]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/loop-invariant.c
[C++] Protect call to copy_attributes_to_builtin (PR91505)
[thirdparty/gcc.git] / gcc / loop-invariant.c
1 /* RTL-level loop invariant motion.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This implements the loop invariant motion pass. It is very simple
21 (no calls, no loads/stores, etc.). This should be sufficient to cleanup
22 things like address arithmetics -- other more complicated invariants should
23 be eliminated on GIMPLE either in tree-ssa-loop-im.c or in tree-ssa-pre.c.
24
25 We proceed loop by loop -- it is simpler than trying to handle things
26 globally and should not lose much. First we inspect all sets inside loop
27 and create a dependency graph on insns (saying "to move this insn, you must
28 also move the following insns").
29
30 We then need to determine what to move. We estimate the number of registers
31 used and move as many invariants as possible while we still have enough free
32 registers. We prefer the expensive invariants.
33
34 Then we move the selected invariants out of the loop, creating a new
35 temporaries for them if necessary. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "backend.h"
41 #include "target.h"
42 #include "rtl.h"
43 #include "tree.h"
44 #include "cfghooks.h"
45 #include "df.h"
46 #include "memmodel.h"
47 #include "tm_p.h"
48 #include "insn-config.h"
49 #include "regs.h"
50 #include "ira.h"
51 #include "recog.h"
52 #include "cfgrtl.h"
53 #include "cfgloop.h"
54 #include "expr.h"
55 #include "params.h"
56 #include "rtl-iter.h"
57 #include "dumpfile.h"
58
59 /* The data stored for the loop. */
60
61 class loop_data
62 {
63 public:
64 class loop *outermost_exit; /* The outermost exit of the loop. */
65 bool has_call; /* True if the loop contains a call. */
66 /* Maximal register pressure inside loop for given register class
67 (defined only for the pressure classes). */
68 int max_reg_pressure[N_REG_CLASSES];
69 /* Loop regs referenced and live pseudo-registers. */
70 bitmap_head regs_ref;
71 bitmap_head regs_live;
72 };
73
74 #define LOOP_DATA(LOOP) ((class loop_data *) (LOOP)->aux)
75
76 /* The description of an use. */
77
78 struct use
79 {
80 rtx *pos; /* Position of the use. */
81 rtx_insn *insn; /* The insn in that the use occurs. */
82 unsigned addr_use_p; /* Whether the use occurs in an address. */
83 struct use *next; /* Next use in the list. */
84 };
85
86 /* The description of a def. */
87
88 struct def
89 {
90 struct use *uses; /* The list of uses that are uniquely reached
91 by it. */
92 unsigned n_uses; /* Number of such uses. */
93 unsigned n_addr_uses; /* Number of uses in addresses. */
94 unsigned invno; /* The corresponding invariant. */
95 bool can_prop_to_addr_uses; /* True if the corresponding inv can be
96 propagated into its address uses. */
97 };
98
99 /* The data stored for each invariant. */
100
101 struct invariant
102 {
103 /* The number of the invariant. */
104 unsigned invno;
105
106 /* The number of the invariant with the same value. */
107 unsigned eqto;
108
109 /* The number of invariants which eqto this. */
110 unsigned eqno;
111
112 /* If we moved the invariant out of the loop, the original regno
113 that contained its value. */
114 int orig_regno;
115
116 /* If we moved the invariant out of the loop, the register that contains its
117 value. */
118 rtx reg;
119
120 /* The definition of the invariant. */
121 struct def *def;
122
123 /* The insn in that it is defined. */
124 rtx_insn *insn;
125
126 /* Whether it is always executed. */
127 bool always_executed;
128
129 /* Whether to move the invariant. */
130 bool move;
131
132 /* Whether the invariant is cheap when used as an address. */
133 bool cheap_address;
134
135 /* Cost of the invariant. */
136 unsigned cost;
137
138 /* Used for detecting already visited invariants during determining
139 costs of movements. */
140 unsigned stamp;
141
142 /* The invariants it depends on. */
143 bitmap depends_on;
144 };
145
146 /* Currently processed loop. */
147 static class loop *curr_loop;
148
149 /* Table of invariants indexed by the df_ref uid field. */
150
151 static unsigned int invariant_table_size = 0;
152 static struct invariant ** invariant_table;
153
154 /* Entry for hash table of invariant expressions. */
155
156 struct invariant_expr_entry
157 {
158 /* The invariant. */
159 struct invariant *inv;
160
161 /* Its value. */
162 rtx expr;
163
164 /* Its mode. */
165 machine_mode mode;
166
167 /* Its hash. */
168 hashval_t hash;
169 };
170
171 /* The actual stamp for marking already visited invariants during determining
172 costs of movements. */
173
174 static unsigned actual_stamp;
175
176 typedef struct invariant *invariant_p;
177
178
179 /* The invariants. */
180
181 static vec<invariant_p> invariants;
182
183 /* Check the size of the invariant table and realloc if necessary. */
184
185 static void
186 check_invariant_table_size (void)
187 {
188 if (invariant_table_size < DF_DEFS_TABLE_SIZE ())
189 {
190 unsigned int new_size = DF_DEFS_TABLE_SIZE () + (DF_DEFS_TABLE_SIZE () / 4);
191 invariant_table = XRESIZEVEC (struct invariant *, invariant_table, new_size);
192 memset (&invariant_table[invariant_table_size], 0,
193 (new_size - invariant_table_size) * sizeof (struct invariant *));
194 invariant_table_size = new_size;
195 }
196 }
197
198 /* Test for possibility of invariantness of X. */
199
200 static bool
201 check_maybe_invariant (rtx x)
202 {
203 enum rtx_code code = GET_CODE (x);
204 int i, j;
205 const char *fmt;
206
207 switch (code)
208 {
209 CASE_CONST_ANY:
210 case SYMBOL_REF:
211 case CONST:
212 case LABEL_REF:
213 return true;
214
215 case PC:
216 case CC0:
217 case UNSPEC_VOLATILE:
218 case CALL:
219 return false;
220
221 case REG:
222 return true;
223
224 case MEM:
225 /* Load/store motion is done elsewhere. ??? Perhaps also add it here?
226 It should not be hard, and might be faster than "elsewhere". */
227
228 /* Just handle the most trivial case where we load from an unchanging
229 location (most importantly, pic tables). */
230 if (MEM_READONLY_P (x) && !MEM_VOLATILE_P (x))
231 break;
232
233 return false;
234
235 case ASM_OPERANDS:
236 /* Don't mess with insns declared volatile. */
237 if (MEM_VOLATILE_P (x))
238 return false;
239 break;
240
241 default:
242 break;
243 }
244
245 fmt = GET_RTX_FORMAT (code);
246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
247 {
248 if (fmt[i] == 'e')
249 {
250 if (!check_maybe_invariant (XEXP (x, i)))
251 return false;
252 }
253 else if (fmt[i] == 'E')
254 {
255 for (j = 0; j < XVECLEN (x, i); j++)
256 if (!check_maybe_invariant (XVECEXP (x, i, j)))
257 return false;
258 }
259 }
260
261 return true;
262 }
263
264 /* Returns the invariant definition for USE, or NULL if USE is not
265 invariant. */
266
267 static struct invariant *
268 invariant_for_use (df_ref use)
269 {
270 struct df_link *defs;
271 df_ref def;
272 basic_block bb = DF_REF_BB (use), def_bb;
273
274 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
275 return NULL;
276
277 defs = DF_REF_CHAIN (use);
278 if (!defs || defs->next)
279 return NULL;
280 def = defs->ref;
281 check_invariant_table_size ();
282 if (!invariant_table[DF_REF_ID (def)])
283 return NULL;
284
285 def_bb = DF_REF_BB (def);
286 if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
287 return NULL;
288 return invariant_table[DF_REF_ID (def)];
289 }
290
291 /* Computes hash value for invariant expression X in INSN. */
292
293 static hashval_t
294 hash_invariant_expr_1 (rtx_insn *insn, rtx x)
295 {
296 enum rtx_code code = GET_CODE (x);
297 int i, j;
298 const char *fmt;
299 hashval_t val = code;
300 int do_not_record_p;
301 df_ref use;
302 struct invariant *inv;
303
304 switch (code)
305 {
306 CASE_CONST_ANY:
307 case SYMBOL_REF:
308 case CONST:
309 case LABEL_REF:
310 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
311
312 case REG:
313 use = df_find_use (insn, x);
314 if (!use)
315 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
316 inv = invariant_for_use (use);
317 if (!inv)
318 return hash_rtx (x, GET_MODE (x), &do_not_record_p, NULL, false);
319
320 gcc_assert (inv->eqto != ~0u);
321 return inv->eqto;
322
323 default:
324 break;
325 }
326
327 fmt = GET_RTX_FORMAT (code);
328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
329 {
330 if (fmt[i] == 'e')
331 val ^= hash_invariant_expr_1 (insn, XEXP (x, i));
332 else if (fmt[i] == 'E')
333 {
334 for (j = 0; j < XVECLEN (x, i); j++)
335 val ^= hash_invariant_expr_1 (insn, XVECEXP (x, i, j));
336 }
337 else if (fmt[i] == 'i' || fmt[i] == 'n')
338 val ^= XINT (x, i);
339 else if (fmt[i] == 'p')
340 val ^= constant_lower_bound (SUBREG_BYTE (x));
341 }
342
343 return val;
344 }
345
346 /* Returns true if the invariant expressions E1 and E2 used in insns INSN1
347 and INSN2 have always the same value. */
348
349 static bool
350 invariant_expr_equal_p (rtx_insn *insn1, rtx e1, rtx_insn *insn2, rtx e2)
351 {
352 enum rtx_code code = GET_CODE (e1);
353 int i, j;
354 const char *fmt;
355 df_ref use1, use2;
356 struct invariant *inv1 = NULL, *inv2 = NULL;
357 rtx sub1, sub2;
358
359 /* If mode of only one of the operands is VOIDmode, it is not equivalent to
360 the other one. If both are VOIDmode, we rely on the caller of this
361 function to verify that their modes are the same. */
362 if (code != GET_CODE (e2) || GET_MODE (e1) != GET_MODE (e2))
363 return false;
364
365 switch (code)
366 {
367 CASE_CONST_ANY:
368 case SYMBOL_REF:
369 case CONST:
370 case LABEL_REF:
371 return rtx_equal_p (e1, e2);
372
373 case REG:
374 use1 = df_find_use (insn1, e1);
375 use2 = df_find_use (insn2, e2);
376 if (use1)
377 inv1 = invariant_for_use (use1);
378 if (use2)
379 inv2 = invariant_for_use (use2);
380
381 if (!inv1 && !inv2)
382 return rtx_equal_p (e1, e2);
383
384 if (!inv1 || !inv2)
385 return false;
386
387 gcc_assert (inv1->eqto != ~0u);
388 gcc_assert (inv2->eqto != ~0u);
389 return inv1->eqto == inv2->eqto;
390
391 default:
392 break;
393 }
394
395 fmt = GET_RTX_FORMAT (code);
396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
397 {
398 if (fmt[i] == 'e')
399 {
400 sub1 = XEXP (e1, i);
401 sub2 = XEXP (e2, i);
402
403 if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
404 return false;
405 }
406
407 else if (fmt[i] == 'E')
408 {
409 if (XVECLEN (e1, i) != XVECLEN (e2, i))
410 return false;
411
412 for (j = 0; j < XVECLEN (e1, i); j++)
413 {
414 sub1 = XVECEXP (e1, i, j);
415 sub2 = XVECEXP (e2, i, j);
416
417 if (!invariant_expr_equal_p (insn1, sub1, insn2, sub2))
418 return false;
419 }
420 }
421 else if (fmt[i] == 'i' || fmt[i] == 'n')
422 {
423 if (XINT (e1, i) != XINT (e2, i))
424 return false;
425 }
426 else if (fmt[i] == 'p')
427 {
428 if (maybe_ne (SUBREG_BYTE (e1), SUBREG_BYTE (e2)))
429 return false;
430 }
431 /* Unhandled type of subexpression, we fail conservatively. */
432 else
433 return false;
434 }
435
436 return true;
437 }
438
439 struct invariant_expr_hasher : free_ptr_hash <invariant_expr_entry>
440 {
441 static inline hashval_t hash (const invariant_expr_entry *);
442 static inline bool equal (const invariant_expr_entry *,
443 const invariant_expr_entry *);
444 };
445
446 /* Returns hash value for invariant expression entry ENTRY. */
447
448 inline hashval_t
449 invariant_expr_hasher::hash (const invariant_expr_entry *entry)
450 {
451 return entry->hash;
452 }
453
454 /* Compares invariant expression entries ENTRY1 and ENTRY2. */
455
456 inline bool
457 invariant_expr_hasher::equal (const invariant_expr_entry *entry1,
458 const invariant_expr_entry *entry2)
459 {
460 if (entry1->mode != entry2->mode)
461 return 0;
462
463 return invariant_expr_equal_p (entry1->inv->insn, entry1->expr,
464 entry2->inv->insn, entry2->expr);
465 }
466
467 typedef hash_table<invariant_expr_hasher> invariant_htab_type;
468
469 /* Checks whether invariant with value EXPR in machine mode MODE is
470 recorded in EQ. If this is the case, return the invariant. Otherwise
471 insert INV to the table for this expression and return INV. */
472
473 static struct invariant *
474 find_or_insert_inv (invariant_htab_type *eq, rtx expr, machine_mode mode,
475 struct invariant *inv)
476 {
477 hashval_t hash = hash_invariant_expr_1 (inv->insn, expr);
478 struct invariant_expr_entry *entry;
479 struct invariant_expr_entry pentry;
480 invariant_expr_entry **slot;
481
482 pentry.expr = expr;
483 pentry.inv = inv;
484 pentry.mode = mode;
485 slot = eq->find_slot_with_hash (&pentry, hash, INSERT);
486 entry = *slot;
487
488 if (entry)
489 return entry->inv;
490
491 entry = XNEW (struct invariant_expr_entry);
492 entry->inv = inv;
493 entry->expr = expr;
494 entry->mode = mode;
495 entry->hash = hash;
496 *slot = entry;
497
498 return inv;
499 }
500
501 /* Finds invariants identical to INV and records the equivalence. EQ is the
502 hash table of the invariants. */
503
504 static void
505 find_identical_invariants (invariant_htab_type *eq, struct invariant *inv)
506 {
507 unsigned depno;
508 bitmap_iterator bi;
509 struct invariant *dep;
510 rtx expr, set;
511 machine_mode mode;
512 struct invariant *tmp;
513
514 if (inv->eqto != ~0u)
515 return;
516
517 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
518 {
519 dep = invariants[depno];
520 find_identical_invariants (eq, dep);
521 }
522
523 set = single_set (inv->insn);
524 expr = SET_SRC (set);
525 mode = GET_MODE (expr);
526 if (mode == VOIDmode)
527 mode = GET_MODE (SET_DEST (set));
528
529 tmp = find_or_insert_inv (eq, expr, mode, inv);
530 inv->eqto = tmp->invno;
531
532 if (tmp->invno != inv->invno && inv->always_executed)
533 tmp->eqno++;
534
535 if (dump_file && inv->eqto != inv->invno)
536 fprintf (dump_file,
537 "Invariant %d is equivalent to invariant %d.\n",
538 inv->invno, inv->eqto);
539 }
540
541 /* Find invariants with the same value and record the equivalences. */
542
543 static void
544 merge_identical_invariants (void)
545 {
546 unsigned i;
547 struct invariant *inv;
548 invariant_htab_type eq (invariants.length ());
549
550 FOR_EACH_VEC_ELT (invariants, i, inv)
551 find_identical_invariants (&eq, inv);
552 }
553
554 /* Determines the basic blocks inside LOOP that are always executed and
555 stores their bitmap to ALWAYS_REACHED. MAY_EXIT is a bitmap of
556 basic blocks that may either exit the loop, or contain the call that
557 does not have to return. BODY is body of the loop obtained by
558 get_loop_body_in_dom_order. */
559
560 static void
561 compute_always_reached (class loop *loop, basic_block *body,
562 bitmap may_exit, bitmap always_reached)
563 {
564 unsigned i;
565
566 for (i = 0; i < loop->num_nodes; i++)
567 {
568 if (dominated_by_p (CDI_DOMINATORS, loop->latch, body[i]))
569 bitmap_set_bit (always_reached, i);
570
571 if (bitmap_bit_p (may_exit, i))
572 return;
573 }
574 }
575
576 /* Finds exits out of the LOOP with body BODY. Marks blocks in that we may
577 exit the loop by cfg edge to HAS_EXIT and MAY_EXIT. In MAY_EXIT
578 additionally mark blocks that may exit due to a call. */
579
580 static void
581 find_exits (class loop *loop, basic_block *body,
582 bitmap may_exit, bitmap has_exit)
583 {
584 unsigned i;
585 edge_iterator ei;
586 edge e;
587 class loop *outermost_exit = loop, *aexit;
588 bool has_call = false;
589 rtx_insn *insn;
590
591 for (i = 0; i < loop->num_nodes; i++)
592 {
593 if (body[i]->loop_father == loop)
594 {
595 FOR_BB_INSNS (body[i], insn)
596 {
597 if (CALL_P (insn)
598 && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
599 || !RTL_CONST_OR_PURE_CALL_P (insn)))
600 {
601 has_call = true;
602 bitmap_set_bit (may_exit, i);
603 break;
604 }
605 }
606
607 FOR_EACH_EDGE (e, ei, body[i]->succs)
608 {
609 if (! flow_bb_inside_loop_p (loop, e->dest))
610 {
611 bitmap_set_bit (may_exit, i);
612 bitmap_set_bit (has_exit, i);
613 outermost_exit = find_common_loop (outermost_exit,
614 e->dest->loop_father);
615 }
616 /* If we enter a subloop that might never terminate treat
617 it like a possible exit. */
618 if (flow_loop_nested_p (loop, e->dest->loop_father))
619 bitmap_set_bit (may_exit, i);
620 }
621 continue;
622 }
623
624 /* Use the data stored for the subloop to decide whether we may exit
625 through it. It is sufficient to do this for header of the loop,
626 as other basic blocks inside it must be dominated by it. */
627 if (body[i]->loop_father->header != body[i])
628 continue;
629
630 if (LOOP_DATA (body[i]->loop_father)->has_call)
631 {
632 has_call = true;
633 bitmap_set_bit (may_exit, i);
634 }
635 aexit = LOOP_DATA (body[i]->loop_father)->outermost_exit;
636 if (aexit != loop)
637 {
638 bitmap_set_bit (may_exit, i);
639 bitmap_set_bit (has_exit, i);
640
641 if (flow_loop_nested_p (aexit, outermost_exit))
642 outermost_exit = aexit;
643 }
644 }
645
646 if (loop->aux == NULL)
647 {
648 loop->aux = xcalloc (1, sizeof (class loop_data));
649 bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
650 bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
651 }
652 LOOP_DATA (loop)->outermost_exit = outermost_exit;
653 LOOP_DATA (loop)->has_call = has_call;
654 }
655
656 /* Check whether we may assign a value to X from a register. */
657
658 static bool
659 may_assign_reg_p (rtx x)
660 {
661 return (GET_MODE (x) != VOIDmode
662 && GET_MODE (x) != BLKmode
663 && can_copy_p (GET_MODE (x))
664 /* Do not mess with the frame pointer adjustments that can
665 be generated e.g. by expand_builtin_setjmp_receiver. */
666 && x != frame_pointer_rtx
667 && (!REG_P (x)
668 || !HARD_REGISTER_P (x)
669 || REGNO_REG_CLASS (REGNO (x)) != NO_REGS));
670 }
671
672 /* Finds definitions that may correspond to invariants in LOOP with body
673 BODY. */
674
675 static void
676 find_defs (class loop *loop)
677 {
678 if (dump_file)
679 {
680 fprintf (dump_file,
681 "*****starting processing of loop %d ******\n",
682 loop->num);
683 }
684
685 df_chain_add_problem (DF_UD_CHAIN);
686 df_set_flags (DF_RD_PRUNE_DEAD_DEFS);
687 df_analyze_loop (loop);
688 check_invariant_table_size ();
689
690 if (dump_file)
691 {
692 df_dump_region (dump_file);
693 fprintf (dump_file,
694 "*****ending processing of loop %d ******\n",
695 loop->num);
696 }
697 }
698
699 /* Creates a new invariant for definition DEF in INSN, depending on invariants
700 in DEPENDS_ON. ALWAYS_EXECUTED is true if the insn is always executed,
701 unless the program ends due to a function call. The newly created invariant
702 is returned. */
703
704 static struct invariant *
705 create_new_invariant (struct def *def, rtx_insn *insn, bitmap depends_on,
706 bool always_executed)
707 {
708 struct invariant *inv = XNEW (struct invariant);
709 rtx set = single_set (insn);
710 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
711
712 inv->def = def;
713 inv->always_executed = always_executed;
714 inv->depends_on = depends_on;
715
716 /* If the set is simple, usually by moving it we move the whole store out of
717 the loop. Otherwise we save only cost of the computation. */
718 if (def)
719 {
720 inv->cost = set_rtx_cost (set, speed);
721 /* ??? Try to determine cheapness of address computation. Unfortunately
722 the address cost is only a relative measure, we can't really compare
723 it with any absolute number, but only with other address costs.
724 But here we don't have any other addresses, so compare with a magic
725 number anyway. It has to be large enough to not regress PR33928
726 (by avoiding to move reg+8,reg+16,reg+24 invariants), but small
727 enough to not regress 410.bwaves either (by still moving reg+reg
728 invariants).
729 See http://gcc.gnu.org/ml/gcc-patches/2009-10/msg01210.html . */
730 if (SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set))))
731 inv->cheap_address = address_cost (SET_SRC (set), word_mode,
732 ADDR_SPACE_GENERIC, speed) < 3;
733 else
734 inv->cheap_address = false;
735 }
736 else
737 {
738 inv->cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)),
739 speed);
740 inv->cheap_address = false;
741 }
742
743 inv->move = false;
744 inv->reg = NULL_RTX;
745 inv->orig_regno = -1;
746 inv->stamp = 0;
747 inv->insn = insn;
748
749 inv->invno = invariants.length ();
750 inv->eqto = ~0u;
751
752 /* Itself. */
753 inv->eqno = 1;
754
755 if (def)
756 def->invno = inv->invno;
757 invariants.safe_push (inv);
758
759 if (dump_file)
760 {
761 fprintf (dump_file,
762 "Set in insn %d is invariant (%d), cost %d, depends on ",
763 INSN_UID (insn), inv->invno, inv->cost);
764 dump_bitmap (dump_file, inv->depends_on);
765 }
766
767 return inv;
768 }
769
770 /* Return a canonical version of X for the address, from the point of view,
771 that all multiplications are represented as MULT instead of the multiply
772 by a power of 2 being represented as ASHIFT.
773
774 Callers should prepare a copy of X because this function may modify it
775 in place. */
776
777 static void
778 canonicalize_address_mult (rtx x)
779 {
780 subrtx_var_iterator::array_type array;
781 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
782 {
783 rtx sub = *iter;
784 scalar_int_mode sub_mode;
785 if (is_a <scalar_int_mode> (GET_MODE (sub), &sub_mode)
786 && GET_CODE (sub) == ASHIFT
787 && CONST_INT_P (XEXP (sub, 1))
788 && INTVAL (XEXP (sub, 1)) < GET_MODE_BITSIZE (sub_mode)
789 && INTVAL (XEXP (sub, 1)) >= 0)
790 {
791 HOST_WIDE_INT shift = INTVAL (XEXP (sub, 1));
792 PUT_CODE (sub, MULT);
793 XEXP (sub, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift, sub_mode);
794 iter.skip_subrtxes ();
795 }
796 }
797 }
798
799 /* Maximum number of sub expressions in address. We set it to
800 a small integer since it's unlikely to have a complicated
801 address expression. */
802
803 #define MAX_CANON_ADDR_PARTS (5)
804
805 /* Collect sub expressions in address X with PLUS as the seperator.
806 Sub expressions are stored in vector ADDR_PARTS. */
807
808 static void
809 collect_address_parts (rtx x, vec<rtx> *addr_parts)
810 {
811 subrtx_var_iterator::array_type array;
812 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
813 {
814 rtx sub = *iter;
815
816 if (GET_CODE (sub) != PLUS)
817 {
818 addr_parts->safe_push (sub);
819 iter.skip_subrtxes ();
820 }
821 }
822 }
823
824 /* Compare function for sorting sub expressions X and Y based on
825 precedence defined for communitive operations. */
826
827 static int
828 compare_address_parts (const void *x, const void *y)
829 {
830 const rtx *rx = (const rtx *)x;
831 const rtx *ry = (const rtx *)y;
832 int px = commutative_operand_precedence (*rx);
833 int py = commutative_operand_precedence (*ry);
834
835 return (py - px);
836 }
837
838 /* Return a canonical version address for X by following steps:
839 1) Rewrite ASHIFT into MULT recursively.
840 2) Divide address into sub expressions with PLUS as the
841 separator.
842 3) Sort sub expressions according to precedence defined
843 for communative operations.
844 4) Simplify CONST_INT_P sub expressions.
845 5) Create new canonicalized address and return.
846 Callers should prepare a copy of X because this function may
847 modify it in place. */
848
849 static rtx
850 canonicalize_address (rtx x)
851 {
852 rtx res;
853 unsigned int i, j;
854 machine_mode mode = GET_MODE (x);
855 auto_vec<rtx, MAX_CANON_ADDR_PARTS> addr_parts;
856
857 /* Rewrite ASHIFT into MULT. */
858 canonicalize_address_mult (x);
859 /* Divide address into sub expressions. */
860 collect_address_parts (x, &addr_parts);
861 /* Unlikely to have very complicated address. */
862 if (addr_parts.length () < 2
863 || addr_parts.length () > MAX_CANON_ADDR_PARTS)
864 return x;
865
866 /* Sort sub expressions according to canonicalization precedence. */
867 addr_parts.qsort (compare_address_parts);
868
869 /* Simplify all constant int summary if possible. */
870 for (i = 0; i < addr_parts.length (); i++)
871 if (CONST_INT_P (addr_parts[i]))
872 break;
873
874 for (j = i + 1; j < addr_parts.length (); j++)
875 {
876 gcc_assert (CONST_INT_P (addr_parts[j]));
877 addr_parts[i] = simplify_gen_binary (PLUS, mode,
878 addr_parts[i],
879 addr_parts[j]);
880 }
881
882 /* Chain PLUS operators to the left for !CONST_INT_P sub expressions. */
883 res = addr_parts[0];
884 for (j = 1; j < i; j++)
885 res = simplify_gen_binary (PLUS, mode, res, addr_parts[j]);
886
887 /* Pickup the last CONST_INT_P sub expression. */
888 if (i < addr_parts.length ())
889 res = simplify_gen_binary (PLUS, mode, res, addr_parts[i]);
890
891 return res;
892 }
893
894 /* Given invariant DEF and its address USE, check if the corresponding
895 invariant expr can be propagated into the use or not. */
896
897 static bool
898 inv_can_prop_to_addr_use (struct def *def, df_ref use)
899 {
900 struct invariant *inv;
901 rtx *pos = DF_REF_REAL_LOC (use), def_set, use_set;
902 rtx_insn *use_insn = DF_REF_INSN (use);
903 rtx_insn *def_insn;
904 bool ok;
905
906 inv = invariants[def->invno];
907 /* No need to check if address expression is expensive. */
908 if (!inv->cheap_address)
909 return false;
910
911 def_insn = inv->insn;
912 def_set = single_set (def_insn);
913 if (!def_set)
914 return false;
915
916 validate_unshare_change (use_insn, pos, SET_SRC (def_set), true);
917 ok = verify_changes (0);
918 /* Try harder with canonicalization in address expression. */
919 if (!ok && (use_set = single_set (use_insn)) != NULL_RTX)
920 {
921 rtx src, dest, mem = NULL_RTX;
922
923 src = SET_SRC (use_set);
924 dest = SET_DEST (use_set);
925 if (MEM_P (src))
926 mem = src;
927 else if (MEM_P (dest))
928 mem = dest;
929
930 if (mem != NULL_RTX
931 && !memory_address_addr_space_p (GET_MODE (mem),
932 XEXP (mem, 0),
933 MEM_ADDR_SPACE (mem)))
934 {
935 rtx addr = canonicalize_address (copy_rtx (XEXP (mem, 0)));
936 if (memory_address_addr_space_p (GET_MODE (mem),
937 addr, MEM_ADDR_SPACE (mem)))
938 ok = true;
939 }
940 }
941 cancel_changes (0);
942 return ok;
943 }
944
945 /* Record USE at DEF. */
946
947 static void
948 record_use (struct def *def, df_ref use)
949 {
950 struct use *u = XNEW (struct use);
951
952 u->pos = DF_REF_REAL_LOC (use);
953 u->insn = DF_REF_INSN (use);
954 u->addr_use_p = (DF_REF_TYPE (use) == DF_REF_REG_MEM_LOAD
955 || DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE);
956 u->next = def->uses;
957 def->uses = u;
958 def->n_uses++;
959 if (u->addr_use_p)
960 {
961 /* Initialize propagation information if this is the first addr
962 use of the inv def. */
963 if (def->n_addr_uses == 0)
964 def->can_prop_to_addr_uses = true;
965
966 def->n_addr_uses++;
967 if (def->can_prop_to_addr_uses && !inv_can_prop_to_addr_use (def, use))
968 def->can_prop_to_addr_uses = false;
969 }
970 }
971
972 /* Finds the invariants USE depends on and store them to the DEPENDS_ON
973 bitmap. Returns true if all dependencies of USE are known to be
974 loop invariants, false otherwise. */
975
976 static bool
977 check_dependency (basic_block bb, df_ref use, bitmap depends_on)
978 {
979 df_ref def;
980 basic_block def_bb;
981 struct df_link *defs;
982 struct def *def_data;
983 struct invariant *inv;
984
985 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
986 return false;
987
988 defs = DF_REF_CHAIN (use);
989 if (!defs)
990 {
991 unsigned int regno = DF_REF_REGNO (use);
992
993 /* If this is the use of an uninitialized argument register that is
994 likely to be spilled, do not move it lest this might extend its
995 lifetime and cause reload to die. This can occur for a call to
996 a function taking complex number arguments and moving the insns
997 preparing the arguments without moving the call itself wouldn't
998 gain much in practice. */
999 if ((DF_REF_FLAGS (use) & DF_HARD_REG_LIVE)
1000 && FUNCTION_ARG_REGNO_P (regno)
1001 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno)))
1002 return false;
1003
1004 return true;
1005 }
1006
1007 if (defs->next)
1008 return false;
1009
1010 def = defs->ref;
1011 check_invariant_table_size ();
1012 inv = invariant_table[DF_REF_ID (def)];
1013 if (!inv)
1014 return false;
1015
1016 def_data = inv->def;
1017 gcc_assert (def_data != NULL);
1018
1019 def_bb = DF_REF_BB (def);
1020 /* Note that in case bb == def_bb, we know that the definition
1021 dominates insn, because def has invariant_table[DF_REF_ID(def)]
1022 defined and we process the insns in the basic block bb
1023 sequentially. */
1024 if (!dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1025 return false;
1026
1027 bitmap_set_bit (depends_on, def_data->invno);
1028 return true;
1029 }
1030
1031
1032 /* Finds the invariants INSN depends on and store them to the DEPENDS_ON
1033 bitmap. Returns true if all dependencies of INSN are known to be
1034 loop invariants, false otherwise. */
1035
1036 static bool
1037 check_dependencies (rtx_insn *insn, bitmap depends_on)
1038 {
1039 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1040 df_ref use;
1041 basic_block bb = BLOCK_FOR_INSN (insn);
1042
1043 FOR_EACH_INSN_INFO_USE (use, insn_info)
1044 if (!check_dependency (bb, use, depends_on))
1045 return false;
1046 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1047 if (!check_dependency (bb, use, depends_on))
1048 return false;
1049
1050 return true;
1051 }
1052
1053 /* Pre-check candidate DEST to skip the one which cannot make a valid insn
1054 during move_invariant_reg. SIMPLE is to skip HARD_REGISTER. */
1055 static bool
1056 pre_check_invariant_p (bool simple, rtx dest)
1057 {
1058 if (simple && REG_P (dest) && DF_REG_DEF_COUNT (REGNO (dest)) > 1)
1059 {
1060 df_ref use;
1061 unsigned int i = REGNO (dest);
1062 struct df_insn_info *insn_info;
1063 df_ref def_rec;
1064
1065 for (use = DF_REG_USE_CHAIN (i); use; use = DF_REF_NEXT_REG (use))
1066 {
1067 rtx_insn *ref = DF_REF_INSN (use);
1068 insn_info = DF_INSN_INFO_GET (ref);
1069
1070 FOR_EACH_INSN_INFO_DEF (def_rec, insn_info)
1071 if (DF_REF_REGNO (def_rec) == i)
1072 {
1073 /* Multi definitions at this stage, most likely are due to
1074 instruction constraints, which requires both read and write
1075 on the same register. Since move_invariant_reg is not
1076 powerful enough to handle such cases, just ignore the INV
1077 and leave the chance to others. */
1078 return false;
1079 }
1080 }
1081 }
1082 return true;
1083 }
1084
1085 /* Finds invariant in INSN. ALWAYS_REACHED is true if the insn is always
1086 executed. ALWAYS_EXECUTED is true if the insn is always executed,
1087 unless the program ends due to a function call. */
1088
1089 static void
1090 find_invariant_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1091 {
1092 df_ref ref;
1093 struct def *def;
1094 bitmap depends_on;
1095 rtx set, dest;
1096 bool simple = true;
1097 struct invariant *inv;
1098
1099 /* We can't move a CC0 setter without the user. */
1100 if (HAVE_cc0 && sets_cc0_p (insn))
1101 return;
1102
1103 set = single_set (insn);
1104 if (!set)
1105 return;
1106 dest = SET_DEST (set);
1107
1108 if (!REG_P (dest)
1109 || HARD_REGISTER_P (dest))
1110 simple = false;
1111
1112 if (!may_assign_reg_p (dest)
1113 || !pre_check_invariant_p (simple, dest)
1114 || !check_maybe_invariant (SET_SRC (set)))
1115 return;
1116
1117 /* If the insn can throw exception, we cannot move it at all without changing
1118 cfg. */
1119 if (can_throw_internal (insn))
1120 return;
1121
1122 /* We cannot make trapping insn executed, unless it was executed before. */
1123 if (may_trap_or_fault_p (PATTERN (insn)) && !always_reached)
1124 return;
1125
1126 depends_on = BITMAP_ALLOC (NULL);
1127 if (!check_dependencies (insn, depends_on))
1128 {
1129 BITMAP_FREE (depends_on);
1130 return;
1131 }
1132
1133 if (simple)
1134 def = XCNEW (struct def);
1135 else
1136 def = NULL;
1137
1138 inv = create_new_invariant (def, insn, depends_on, always_executed);
1139
1140 if (simple)
1141 {
1142 ref = df_find_def (insn, dest);
1143 check_invariant_table_size ();
1144 invariant_table[DF_REF_ID (ref)] = inv;
1145 }
1146 }
1147
1148 /* Record registers used in INSN that have a unique invariant definition. */
1149
1150 static void
1151 record_uses (rtx_insn *insn)
1152 {
1153 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
1154 df_ref use;
1155 struct invariant *inv;
1156
1157 FOR_EACH_INSN_INFO_USE (use, insn_info)
1158 {
1159 inv = invariant_for_use (use);
1160 if (inv)
1161 record_use (inv->def, use);
1162 }
1163 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
1164 {
1165 inv = invariant_for_use (use);
1166 if (inv)
1167 record_use (inv->def, use);
1168 }
1169 }
1170
1171 /* Finds invariants in INSN. ALWAYS_REACHED is true if the insn is always
1172 executed. ALWAYS_EXECUTED is true if the insn is always executed,
1173 unless the program ends due to a function call. */
1174
1175 static void
1176 find_invariants_insn (rtx_insn *insn, bool always_reached, bool always_executed)
1177 {
1178 find_invariant_insn (insn, always_reached, always_executed);
1179 record_uses (insn);
1180 }
1181
1182 /* Finds invariants in basic block BB. ALWAYS_REACHED is true if the
1183 basic block is always executed. ALWAYS_EXECUTED is true if the basic
1184 block is always executed, unless the program ends due to a function
1185 call. */
1186
1187 static void
1188 find_invariants_bb (basic_block bb, bool always_reached, bool always_executed)
1189 {
1190 rtx_insn *insn;
1191
1192 FOR_BB_INSNS (bb, insn)
1193 {
1194 if (!NONDEBUG_INSN_P (insn))
1195 continue;
1196
1197 find_invariants_insn (insn, always_reached, always_executed);
1198
1199 if (always_reached
1200 && CALL_P (insn)
1201 && (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1202 || ! RTL_CONST_OR_PURE_CALL_P (insn)))
1203 always_reached = false;
1204 }
1205 }
1206
1207 /* Finds invariants in LOOP with body BODY. ALWAYS_REACHED is the bitmap of
1208 basic blocks in BODY that are always executed. ALWAYS_EXECUTED is the
1209 bitmap of basic blocks in BODY that are always executed unless the program
1210 ends due to a function call. */
1211
1212 static void
1213 find_invariants_body (class loop *loop, basic_block *body,
1214 bitmap always_reached, bitmap always_executed)
1215 {
1216 unsigned i;
1217
1218 for (i = 0; i < loop->num_nodes; i++)
1219 find_invariants_bb (body[i],
1220 bitmap_bit_p (always_reached, i),
1221 bitmap_bit_p (always_executed, i));
1222 }
1223
1224 /* Finds invariants in LOOP. */
1225
1226 static void
1227 find_invariants (class loop *loop)
1228 {
1229 auto_bitmap may_exit;
1230 auto_bitmap always_reached;
1231 auto_bitmap has_exit;
1232 auto_bitmap always_executed;
1233 basic_block *body = get_loop_body_in_dom_order (loop);
1234
1235 find_exits (loop, body, may_exit, has_exit);
1236 compute_always_reached (loop, body, may_exit, always_reached);
1237 compute_always_reached (loop, body, has_exit, always_executed);
1238
1239 find_defs (loop);
1240 find_invariants_body (loop, body, always_reached, always_executed);
1241 merge_identical_invariants ();
1242
1243 free (body);
1244 }
1245
1246 /* Frees a list of uses USE. */
1247
1248 static void
1249 free_use_list (struct use *use)
1250 {
1251 struct use *next;
1252
1253 for (; use; use = next)
1254 {
1255 next = use->next;
1256 free (use);
1257 }
1258 }
1259
1260 /* Return pressure class and number of hard registers (through *NREGS)
1261 for destination of INSN. */
1262 static enum reg_class
1263 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1264 {
1265 rtx reg;
1266 enum reg_class pressure_class;
1267 rtx set = single_set (insn);
1268
1269 /* Considered invariant insns have only one set. */
1270 gcc_assert (set != NULL_RTX);
1271 reg = SET_DEST (set);
1272 if (GET_CODE (reg) == SUBREG)
1273 reg = SUBREG_REG (reg);
1274 if (MEM_P (reg))
1275 {
1276 *nregs = 0;
1277 pressure_class = NO_REGS;
1278 }
1279 else
1280 {
1281 if (! REG_P (reg))
1282 reg = NULL_RTX;
1283 if (reg == NULL_RTX)
1284 pressure_class = GENERAL_REGS;
1285 else
1286 {
1287 pressure_class = reg_allocno_class (REGNO (reg));
1288 pressure_class = ira_pressure_class_translate[pressure_class];
1289 }
1290 *nregs
1291 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
1292 }
1293 return pressure_class;
1294 }
1295
1296 /* Calculates cost and number of registers needed for moving invariant INV
1297 out of the loop and stores them to *COST and *REGS_NEEDED. *CL will be
1298 the REG_CLASS of INV. Return
1299 -1: if INV is invalid.
1300 0: if INV and its depends_on have same reg_class
1301 1: if INV and its depends_on have different reg_classes. */
1302
1303 static int
1304 get_inv_cost (struct invariant *inv, int *comp_cost, unsigned *regs_needed,
1305 enum reg_class *cl)
1306 {
1307 int i, acomp_cost;
1308 unsigned aregs_needed[N_REG_CLASSES];
1309 unsigned depno;
1310 struct invariant *dep;
1311 bitmap_iterator bi;
1312 int ret = 1;
1313
1314 /* Find the representative of the class of the equivalent invariants. */
1315 inv = invariants[inv->eqto];
1316
1317 *comp_cost = 0;
1318 if (! flag_ira_loop_pressure)
1319 regs_needed[0] = 0;
1320 else
1321 {
1322 for (i = 0; i < ira_pressure_classes_num; i++)
1323 regs_needed[ira_pressure_classes[i]] = 0;
1324 }
1325
1326 if (inv->move
1327 || inv->stamp == actual_stamp)
1328 return -1;
1329 inv->stamp = actual_stamp;
1330
1331 if (! flag_ira_loop_pressure)
1332 regs_needed[0]++;
1333 else
1334 {
1335 int nregs;
1336 enum reg_class pressure_class;
1337
1338 pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1339 regs_needed[pressure_class] += nregs;
1340 *cl = pressure_class;
1341 ret = 0;
1342 }
1343
1344 if (!inv->cheap_address
1345 || inv->def->n_uses == 0
1346 || inv->def->n_addr_uses < inv->def->n_uses
1347 /* Count cost if the inv can't be propagated into address uses. */
1348 || !inv->def->can_prop_to_addr_uses)
1349 (*comp_cost) += inv->cost * inv->eqno;
1350
1351 #ifdef STACK_REGS
1352 {
1353 /* Hoisting constant pool constants into stack regs may cost more than
1354 just single register. On x87, the balance is affected both by the
1355 small number of FP registers, and by its register stack organization,
1356 that forces us to add compensation code in and around the loop to
1357 shuffle the operands to the top of stack before use, and pop them
1358 from the stack after the loop finishes.
1359
1360 To model this effect, we increase the number of registers needed for
1361 stack registers by two: one register push, and one register pop.
1362 This usually has the effect that FP constant loads from the constant
1363 pool are not moved out of the loop.
1364
1365 Note that this also means that dependent invariants cannot be moved.
1366 However, the primary purpose of this pass is to move loop invariant
1367 address arithmetic out of loops, and address arithmetic that depends
1368 on floating point constants is unlikely to ever occur. */
1369 rtx set = single_set (inv->insn);
1370 if (set
1371 && IS_STACK_MODE (GET_MODE (SET_SRC (set)))
1372 && constant_pool_constant_p (SET_SRC (set)))
1373 {
1374 if (flag_ira_loop_pressure)
1375 regs_needed[ira_stack_reg_pressure_class] += 2;
1376 else
1377 regs_needed[0] += 2;
1378 }
1379 }
1380 #endif
1381
1382 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, depno, bi)
1383 {
1384 bool check_p;
1385 enum reg_class dep_cl = ALL_REGS;
1386 int dep_ret;
1387
1388 dep = invariants[depno];
1389
1390 /* If DEP is moved out of the loop, it is not a depends_on any more. */
1391 if (dep->move)
1392 continue;
1393
1394 dep_ret = get_inv_cost (dep, &acomp_cost, aregs_needed, &dep_cl);
1395
1396 if (! flag_ira_loop_pressure)
1397 check_p = aregs_needed[0] != 0;
1398 else
1399 {
1400 for (i = 0; i < ira_pressure_classes_num; i++)
1401 if (aregs_needed[ira_pressure_classes[i]] != 0)
1402 break;
1403 check_p = i < ira_pressure_classes_num;
1404
1405 if ((dep_ret == 1) || ((dep_ret == 0) && (*cl != dep_cl)))
1406 {
1407 *cl = ALL_REGS;
1408 ret = 1;
1409 }
1410 }
1411 if (check_p
1412 /* We need to check always_executed, since if the original value of
1413 the invariant may be preserved, we may need to keep it in a
1414 separate register. TODO check whether the register has an
1415 use outside of the loop. */
1416 && dep->always_executed
1417 && !dep->def->uses->next)
1418 {
1419 /* If this is a single use, after moving the dependency we will not
1420 need a new register. */
1421 if (! flag_ira_loop_pressure)
1422 aregs_needed[0]--;
1423 else
1424 {
1425 int nregs;
1426 enum reg_class pressure_class;
1427
1428 pressure_class = get_pressure_class_and_nregs (inv->insn, &nregs);
1429 aregs_needed[pressure_class] -= nregs;
1430 }
1431 }
1432
1433 if (! flag_ira_loop_pressure)
1434 regs_needed[0] += aregs_needed[0];
1435 else
1436 {
1437 for (i = 0; i < ira_pressure_classes_num; i++)
1438 regs_needed[ira_pressure_classes[i]]
1439 += aregs_needed[ira_pressure_classes[i]];
1440 }
1441 (*comp_cost) += acomp_cost;
1442 }
1443 return ret;
1444 }
1445
1446 /* Calculates gain for eliminating invariant INV. REGS_USED is the number
1447 of registers used in the loop, NEW_REGS is the number of new variables
1448 already added due to the invariant motion. The number of registers needed
1449 for it is stored in *REGS_NEEDED. SPEED and CALL_P are flags passed
1450 through to estimate_reg_pressure_cost. */
1451
1452 static int
1453 gain_for_invariant (struct invariant *inv, unsigned *regs_needed,
1454 unsigned *new_regs, unsigned regs_used,
1455 bool speed, bool call_p)
1456 {
1457 int comp_cost, size_cost;
1458 /* Workaround -Wmaybe-uninitialized false positive during
1459 profiledbootstrap by initializing it. */
1460 enum reg_class cl = NO_REGS;
1461 int ret;
1462
1463 actual_stamp++;
1464
1465 ret = get_inv_cost (inv, &comp_cost, regs_needed, &cl);
1466
1467 if (! flag_ira_loop_pressure)
1468 {
1469 size_cost = (estimate_reg_pressure_cost (new_regs[0] + regs_needed[0],
1470 regs_used, speed, call_p)
1471 - estimate_reg_pressure_cost (new_regs[0],
1472 regs_used, speed, call_p));
1473 }
1474 else if (ret < 0)
1475 return -1;
1476 else if ((ret == 0) && (cl == NO_REGS))
1477 /* Hoist it anyway since it does not impact register pressure. */
1478 return 1;
1479 else
1480 {
1481 int i;
1482 enum reg_class pressure_class;
1483
1484 for (i = 0; i < ira_pressure_classes_num; i++)
1485 {
1486 pressure_class = ira_pressure_classes[i];
1487
1488 if (!reg_classes_intersect_p (pressure_class, cl))
1489 continue;
1490
1491 if ((int) new_regs[pressure_class]
1492 + (int) regs_needed[pressure_class]
1493 + LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
1494 + IRA_LOOP_RESERVED_REGS
1495 > ira_class_hard_regs_num[pressure_class])
1496 break;
1497 }
1498 if (i < ira_pressure_classes_num)
1499 /* There will be register pressure excess and we want not to
1500 make this loop invariant motion. All loop invariants with
1501 non-positive gains will be rejected in function
1502 find_invariants_to_move. Therefore we return the negative
1503 number here.
1504
1505 One could think that this rejects also expensive loop
1506 invariant motions and this will hurt code performance.
1507 However numerous experiments with different heuristics
1508 taking invariant cost into account did not confirm this
1509 assumption. There are possible explanations for this
1510 result:
1511 o probably all expensive invariants were already moved out
1512 of the loop by PRE and gimple invariant motion pass.
1513 o expensive invariant execution will be hidden by insn
1514 scheduling or OOO processor hardware because usually such
1515 invariants have a lot of freedom to be executed
1516 out-of-order.
1517 Another reason for ignoring invariant cost vs spilling cost
1518 heuristics is also in difficulties to evaluate accurately
1519 spill cost at this stage. */
1520 return -1;
1521 else
1522 size_cost = 0;
1523 }
1524
1525 return comp_cost - size_cost;
1526 }
1527
1528 /* Finds invariant with best gain for moving. Returns the gain, stores
1529 the invariant in *BEST and number of registers needed for it to
1530 *REGS_NEEDED. REGS_USED is the number of registers used in the loop.
1531 NEW_REGS is the number of new variables already added due to invariant
1532 motion. */
1533
1534 static int
1535 best_gain_for_invariant (struct invariant **best, unsigned *regs_needed,
1536 unsigned *new_regs, unsigned regs_used,
1537 bool speed, bool call_p)
1538 {
1539 struct invariant *inv;
1540 int i, gain = 0, again;
1541 unsigned aregs_needed[N_REG_CLASSES], invno;
1542
1543 FOR_EACH_VEC_ELT (invariants, invno, inv)
1544 {
1545 if (inv->move)
1546 continue;
1547
1548 /* Only consider the "representatives" of equivalent invariants. */
1549 if (inv->eqto != inv->invno)
1550 continue;
1551
1552 again = gain_for_invariant (inv, aregs_needed, new_regs, regs_used,
1553 speed, call_p);
1554 if (again > gain)
1555 {
1556 gain = again;
1557 *best = inv;
1558 if (! flag_ira_loop_pressure)
1559 regs_needed[0] = aregs_needed[0];
1560 else
1561 {
1562 for (i = 0; i < ira_pressure_classes_num; i++)
1563 regs_needed[ira_pressure_classes[i]]
1564 = aregs_needed[ira_pressure_classes[i]];
1565 }
1566 }
1567 }
1568
1569 return gain;
1570 }
1571
1572 /* Marks invariant INVNO and all its dependencies for moving. */
1573
1574 static void
1575 set_move_mark (unsigned invno, int gain)
1576 {
1577 struct invariant *inv = invariants[invno];
1578 bitmap_iterator bi;
1579
1580 /* Find the representative of the class of the equivalent invariants. */
1581 inv = invariants[inv->eqto];
1582
1583 if (inv->move)
1584 return;
1585 inv->move = true;
1586
1587 if (dump_file)
1588 {
1589 if (gain >= 0)
1590 fprintf (dump_file, "Decided to move invariant %d -- gain %d\n",
1591 invno, gain);
1592 else
1593 fprintf (dump_file, "Decided to move dependent invariant %d\n",
1594 invno);
1595 };
1596
1597 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, invno, bi)
1598 {
1599 set_move_mark (invno, -1);
1600 }
1601 }
1602
1603 /* Determines which invariants to move. */
1604
1605 static void
1606 find_invariants_to_move (bool speed, bool call_p)
1607 {
1608 int gain;
1609 unsigned i, regs_used, regs_needed[N_REG_CLASSES], new_regs[N_REG_CLASSES];
1610 struct invariant *inv = NULL;
1611
1612 if (!invariants.length ())
1613 return;
1614
1615 if (flag_ira_loop_pressure)
1616 /* REGS_USED is actually never used when the flag is on. */
1617 regs_used = 0;
1618 else
1619 /* We do not really do a good job in estimating number of
1620 registers used; we put some initial bound here to stand for
1621 induction variables etc. that we do not detect. */
1622 {
1623 unsigned int n_regs = DF_REG_SIZE (df);
1624
1625 regs_used = 2;
1626
1627 for (i = 0; i < n_regs; i++)
1628 {
1629 if (!DF_REGNO_FIRST_DEF (i) && DF_REGNO_LAST_USE (i))
1630 {
1631 /* This is a value that is used but not changed inside loop. */
1632 regs_used++;
1633 }
1634 }
1635 }
1636
1637 if (! flag_ira_loop_pressure)
1638 new_regs[0] = regs_needed[0] = 0;
1639 else
1640 {
1641 for (i = 0; (int) i < ira_pressure_classes_num; i++)
1642 new_regs[ira_pressure_classes[i]] = 0;
1643 }
1644 while ((gain = best_gain_for_invariant (&inv, regs_needed,
1645 new_regs, regs_used,
1646 speed, call_p)) > 0)
1647 {
1648 set_move_mark (inv->invno, gain);
1649 if (! flag_ira_loop_pressure)
1650 new_regs[0] += regs_needed[0];
1651 else
1652 {
1653 for (i = 0; (int) i < ira_pressure_classes_num; i++)
1654 new_regs[ira_pressure_classes[i]]
1655 += regs_needed[ira_pressure_classes[i]];
1656 }
1657 }
1658 }
1659
1660 /* Replace the uses, reached by the definition of invariant INV, by REG.
1661
1662 IN_GROUP is nonzero if this is part of a group of changes that must be
1663 performed as a group. In that case, the changes will be stored. The
1664 function `apply_change_group' will validate and apply the changes. */
1665
1666 static int
1667 replace_uses (struct invariant *inv, rtx reg, bool in_group)
1668 {
1669 /* Replace the uses we know to be dominated. It saves work for copy
1670 propagation, and also it is necessary so that dependent invariants
1671 are computed right. */
1672 if (inv->def)
1673 {
1674 struct use *use;
1675 for (use = inv->def->uses; use; use = use->next)
1676 validate_change (use->insn, use->pos, reg, true);
1677
1678 /* If we aren't part of a larger group, apply the changes now. */
1679 if (!in_group)
1680 return apply_change_group ();
1681 }
1682
1683 return 1;
1684 }
1685
1686 /* Whether invariant INV setting REG can be moved out of LOOP, at the end of
1687 the block preceding its header. */
1688
1689 static bool
1690 can_move_invariant_reg (class loop *loop, struct invariant *inv, rtx reg)
1691 {
1692 df_ref def, use;
1693 unsigned int dest_regno, defs_in_loop_count = 0;
1694 rtx_insn *insn = inv->insn;
1695 basic_block bb = BLOCK_FOR_INSN (inv->insn);
1696
1697 /* We ignore hard register and memory access for cost and complexity reasons.
1698 Hard register are few at this stage and expensive to consider as they
1699 require building a separate data flow. Memory access would require using
1700 df_simulate_* and can_move_insns_across functions and is more complex. */
1701 if (!REG_P (reg) || HARD_REGISTER_P (reg))
1702 return false;
1703
1704 /* Check whether the set is always executed. We could omit this condition if
1705 we know that the register is unused outside of the loop, but it does not
1706 seem worth finding out. */
1707 if (!inv->always_executed)
1708 return false;
1709
1710 /* Check that all uses that would be dominated by def are already dominated
1711 by it. */
1712 dest_regno = REGNO (reg);
1713 for (use = DF_REG_USE_CHAIN (dest_regno); use; use = DF_REF_NEXT_REG (use))
1714 {
1715 rtx_insn *use_insn;
1716 basic_block use_bb;
1717
1718 use_insn = DF_REF_INSN (use);
1719 use_bb = BLOCK_FOR_INSN (use_insn);
1720
1721 /* Ignore instruction considered for moving. */
1722 if (use_insn == insn)
1723 continue;
1724
1725 /* Don't consider uses outside loop. */
1726 if (!flow_bb_inside_loop_p (loop, use_bb))
1727 continue;
1728
1729 /* Don't move if a use is not dominated by def in insn. */
1730 if (use_bb == bb && DF_INSN_LUID (insn) >= DF_INSN_LUID (use_insn))
1731 return false;
1732 if (!dominated_by_p (CDI_DOMINATORS, use_bb, bb))
1733 return false;
1734 }
1735
1736 /* Check for other defs. Any other def in the loop might reach a use
1737 currently reached by the def in insn. */
1738 for (def = DF_REG_DEF_CHAIN (dest_regno); def; def = DF_REF_NEXT_REG (def))
1739 {
1740 basic_block def_bb = DF_REF_BB (def);
1741
1742 /* Defs in exit block cannot reach a use they weren't already. */
1743 if (single_succ_p (def_bb))
1744 {
1745 basic_block def_bb_succ;
1746
1747 def_bb_succ = single_succ (def_bb);
1748 if (!flow_bb_inside_loop_p (loop, def_bb_succ))
1749 continue;
1750 }
1751
1752 if (++defs_in_loop_count > 1)
1753 return false;
1754 }
1755
1756 return true;
1757 }
1758
1759 /* Move invariant INVNO out of the LOOP. Returns true if this succeeds, false
1760 otherwise. */
1761
1762 static bool
1763 move_invariant_reg (class loop *loop, unsigned invno)
1764 {
1765 struct invariant *inv = invariants[invno];
1766 struct invariant *repr = invariants[inv->eqto];
1767 unsigned i;
1768 basic_block preheader = loop_preheader_edge (loop)->src;
1769 rtx reg, set, dest, note;
1770 bitmap_iterator bi;
1771 int regno = -1;
1772
1773 if (inv->reg)
1774 return true;
1775 if (!repr->move)
1776 return false;
1777
1778 /* If this is a representative of the class of equivalent invariants,
1779 really move the invariant. Otherwise just replace its use with
1780 the register used for the representative. */
1781 if (inv == repr)
1782 {
1783 if (inv->depends_on)
1784 {
1785 EXECUTE_IF_SET_IN_BITMAP (inv->depends_on, 0, i, bi)
1786 {
1787 if (!move_invariant_reg (loop, i))
1788 goto fail;
1789 }
1790 }
1791
1792 /* If possible, just move the set out of the loop. Otherwise, we
1793 need to create a temporary register. */
1794 set = single_set (inv->insn);
1795 reg = dest = SET_DEST (set);
1796 if (GET_CODE (reg) == SUBREG)
1797 reg = SUBREG_REG (reg);
1798 if (REG_P (reg))
1799 regno = REGNO (reg);
1800
1801 if (!can_move_invariant_reg (loop, inv, dest))
1802 {
1803 reg = gen_reg_rtx_and_attrs (dest);
1804
1805 /* Try replacing the destination by a new pseudoregister. */
1806 validate_change (inv->insn, &SET_DEST (set), reg, true);
1807
1808 /* As well as all the dominated uses. */
1809 replace_uses (inv, reg, true);
1810
1811 /* And validate all the changes. */
1812 if (!apply_change_group ())
1813 goto fail;
1814
1815 emit_insn_after (gen_move_insn (dest, reg), inv->insn);
1816 }
1817 else if (dump_file)
1818 fprintf (dump_file, "Invariant %d moved without introducing a new "
1819 "temporary register\n", invno);
1820 reorder_insns (inv->insn, inv->insn, BB_END (preheader));
1821 df_recompute_luids (preheader);
1822
1823 /* If there is a REG_EQUAL note on the insn we just moved, and the
1824 insn is in a basic block that is not always executed or the note
1825 contains something for which we don't know the invariant status,
1826 the note may no longer be valid after we move the insn. Note that
1827 uses in REG_EQUAL notes are taken into account in the computation
1828 of invariants, so it is safe to retain the note even if it contains
1829 register references for which we know the invariant status. */
1830 if ((note = find_reg_note (inv->insn, REG_EQUAL, NULL_RTX))
1831 && (!inv->always_executed
1832 || !check_maybe_invariant (XEXP (note, 0))))
1833 remove_note (inv->insn, note);
1834 }
1835 else
1836 {
1837 if (!move_invariant_reg (loop, repr->invno))
1838 goto fail;
1839 reg = repr->reg;
1840 regno = repr->orig_regno;
1841 if (!replace_uses (inv, reg, false))
1842 goto fail;
1843 set = single_set (inv->insn);
1844 emit_insn_after (gen_move_insn (SET_DEST (set), reg), inv->insn);
1845 delete_insn (inv->insn);
1846 }
1847
1848 inv->reg = reg;
1849 inv->orig_regno = regno;
1850
1851 return true;
1852
1853 fail:
1854 /* If we failed, clear move flag, so that we do not try to move inv
1855 again. */
1856 if (dump_file)
1857 fprintf (dump_file, "Failed to move invariant %d\n", invno);
1858 inv->move = false;
1859 inv->reg = NULL_RTX;
1860 inv->orig_regno = -1;
1861
1862 return false;
1863 }
1864
1865 /* Move selected invariant out of the LOOP. Newly created regs are marked
1866 in TEMPORARY_REGS. */
1867
1868 static void
1869 move_invariants (class loop *loop)
1870 {
1871 struct invariant *inv;
1872 unsigned i;
1873
1874 FOR_EACH_VEC_ELT (invariants, i, inv)
1875 move_invariant_reg (loop, i);
1876 if (flag_ira_loop_pressure && resize_reg_info ())
1877 {
1878 FOR_EACH_VEC_ELT (invariants, i, inv)
1879 if (inv->reg != NULL_RTX)
1880 {
1881 if (inv->orig_regno >= 0)
1882 setup_reg_classes (REGNO (inv->reg),
1883 reg_preferred_class (inv->orig_regno),
1884 reg_alternate_class (inv->orig_regno),
1885 reg_allocno_class (inv->orig_regno));
1886 else
1887 setup_reg_classes (REGNO (inv->reg),
1888 GENERAL_REGS, NO_REGS, GENERAL_REGS);
1889 }
1890 }
1891 /* Remove the DF_UD_CHAIN problem added in find_defs before rescanning,
1892 to save a bit of compile time. */
1893 df_remove_problem (df_chain);
1894 df_process_deferred_rescans ();
1895 }
1896
1897 /* Initializes invariant motion data. */
1898
1899 static void
1900 init_inv_motion_data (void)
1901 {
1902 actual_stamp = 1;
1903
1904 invariants.create (100);
1905 }
1906
1907 /* Frees the data allocated by invariant motion. */
1908
1909 static void
1910 free_inv_motion_data (void)
1911 {
1912 unsigned i;
1913 struct def *def;
1914 struct invariant *inv;
1915
1916 check_invariant_table_size ();
1917 for (i = 0; i < DF_DEFS_TABLE_SIZE (); i++)
1918 {
1919 inv = invariant_table[i];
1920 if (inv)
1921 {
1922 def = inv->def;
1923 gcc_assert (def != NULL);
1924
1925 free_use_list (def->uses);
1926 free (def);
1927 invariant_table[i] = NULL;
1928 }
1929 }
1930
1931 FOR_EACH_VEC_ELT (invariants, i, inv)
1932 {
1933 BITMAP_FREE (inv->depends_on);
1934 free (inv);
1935 }
1936 invariants.release ();
1937 }
1938
1939 /* Move the invariants out of the LOOP. */
1940
1941 static void
1942 move_single_loop_invariants (class loop *loop)
1943 {
1944 init_inv_motion_data ();
1945
1946 find_invariants (loop);
1947 find_invariants_to_move (optimize_loop_for_speed_p (loop),
1948 LOOP_DATA (loop)->has_call);
1949 move_invariants (loop);
1950
1951 free_inv_motion_data ();
1952 }
1953
1954 /* Releases the auxiliary data for LOOP. */
1955
1956 static void
1957 free_loop_data (class loop *loop)
1958 {
1959 class loop_data *data = LOOP_DATA (loop);
1960 if (!data)
1961 return;
1962
1963 bitmap_clear (&LOOP_DATA (loop)->regs_ref);
1964 bitmap_clear (&LOOP_DATA (loop)->regs_live);
1965 free (data);
1966 loop->aux = NULL;
1967 }
1968
1969 \f
1970
1971 /* Registers currently living. */
1972 static bitmap_head curr_regs_live;
1973
1974 /* Current reg pressure for each pressure class. */
1975 static int curr_reg_pressure[N_REG_CLASSES];
1976
1977 /* Record all regs that are set in any one insn. Communication from
1978 mark_reg_{store,clobber} and global_conflicts. Asm can refer to
1979 all hard-registers. */
1980 static rtx regs_set[(FIRST_PSEUDO_REGISTER > MAX_RECOG_OPERANDS
1981 ? FIRST_PSEUDO_REGISTER : MAX_RECOG_OPERANDS) * 2];
1982 /* Number of regs stored in the previous array. */
1983 static int n_regs_set;
1984
1985 /* Return pressure class and number of needed hard registers (through
1986 *NREGS) of register REGNO. */
1987 static enum reg_class
1988 get_regno_pressure_class (int regno, int *nregs)
1989 {
1990 if (regno >= FIRST_PSEUDO_REGISTER)
1991 {
1992 enum reg_class pressure_class;
1993
1994 pressure_class = reg_allocno_class (regno);
1995 pressure_class = ira_pressure_class_translate[pressure_class];
1996 *nregs
1997 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
1998 return pressure_class;
1999 }
2000 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
2001 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
2002 {
2003 *nregs = 1;
2004 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
2005 }
2006 else
2007 {
2008 *nregs = 0;
2009 return NO_REGS;
2010 }
2011 }
2012
2013 /* Increase (if INCR_P) or decrease current register pressure for
2014 register REGNO. */
2015 static void
2016 change_pressure (int regno, bool incr_p)
2017 {
2018 int nregs;
2019 enum reg_class pressure_class;
2020
2021 pressure_class = get_regno_pressure_class (regno, &nregs);
2022 if (! incr_p)
2023 curr_reg_pressure[pressure_class] -= nregs;
2024 else
2025 {
2026 curr_reg_pressure[pressure_class] += nregs;
2027 if (LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2028 < curr_reg_pressure[pressure_class])
2029 LOOP_DATA (curr_loop)->max_reg_pressure[pressure_class]
2030 = curr_reg_pressure[pressure_class];
2031 }
2032 }
2033
2034 /* Mark REGNO birth. */
2035 static void
2036 mark_regno_live (int regno)
2037 {
2038 class loop *loop;
2039
2040 for (loop = curr_loop;
2041 loop != current_loops->tree_root;
2042 loop = loop_outer (loop))
2043 bitmap_set_bit (&LOOP_DATA (loop)->regs_live, regno);
2044 if (!bitmap_set_bit (&curr_regs_live, regno))
2045 return;
2046 change_pressure (regno, true);
2047 }
2048
2049 /* Mark REGNO death. */
2050 static void
2051 mark_regno_death (int regno)
2052 {
2053 if (! bitmap_clear_bit (&curr_regs_live, regno))
2054 return;
2055 change_pressure (regno, false);
2056 }
2057
2058 /* Mark setting register REG. */
2059 static void
2060 mark_reg_store (rtx reg, const_rtx setter ATTRIBUTE_UNUSED,
2061 void *data ATTRIBUTE_UNUSED)
2062 {
2063 if (GET_CODE (reg) == SUBREG)
2064 reg = SUBREG_REG (reg);
2065
2066 if (! REG_P (reg))
2067 return;
2068
2069 regs_set[n_regs_set++] = reg;
2070
2071 unsigned int end_regno = END_REGNO (reg);
2072 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2073 mark_regno_live (regno);
2074 }
2075
2076 /* Mark clobbering register REG. */
2077 static void
2078 mark_reg_clobber (rtx reg, const_rtx setter, void *data)
2079 {
2080 if (GET_CODE (setter) == CLOBBER)
2081 mark_reg_store (reg, setter, data);
2082 }
2083
2084 /* Mark register REG death. */
2085 static void
2086 mark_reg_death (rtx reg)
2087 {
2088 unsigned int end_regno = END_REGNO (reg);
2089 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
2090 mark_regno_death (regno);
2091 }
2092
2093 /* Mark occurrence of registers in X for the current loop. */
2094 static void
2095 mark_ref_regs (rtx x)
2096 {
2097 RTX_CODE code;
2098 int i;
2099 const char *fmt;
2100
2101 if (!x)
2102 return;
2103
2104 code = GET_CODE (x);
2105 if (code == REG)
2106 {
2107 class loop *loop;
2108
2109 for (loop = curr_loop;
2110 loop != current_loops->tree_root;
2111 loop = loop_outer (loop))
2112 bitmap_set_bit (&LOOP_DATA (loop)->regs_ref, REGNO (x));
2113 return;
2114 }
2115
2116 fmt = GET_RTX_FORMAT (code);
2117 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2118 if (fmt[i] == 'e')
2119 mark_ref_regs (XEXP (x, i));
2120 else if (fmt[i] == 'E')
2121 {
2122 int j;
2123
2124 for (j = 0; j < XVECLEN (x, i); j++)
2125 mark_ref_regs (XVECEXP (x, i, j));
2126 }
2127 }
2128
2129 /* Calculate register pressure in the loops. */
2130 static void
2131 calculate_loop_reg_pressure (void)
2132 {
2133 int i;
2134 unsigned int j;
2135 bitmap_iterator bi;
2136 basic_block bb;
2137 rtx_insn *insn;
2138 rtx link;
2139 class loop *loop, *parent;
2140
2141 FOR_EACH_LOOP (loop, 0)
2142 if (loop->aux == NULL)
2143 {
2144 loop->aux = xcalloc (1, sizeof (class loop_data));
2145 bitmap_initialize (&LOOP_DATA (loop)->regs_ref, &reg_obstack);
2146 bitmap_initialize (&LOOP_DATA (loop)->regs_live, &reg_obstack);
2147 }
2148 ira_setup_eliminable_regset ();
2149 bitmap_initialize (&curr_regs_live, &reg_obstack);
2150 FOR_EACH_BB_FN (bb, cfun)
2151 {
2152 curr_loop = bb->loop_father;
2153 if (curr_loop == current_loops->tree_root)
2154 continue;
2155
2156 for (loop = curr_loop;
2157 loop != current_loops->tree_root;
2158 loop = loop_outer (loop))
2159 bitmap_ior_into (&LOOP_DATA (loop)->regs_live, DF_LR_IN (bb));
2160
2161 bitmap_copy (&curr_regs_live, DF_LR_IN (bb));
2162 for (i = 0; i < ira_pressure_classes_num; i++)
2163 curr_reg_pressure[ira_pressure_classes[i]] = 0;
2164 EXECUTE_IF_SET_IN_BITMAP (&curr_regs_live, 0, j, bi)
2165 change_pressure (j, true);
2166
2167 FOR_BB_INSNS (bb, insn)
2168 {
2169 if (! NONDEBUG_INSN_P (insn))
2170 continue;
2171
2172 mark_ref_regs (PATTERN (insn));
2173 n_regs_set = 0;
2174 note_stores (PATTERN (insn), mark_reg_clobber, NULL);
2175
2176 /* Mark any registers dead after INSN as dead now. */
2177
2178 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2179 if (REG_NOTE_KIND (link) == REG_DEAD)
2180 mark_reg_death (XEXP (link, 0));
2181
2182 /* Mark any registers set in INSN as live,
2183 and mark them as conflicting with all other live regs.
2184 Clobbers are processed again, so they conflict with
2185 the registers that are set. */
2186
2187 note_stores (PATTERN (insn), mark_reg_store, NULL);
2188
2189 if (AUTO_INC_DEC)
2190 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2191 if (REG_NOTE_KIND (link) == REG_INC)
2192 mark_reg_store (XEXP (link, 0), NULL_RTX, NULL);
2193
2194 while (n_regs_set-- > 0)
2195 {
2196 rtx note = find_regno_note (insn, REG_UNUSED,
2197 REGNO (regs_set[n_regs_set]));
2198 if (! note)
2199 continue;
2200
2201 mark_reg_death (XEXP (note, 0));
2202 }
2203 }
2204 }
2205 bitmap_release (&curr_regs_live);
2206 if (flag_ira_region == IRA_REGION_MIXED
2207 || flag_ira_region == IRA_REGION_ALL)
2208 FOR_EACH_LOOP (loop, 0)
2209 {
2210 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2211 if (! bitmap_bit_p (&LOOP_DATA (loop)->regs_ref, j))
2212 {
2213 enum reg_class pressure_class;
2214 int nregs;
2215
2216 pressure_class = get_regno_pressure_class (j, &nregs);
2217 LOOP_DATA (loop)->max_reg_pressure[pressure_class] -= nregs;
2218 }
2219 }
2220 if (dump_file == NULL)
2221 return;
2222 FOR_EACH_LOOP (loop, 0)
2223 {
2224 parent = loop_outer (loop);
2225 fprintf (dump_file, "\n Loop %d (parent %d, header bb%d, depth %d)\n",
2226 loop->num, (parent == NULL ? -1 : parent->num),
2227 loop->header->index, loop_depth (loop));
2228 fprintf (dump_file, "\n ref. regnos:");
2229 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_ref, 0, j, bi)
2230 fprintf (dump_file, " %d", j);
2231 fprintf (dump_file, "\n live regnos:");
2232 EXECUTE_IF_SET_IN_BITMAP (&LOOP_DATA (loop)->regs_live, 0, j, bi)
2233 fprintf (dump_file, " %d", j);
2234 fprintf (dump_file, "\n Pressure:");
2235 for (i = 0; (int) i < ira_pressure_classes_num; i++)
2236 {
2237 enum reg_class pressure_class;
2238
2239 pressure_class = ira_pressure_classes[i];
2240 if (LOOP_DATA (loop)->max_reg_pressure[pressure_class] == 0)
2241 continue;
2242 fprintf (dump_file, " %s=%d", reg_class_names[pressure_class],
2243 LOOP_DATA (loop)->max_reg_pressure[pressure_class]);
2244 }
2245 fprintf (dump_file, "\n");
2246 }
2247 }
2248
2249 \f
2250
2251 /* Move the invariants out of the loops. */
2252
2253 void
2254 move_loop_invariants (void)
2255 {
2256 class loop *loop;
2257
2258 if (optimize == 1)
2259 df_live_add_problem ();
2260 /* ??? This is a hack. We should only need to call df_live_set_all_dirty
2261 for optimize == 1, but can_move_invariant_reg relies on DF_INSN_LUID
2262 being up-to-date. That isn't always true (even after df_analyze)
2263 because df_process_deferred_rescans doesn't necessarily cause
2264 blocks to be rescanned. */
2265 df_live_set_all_dirty ();
2266 if (flag_ira_loop_pressure)
2267 {
2268 df_analyze ();
2269 regstat_init_n_sets_and_refs ();
2270 ira_set_pseudo_classes (true, dump_file);
2271 calculate_loop_reg_pressure ();
2272 regstat_free_n_sets_and_refs ();
2273 }
2274 df_set_flags (DF_EQ_NOTES + DF_DEFER_INSN_RESCAN);
2275 /* Process the loops, innermost first. */
2276 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2277 {
2278 curr_loop = loop;
2279 /* move_single_loop_invariants for very large loops
2280 is time consuming and might need a lot of memory. */
2281 if (loop->num_nodes <= (unsigned) LOOP_INVARIANT_MAX_BBS_IN_LOOP)
2282 move_single_loop_invariants (loop);
2283 }
2284
2285 FOR_EACH_LOOP (loop, 0)
2286 {
2287 free_loop_data (loop);
2288 }
2289
2290 if (flag_ira_loop_pressure)
2291 /* There is no sense to keep this info because it was most
2292 probably outdated by subsequent passes. */
2293 free_reg_info ();
2294 free (invariant_table);
2295 invariant_table = NULL;
2296 invariant_table_size = 0;
2297
2298 if (optimize == 1)
2299 df_remove_problem (df_live);
2300
2301 checking_verify_flow_info ();
2302 }