]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/lra.c
[Ada] Use Standard.Natural on bit references to packed arrays
[thirdparty/gcc.git] / gcc / lra.c
1 /* LRA (local register allocator) driver and LRA utilities.
2 Copyright (C) 2010-2020 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* The Local Register Allocator (LRA) is a replacement of former
23 reload pass. It is focused to simplify code solving the reload
24 pass tasks, to make the code maintenance easier, and to implement new
25 perspective optimizations.
26
27 The major LRA design solutions are:
28 o division small manageable, separated sub-tasks
29 o reflection of all transformations and decisions in RTL as more
30 as possible
31 o insn constraints as a primary source of the info (minimizing
32 number of target-depended macros/hooks)
33
34 In brief LRA works by iterative insn process with the final goal is
35 to satisfy all insn and address constraints:
36 o New reload insns (in brief reloads) and reload pseudos might be
37 generated;
38 o Some pseudos might be spilled to assign hard registers to
39 new reload pseudos;
40 o Recalculating spilled pseudo values (rematerialization);
41 o Changing spilled pseudos to stack memory or their equivalences;
42 o Allocation stack memory changes the address displacement and
43 new iteration is needed.
44
45 Here is block diagram of LRA passes:
46
47 ------------------------
48 --------------- | Undo inheritance for | ---------------
49 | Memory-memory | | spilled pseudos, | | New (and old) |
50 | move coalesce |<---| splits for pseudos got |<-- | pseudos |
51 --------------- | the same hard regs, | | assignment |
52 Start | | and optional reloads | ---------------
53 | | ------------------------ ^
54 V | ---------------- |
55 ----------- V | Update virtual | |
56 | Remove |----> ------------>| register | |
57 | scratches | ^ | displacements | |
58 ----------- | ---------------- |
59 | | |
60 | V New |
61 | ------------ pseudos -------------------
62 | |Constraints:| or insns | Inheritance/split |
63 | | RTL |--------->| transformations |
64 | | transfor- | | in EBB scope |
65 | substi- | mations | -------------------
66 | tutions ------------
67 | | No change
68 ---------------- V
69 | Spilled pseudo | -------------------
70 | to memory |<----| Rematerialization |
71 | substitution | -------------------
72 ----------------
73 | No susbtitions
74 V
75 -------------------------
76 | Hard regs substitution, |
77 | devirtalization, and |------> Finish
78 | restoring scratches got |
79 | memory |
80 -------------------------
81
82 To speed up the process:
83 o We process only insns affected by changes on previous
84 iterations;
85 o We don't use DFA-infrastructure because it results in much slower
86 compiler speed than a special IR described below does;
87 o We use a special insn representation for quick access to insn
88 info which is always *synchronized* with the current RTL;
89 o Insn IR is minimized by memory. It is divided on three parts:
90 o one specific for each insn in RTL (only operand locations);
91 o one common for all insns in RTL with the same insn code
92 (different operand attributes from machine descriptions);
93 o one oriented for maintenance of live info (list of pseudos).
94 o Pseudo data:
95 o all insns where the pseudo is referenced;
96 o live info (conflicting hard regs, live ranges, # of
97 references etc);
98 o data used for assigning (preferred hard regs, costs etc).
99
100 This file contains LRA driver, LRA utility functions and data, and
101 code for dealing with scratches. */
102
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "backend.h"
107 #include "target.h"
108 #include "rtl.h"
109 #include "tree.h"
110 #include "predict.h"
111 #include "df.h"
112 #include "memmodel.h"
113 #include "tm_p.h"
114 #include "optabs.h"
115 #include "regs.h"
116 #include "ira.h"
117 #include "recog.h"
118 #include "expr.h"
119 #include "cfgrtl.h"
120 #include "cfgbuild.h"
121 #include "lra.h"
122 #include "lra-int.h"
123 #include "print-rtl.h"
124 #include "function-abi.h"
125
126 /* Dump bitmap SET with TITLE and BB INDEX. */
127 void
128 lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
129 {
130 unsigned int i;
131 int count;
132 bitmap_iterator bi;
133 static const int max_nums_on_line = 10;
134
135 if (bitmap_empty_p (set))
136 return;
137 fprintf (lra_dump_file, " %s %d:", title, index);
138 fprintf (lra_dump_file, "\n");
139 count = max_nums_on_line + 1;
140 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
141 {
142 if (count > max_nums_on_line)
143 {
144 fprintf (lra_dump_file, "\n ");
145 count = 0;
146 }
147 fprintf (lra_dump_file, " %4u", i);
148 count++;
149 }
150 fprintf (lra_dump_file, "\n");
151 }
152
153 /* Hard registers currently not available for allocation. It can
154 changed after some hard registers become not eliminable. */
155 HARD_REG_SET lra_no_alloc_regs;
156
157 static int get_new_reg_value (void);
158 static void expand_reg_info (void);
159 static void invalidate_insn_recog_data (int);
160 static int get_insn_freq (rtx_insn *);
161 static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
162 rtx_insn *, int);
163 static void remove_scratches_1 (rtx_insn *);
164
165 /* Expand all regno related info needed for LRA. */
166 static void
167 expand_reg_data (int old)
168 {
169 resize_reg_info ();
170 expand_reg_info ();
171 ira_expand_reg_equiv ();
172 for (int i = (int) max_reg_num () - 1; i >= old; i--)
173 lra_change_class (i, ALL_REGS, " Set", true);
174 }
175
176 /* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
177 or of VOIDmode, use MD_MODE for the new reg. Initialize its
178 register class to RCLASS. Print message about assigning class
179 RCLASS containing new register name TITLE unless it is NULL. Use
180 attributes of ORIGINAL if it is a register. The created register
181 will have unique held value. */
182 rtx
183 lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
184 enum reg_class rclass, const char *title)
185 {
186 machine_mode mode;
187 rtx new_reg;
188
189 if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
190 mode = md_mode;
191 lra_assert (mode != VOIDmode);
192 new_reg = gen_reg_rtx (mode);
193 if (original == NULL_RTX || ! REG_P (original))
194 {
195 if (lra_dump_file != NULL)
196 fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
197 }
198 else
199 {
200 if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
201 ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
202 REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
203 REG_POINTER (new_reg) = REG_POINTER (original);
204 REG_ATTRS (new_reg) = REG_ATTRS (original);
205 if (lra_dump_file != NULL)
206 fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
207 REGNO (new_reg), REGNO (original));
208 }
209 if (lra_dump_file != NULL)
210 {
211 if (title != NULL)
212 fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
213 reg_class_names[rclass], *title == '\0' ? "" : " ",
214 title, REGNO (new_reg));
215 fprintf (lra_dump_file, "\n");
216 }
217 expand_reg_data (max_reg_num ());
218 setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
219 return new_reg;
220 }
221
222 /* Analogous to the previous function but also inherits value of
223 ORIGINAL. */
224 rtx
225 lra_create_new_reg (machine_mode md_mode, rtx original,
226 enum reg_class rclass, const char *title)
227 {
228 rtx new_reg;
229
230 new_reg
231 = lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
232 if (original != NULL_RTX && REG_P (original))
233 lra_assign_reg_val (REGNO (original), REGNO (new_reg));
234 return new_reg;
235 }
236
237 /* Set up for REGNO unique hold value. */
238 void
239 lra_set_regno_unique_value (int regno)
240 {
241 lra_reg_info[regno].val = get_new_reg_value ();
242 }
243
244 /* Invalidate INSN related info used by LRA. The info should never be
245 used after that. */
246 void
247 lra_invalidate_insn_data (rtx_insn *insn)
248 {
249 lra_invalidate_insn_regno_info (insn);
250 invalidate_insn_recog_data (INSN_UID (insn));
251 }
252
253 /* Mark INSN deleted and invalidate the insn related info used by
254 LRA. */
255 void
256 lra_set_insn_deleted (rtx_insn *insn)
257 {
258 lra_invalidate_insn_data (insn);
259 SET_INSN_DELETED (insn);
260 }
261
262 /* Delete an unneeded INSN and any previous insns who sole purpose is
263 loading data that is dead in INSN. */
264 void
265 lra_delete_dead_insn (rtx_insn *insn)
266 {
267 rtx_insn *prev = prev_real_insn (insn);
268 rtx prev_dest;
269
270 /* If the previous insn sets a register that dies in our insn,
271 delete it too. */
272 if (prev && GET_CODE (PATTERN (prev)) == SET
273 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
274 && reg_mentioned_p (prev_dest, PATTERN (insn))
275 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
276 && ! side_effects_p (SET_SRC (PATTERN (prev))))
277 lra_delete_dead_insn (prev);
278
279 lra_set_insn_deleted (insn);
280 }
281
282 /* Emit insn x = y + z. Return NULL if we failed to do it.
283 Otherwise, return the insn. We don't use gen_add3_insn as it might
284 clobber CC. */
285 static rtx_insn *
286 emit_add3_insn (rtx x, rtx y, rtx z)
287 {
288 rtx_insn *last;
289
290 last = get_last_insn ();
291
292 if (have_addptr3_insn (x, y, z))
293 {
294 rtx_insn *insn = gen_addptr3_insn (x, y, z);
295
296 /* If the target provides an "addptr" pattern it hopefully does
297 for a reason. So falling back to the normal add would be
298 a bug. */
299 lra_assert (insn != NULL_RTX);
300 emit_insn (insn);
301 return insn;
302 }
303
304 rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
305 y, z)));
306 if (recog_memoized (insn) < 0)
307 {
308 delete_insns_since (last);
309 insn = NULL;
310 }
311 return insn;
312 }
313
314 /* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
315 last resort. */
316 static rtx_insn *
317 emit_add2_insn (rtx x, rtx y)
318 {
319 rtx_insn *insn = emit_add3_insn (x, x, y);
320 if (insn == NULL_RTX)
321 {
322 insn = gen_add2_insn (x, y);
323 if (insn != NULL_RTX)
324 emit_insn (insn);
325 }
326 return insn;
327 }
328
329 /* Target checks operands through operand predicates to recognize an
330 insn. We should have a special precaution to generate add insns
331 which are frequent results of elimination.
332
333 Emit insns for x = y + z. X can be used to store intermediate
334 values and should be not in Y and Z when we use X to store an
335 intermediate value. Y + Z should form [base] [+ index[ * scale]] [
336 + disp] where base and index are registers, disp and scale are
337 constants. Y should contain base if it is present, Z should
338 contain disp if any. index[*scale] can be part of Y or Z. */
339 void
340 lra_emit_add (rtx x, rtx y, rtx z)
341 {
342 int old;
343 rtx_insn *last;
344 rtx a1, a2, base, index, disp, scale, index_scale;
345 bool ok_p;
346
347 rtx_insn *add3_insn = emit_add3_insn (x, y, z);
348 old = max_reg_num ();
349 if (add3_insn != NULL)
350 ;
351 else
352 {
353 disp = a2 = NULL_RTX;
354 if (GET_CODE (y) == PLUS)
355 {
356 a1 = XEXP (y, 0);
357 a2 = XEXP (y, 1);
358 disp = z;
359 }
360 else
361 {
362 a1 = y;
363 if (CONSTANT_P (z))
364 disp = z;
365 else
366 a2 = z;
367 }
368 index_scale = scale = NULL_RTX;
369 if (GET_CODE (a1) == MULT)
370 {
371 index_scale = a1;
372 index = XEXP (a1, 0);
373 scale = XEXP (a1, 1);
374 base = a2;
375 }
376 else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
377 {
378 index_scale = a2;
379 index = XEXP (a2, 0);
380 scale = XEXP (a2, 1);
381 base = a1;
382 }
383 else
384 {
385 base = a1;
386 index = a2;
387 }
388 if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
389 || (index != NULL_RTX
390 && ! (REG_P (index) || GET_CODE (index) == SUBREG))
391 || (disp != NULL_RTX && ! CONSTANT_P (disp))
392 || (scale != NULL_RTX && ! CONSTANT_P (scale)))
393 {
394 /* Probably we have no 3 op add. Last chance is to use 2-op
395 add insn. To succeed, don't move Z to X as an address
396 segment always comes in Y. Otherwise, we might fail when
397 adding the address segment to register. */
398 lra_assert (x != y && x != z);
399 emit_move_insn (x, y);
400 rtx_insn *insn = emit_add2_insn (x, z);
401 lra_assert (insn != NULL_RTX);
402 }
403 else
404 {
405 if (index_scale == NULL_RTX)
406 index_scale = index;
407 if (disp == NULL_RTX)
408 {
409 /* Generate x = index_scale; x = x + base. */
410 lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
411 emit_move_insn (x, index_scale);
412 rtx_insn *insn = emit_add2_insn (x, base);
413 lra_assert (insn != NULL_RTX);
414 }
415 else if (scale == NULL_RTX)
416 {
417 /* Try x = base + disp. */
418 lra_assert (base != NULL_RTX);
419 last = get_last_insn ();
420 rtx_insn *move_insn =
421 emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
422 if (recog_memoized (move_insn) < 0)
423 {
424 delete_insns_since (last);
425 /* Generate x = disp; x = x + base. */
426 emit_move_insn (x, disp);
427 rtx_insn *add2_insn = emit_add2_insn (x, base);
428 lra_assert (add2_insn != NULL_RTX);
429 }
430 /* Generate x = x + index. */
431 if (index != NULL_RTX)
432 {
433 rtx_insn *insn = emit_add2_insn (x, index);
434 lra_assert (insn != NULL_RTX);
435 }
436 }
437 else
438 {
439 /* Try x = index_scale; x = x + disp; x = x + base. */
440 last = get_last_insn ();
441 rtx_insn *move_insn = emit_move_insn (x, index_scale);
442 ok_p = false;
443 if (recog_memoized (move_insn) >= 0)
444 {
445 rtx_insn *insn = emit_add2_insn (x, disp);
446 if (insn != NULL_RTX)
447 {
448 if (base == NULL_RTX)
449 ok_p = true;
450 else
451 {
452 insn = emit_add2_insn (x, base);
453 if (insn != NULL_RTX)
454 ok_p = true;
455 }
456 }
457 }
458 if (! ok_p)
459 {
460 rtx_insn *insn;
461
462 delete_insns_since (last);
463 /* Generate x = disp; x = x + base; x = x + index_scale. */
464 emit_move_insn (x, disp);
465 if (base != NULL_RTX)
466 {
467 insn = emit_add2_insn (x, base);
468 lra_assert (insn != NULL_RTX);
469 }
470 insn = emit_add2_insn (x, index_scale);
471 lra_assert (insn != NULL_RTX);
472 }
473 }
474 }
475 }
476 /* Functions emit_... can create pseudos -- so expand the pseudo
477 data. */
478 if (old != max_reg_num ())
479 expand_reg_data (old);
480 }
481
482 /* The number of emitted reload insns so far. */
483 int lra_curr_reload_num;
484
485 /* Emit x := y, processing special case when y = u + v or y = u + v *
486 scale + w through emit_add (Y can be an address which is base +
487 index reg * scale + displacement in general case). X may be used
488 as intermediate result therefore it should be not in Y. */
489 void
490 lra_emit_move (rtx x, rtx y)
491 {
492 int old;
493
494 if (GET_CODE (y) != PLUS)
495 {
496 if (rtx_equal_p (x, y))
497 return;
498 old = max_reg_num ();
499 rtx_insn *insn = emit_move_insn (x, y);
500 /* The move pattern may require scratch registers, so convert them
501 into real registers now. */
502 if (insn != NULL_RTX)
503 remove_scratches_1 (insn);
504 if (REG_P (x))
505 lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
506 /* Function emit_move can create pseudos -- so expand the pseudo
507 data. */
508 if (old != max_reg_num ())
509 expand_reg_data (old);
510 return;
511 }
512 lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
513 }
514
515 /* Update insn operands which are duplication of operands whose
516 numbers are in array of NOPS (with end marker -1). The insn is
517 represented by its LRA internal representation ID. */
518 void
519 lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
520 {
521 int i, j, nop;
522 struct lra_static_insn_data *static_id = id->insn_static_data;
523
524 for (i = 0; i < static_id->n_dups; i++)
525 for (j = 0; (nop = nops[j]) >= 0; j++)
526 if (static_id->dup_num[i] == nop)
527 *id->dup_loc[i] = *id->operand_loc[nop];
528 }
529
530 \f
531
532 /* This page contains code dealing with info about registers in the
533 insns. */
534
535 /* Pools for insn reg info. */
536 object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
537
538 /* Create LRA insn related info about a reference to REGNO in INSN
539 with TYPE (in/out/inout), biggest reference mode MODE, flag that it
540 is reference through subreg (SUBREG_P), and reference to the next
541 insn reg info (NEXT). If REGNO can be early clobbered,
542 alternatives in which it can be early clobbered are given by
543 EARLY_CLOBBER_ALTS. */
544 static struct lra_insn_reg *
545 new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
546 machine_mode mode, bool subreg_p,
547 alternative_mask early_clobber_alts,
548 struct lra_insn_reg *next)
549 {
550 lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
551 ir->type = type;
552 ir->biggest_mode = mode;
553 if (NONDEBUG_INSN_P (insn)
554 && partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
555 lra_reg_info[regno].biggest_mode = mode;
556 ir->subreg_p = subreg_p;
557 ir->early_clobber_alts = early_clobber_alts;
558 ir->regno = regno;
559 ir->next = next;
560 return ir;
561 }
562
563 /* Free insn reg info list IR. */
564 static void
565 free_insn_regs (struct lra_insn_reg *ir)
566 {
567 struct lra_insn_reg *next_ir;
568
569 for (; ir != NULL; ir = next_ir)
570 {
571 next_ir = ir->next;
572 lra_insn_reg_pool.remove (ir);
573 }
574 }
575
576 /* Finish pool for insn reg info. */
577 static void
578 finish_insn_regs (void)
579 {
580 lra_insn_reg_pool.release ();
581 }
582
583 \f
584
585 /* This page contains code dealing LRA insn info (or in other words
586 LRA internal insn representation). */
587
588 /* Map INSN_CODE -> the static insn data. This info is valid during
589 all translation unit. */
590 struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
591
592 /* Debug insns are represented as a special insn with one input
593 operand which is RTL expression in var_location. */
594
595 /* The following data are used as static insn operand data for all
596 debug insns. If structure lra_operand_data is changed, the
597 initializer should be changed too. */
598 static struct lra_operand_data debug_operand_data =
599 {
600 NULL, /* alternative */
601 0, /* early_clobber_alts */
602 E_VOIDmode, /* We are not interesting in the operand mode. */
603 OP_IN,
604 0, 0, 0
605 };
606
607 /* The following data are used as static insn data for all debug
608 bind insns. If structure lra_static_insn_data is changed, the
609 initializer should be changed too. */
610 static struct lra_static_insn_data debug_bind_static_data =
611 {
612 &debug_operand_data,
613 0, /* Duplication operands #. */
614 -1, /* Commutative operand #. */
615 1, /* Operands #. There is only one operand which is debug RTL
616 expression. */
617 0, /* Duplications #. */
618 0, /* Alternatives #. We are not interesting in alternatives
619 because we does not proceed debug_insns for reloads. */
620 NULL, /* Hard registers referenced in machine description. */
621 NULL /* Descriptions of operands in alternatives. */
622 };
623
624 /* The following data are used as static insn data for all debug
625 marker insns. If structure lra_static_insn_data is changed, the
626 initializer should be changed too. */
627 static struct lra_static_insn_data debug_marker_static_data =
628 {
629 &debug_operand_data,
630 0, /* Duplication operands #. */
631 -1, /* Commutative operand #. */
632 0, /* Operands #. There isn't any operand. */
633 0, /* Duplications #. */
634 0, /* Alternatives #. We are not interesting in alternatives
635 because we does not proceed debug_insns for reloads. */
636 NULL, /* Hard registers referenced in machine description. */
637 NULL /* Descriptions of operands in alternatives. */
638 };
639
640 /* Called once per compiler work to initialize some LRA data related
641 to insns. */
642 static void
643 init_insn_code_data_once (void)
644 {
645 memset (insn_code_data, 0, sizeof (insn_code_data));
646 }
647
648 /* Called once per compiler work to finalize some LRA data related to
649 insns. */
650 static void
651 finish_insn_code_data_once (void)
652 {
653 for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
654 {
655 if (insn_code_data[i] != NULL)
656 {
657 free (insn_code_data[i]);
658 insn_code_data[i] = NULL;
659 }
660 }
661 }
662
663 /* Return static insn data, allocate and setup if necessary. Although
664 dup_num is static data (it depends only on icode), to set it up we
665 need to extract insn first. So recog_data should be valid for
666 normal insn (ICODE >= 0) before the call. */
667 static struct lra_static_insn_data *
668 get_static_insn_data (int icode, int nop, int ndup, int nalt)
669 {
670 struct lra_static_insn_data *data;
671 size_t n_bytes;
672
673 lra_assert (icode < (int) NUM_INSN_CODES);
674 if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
675 return data;
676 lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
677 n_bytes = sizeof (struct lra_static_insn_data)
678 + sizeof (struct lra_operand_data) * nop
679 + sizeof (int) * ndup;
680 data = XNEWVAR (struct lra_static_insn_data, n_bytes);
681 data->operand_alternative = NULL;
682 data->n_operands = nop;
683 data->n_dups = ndup;
684 data->n_alternatives = nalt;
685 data->operand = ((struct lra_operand_data *)
686 ((char *) data + sizeof (struct lra_static_insn_data)));
687 data->dup_num = ((int *) ((char *) data->operand
688 + sizeof (struct lra_operand_data) * nop));
689 if (icode >= 0)
690 {
691 int i;
692
693 insn_code_data[icode] = data;
694 for (i = 0; i < nop; i++)
695 {
696 data->operand[i].constraint
697 = insn_data[icode].operand[i].constraint;
698 data->operand[i].mode = insn_data[icode].operand[i].mode;
699 data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
700 data->operand[i].is_operator
701 = insn_data[icode].operand[i].is_operator;
702 data->operand[i].type
703 = (data->operand[i].constraint[0] == '=' ? OP_OUT
704 : data->operand[i].constraint[0] == '+' ? OP_INOUT
705 : OP_IN);
706 data->operand[i].is_address = false;
707 }
708 for (i = 0; i < ndup; i++)
709 data->dup_num[i] = recog_data.dup_num[i];
710 }
711 return data;
712 }
713
714 /* The current length of the following array. */
715 int lra_insn_recog_data_len;
716
717 /* Map INSN_UID -> the insn recog data (NULL if unknown). */
718 lra_insn_recog_data_t *lra_insn_recog_data;
719
720 /* Alloc pool we allocate entries for lra_insn_recog_data from. */
721 static object_allocator<class lra_insn_recog_data>
722 lra_insn_recog_data_pool ("insn recog data pool");
723
724 /* Initialize LRA data about insns. */
725 static void
726 init_insn_recog_data (void)
727 {
728 lra_insn_recog_data_len = 0;
729 lra_insn_recog_data = NULL;
730 }
731
732 /* Expand, if necessary, LRA data about insns. */
733 static void
734 check_and_expand_insn_recog_data (int index)
735 {
736 int i, old;
737
738 if (lra_insn_recog_data_len > index)
739 return;
740 old = lra_insn_recog_data_len;
741 lra_insn_recog_data_len = index * 3 / 2 + 1;
742 lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
743 lra_insn_recog_data,
744 lra_insn_recog_data_len);
745 for (i = old; i < lra_insn_recog_data_len; i++)
746 lra_insn_recog_data[i] = NULL;
747 }
748
749 /* Finish LRA DATA about insn. */
750 static void
751 free_insn_recog_data (lra_insn_recog_data_t data)
752 {
753 if (data->operand_loc != NULL)
754 free (data->operand_loc);
755 if (data->dup_loc != NULL)
756 free (data->dup_loc);
757 if (data->arg_hard_regs != NULL)
758 free (data->arg_hard_regs);
759 if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
760 {
761 if (data->insn_static_data->operand_alternative != NULL)
762 free (const_cast <operand_alternative *>
763 (data->insn_static_data->operand_alternative));
764 free_insn_regs (data->insn_static_data->hard_regs);
765 free (data->insn_static_data);
766 }
767 free_insn_regs (data->regs);
768 data->regs = NULL;
769 lra_insn_recog_data_pool.remove (data);
770 }
771
772 /* Pools for copies. */
773 static object_allocator<lra_copy> lra_copy_pool ("lra copies");
774
775 /* Finish LRA data about all insns. */
776 static void
777 finish_insn_recog_data (void)
778 {
779 int i;
780 lra_insn_recog_data_t data;
781
782 for (i = 0; i < lra_insn_recog_data_len; i++)
783 if ((data = lra_insn_recog_data[i]) != NULL)
784 free_insn_recog_data (data);
785 finish_insn_regs ();
786 lra_copy_pool.release ();
787 lra_insn_reg_pool.release ();
788 lra_insn_recog_data_pool.release ();
789 free (lra_insn_recog_data);
790 }
791
792 /* Setup info about operands in alternatives of LRA DATA of insn. */
793 static void
794 setup_operand_alternative (lra_insn_recog_data_t data,
795 const operand_alternative *op_alt)
796 {
797 int i, j, nop, nalt;
798 int icode = data->icode;
799 struct lra_static_insn_data *static_data = data->insn_static_data;
800
801 static_data->commutative = -1;
802 nop = static_data->n_operands;
803 nalt = static_data->n_alternatives;
804 static_data->operand_alternative = op_alt;
805 for (i = 0; i < nop; i++)
806 {
807 static_data->operand[i].early_clobber_alts = 0;
808 static_data->operand[i].is_address = false;
809 if (static_data->operand[i].constraint[0] == '%')
810 {
811 /* We currently only support one commutative pair of operands. */
812 if (static_data->commutative < 0)
813 static_data->commutative = i;
814 else
815 lra_assert (icode < 0); /* Asm */
816 /* The last operand should not be marked commutative. */
817 lra_assert (i != nop - 1);
818 }
819 }
820 for (j = 0; j < nalt; j++)
821 for (i = 0; i < nop; i++, op_alt++)
822 {
823 if (op_alt->earlyclobber)
824 static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
825 static_data->operand[i].is_address |= op_alt->is_address;
826 }
827 }
828
829 /* Recursively process X and collect info about registers, which are
830 not the insn operands, in X with TYPE (in/out/inout) and flag that
831 it is early clobbered in the insn (EARLY_CLOBBER) and add the info
832 to LIST. X is a part of insn given by DATA. Return the result
833 list. */
834 static struct lra_insn_reg *
835 collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
836 lra_insn_recog_data_t data,
837 struct lra_insn_reg *list,
838 enum op_type type, bool early_clobber)
839 {
840 int i, j, regno, last;
841 bool subreg_p;
842 machine_mode mode;
843 struct lra_insn_reg *curr;
844 rtx op = *x;
845 enum rtx_code code = GET_CODE (op);
846 const char *fmt = GET_RTX_FORMAT (code);
847
848 for (i = 0; i < data->insn_static_data->n_operands; i++)
849 if (! data->insn_static_data->operand[i].is_operator
850 && x == data->operand_loc[i])
851 /* It is an operand loc. Stop here. */
852 return list;
853 for (i = 0; i < data->insn_static_data->n_dups; i++)
854 if (x == data->dup_loc[i])
855 /* It is a dup loc. Stop here. */
856 return list;
857 mode = GET_MODE (op);
858 subreg_p = false;
859 if (code == SUBREG)
860 {
861 mode = wider_subreg_mode (op);
862 if (read_modify_subreg_p (op))
863 subreg_p = true;
864 op = SUBREG_REG (op);
865 code = GET_CODE (op);
866 }
867 if (REG_P (op))
868 {
869 if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
870 return list;
871 /* Process all regs even unallocatable ones as we need info
872 about all regs for rematerialization pass. */
873 for (last = end_hard_regno (mode, regno); regno < last; regno++)
874 {
875 for (curr = list; curr != NULL; curr = curr->next)
876 if (curr->regno == regno && curr->subreg_p == subreg_p
877 && curr->biggest_mode == mode)
878 {
879 if (curr->type != type)
880 curr->type = OP_INOUT;
881 if (early_clobber)
882 curr->early_clobber_alts = ALL_ALTERNATIVES;
883 break;
884 }
885 if (curr == NULL)
886 {
887 /* This is a new hard regno or the info cannot be
888 integrated into the found structure. */
889 #ifdef STACK_REGS
890 early_clobber
891 = (early_clobber
892 /* This clobber is to inform popping floating
893 point stack only. */
894 && ! (FIRST_STACK_REG <= regno
895 && regno <= LAST_STACK_REG));
896 #endif
897 list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
898 early_clobber ? ALL_ALTERNATIVES : 0, list);
899 }
900 }
901 return list;
902 }
903 switch (code)
904 {
905 case SET:
906 list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
907 list, OP_OUT, false);
908 list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
909 list, OP_IN, false);
910 break;
911 case CLOBBER:
912 /* We treat clobber of non-operand hard registers as early clobber. */
913 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
914 list, OP_OUT, true);
915 break;
916 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
917 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
918 list, OP_INOUT, false);
919 break;
920 case PRE_MODIFY: case POST_MODIFY:
921 list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
922 list, OP_INOUT, false);
923 list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
924 list, OP_IN, false);
925 break;
926 default:
927 fmt = GET_RTX_FORMAT (code);
928 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
929 {
930 if (fmt[i] == 'e')
931 list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
932 list, OP_IN, false);
933 else if (fmt[i] == 'E')
934 for (j = XVECLEN (op, i) - 1; j >= 0; j--)
935 list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
936 data, list, OP_IN, false);
937 }
938 }
939 return list;
940 }
941
942 /* Set up and return info about INSN. Set up the info if it is not set up
943 yet. */
944 lra_insn_recog_data_t
945 lra_set_insn_recog_data (rtx_insn *insn)
946 {
947 lra_insn_recog_data_t data;
948 int i, n, icode;
949 rtx **locs;
950 unsigned int uid = INSN_UID (insn);
951 struct lra_static_insn_data *insn_static_data;
952
953 check_and_expand_insn_recog_data (uid);
954 if (DEBUG_INSN_P (insn))
955 icode = -1;
956 else
957 {
958 icode = INSN_CODE (insn);
959 if (icode < 0)
960 /* It might be a new simple insn which is not recognized yet. */
961 INSN_CODE (insn) = icode = recog_memoized (insn);
962 }
963 data = lra_insn_recog_data_pool.allocate ();
964 lra_insn_recog_data[uid] = data;
965 data->insn = insn;
966 data->used_insn_alternative = LRA_UNKNOWN_ALT;
967 data->icode = icode;
968 data->regs = NULL;
969 if (DEBUG_INSN_P (insn))
970 {
971 data->dup_loc = NULL;
972 data->arg_hard_regs = NULL;
973 data->preferred_alternatives = ALL_ALTERNATIVES;
974 if (DEBUG_BIND_INSN_P (insn))
975 {
976 data->insn_static_data = &debug_bind_static_data;
977 data->operand_loc = XNEWVEC (rtx *, 1);
978 data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
979 }
980 else if (DEBUG_MARKER_INSN_P (insn))
981 {
982 data->insn_static_data = &debug_marker_static_data;
983 data->operand_loc = NULL;
984 }
985 return data;
986 }
987 if (icode < 0)
988 {
989 int nop, nalt;
990 machine_mode operand_mode[MAX_RECOG_OPERANDS];
991 const char *constraints[MAX_RECOG_OPERANDS];
992
993 nop = asm_noperands (PATTERN (insn));
994 data->operand_loc = data->dup_loc = NULL;
995 nalt = 1;
996 if (nop < 0)
997 {
998 /* It is a special insn like USE or CLOBBER. We should
999 recognize any regular insn otherwise LRA can do nothing
1000 with this insn. */
1001 gcc_assert (GET_CODE (PATTERN (insn)) == USE
1002 || GET_CODE (PATTERN (insn)) == CLOBBER
1003 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
1004 data->insn_static_data = insn_static_data
1005 = get_static_insn_data (-1, 0, 0, nalt);
1006 }
1007 else
1008 {
1009 /* expand_asm_operands makes sure there aren't too many
1010 operands. */
1011 lra_assert (nop <= MAX_RECOG_OPERANDS);
1012 if (nop != 0)
1013 data->operand_loc = XNEWVEC (rtx *, nop);
1014 /* Now get the operand values and constraints out of the
1015 insn. */
1016 decode_asm_operands (PATTERN (insn), NULL,
1017 data->operand_loc,
1018 constraints, operand_mode, NULL);
1019 if (nop > 0)
1020 for (const char *p =constraints[0]; *p; p++)
1021 nalt += *p == ',';
1022 data->insn_static_data = insn_static_data
1023 = get_static_insn_data (-1, nop, 0, nalt);
1024 for (i = 0; i < nop; i++)
1025 {
1026 insn_static_data->operand[i].mode = operand_mode[i];
1027 insn_static_data->operand[i].constraint = constraints[i];
1028 insn_static_data->operand[i].strict_low = false;
1029 insn_static_data->operand[i].is_operator = false;
1030 insn_static_data->operand[i].is_address = false;
1031 }
1032 }
1033 for (i = 0; i < insn_static_data->n_operands; i++)
1034 insn_static_data->operand[i].type
1035 = (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1036 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1037 : OP_IN);
1038 data->preferred_alternatives = ALL_ALTERNATIVES;
1039 if (nop > 0)
1040 {
1041 operand_alternative *op_alt = XCNEWVEC (operand_alternative,
1042 nalt * nop);
1043 preprocess_constraints (nop, nalt, constraints, op_alt,
1044 data->operand_loc);
1045 setup_operand_alternative (data, op_alt);
1046 }
1047 }
1048 else
1049 {
1050 insn_extract (insn);
1051 data->insn_static_data = insn_static_data
1052 = get_static_insn_data (icode, insn_data[icode].n_operands,
1053 insn_data[icode].n_dups,
1054 insn_data[icode].n_alternatives);
1055 n = insn_static_data->n_operands;
1056 if (n == 0)
1057 locs = NULL;
1058 else
1059 {
1060 locs = XNEWVEC (rtx *, n);
1061 memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
1062 }
1063 data->operand_loc = locs;
1064 n = insn_static_data->n_dups;
1065 if (n == 0)
1066 locs = NULL;
1067 else
1068 {
1069 locs = XNEWVEC (rtx *, n);
1070 memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
1071 }
1072 data->dup_loc = locs;
1073 data->preferred_alternatives = get_preferred_alternatives (insn);
1074 const operand_alternative *op_alt = preprocess_insn_constraints (icode);
1075 if (!insn_static_data->operand_alternative)
1076 setup_operand_alternative (data, op_alt);
1077 else if (op_alt != insn_static_data->operand_alternative)
1078 insn_static_data->operand_alternative = op_alt;
1079 }
1080 if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
1081 insn_static_data->hard_regs = NULL;
1082 else
1083 insn_static_data->hard_regs
1084 = collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
1085 NULL, OP_IN, false);
1086 data->arg_hard_regs = NULL;
1087 if (CALL_P (insn))
1088 {
1089 bool use_p;
1090 rtx link;
1091 int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
1092
1093 n_hard_regs = 0;
1094 /* Finding implicit hard register usage. We believe it will be
1095 not changed whatever transformations are used. Call insns
1096 are such example. */
1097 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1098 link != NULL_RTX;
1099 link = XEXP (link, 1))
1100 if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
1101 || GET_CODE (XEXP (link, 0)) == CLOBBER)
1102 && REG_P (XEXP (XEXP (link, 0), 0)))
1103 {
1104 regno = REGNO (XEXP (XEXP (link, 0), 0));
1105 lra_assert (regno < FIRST_PSEUDO_REGISTER);
1106 /* It is an argument register. */
1107 for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
1108 arg_hard_regs[n_hard_regs++]
1109 = regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
1110 }
1111
1112 if (n_hard_regs != 0)
1113 {
1114 arg_hard_regs[n_hard_regs++] = -1;
1115 data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
1116 memcpy (data->arg_hard_regs, arg_hard_regs,
1117 sizeof (int) * n_hard_regs);
1118 }
1119 }
1120 /* Some output operand can be recognized only from the context not
1121 from the constraints which are empty in this case. Call insn may
1122 contain a hard register in set destination with empty constraint
1123 and extract_insn treats them as an input. */
1124 for (i = 0; i < insn_static_data->n_operands; i++)
1125 {
1126 int j;
1127 rtx pat, set;
1128 struct lra_operand_data *operand = &insn_static_data->operand[i];
1129
1130 /* ??? Should we treat 'X' the same way. It looks to me that
1131 'X' means anything and empty constraint means we do not
1132 care. */
1133 if (operand->type != OP_IN || *operand->constraint != '\0'
1134 || operand->is_operator)
1135 continue;
1136 pat = PATTERN (insn);
1137 if (GET_CODE (pat) == SET)
1138 {
1139 if (data->operand_loc[i] != &SET_DEST (pat))
1140 continue;
1141 }
1142 else if (GET_CODE (pat) == PARALLEL)
1143 {
1144 for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
1145 {
1146 set = XVECEXP (PATTERN (insn), 0, j);
1147 if (GET_CODE (set) == SET
1148 && &SET_DEST (set) == data->operand_loc[i])
1149 break;
1150 }
1151 if (j < 0)
1152 continue;
1153 }
1154 else
1155 continue;
1156 operand->type = OP_OUT;
1157 }
1158 return data;
1159 }
1160
1161 /* Return info about insn give by UID. The info should be already set
1162 up. */
1163 static lra_insn_recog_data_t
1164 get_insn_recog_data_by_uid (int uid)
1165 {
1166 lra_insn_recog_data_t data;
1167
1168 data = lra_insn_recog_data[uid];
1169 lra_assert (data != NULL);
1170 return data;
1171 }
1172
1173 /* Invalidate all info about insn given by its UID. */
1174 static void
1175 invalidate_insn_recog_data (int uid)
1176 {
1177 lra_insn_recog_data_t data;
1178
1179 data = lra_insn_recog_data[uid];
1180 lra_assert (data != NULL);
1181 free_insn_recog_data (data);
1182 lra_insn_recog_data[uid] = NULL;
1183 }
1184
1185 /* Update all the insn info about INSN. It is usually called when
1186 something in the insn was changed. Return the updated info. */
1187 lra_insn_recog_data_t
1188 lra_update_insn_recog_data (rtx_insn *insn)
1189 {
1190 lra_insn_recog_data_t data;
1191 int n;
1192 unsigned int uid = INSN_UID (insn);
1193 struct lra_static_insn_data *insn_static_data;
1194 poly_int64 sp_offset = 0;
1195
1196 check_and_expand_insn_recog_data (uid);
1197 if ((data = lra_insn_recog_data[uid]) != NULL
1198 && data->icode != INSN_CODE (insn))
1199 {
1200 sp_offset = data->sp_offset;
1201 invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
1202 invalidate_insn_recog_data (uid);
1203 data = NULL;
1204 }
1205 if (data == NULL)
1206 {
1207 data = lra_get_insn_recog_data (insn);
1208 /* Initiate or restore SP offset. */
1209 data->sp_offset = sp_offset;
1210 return data;
1211 }
1212 insn_static_data = data->insn_static_data;
1213 data->used_insn_alternative = LRA_UNKNOWN_ALT;
1214 if (DEBUG_INSN_P (insn))
1215 return data;
1216 if (data->icode < 0)
1217 {
1218 int nop;
1219 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1220 const char *constraints[MAX_RECOG_OPERANDS];
1221
1222 nop = asm_noperands (PATTERN (insn));
1223 if (nop >= 0)
1224 {
1225 lra_assert (nop == data->insn_static_data->n_operands);
1226 /* Now get the operand values and constraints out of the
1227 insn. */
1228 decode_asm_operands (PATTERN (insn), NULL,
1229 data->operand_loc,
1230 constraints, operand_mode, NULL);
1231
1232 if (flag_checking)
1233 for (int i = 0; i < nop; i++)
1234 lra_assert
1235 (insn_static_data->operand[i].mode == operand_mode[i]
1236 && insn_static_data->operand[i].constraint == constraints[i]
1237 && ! insn_static_data->operand[i].is_operator);
1238 }
1239
1240 if (flag_checking)
1241 for (int i = 0; i < insn_static_data->n_operands; i++)
1242 lra_assert
1243 (insn_static_data->operand[i].type
1244 == (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
1245 : insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
1246 : OP_IN));
1247 }
1248 else
1249 {
1250 insn_extract (insn);
1251 n = insn_static_data->n_operands;
1252 if (n != 0)
1253 memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
1254 n = insn_static_data->n_dups;
1255 if (n != 0)
1256 memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
1257 lra_assert (check_bool_attrs (insn));
1258 }
1259 return data;
1260 }
1261
1262 /* Set up that INSN is using alternative ALT now. */
1263 void
1264 lra_set_used_insn_alternative (rtx_insn *insn, int alt)
1265 {
1266 lra_insn_recog_data_t data;
1267
1268 data = lra_get_insn_recog_data (insn);
1269 data->used_insn_alternative = alt;
1270 }
1271
1272 /* Set up that insn with UID is using alternative ALT now. The insn
1273 info should be already set up. */
1274 void
1275 lra_set_used_insn_alternative_by_uid (int uid, int alt)
1276 {
1277 lra_insn_recog_data_t data;
1278
1279 check_and_expand_insn_recog_data (uid);
1280 data = lra_insn_recog_data[uid];
1281 lra_assert (data != NULL);
1282 data->used_insn_alternative = alt;
1283 }
1284
1285 \f
1286
1287 /* This page contains code dealing with common register info and
1288 pseudo copies. */
1289
1290 /* The size of the following array. */
1291 static int reg_info_size;
1292 /* Common info about each register. */
1293 class lra_reg *lra_reg_info;
1294
1295 HARD_REG_SET hard_regs_spilled_into;
1296
1297 /* Last register value. */
1298 static int last_reg_value;
1299
1300 /* Return new register value. */
1301 static int
1302 get_new_reg_value (void)
1303 {
1304 return ++last_reg_value;
1305 }
1306
1307 /* Vec referring to pseudo copies. */
1308 static vec<lra_copy_t> copy_vec;
1309
1310 /* Initialize I-th element of lra_reg_info. */
1311 static inline void
1312 initialize_lra_reg_info_element (int i)
1313 {
1314 bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
1315 #ifdef STACK_REGS
1316 lra_reg_info[i].no_stack_p = false;
1317 #endif
1318 CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
1319 lra_reg_info[i].preferred_hard_regno1 = -1;
1320 lra_reg_info[i].preferred_hard_regno2 = -1;
1321 lra_reg_info[i].preferred_hard_regno_profit1 = 0;
1322 lra_reg_info[i].preferred_hard_regno_profit2 = 0;
1323 lra_reg_info[i].biggest_mode = VOIDmode;
1324 lra_reg_info[i].live_ranges = NULL;
1325 lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
1326 lra_reg_info[i].last_reload = 0;
1327 lra_reg_info[i].restore_rtx = NULL_RTX;
1328 lra_reg_info[i].val = get_new_reg_value ();
1329 lra_reg_info[i].offset = 0;
1330 lra_reg_info[i].copies = NULL;
1331 }
1332
1333 /* Initialize common reg info and copies. */
1334 static void
1335 init_reg_info (void)
1336 {
1337 int i;
1338
1339 last_reg_value = 0;
1340 reg_info_size = max_reg_num () * 3 / 2 + 1;
1341 lra_reg_info = XNEWVEC (class lra_reg, reg_info_size);
1342 for (i = 0; i < reg_info_size; i++)
1343 initialize_lra_reg_info_element (i);
1344 copy_vec.truncate (0);
1345 CLEAR_HARD_REG_SET (hard_regs_spilled_into);
1346 }
1347
1348
1349 /* Finish common reg info and copies. */
1350 static void
1351 finish_reg_info (void)
1352 {
1353 int i;
1354
1355 for (i = 0; i < reg_info_size; i++)
1356 bitmap_clear (&lra_reg_info[i].insn_bitmap);
1357 free (lra_reg_info);
1358 reg_info_size = 0;
1359 }
1360
1361 /* Expand common reg info if it is necessary. */
1362 static void
1363 expand_reg_info (void)
1364 {
1365 int i, old = reg_info_size;
1366
1367 if (reg_info_size > max_reg_num ())
1368 return;
1369 reg_info_size = max_reg_num () * 3 / 2 + 1;
1370 lra_reg_info = XRESIZEVEC (class lra_reg, lra_reg_info, reg_info_size);
1371 for (i = old; i < reg_info_size; i++)
1372 initialize_lra_reg_info_element (i);
1373 }
1374
1375 /* Free all copies. */
1376 void
1377 lra_free_copies (void)
1378 {
1379 lra_copy_t cp;
1380
1381 while (copy_vec.length () != 0)
1382 {
1383 cp = copy_vec.pop ();
1384 lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
1385 lra_copy_pool.remove (cp);
1386 }
1387 }
1388
1389 /* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
1390 frequency is FREQ. */
1391 void
1392 lra_create_copy (int regno1, int regno2, int freq)
1393 {
1394 bool regno1_dest_p;
1395 lra_copy_t cp;
1396
1397 lra_assert (regno1 != regno2);
1398 regno1_dest_p = true;
1399 if (regno1 > regno2)
1400 {
1401 std::swap (regno1, regno2);
1402 regno1_dest_p = false;
1403 }
1404 cp = lra_copy_pool.allocate ();
1405 copy_vec.safe_push (cp);
1406 cp->regno1_dest_p = regno1_dest_p;
1407 cp->freq = freq;
1408 cp->regno1 = regno1;
1409 cp->regno2 = regno2;
1410 cp->regno1_next = lra_reg_info[regno1].copies;
1411 lra_reg_info[regno1].copies = cp;
1412 cp->regno2_next = lra_reg_info[regno2].copies;
1413 lra_reg_info[regno2].copies = cp;
1414 if (lra_dump_file != NULL)
1415 fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
1416 regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
1417 }
1418
1419 /* Return N-th (0, 1, ...) copy. If there is no copy, return
1420 NULL. */
1421 lra_copy_t
1422 lra_get_copy (int n)
1423 {
1424 if (n >= (int) copy_vec.length ())
1425 return NULL;
1426 return copy_vec[n];
1427 }
1428
1429 \f
1430
1431 /* This page contains code dealing with info about registers in
1432 insns. */
1433
1434 /* Process X of INSN recursively and add info (operand type is given
1435 by TYPE) about registers in X to the insn DATA. If X can be early
1436 clobbered, alternatives in which it can be early clobbered are given
1437 by EARLY_CLOBBER_ALTS. */
1438 static void
1439 add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
1440 rtx_insn *insn, enum op_type type,
1441 alternative_mask early_clobber_alts)
1442 {
1443 int i, j, regno;
1444 bool subreg_p;
1445 machine_mode mode;
1446 const char *fmt;
1447 enum rtx_code code;
1448 struct lra_insn_reg *curr;
1449
1450 code = GET_CODE (x);
1451 mode = GET_MODE (x);
1452 subreg_p = false;
1453 if (GET_CODE (x) == SUBREG)
1454 {
1455 mode = wider_subreg_mode (x);
1456 if (read_modify_subreg_p (x))
1457 subreg_p = true;
1458 x = SUBREG_REG (x);
1459 code = GET_CODE (x);
1460 }
1461 if (REG_P (x))
1462 {
1463 regno = REGNO (x);
1464 /* Process all regs even unallocatable ones as we need info about
1465 all regs for rematerialization pass. */
1466 expand_reg_info ();
1467 if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
1468 {
1469 data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
1470 early_clobber_alts, data->regs);
1471 return;
1472 }
1473 else
1474 {
1475 for (curr = data->regs; curr != NULL; curr = curr->next)
1476 if (curr->regno == regno)
1477 {
1478 if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
1479 /* The info cannot be integrated into the found
1480 structure. */
1481 data->regs = new_insn_reg (data->insn, regno, type, mode,
1482 subreg_p, early_clobber_alts,
1483 data->regs);
1484 else
1485 {
1486 if (curr->type != type)
1487 curr->type = OP_INOUT;
1488 curr->early_clobber_alts |= early_clobber_alts;
1489 }
1490 return;
1491 }
1492 gcc_unreachable ();
1493 }
1494 }
1495
1496 switch (code)
1497 {
1498 case SET:
1499 add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, 0);
1500 add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, 0);
1501 break;
1502 case CLOBBER:
1503 /* We treat clobber of non-operand hard registers as early
1504 clobber. */
1505 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
1506 ALL_ALTERNATIVES);
1507 break;
1508 case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
1509 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1510 break;
1511 case PRE_MODIFY: case POST_MODIFY:
1512 add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, 0);
1513 add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, 0);
1514 break;
1515 default:
1516 if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
1517 /* Some targets place small structures in registers for return
1518 values of functions, and those registers are wrapped in
1519 PARALLEL that we may see as the destination of a SET. Here
1520 is an example:
1521
1522 (call_insn 13 12 14 2 (set (parallel:BLK [
1523 (expr_list:REG_DEP_TRUE (reg:DI 0 ax)
1524 (const_int 0 [0]))
1525 (expr_list:REG_DEP_TRUE (reg:DI 1 dx)
1526 (const_int 8 [0x8]))
1527 ])
1528 (call (mem:QI (symbol_ref:DI (... */
1529 type = OP_IN;
1530 fmt = GET_RTX_FORMAT (code);
1531 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1532 {
1533 if (fmt[i] == 'e')
1534 add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, 0);
1535 else if (fmt[i] == 'E')
1536 {
1537 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1538 add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
1539 type, 0);
1540 }
1541 }
1542 }
1543 }
1544
1545 /* Return execution frequency of INSN. */
1546 static int
1547 get_insn_freq (rtx_insn *insn)
1548 {
1549 basic_block bb = BLOCK_FOR_INSN (insn);
1550
1551 gcc_checking_assert (bb != NULL);
1552 return REG_FREQ_FROM_BB (bb);
1553 }
1554
1555 /* Invalidate all reg info of INSN with DATA and execution frequency
1556 FREQ. Update common info about the invalidated registers. */
1557 static void
1558 invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
1559 int freq)
1560 {
1561 int uid;
1562 bool debug_p;
1563 unsigned int i;
1564 struct lra_insn_reg *ir, *next_ir;
1565
1566 uid = INSN_UID (insn);
1567 debug_p = DEBUG_INSN_P (insn);
1568 for (ir = data->regs; ir != NULL; ir = next_ir)
1569 {
1570 i = ir->regno;
1571 next_ir = ir->next;
1572 lra_insn_reg_pool.remove (ir);
1573 bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
1574 if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
1575 {
1576 lra_reg_info[i].nrefs--;
1577 lra_reg_info[i].freq -= freq;
1578 lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
1579 }
1580 }
1581 data->regs = NULL;
1582 }
1583
1584 /* Invalidate all reg info of INSN. Update common info about the
1585 invalidated registers. */
1586 void
1587 lra_invalidate_insn_regno_info (rtx_insn *insn)
1588 {
1589 invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
1590 get_insn_freq (insn));
1591 }
1592
1593 /* Update common reg info from reg info of insn given by its DATA and
1594 execution frequency FREQ. */
1595 static void
1596 setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
1597 {
1598 unsigned int i;
1599 struct lra_insn_reg *ir;
1600
1601 for (ir = data->regs; ir != NULL; ir = ir->next)
1602 if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
1603 {
1604 lra_reg_info[i].nrefs++;
1605 lra_reg_info[i].freq += freq;
1606 }
1607 }
1608
1609 /* Set up insn reg info of INSN. Update common reg info from reg info
1610 of INSN. */
1611 void
1612 lra_update_insn_regno_info (rtx_insn *insn)
1613 {
1614 int i, freq;
1615 lra_insn_recog_data_t data;
1616 struct lra_static_insn_data *static_data;
1617 enum rtx_code code;
1618 rtx link;
1619
1620 if (! INSN_P (insn))
1621 return;
1622 data = lra_get_insn_recog_data (insn);
1623 static_data = data->insn_static_data;
1624 freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
1625 invalidate_insn_data_regno_info (data, insn, freq);
1626 for (i = static_data->n_operands - 1; i >= 0; i--)
1627 add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
1628 static_data->operand[i].type,
1629 static_data->operand[i].early_clobber_alts);
1630 if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
1631 add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
1632 code == USE ? OP_IN : OP_OUT, 0);
1633 if (CALL_P (insn))
1634 /* On some targets call insns can refer to pseudos in memory in
1635 CALL_INSN_FUNCTION_USAGE list. Process them in order to
1636 consider their occurrences in calls for different
1637 transformations (e.g. inheritance) with given pseudos. */
1638 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1639 link != NULL_RTX;
1640 link = XEXP (link, 1))
1641 {
1642 code = GET_CODE (XEXP (link, 0));
1643 if ((code == USE || code == CLOBBER)
1644 && MEM_P (XEXP (XEXP (link, 0), 0)))
1645 add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
1646 code == USE ? OP_IN : OP_OUT, 0);
1647 }
1648 if (NONDEBUG_INSN_P (insn))
1649 setup_insn_reg_info (data, freq);
1650 }
1651
1652 /* Return reg info of insn given by it UID. */
1653 struct lra_insn_reg *
1654 lra_get_insn_regs (int uid)
1655 {
1656 lra_insn_recog_data_t data;
1657
1658 data = get_insn_recog_data_by_uid (uid);
1659 return data->regs;
1660 }
1661
1662 \f
1663
1664 /* Recursive hash function for RTL X. */
1665 hashval_t
1666 lra_rtx_hash (rtx x)
1667 {
1668 int i, j;
1669 enum rtx_code code;
1670 const char *fmt;
1671 hashval_t val = 0;
1672
1673 if (x == 0)
1674 return val;
1675
1676 code = GET_CODE (x);
1677 val += (int) code + 4095;
1678
1679 /* Some RTL can be compared nonrecursively. */
1680 switch (code)
1681 {
1682 case REG:
1683 return val + REGNO (x);
1684
1685 case LABEL_REF:
1686 return iterative_hash_object (XEXP (x, 0), val);
1687
1688 case SYMBOL_REF:
1689 return iterative_hash_object (XSTR (x, 0), val);
1690
1691 case SCRATCH:
1692 case CONST_DOUBLE:
1693 case CONST_VECTOR:
1694 return val;
1695
1696 case CONST_INT:
1697 return val + UINTVAL (x);
1698
1699 default:
1700 break;
1701 }
1702
1703 /* Hash the elements. */
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1706 {
1707 switch (fmt[i])
1708 {
1709 case 'w':
1710 val += XWINT (x, i);
1711 break;
1712
1713 case 'n':
1714 case 'i':
1715 val += XINT (x, i);
1716 break;
1717
1718 case 'V':
1719 case 'E':
1720 val += XVECLEN (x, i);
1721
1722 for (j = 0; j < XVECLEN (x, i); j++)
1723 val += lra_rtx_hash (XVECEXP (x, i, j));
1724 break;
1725
1726 case 'e':
1727 val += lra_rtx_hash (XEXP (x, i));
1728 break;
1729
1730 case 'S':
1731 case 's':
1732 val += htab_hash_string (XSTR (x, i));
1733 break;
1734
1735 case 'u':
1736 case '0':
1737 case 't':
1738 break;
1739
1740 /* It is believed that rtx's at this level will never
1741 contain anything but integers and other rtx's, except for
1742 within LABEL_REFs and SYMBOL_REFs. */
1743 default:
1744 abort ();
1745 }
1746 }
1747 return val;
1748 }
1749
1750 \f
1751
1752 /* This page contains code dealing with stack of the insns which
1753 should be processed by the next constraint pass. */
1754
1755 /* Bitmap used to put an insn on the stack only in one exemplar. */
1756 static sbitmap lra_constraint_insn_stack_bitmap;
1757
1758 /* The stack itself. */
1759 vec<rtx_insn *> lra_constraint_insn_stack;
1760
1761 /* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
1762 info for INSN, otherwise only update it if INSN is not already on the
1763 stack. */
1764 static inline void
1765 lra_push_insn_1 (rtx_insn *insn, bool always_update)
1766 {
1767 unsigned int uid = INSN_UID (insn);
1768 if (always_update)
1769 lra_update_insn_regno_info (insn);
1770 if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
1771 lra_constraint_insn_stack_bitmap =
1772 sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
1773 if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
1774 return;
1775 bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
1776 if (! always_update)
1777 lra_update_insn_regno_info (insn);
1778 lra_constraint_insn_stack.safe_push (insn);
1779 }
1780
1781 /* Put INSN on the stack. */
1782 void
1783 lra_push_insn (rtx_insn *insn)
1784 {
1785 lra_push_insn_1 (insn, false);
1786 }
1787
1788 /* Put INSN on the stack and update its reg info. */
1789 void
1790 lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
1791 {
1792 lra_push_insn_1 (insn, true);
1793 }
1794
1795 /* Put insn with UID on the stack. */
1796 void
1797 lra_push_insn_by_uid (unsigned int uid)
1798 {
1799 lra_push_insn (lra_insn_recog_data[uid]->insn);
1800 }
1801
1802 /* Take the last-inserted insns off the stack and return it. */
1803 rtx_insn *
1804 lra_pop_insn (void)
1805 {
1806 rtx_insn *insn = lra_constraint_insn_stack.pop ();
1807 bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
1808 return insn;
1809 }
1810
1811 /* Return the current size of the insn stack. */
1812 unsigned int
1813 lra_insn_stack_length (void)
1814 {
1815 return lra_constraint_insn_stack.length ();
1816 }
1817
1818 /* Push insns FROM to TO (excluding it) going in reverse order. */
1819 static void
1820 push_insns (rtx_insn *from, rtx_insn *to)
1821 {
1822 rtx_insn *insn;
1823
1824 if (from == NULL_RTX)
1825 return;
1826 for (insn = from; insn != to; insn = PREV_INSN (insn))
1827 if (INSN_P (insn))
1828 lra_push_insn (insn);
1829 }
1830
1831 /* Set up sp offset for insn in range [FROM, LAST]. The offset is
1832 taken from the next BB insn after LAST or zero if there in such
1833 insn. */
1834 static void
1835 setup_sp_offset (rtx_insn *from, rtx_insn *last)
1836 {
1837 rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
1838 poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
1839 ? 0 : lra_get_insn_recog_data (before)->sp_offset);
1840
1841 for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
1842 lra_get_insn_recog_data (insn)->sp_offset = offset;
1843 }
1844
1845 /* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
1846 insns onto the stack. Print about emitting the insns with
1847 TITLE. */
1848 void
1849 lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
1850 const char *title)
1851 {
1852 rtx_insn *last;
1853
1854 if (before == NULL_RTX && after == NULL_RTX)
1855 return;
1856 if (lra_dump_file != NULL)
1857 {
1858 dump_insn_slim (lra_dump_file, insn);
1859 if (before != NULL_RTX)
1860 {
1861 fprintf (lra_dump_file," %s before:\n", title);
1862 dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
1863 }
1864 if (after != NULL_RTX)
1865 {
1866 fprintf (lra_dump_file, " %s after:\n", title);
1867 dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
1868 }
1869 fprintf (lra_dump_file, "\n");
1870 }
1871 if (before != NULL_RTX)
1872 {
1873 if (cfun->can_throw_non_call_exceptions)
1874 copy_reg_eh_region_note_forward (insn, before, NULL);
1875 emit_insn_before (before, insn);
1876 push_insns (PREV_INSN (insn), PREV_INSN (before));
1877 setup_sp_offset (before, PREV_INSN (insn));
1878 }
1879 if (after != NULL_RTX)
1880 {
1881 if (cfun->can_throw_non_call_exceptions)
1882 copy_reg_eh_region_note_forward (insn, after, NULL);
1883 for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
1884 ;
1885 emit_insn_after (after, insn);
1886 push_insns (last, insn);
1887 setup_sp_offset (after, last);
1888 }
1889 if (cfun->can_throw_non_call_exceptions)
1890 {
1891 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
1892 if (note && !insn_could_throw_p (insn))
1893 remove_note (insn, note);
1894 }
1895 }
1896 \f
1897
1898 /* Replace all references to register OLD_REGNO in *LOC with pseudo
1899 register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
1900 DEBUG_P is if LOC is within a DEBUG_INSN. Return true if any
1901 change was made. */
1902 bool
1903 lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
1904 bool debug_p)
1905 {
1906 rtx x = *loc;
1907 bool result = false;
1908 enum rtx_code code;
1909 const char *fmt;
1910 int i, j;
1911
1912 if (x == NULL_RTX)
1913 return false;
1914
1915 code = GET_CODE (x);
1916 if (code == SUBREG && subreg_p)
1917 {
1918 rtx subst, inner = SUBREG_REG (x);
1919 /* Transform subreg of constant while we still have inner mode
1920 of the subreg. The subreg internal should not be an insn
1921 operand. */
1922 if (REG_P (inner) && (int) REGNO (inner) == old_regno
1923 && CONSTANT_P (new_reg)
1924 && (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
1925 SUBREG_BYTE (x))) != NULL_RTX)
1926 {
1927 *loc = subst;
1928 return true;
1929 }
1930
1931 }
1932 else if (code == REG && (int) REGNO (x) == old_regno)
1933 {
1934 machine_mode mode = GET_MODE (x);
1935 machine_mode inner_mode = GET_MODE (new_reg);
1936
1937 if (mode != inner_mode
1938 && ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
1939 {
1940 poly_uint64 offset = 0;
1941 if (partial_subreg_p (mode, inner_mode)
1942 && SCALAR_INT_MODE_P (inner_mode))
1943 offset = subreg_lowpart_offset (mode, inner_mode);
1944 if (debug_p)
1945 new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
1946 else
1947 new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
1948 }
1949 *loc = new_reg;
1950 return true;
1951 }
1952
1953 /* Scan all the operand sub-expressions. */
1954 fmt = GET_RTX_FORMAT (code);
1955 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1956 {
1957 if (fmt[i] == 'e')
1958 {
1959 if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
1960 new_reg, subreg_p, debug_p))
1961 result = true;
1962 }
1963 else if (fmt[i] == 'E')
1964 {
1965 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1966 if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
1967 new_reg, subreg_p, debug_p))
1968 result = true;
1969 }
1970 }
1971 return result;
1972 }
1973
1974 /* Call lra_substitute_pseudo within an insn. Try to simplify subreg
1975 of constant if SUBREG_P. This won't update the insn ptr, just the
1976 contents of the insn. */
1977 bool
1978 lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
1979 rtx new_reg, bool subreg_p)
1980 {
1981 rtx loc = insn;
1982 return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
1983 DEBUG_INSN_P (insn));
1984 }
1985
1986 \f
1987
1988 /* This page contains code dealing with scratches (changing them onto
1989 pseudos and restoring them from the pseudos).
1990
1991 We change scratches into pseudos at the beginning of LRA to
1992 simplify dealing with them (conflicts, hard register assignments).
1993
1994 If the pseudo denoting scratch was spilled it means that we do need
1995 a hard register for it. Such pseudos are transformed back to
1996 scratches at the end of LRA. */
1997
1998 /* Description of location of a former scratch operand. */
1999 struct sloc
2000 {
2001 rtx_insn *insn; /* Insn where the scratch was. */
2002 int nop; /* Number of the operand which was a scratch. */
2003 int icode; /* Original icode from which scratch was removed. */
2004 };
2005
2006 typedef struct sloc *sloc_t;
2007
2008 /* Locations of the former scratches. */
2009 static vec<sloc_t> scratches;
2010
2011 /* Bitmap of scratch regnos. */
2012 static bitmap_head scratch_bitmap;
2013
2014 /* Bitmap of scratch operands. */
2015 static bitmap_head scratch_operand_bitmap;
2016
2017 /* Return true if pseudo REGNO is made of SCRATCH. */
2018 bool
2019 lra_former_scratch_p (int regno)
2020 {
2021 return bitmap_bit_p (&scratch_bitmap, regno);
2022 }
2023
2024 /* Return true if the operand NOP of INSN is a former scratch. */
2025 bool
2026 lra_former_scratch_operand_p (rtx_insn *insn, int nop)
2027 {
2028 return bitmap_bit_p (&scratch_operand_bitmap,
2029 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
2030 }
2031
2032 /* Register operand NOP in INSN as a former scratch. It will be
2033 changed to scratch back, if it is necessary, at the LRA end. */
2034 void
2035 lra_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
2036 {
2037 lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
2038 rtx op = *id->operand_loc[nop];
2039 sloc_t loc = XNEW (struct sloc);
2040 lra_assert (REG_P (op));
2041 loc->insn = insn;
2042 loc->nop = nop;
2043 loc->icode = icode;
2044 scratches.safe_push (loc);
2045 bitmap_set_bit (&scratch_bitmap, REGNO (op));
2046 bitmap_set_bit (&scratch_operand_bitmap,
2047 INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
2048 add_reg_note (insn, REG_UNUSED, op);
2049 }
2050
2051 /* Change INSN's scratches into pseudos and save their location. */
2052 static void
2053 remove_scratches_1 (rtx_insn *insn)
2054 {
2055 int i;
2056 bool insn_changed_p;
2057 rtx reg;
2058 lra_insn_recog_data_t id;
2059 struct lra_static_insn_data *static_id;
2060
2061 id = lra_get_insn_recog_data (insn);
2062 static_id = id->insn_static_data;
2063 insn_changed_p = false;
2064 for (i = 0; i < static_id->n_operands; i++)
2065 if (GET_CODE (*id->operand_loc[i]) == SCRATCH
2066 && GET_MODE (*id->operand_loc[i]) != VOIDmode)
2067 {
2068 insn_changed_p = true;
2069 *id->operand_loc[i] = reg
2070 = lra_create_new_reg (static_id->operand[i].mode,
2071 *id->operand_loc[i], ALL_REGS, NULL);
2072 lra_register_new_scratch_op (insn, i, id->icode);
2073 if (lra_dump_file != NULL)
2074 fprintf (lra_dump_file,
2075 "Removing SCRATCH in insn #%u (nop %d)\n",
2076 INSN_UID (insn), i);
2077 }
2078 if (insn_changed_p)
2079 /* Because we might use DF right after caller-saves sub-pass
2080 we need to keep DF info up to date. */
2081 df_insn_rescan (insn);
2082 }
2083
2084 /* Change scratches into pseudos and save their location. */
2085 static void
2086 remove_scratches (void)
2087 {
2088 basic_block bb;
2089 rtx_insn *insn;
2090
2091 scratches.create (get_max_uid ());
2092 bitmap_initialize (&scratch_bitmap, &reg_obstack);
2093 bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
2094 FOR_EACH_BB_FN (bb, cfun)
2095 FOR_BB_INSNS (bb, insn)
2096 if (INSN_P (insn))
2097 remove_scratches_1 (insn);
2098 }
2099
2100 /* Changes pseudos created by function remove_scratches onto scratches. */
2101 static void
2102 restore_scratches (void)
2103 {
2104 int regno;
2105 unsigned i;
2106 sloc_t loc;
2107 rtx_insn *last = NULL;
2108 lra_insn_recog_data_t id = NULL;
2109
2110 for (i = 0; scratches.iterate (i, &loc); i++)
2111 {
2112 /* Ignore already deleted insns. */
2113 if (NOTE_P (loc->insn)
2114 && NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
2115 continue;
2116 if (last != loc->insn)
2117 {
2118 last = loc->insn;
2119 id = lra_get_insn_recog_data (last);
2120 }
2121 if (loc->icode != id->icode)
2122 {
2123 /* The icode doesn't match, which means the insn has been modified
2124 (e.g. register elimination). The scratch cannot be restored. */
2125 continue;
2126 }
2127 if (REG_P (*id->operand_loc[loc->nop])
2128 && ((regno = REGNO (*id->operand_loc[loc->nop]))
2129 >= FIRST_PSEUDO_REGISTER)
2130 && lra_get_regno_hard_regno (regno) < 0)
2131 {
2132 /* It should be only case when scratch register with chosen
2133 constraint 'X' did not get memory or hard register. */
2134 lra_assert (lra_former_scratch_p (regno));
2135 *id->operand_loc[loc->nop]
2136 = gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
2137 lra_update_dup (id, loc->nop);
2138 if (lra_dump_file != NULL)
2139 fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
2140 INSN_UID (loc->insn), loc->nop);
2141 }
2142 }
2143 for (i = 0; scratches.iterate (i, &loc); i++)
2144 free (loc);
2145 scratches.release ();
2146 bitmap_clear (&scratch_bitmap);
2147 bitmap_clear (&scratch_operand_bitmap);
2148 }
2149
2150 \f
2151
2152 /* Function checks RTL for correctness. If FINAL_P is true, it is
2153 done at the end of LRA and the check is more rigorous. */
2154 static void
2155 check_rtl (bool final_p)
2156 {
2157 basic_block bb;
2158 rtx_insn *insn;
2159
2160 lra_assert (! final_p || reload_completed);
2161 FOR_EACH_BB_FN (bb, cfun)
2162 FOR_BB_INSNS (bb, insn)
2163 if (NONDEBUG_INSN_P (insn)
2164 && GET_CODE (PATTERN (insn)) != USE
2165 && GET_CODE (PATTERN (insn)) != CLOBBER
2166 && GET_CODE (PATTERN (insn)) != ASM_INPUT)
2167 {
2168 if (final_p)
2169 {
2170 extract_constrain_insn (insn);
2171 continue;
2172 }
2173 /* LRA code is based on assumption that all addresses can be
2174 correctly decomposed. LRA can generate reloads for
2175 decomposable addresses. The decomposition code checks the
2176 correctness of the addresses. So we don't need to check
2177 the addresses here. Don't call insn_invalid_p here, it can
2178 change the code at this stage. */
2179 if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
2180 fatal_insn_not_found (insn);
2181 }
2182 }
2183
2184 /* Determine if the current function has an exception receiver block
2185 that reaches the exit block via non-exceptional edges */
2186 static bool
2187 has_nonexceptional_receiver (void)
2188 {
2189 edge e;
2190 edge_iterator ei;
2191 basic_block *tos, *worklist, bb;
2192
2193 /* If we're not optimizing, then just err on the safe side. */
2194 if (!optimize)
2195 return true;
2196
2197 /* First determine which blocks can reach exit via normal paths. */
2198 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
2199
2200 FOR_EACH_BB_FN (bb, cfun)
2201 bb->flags &= ~BB_REACHABLE;
2202
2203 /* Place the exit block on our worklist. */
2204 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
2205 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
2206
2207 /* Iterate: find everything reachable from what we've already seen. */
2208 while (tos != worklist)
2209 {
2210 bb = *--tos;
2211
2212 FOR_EACH_EDGE (e, ei, bb->preds)
2213 if (e->flags & EDGE_ABNORMAL)
2214 {
2215 free (worklist);
2216 return true;
2217 }
2218 else
2219 {
2220 basic_block src = e->src;
2221
2222 if (!(src->flags & BB_REACHABLE))
2223 {
2224 src->flags |= BB_REACHABLE;
2225 *tos++ = src;
2226 }
2227 }
2228 }
2229 free (worklist);
2230 /* No exceptional block reached exit unexceptionally. */
2231 return false;
2232 }
2233
2234 /* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
2235 We change pseudos by hard registers without notification of DF and
2236 that can make the notes obsolete. DF-infrastructure does not deal
2237 with REG_INC notes -- so we should regenerate them here. */
2238 static void
2239 update_inc_notes (void)
2240 {
2241 rtx *pnote;
2242 basic_block bb;
2243 rtx_insn *insn;
2244
2245 FOR_EACH_BB_FN (bb, cfun)
2246 FOR_BB_INSNS (bb, insn)
2247 if (NONDEBUG_INSN_P (insn))
2248 {
2249 pnote = &REG_NOTES (insn);
2250 while (*pnote != 0)
2251 {
2252 if (REG_NOTE_KIND (*pnote) == REG_DEAD
2253 || REG_NOTE_KIND (*pnote) == REG_UNUSED
2254 || REG_NOTE_KIND (*pnote) == REG_INC)
2255 *pnote = XEXP (*pnote, 1);
2256 else
2257 pnote = &XEXP (*pnote, 1);
2258 }
2259
2260 if (AUTO_INC_DEC)
2261 add_auto_inc_notes (insn, PATTERN (insn));
2262 }
2263 }
2264
2265 /* Set to 1 while in lra. */
2266 int lra_in_progress;
2267
2268 /* Start of pseudo regnos before the LRA. */
2269 int lra_new_regno_start;
2270
2271 /* Start of reload pseudo regnos before the new spill pass. */
2272 int lra_constraint_new_regno_start;
2273
2274 /* Avoid spilling pseudos with regno more than the following value if
2275 it is possible. */
2276 int lra_bad_spill_regno_start;
2277
2278 /* Inheritance pseudo regnos before the new spill pass. */
2279 bitmap_head lra_inheritance_pseudos;
2280
2281 /* Split regnos before the new spill pass. */
2282 bitmap_head lra_split_regs;
2283
2284 /* Reload pseudo regnos before the new assignment pass which still can
2285 be spilled after the assignment pass as memory is also accepted in
2286 insns for the reload pseudos. */
2287 bitmap_head lra_optional_reload_pseudos;
2288
2289 /* Pseudo regnos used for subreg reloads before the new assignment
2290 pass. Such pseudos still can be spilled after the assignment
2291 pass. */
2292 bitmap_head lra_subreg_reload_pseudos;
2293
2294 /* File used for output of LRA debug information. */
2295 FILE *lra_dump_file;
2296
2297 /* True if we found an asm error. */
2298 bool lra_asm_error_p;
2299
2300 /* True if we should try spill into registers of different classes
2301 instead of memory. */
2302 bool lra_reg_spill_p;
2303
2304 /* Set up value LRA_REG_SPILL_P. */
2305 static void
2306 setup_reg_spill_flag (void)
2307 {
2308 int cl, mode;
2309
2310 if (targetm.spill_class != NULL)
2311 for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
2312 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
2313 if (targetm.spill_class ((enum reg_class) cl,
2314 (machine_mode) mode) != NO_REGS)
2315 {
2316 lra_reg_spill_p = true;
2317 return;
2318 }
2319 lra_reg_spill_p = false;
2320 }
2321
2322 /* True if the current function is too big to use regular algorithms
2323 in LRA. In other words, we should use simpler and faster algorithms
2324 in LRA. It also means we should not worry about generation code
2325 for caller saves. The value is set up in IRA. */
2326 bool lra_simple_p;
2327
2328 /* Major LRA entry function. F is a file should be used to dump LRA
2329 debug info. */
2330 void
2331 lra (FILE *f)
2332 {
2333 int i;
2334 bool live_p, inserted_p;
2335
2336 lra_dump_file = f;
2337 lra_asm_error_p = false;
2338
2339 timevar_push (TV_LRA);
2340
2341 /* Make sure that the last insn is a note. Some subsequent passes
2342 need it. */
2343 emit_note (NOTE_INSN_DELETED);
2344
2345 lra_no_alloc_regs = ira_no_alloc_regs;
2346
2347 init_reg_info ();
2348 expand_reg_info ();
2349
2350 init_insn_recog_data ();
2351
2352 /* Some quick check on RTL generated by previous passes. */
2353 if (flag_checking)
2354 check_rtl (false);
2355
2356 lra_in_progress = 1;
2357
2358 lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
2359 lra_assignment_iter = lra_assignment_iter_after_spill = 0;
2360 lra_inheritance_iter = lra_undo_inheritance_iter = 0;
2361 lra_rematerialization_iter = 0;
2362
2363 setup_reg_spill_flag ();
2364
2365 /* Function remove_scratches can creates new pseudos for clobbers --
2366 so set up lra_constraint_new_regno_start before its call to
2367 permit changing reg classes for pseudos created by this
2368 simplification. */
2369 lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
2370 lra_bad_spill_regno_start = INT_MAX;
2371 remove_scratches ();
2372
2373 /* A function that has a non-local label that can reach the exit
2374 block via non-exceptional paths must save all call-saved
2375 registers. */
2376 if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
2377 crtl->saves_all_registers = 1;
2378
2379 if (crtl->saves_all_registers)
2380 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2381 if (!crtl->abi->clobbers_full_reg_p (i)
2382 && !fixed_regs[i]
2383 && !LOCAL_REGNO (i))
2384 df_set_regs_ever_live (i, true);
2385
2386 /* We don't DF from now and avoid its using because it is to
2387 expensive when a lot of RTL changes are made. */
2388 df_set_flags (DF_NO_INSN_RESCAN);
2389 lra_constraint_insn_stack.create (get_max_uid ());
2390 lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
2391 bitmap_clear (lra_constraint_insn_stack_bitmap);
2392 lra_live_ranges_init ();
2393 lra_constraints_init ();
2394 lra_curr_reload_num = 0;
2395 push_insns (get_last_insn (), NULL);
2396 /* It is needed for the 1st coalescing. */
2397 bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
2398 bitmap_initialize (&lra_split_regs, &reg_obstack);
2399 bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
2400 bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
2401 live_p = false;
2402 if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
2403 /* If we have a stack frame, we must align it now. The stack size
2404 may be a part of the offset computation for register
2405 elimination. */
2406 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
2407 lra_init_equiv ();
2408 for (;;)
2409 {
2410 for (;;)
2411 {
2412 bool reloads_p = lra_constraints (lra_constraint_iter == 0);
2413 /* Constraint transformations may result in that eliminable
2414 hard regs become uneliminable and pseudos which use them
2415 should be spilled. It is better to do it before pseudo
2416 assignments.
2417
2418 For example, rs6000 can make
2419 RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
2420 to use a constant pool. */
2421 lra_eliminate (false, false);
2422 /* We should try to assign hard registers to scratches even
2423 if there were no RTL transformations in lra_constraints.
2424 Also we should check IRA assignments on the first
2425 iteration as they can be wrong because of early clobbers
2426 operands which are ignored in IRA. */
2427 if (! reloads_p && lra_constraint_iter > 1)
2428 {
2429 /* Stack is not empty here only when there are changes
2430 during the elimination sub-pass. */
2431 if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
2432 break;
2433 else
2434 /* If there are no reloads but changing due
2435 elimination, restart the constraint sub-pass
2436 first. */
2437 continue;
2438 }
2439 /* Do inheritance only for regular algorithms. */
2440 if (! lra_simple_p)
2441 lra_inheritance ();
2442 if (live_p)
2443 lra_clear_live_ranges ();
2444 bool fails_p;
2445 do
2446 {
2447 /* We need live ranges for lra_assign -- so build them.
2448 But don't remove dead insns or change global live
2449 info as we can undo inheritance transformations after
2450 inheritance pseudo assigning. */
2451 lra_create_live_ranges (true, !lra_simple_p);
2452 live_p = true;
2453 /* If we don't spill non-reload and non-inheritance
2454 pseudos, there is no sense to run memory-memory move
2455 coalescing. If inheritance pseudos were spilled, the
2456 memory-memory moves involving them will be removed by
2457 pass undoing inheritance. */
2458 if (lra_simple_p)
2459 lra_assign (fails_p);
2460 else
2461 {
2462 bool spill_p = !lra_assign (fails_p);
2463
2464 if (lra_undo_inheritance ())
2465 live_p = false;
2466 if (spill_p && ! fails_p)
2467 {
2468 if (! live_p)
2469 {
2470 lra_create_live_ranges (true, true);
2471 live_p = true;
2472 }
2473 if (lra_coalesce ())
2474 live_p = false;
2475 }
2476 if (! live_p)
2477 lra_clear_live_ranges ();
2478 }
2479 if (fails_p)
2480 {
2481 /* It is a very rare case. It is the last hope to
2482 split a hard regno live range for a reload
2483 pseudo. */
2484 if (live_p)
2485 lra_clear_live_ranges ();
2486 live_p = false;
2487 if (! lra_split_hard_reg_for ())
2488 break;
2489 }
2490 }
2491 while (fails_p);
2492 if (! live_p) {
2493 /* We need the correct reg notes for work of constraint sub-pass. */
2494 lra_create_live_ranges (true, true);
2495 live_p = true;
2496 }
2497 }
2498 /* Don't clear optional reloads bitmap until all constraints are
2499 satisfied as we need to differ them from regular reloads. */
2500 bitmap_clear (&lra_optional_reload_pseudos);
2501 bitmap_clear (&lra_subreg_reload_pseudos);
2502 bitmap_clear (&lra_inheritance_pseudos);
2503 bitmap_clear (&lra_split_regs);
2504 if (! live_p)
2505 {
2506 /* We need full live info for spilling pseudos into
2507 registers instead of memory. */
2508 lra_create_live_ranges (lra_reg_spill_p, true);
2509 live_p = true;
2510 }
2511 /* We should check necessity for spilling here as the above live
2512 range pass can remove spilled pseudos. */
2513 if (! lra_need_for_spills_p ())
2514 break;
2515 /* Now we know what pseudos should be spilled. Try to
2516 rematerialize them first. */
2517 if (lra_remat ())
2518 {
2519 /* We need full live info -- see the comment above. */
2520 lra_create_live_ranges (lra_reg_spill_p, true);
2521 live_p = true;
2522 if (! lra_need_for_spills_p ())
2523 {
2524 if (lra_need_for_scratch_reg_p ())
2525 continue;
2526 break;
2527 }
2528 }
2529 lra_spill ();
2530 /* Assignment of stack slots changes elimination offsets for
2531 some eliminations. So update the offsets here. */
2532 lra_eliminate (false, false);
2533 lra_constraint_new_regno_start = max_reg_num ();
2534 if (lra_bad_spill_regno_start == INT_MAX
2535 && lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
2536 && lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
2537 /* After switching off inheritance and rematerialization
2538 passes, avoid spilling reload pseudos will be created to
2539 prevent LRA cycling in some complicated cases. */
2540 lra_bad_spill_regno_start = lra_constraint_new_regno_start;
2541 lra_assignment_iter_after_spill = 0;
2542 }
2543 restore_scratches ();
2544 lra_eliminate (true, false);
2545 lra_final_code_change ();
2546 lra_in_progress = 0;
2547 if (live_p)
2548 lra_clear_live_ranges ();
2549 lra_live_ranges_finish ();
2550 lra_constraints_finish ();
2551 finish_reg_info ();
2552 sbitmap_free (lra_constraint_insn_stack_bitmap);
2553 lra_constraint_insn_stack.release ();
2554 finish_insn_recog_data ();
2555 regstat_free_n_sets_and_refs ();
2556 regstat_free_ri ();
2557 reload_completed = 1;
2558 update_inc_notes ();
2559
2560 inserted_p = fixup_abnormal_edges ();
2561
2562 /* We've possibly turned single trapping insn into multiple ones. */
2563 if (cfun->can_throw_non_call_exceptions)
2564 {
2565 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2566 bitmap_ones (blocks);
2567 find_many_sub_basic_blocks (blocks);
2568 }
2569
2570 if (inserted_p)
2571 commit_edge_insertions ();
2572
2573 /* Replacing pseudos with their memory equivalents might have
2574 created shared rtx. Subsequent passes would get confused
2575 by this, so unshare everything here. */
2576 unshare_all_rtl_again (get_insns ());
2577
2578 if (flag_checking)
2579 check_rtl (true);
2580
2581 timevar_pop (TV_LRA);
2582 }
2583
2584 /* Called once per compiler to initialize LRA data once. */
2585 void
2586 lra_init_once (void)
2587 {
2588 init_insn_code_data_once ();
2589 }
2590
2591 /* Called once per compiler to finish LRA data which are initialize
2592 once. */
2593 void
2594 lra_finish_once (void)
2595 {
2596 finish_insn_code_data_once ();
2597 }