool
4503 insn_dominated_by_p (rtx i1, rtx i2, int *uid_luid)
4504 {
4505 basic_block bb1 = BLOCK_FOR_INSN (i1);
4506 basic_block bb2 = BLOCK_FOR_INSN (i2);
4507
4508 if (bb1 == bb2)
4509 return uid_luid[INSN_UID (i2)] < uid_luid[INSN_UID (i1)];
4510 return dominated_by_p (CDI_DOMINATORS, bb1, bb2);
4511 }
4512
4513 /* Record the range of register numbers added by find_moveable_pseudos. */
4514 int first_moveable_pseudo, last_moveable_pseudo;
4515
4516 /* These two vectors hold data for every register added by
4517 find_movable_pseudos, with index 0 holding data for the
4518 first_moveable_pseudo. */
4519 /* The original home register. */
4520 static vec<rtx> pseudo_replaced_reg;
4521
4522 /* Look for instances where we have an instruction that is known to increase
4523 register pressure, and whose result is not used immediately. If it is
4524 possible to move the instruction downwards to just before its first use,
4525 split its lifetime into two ranges. We create a new pseudo to compute the
4526 value, and emit a move instruction just before the first use. If, after
4527 register allocation, the new pseudo remains unallocated, the function
4528 move_unallocated_pseudos then deletes the move instruction and places
4529 the computation just before the first use.
4530
4531 Such a move is safe and profitable if all the input registers remain live
4532 and unchanged between the original computation and its first use. In such
4533 a situation, the computation is known to increase register pressure, and
4534 moving it is known to at least not worsen it.
4535
4536 We restrict moves to only those cases where a register remains unallocated,
4537 in order to avoid interfering too much with the instruction schedule. As
4538 an exception, we may move insns which only modify their input register
4539 (typically induction variables), as this increases the freedom for our
4540 intended transformation, and does not limit the second instruction
4541 scheduler pass. */
4542
4543 static void
4544 find_moveable_pseudos (void)
4545 {
4546 unsigned i;
4547 int max_regs = max_reg_num ();
4548 int max_uid = get_max_uid ();
4549 basic_block bb;
4550 int *uid_luid = XNEWVEC (int, max_uid);
4551 rtx_insn **closest_uses = XNEWVEC (rtx_insn *, max_regs);
4552 /* A set of registers which are live but not modified throughout a block. */
4553 bitmap_head *bb_transp_live = XNEWVEC (bitmap_head,
4554 last_basic_block_for_fn (cfun));
4555 /* A set of registers which only exist in a given basic block. */
4556 bitmap_head *bb_local = XNEWVEC (bitmap_head,
4557 last_basic_block_for_fn (cfun));
4558 /* A set of registers which are set once, in an instruction that can be
4559 moved freely downwards, but are otherwise transparent to a block. */
4560 bitmap_head *bb_moveable_reg_sets = XNEWVEC (bitmap_head,
4561 last_basic_block_for_fn (cfun));
4562 auto_bitmap live, used, set, interesting, unusable_as_input;
4563 bitmap_iterator bi;
4564
4565 first_moveable_pseudo = max_regs;
4566 pseudo_replaced_reg.release ();
4567 pseudo_replaced_reg.safe_grow_cleared (max_regs);
4568
4569 df_analyze ();
4570 calculate_dominance_info (CDI_DOMINATORS);
4571
4572 i = 0;
4573 FOR_EACH_BB_FN (bb, cfun)
4574 {
4575 rtx_insn *insn;
4576 bitmap transp = bb_transp_live + bb->index;
4577 bitmap moveable = bb_moveable_reg_sets + bb->index;
4578 bitmap local = bb_local + bb->index;
4579
4580 bitmap_initialize (local, 0);
4581 bitmap_initialize (transp, 0);
4582 bitmap_initialize (moveable, 0);
4583 bitmap_copy (live, df_get_live_out (bb));
4584 bitmap_and_into (live, df_get_live_in (bb));
4585 bitmap_copy (transp, live);
4586 bitmap_clear (moveable);
4587 bitmap_clear (live);
4588 bitmap_clear (used);
4589 bitmap_clear (set);
4590 FOR_BB_INSNS (bb, insn)
4591 if (NONDEBUG_INSN_P (insn))
4592 {
4593 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4594 df_ref def, use;
4595
4596 uid_luid[INSN_UID (insn)] = i++;
4597
4598 def = df_single_def (insn_info);
4599 use = df_single_use (insn_info);
4600 if (use
4601 && def
4602 && DF_REF_REGNO (use) == DF_REF_REGNO (def)
4603 && !bitmap_bit_p (set, DF_REF_REGNO (use))
4604 && rtx_moveable_p (&PATTERN (insn), OP_IN))
4605 {
4606 unsigned regno = DF_REF_REGNO (use);
4607 bitmap_set_bit (moveable, regno);
4608 bitmap_set_bit (set, regno);
4609 bitmap_set_bit (used, regno);
4610 bitmap_clear_bit (transp, regno);
4611 continue;
4612 }
4613 FOR_EACH_INSN_INFO_USE (use, insn_info)
4614 {
4615 unsigned regno = DF_REF_REGNO (use);
4616 bitmap_set_bit (used, regno);
4617 if (bitmap_clear_bit (moveable, regno))
4618 bitmap_clear_bit (transp, regno);
4619 }
4620
4621 FOR_EACH_INSN_INFO_DEF (def, insn_info)
4622 {
4623 unsigned regno = DF_REF_REGNO (def);
4624 bitmap_set_bit (set, regno);
4625 bitmap_clear_bit (transp, regno);
4626 bitmap_clear_bit (moveable, regno);
4627 }
4628 }
4629 }
4630
4631 FOR_EACH_BB_FN (bb, cfun)
4632 {
4633 bitmap local = bb_local + bb->index;
4634 rtx_insn *insn;
4635
4636 FOR_BB_INSNS (bb, insn)
4637 if (NONDEBUG_INSN_P (insn))
4638 {
4639 df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
4640 rtx_insn *def_insn;
4641 rtx closest_use, note;
4642 df_ref def, use;
4643 unsigned regno;
4644 bool all_dominated, all_local;
4645 machine_mode mode;
4646
4647 def = df_single_def (insn_info);
4648 /* There must be exactly one def in this insn. */
4649 if (!def || !single_set (insn))
4650 continue;
4651 /* This must be the only definition of the reg. We also limit
4652 which modes we deal with so that we can assume we can generate
4653 move instructions. */
4654 regno = DF_REF_REGNO (def);
4655 mode = GET_MODE (DF_REF_REG (def));
4656 if (DF_REG_DEF_COUNT (regno) != 1
4657 || !DF_REF_INSN_INFO (def)
4658 || HARD_REGISTER_NUM_P (regno)
4659 || DF_REG_EQ_USE_COUNT (regno) > 0
4660 || (!INTEGRAL_MODE_P (mode) && !FLOAT_MODE_P (mode)))
4661 continue;
4662 def_insn = DF_REF_INSN (def);
4663
4664 for (note = REG_NOTES (def_insn); note; note = XEXP (note, 1))
4665 if (REG_NOTE_KIND (note) == REG_EQUIV && MEM_P (XEXP (note, 0)))
4666 break;
4667
4668 if (note)
4669 {
4670 if (dump_file)
4671 fprintf (dump_file, "Ignoring reg %d, has equiv memory\n",
4672 regno);
4673 bitmap_set_bit (unusable_as_input, regno);
4674 continue;
4675 }
4676
4677 use = DF_REG_USE_CHAIN (regno);
4678 all_dominated = true;
4679 all_local = true;
4680 closest_use = NULL_RTX;
4681 for (; use; use = DF_REF_NEXT_REG (use))
4682 {
4683 rtx_insn *insn;
4684 if (!DF_REF_INSN_INFO (use))
4685 {
4686 all_dominated = false;
4687 all_local = false;
4688 break;
4689 }
4690 insn = DF_REF_INSN (use);
4691 if (DEBUG_INSN_P (insn))
4692 continue;
4693 if (BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (def_insn))
4694 all_local = false;
4695 if (!insn_dominated_by_p (insn, def_insn, uid_luid))
4696 all_dominated = false;
4697 if (closest_use != insn && closest_use != const0_rtx)
4698 {
4699 if (closest_use == NULL_RTX)
4700 closest_use = insn;
4701 else if (insn_dominated_by_p (closest_use, insn, uid_luid))
4702 closest_use = insn;
4703 else if (!insn_dominated_by_p (insn, closest_use, uid_luid))
4704 closest_use = const0_rtx;
4705 }
4706 }
4707 if (!all_dominated)
4708 {
4709 if (dump_file)
4710 fprintf (dump_file, "Reg %d not all uses dominated by set\n",
4711 regno);
4712 continue;
4713 }
4714 if (all_local)
4715 bitmap_set_bit (local, regno);
4716 if (closest_use == const0_rtx || closest_use == NULL
4717 || next_nonnote_nondebug_insn (def_insn) == closest_use)
4718 {
4719 if (dump_file)
4720 fprintf (dump_file, "Reg %d uninteresting%s\n", regno,
4721 closest_use == const0_rtx || closest_use == NULL
4722 ? " (no unique first use)" : "");
4723 continue;
4724 }
4725 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (closest_use)))
4726 {
4727 if (dump_file)
4728 fprintf (dump_file, "Reg %d: closest user uses cc0\n",
4729 regno);
4730 continue;
4731 }
4732
4733 bitmap_set_bit (interesting, regno);
4734 /* If we get here, we know closest_use is a non-NULL insn
4735 (as opposed to const_0_rtx). */
4736 closest_uses[regno] = as_a <rtx_insn *> (closest_use);
4737
4738 if (dump_file && (all_local || all_dominated))
4739 {
4740 fprintf (dump_file, "Reg %u:", regno);
4741 if (all_local)
4742 fprintf (dump_file, " local to bb %d", bb->index);
4743 if (all_dominated)
4744 fprintf (dump_file, " def dominates all uses");
4745 if (closest_use != const0_rtx)
4746 fprintf (dump_file, " has unique first use");
4747 fputs ("\n", dump_file);
4748 }
4749 }
4750 }
4751
4752 EXECUTE_IF_SET_IN_BITMAP (interesting, 0, i, bi)
4753 {
4754 df_ref def = DF_REG_DEF_CHAIN (i);
4755 rtx_insn *def_insn = DF_REF_INSN (def);
4756 basic_block def_block = BLOCK_FOR_INSN (def_insn);
4757 bitmap def_bb_local = bb_local + def_block->index;
4758 bitmap def_bb_moveable = bb_moveable_reg_sets + def_block->index;
4759 bitmap def_bb_transp = bb_transp_live + def_block->index;
4760 bool local_to_bb_p = bitmap_bit_p (def_bb_local, i);
4761 rtx_insn *use_insn = closest_uses[i];
4762 df_ref use;
4763 bool all_ok = true;
4764 bool all_transp = true;
4765
4766 if (!REG_P (DF_REF_REG (def)))
4767 continue;
4768
4769 if (!local_to_bb_p)
4770 {
4771 if (dump_file)
4772 fprintf (dump_file, "Reg %u not local to one basic block\n",
4773 i);
4774 continue;
4775 }
4776 if (reg_equiv_init (i) != NULL_RTX)
4777 {
4778 if (dump_file)
4779 fprintf (dump_file, "Ignoring reg %u with equiv init insn\n",
4780 i);
4781 continue;
4782 }
4783 if (!rtx_moveable_p (&PATTERN (def_insn), OP_IN))
4784 {
4785 if (dump_file)
4786 fprintf (dump_file, "Found def insn %d for %d to be not moveable\n",
4787 INSN_UID (def_insn), i);
4788 continue;
4789 }
4790 if (dump_file)
4791 fprintf (dump_file, "Examining insn %d, def for %d\n",
4792 INSN_UID (def_insn), i);
4793 FOR_EACH_INSN_USE (use, def_insn)
4794 {
4795 unsigned regno = DF_REF_REGNO (use);
4796 if (bitmap_bit_p (unusable_as_input, regno))
4797 {
4798 all_ok = false;
4799 if (dump_file)
4800 fprintf (dump_file, " found unusable input reg %u.\n", regno);
4801 break;
4802 }
4803 if (!bitmap_bit_p (def_bb_transp, regno))
4804 {
4805 if (bitmap_bit_p (def_bb_moveable, regno)
4806 && !control_flow_insn_p (use_insn)
4807 && (!HAVE_cc0 || !sets_cc0_p (use_insn)))
4808 {
4809 if (modified_between_p (DF_REF_REG (use), def_insn, use_insn))
4810 {
4811 rtx_insn *x = NEXT_INSN (def_insn);
4812 while (!modified_in_p (DF_REF_REG (use), x))
4813 {
4814 gcc_assert (x != use_insn);
4815 x = NEXT_INSN (x);
4816 }
4817 if (dump_file)
4818 fprintf (dump_file, " input reg %u modified but insn %d moveable\n",
4819 regno, INSN_UID (x));
4820 emit_insn_after (PATTERN (x), use_insn);
4821 set_insn_deleted (x);
4822 }
4823 else
4824 {
4825 if (dump_file)
4826 fprintf (dump_file, " input reg %u modified between def and use\n",
4827 regno);
4828 all_transp = false;
4829 }
4830 }
4831 else
4832 all_transp = false;
4833 }
4834 }
4835 if (!all_ok)
4836 continue;
4837 if (!dbg_cnt (ira_move))
4838 break;
4839 if (dump_file)
4840 fprintf (dump_file, " all ok%s\n", all_transp ? " and transp" : "");
4841
4842 if (all_transp)
4843 {
4844 rtx def_reg = DF_REF_REG (def);
4845 rtx newreg = ira_create_new_reg (def_reg);
4846 if (validate_change (def_insn, DF_REF_REAL_LOC (def), newreg, 0))
4847 {
4848 unsigned nregno = REGNO (newreg);
4849 emit_insn_before (gen_move_insn (def_reg, newreg), use_insn);
4850 nregno -= max_regs;
4851 pseudo_replaced_reg[nregno] = def_reg;
4852 }
4853 }
4854 }
4855
4856 FOR_EACH_BB_FN (bb, cfun)
4857 {
4858 bitmap_clear (bb_local + bb->index);
4859 bitmap_clear (bb_transp_live + bb->index);
4860 bitmap_clear (bb_moveable_reg_sets + bb->index);
4861 }
4862 free (uid_luid);
4863 free (closest_uses);
4864 free (bb_local);
4865 free (bb_transp_live);
4866 free (bb_moveable_reg_sets);
4867
4868 last_moveable_pseudo = max_reg_num ();
4869
4870 fix_reg_equiv_init ();
4871 expand_reg_info ();
4872 regstat_free_n_sets_and_refs ();
4873 regstat_free_ri ();
4874 regstat_init_n_sets_and_refs ();
4875 regstat_compute_ri ();
4876 free_dominance_info (CDI_DOMINATORS);
4877 }
4878
4879 /* If SET pattern SET is an assignment from a hard register to a pseudo which
4880 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), return
4881 the destination. Otherwise return NULL. */
4882
4883 static rtx
4884 interesting_dest_for_shprep_1 (rtx set, basic_block call_dom)
4885 {
4886 rtx src = SET_SRC (set);
4887 rtx dest = SET_DEST (set);
4888 if (!REG_P (src) || !HARD_REGISTER_P (src)
4889 || !REG_P (dest) || HARD_REGISTER_P (dest)
4890 || (call_dom && !bitmap_bit_p (df_get_live_in (call_dom), REGNO (dest))))
4891 return NULL;
4892 return dest;
4893 }
4894
4895 /* If insn is interesting for parameter range-splitting shrink-wrapping
4896 preparation, i.e. it is a single set from a hard register to a pseudo, which
4897 is live at CALL_DOM (if non-NULL, otherwise this check is omitted), or a
4898 parallel statement with only one such statement, return the destination.
4899 Otherwise return NULL. */
4900
4901 static rtx
4902 interesting_dest_for_shprep (rtx_insn *insn, basic_block call_dom)
4903 {
4904 if (!INSN_P (insn))
4905 return NULL;
4906 rtx pat = PATTERN (insn);
4907 if (GET_CODE (pat) == SET)
4908 return interesting_dest_for_shprep_1 (pat, call_dom);
4909
4910 if (GET_CODE (pat) != PARALLEL)
4911 return NULL;
4912 rtx ret = NULL;
4913 for (int i = 0; i < XVECLEN (pat, 0); i++)
4914 {
4915 rtx sub = XVECEXP (pat, 0, i);
4916 if (GET_CODE (sub) == USE || GET_CODE (sub) == CLOBBER)
4917 continue;
4918 if (GET_CODE (sub) != SET
4919 || side_effects_p (sub))
4920 return NULL;
4921 rtx dest = interesting_dest_for_shprep_1 (sub, call_dom);
4922 if (dest && ret)
4923 return NULL;
4924 if (dest)
4925 ret = dest;
4926 }
4927 return ret;
4928 }
4929
4930 /* Split live ranges of pseudos that are loaded from hard registers in the
4931 first BB in a BB that dominates all non-sibling call if such a BB can be
4932 found and is not in a loop. Return true if the function has made any
4933 changes. */
4934
4935 static bool
4936 split_live_ranges_for_shrink_wrap (void)
4937 {
4938 basic_block bb, call_dom = NULL;
4939 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4940 rtx_insn *insn, *last_interesting_insn = NULL;
4941 auto_bitmap need_new, reachable;
4942 vec<basic_block> queue;
4943
4944 if (!SHRINK_WRAPPING_ENABLED)
4945 return false;
4946
4947 queue.create (n_basic_blocks_for_fn (cfun));
4948
4949 FOR_EACH_BB_FN (bb, cfun)
4950 FOR_BB_INSNS (bb, insn)
4951 if (CALL_P (insn) && !SIBLING_CALL_P (insn))
4952 {
4953 if (bb == first)
4954 {
4955 queue.release ();
4956 return false;
4957 }
4958
4959 bitmap_set_bit (need_new, bb->index);
4960 bitmap_set_bit (reachable, bb->index);
4961 queue.quick_push (bb);
4962 break;
4963 }
4964
4965 if (queue.is_empty ())
4966 {
4967 queue.release ();
4968 return false;
4969 }
4970
4971 while (!queue.is_empty ())
4972 {
4973 edge e;
4974 edge_iterator ei;
4975
4976 bb = queue.pop ();
4977 FOR_EACH_EDGE (e, ei, bb->succs)
4978 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
4979 && bitmap_set_bit (reachable, e->dest->index))
4980 queue.quick_push (e->dest);
4981 }
4982 queue.release ();
4983
4984 FOR_BB_INSNS (first, insn)
4985 {
4986 rtx dest = interesting_dest_for_shprep (insn, NULL);
4987 if (!dest)
4988 continue;
4989
4990 if (DF_REG_DEF_COUNT (REGNO (dest)) > 1)
4991 return false;
4992
4993 for (df_ref use = DF_REG_USE_CHAIN (REGNO(dest));
4994 use;
4995 use = DF_REF_NEXT_REG (use))
4996 {
4997 int ubbi = DF_REF_BB (use)->index;
4998 if (bitmap_bit_p (reachable, ubbi))
4999 bitmap_set_bit (need_new, ubbi);
5000 }
5001 last_interesting_insn = insn;
5002 }
5003
5004 if (!last_interesting_insn)
5005 return false;
5006
5007 call_dom = nearest_common_dominator_for_set (CDI_DOMINATORS, need_new);
5008 if (call_dom == first)
5009 return false;
5010
5011 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5012 while (bb_loop_depth (call_dom) > 0)
5013 call_dom = get_immediate_dominator (CDI_DOMINATORS, call_dom);
5014 loop_optimizer_finalize ();
5015
5016 if (call_dom == first)
5017 return false;
5018
5019 calculate_dominance_info (CDI_POST_DOMINATORS);
5020 if (dominated_by_p (CDI_POST_DOMINATORS, first, call_dom))
5021 {
5022 free_dominance_info (CDI_POST_DOMINATORS);
5023 return false;
5024 }
5025 free_dominance_info (CDI_POST_DOMINATORS);
5026
5027 if (dump_file)
5028 fprintf (dump_file, "Will split live ranges of parameters at BB %i\n",
5029 call_dom->index);
5030
5031 bool ret = false;
5032 FOR_BB_INSNS (first, insn)
5033 {
5034 rtx dest = interesting_dest_for_shprep (insn, call_dom);
5035 if (!dest || dest == pic_offset_table_rtx)
5036 continue;
5037
5038 bool need_newreg = false;
5039 df_ref use, next;
5040 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5041 {
5042 rtx_insn *uin = DF_REF_INSN (use);
5043 next = DF_REF_NEXT_REG (use);
5044
5045 if (DEBUG_INSN_P (uin))
5046 continue;
5047
5048 basic_block ubb = BLOCK_FOR_INSN (uin);
5049 if (ubb == call_dom
5050 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5051 {
5052 need_newreg = true;
5053 break;
5054 }
5055 }
5056
5057 if (need_newreg)
5058 {
5059 rtx newreg = ira_create_new_reg (dest);
5060
5061 for (use = DF_REG_USE_CHAIN (REGNO (dest)); use; use = next)
5062 {
5063 rtx_insn *uin = DF_REF_INSN (use);
5064 next = DF_REF_NEXT_REG (use);
5065
5066 basic_block ubb = BLOCK_FOR_INSN (uin);
5067 if (ubb == call_dom
5068 || dominated_by_p (CDI_DOMINATORS, ubb, call_dom))
5069 validate_change (uin, DF_REF_REAL_LOC (use), newreg, true);
5070 }
5071
5072 rtx_insn *new_move = gen_move_insn (newreg, dest);
5073 emit_insn_after (new_move, bb_note (call_dom));
5074 if (dump_file)
5075 {
5076 fprintf (dump_file, "Split live-range of register ");
5077 print_rtl_single (dump_file, dest);
5078 }
5079 ret = true;
5080 }
5081
5082 if (insn == last_interesting_insn)
5083 break;
5084 }
5085 apply_change_group ();
5086 return ret;
5087 }
5088
5089 /* Perform the second half of the transformation started in
5090 find_moveable_pseudos. We look for instances where the newly introduced
5091 pseudo remains unallocated, and remove it by moving the definition to
5092 just before its use, replacing the move instruction generated by
5093 find_moveable_pseudos. */
5094 static void
5095 move_unallocated_pseudos (void)
5096 {
5097 int i;
5098 for (i = first_moveable_pseudo; i < last_moveable_pseudo; i++)
5099 if (reg_renumber[i] < 0)
5100 {
5101 int idx = i - first_moveable_pseudo;
5102 rtx other_reg = pseudo_replaced_reg[idx];
5103 rtx_insn *def_insn = DF_REF_INSN (DF_REG_DEF_CHAIN (i));
5104 /* The use must follow all definitions of OTHER_REG, so we can
5105 insert the new definition immediately after any of them. */
5106 df_ref other_def = DF_REG_DEF_CHAIN (REGNO (other_reg));
5107 rtx_insn *move_insn = DF_REF_INSN (other_def);
5108 rtx_insn *newinsn = emit_insn_after (PATTERN (def_insn), move_insn);
5109 rtx set;
5110 int success;
5111
5112 if (dump_file)
5113 fprintf (dump_file, "moving def of %d (insn %d now) ",
5114 REGNO (other_reg), INSN_UID (def_insn));
5115
5116 delete_insn (move_insn);
5117 while ((other_def = DF_REG_DEF_CHAIN (REGNO (other_reg))))
5118 delete_insn (DF_REF_INSN (other_def));
5119 delete_insn (def_insn);
5120
5121 set = single_set (newinsn);
5122 success = validate_change (newinsn, &SET_DEST (set), other_reg, 0);
5123 gcc_assert (success);
5124 if (dump_file)
5125 fprintf (dump_file, " %d) rather than keep unallocated replacement %d\n",
5126 INSN_UID (newinsn), i);
5127 SET_REG_N_REFS (i, 0);
5128 }
5129 }
5130 \f
5131 /* If the backend knows where to allocate pseudos for hard
5132 register initial values, register these allocations now. */
5133 static void
5134 allocate_initial_values (void)
5135 {
5136 if (targetm.allocate_initial_value)
5137 {
5138 rtx hreg, preg, x;
5139 int i, regno;
5140
5141 for (i = 0; HARD_REGISTER_NUM_P (i); i++)
5142 {
5143 if (! initial_value_entry (i, &hreg, &preg))
5144 break;
5145
5146 x = targetm.allocate_initial_value (hreg);
5147 regno = REGNO (preg);
5148 if (x && REG_N_SETS (regno) <= 1)
5149 {
5150 if (MEM_P (x))
5151 reg_equiv_memory_loc (regno) = x;
5152 else
5153 {
5154 basic_block bb;
5155 int new_regno;
5156
5157 gcc_assert (REG_P (x));
5158 new_regno = REGNO (x);
5159 reg_renumber[regno] = new_regno;
5160 /* Poke the regno right into regno_reg_rtx so that even
5161 fixed regs are accepted. */
5162 SET_REGNO (preg, new_regno);
5163 /* Update global register liveness information. */
5164 FOR_EACH_BB_FN (bb, cfun)
5165 {
5166 if (REGNO_REG_SET_P (df_get_live_in (bb), regno))
5167 SET_REGNO_REG_SET (df_get_live_in (bb), new_regno);
5168 if (REGNO_REG_SET_P (df_get_live_out (bb), regno))
5169 SET_REGNO_REG_SET (df_get_live_out (bb), new_regno);
5170 }
5171 }
5172 }
5173 }
5174
5175 gcc_checking_assert (! initial_value_entry (FIRST_PSEUDO_REGISTER,
5176 &hreg, &preg));
5177 }
5178 }
5179 \f
5180
5181 /* True when we use LRA instead of reload pass for the current
5182 function. */
5183 bool ira_use_lra_p;
5184
5185 /* True if we have allocno conflicts. It is false for non-optimized
5186 mode or when the conflict table is too big. */
5187 bool ira_conflicts_p;
5188
5189 /* Saved between IRA and reload. */
5190 static int saved_flag_ira_share_spill_slots;
5191
5192 /* This is the main entry of IRA. */
5193 static void
5194 ira (FILE *f)
5195 {
5196 bool loops_p;
5197 int ira_max_point_before_emit;
5198 bool saved_flag_caller_saves = flag_caller_saves;
5199 enum ira_region saved_flag_ira_region = flag_ira_region;
5200
5201 clear_bb_flags ();
5202
5203 /* Determine if the current function is a leaf before running IRA
5204 since this can impact optimizations done by the prologue and
5205 epilogue thus changing register elimination offsets.
5206 Other target callbacks may use crtl->is_leaf too, including
5207 SHRINK_WRAPPING_ENABLED, so initialize as early as possible. */
5208 crtl->is_leaf = leaf_function_p ();
5209
5210 /* Perform target specific PIC register initialization. */
5211 targetm.init_pic_reg ();
5212
5213 ira_conflicts_p = optimize > 0;
5214
5215 /* Determine the number of pseudos actually requiring coloring. */
5216 unsigned int num_used_regs = 0;
5217 for (unsigned int i = FIRST_PSEUDO_REGISTER; i < DF_REG_SIZE (df); i++)
5218 if (DF_REG_DEF_COUNT (i) || DF_REG_USE_COUNT (i))
5219 num_used_regs++;
5220
5221 /* If there are too many pseudos and/or basic blocks (e.g. 10K
5222 pseudos and 10K blocks or 100K pseudos and 1K blocks), we will
5223 use simplified and faster algorithms in LRA. */
5224 lra_simple_p
5225 = ira_use_lra_p
5226 && num_used_regs >= (1U << 26) / last_basic_block_for_fn (cfun);
5227
5228 if (lra_simple_p)
5229 {
5230 /* It permits to skip live range splitting in LRA. */
5231 flag_caller_saves = false;
5232 /* There is no sense to do regional allocation when we use
5233 simplified LRA. */
5234 flag_ira_region = IRA_REGION_ONE;
5235 ira_conflicts_p = false;
5236 }
5237
5238 #ifndef IRA_NO_OBSTACK
5239 gcc_obstack_init (&ira_obstack);
5240 #endif
5241 bitmap_obstack_initialize (&ira_bitmap_obstack);
5242
5243 /* LRA uses its own infrastructure to handle caller save registers. */
5244 if (flag_caller_saves && !ira_use_lra_p)
5245 init_caller_save ();
5246
5247 if (flag_ira_verbose < 10)
5248 {
5249 internal_flag_ira_verbose = flag_ira_verbose;
5250 ira_dump_file = f;
5251 }
5252 else
5253 {
5254 internal_flag_ira_verbose = flag_ira_verbose - 10;
5255 ira_dump_file = stderr;
5256 }
5257
5258 setup_prohibited_mode_move_regs ();
5259 decrease_live_ranges_number ();
5260 df_note_add_problem ();
5261
5262 /* DF_LIVE can't be used in the register allocator, too many other
5263 parts of the compiler depend on using the "classic" liveness
5264 interpretation of the DF_LR problem. See PR38711.
5265 Remove the problem, so that we don't spend time updating it in
5266 any of the df_analyze() calls during IRA/LRA. */
5267 if (optimize > 1)
5268 df_remove_problem (df_live);
5269 gcc_checking_assert (df_live == NULL);
5270
5271 if (flag_checking)
5272 df->changeable_flags |= DF_VERIFY_SCHEDULED;
5273
5274 df_analyze ();
5275
5276 init_reg_equiv ();
5277 if (ira_conflicts_p)
5278 {
5279 calculate_dominance_info (CDI_DOMINATORS);
5280
5281 if (split_live_ranges_for_shrink_wrap ())
5282 df_analyze ();
5283
5284 free_dominance_info (CDI_DOMINATORS);
5285 }
5286
5287 df_clear_flags (DF_NO_INSN_RESCAN);
5288
5289 indirect_jump_optimize ();
5290 if (delete_trivially_dead_insns (get_insns (), max_reg_num ()))
5291 df_analyze ();
5292
5293 regstat_init_n_sets_and_refs ();
5294 regstat_compute_ri ();
5295
5296 /* If we are not optimizing, then this is the only place before
5297 register allocation where dataflow is done. And that is needed
5298 to generate these warnings. */
5299 if (warn_clobbered)
5300 generate_setjmp_warnings ();
5301
5302 if (resize_reg_info () && flag_ira_loop_pressure)
5303 ira_set_pseudo_classes (true, ira_dump_file);
5304
5305 init_alias_analysis ();
5306 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5307 reg_equiv = XCNEWVEC (struct equivalence, max_reg_num ());
5308 update_equiv_regs_prescan ();
5309 update_equiv_regs ();
5310
5311 /* Don't move insns if live range shrinkage or register
5312 pressure-sensitive scheduling were done because it will not
5313 improve allocation but likely worsen insn scheduling. */
5314 if (optimize
5315 && !flag_live_range_shrinkage
5316 && !(flag_sched_pressure && flag_schedule_insns))
5317 combine_and_move_insns ();
5318
5319 /* Gather additional equivalences with memory. */
5320 if (optimize)
5321 add_store_equivs ();
5322
5323 loop_optimizer_finalize ();
5324 free_dominance_info (CDI_DOMINATORS);
5325 end_alias_analysis ();
5326 free (reg_equiv);
5327
5328 setup_reg_equiv ();
5329 grow_reg_equivs ();
5330 setup_reg_equiv_init ();
5331
5332 allocated_reg_info_size = max_reg_num ();
5333
5334 /* It is not worth to do such improvement when we use a simple
5335 allocation because of -O0 usage or because the function is too
5336 big. */
5337 if (ira_conflicts_p)
5338 find_moveable_pseudos ();
5339
5340 max_regno_before_ira = max_reg_num ();
5341 ira_setup_eliminable_regset ();
5342
5343 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
5344 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
5345 ira_move_loops_num = ira_additional_jumps_num = 0;
5346
5347 ira_assert (current_loops == NULL);
5348 if (flag_ira_region == IRA_REGION_ALL || flag_ira_region == IRA_REGION_MIXED)
5349 loop_optimizer_init (AVOID_CFG_MODIFICATIONS | LOOPS_HAVE_RECORDED_EXITS);
5350
5351 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5352 fprintf (ira_dump_file, "Building IRA IR\n");
5353 loops_p = ira_build ();
5354
5355 ira_assert (ira_conflicts_p || !loops_p);
5356
5357 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
5358 if (too_high_register_pressure_p () || cfun->calls_setjmp)
5359 /* It is just wasting compiler's time to pack spilled pseudos into
5360 stack slots in this case -- prohibit it. We also do this if
5361 there is setjmp call because a variable not modified between
5362 setjmp and longjmp the compiler is required to preserve its
5363 value and sharing slots does not guarantee it. */
5364 flag_ira_share_spill_slots = FALSE;
5365
5366 ira_color ();
5367
5368 ira_max_point_before_emit = ira_max_point;
5369
5370 ira_initiate_emit_data ();
5371
5372 ira_emit (loops_p);
5373
5374 max_regno = max_reg_num ();
5375 if (ira_conflicts_p)
5376 {
5377 if (! loops_p)
5378 {
5379 if (! ira_use_lra_p)
5380 ira_initiate_assign ();
5381 }
5382 else
5383 {
5384 expand_reg_info ();
5385
5386 if (ira_use_lra_p)
5387 {
5388 ira_allocno_t a;
5389 ira_allocno_iterator ai;
5390
5391 FOR_EACH_ALLOCNO (a, ai)
5392 {
5393 int old_regno = ALLOCNO_REGNO (a);
5394 int new_regno = REGNO (ALLOCNO_EMIT_DATA (a)->reg);
5395
5396 ALLOCNO_REGNO (a) = new_regno;
5397
5398 if (old_regno != new_regno)
5399 setup_reg_classes (new_regno, reg_preferred_class (old_regno),
5400 reg_alternate_class (old_regno),
5401 reg_allocno_class (old_regno));
5402 }
5403 }
5404 else
5405 {
5406 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
5407 fprintf (ira_dump_file, "Flattening IR\n");
5408 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
5409 }
5410 /* New insns were generated: add notes and recalculate live
5411 info. */
5412 df_analyze ();
5413
5414 /* ??? Rebuild the loop tree, but why? Does the loop tree
5415 change if new insns were generated? Can that be handled
5416 by updating the loop tree incrementally? */
5417 loop_optimizer_finalize ();
5418 free_dominance_info (CDI_DOMINATORS);
5419 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
5420 | LOOPS_HAVE_RECORDED_EXITS);
5421
5422 if (! ira_use_lra_p)
5423 {
5424 setup_allocno_assignment_flags ();
5425 ira_initiate_assign ();
5426 ira_reassign_conflict_allocnos (max_regno);
5427 }
5428 }
5429 }
5430
5431 ira_finish_emit_data ();
5432
5433 setup_reg_renumber ();
5434
5435 calculate_allocation_cost ();
5436
5437 #ifdef ENABLE_IRA_CHECKING
5438 if (ira_conflicts_p && ! ira_use_lra_p)
5439 /* Opposite to reload pass, LRA does not use any conflict info
5440 from IRA. We don't rebuild conflict info for LRA (through
5441 ira_flattening call) and cannot use the check here. We could
5442 rebuild this info for LRA in the check mode but there is a risk
5443 that code generated with the check and without it will be a bit
5444 different. Calling ira_flattening in any mode would be a
5445 wasting CPU time. So do not check the allocation for LRA. */
5446 check_allocation ();
5447 #endif
5448
5449 if (max_regno != max_regno_before_ira)
5450 {
5451 regstat_free_n_sets_and_refs ();
5452 regstat_free_ri ();
5453 regstat_init_n_sets_and_refs ();
5454 regstat_compute_ri ();
5455 }
5456
5457 overall_cost_before = ira_overall_cost;
5458 if (! ira_conflicts_p)
5459 grow_reg_equivs ();
5460 else
5461 {
5462 fix_reg_equiv_init ();
5463
5464 #ifdef ENABLE_IRA_CHECKING
5465 print_redundant_copies ();
5466 #endif
5467 if (! ira_use_lra_p)
5468 {
5469 ira_spilled_reg_stack_slots_num = 0;
5470 ira_spilled_reg_stack_slots
5471 = ((class ira_spilled_reg_stack_slot *)
5472 ira_allocate (max_regno
5473 * sizeof (class ira_spilled_reg_stack_slot)));
5474 memset ((void *)ira_spilled_reg_stack_slots, 0,
5475 max_regno * sizeof (class ira_spilled_reg_stack_slot));
5476 }
5477 }
5478 allocate_initial_values ();
5479
5480 /* See comment for find_moveable_pseudos call. */
5481 if (ira_conflicts_p)
5482 move_unallocated_pseudos ();
5483
5484 /* Restore original values. */
5485 if (lra_simple_p)
5486 {
5487 flag_caller_saves = saved_flag_caller_saves;
5488 flag_ira_region = saved_flag_ira_region;
5489 }
5490 }
5491
5492 static void
5493 do_reload (void)
5494 {
5495 basic_block bb;
5496 bool need_dce;
5497 unsigned pic_offset_table_regno = INVALID_REGNUM;
5498
5499 if (flag_ira_verbose < 10)
5500 ira_dump_file = dump_file;
5501
5502 /* If pic_offset_table_rtx is a pseudo register, then keep it so
5503 after reload to avoid possible wrong usages of hard reg assigned
5504 to it. */
5505 if (pic_offset_table_rtx
5506 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
5507 pic_offset_table_regno = REGNO (pic_offset_table_rtx);
5508
5509 timevar_push (TV_RELOAD);
5510 if (ira_use_lra_p)
5511 {
5512 if (current_loops != NULL)
5513 {
5514 loop_optimizer_finalize ();
5515 free_dominance_info (CDI_DOMINATORS);
5516 }
5517 FOR_ALL_BB_FN (bb, cfun)
5518 bb->loop_father = NULL;
5519 current_loops = NULL;
5520
5521 ira_destroy ();
5522
5523 lra (ira_dump_file);
5524 /* ???!!! Move it before lra () when we use ira_reg_equiv in
5525 LRA. */
5526 vec_free (reg_equivs);
5527 reg_equivs = NULL;
5528 need_dce = false;
5529 }
5530 else
5531 {
5532 df_set_flags (DF_NO_INSN_RESCAN);
5533 build_insn_chain ();
5534
5535 need_dce = reload (get_insns (), ira_conflicts_p);
5536 }
5537
5538 timevar_pop (TV_RELOAD);
5539
5540 timevar_push (TV_IRA);
5541
5542 if (ira_conflicts_p && ! ira_use_lra_p)
5543 {
5544 ira_free (ira_spilled_reg_stack_slots);
5545 ira_finish_assign ();
5546 }
5547
5548 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
5549 && overall_cost_before != ira_overall_cost)
5550 fprintf (ira_dump_file, "+++Overall after reload %" PRId64 "\n",
5551 ira_overall_cost);
5552
5553 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
5554
5555 if (! ira_use_lra_p)
5556 {
5557 ira_destroy ();
5558 if (current_loops != NULL)
5559 {
5560 loop_optimizer_finalize ();
5561 free_dominance_info (CDI_DOMINATORS);
5562 }
5563 FOR_ALL_BB_FN (bb, cfun)
5564 bb->loop_father = NULL;
5565 current_loops = NULL;
5566
5567 regstat_free_ri ();
5568 regstat_free_n_sets_and_refs ();
5569 }
5570
5571 if (optimize)
5572 cleanup_cfg (CLEANUP_EXPENSIVE);
5573
5574 finish_reg_equiv ();
5575
5576 bitmap_obstack_release (&ira_bitmap_obstack);
5577 #ifndef IRA_NO_OBSTACK
5578 obstack_free (&ira_obstack, NULL);
5579 #endif
5580
5581 /* The code after the reload has changed so much that at this point
5582 we might as well just rescan everything. Note that
5583 df_rescan_all_insns is not going to help here because it does not
5584 touch the artificial uses and defs. */
5585 df_finish_pass (true);
5586 df_scan_alloc (NULL);
5587 df_scan_blocks ();
5588
5589 if (optimize > 1)
5590 {
5591 df_live_add_problem ();
5592 df_live_set_all_dirty ();
5593 }
5594
5595 if (optimize)
5596 df_analyze ();
5597
5598 if (need_dce && optimize)
5599 run_fast_dce ();
5600
5601 /* Diagnose uses of the hard frame pointer when it is used as a global
5602 register. Often we can get away with letting the user appropriate
5603 the frame pointer, but we should let them know when code generation
5604 makes that impossible. */
5605 if (global_regs[HARD_FRAME_POINTER_REGNUM] && frame_pointer_needed)
5606 {
5607 tree decl = global_regs_decl[HARD_FRAME_POINTER_REGNUM];
5608 error_at (DECL_SOURCE_LOCATION (current_function_decl),
5609 "frame pointer required, but reserved");
5610 inform (DECL_SOURCE_LOCATION (decl), "for %qD", decl);
5611 }
5612
5613 /* If we are doing generic stack checking, give a warning if this
5614 function's frame size is larger than we expect. */
5615 if (flag_stack_check == GENERIC_STACK_CHECK)
5616 {
5617 poly_int64 size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
5618
5619 for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5620 if (df_regs_ever_live_p (i)
5621 && !fixed_regs[i]
5622 && !crtl->abi->clobbers_full_reg_p (i))
5623 size += UNITS_PER_WORD;
5624
5625 if (constant_lower_bound (size) > STACK_CHECK_MAX_FRAME_SIZE)
5626 warning (0, "frame size too large for reliable stack checking");
5627 }
5628
5629 if (pic_offset_table_regno != INVALID_REGNUM)
5630 pic_offset_table_rtx = gen_rtx_REG (Pmode, pic_offset_table_regno);
5631
5632 timevar_pop (TV_IRA);
5633 }
5634 \f
5635 /* Run the integrated register allocator. */
5636
5637 namespace {
5638
5639 const pass_data pass_data_ira =
5640 {
5641 RTL_PASS, /* type */
5642 "ira", /* name */
5643 OPTGROUP_NONE, /* optinfo_flags */
5644 TV_IRA, /* tv_id */
5645 0, /* properties_required */
5646 0, /* properties_provided */
5647 0, /* properties_destroyed */
5648 0, /* todo_flags_start */
5649 TODO_do_not_ggc_collect, /* todo_flags_finish */
5650 };
5651
5652 class pass_ira : public rtl_opt_pass
5653 {
5654 public:
5655 pass_ira (gcc::context *ctxt)
5656 : rtl_opt_pass (pass_data_ira, ctxt)
5657 {}
5658
5659 /* opt_pass methods: */
5660 virtual bool gate (function *)
5661 {
5662 return !targetm.no_register_allocation;
5663 }
5664 virtual unsigned int execute (function *)
5665 {
5666 ira (dump_file);
5667 return 0;
5668 }
5669
5670 }; // class pass_ira
5671
5672 } // anon namespace
5673
5674 rtl_opt_pass *
5675 make_pass_ira (gcc::context *ctxt)
5676 {
5677 return new pass_ira (ctxt);
5678 }
5679
5680 namespace {
5681
5682 const pass_data pass_data_reload =
5683 {
5684 RTL_PASS, /* type */
5685 "reload", /* name */
5686 OPTGROUP_NONE, /* optinfo_flags */
5687 TV_RELOAD, /* tv_id */
5688 0, /* properties_required */
5689 0, /* properties_provided */
5690 0, /* properties_destroyed */
5691 0, /* todo_flags_start */
5692 0, /* todo_flags_finish */
5693 };
5694
5695 class pass_reload : public rtl_opt_pass
5696 {
5697 public:
5698 pass_reload (gcc::context *ctxt)
5699 : rtl_opt_pass (pass_data_reload, ctxt)
5700 {}
5701
5702 /* opt_pass methods: */
5703 virtual bool gate (function *)
5704 {
5705 return !targetm.no_register_allocation;
5706 }
5707 virtual unsigned int execute (function *)
5708 {
5709 do_reload ();
5710 return 0;
5711 }
5712
5713 }; // class pass_reload
5714
5715 } // anon namespace
5716
5717 rtl_opt_pass *
5718 make_pass_reload (gcc::context *ctxt)
5719 {
5720 return new pass_reload (ctxt);
5721 }