]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
re PR target/89186 (ICE in mark_addressable at gcc/gimple-expr.c:894 since r268138)
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "predict.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
37
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
41 #include "except.h"
42 #include "dojump.h"
43 #include "explow.h"
44 #include "expr.h"
45 #include "optabs-tree.h"
46 #include "libfuncs.h"
47
48 static void prepare_float_lib_cmp (rtx, rtx, enum rtx_code, rtx *,
49 machine_mode *);
50 static rtx expand_unop_direct (machine_mode, optab, rtx, rtx, int);
51 static void emit_libcall_block_1 (rtx_insn *, rtx, rtx, rtx, bool);
52
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
55 \f
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 operation). OP0_MODE is OP0's mode.
59
60 If the last insn does not set TARGET, don't do anything, but return 1.
61
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
65
66 static int
67 add_equal_note (rtx_insn *insns, rtx target, enum rtx_code code, rtx op0,
68 rtx op1, machine_mode op0_mode)
69 {
70 rtx_insn *last_insn;
71 rtx set;
72 rtx note;
73
74 gcc_assert (insns && INSN_P (insns) && NEXT_INSN (insns));
75
76 if (GET_RTX_CLASS (code) != RTX_COMM_ARITH
77 && GET_RTX_CLASS (code) != RTX_BIN_ARITH
78 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE
79 && GET_RTX_CLASS (code) != RTX_COMPARE
80 && GET_RTX_CLASS (code) != RTX_UNARY)
81 return 1;
82
83 if (GET_CODE (target) == ZERO_EXTRACT)
84 return 1;
85
86 for (last_insn = insns;
87 NEXT_INSN (last_insn) != NULL_RTX;
88 last_insn = NEXT_INSN (last_insn))
89 ;
90
91 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
92 a value changing in the insn, so the note would be invalid for CSE. */
93 if (reg_overlap_mentioned_p (target, op0)
94 || (op1 && reg_overlap_mentioned_p (target, op1)))
95 {
96 if (MEM_P (target)
97 && (rtx_equal_p (target, op0)
98 || (op1 && rtx_equal_p (target, op1))))
99 {
100 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
101 over expanding it as temp = MEM op X, MEM = temp. If the target
102 supports MEM = MEM op X instructions, it is sometimes too hard
103 to reconstruct that form later, especially if X is also a memory,
104 and due to multiple occurrences of addresses the address might
105 be forced into register unnecessarily.
106 Note that not emitting the REG_EQUIV note might inhibit
107 CSE in some cases. */
108 set = single_set (last_insn);
109 if (set
110 && GET_CODE (SET_SRC (set)) == code
111 && MEM_P (SET_DEST (set))
112 && (rtx_equal_p (SET_DEST (set), XEXP (SET_SRC (set), 0))
113 || (op1 && rtx_equal_p (SET_DEST (set),
114 XEXP (SET_SRC (set), 1)))))
115 return 1;
116 }
117 return 0;
118 }
119
120 set = set_for_reg_notes (last_insn);
121 if (set == NULL_RTX)
122 return 1;
123
124 if (! rtx_equal_p (SET_DEST (set), target)
125 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
126 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
127 || ! rtx_equal_p (XEXP (SET_DEST (set), 0), target)))
128 return 1;
129
130 if (GET_RTX_CLASS (code) == RTX_UNARY)
131 switch (code)
132 {
133 case FFS:
134 case CLZ:
135 case CTZ:
136 case CLRSB:
137 case POPCOUNT:
138 case PARITY:
139 case BSWAP:
140 if (op0_mode != VOIDmode && GET_MODE (target) != op0_mode)
141 {
142 note = gen_rtx_fmt_e (code, op0_mode, copy_rtx (op0));
143 if (GET_MODE_UNIT_SIZE (op0_mode)
144 > GET_MODE_UNIT_SIZE (GET_MODE (target)))
145 note = simplify_gen_unary (TRUNCATE, GET_MODE (target),
146 note, op0_mode);
147 else
148 note = simplify_gen_unary (ZERO_EXTEND, GET_MODE (target),
149 note, op0_mode);
150 break;
151 }
152 /* FALLTHRU */
153 default:
154 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
155 break;
156 }
157 else
158 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
159
160 set_unique_reg_note (last_insn, REG_EQUAL, note);
161
162 return 1;
163 }
164 \f
165 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
166 for a widening operation would be. In most cases this would be OP0, but if
167 that's a constant it'll be VOIDmode, which isn't useful. */
168
169 static machine_mode
170 widened_mode (machine_mode to_mode, rtx op0, rtx op1)
171 {
172 machine_mode m0 = GET_MODE (op0);
173 machine_mode m1 = GET_MODE (op1);
174 machine_mode result;
175
176 if (m0 == VOIDmode && m1 == VOIDmode)
177 return to_mode;
178 else if (m0 == VOIDmode || GET_MODE_UNIT_SIZE (m0) < GET_MODE_UNIT_SIZE (m1))
179 result = m1;
180 else
181 result = m0;
182
183 if (GET_MODE_UNIT_SIZE (result) > GET_MODE_UNIT_SIZE (to_mode))
184 return to_mode;
185
186 return result;
187 }
188 \f
189 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
190 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
191 not actually do a sign-extend or zero-extend, but can leave the
192 higher-order bits of the result rtx undefined, for example, in the case
193 of logical operations, but not right shifts. */
194
195 static rtx
196 widen_operand (rtx op, machine_mode mode, machine_mode oldmode,
197 int unsignedp, int no_extend)
198 {
199 rtx result;
200 scalar_int_mode int_mode;
201
202 /* If we don't have to extend and this is a constant, return it. */
203 if (no_extend && GET_MODE (op) == VOIDmode)
204 return op;
205
206 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
207 extend since it will be more efficient to do so unless the signedness of
208 a promoted object differs from our extension. */
209 if (! no_extend
210 || !is_a <scalar_int_mode> (mode, &int_mode)
211 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)
212 && SUBREG_CHECK_PROMOTED_SIGN (op, unsignedp)))
213 return convert_modes (mode, oldmode, op, unsignedp);
214
215 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
216 SUBREG. */
217 if (GET_MODE_SIZE (int_mode) <= UNITS_PER_WORD)
218 return gen_lowpart (int_mode, force_reg (GET_MODE (op), op));
219
220 /* Otherwise, get an object of MODE, clobber it, and set the low-order
221 part to OP. */
222
223 result = gen_reg_rtx (int_mode);
224 emit_clobber (result);
225 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
226 return result;
227 }
228 \f
229 /* Expand vector widening operations.
230
231 There are two different classes of operations handled here:
232 1) Operations whose result is wider than all the arguments to the operation.
233 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
234 In this case OP0 and optionally OP1 would be initialized,
235 but WIDE_OP wouldn't (not relevant for this case).
236 2) Operations whose result is of the same size as the last argument to the
237 operation, but wider than all the other arguments to the operation.
238 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
239 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
240
241 E.g, when called to expand the following operations, this is how
242 the arguments will be initialized:
243 nops OP0 OP1 WIDE_OP
244 widening-sum 2 oprnd0 - oprnd1
245 widening-dot-product 3 oprnd0 oprnd1 oprnd2
246 widening-mult 2 oprnd0 oprnd1 -
247 type-promotion (vec-unpack) 1 oprnd0 - - */
248
249 rtx
250 expand_widen_pattern_expr (sepops ops, rtx op0, rtx op1, rtx wide_op,
251 rtx target, int unsignedp)
252 {
253 struct expand_operand eops[4];
254 tree oprnd0, oprnd1, oprnd2;
255 machine_mode wmode = VOIDmode, tmode0, tmode1 = VOIDmode;
256 optab widen_pattern_optab;
257 enum insn_code icode;
258 int nops = TREE_CODE_LENGTH (ops->code);
259 int op;
260 bool sbool = false;
261
262 oprnd0 = ops->op0;
263 tmode0 = TYPE_MODE (TREE_TYPE (oprnd0));
264 if (ops->code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
265 || ops->code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)
266 /* The sign is from the result type rather than operand's type
267 for these ops. */
268 widen_pattern_optab
269 = optab_for_tree_code (ops->code, ops->type, optab_default);
270 else if ((ops->code == VEC_UNPACK_HI_EXPR
271 || ops->code == VEC_UNPACK_LO_EXPR)
272 && VECTOR_BOOLEAN_TYPE_P (ops->type)
273 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0))
274 && TYPE_MODE (ops->type) == TYPE_MODE (TREE_TYPE (oprnd0))
275 && SCALAR_INT_MODE_P (TYPE_MODE (ops->type)))
276 {
277 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
278 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
279 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
280 the pattern number of elements in the wider vector. */
281 widen_pattern_optab
282 = (ops->code == VEC_UNPACK_HI_EXPR
283 ? vec_unpacks_sbool_hi_optab : vec_unpacks_sbool_lo_optab);
284 sbool = true;
285 }
286 else
287 widen_pattern_optab
288 = optab_for_tree_code (ops->code, TREE_TYPE (oprnd0), optab_default);
289 if (ops->code == WIDEN_MULT_PLUS_EXPR
290 || ops->code == WIDEN_MULT_MINUS_EXPR)
291 icode = find_widening_optab_handler (widen_pattern_optab,
292 TYPE_MODE (TREE_TYPE (ops->op2)),
293 tmode0);
294 else
295 icode = optab_handler (widen_pattern_optab, tmode0);
296 gcc_assert (icode != CODE_FOR_nothing);
297
298 if (nops >= 2)
299 {
300 oprnd1 = ops->op1;
301 tmode1 = TYPE_MODE (TREE_TYPE (oprnd1));
302 }
303 else if (sbool)
304 {
305 nops = 2;
306 op1 = GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0)).to_constant ());
307 tmode1 = tmode0;
308 }
309
310 /* The last operand is of a wider mode than the rest of the operands. */
311 if (nops == 2)
312 wmode = tmode1;
313 else if (nops == 3)
314 {
315 gcc_assert (tmode1 == tmode0);
316 gcc_assert (op1);
317 oprnd2 = ops->op2;
318 wmode = TYPE_MODE (TREE_TYPE (oprnd2));
319 }
320
321 op = 0;
322 create_output_operand (&eops[op++], target, TYPE_MODE (ops->type));
323 create_convert_operand_from (&eops[op++], op0, tmode0, unsignedp);
324 if (op1)
325 create_convert_operand_from (&eops[op++], op1, tmode1, unsignedp);
326 if (wide_op)
327 create_convert_operand_from (&eops[op++], wide_op, wmode, unsignedp);
328 expand_insn (icode, op, eops);
329 return eops[0].value;
330 }
331
332 /* Generate code to perform an operation specified by TERNARY_OPTAB
333 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
334
335 UNSIGNEDP is for the case where we have to widen the operands
336 to perform the operation. It says to use zero-extension.
337
338 If TARGET is nonzero, the value
339 is generated there, if it is convenient to do so.
340 In all cases an rtx is returned for the locus of the value;
341 this may or may not be TARGET. */
342
343 rtx
344 expand_ternary_op (machine_mode mode, optab ternary_optab, rtx op0,
345 rtx op1, rtx op2, rtx target, int unsignedp)
346 {
347 struct expand_operand ops[4];
348 enum insn_code icode = optab_handler (ternary_optab, mode);
349
350 gcc_assert (optab_handler (ternary_optab, mode) != CODE_FOR_nothing);
351
352 create_output_operand (&ops[0], target, mode);
353 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
354 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
355 create_convert_operand_from (&ops[3], op2, mode, unsignedp);
356 expand_insn (icode, 4, ops);
357 return ops[0].value;
358 }
359
360
361 /* Like expand_binop, but return a constant rtx if the result can be
362 calculated at compile time. The arguments and return value are
363 otherwise the same as for expand_binop. */
364
365 rtx
366 simplify_expand_binop (machine_mode mode, optab binoptab,
367 rtx op0, rtx op1, rtx target, int unsignedp,
368 enum optab_methods methods)
369 {
370 if (CONSTANT_P (op0) && CONSTANT_P (op1))
371 {
372 rtx x = simplify_binary_operation (optab_to_code (binoptab),
373 mode, op0, op1);
374 if (x)
375 return x;
376 }
377
378 return expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods);
379 }
380
381 /* Like simplify_expand_binop, but always put the result in TARGET.
382 Return true if the expansion succeeded. */
383
384 bool
385 force_expand_binop (machine_mode mode, optab binoptab,
386 rtx op0, rtx op1, rtx target, int unsignedp,
387 enum optab_methods methods)
388 {
389 rtx x = simplify_expand_binop (mode, binoptab, op0, op1,
390 target, unsignedp, methods);
391 if (x == 0)
392 return false;
393 if (x != target)
394 emit_move_insn (target, x);
395 return true;
396 }
397
398 /* Create a new vector value in VMODE with all elements set to OP. The
399 mode of OP must be the element mode of VMODE. If OP is a constant,
400 then the return value will be a constant. */
401
402 rtx
403 expand_vector_broadcast (machine_mode vmode, rtx op)
404 {
405 int n;
406 rtvec vec;
407
408 gcc_checking_assert (VECTOR_MODE_P (vmode));
409
410 if (valid_for_const_vector_p (vmode, op))
411 return gen_const_vec_duplicate (vmode, op);
412
413 insn_code icode = optab_handler (vec_duplicate_optab, vmode);
414 if (icode != CODE_FOR_nothing)
415 {
416 struct expand_operand ops[2];
417 create_output_operand (&ops[0], NULL_RTX, vmode);
418 create_input_operand (&ops[1], op, GET_MODE (op));
419 expand_insn (icode, 2, ops);
420 return ops[0].value;
421 }
422
423 if (!GET_MODE_NUNITS (vmode).is_constant (&n))
424 return NULL;
425
426 /* ??? If the target doesn't have a vec_init, then we have no easy way
427 of performing this operation. Most of this sort of generic support
428 is hidden away in the vector lowering support in gimple. */
429 icode = convert_optab_handler (vec_init_optab, vmode,
430 GET_MODE_INNER (vmode));
431 if (icode == CODE_FOR_nothing)
432 return NULL;
433
434 vec = rtvec_alloc (n);
435 for (int i = 0; i < n; ++i)
436 RTVEC_ELT (vec, i) = op;
437 rtx ret = gen_reg_rtx (vmode);
438 emit_insn (GEN_FCN (icode) (ret, gen_rtx_PARALLEL (vmode, vec)));
439
440 return ret;
441 }
442
443 /* This subroutine of expand_doubleword_shift handles the cases in which
444 the effective shift value is >= BITS_PER_WORD. The arguments and return
445 value are the same as for the parent routine, except that SUPERWORD_OP1
446 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
447 INTO_TARGET may be null if the caller has decided to calculate it. */
448
449 static bool
450 expand_superword_shift (optab binoptab, rtx outof_input, rtx superword_op1,
451 rtx outof_target, rtx into_target,
452 int unsignedp, enum optab_methods methods)
453 {
454 if (into_target != 0)
455 if (!force_expand_binop (word_mode, binoptab, outof_input, superword_op1,
456 into_target, unsignedp, methods))
457 return false;
458
459 if (outof_target != 0)
460 {
461 /* For a signed right shift, we must fill OUTOF_TARGET with copies
462 of the sign bit, otherwise we must fill it with zeros. */
463 if (binoptab != ashr_optab)
464 emit_move_insn (outof_target, CONST0_RTX (word_mode));
465 else
466 if (!force_expand_binop (word_mode, binoptab, outof_input,
467 gen_int_shift_amount (word_mode,
468 BITS_PER_WORD - 1),
469 outof_target, unsignedp, methods))
470 return false;
471 }
472 return true;
473 }
474
475 /* This subroutine of expand_doubleword_shift handles the cases in which
476 the effective shift value is < BITS_PER_WORD. The arguments and return
477 value are the same as for the parent routine. */
478
479 static bool
480 expand_subword_shift (scalar_int_mode op1_mode, optab binoptab,
481 rtx outof_input, rtx into_input, rtx op1,
482 rtx outof_target, rtx into_target,
483 int unsignedp, enum optab_methods methods,
484 unsigned HOST_WIDE_INT shift_mask)
485 {
486 optab reverse_unsigned_shift, unsigned_shift;
487 rtx tmp, carries;
488
489 reverse_unsigned_shift = (binoptab == ashl_optab ? lshr_optab : ashl_optab);
490 unsigned_shift = (binoptab == ashl_optab ? ashl_optab : lshr_optab);
491
492 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
493 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
494 the opposite direction to BINOPTAB. */
495 if (CONSTANT_P (op1) || shift_mask >= BITS_PER_WORD)
496 {
497 carries = outof_input;
498 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD,
499 op1_mode), op1_mode);
500 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
501 0, true, methods);
502 }
503 else
504 {
505 /* We must avoid shifting by BITS_PER_WORD bits since that is either
506 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
507 has unknown behavior. Do a single shift first, then shift by the
508 remainder. It's OK to use ~OP1 as the remainder if shift counts
509 are truncated to the mode size. */
510 carries = expand_binop (word_mode, reverse_unsigned_shift,
511 outof_input, const1_rtx, 0, unsignedp, methods);
512 if (shift_mask == BITS_PER_WORD - 1)
513 {
514 tmp = immed_wide_int_const
515 (wi::minus_one (GET_MODE_PRECISION (op1_mode)), op1_mode);
516 tmp = simplify_expand_binop (op1_mode, xor_optab, op1, tmp,
517 0, true, methods);
518 }
519 else
520 {
521 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD - 1,
522 op1_mode), op1_mode);
523 tmp = simplify_expand_binop (op1_mode, sub_optab, tmp, op1,
524 0, true, methods);
525 }
526 }
527 if (tmp == 0 || carries == 0)
528 return false;
529 carries = expand_binop (word_mode, reverse_unsigned_shift,
530 carries, tmp, 0, unsignedp, methods);
531 if (carries == 0)
532 return false;
533
534 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
535 so the result can go directly into INTO_TARGET if convenient. */
536 tmp = expand_binop (word_mode, unsigned_shift, into_input, op1,
537 into_target, unsignedp, methods);
538 if (tmp == 0)
539 return false;
540
541 /* Now OR in the bits carried over from OUTOF_INPUT. */
542 if (!force_expand_binop (word_mode, ior_optab, tmp, carries,
543 into_target, unsignedp, methods))
544 return false;
545
546 /* Use a standard word_mode shift for the out-of half. */
547 if (outof_target != 0)
548 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
549 outof_target, unsignedp, methods))
550 return false;
551
552 return true;
553 }
554
555
556 /* Try implementing expand_doubleword_shift using conditional moves.
557 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
558 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
559 are the shift counts to use in the former and latter case. All other
560 arguments are the same as the parent routine. */
561
562 static bool
563 expand_doubleword_shift_condmove (scalar_int_mode op1_mode, optab binoptab,
564 enum rtx_code cmp_code, rtx cmp1, rtx cmp2,
565 rtx outof_input, rtx into_input,
566 rtx subword_op1, rtx superword_op1,
567 rtx outof_target, rtx into_target,
568 int unsignedp, enum optab_methods methods,
569 unsigned HOST_WIDE_INT shift_mask)
570 {
571 rtx outof_superword, into_superword;
572
573 /* Put the superword version of the output into OUTOF_SUPERWORD and
574 INTO_SUPERWORD. */
575 outof_superword = outof_target != 0 ? gen_reg_rtx (word_mode) : 0;
576 if (outof_target != 0 && subword_op1 == superword_op1)
577 {
578 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
579 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
580 into_superword = outof_target;
581 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
582 outof_superword, 0, unsignedp, methods))
583 return false;
584 }
585 else
586 {
587 into_superword = gen_reg_rtx (word_mode);
588 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
589 outof_superword, into_superword,
590 unsignedp, methods))
591 return false;
592 }
593
594 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
595 if (!expand_subword_shift (op1_mode, binoptab,
596 outof_input, into_input, subword_op1,
597 outof_target, into_target,
598 unsignedp, methods, shift_mask))
599 return false;
600
601 /* Select between them. Do the INTO half first because INTO_SUPERWORD
602 might be the current value of OUTOF_TARGET. */
603 if (!emit_conditional_move (into_target, cmp_code, cmp1, cmp2, op1_mode,
604 into_target, into_superword, word_mode, false))
605 return false;
606
607 if (outof_target != 0)
608 if (!emit_conditional_move (outof_target, cmp_code, cmp1, cmp2, op1_mode,
609 outof_target, outof_superword,
610 word_mode, false))
611 return false;
612
613 return true;
614 }
615
616 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
617 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
618 input operand; the shift moves bits in the direction OUTOF_INPUT->
619 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
620 of the target. OP1 is the shift count and OP1_MODE is its mode.
621 If OP1 is constant, it will have been truncated as appropriate
622 and is known to be nonzero.
623
624 If SHIFT_MASK is zero, the result of word shifts is undefined when the
625 shift count is outside the range [0, BITS_PER_WORD). This routine must
626 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
627
628 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
629 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
630 fill with zeros or sign bits as appropriate.
631
632 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
633 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
634 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
635 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
636 are undefined.
637
638 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
639 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
640 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
641 function wants to calculate it itself.
642
643 Return true if the shift could be successfully synthesized. */
644
645 static bool
646 expand_doubleword_shift (scalar_int_mode op1_mode, optab binoptab,
647 rtx outof_input, rtx into_input, rtx op1,
648 rtx outof_target, rtx into_target,
649 int unsignedp, enum optab_methods methods,
650 unsigned HOST_WIDE_INT shift_mask)
651 {
652 rtx superword_op1, tmp, cmp1, cmp2;
653 enum rtx_code cmp_code;
654
655 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
656 fill the result with sign or zero bits as appropriate. If so, the value
657 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
658 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
659 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
660
661 This isn't worthwhile for constant shifts since the optimizers will
662 cope better with in-range shift counts. */
663 if (shift_mask >= BITS_PER_WORD
664 && outof_target != 0
665 && !CONSTANT_P (op1))
666 {
667 if (!expand_doubleword_shift (op1_mode, binoptab,
668 outof_input, into_input, op1,
669 0, into_target,
670 unsignedp, methods, shift_mask))
671 return false;
672 if (!force_expand_binop (word_mode, binoptab, outof_input, op1,
673 outof_target, unsignedp, methods))
674 return false;
675 return true;
676 }
677
678 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
679 is true when the effective shift value is less than BITS_PER_WORD.
680 Set SUPERWORD_OP1 to the shift count that should be used to shift
681 OUTOF_INPUT into INTO_TARGET when the condition is false. */
682 tmp = immed_wide_int_const (wi::shwi (BITS_PER_WORD, op1_mode), op1_mode);
683 if (!CONSTANT_P (op1) && shift_mask == BITS_PER_WORD - 1)
684 {
685 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
686 is a subword shift count. */
687 cmp1 = simplify_expand_binop (op1_mode, and_optab, op1, tmp,
688 0, true, methods);
689 cmp2 = CONST0_RTX (op1_mode);
690 cmp_code = EQ;
691 superword_op1 = op1;
692 }
693 else
694 {
695 /* Set CMP1 to OP1 - BITS_PER_WORD. */
696 cmp1 = simplify_expand_binop (op1_mode, sub_optab, op1, tmp,
697 0, true, methods);
698 cmp2 = CONST0_RTX (op1_mode);
699 cmp_code = LT;
700 superword_op1 = cmp1;
701 }
702 if (cmp1 == 0)
703 return false;
704
705 /* If we can compute the condition at compile time, pick the
706 appropriate subroutine. */
707 tmp = simplify_relational_operation (cmp_code, SImode, op1_mode, cmp1, cmp2);
708 if (tmp != 0 && CONST_INT_P (tmp))
709 {
710 if (tmp == const0_rtx)
711 return expand_superword_shift (binoptab, outof_input, superword_op1,
712 outof_target, into_target,
713 unsignedp, methods);
714 else
715 return expand_subword_shift (op1_mode, binoptab,
716 outof_input, into_input, op1,
717 outof_target, into_target,
718 unsignedp, methods, shift_mask);
719 }
720
721 /* Try using conditional moves to generate straight-line code. */
722 if (HAVE_conditional_move)
723 {
724 rtx_insn *start = get_last_insn ();
725 if (expand_doubleword_shift_condmove (op1_mode, binoptab,
726 cmp_code, cmp1, cmp2,
727 outof_input, into_input,
728 op1, superword_op1,
729 outof_target, into_target,
730 unsignedp, methods, shift_mask))
731 return true;
732 delete_insns_since (start);
733 }
734
735 /* As a last resort, use branches to select the correct alternative. */
736 rtx_code_label *subword_label = gen_label_rtx ();
737 rtx_code_label *done_label = gen_label_rtx ();
738
739 NO_DEFER_POP;
740 do_compare_rtx_and_jump (cmp1, cmp2, cmp_code, false, op1_mode,
741 0, 0, subword_label,
742 profile_probability::uninitialized ());
743 OK_DEFER_POP;
744
745 if (!expand_superword_shift (binoptab, outof_input, superword_op1,
746 outof_target, into_target,
747 unsignedp, methods))
748 return false;
749
750 emit_jump_insn (targetm.gen_jump (done_label));
751 emit_barrier ();
752 emit_label (subword_label);
753
754 if (!expand_subword_shift (op1_mode, binoptab,
755 outof_input, into_input, op1,
756 outof_target, into_target,
757 unsignedp, methods, shift_mask))
758 return false;
759
760 emit_label (done_label);
761 return true;
762 }
763 \f
764 /* Subroutine of expand_binop. Perform a double word multiplication of
765 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
766 as the target's word_mode. This function return NULL_RTX if anything
767 goes wrong, in which case it may have already emitted instructions
768 which need to be deleted.
769
770 If we want to multiply two two-word values and have normal and widening
771 multiplies of single-word values, we can do this with three smaller
772 multiplications.
773
774 The multiplication proceeds as follows:
775 _______________________
776 [__op0_high_|__op0_low__]
777 _______________________
778 * [__op1_high_|__op1_low__]
779 _______________________________________________
780 _______________________
781 (1) [__op0_low__*__op1_low__]
782 _______________________
783 (2a) [__op0_low__*__op1_high_]
784 _______________________
785 (2b) [__op0_high_*__op1_low__]
786 _______________________
787 (3) [__op0_high_*__op1_high_]
788
789
790 This gives a 4-word result. Since we are only interested in the
791 lower 2 words, partial result (3) and the upper words of (2a) and
792 (2b) don't need to be calculated. Hence (2a) and (2b) can be
793 calculated using non-widening multiplication.
794
795 (1), however, needs to be calculated with an unsigned widening
796 multiplication. If this operation is not directly supported we
797 try using a signed widening multiplication and adjust the result.
798 This adjustment works as follows:
799
800 If both operands are positive then no adjustment is needed.
801
802 If the operands have different signs, for example op0_low < 0 and
803 op1_low >= 0, the instruction treats the most significant bit of
804 op0_low as a sign bit instead of a bit with significance
805 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
806 with 2**BITS_PER_WORD - op0_low, and two's complements the
807 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
808 the result.
809
810 Similarly, if both operands are negative, we need to add
811 (op0_low + op1_low) * 2**BITS_PER_WORD.
812
813 We use a trick to adjust quickly. We logically shift op0_low right
814 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
815 op0_high (op1_high) before it is used to calculate 2b (2a). If no
816 logical shift exists, we do an arithmetic right shift and subtract
817 the 0 or -1. */
818
819 static rtx
820 expand_doubleword_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
821 bool umulp, enum optab_methods methods)
822 {
823 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
824 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
825 rtx wordm1 = (umulp ? NULL_RTX
826 : gen_int_shift_amount (word_mode, BITS_PER_WORD - 1));
827 rtx product, adjust, product_high, temp;
828
829 rtx op0_high = operand_subword_force (op0, high, mode);
830 rtx op0_low = operand_subword_force (op0, low, mode);
831 rtx op1_high = operand_subword_force (op1, high, mode);
832 rtx op1_low = operand_subword_force (op1, low, mode);
833
834 /* If we're using an unsigned multiply to directly compute the product
835 of the low-order words of the operands and perform any required
836 adjustments of the operands, we begin by trying two more multiplications
837 and then computing the appropriate sum.
838
839 We have checked above that the required addition is provided.
840 Full-word addition will normally always succeed, especially if
841 it is provided at all, so we don't worry about its failure. The
842 multiplication may well fail, however, so we do handle that. */
843
844 if (!umulp)
845 {
846 /* ??? This could be done with emit_store_flag where available. */
847 temp = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
848 NULL_RTX, 1, methods);
849 if (temp)
850 op0_high = expand_binop (word_mode, add_optab, op0_high, temp,
851 NULL_RTX, 0, OPTAB_DIRECT);
852 else
853 {
854 temp = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
855 NULL_RTX, 0, methods);
856 if (!temp)
857 return NULL_RTX;
858 op0_high = expand_binop (word_mode, sub_optab, op0_high, temp,
859 NULL_RTX, 0, OPTAB_DIRECT);
860 }
861
862 if (!op0_high)
863 return NULL_RTX;
864 }
865
866 adjust = expand_binop (word_mode, smul_optab, op0_high, op1_low,
867 NULL_RTX, 0, OPTAB_DIRECT);
868 if (!adjust)
869 return NULL_RTX;
870
871 /* OP0_HIGH should now be dead. */
872
873 if (!umulp)
874 {
875 /* ??? This could be done with emit_store_flag where available. */
876 temp = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
877 NULL_RTX, 1, methods);
878 if (temp)
879 op1_high = expand_binop (word_mode, add_optab, op1_high, temp,
880 NULL_RTX, 0, OPTAB_DIRECT);
881 else
882 {
883 temp = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
884 NULL_RTX, 0, methods);
885 if (!temp)
886 return NULL_RTX;
887 op1_high = expand_binop (word_mode, sub_optab, op1_high, temp,
888 NULL_RTX, 0, OPTAB_DIRECT);
889 }
890
891 if (!op1_high)
892 return NULL_RTX;
893 }
894
895 temp = expand_binop (word_mode, smul_optab, op1_high, op0_low,
896 NULL_RTX, 0, OPTAB_DIRECT);
897 if (!temp)
898 return NULL_RTX;
899
900 /* OP1_HIGH should now be dead. */
901
902 adjust = expand_binop (word_mode, add_optab, adjust, temp,
903 NULL_RTX, 0, OPTAB_DIRECT);
904
905 if (target && !REG_P (target))
906 target = NULL_RTX;
907
908 /* *_widen_optab needs to determine operand mode, make sure at least
909 one operand has non-VOID mode. */
910 if (GET_MODE (op0_low) == VOIDmode && GET_MODE (op1_low) == VOIDmode)
911 op0_low = force_reg (word_mode, op0_low);
912
913 if (umulp)
914 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
915 target, 1, OPTAB_DIRECT);
916 else
917 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
918 target, 1, OPTAB_DIRECT);
919
920 if (!product)
921 return NULL_RTX;
922
923 product_high = operand_subword (product, high, 1, mode);
924 adjust = expand_binop (word_mode, add_optab, product_high, adjust,
925 NULL_RTX, 0, OPTAB_DIRECT);
926 emit_move_insn (product_high, adjust);
927 return product;
928 }
929 \f
930 /* Wrapper around expand_binop which takes an rtx code to specify
931 the operation to perform, not an optab pointer. All other
932 arguments are the same. */
933 rtx
934 expand_simple_binop (machine_mode mode, enum rtx_code code, rtx op0,
935 rtx op1, rtx target, int unsignedp,
936 enum optab_methods methods)
937 {
938 optab binop = code_to_optab (code);
939 gcc_assert (binop);
940
941 return expand_binop (mode, binop, op0, op1, target, unsignedp, methods);
942 }
943
944 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
945 binop. Order them according to commutative_operand_precedence and, if
946 possible, try to put TARGET or a pseudo first. */
947 static bool
948 swap_commutative_operands_with_target (rtx target, rtx op0, rtx op1)
949 {
950 int op0_prec = commutative_operand_precedence (op0);
951 int op1_prec = commutative_operand_precedence (op1);
952
953 if (op0_prec < op1_prec)
954 return true;
955
956 if (op0_prec > op1_prec)
957 return false;
958
959 /* With equal precedence, both orders are ok, but it is better if the
960 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
961 if (target == 0 || REG_P (target))
962 return (REG_P (op1) && !REG_P (op0)) || target == op1;
963 else
964 return rtx_equal_p (op1, target);
965 }
966
967 /* Return true if BINOPTAB implements a shift operation. */
968
969 static bool
970 shift_optab_p (optab binoptab)
971 {
972 switch (optab_to_code (binoptab))
973 {
974 case ASHIFT:
975 case SS_ASHIFT:
976 case US_ASHIFT:
977 case ASHIFTRT:
978 case LSHIFTRT:
979 case ROTATE:
980 case ROTATERT:
981 return true;
982
983 default:
984 return false;
985 }
986 }
987
988 /* Return true if BINOPTAB implements a commutative binary operation. */
989
990 static bool
991 commutative_optab_p (optab binoptab)
992 {
993 return (GET_RTX_CLASS (optab_to_code (binoptab)) == RTX_COMM_ARITH
994 || binoptab == smul_widen_optab
995 || binoptab == umul_widen_optab
996 || binoptab == smul_highpart_optab
997 || binoptab == umul_highpart_optab);
998 }
999
1000 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1001 optimizing, and if the operand is a constant that costs more than
1002 1 instruction, force the constant into a register and return that
1003 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1004
1005 static rtx
1006 avoid_expensive_constant (machine_mode mode, optab binoptab,
1007 int opn, rtx x, bool unsignedp)
1008 {
1009 bool speed = optimize_insn_for_speed_p ();
1010
1011 if (mode != VOIDmode
1012 && optimize
1013 && CONSTANT_P (x)
1014 && (rtx_cost (x, mode, optab_to_code (binoptab), opn, speed)
1015 > set_src_cost (x, mode, speed)))
1016 {
1017 if (CONST_INT_P (x))
1018 {
1019 HOST_WIDE_INT intval = trunc_int_for_mode (INTVAL (x), mode);
1020 if (intval != INTVAL (x))
1021 x = GEN_INT (intval);
1022 }
1023 else
1024 x = convert_modes (mode, VOIDmode, x, unsignedp);
1025 x = force_reg (mode, x);
1026 }
1027 return x;
1028 }
1029
1030 /* Helper function for expand_binop: handle the case where there
1031 is an insn ICODE that directly implements the indicated operation.
1032 Returns null if this is not possible. */
1033 static rtx
1034 expand_binop_directly (enum insn_code icode, machine_mode mode, optab binoptab,
1035 rtx op0, rtx op1,
1036 rtx target, int unsignedp, enum optab_methods methods,
1037 rtx_insn *last)
1038 {
1039 machine_mode xmode0 = insn_data[(int) icode].operand[1].mode;
1040 machine_mode xmode1 = insn_data[(int) icode].operand[2].mode;
1041 machine_mode mode0, mode1, tmp_mode;
1042 struct expand_operand ops[3];
1043 bool commutative_p;
1044 rtx_insn *pat;
1045 rtx xop0 = op0, xop1 = op1;
1046 bool canonicalize_op1 = false;
1047
1048 /* If it is a commutative operator and the modes would match
1049 if we would swap the operands, we can save the conversions. */
1050 commutative_p = commutative_optab_p (binoptab);
1051 if (commutative_p
1052 && GET_MODE (xop0) != xmode0 && GET_MODE (xop1) != xmode1
1053 && GET_MODE (xop0) == xmode1 && GET_MODE (xop1) == xmode1)
1054 std::swap (xop0, xop1);
1055
1056 /* If we are optimizing, force expensive constants into a register. */
1057 xop0 = avoid_expensive_constant (xmode0, binoptab, 0, xop0, unsignedp);
1058 if (!shift_optab_p (binoptab))
1059 xop1 = avoid_expensive_constant (xmode1, binoptab, 1, xop1, unsignedp);
1060 else
1061 /* Shifts and rotates often use a different mode for op1 from op0;
1062 for VOIDmode constants we don't know the mode, so force it
1063 to be canonicalized using convert_modes. */
1064 canonicalize_op1 = true;
1065
1066 /* In case the insn wants input operands in modes different from
1067 those of the actual operands, convert the operands. It would
1068 seem that we don't need to convert CONST_INTs, but we do, so
1069 that they're properly zero-extended, sign-extended or truncated
1070 for their mode. */
1071
1072 mode0 = GET_MODE (xop0) != VOIDmode ? GET_MODE (xop0) : mode;
1073 if (xmode0 != VOIDmode && xmode0 != mode0)
1074 {
1075 xop0 = convert_modes (xmode0, mode0, xop0, unsignedp);
1076 mode0 = xmode0;
1077 }
1078
1079 mode1 = ((GET_MODE (xop1) != VOIDmode || canonicalize_op1)
1080 ? GET_MODE (xop1) : mode);
1081 if (xmode1 != VOIDmode && xmode1 != mode1)
1082 {
1083 xop1 = convert_modes (xmode1, mode1, xop1, unsignedp);
1084 mode1 = xmode1;
1085 }
1086
1087 /* If operation is commutative,
1088 try to make the first operand a register.
1089 Even better, try to make it the same as the target.
1090 Also try to make the last operand a constant. */
1091 if (commutative_p
1092 && swap_commutative_operands_with_target (target, xop0, xop1))
1093 std::swap (xop0, xop1);
1094
1095 /* Now, if insn's predicates don't allow our operands, put them into
1096 pseudo regs. */
1097
1098 if (binoptab == vec_pack_trunc_optab
1099 || binoptab == vec_pack_usat_optab
1100 || binoptab == vec_pack_ssat_optab
1101 || binoptab == vec_pack_ufix_trunc_optab
1102 || binoptab == vec_pack_sfix_trunc_optab
1103 || binoptab == vec_packu_float_optab
1104 || binoptab == vec_packs_float_optab)
1105 {
1106 /* The mode of the result is different then the mode of the
1107 arguments. */
1108 tmp_mode = insn_data[(int) icode].operand[0].mode;
1109 if (VECTOR_MODE_P (mode)
1110 && maybe_ne (GET_MODE_NUNITS (tmp_mode), 2 * GET_MODE_NUNITS (mode)))
1111 {
1112 delete_insns_since (last);
1113 return NULL_RTX;
1114 }
1115 }
1116 else
1117 tmp_mode = mode;
1118
1119 create_output_operand (&ops[0], target, tmp_mode);
1120 create_input_operand (&ops[1], xop0, mode0);
1121 create_input_operand (&ops[2], xop1, mode1);
1122 pat = maybe_gen_insn (icode, 3, ops);
1123 if (pat)
1124 {
1125 /* If PAT is composed of more than one insn, try to add an appropriate
1126 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1127 operand, call expand_binop again, this time without a target. */
1128 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
1129 && ! add_equal_note (pat, ops[0].value,
1130 optab_to_code (binoptab),
1131 ops[1].value, ops[2].value, mode0))
1132 {
1133 delete_insns_since (last);
1134 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
1135 unsignedp, methods);
1136 }
1137
1138 emit_insn (pat);
1139 return ops[0].value;
1140 }
1141 delete_insns_since (last);
1142 return NULL_RTX;
1143 }
1144
1145 /* Generate code to perform an operation specified by BINOPTAB
1146 on operands OP0 and OP1, with result having machine-mode MODE.
1147
1148 UNSIGNEDP is for the case where we have to widen the operands
1149 to perform the operation. It says to use zero-extension.
1150
1151 If TARGET is nonzero, the value
1152 is generated there, if it is convenient to do so.
1153 In all cases an rtx is returned for the locus of the value;
1154 this may or may not be TARGET. */
1155
1156 rtx
1157 expand_binop (machine_mode mode, optab binoptab, rtx op0, rtx op1,
1158 rtx target, int unsignedp, enum optab_methods methods)
1159 {
1160 enum optab_methods next_methods
1161 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
1162 ? OPTAB_WIDEN : methods);
1163 enum mode_class mclass;
1164 enum insn_code icode;
1165 machine_mode wider_mode;
1166 scalar_int_mode int_mode;
1167 rtx libfunc;
1168 rtx temp;
1169 rtx_insn *entry_last = get_last_insn ();
1170 rtx_insn *last;
1171
1172 mclass = GET_MODE_CLASS (mode);
1173
1174 /* If subtracting an integer constant, convert this into an addition of
1175 the negated constant. */
1176
1177 if (binoptab == sub_optab && CONST_INT_P (op1))
1178 {
1179 op1 = negate_rtx (mode, op1);
1180 binoptab = add_optab;
1181 }
1182 /* For shifts, constant invalid op1 might be expanded from different
1183 mode than MODE. As those are invalid, force them to a register
1184 to avoid further problems during expansion. */
1185 else if (CONST_INT_P (op1)
1186 && shift_optab_p (binoptab)
1187 && UINTVAL (op1) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode)))
1188 {
1189 op1 = gen_int_mode (INTVAL (op1), GET_MODE_INNER (mode));
1190 op1 = force_reg (GET_MODE_INNER (mode), op1);
1191 }
1192
1193 /* Record where to delete back to if we backtrack. */
1194 last = get_last_insn ();
1195
1196 /* If we can do it with a three-operand insn, do so. */
1197
1198 if (methods != OPTAB_MUST_WIDEN)
1199 {
1200 if (convert_optab_p (binoptab))
1201 {
1202 machine_mode from_mode = widened_mode (mode, op0, op1);
1203 icode = find_widening_optab_handler (binoptab, mode, from_mode);
1204 }
1205 else
1206 icode = optab_handler (binoptab, mode);
1207 if (icode != CODE_FOR_nothing)
1208 {
1209 temp = expand_binop_directly (icode, mode, binoptab, op0, op1,
1210 target, unsignedp, methods, last);
1211 if (temp)
1212 return temp;
1213 }
1214 }
1215
1216 /* If we were trying to rotate, and that didn't work, try rotating
1217 the other direction before falling back to shifts and bitwise-or. */
1218 if (((binoptab == rotl_optab
1219 && (icode = optab_handler (rotr_optab, mode)) != CODE_FOR_nothing)
1220 || (binoptab == rotr_optab
1221 && (icode = optab_handler (rotl_optab, mode)) != CODE_FOR_nothing))
1222 && is_int_mode (mode, &int_mode))
1223 {
1224 optab otheroptab = (binoptab == rotl_optab ? rotr_optab : rotl_optab);
1225 rtx newop1;
1226 unsigned int bits = GET_MODE_PRECISION (int_mode);
1227
1228 if (CONST_INT_P (op1))
1229 newop1 = gen_int_shift_amount (int_mode, bits - INTVAL (op1));
1230 else if (targetm.shift_truncation_mask (int_mode) == bits - 1)
1231 newop1 = negate_rtx (GET_MODE (op1), op1);
1232 else
1233 newop1 = expand_binop (GET_MODE (op1), sub_optab,
1234 gen_int_mode (bits, GET_MODE (op1)), op1,
1235 NULL_RTX, unsignedp, OPTAB_DIRECT);
1236
1237 temp = expand_binop_directly (icode, int_mode, otheroptab, op0, newop1,
1238 target, unsignedp, methods, last);
1239 if (temp)
1240 return temp;
1241 }
1242
1243 /* If this is a multiply, see if we can do a widening operation that
1244 takes operands of this mode and makes a wider mode. */
1245
1246 if (binoptab == smul_optab
1247 && GET_MODE_2XWIDER_MODE (mode).exists (&wider_mode)
1248 && (convert_optab_handler ((unsignedp
1249 ? umul_widen_optab
1250 : smul_widen_optab),
1251 wider_mode, mode) != CODE_FOR_nothing))
1252 {
1253 /* *_widen_optab needs to determine operand mode, make sure at least
1254 one operand has non-VOID mode. */
1255 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
1256 op0 = force_reg (mode, op0);
1257 temp = expand_binop (wider_mode,
1258 unsignedp ? umul_widen_optab : smul_widen_optab,
1259 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
1260
1261 if (temp != 0)
1262 {
1263 if (GET_MODE_CLASS (mode) == MODE_INT
1264 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (temp)))
1265 return gen_lowpart (mode, temp);
1266 else
1267 return convert_to_mode (mode, temp, unsignedp);
1268 }
1269 }
1270
1271 /* If this is a vector shift by a scalar, see if we can do a vector
1272 shift by a vector. If so, broadcast the scalar into a vector. */
1273 if (mclass == MODE_VECTOR_INT)
1274 {
1275 optab otheroptab = unknown_optab;
1276
1277 if (binoptab == ashl_optab)
1278 otheroptab = vashl_optab;
1279 else if (binoptab == ashr_optab)
1280 otheroptab = vashr_optab;
1281 else if (binoptab == lshr_optab)
1282 otheroptab = vlshr_optab;
1283 else if (binoptab == rotl_optab)
1284 otheroptab = vrotl_optab;
1285 else if (binoptab == rotr_optab)
1286 otheroptab = vrotr_optab;
1287
1288 if (otheroptab
1289 && (icode = optab_handler (otheroptab, mode)) != CODE_FOR_nothing)
1290 {
1291 /* The scalar may have been extended to be too wide. Truncate
1292 it back to the proper size to fit in the broadcast vector. */
1293 scalar_mode inner_mode = GET_MODE_INNER (mode);
1294 if (!CONST_INT_P (op1)
1295 && (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (op1)))
1296 > GET_MODE_BITSIZE (inner_mode)))
1297 op1 = force_reg (inner_mode,
1298 simplify_gen_unary (TRUNCATE, inner_mode, op1,
1299 GET_MODE (op1)));
1300 rtx vop1 = expand_vector_broadcast (mode, op1);
1301 if (vop1)
1302 {
1303 temp = expand_binop_directly (icode, mode, otheroptab, op0, vop1,
1304 target, unsignedp, methods, last);
1305 if (temp)
1306 return temp;
1307 }
1308 }
1309 }
1310
1311 /* Look for a wider mode of the same class for which we think we
1312 can open-code the operation. Check for a widening multiply at the
1313 wider mode as well. */
1314
1315 if (CLASS_HAS_WIDER_MODES_P (mclass)
1316 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
1317 FOR_EACH_WIDER_MODE (wider_mode, mode)
1318 {
1319 machine_mode next_mode;
1320 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing
1321 || (binoptab == smul_optab
1322 && GET_MODE_WIDER_MODE (wider_mode).exists (&next_mode)
1323 && (find_widening_optab_handler ((unsignedp
1324 ? umul_widen_optab
1325 : smul_widen_optab),
1326 next_mode, mode)
1327 != CODE_FOR_nothing)))
1328 {
1329 rtx xop0 = op0, xop1 = op1;
1330 int no_extend = 0;
1331
1332 /* For certain integer operations, we need not actually extend
1333 the narrow operands, as long as we will truncate
1334 the results to the same narrowness. */
1335
1336 if ((binoptab == ior_optab || binoptab == and_optab
1337 || binoptab == xor_optab
1338 || binoptab == add_optab || binoptab == sub_optab
1339 || binoptab == smul_optab || binoptab == ashl_optab)
1340 && mclass == MODE_INT)
1341 {
1342 no_extend = 1;
1343 xop0 = avoid_expensive_constant (mode, binoptab, 0,
1344 xop0, unsignedp);
1345 if (binoptab != ashl_optab)
1346 xop1 = avoid_expensive_constant (mode, binoptab, 1,
1347 xop1, unsignedp);
1348 }
1349
1350 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
1351
1352 /* The second operand of a shift must always be extended. */
1353 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1354 no_extend && binoptab != ashl_optab);
1355
1356 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1357 unsignedp, OPTAB_DIRECT);
1358 if (temp)
1359 {
1360 if (mclass != MODE_INT
1361 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1362 {
1363 if (target == 0)
1364 target = gen_reg_rtx (mode);
1365 convert_move (target, temp, 0);
1366 return target;
1367 }
1368 else
1369 return gen_lowpart (mode, temp);
1370 }
1371 else
1372 delete_insns_since (last);
1373 }
1374 }
1375
1376 /* If operation is commutative,
1377 try to make the first operand a register.
1378 Even better, try to make it the same as the target.
1379 Also try to make the last operand a constant. */
1380 if (commutative_optab_p (binoptab)
1381 && swap_commutative_operands_with_target (target, op0, op1))
1382 std::swap (op0, op1);
1383
1384 /* These can be done a word at a time. */
1385 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
1386 && is_int_mode (mode, &int_mode)
1387 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
1388 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1389 {
1390 int i;
1391 rtx_insn *insns;
1392
1393 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1394 won't be accurate, so use a new target. */
1395 if (target == 0
1396 || target == op0
1397 || target == op1
1398 || !valid_multiword_target_p (target))
1399 target = gen_reg_rtx (int_mode);
1400
1401 start_sequence ();
1402
1403 /* Do the actual arithmetic. */
1404 machine_mode op0_mode = GET_MODE (op0);
1405 machine_mode op1_mode = GET_MODE (op1);
1406 if (op0_mode == VOIDmode)
1407 op0_mode = int_mode;
1408 if (op1_mode == VOIDmode)
1409 op1_mode = int_mode;
1410 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
1411 {
1412 rtx target_piece = operand_subword (target, i, 1, int_mode);
1413 rtx x = expand_binop (word_mode, binoptab,
1414 operand_subword_force (op0, i, op0_mode),
1415 operand_subword_force (op1, i, op1_mode),
1416 target_piece, unsignedp, next_methods);
1417
1418 if (x == 0)
1419 break;
1420
1421 if (target_piece != x)
1422 emit_move_insn (target_piece, x);
1423 }
1424
1425 insns = get_insns ();
1426 end_sequence ();
1427
1428 if (i == GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD)
1429 {
1430 emit_insn (insns);
1431 return target;
1432 }
1433 }
1434
1435 /* Synthesize double word shifts from single word shifts. */
1436 if ((binoptab == lshr_optab || binoptab == ashl_optab
1437 || binoptab == ashr_optab)
1438 && is_int_mode (mode, &int_mode)
1439 && (CONST_INT_P (op1) || optimize_insn_for_speed_p ())
1440 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1441 && GET_MODE_PRECISION (int_mode) == GET_MODE_BITSIZE (int_mode)
1442 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing
1443 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1444 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1445 {
1446 unsigned HOST_WIDE_INT shift_mask, double_shift_mask;
1447 scalar_int_mode op1_mode;
1448
1449 double_shift_mask = targetm.shift_truncation_mask (int_mode);
1450 shift_mask = targetm.shift_truncation_mask (word_mode);
1451 op1_mode = (GET_MODE (op1) != VOIDmode
1452 ? as_a <scalar_int_mode> (GET_MODE (op1))
1453 : word_mode);
1454
1455 /* Apply the truncation to constant shifts. */
1456 if (double_shift_mask > 0 && CONST_INT_P (op1))
1457 op1 = gen_int_mode (INTVAL (op1) & double_shift_mask, op1_mode);
1458
1459 if (op1 == CONST0_RTX (op1_mode))
1460 return op0;
1461
1462 /* Make sure that this is a combination that expand_doubleword_shift
1463 can handle. See the comments there for details. */
1464 if (double_shift_mask == 0
1465 || (shift_mask == BITS_PER_WORD - 1
1466 && double_shift_mask == BITS_PER_WORD * 2 - 1))
1467 {
1468 rtx_insn *insns;
1469 rtx into_target, outof_target;
1470 rtx into_input, outof_input;
1471 int left_shift, outof_word;
1472
1473 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1474 won't be accurate, so use a new target. */
1475 if (target == 0
1476 || target == op0
1477 || target == op1
1478 || !valid_multiword_target_p (target))
1479 target = gen_reg_rtx (int_mode);
1480
1481 start_sequence ();
1482
1483 /* OUTOF_* is the word we are shifting bits away from, and
1484 INTO_* is the word that we are shifting bits towards, thus
1485 they differ depending on the direction of the shift and
1486 WORDS_BIG_ENDIAN. */
1487
1488 left_shift = binoptab == ashl_optab;
1489 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1490
1491 outof_target = operand_subword (target, outof_word, 1, int_mode);
1492 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1493
1494 outof_input = operand_subword_force (op0, outof_word, int_mode);
1495 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1496
1497 if (expand_doubleword_shift (op1_mode, binoptab,
1498 outof_input, into_input, op1,
1499 outof_target, into_target,
1500 unsignedp, next_methods, shift_mask))
1501 {
1502 insns = get_insns ();
1503 end_sequence ();
1504
1505 emit_insn (insns);
1506 return target;
1507 }
1508 end_sequence ();
1509 }
1510 }
1511
1512 /* Synthesize double word rotates from single word shifts. */
1513 if ((binoptab == rotl_optab || binoptab == rotr_optab)
1514 && is_int_mode (mode, &int_mode)
1515 && CONST_INT_P (op1)
1516 && GET_MODE_PRECISION (int_mode) == 2 * BITS_PER_WORD
1517 && optab_handler (ashl_optab, word_mode) != CODE_FOR_nothing
1518 && optab_handler (lshr_optab, word_mode) != CODE_FOR_nothing)
1519 {
1520 rtx_insn *insns;
1521 rtx into_target, outof_target;
1522 rtx into_input, outof_input;
1523 rtx inter;
1524 int shift_count, left_shift, outof_word;
1525
1526 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1527 won't be accurate, so use a new target. Do this also if target is not
1528 a REG, first because having a register instead may open optimization
1529 opportunities, and second because if target and op0 happen to be MEMs
1530 designating the same location, we would risk clobbering it too early
1531 in the code sequence we generate below. */
1532 if (target == 0
1533 || target == op0
1534 || target == op1
1535 || !REG_P (target)
1536 || !valid_multiword_target_p (target))
1537 target = gen_reg_rtx (int_mode);
1538
1539 start_sequence ();
1540
1541 shift_count = INTVAL (op1);
1542
1543 /* OUTOF_* is the word we are shifting bits away from, and
1544 INTO_* is the word that we are shifting bits towards, thus
1545 they differ depending on the direction of the shift and
1546 WORDS_BIG_ENDIAN. */
1547
1548 left_shift = (binoptab == rotl_optab);
1549 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
1550
1551 outof_target = operand_subword (target, outof_word, 1, int_mode);
1552 into_target = operand_subword (target, 1 - outof_word, 1, int_mode);
1553
1554 outof_input = operand_subword_force (op0, outof_word, int_mode);
1555 into_input = operand_subword_force (op0, 1 - outof_word, int_mode);
1556
1557 if (shift_count == BITS_PER_WORD)
1558 {
1559 /* This is just a word swap. */
1560 emit_move_insn (outof_target, into_input);
1561 emit_move_insn (into_target, outof_input);
1562 inter = const0_rtx;
1563 }
1564 else
1565 {
1566 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
1567 HOST_WIDE_INT first_shift_count, second_shift_count;
1568 optab reverse_unsigned_shift, unsigned_shift;
1569
1570 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1571 ? lshr_optab : ashl_optab);
1572
1573 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
1574 ? ashl_optab : lshr_optab);
1575
1576 if (shift_count > BITS_PER_WORD)
1577 {
1578 first_shift_count = shift_count - BITS_PER_WORD;
1579 second_shift_count = 2 * BITS_PER_WORD - shift_count;
1580 }
1581 else
1582 {
1583 first_shift_count = BITS_PER_WORD - shift_count;
1584 second_shift_count = shift_count;
1585 }
1586 rtx first_shift_count_rtx
1587 = gen_int_shift_amount (word_mode, first_shift_count);
1588 rtx second_shift_count_rtx
1589 = gen_int_shift_amount (word_mode, second_shift_count);
1590
1591 into_temp1 = expand_binop (word_mode, unsigned_shift,
1592 outof_input, first_shift_count_rtx,
1593 NULL_RTX, unsignedp, next_methods);
1594 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1595 into_input, second_shift_count_rtx,
1596 NULL_RTX, unsignedp, next_methods);
1597
1598 if (into_temp1 != 0 && into_temp2 != 0)
1599 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
1600 into_target, unsignedp, next_methods);
1601 else
1602 inter = 0;
1603
1604 if (inter != 0 && inter != into_target)
1605 emit_move_insn (into_target, inter);
1606
1607 outof_temp1 = expand_binop (word_mode, unsigned_shift,
1608 into_input, first_shift_count_rtx,
1609 NULL_RTX, unsignedp, next_methods);
1610 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
1611 outof_input, second_shift_count_rtx,
1612 NULL_RTX, unsignedp, next_methods);
1613
1614 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
1615 inter = expand_binop (word_mode, ior_optab,
1616 outof_temp1, outof_temp2,
1617 outof_target, unsignedp, next_methods);
1618
1619 if (inter != 0 && inter != outof_target)
1620 emit_move_insn (outof_target, inter);
1621 }
1622
1623 insns = get_insns ();
1624 end_sequence ();
1625
1626 if (inter != 0)
1627 {
1628 emit_insn (insns);
1629 return target;
1630 }
1631 }
1632
1633 /* These can be done a word at a time by propagating carries. */
1634 if ((binoptab == add_optab || binoptab == sub_optab)
1635 && is_int_mode (mode, &int_mode)
1636 && GET_MODE_SIZE (int_mode) >= 2 * UNITS_PER_WORD
1637 && optab_handler (binoptab, word_mode) != CODE_FOR_nothing)
1638 {
1639 unsigned int i;
1640 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
1641 const unsigned int nwords = GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD;
1642 rtx carry_in = NULL_RTX, carry_out = NULL_RTX;
1643 rtx xop0, xop1, xtarget;
1644
1645 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1646 value is one of those, use it. Otherwise, use 1 since it is the
1647 one easiest to get. */
1648 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1649 int normalizep = STORE_FLAG_VALUE;
1650 #else
1651 int normalizep = 1;
1652 #endif
1653
1654 /* Prepare the operands. */
1655 xop0 = force_reg (int_mode, op0);
1656 xop1 = force_reg (int_mode, op1);
1657
1658 xtarget = gen_reg_rtx (int_mode);
1659
1660 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
1661 target = xtarget;
1662
1663 /* Indicate for flow that the entire target reg is being set. */
1664 if (REG_P (target))
1665 emit_clobber (xtarget);
1666
1667 /* Do the actual arithmetic. */
1668 for (i = 0; i < nwords; i++)
1669 {
1670 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
1671 rtx target_piece = operand_subword (xtarget, index, 1, int_mode);
1672 rtx op0_piece = operand_subword_force (xop0, index, int_mode);
1673 rtx op1_piece = operand_subword_force (xop1, index, int_mode);
1674 rtx x;
1675
1676 /* Main add/subtract of the input operands. */
1677 x = expand_binop (word_mode, binoptab,
1678 op0_piece, op1_piece,
1679 target_piece, unsignedp, next_methods);
1680 if (x == 0)
1681 break;
1682
1683 if (i + 1 < nwords)
1684 {
1685 /* Store carry from main add/subtract. */
1686 carry_out = gen_reg_rtx (word_mode);
1687 carry_out = emit_store_flag_force (carry_out,
1688 (binoptab == add_optab
1689 ? LT : GT),
1690 x, op0_piece,
1691 word_mode, 1, normalizep);
1692 }
1693
1694 if (i > 0)
1695 {
1696 rtx newx;
1697
1698 /* Add/subtract previous carry to main result. */
1699 newx = expand_binop (word_mode,
1700 normalizep == 1 ? binoptab : otheroptab,
1701 x, carry_in,
1702 NULL_RTX, 1, next_methods);
1703
1704 if (i + 1 < nwords)
1705 {
1706 /* Get out carry from adding/subtracting carry in. */
1707 rtx carry_tmp = gen_reg_rtx (word_mode);
1708 carry_tmp = emit_store_flag_force (carry_tmp,
1709 (binoptab == add_optab
1710 ? LT : GT),
1711 newx, x,
1712 word_mode, 1, normalizep);
1713
1714 /* Logical-ior the two poss. carry together. */
1715 carry_out = expand_binop (word_mode, ior_optab,
1716 carry_out, carry_tmp,
1717 carry_out, 0, next_methods);
1718 if (carry_out == 0)
1719 break;
1720 }
1721 emit_move_insn (target_piece, newx);
1722 }
1723 else
1724 {
1725 if (x != target_piece)
1726 emit_move_insn (target_piece, x);
1727 }
1728
1729 carry_in = carry_out;
1730 }
1731
1732 if (i == GET_MODE_BITSIZE (int_mode) / (unsigned) BITS_PER_WORD)
1733 {
1734 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing
1735 || ! rtx_equal_p (target, xtarget))
1736 {
1737 rtx_insn *temp = emit_move_insn (target, xtarget);
1738
1739 set_dst_reg_note (temp, REG_EQUAL,
1740 gen_rtx_fmt_ee (optab_to_code (binoptab),
1741 int_mode, copy_rtx (xop0),
1742 copy_rtx (xop1)),
1743 target);
1744 }
1745 else
1746 target = xtarget;
1747
1748 return target;
1749 }
1750
1751 else
1752 delete_insns_since (last);
1753 }
1754
1755 /* Attempt to synthesize double word multiplies using a sequence of word
1756 mode multiplications. We first attempt to generate a sequence using a
1757 more efficient unsigned widening multiply, and if that fails we then
1758 try using a signed widening multiply. */
1759
1760 if (binoptab == smul_optab
1761 && is_int_mode (mode, &int_mode)
1762 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
1763 && optab_handler (smul_optab, word_mode) != CODE_FOR_nothing
1764 && optab_handler (add_optab, word_mode) != CODE_FOR_nothing)
1765 {
1766 rtx product = NULL_RTX;
1767 if (convert_optab_handler (umul_widen_optab, int_mode, word_mode)
1768 != CODE_FOR_nothing)
1769 {
1770 product = expand_doubleword_mult (int_mode, op0, op1, target,
1771 true, methods);
1772 if (!product)
1773 delete_insns_since (last);
1774 }
1775
1776 if (product == NULL_RTX
1777 && (convert_optab_handler (smul_widen_optab, int_mode, word_mode)
1778 != CODE_FOR_nothing))
1779 {
1780 product = expand_doubleword_mult (int_mode, op0, op1, target,
1781 false, methods);
1782 if (!product)
1783 delete_insns_since (last);
1784 }
1785
1786 if (product != NULL_RTX)
1787 {
1788 if (optab_handler (mov_optab, int_mode) != CODE_FOR_nothing)
1789 {
1790 rtx_insn *move = emit_move_insn (target ? target : product,
1791 product);
1792 set_dst_reg_note (move,
1793 REG_EQUAL,
1794 gen_rtx_fmt_ee (MULT, int_mode,
1795 copy_rtx (op0),
1796 copy_rtx (op1)),
1797 target ? target : product);
1798 }
1799 return product;
1800 }
1801 }
1802
1803 /* It can't be open-coded in this mode.
1804 Use a library call if one is available and caller says that's ok. */
1805
1806 libfunc = optab_libfunc (binoptab, mode);
1807 if (libfunc
1808 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1809 {
1810 rtx_insn *insns;
1811 rtx op1x = op1;
1812 machine_mode op1_mode = mode;
1813 rtx value;
1814
1815 start_sequence ();
1816
1817 if (shift_optab_p (binoptab))
1818 {
1819 op1_mode = targetm.libgcc_shift_count_mode ();
1820 /* Specify unsigned here,
1821 since negative shift counts are meaningless. */
1822 op1x = convert_to_mode (op1_mode, op1, 1);
1823 }
1824
1825 if (GET_MODE (op0) != VOIDmode
1826 && GET_MODE (op0) != mode)
1827 op0 = convert_to_mode (mode, op0, unsignedp);
1828
1829 /* Pass 1 for NO_QUEUE so we don't lose any increments
1830 if the libcall is cse'd or moved. */
1831 value = emit_library_call_value (libfunc,
1832 NULL_RTX, LCT_CONST, mode,
1833 op0, mode, op1x, op1_mode);
1834
1835 insns = get_insns ();
1836 end_sequence ();
1837
1838 bool trapv = trapv_binoptab_p (binoptab);
1839 target = gen_reg_rtx (mode);
1840 emit_libcall_block_1 (insns, target, value,
1841 trapv ? NULL_RTX
1842 : gen_rtx_fmt_ee (optab_to_code (binoptab),
1843 mode, op0, op1), trapv);
1844
1845 return target;
1846 }
1847
1848 delete_insns_since (last);
1849
1850 /* It can't be done in this mode. Can we do it in a wider mode? */
1851
1852 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1853 || methods == OPTAB_MUST_WIDEN))
1854 {
1855 /* Caller says, don't even try. */
1856 delete_insns_since (entry_last);
1857 return 0;
1858 }
1859
1860 /* Compute the value of METHODS to pass to recursive calls.
1861 Don't allow widening to be tried recursively. */
1862
1863 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1864
1865 /* Look for a wider mode of the same class for which it appears we can do
1866 the operation. */
1867
1868 if (CLASS_HAS_WIDER_MODES_P (mclass))
1869 {
1870 /* This code doesn't make sense for conversion optabs, since we
1871 wouldn't then want to extend the operands to be the same size
1872 as the result. */
1873 gcc_assert (!convert_optab_p (binoptab));
1874 FOR_EACH_WIDER_MODE (wider_mode, mode)
1875 {
1876 if (optab_handler (binoptab, wider_mode)
1877 || (methods == OPTAB_LIB
1878 && optab_libfunc (binoptab, wider_mode)))
1879 {
1880 rtx xop0 = op0, xop1 = op1;
1881 int no_extend = 0;
1882
1883 /* For certain integer operations, we need not actually extend
1884 the narrow operands, as long as we will truncate
1885 the results to the same narrowness. */
1886
1887 if ((binoptab == ior_optab || binoptab == and_optab
1888 || binoptab == xor_optab
1889 || binoptab == add_optab || binoptab == sub_optab
1890 || binoptab == smul_optab || binoptab == ashl_optab)
1891 && mclass == MODE_INT)
1892 no_extend = 1;
1893
1894 xop0 = widen_operand (xop0, wider_mode, mode,
1895 unsignedp, no_extend);
1896
1897 /* The second operand of a shift must always be extended. */
1898 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1899 no_extend && binoptab != ashl_optab);
1900
1901 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1902 unsignedp, methods);
1903 if (temp)
1904 {
1905 if (mclass != MODE_INT
1906 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
1907 {
1908 if (target == 0)
1909 target = gen_reg_rtx (mode);
1910 convert_move (target, temp, 0);
1911 return target;
1912 }
1913 else
1914 return gen_lowpart (mode, temp);
1915 }
1916 else
1917 delete_insns_since (last);
1918 }
1919 }
1920 }
1921
1922 delete_insns_since (entry_last);
1923 return 0;
1924 }
1925 \f
1926 /* Expand a binary operator which has both signed and unsigned forms.
1927 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1928 signed operations.
1929
1930 If we widen unsigned operands, we may use a signed wider operation instead
1931 of an unsigned wider operation, since the result would be the same. */
1932
1933 rtx
1934 sign_expand_binop (machine_mode mode, optab uoptab, optab soptab,
1935 rtx op0, rtx op1, rtx target, int unsignedp,
1936 enum optab_methods methods)
1937 {
1938 rtx temp;
1939 optab direct_optab = unsignedp ? uoptab : soptab;
1940 bool save_enable;
1941
1942 /* Do it without widening, if possible. */
1943 temp = expand_binop (mode, direct_optab, op0, op1, target,
1944 unsignedp, OPTAB_DIRECT);
1945 if (temp || methods == OPTAB_DIRECT)
1946 return temp;
1947
1948 /* Try widening to a signed int. Disable any direct use of any
1949 signed insn in the current mode. */
1950 save_enable = swap_optab_enable (soptab, mode, false);
1951
1952 temp = expand_binop (mode, soptab, op0, op1, target,
1953 unsignedp, OPTAB_WIDEN);
1954
1955 /* For unsigned operands, try widening to an unsigned int. */
1956 if (!temp && unsignedp)
1957 temp = expand_binop (mode, uoptab, op0, op1, target,
1958 unsignedp, OPTAB_WIDEN);
1959 if (temp || methods == OPTAB_WIDEN)
1960 goto egress;
1961
1962 /* Use the right width libcall if that exists. */
1963 temp = expand_binop (mode, direct_optab, op0, op1, target,
1964 unsignedp, OPTAB_LIB);
1965 if (temp || methods == OPTAB_LIB)
1966 goto egress;
1967
1968 /* Must widen and use a libcall, use either signed or unsigned. */
1969 temp = expand_binop (mode, soptab, op0, op1, target,
1970 unsignedp, methods);
1971 if (!temp && unsignedp)
1972 temp = expand_binop (mode, uoptab, op0, op1, target,
1973 unsignedp, methods);
1974
1975 egress:
1976 /* Undo the fiddling above. */
1977 if (save_enable)
1978 swap_optab_enable (soptab, mode, true);
1979 return temp;
1980 }
1981 \f
1982 /* Generate code to perform an operation specified by UNOPPTAB
1983 on operand OP0, with two results to TARG0 and TARG1.
1984 We assume that the order of the operands for the instruction
1985 is TARG0, TARG1, OP0.
1986
1987 Either TARG0 or TARG1 may be zero, but what that means is that
1988 the result is not actually wanted. We will generate it into
1989 a dummy pseudo-reg and discard it. They may not both be zero.
1990
1991 Returns 1 if this operation can be performed; 0 if not. */
1992
1993 int
1994 expand_twoval_unop (optab unoptab, rtx op0, rtx targ0, rtx targ1,
1995 int unsignedp)
1996 {
1997 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1998 enum mode_class mclass;
1999 machine_mode wider_mode;
2000 rtx_insn *entry_last = get_last_insn ();
2001 rtx_insn *last;
2002
2003 mclass = GET_MODE_CLASS (mode);
2004
2005 if (!targ0)
2006 targ0 = gen_reg_rtx (mode);
2007 if (!targ1)
2008 targ1 = gen_reg_rtx (mode);
2009
2010 /* Record where to go back to if we fail. */
2011 last = get_last_insn ();
2012
2013 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2014 {
2015 struct expand_operand ops[3];
2016 enum insn_code icode = optab_handler (unoptab, mode);
2017
2018 create_fixed_operand (&ops[0], targ0);
2019 create_fixed_operand (&ops[1], targ1);
2020 create_convert_operand_from (&ops[2], op0, mode, unsignedp);
2021 if (maybe_expand_insn (icode, 3, ops))
2022 return 1;
2023 }
2024
2025 /* It can't be done in this mode. Can we do it in a wider mode? */
2026
2027 if (CLASS_HAS_WIDER_MODES_P (mclass))
2028 {
2029 FOR_EACH_WIDER_MODE (wider_mode, mode)
2030 {
2031 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2032 {
2033 rtx t0 = gen_reg_rtx (wider_mode);
2034 rtx t1 = gen_reg_rtx (wider_mode);
2035 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2036
2037 if (expand_twoval_unop (unoptab, cop0, t0, t1, unsignedp))
2038 {
2039 convert_move (targ0, t0, unsignedp);
2040 convert_move (targ1, t1, unsignedp);
2041 return 1;
2042 }
2043 else
2044 delete_insns_since (last);
2045 }
2046 }
2047 }
2048
2049 delete_insns_since (entry_last);
2050 return 0;
2051 }
2052 \f
2053 /* Generate code to perform an operation specified by BINOPTAB
2054 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2055 We assume that the order of the operands for the instruction
2056 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2057 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2058
2059 Either TARG0 or TARG1 may be zero, but what that means is that
2060 the result is not actually wanted. We will generate it into
2061 a dummy pseudo-reg and discard it. They may not both be zero.
2062
2063 Returns 1 if this operation can be performed; 0 if not. */
2064
2065 int
2066 expand_twoval_binop (optab binoptab, rtx op0, rtx op1, rtx targ0, rtx targ1,
2067 int unsignedp)
2068 {
2069 machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
2070 enum mode_class mclass;
2071 machine_mode wider_mode;
2072 rtx_insn *entry_last = get_last_insn ();
2073 rtx_insn *last;
2074
2075 mclass = GET_MODE_CLASS (mode);
2076
2077 if (!targ0)
2078 targ0 = gen_reg_rtx (mode);
2079 if (!targ1)
2080 targ1 = gen_reg_rtx (mode);
2081
2082 /* Record where to go back to if we fail. */
2083 last = get_last_insn ();
2084
2085 if (optab_handler (binoptab, mode) != CODE_FOR_nothing)
2086 {
2087 struct expand_operand ops[4];
2088 enum insn_code icode = optab_handler (binoptab, mode);
2089 machine_mode mode0 = insn_data[icode].operand[1].mode;
2090 machine_mode mode1 = insn_data[icode].operand[2].mode;
2091 rtx xop0 = op0, xop1 = op1;
2092
2093 /* If we are optimizing, force expensive constants into a register. */
2094 xop0 = avoid_expensive_constant (mode0, binoptab, 0, xop0, unsignedp);
2095 xop1 = avoid_expensive_constant (mode1, binoptab, 1, xop1, unsignedp);
2096
2097 create_fixed_operand (&ops[0], targ0);
2098 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2099 create_convert_operand_from (&ops[2], op1, mode, unsignedp);
2100 create_fixed_operand (&ops[3], targ1);
2101 if (maybe_expand_insn (icode, 4, ops))
2102 return 1;
2103 delete_insns_since (last);
2104 }
2105
2106 /* It can't be done in this mode. Can we do it in a wider mode? */
2107
2108 if (CLASS_HAS_WIDER_MODES_P (mclass))
2109 {
2110 FOR_EACH_WIDER_MODE (wider_mode, mode)
2111 {
2112 if (optab_handler (binoptab, wider_mode) != CODE_FOR_nothing)
2113 {
2114 rtx t0 = gen_reg_rtx (wider_mode);
2115 rtx t1 = gen_reg_rtx (wider_mode);
2116 rtx cop0 = convert_modes (wider_mode, mode, op0, unsignedp);
2117 rtx cop1 = convert_modes (wider_mode, mode, op1, unsignedp);
2118
2119 if (expand_twoval_binop (binoptab, cop0, cop1,
2120 t0, t1, unsignedp))
2121 {
2122 convert_move (targ0, t0, unsignedp);
2123 convert_move (targ1, t1, unsignedp);
2124 return 1;
2125 }
2126 else
2127 delete_insns_since (last);
2128 }
2129 }
2130 }
2131
2132 delete_insns_since (entry_last);
2133 return 0;
2134 }
2135
2136 /* Expand the two-valued library call indicated by BINOPTAB, but
2137 preserve only one of the values. If TARG0 is non-NULL, the first
2138 value is placed into TARG0; otherwise the second value is placed
2139 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2140 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2141 This routine assumes that the value returned by the library call is
2142 as if the return value was of an integral mode twice as wide as the
2143 mode of OP0. Returns 1 if the call was successful. */
2144
2145 bool
2146 expand_twoval_binop_libfunc (optab binoptab, rtx op0, rtx op1,
2147 rtx targ0, rtx targ1, enum rtx_code code)
2148 {
2149 machine_mode mode;
2150 machine_mode libval_mode;
2151 rtx libval;
2152 rtx_insn *insns;
2153 rtx libfunc;
2154
2155 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2156 gcc_assert (!targ0 != !targ1);
2157
2158 mode = GET_MODE (op0);
2159 libfunc = optab_libfunc (binoptab, mode);
2160 if (!libfunc)
2161 return false;
2162
2163 /* The value returned by the library function will have twice as
2164 many bits as the nominal MODE. */
2165 libval_mode = smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode));
2166 start_sequence ();
2167 libval = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
2168 libval_mode,
2169 op0, mode,
2170 op1, mode);
2171 /* Get the part of VAL containing the value that we want. */
2172 libval = simplify_gen_subreg (mode, libval, libval_mode,
2173 targ0 ? 0 : GET_MODE_SIZE (mode));
2174 insns = get_insns ();
2175 end_sequence ();
2176 /* Move the into the desired location. */
2177 emit_libcall_block (insns, targ0 ? targ0 : targ1, libval,
2178 gen_rtx_fmt_ee (code, mode, op0, op1));
2179
2180 return true;
2181 }
2182
2183 \f
2184 /* Wrapper around expand_unop which takes an rtx code to specify
2185 the operation to perform, not an optab pointer. All other
2186 arguments are the same. */
2187 rtx
2188 expand_simple_unop (machine_mode mode, enum rtx_code code, rtx op0,
2189 rtx target, int unsignedp)
2190 {
2191 optab unop = code_to_optab (code);
2192 gcc_assert (unop);
2193
2194 return expand_unop (mode, unop, op0, target, unsignedp);
2195 }
2196
2197 /* Try calculating
2198 (clz:narrow x)
2199 as
2200 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2201
2202 A similar operation can be used for clrsb. UNOPTAB says which operation
2203 we are trying to expand. */
2204 static rtx
2205 widen_leading (scalar_int_mode mode, rtx op0, rtx target, optab unoptab)
2206 {
2207 opt_scalar_int_mode wider_mode_iter;
2208 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2209 {
2210 scalar_int_mode wider_mode = wider_mode_iter.require ();
2211 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2212 {
2213 rtx xop0, temp;
2214 rtx_insn *last;
2215
2216 last = get_last_insn ();
2217
2218 if (target == 0)
2219 target = gen_reg_rtx (mode);
2220 xop0 = widen_operand (op0, wider_mode, mode,
2221 unoptab != clrsb_optab, false);
2222 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2223 unoptab != clrsb_optab);
2224 if (temp != 0)
2225 temp = expand_binop
2226 (wider_mode, sub_optab, temp,
2227 gen_int_mode (GET_MODE_PRECISION (wider_mode)
2228 - GET_MODE_PRECISION (mode),
2229 wider_mode),
2230 target, true, OPTAB_DIRECT);
2231 if (temp == 0)
2232 delete_insns_since (last);
2233
2234 return temp;
2235 }
2236 }
2237 return 0;
2238 }
2239
2240 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2241 quantities, choosing which based on whether the high word is nonzero. */
2242 static rtx
2243 expand_doubleword_clz (scalar_int_mode mode, rtx op0, rtx target)
2244 {
2245 rtx xop0 = force_reg (mode, op0);
2246 rtx subhi = gen_highpart (word_mode, xop0);
2247 rtx sublo = gen_lowpart (word_mode, xop0);
2248 rtx_code_label *hi0_label = gen_label_rtx ();
2249 rtx_code_label *after_label = gen_label_rtx ();
2250 rtx_insn *seq;
2251 rtx temp, result;
2252
2253 /* If we were not given a target, use a word_mode register, not a
2254 'mode' register. The result will fit, and nobody is expecting
2255 anything bigger (the return type of __builtin_clz* is int). */
2256 if (!target)
2257 target = gen_reg_rtx (word_mode);
2258
2259 /* In any case, write to a word_mode scratch in both branches of the
2260 conditional, so we can ensure there is a single move insn setting
2261 'target' to tag a REG_EQUAL note on. */
2262 result = gen_reg_rtx (word_mode);
2263
2264 start_sequence ();
2265
2266 /* If the high word is not equal to zero,
2267 then clz of the full value is clz of the high word. */
2268 emit_cmp_and_jump_insns (subhi, CONST0_RTX (word_mode), EQ, 0,
2269 word_mode, true, hi0_label);
2270
2271 temp = expand_unop_direct (word_mode, clz_optab, subhi, result, true);
2272 if (!temp)
2273 goto fail;
2274
2275 if (temp != result)
2276 convert_move (result, temp, true);
2277
2278 emit_jump_insn (targetm.gen_jump (after_label));
2279 emit_barrier ();
2280
2281 /* Else clz of the full value is clz of the low word plus the number
2282 of bits in the high word. */
2283 emit_label (hi0_label);
2284
2285 temp = expand_unop_direct (word_mode, clz_optab, sublo, 0, true);
2286 if (!temp)
2287 goto fail;
2288 temp = expand_binop (word_mode, add_optab, temp,
2289 gen_int_mode (GET_MODE_BITSIZE (word_mode), word_mode),
2290 result, true, OPTAB_DIRECT);
2291 if (!temp)
2292 goto fail;
2293 if (temp != result)
2294 convert_move (result, temp, true);
2295
2296 emit_label (after_label);
2297 convert_move (target, result, true);
2298
2299 seq = get_insns ();
2300 end_sequence ();
2301
2302 add_equal_note (seq, target, CLZ, xop0, NULL_RTX, mode);
2303 emit_insn (seq);
2304 return target;
2305
2306 fail:
2307 end_sequence ();
2308 return 0;
2309 }
2310
2311 /* Try calculating popcount of a double-word quantity as two popcount's of
2312 word-sized quantities and summing up the results. */
2313 static rtx
2314 expand_doubleword_popcount (scalar_int_mode mode, rtx op0, rtx target)
2315 {
2316 rtx t0, t1, t;
2317 rtx_insn *seq;
2318
2319 start_sequence ();
2320
2321 t0 = expand_unop_direct (word_mode, popcount_optab,
2322 operand_subword_force (op0, 0, mode), NULL_RTX,
2323 true);
2324 t1 = expand_unop_direct (word_mode, popcount_optab,
2325 operand_subword_force (op0, 1, mode), NULL_RTX,
2326 true);
2327 if (!t0 || !t1)
2328 {
2329 end_sequence ();
2330 return NULL_RTX;
2331 }
2332
2333 /* If we were not given a target, use a word_mode register, not a
2334 'mode' register. The result will fit, and nobody is expecting
2335 anything bigger (the return type of __builtin_popcount* is int). */
2336 if (!target)
2337 target = gen_reg_rtx (word_mode);
2338
2339 t = expand_binop (word_mode, add_optab, t0, t1, target, 0, OPTAB_DIRECT);
2340
2341 seq = get_insns ();
2342 end_sequence ();
2343
2344 add_equal_note (seq, t, POPCOUNT, op0, NULL_RTX, mode);
2345 emit_insn (seq);
2346 return t;
2347 }
2348
2349 /* Try calculating
2350 (parity:wide x)
2351 as
2352 (parity:narrow (low (x) ^ high (x))) */
2353 static rtx
2354 expand_doubleword_parity (scalar_int_mode mode, rtx op0, rtx target)
2355 {
2356 rtx t = expand_binop (word_mode, xor_optab,
2357 operand_subword_force (op0, 0, mode),
2358 operand_subword_force (op0, 1, mode),
2359 NULL_RTX, 0, OPTAB_DIRECT);
2360 return expand_unop (word_mode, parity_optab, t, target, true);
2361 }
2362
2363 /* Try calculating
2364 (bswap:narrow x)
2365 as
2366 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2367 static rtx
2368 widen_bswap (scalar_int_mode mode, rtx op0, rtx target)
2369 {
2370 rtx x;
2371 rtx_insn *last;
2372 opt_scalar_int_mode wider_mode_iter;
2373
2374 FOR_EACH_WIDER_MODE (wider_mode_iter, mode)
2375 if (optab_handler (bswap_optab, wider_mode_iter.require ())
2376 != CODE_FOR_nothing)
2377 break;
2378
2379 if (!wider_mode_iter.exists ())
2380 return NULL_RTX;
2381
2382 scalar_int_mode wider_mode = wider_mode_iter.require ();
2383 last = get_last_insn ();
2384
2385 x = widen_operand (op0, wider_mode, mode, true, true);
2386 x = expand_unop (wider_mode, bswap_optab, x, NULL_RTX, true);
2387
2388 gcc_assert (GET_MODE_PRECISION (wider_mode) == GET_MODE_BITSIZE (wider_mode)
2389 && GET_MODE_PRECISION (mode) == GET_MODE_BITSIZE (mode));
2390 if (x != 0)
2391 x = expand_shift (RSHIFT_EXPR, wider_mode, x,
2392 GET_MODE_BITSIZE (wider_mode)
2393 - GET_MODE_BITSIZE (mode),
2394 NULL_RTX, true);
2395
2396 if (x != 0)
2397 {
2398 if (target == 0)
2399 target = gen_reg_rtx (mode);
2400 emit_move_insn (target, gen_lowpart (mode, x));
2401 }
2402 else
2403 delete_insns_since (last);
2404
2405 return target;
2406 }
2407
2408 /* Try calculating bswap as two bswaps of two word-sized operands. */
2409
2410 static rtx
2411 expand_doubleword_bswap (machine_mode mode, rtx op, rtx target)
2412 {
2413 rtx t0, t1;
2414
2415 t1 = expand_unop (word_mode, bswap_optab,
2416 operand_subword_force (op, 0, mode), NULL_RTX, true);
2417 t0 = expand_unop (word_mode, bswap_optab,
2418 operand_subword_force (op, 1, mode), NULL_RTX, true);
2419
2420 if (target == 0 || !valid_multiword_target_p (target))
2421 target = gen_reg_rtx (mode);
2422 if (REG_P (target))
2423 emit_clobber (target);
2424 emit_move_insn (operand_subword (target, 0, 1, mode), t0);
2425 emit_move_insn (operand_subword (target, 1, 1, mode), t1);
2426
2427 return target;
2428 }
2429
2430 /* Try calculating (parity x) as (and (popcount x) 1), where
2431 popcount can also be done in a wider mode. */
2432 static rtx
2433 expand_parity (scalar_int_mode mode, rtx op0, rtx target)
2434 {
2435 enum mode_class mclass = GET_MODE_CLASS (mode);
2436 opt_scalar_int_mode wider_mode_iter;
2437 FOR_EACH_MODE_FROM (wider_mode_iter, mode)
2438 {
2439 scalar_int_mode wider_mode = wider_mode_iter.require ();
2440 if (optab_handler (popcount_optab, wider_mode) != CODE_FOR_nothing)
2441 {
2442 rtx xop0, temp;
2443 rtx_insn *last;
2444
2445 last = get_last_insn ();
2446
2447 if (target == 0 || GET_MODE (target) != wider_mode)
2448 target = gen_reg_rtx (wider_mode);
2449
2450 xop0 = widen_operand (op0, wider_mode, mode, true, false);
2451 temp = expand_unop (wider_mode, popcount_optab, xop0, NULL_RTX,
2452 true);
2453 if (temp != 0)
2454 temp = expand_binop (wider_mode, and_optab, temp, const1_rtx,
2455 target, true, OPTAB_DIRECT);
2456
2457 if (temp)
2458 {
2459 if (mclass != MODE_INT
2460 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2461 return convert_to_mode (mode, temp, 0);
2462 else
2463 return gen_lowpart (mode, temp);
2464 }
2465 else
2466 delete_insns_since (last);
2467 }
2468 }
2469 return 0;
2470 }
2471
2472 /* Try calculating ctz(x) as K - clz(x & -x) ,
2473 where K is GET_MODE_PRECISION(mode) - 1.
2474
2475 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2476 don't have to worry about what the hardware does in that case. (If
2477 the clz instruction produces the usual value at 0, which is K, the
2478 result of this code sequence will be -1; expand_ffs, below, relies
2479 on this. It might be nice to have it be K instead, for consistency
2480 with the (very few) processors that provide a ctz with a defined
2481 value, but that would take one more instruction, and it would be
2482 less convenient for expand_ffs anyway. */
2483
2484 static rtx
2485 expand_ctz (scalar_int_mode mode, rtx op0, rtx target)
2486 {
2487 rtx_insn *seq;
2488 rtx temp;
2489
2490 if (optab_handler (clz_optab, mode) == CODE_FOR_nothing)
2491 return 0;
2492
2493 start_sequence ();
2494
2495 temp = expand_unop_direct (mode, neg_optab, op0, NULL_RTX, true);
2496 if (temp)
2497 temp = expand_binop (mode, and_optab, op0, temp, NULL_RTX,
2498 true, OPTAB_DIRECT);
2499 if (temp)
2500 temp = expand_unop_direct (mode, clz_optab, temp, NULL_RTX, true);
2501 if (temp)
2502 temp = expand_binop (mode, sub_optab,
2503 gen_int_mode (GET_MODE_PRECISION (mode) - 1, mode),
2504 temp, target,
2505 true, OPTAB_DIRECT);
2506 if (temp == 0)
2507 {
2508 end_sequence ();
2509 return 0;
2510 }
2511
2512 seq = get_insns ();
2513 end_sequence ();
2514
2515 add_equal_note (seq, temp, CTZ, op0, NULL_RTX, mode);
2516 emit_insn (seq);
2517 return temp;
2518 }
2519
2520
2521 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2522 else with the sequence used by expand_clz.
2523
2524 The ffs builtin promises to return zero for a zero value and ctz/clz
2525 may have an undefined value in that case. If they do not give us a
2526 convenient value, we have to generate a test and branch. */
2527 static rtx
2528 expand_ffs (scalar_int_mode mode, rtx op0, rtx target)
2529 {
2530 HOST_WIDE_INT val = 0;
2531 bool defined_at_zero = false;
2532 rtx temp;
2533 rtx_insn *seq;
2534
2535 if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing)
2536 {
2537 start_sequence ();
2538
2539 temp = expand_unop_direct (mode, ctz_optab, op0, 0, true);
2540 if (!temp)
2541 goto fail;
2542
2543 defined_at_zero = (CTZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2);
2544 }
2545 else if (optab_handler (clz_optab, mode) != CODE_FOR_nothing)
2546 {
2547 start_sequence ();
2548 temp = expand_ctz (mode, op0, 0);
2549 if (!temp)
2550 goto fail;
2551
2552 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, val) == 2)
2553 {
2554 defined_at_zero = true;
2555 val = (GET_MODE_PRECISION (mode) - 1) - val;
2556 }
2557 }
2558 else
2559 return 0;
2560
2561 if (defined_at_zero && val == -1)
2562 /* No correction needed at zero. */;
2563 else
2564 {
2565 /* We don't try to do anything clever with the situation found
2566 on some processors (eg Alpha) where ctz(0:mode) ==
2567 bitsize(mode). If someone can think of a way to send N to -1
2568 and leave alone all values in the range 0..N-1 (where N is a
2569 power of two), cheaper than this test-and-branch, please add it.
2570
2571 The test-and-branch is done after the operation itself, in case
2572 the operation sets condition codes that can be recycled for this.
2573 (This is true on i386, for instance.) */
2574
2575 rtx_code_label *nonzero_label = gen_label_rtx ();
2576 emit_cmp_and_jump_insns (op0, CONST0_RTX (mode), NE, 0,
2577 mode, true, nonzero_label);
2578
2579 convert_move (temp, GEN_INT (-1), false);
2580 emit_label (nonzero_label);
2581 }
2582
2583 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2584 to produce a value in the range 0..bitsize. */
2585 temp = expand_binop (mode, add_optab, temp, gen_int_mode (1, mode),
2586 target, false, OPTAB_DIRECT);
2587 if (!temp)
2588 goto fail;
2589
2590 seq = get_insns ();
2591 end_sequence ();
2592
2593 add_equal_note (seq, temp, FFS, op0, NULL_RTX, mode);
2594 emit_insn (seq);
2595 return temp;
2596
2597 fail:
2598 end_sequence ();
2599 return 0;
2600 }
2601
2602 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2603 conditions, VAL may already be a SUBREG against which we cannot generate
2604 a further SUBREG. In this case, we expect forcing the value into a
2605 register will work around the situation. */
2606
2607 static rtx
2608 lowpart_subreg_maybe_copy (machine_mode omode, rtx val,
2609 machine_mode imode)
2610 {
2611 rtx ret;
2612 ret = lowpart_subreg (omode, val, imode);
2613 if (ret == NULL)
2614 {
2615 val = force_reg (imode, val);
2616 ret = lowpart_subreg (omode, val, imode);
2617 gcc_assert (ret != NULL);
2618 }
2619 return ret;
2620 }
2621
2622 /* Expand a floating point absolute value or negation operation via a
2623 logical operation on the sign bit. */
2624
2625 static rtx
2626 expand_absneg_bit (enum rtx_code code, scalar_float_mode mode,
2627 rtx op0, rtx target)
2628 {
2629 const struct real_format *fmt;
2630 int bitpos, word, nwords, i;
2631 scalar_int_mode imode;
2632 rtx temp;
2633 rtx_insn *insns;
2634
2635 /* The format has to have a simple sign bit. */
2636 fmt = REAL_MODE_FORMAT (mode);
2637 if (fmt == NULL)
2638 return NULL_RTX;
2639
2640 bitpos = fmt->signbit_rw;
2641 if (bitpos < 0)
2642 return NULL_RTX;
2643
2644 /* Don't create negative zeros if the format doesn't support them. */
2645 if (code == NEG && !fmt->has_signed_zero)
2646 return NULL_RTX;
2647
2648 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2649 {
2650 if (!int_mode_for_mode (mode).exists (&imode))
2651 return NULL_RTX;
2652 word = 0;
2653 nwords = 1;
2654 }
2655 else
2656 {
2657 imode = word_mode;
2658
2659 if (FLOAT_WORDS_BIG_ENDIAN)
2660 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
2661 else
2662 word = bitpos / BITS_PER_WORD;
2663 bitpos = bitpos % BITS_PER_WORD;
2664 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
2665 }
2666
2667 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
2668 if (code == ABS)
2669 mask = ~mask;
2670
2671 if (target == 0
2672 || target == op0
2673 || (nwords > 1 && !valid_multiword_target_p (target)))
2674 target = gen_reg_rtx (mode);
2675
2676 if (nwords > 1)
2677 {
2678 start_sequence ();
2679
2680 for (i = 0; i < nwords; ++i)
2681 {
2682 rtx targ_piece = operand_subword (target, i, 1, mode);
2683 rtx op0_piece = operand_subword_force (op0, i, mode);
2684
2685 if (i == word)
2686 {
2687 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2688 op0_piece,
2689 immed_wide_int_const (mask, imode),
2690 targ_piece, 1, OPTAB_LIB_WIDEN);
2691 if (temp != targ_piece)
2692 emit_move_insn (targ_piece, temp);
2693 }
2694 else
2695 emit_move_insn (targ_piece, op0_piece);
2696 }
2697
2698 insns = get_insns ();
2699 end_sequence ();
2700
2701 emit_insn (insns);
2702 }
2703 else
2704 {
2705 temp = expand_binop (imode, code == ABS ? and_optab : xor_optab,
2706 gen_lowpart (imode, op0),
2707 immed_wide_int_const (mask, imode),
2708 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
2709 target = lowpart_subreg_maybe_copy (mode, temp, imode);
2710
2711 set_dst_reg_note (get_last_insn (), REG_EQUAL,
2712 gen_rtx_fmt_e (code, mode, copy_rtx (op0)),
2713 target);
2714 }
2715
2716 return target;
2717 }
2718
2719 /* As expand_unop, but will fail rather than attempt the operation in a
2720 different mode or with a libcall. */
2721 static rtx
2722 expand_unop_direct (machine_mode mode, optab unoptab, rtx op0, rtx target,
2723 int unsignedp)
2724 {
2725 if (optab_handler (unoptab, mode) != CODE_FOR_nothing)
2726 {
2727 struct expand_operand ops[2];
2728 enum insn_code icode = optab_handler (unoptab, mode);
2729 rtx_insn *last = get_last_insn ();
2730 rtx_insn *pat;
2731
2732 create_output_operand (&ops[0], target, mode);
2733 create_convert_operand_from (&ops[1], op0, mode, unsignedp);
2734 pat = maybe_gen_insn (icode, 2, ops);
2735 if (pat)
2736 {
2737 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
2738 && ! add_equal_note (pat, ops[0].value,
2739 optab_to_code (unoptab),
2740 ops[1].value, NULL_RTX, mode))
2741 {
2742 delete_insns_since (last);
2743 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
2744 }
2745
2746 emit_insn (pat);
2747
2748 return ops[0].value;
2749 }
2750 }
2751 return 0;
2752 }
2753
2754 /* Generate code to perform an operation specified by UNOPTAB
2755 on operand OP0, with result having machine-mode MODE.
2756
2757 UNSIGNEDP is for the case where we have to widen the operands
2758 to perform the operation. It says to use zero-extension.
2759
2760 If TARGET is nonzero, the value
2761 is generated there, if it is convenient to do so.
2762 In all cases an rtx is returned for the locus of the value;
2763 this may or may not be TARGET. */
2764
2765 rtx
2766 expand_unop (machine_mode mode, optab unoptab, rtx op0, rtx target,
2767 int unsignedp)
2768 {
2769 enum mode_class mclass = GET_MODE_CLASS (mode);
2770 machine_mode wider_mode;
2771 scalar_int_mode int_mode;
2772 scalar_float_mode float_mode;
2773 rtx temp;
2774 rtx libfunc;
2775
2776 temp = expand_unop_direct (mode, unoptab, op0, target, unsignedp);
2777 if (temp)
2778 return temp;
2779
2780 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2781
2782 /* Widening (or narrowing) clz needs special treatment. */
2783 if (unoptab == clz_optab)
2784 {
2785 if (is_a <scalar_int_mode> (mode, &int_mode))
2786 {
2787 temp = widen_leading (int_mode, op0, target, unoptab);
2788 if (temp)
2789 return temp;
2790
2791 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2792 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2793 {
2794 temp = expand_doubleword_clz (int_mode, op0, target);
2795 if (temp)
2796 return temp;
2797 }
2798 }
2799
2800 goto try_libcall;
2801 }
2802
2803 if (unoptab == clrsb_optab)
2804 {
2805 if (is_a <scalar_int_mode> (mode, &int_mode))
2806 {
2807 temp = widen_leading (int_mode, op0, target, unoptab);
2808 if (temp)
2809 return temp;
2810 }
2811 goto try_libcall;
2812 }
2813
2814 if (unoptab == popcount_optab
2815 && is_a <scalar_int_mode> (mode, &int_mode)
2816 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2817 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2818 && optimize_insn_for_speed_p ())
2819 {
2820 temp = expand_doubleword_popcount (int_mode, op0, target);
2821 if (temp)
2822 return temp;
2823 }
2824
2825 if (unoptab == parity_optab
2826 && is_a <scalar_int_mode> (mode, &int_mode)
2827 && GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2828 && (optab_handler (unoptab, word_mode) != CODE_FOR_nothing
2829 || optab_handler (popcount_optab, word_mode) != CODE_FOR_nothing)
2830 && optimize_insn_for_speed_p ())
2831 {
2832 temp = expand_doubleword_parity (int_mode, op0, target);
2833 if (temp)
2834 return temp;
2835 }
2836
2837 /* Widening (or narrowing) bswap needs special treatment. */
2838 if (unoptab == bswap_optab)
2839 {
2840 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2841 or ROTATERT. First try these directly; if this fails, then try the
2842 obvious pair of shifts with allowed widening, as this will probably
2843 be always more efficient than the other fallback methods. */
2844 if (mode == HImode)
2845 {
2846 rtx_insn *last;
2847 rtx temp1, temp2;
2848
2849 if (optab_handler (rotl_optab, mode) != CODE_FOR_nothing)
2850 {
2851 temp = expand_binop (mode, rotl_optab, op0,
2852 gen_int_shift_amount (mode, 8),
2853 target, unsignedp, OPTAB_DIRECT);
2854 if (temp)
2855 return temp;
2856 }
2857
2858 if (optab_handler (rotr_optab, mode) != CODE_FOR_nothing)
2859 {
2860 temp = expand_binop (mode, rotr_optab, op0,
2861 gen_int_shift_amount (mode, 8),
2862 target, unsignedp, OPTAB_DIRECT);
2863 if (temp)
2864 return temp;
2865 }
2866
2867 last = get_last_insn ();
2868
2869 temp1 = expand_binop (mode, ashl_optab, op0,
2870 gen_int_shift_amount (mode, 8), NULL_RTX,
2871 unsignedp, OPTAB_WIDEN);
2872 temp2 = expand_binop (mode, lshr_optab, op0,
2873 gen_int_shift_amount (mode, 8), NULL_RTX,
2874 unsignedp, OPTAB_WIDEN);
2875 if (temp1 && temp2)
2876 {
2877 temp = expand_binop (mode, ior_optab, temp1, temp2, target,
2878 unsignedp, OPTAB_WIDEN);
2879 if (temp)
2880 return temp;
2881 }
2882
2883 delete_insns_since (last);
2884 }
2885
2886 if (is_a <scalar_int_mode> (mode, &int_mode))
2887 {
2888 temp = widen_bswap (int_mode, op0, target);
2889 if (temp)
2890 return temp;
2891
2892 if (GET_MODE_SIZE (int_mode) == 2 * UNITS_PER_WORD
2893 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2894 {
2895 temp = expand_doubleword_bswap (mode, op0, target);
2896 if (temp)
2897 return temp;
2898 }
2899 }
2900
2901 goto try_libcall;
2902 }
2903
2904 if (CLASS_HAS_WIDER_MODES_P (mclass))
2905 FOR_EACH_WIDER_MODE (wider_mode, mode)
2906 {
2907 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing)
2908 {
2909 rtx xop0 = op0;
2910 rtx_insn *last = get_last_insn ();
2911
2912 /* For certain operations, we need not actually extend
2913 the narrow operand, as long as we will truncate the
2914 results to the same narrowness. */
2915
2916 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2917 (unoptab == neg_optab
2918 || unoptab == one_cmpl_optab)
2919 && mclass == MODE_INT);
2920
2921 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2922 unsignedp);
2923
2924 if (temp)
2925 {
2926 if (mclass != MODE_INT
2927 || !TRULY_NOOP_TRUNCATION_MODES_P (mode, wider_mode))
2928 {
2929 if (target == 0)
2930 target = gen_reg_rtx (mode);
2931 convert_move (target, temp, 0);
2932 return target;
2933 }
2934 else
2935 return gen_lowpart (mode, temp);
2936 }
2937 else
2938 delete_insns_since (last);
2939 }
2940 }
2941
2942 /* These can be done a word at a time. */
2943 if (unoptab == one_cmpl_optab
2944 && is_int_mode (mode, &int_mode)
2945 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD
2946 && optab_handler (unoptab, word_mode) != CODE_FOR_nothing)
2947 {
2948 int i;
2949 rtx_insn *insns;
2950
2951 if (target == 0 || target == op0 || !valid_multiword_target_p (target))
2952 target = gen_reg_rtx (int_mode);
2953
2954 start_sequence ();
2955
2956 /* Do the actual arithmetic. */
2957 for (i = 0; i < GET_MODE_BITSIZE (int_mode) / BITS_PER_WORD; i++)
2958 {
2959 rtx target_piece = operand_subword (target, i, 1, int_mode);
2960 rtx x = expand_unop (word_mode, unoptab,
2961 operand_subword_force (op0, i, int_mode),
2962 target_piece, unsignedp);
2963
2964 if (target_piece != x)
2965 emit_move_insn (target_piece, x);
2966 }
2967
2968 insns = get_insns ();
2969 end_sequence ();
2970
2971 emit_insn (insns);
2972 return target;
2973 }
2974
2975 if (optab_to_code (unoptab) == NEG)
2976 {
2977 /* Try negating floating point values by flipping the sign bit. */
2978 if (is_a <scalar_float_mode> (mode, &float_mode))
2979 {
2980 temp = expand_absneg_bit (NEG, float_mode, op0, target);
2981 if (temp)
2982 return temp;
2983 }
2984
2985 /* If there is no negation pattern, and we have no negative zero,
2986 try subtracting from zero. */
2987 if (!HONOR_SIGNED_ZEROS (mode))
2988 {
2989 temp = expand_binop (mode, (unoptab == negv_optab
2990 ? subv_optab : sub_optab),
2991 CONST0_RTX (mode), op0, target,
2992 unsignedp, OPTAB_DIRECT);
2993 if (temp)
2994 return temp;
2995 }
2996 }
2997
2998 /* Try calculating parity (x) as popcount (x) % 2. */
2999 if (unoptab == parity_optab && is_a <scalar_int_mode> (mode, &int_mode))
3000 {
3001 temp = expand_parity (int_mode, op0, target);
3002 if (temp)
3003 return temp;
3004 }
3005
3006 /* Try implementing ffs (x) in terms of clz (x). */
3007 if (unoptab == ffs_optab && is_a <scalar_int_mode> (mode, &int_mode))
3008 {
3009 temp = expand_ffs (int_mode, op0, target);
3010 if (temp)
3011 return temp;
3012 }
3013
3014 /* Try implementing ctz (x) in terms of clz (x). */
3015 if (unoptab == ctz_optab && is_a <scalar_int_mode> (mode, &int_mode))
3016 {
3017 temp = expand_ctz (int_mode, op0, target);
3018 if (temp)
3019 return temp;
3020 }
3021
3022 try_libcall:
3023 /* Now try a library call in this mode. */
3024 libfunc = optab_libfunc (unoptab, mode);
3025 if (libfunc)
3026 {
3027 rtx_insn *insns;
3028 rtx value;
3029 rtx eq_value;
3030 machine_mode outmode = mode;
3031
3032 /* All of these functions return small values. Thus we choose to
3033 have them return something that isn't a double-word. */
3034 if (unoptab == ffs_optab || unoptab == clz_optab || unoptab == ctz_optab
3035 || unoptab == clrsb_optab || unoptab == popcount_optab
3036 || unoptab == parity_optab)
3037 outmode
3038 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node),
3039 optab_libfunc (unoptab, mode)));
3040
3041 start_sequence ();
3042
3043 /* Pass 1 for NO_QUEUE so we don't lose any increments
3044 if the libcall is cse'd or moved. */
3045 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, outmode,
3046 op0, mode);
3047 insns = get_insns ();
3048 end_sequence ();
3049
3050 target = gen_reg_rtx (outmode);
3051 bool trapv = trapv_unoptab_p (unoptab);
3052 if (trapv)
3053 eq_value = NULL_RTX;
3054 else
3055 {
3056 eq_value = gen_rtx_fmt_e (optab_to_code (unoptab), mode, op0);
3057 if (GET_MODE_UNIT_SIZE (outmode) < GET_MODE_UNIT_SIZE (mode))
3058 eq_value = simplify_gen_unary (TRUNCATE, outmode, eq_value, mode);
3059 else if (GET_MODE_UNIT_SIZE (outmode) > GET_MODE_UNIT_SIZE (mode))
3060 eq_value = simplify_gen_unary (ZERO_EXTEND,
3061 outmode, eq_value, mode);
3062 }
3063 emit_libcall_block_1 (insns, target, value, eq_value, trapv);
3064
3065 return target;
3066 }
3067
3068 /* It can't be done in this mode. Can we do it in a wider mode? */
3069
3070 if (CLASS_HAS_WIDER_MODES_P (mclass))
3071 {
3072 FOR_EACH_WIDER_MODE (wider_mode, mode)
3073 {
3074 if (optab_handler (unoptab, wider_mode) != CODE_FOR_nothing
3075 || optab_libfunc (unoptab, wider_mode))
3076 {
3077 rtx xop0 = op0;
3078 rtx_insn *last = get_last_insn ();
3079
3080 /* For certain operations, we need not actually extend
3081 the narrow operand, as long as we will truncate the
3082 results to the same narrowness. */
3083 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
3084 (unoptab == neg_optab
3085 || unoptab == one_cmpl_optab
3086 || unoptab == bswap_optab)
3087 && mclass == MODE_INT);
3088
3089 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
3090 unsignedp);
3091
3092 /* If we are generating clz using wider mode, adjust the
3093 result. Similarly for clrsb. */
3094 if ((unoptab == clz_optab || unoptab == clrsb_optab)
3095 && temp != 0)
3096 {
3097 scalar_int_mode wider_int_mode
3098 = as_a <scalar_int_mode> (wider_mode);
3099 int_mode = as_a <scalar_int_mode> (mode);
3100 temp = expand_binop
3101 (wider_mode, sub_optab, temp,
3102 gen_int_mode (GET_MODE_PRECISION (wider_int_mode)
3103 - GET_MODE_PRECISION (int_mode),
3104 wider_int_mode),
3105 target, true, OPTAB_DIRECT);
3106 }
3107
3108 /* Likewise for bswap. */
3109 if (unoptab == bswap_optab && temp != 0)
3110 {
3111 scalar_int_mode wider_int_mode
3112 = as_a <scalar_int_mode> (wider_mode);
3113 int_mode = as_a <scalar_int_mode> (mode);
3114 gcc_assert (GET_MODE_PRECISION (wider_int_mode)
3115 == GET_MODE_BITSIZE (wider_int_mode)
3116 && GET_MODE_PRECISION (int_mode)
3117 == GET_MODE_BITSIZE (int_mode));
3118
3119 temp = expand_shift (RSHIFT_EXPR, wider_int_mode, temp,
3120 GET_MODE_BITSIZE (wider_int_mode)
3121 - GET_MODE_BITSIZE (int_mode),
3122 NULL_RTX, true);
3123 }
3124
3125 if (temp)
3126 {
3127 if (mclass != MODE_INT)
3128 {
3129 if (target == 0)
3130 target = gen_reg_rtx (mode);
3131 convert_move (target, temp, 0);
3132 return target;
3133 }
3134 else
3135 return gen_lowpart (mode, temp);
3136 }
3137 else
3138 delete_insns_since (last);
3139 }
3140 }
3141 }
3142
3143 /* One final attempt at implementing negation via subtraction,
3144 this time allowing widening of the operand. */
3145 if (optab_to_code (unoptab) == NEG && !HONOR_SIGNED_ZEROS (mode))
3146 {
3147 rtx temp;
3148 temp = expand_binop (mode,
3149 unoptab == negv_optab ? subv_optab : sub_optab,
3150 CONST0_RTX (mode), op0,
3151 target, unsignedp, OPTAB_LIB_WIDEN);
3152 if (temp)
3153 return temp;
3154 }
3155
3156 return 0;
3157 }
3158 \f
3159 /* Emit code to compute the absolute value of OP0, with result to
3160 TARGET if convenient. (TARGET may be 0.) The return value says
3161 where the result actually is to be found.
3162
3163 MODE is the mode of the operand; the mode of the result is
3164 different but can be deduced from MODE.
3165
3166 */
3167
3168 rtx
3169 expand_abs_nojump (machine_mode mode, rtx op0, rtx target,
3170 int result_unsignedp)
3171 {
3172 rtx temp;
3173
3174 if (GET_MODE_CLASS (mode) != MODE_INT
3175 || ! flag_trapv)
3176 result_unsignedp = 1;
3177
3178 /* First try to do it with a special abs instruction. */
3179 temp = expand_unop (mode, result_unsignedp ? abs_optab : absv_optab,
3180 op0, target, 0);
3181 if (temp != 0)
3182 return temp;
3183
3184 /* For floating point modes, try clearing the sign bit. */
3185 scalar_float_mode float_mode;
3186 if (is_a <scalar_float_mode> (mode, &float_mode))
3187 {
3188 temp = expand_absneg_bit (ABS, float_mode, op0, target);
3189 if (temp)
3190 return temp;
3191 }
3192
3193 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3194 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing
3195 && !HONOR_SIGNED_ZEROS (mode))
3196 {
3197 rtx_insn *last = get_last_insn ();
3198
3199 temp = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3200 op0, NULL_RTX, 0);
3201 if (temp != 0)
3202 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3203 OPTAB_WIDEN);
3204
3205 if (temp != 0)
3206 return temp;
3207
3208 delete_insns_since (last);
3209 }
3210
3211 /* If this machine has expensive jumps, we can do integer absolute
3212 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3213 where W is the width of MODE. */
3214
3215 scalar_int_mode int_mode;
3216 if (is_int_mode (mode, &int_mode)
3217 && BRANCH_COST (optimize_insn_for_speed_p (),
3218 false) >= 2)
3219 {
3220 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3221 GET_MODE_PRECISION (int_mode) - 1,
3222 NULL_RTX, 0);
3223
3224 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3225 OPTAB_LIB_WIDEN);
3226 if (temp != 0)
3227 temp = expand_binop (int_mode,
3228 result_unsignedp ? sub_optab : subv_optab,
3229 temp, extended, target, 0, OPTAB_LIB_WIDEN);
3230
3231 if (temp != 0)
3232 return temp;
3233 }
3234
3235 return NULL_RTX;
3236 }
3237
3238 rtx
3239 expand_abs (machine_mode mode, rtx op0, rtx target,
3240 int result_unsignedp, int safe)
3241 {
3242 rtx temp;
3243 rtx_code_label *op1;
3244
3245 if (GET_MODE_CLASS (mode) != MODE_INT
3246 || ! flag_trapv)
3247 result_unsignedp = 1;
3248
3249 temp = expand_abs_nojump (mode, op0, target, result_unsignedp);
3250 if (temp != 0)
3251 return temp;
3252
3253 /* If that does not win, use conditional jump and negate. */
3254
3255 /* It is safe to use the target if it is the same
3256 as the source if this is also a pseudo register */
3257 if (op0 == target && REG_P (op0)
3258 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
3259 safe = 1;
3260
3261 op1 = gen_label_rtx ();
3262 if (target == 0 || ! safe
3263 || GET_MODE (target) != mode
3264 || (MEM_P (target) && MEM_VOLATILE_P (target))
3265 || (REG_P (target)
3266 && REGNO (target) < FIRST_PSEUDO_REGISTER))
3267 target = gen_reg_rtx (mode);
3268
3269 emit_move_insn (target, op0);
3270 NO_DEFER_POP;
3271
3272 do_compare_rtx_and_jump (target, CONST0_RTX (mode), GE, 0, mode,
3273 NULL_RTX, NULL, op1,
3274 profile_probability::uninitialized ());
3275
3276 op0 = expand_unop (mode, result_unsignedp ? neg_optab : negv_optab,
3277 target, target, 0);
3278 if (op0 != target)
3279 emit_move_insn (target, op0);
3280 emit_label (op1);
3281 OK_DEFER_POP;
3282 return target;
3283 }
3284
3285 /* Emit code to compute the one's complement absolute value of OP0
3286 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3287 (TARGET may be NULL_RTX.) The return value says where the result
3288 actually is to be found.
3289
3290 MODE is the mode of the operand; the mode of the result is
3291 different but can be deduced from MODE. */
3292
3293 rtx
3294 expand_one_cmpl_abs_nojump (machine_mode mode, rtx op0, rtx target)
3295 {
3296 rtx temp;
3297
3298 /* Not applicable for floating point modes. */
3299 if (FLOAT_MODE_P (mode))
3300 return NULL_RTX;
3301
3302 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3303 if (optab_handler (smax_optab, mode) != CODE_FOR_nothing)
3304 {
3305 rtx_insn *last = get_last_insn ();
3306
3307 temp = expand_unop (mode, one_cmpl_optab, op0, NULL_RTX, 0);
3308 if (temp != 0)
3309 temp = expand_binop (mode, smax_optab, op0, temp, target, 0,
3310 OPTAB_WIDEN);
3311
3312 if (temp != 0)
3313 return temp;
3314
3315 delete_insns_since (last);
3316 }
3317
3318 /* If this machine has expensive jumps, we can do one's complement
3319 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3320
3321 scalar_int_mode int_mode;
3322 if (is_int_mode (mode, &int_mode)
3323 && BRANCH_COST (optimize_insn_for_speed_p (),
3324 false) >= 2)
3325 {
3326 rtx extended = expand_shift (RSHIFT_EXPR, int_mode, op0,
3327 GET_MODE_PRECISION (int_mode) - 1,
3328 NULL_RTX, 0);
3329
3330 temp = expand_binop (int_mode, xor_optab, extended, op0, target, 0,
3331 OPTAB_LIB_WIDEN);
3332
3333 if (temp != 0)
3334 return temp;
3335 }
3336
3337 return NULL_RTX;
3338 }
3339
3340 /* A subroutine of expand_copysign, perform the copysign operation using the
3341 abs and neg primitives advertised to exist on the target. The assumption
3342 is that we have a split register file, and leaving op0 in fp registers,
3343 and not playing with subregs so much, will help the register allocator. */
3344
3345 static rtx
3346 expand_copysign_absneg (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3347 int bitpos, bool op0_is_abs)
3348 {
3349 scalar_int_mode imode;
3350 enum insn_code icode;
3351 rtx sign;
3352 rtx_code_label *label;
3353
3354 if (target == op1)
3355 target = NULL_RTX;
3356
3357 /* Check if the back end provides an insn that handles signbit for the
3358 argument's mode. */
3359 icode = optab_handler (signbit_optab, mode);
3360 if (icode != CODE_FOR_nothing)
3361 {
3362 imode = as_a <scalar_int_mode> (insn_data[(int) icode].operand[0].mode);
3363 sign = gen_reg_rtx (imode);
3364 emit_unop_insn (icode, sign, op1, UNKNOWN);
3365 }
3366 else
3367 {
3368 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3369 {
3370 if (!int_mode_for_mode (mode).exists (&imode))
3371 return NULL_RTX;
3372 op1 = gen_lowpart (imode, op1);
3373 }
3374 else
3375 {
3376 int word;
3377
3378 imode = word_mode;
3379 if (FLOAT_WORDS_BIG_ENDIAN)
3380 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3381 else
3382 word = bitpos / BITS_PER_WORD;
3383 bitpos = bitpos % BITS_PER_WORD;
3384 op1 = operand_subword_force (op1, word, mode);
3385 }
3386
3387 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3388 sign = expand_binop (imode, and_optab, op1,
3389 immed_wide_int_const (mask, imode),
3390 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3391 }
3392
3393 if (!op0_is_abs)
3394 {
3395 op0 = expand_unop (mode, abs_optab, op0, target, 0);
3396 if (op0 == NULL)
3397 return NULL_RTX;
3398 target = op0;
3399 }
3400 else
3401 {
3402 if (target == NULL_RTX)
3403 target = copy_to_reg (op0);
3404 else
3405 emit_move_insn (target, op0);
3406 }
3407
3408 label = gen_label_rtx ();
3409 emit_cmp_and_jump_insns (sign, const0_rtx, EQ, NULL_RTX, imode, 1, label);
3410
3411 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3412 op0 = simplify_unary_operation (NEG, mode, op0, mode);
3413 else
3414 op0 = expand_unop (mode, neg_optab, op0, target, 0);
3415 if (op0 != target)
3416 emit_move_insn (target, op0);
3417
3418 emit_label (label);
3419
3420 return target;
3421 }
3422
3423
3424 /* A subroutine of expand_copysign, perform the entire copysign operation
3425 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3426 is true if op0 is known to have its sign bit clear. */
3427
3428 static rtx
3429 expand_copysign_bit (scalar_float_mode mode, rtx op0, rtx op1, rtx target,
3430 int bitpos, bool op0_is_abs)
3431 {
3432 scalar_int_mode imode;
3433 int word, nwords, i;
3434 rtx temp;
3435 rtx_insn *insns;
3436
3437 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
3438 {
3439 if (!int_mode_for_mode (mode).exists (&imode))
3440 return NULL_RTX;
3441 word = 0;
3442 nwords = 1;
3443 }
3444 else
3445 {
3446 imode = word_mode;
3447
3448 if (FLOAT_WORDS_BIG_ENDIAN)
3449 word = (GET_MODE_BITSIZE (mode) - bitpos) / BITS_PER_WORD;
3450 else
3451 word = bitpos / BITS_PER_WORD;
3452 bitpos = bitpos % BITS_PER_WORD;
3453 nwords = (GET_MODE_BITSIZE (mode) + BITS_PER_WORD - 1) / BITS_PER_WORD;
3454 }
3455
3456 wide_int mask = wi::set_bit_in_zero (bitpos, GET_MODE_PRECISION (imode));
3457
3458 if (target == 0
3459 || target == op0
3460 || target == op1
3461 || (nwords > 1 && !valid_multiword_target_p (target)))
3462 target = gen_reg_rtx (mode);
3463
3464 if (nwords > 1)
3465 {
3466 start_sequence ();
3467
3468 for (i = 0; i < nwords; ++i)
3469 {
3470 rtx targ_piece = operand_subword (target, i, 1, mode);
3471 rtx op0_piece = operand_subword_force (op0, i, mode);
3472
3473 if (i == word)
3474 {
3475 if (!op0_is_abs)
3476 op0_piece
3477 = expand_binop (imode, and_optab, op0_piece,
3478 immed_wide_int_const (~mask, imode),
3479 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3480 op1 = expand_binop (imode, and_optab,
3481 operand_subword_force (op1, i, mode),
3482 immed_wide_int_const (mask, imode),
3483 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3484
3485 temp = expand_binop (imode, ior_optab, op0_piece, op1,
3486 targ_piece, 1, OPTAB_LIB_WIDEN);
3487 if (temp != targ_piece)
3488 emit_move_insn (targ_piece, temp);
3489 }
3490 else
3491 emit_move_insn (targ_piece, op0_piece);
3492 }
3493
3494 insns = get_insns ();
3495 end_sequence ();
3496
3497 emit_insn (insns);
3498 }
3499 else
3500 {
3501 op1 = expand_binop (imode, and_optab, gen_lowpart (imode, op1),
3502 immed_wide_int_const (mask, imode),
3503 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3504
3505 op0 = gen_lowpart (imode, op0);
3506 if (!op0_is_abs)
3507 op0 = expand_binop (imode, and_optab, op0,
3508 immed_wide_int_const (~mask, imode),
3509 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3510
3511 temp = expand_binop (imode, ior_optab, op0, op1,
3512 gen_lowpart (imode, target), 1, OPTAB_LIB_WIDEN);
3513 target = lowpart_subreg_maybe_copy (mode, temp, imode);
3514 }
3515
3516 return target;
3517 }
3518
3519 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3520 scalar floating point mode. Return NULL if we do not know how to
3521 expand the operation inline. */
3522
3523 rtx
3524 expand_copysign (rtx op0, rtx op1, rtx target)
3525 {
3526 scalar_float_mode mode;
3527 const struct real_format *fmt;
3528 bool op0_is_abs;
3529 rtx temp;
3530
3531 mode = as_a <scalar_float_mode> (GET_MODE (op0));
3532 gcc_assert (GET_MODE (op1) == mode);
3533
3534 /* First try to do it with a special instruction. */
3535 temp = expand_binop (mode, copysign_optab, op0, op1,
3536 target, 0, OPTAB_DIRECT);
3537 if (temp)
3538 return temp;
3539
3540 fmt = REAL_MODE_FORMAT (mode);
3541 if (fmt == NULL || !fmt->has_signed_zero)
3542 return NULL_RTX;
3543
3544 op0_is_abs = false;
3545 if (CONST_DOUBLE_AS_FLOAT_P (op0))
3546 {
3547 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0)))
3548 op0 = simplify_unary_operation (ABS, mode, op0, mode);
3549 op0_is_abs = true;
3550 }
3551
3552 if (fmt->signbit_ro >= 0
3553 && (CONST_DOUBLE_AS_FLOAT_P (op0)
3554 || (optab_handler (neg_optab, mode) != CODE_FOR_nothing
3555 && optab_handler (abs_optab, mode) != CODE_FOR_nothing)))
3556 {
3557 temp = expand_copysign_absneg (mode, op0, op1, target,
3558 fmt->signbit_ro, op0_is_abs);
3559 if (temp)
3560 return temp;
3561 }
3562
3563 if (fmt->signbit_rw < 0)
3564 return NULL_RTX;
3565 return expand_copysign_bit (mode, op0, op1, target,
3566 fmt->signbit_rw, op0_is_abs);
3567 }
3568 \f
3569 /* Generate an instruction whose insn-code is INSN_CODE,
3570 with two operands: an output TARGET and an input OP0.
3571 TARGET *must* be nonzero, and the output is always stored there.
3572 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3573 the value that is stored into TARGET.
3574
3575 Return false if expansion failed. */
3576
3577 bool
3578 maybe_emit_unop_insn (enum insn_code icode, rtx target, rtx op0,
3579 enum rtx_code code)
3580 {
3581 struct expand_operand ops[2];
3582 rtx_insn *pat;
3583
3584 create_output_operand (&ops[0], target, GET_MODE (target));
3585 create_input_operand (&ops[1], op0, GET_MODE (op0));
3586 pat = maybe_gen_insn (icode, 2, ops);
3587 if (!pat)
3588 return false;
3589
3590 if (INSN_P (pat) && NEXT_INSN (pat) != NULL_RTX
3591 && code != UNKNOWN)
3592 add_equal_note (pat, ops[0].value, code, ops[1].value, NULL_RTX,
3593 GET_MODE (op0));
3594
3595 emit_insn (pat);
3596
3597 if (ops[0].value != target)
3598 emit_move_insn (target, ops[0].value);
3599 return true;
3600 }
3601 /* Generate an instruction whose insn-code is INSN_CODE,
3602 with two operands: an output TARGET and an input OP0.
3603 TARGET *must* be nonzero, and the output is always stored there.
3604 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3605 the value that is stored into TARGET. */
3606
3607 void
3608 emit_unop_insn (enum insn_code icode, rtx target, rtx op0, enum rtx_code code)
3609 {
3610 bool ok = maybe_emit_unop_insn (icode, target, op0, code);
3611 gcc_assert (ok);
3612 }
3613 \f
3614 struct no_conflict_data
3615 {
3616 rtx target;
3617 rtx_insn *first, *insn;
3618 bool must_stay;
3619 };
3620
3621 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3622 the currently examined clobber / store has to stay in the list of
3623 insns that constitute the actual libcall block. */
3624 static void
3625 no_conflict_move_test (rtx dest, const_rtx set, void *p0)
3626 {
3627 struct no_conflict_data *p= (struct no_conflict_data *) p0;
3628
3629 /* If this inns directly contributes to setting the target, it must stay. */
3630 if (reg_overlap_mentioned_p (p->target, dest))
3631 p->must_stay = true;
3632 /* If we haven't committed to keeping any other insns in the list yet,
3633 there is nothing more to check. */
3634 else if (p->insn == p->first)
3635 return;
3636 /* If this insn sets / clobbers a register that feeds one of the insns
3637 already in the list, this insn has to stay too. */
3638 else if (reg_overlap_mentioned_p (dest, PATTERN (p->first))
3639 || (CALL_P (p->first) && (find_reg_fusage (p->first, USE, dest)))
3640 || reg_used_between_p (dest, p->first, p->insn)
3641 /* Likewise if this insn depends on a register set by a previous
3642 insn in the list, or if it sets a result (presumably a hard
3643 register) that is set or clobbered by a previous insn.
3644 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3645 SET_DEST perform the former check on the address, and the latter
3646 check on the MEM. */
3647 || (GET_CODE (set) == SET
3648 && (modified_in_p (SET_SRC (set), p->first)
3649 || modified_in_p (SET_DEST (set), p->first)
3650 || modified_between_p (SET_SRC (set), p->first, p->insn)
3651 || modified_between_p (SET_DEST (set), p->first, p->insn))))
3652 p->must_stay = true;
3653 }
3654
3655 \f
3656 /* Emit code to make a call to a constant function or a library call.
3657
3658 INSNS is a list containing all insns emitted in the call.
3659 These insns leave the result in RESULT. Our block is to copy RESULT
3660 to TARGET, which is logically equivalent to EQUIV.
3661
3662 We first emit any insns that set a pseudo on the assumption that these are
3663 loading constants into registers; doing so allows them to be safely cse'ed
3664 between blocks. Then we emit all the other insns in the block, followed by
3665 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3666 note with an operand of EQUIV. */
3667
3668 static void
3669 emit_libcall_block_1 (rtx_insn *insns, rtx target, rtx result, rtx equiv,
3670 bool equiv_may_trap)
3671 {
3672 rtx final_dest = target;
3673 rtx_insn *next, *last, *insn;
3674
3675 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3676 into a MEM later. Protect the libcall block from this change. */
3677 if (! REG_P (target) || REG_USERVAR_P (target))
3678 target = gen_reg_rtx (GET_MODE (target));
3679
3680 /* If we're using non-call exceptions, a libcall corresponding to an
3681 operation that may trap may also trap. */
3682 /* ??? See the comment in front of make_reg_eh_region_note. */
3683 if (cfun->can_throw_non_call_exceptions
3684 && (equiv_may_trap || may_trap_p (equiv)))
3685 {
3686 for (insn = insns; insn; insn = NEXT_INSN (insn))
3687 if (CALL_P (insn))
3688 {
3689 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3690 if (note)
3691 {
3692 int lp_nr = INTVAL (XEXP (note, 0));
3693 if (lp_nr == 0 || lp_nr == INT_MIN)
3694 remove_note (insn, note);
3695 }
3696 }
3697 }
3698 else
3699 {
3700 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3701 reg note to indicate that this call cannot throw or execute a nonlocal
3702 goto (unless there is already a REG_EH_REGION note, in which case
3703 we update it). */
3704 for (insn = insns; insn; insn = NEXT_INSN (insn))
3705 if (CALL_P (insn))
3706 make_reg_eh_region_note_nothrow_nononlocal (insn);
3707 }
3708
3709 /* First emit all insns that set pseudos. Remove them from the list as
3710 we go. Avoid insns that set pseudos which were referenced in previous
3711 insns. These can be generated by move_by_pieces, for example,
3712 to update an address. Similarly, avoid insns that reference things
3713 set in previous insns. */
3714
3715 for (insn = insns; insn; insn = next)
3716 {
3717 rtx set = single_set (insn);
3718
3719 next = NEXT_INSN (insn);
3720
3721 if (set != 0 && REG_P (SET_DEST (set))
3722 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3723 {
3724 struct no_conflict_data data;
3725
3726 data.target = const0_rtx;
3727 data.first = insns;
3728 data.insn = insn;
3729 data.must_stay = 0;
3730 note_stores (PATTERN (insn), no_conflict_move_test, &data);
3731 if (! data.must_stay)
3732 {
3733 if (PREV_INSN (insn))
3734 SET_NEXT_INSN (PREV_INSN (insn)) = next;
3735 else
3736 insns = next;
3737
3738 if (next)
3739 SET_PREV_INSN (next) = PREV_INSN (insn);
3740
3741 add_insn (insn);
3742 }
3743 }
3744
3745 /* Some ports use a loop to copy large arguments onto the stack.
3746 Don't move anything outside such a loop. */
3747 if (LABEL_P (insn))
3748 break;
3749 }
3750
3751 /* Write the remaining insns followed by the final copy. */
3752 for (insn = insns; insn; insn = next)
3753 {
3754 next = NEXT_INSN (insn);
3755
3756 add_insn (insn);
3757 }
3758
3759 last = emit_move_insn (target, result);
3760 if (equiv)
3761 set_dst_reg_note (last, REG_EQUAL, copy_rtx (equiv), target);
3762
3763 if (final_dest != target)
3764 emit_move_insn (final_dest, target);
3765 }
3766
3767 void
3768 emit_libcall_block (rtx_insn *insns, rtx target, rtx result, rtx equiv)
3769 {
3770 emit_libcall_block_1 (insns, target, result, equiv, false);
3771 }
3772 \f
3773 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3774 PURPOSE describes how this comparison will be used. CODE is the rtx
3775 comparison code we will be using.
3776
3777 ??? Actually, CODE is slightly weaker than that. A target is still
3778 required to implement all of the normal bcc operations, but not
3779 required to implement all (or any) of the unordered bcc operations. */
3780
3781 int
3782 can_compare_p (enum rtx_code code, machine_mode mode,
3783 enum can_compare_purpose purpose)
3784 {
3785 rtx test;
3786 test = gen_rtx_fmt_ee (code, mode, const0_rtx, const0_rtx);
3787 do
3788 {
3789 enum insn_code icode;
3790
3791 if (purpose == ccp_jump
3792 && (icode = optab_handler (cbranch_optab, mode)) != CODE_FOR_nothing
3793 && insn_operand_matches (icode, 0, test))
3794 return 1;
3795 if (purpose == ccp_store_flag
3796 && (icode = optab_handler (cstore_optab, mode)) != CODE_FOR_nothing
3797 && insn_operand_matches (icode, 1, test))
3798 return 1;
3799 if (purpose == ccp_cmov
3800 && optab_handler (cmov_optab, mode) != CODE_FOR_nothing)
3801 return 1;
3802
3803 mode = GET_MODE_WIDER_MODE (mode).else_void ();
3804 PUT_MODE (test, mode);
3805 }
3806 while (mode != VOIDmode);
3807
3808 return 0;
3809 }
3810
3811 /* This function is called when we are going to emit a compare instruction that
3812 compares the values found in X and Y, using the rtl operator COMPARISON.
3813
3814 If they have mode BLKmode, then SIZE specifies the size of both operands.
3815
3816 UNSIGNEDP nonzero says that the operands are unsigned;
3817 this matters if they need to be widened (as given by METHODS).
3818
3819 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3820 if we failed to produce one.
3821
3822 *PMODE is the mode of the inputs (in case they are const_int).
3823
3824 This function performs all the setup necessary so that the caller only has
3825 to emit a single comparison insn. This setup can involve doing a BLKmode
3826 comparison or emitting a library call to perform the comparison if no insn
3827 is available to handle it.
3828 The values which are passed in through pointers can be modified; the caller
3829 should perform the comparison on the modified values. Constant
3830 comparisons must have already been folded. */
3831
3832 static void
3833 prepare_cmp_insn (rtx x, rtx y, enum rtx_code comparison, rtx size,
3834 int unsignedp, enum optab_methods methods,
3835 rtx *ptest, machine_mode *pmode)
3836 {
3837 machine_mode mode = *pmode;
3838 rtx libfunc, test;
3839 machine_mode cmp_mode;
3840 enum mode_class mclass;
3841
3842 /* The other methods are not needed. */
3843 gcc_assert (methods == OPTAB_DIRECT || methods == OPTAB_WIDEN
3844 || methods == OPTAB_LIB_WIDEN);
3845
3846 if (CONST_SCALAR_INT_P (y))
3847 canonicalize_comparison (mode, &comparison, &y);
3848
3849 /* If we are optimizing, force expensive constants into a register. */
3850 if (CONSTANT_P (x) && optimize
3851 && (rtx_cost (x, mode, COMPARE, 0, optimize_insn_for_speed_p ())
3852 > COSTS_N_INSNS (1)))
3853 x = force_reg (mode, x);
3854
3855 if (CONSTANT_P (y) && optimize
3856 && (rtx_cost (y, mode, COMPARE, 1, optimize_insn_for_speed_p ())
3857 > COSTS_N_INSNS (1)))
3858 y = force_reg (mode, y);
3859
3860 #if HAVE_cc0
3861 /* Make sure if we have a canonical comparison. The RTL
3862 documentation states that canonical comparisons are required only
3863 for targets which have cc0. */
3864 gcc_assert (!CONSTANT_P (x) || CONSTANT_P (y));
3865 #endif
3866
3867 /* Don't let both operands fail to indicate the mode. */
3868 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
3869 x = force_reg (mode, x);
3870 if (mode == VOIDmode)
3871 mode = GET_MODE (x) != VOIDmode ? GET_MODE (x) : GET_MODE (y);
3872
3873 /* Handle all BLKmode compares. */
3874
3875 if (mode == BLKmode)
3876 {
3877 machine_mode result_mode;
3878 enum insn_code cmp_code;
3879 rtx result;
3880 rtx opalign
3881 = GEN_INT (MIN (MEM_ALIGN (x), MEM_ALIGN (y)) / BITS_PER_UNIT);
3882
3883 gcc_assert (size);
3884
3885 /* Try to use a memory block compare insn - either cmpstr
3886 or cmpmem will do. */
3887 opt_scalar_int_mode cmp_mode_iter;
3888 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
3889 {
3890 scalar_int_mode cmp_mode = cmp_mode_iter.require ();
3891 cmp_code = direct_optab_handler (cmpmem_optab, cmp_mode);
3892 if (cmp_code == CODE_FOR_nothing)
3893 cmp_code = direct_optab_handler (cmpstr_optab, cmp_mode);
3894 if (cmp_code == CODE_FOR_nothing)
3895 cmp_code = direct_optab_handler (cmpstrn_optab, cmp_mode);
3896 if (cmp_code == CODE_FOR_nothing)
3897 continue;
3898
3899 /* Must make sure the size fits the insn's mode. */
3900 if (CONST_INT_P (size)
3901 ? INTVAL (size) >= (1 << GET_MODE_BITSIZE (cmp_mode))
3902 : (GET_MODE_BITSIZE (as_a <scalar_int_mode> (GET_MODE (size)))
3903 > GET_MODE_BITSIZE (cmp_mode)))
3904 continue;
3905
3906 result_mode = insn_data[cmp_code].operand[0].mode;
3907 result = gen_reg_rtx (result_mode);
3908 size = convert_to_mode (cmp_mode, size, 1);
3909 emit_insn (GEN_FCN (cmp_code) (result, x, y, size, opalign));
3910
3911 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, result, const0_rtx);
3912 *pmode = result_mode;
3913 return;
3914 }
3915
3916 if (methods != OPTAB_LIB && methods != OPTAB_LIB_WIDEN)
3917 goto fail;
3918
3919 /* Otherwise call a library function. */
3920 result = emit_block_comp_via_libcall (x, y, size);
3921
3922 x = result;
3923 y = const0_rtx;
3924 mode = TYPE_MODE (integer_type_node);
3925 methods = OPTAB_LIB_WIDEN;
3926 unsignedp = false;
3927 }
3928
3929 /* Don't allow operands to the compare to trap, as that can put the
3930 compare and branch in different basic blocks. */
3931 if (cfun->can_throw_non_call_exceptions)
3932 {
3933 if (may_trap_p (x))
3934 x = copy_to_reg (x);
3935 if (may_trap_p (y))
3936 y = copy_to_reg (y);
3937 }
3938
3939 if (GET_MODE_CLASS (mode) == MODE_CC)
3940 {
3941 enum insn_code icode = optab_handler (cbranch_optab, CCmode);
3942 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3943 gcc_assert (icode != CODE_FOR_nothing
3944 && insn_operand_matches (icode, 0, test));
3945 *ptest = test;
3946 return;
3947 }
3948
3949 mclass = GET_MODE_CLASS (mode);
3950 test = gen_rtx_fmt_ee (comparison, VOIDmode, x, y);
3951 FOR_EACH_MODE_FROM (cmp_mode, mode)
3952 {
3953 enum insn_code icode;
3954 icode = optab_handler (cbranch_optab, cmp_mode);
3955 if (icode != CODE_FOR_nothing
3956 && insn_operand_matches (icode, 0, test))
3957 {
3958 rtx_insn *last = get_last_insn ();
3959 rtx op0 = prepare_operand (icode, x, 1, mode, cmp_mode, unsignedp);
3960 rtx op1 = prepare_operand (icode, y, 2, mode, cmp_mode, unsignedp);
3961 if (op0 && op1
3962 && insn_operand_matches (icode, 1, op0)
3963 && insn_operand_matches (icode, 2, op1))
3964 {
3965 XEXP (test, 0) = op0;
3966 XEXP (test, 1) = op1;
3967 *ptest = test;
3968 *pmode = cmp_mode;
3969 return;
3970 }
3971 delete_insns_since (last);
3972 }
3973
3974 if (methods == OPTAB_DIRECT || !CLASS_HAS_WIDER_MODES_P (mclass))
3975 break;
3976 }
3977
3978 if (methods != OPTAB_LIB_WIDEN)
3979 goto fail;
3980
3981 if (SCALAR_FLOAT_MODE_P (mode))
3982 {
3983 /* Small trick if UNORDERED isn't implemented by the hardware. */
3984 if (comparison == UNORDERED && rtx_equal_p (x, y))
3985 {
3986 prepare_cmp_insn (x, y, UNLT, NULL_RTX, unsignedp, OPTAB_WIDEN,
3987 ptest, pmode);
3988 if (*ptest)
3989 return;
3990 }
3991
3992 prepare_float_lib_cmp (x, y, comparison, ptest, pmode);
3993 }
3994 else
3995 {
3996 rtx result;
3997 machine_mode ret_mode;
3998
3999 /* Handle a libcall just for the mode we are using. */
4000 libfunc = optab_libfunc (cmp_optab, mode);
4001 gcc_assert (libfunc);
4002
4003 /* If we want unsigned, and this mode has a distinct unsigned
4004 comparison routine, use that. */
4005 if (unsignedp)
4006 {
4007 rtx ulibfunc = optab_libfunc (ucmp_optab, mode);
4008 if (ulibfunc)
4009 libfunc = ulibfunc;
4010 }
4011
4012 ret_mode = targetm.libgcc_cmp_return_mode ();
4013 result = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4014 ret_mode, x, mode, y, mode);
4015
4016 /* There are two kinds of comparison routines. Biased routines
4017 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4018 of gcc expect that the comparison operation is equivalent
4019 to the modified comparison. For signed comparisons compare the
4020 result against 1 in the biased case, and zero in the unbiased
4021 case. For unsigned comparisons always compare against 1 after
4022 biasing the unbiased result by adding 1. This gives us a way to
4023 represent LTU.
4024 The comparisons in the fixed-point helper library are always
4025 biased. */
4026 x = result;
4027 y = const1_rtx;
4028
4029 if (!TARGET_LIB_INT_CMP_BIASED && !ALL_FIXED_POINT_MODE_P (mode))
4030 {
4031 if (unsignedp)
4032 x = plus_constant (ret_mode, result, 1);
4033 else
4034 y = const0_rtx;
4035 }
4036
4037 *pmode = ret_mode;
4038 prepare_cmp_insn (x, y, comparison, NULL_RTX, unsignedp, methods,
4039 ptest, pmode);
4040 }
4041
4042 return;
4043
4044 fail:
4045 *ptest = NULL_RTX;
4046 }
4047
4048 /* Before emitting an insn with code ICODE, make sure that X, which is going
4049 to be used for operand OPNUM of the insn, is converted from mode MODE to
4050 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4051 that it is accepted by the operand predicate. Return the new value. */
4052
4053 rtx
4054 prepare_operand (enum insn_code icode, rtx x, int opnum, machine_mode mode,
4055 machine_mode wider_mode, int unsignedp)
4056 {
4057 if (mode != wider_mode)
4058 x = convert_modes (wider_mode, mode, x, unsignedp);
4059
4060 if (!insn_operand_matches (icode, opnum, x))
4061 {
4062 machine_mode op_mode = insn_data[(int) icode].operand[opnum].mode;
4063 if (reload_completed)
4064 return NULL_RTX;
4065 if (GET_MODE (x) != op_mode && GET_MODE (x) != VOIDmode)
4066 return NULL_RTX;
4067 x = copy_to_mode_reg (op_mode, x);
4068 }
4069
4070 return x;
4071 }
4072
4073 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4074 we can do the branch. */
4075
4076 static void
4077 emit_cmp_and_jump_insn_1 (rtx test, machine_mode mode, rtx label,
4078 profile_probability prob)
4079 {
4080 machine_mode optab_mode;
4081 enum mode_class mclass;
4082 enum insn_code icode;
4083 rtx_insn *insn;
4084
4085 mclass = GET_MODE_CLASS (mode);
4086 optab_mode = (mclass == MODE_CC) ? CCmode : mode;
4087 icode = optab_handler (cbranch_optab, optab_mode);
4088
4089 gcc_assert (icode != CODE_FOR_nothing);
4090 gcc_assert (insn_operand_matches (icode, 0, test));
4091 insn = emit_jump_insn (GEN_FCN (icode) (test, XEXP (test, 0),
4092 XEXP (test, 1), label));
4093 if (prob.initialized_p ()
4094 && profile_status_for_fn (cfun) != PROFILE_ABSENT
4095 && insn
4096 && JUMP_P (insn)
4097 && any_condjump_p (insn)
4098 && !find_reg_note (insn, REG_BR_PROB, 0))
4099 add_reg_br_prob_note (insn, prob);
4100 }
4101
4102 /* Generate code to compare X with Y so that the condition codes are
4103 set and to jump to LABEL if the condition is true. If X is a
4104 constant and Y is not a constant, then the comparison is swapped to
4105 ensure that the comparison RTL has the canonical form.
4106
4107 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4108 need to be widened. UNSIGNEDP is also used to select the proper
4109 branch condition code.
4110
4111 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4112
4113 MODE is the mode of the inputs (in case they are const_int).
4114
4115 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4116 It will be potentially converted into an unsigned variant based on
4117 UNSIGNEDP to select a proper jump instruction.
4118
4119 PROB is the probability of jumping to LABEL. */
4120
4121 void
4122 emit_cmp_and_jump_insns (rtx x, rtx y, enum rtx_code comparison, rtx size,
4123 machine_mode mode, int unsignedp, rtx label,
4124 profile_probability prob)
4125 {
4126 rtx op0 = x, op1 = y;
4127 rtx test;
4128
4129 /* Swap operands and condition to ensure canonical RTL. */
4130 if (swap_commutative_operands_p (x, y)
4131 && can_compare_p (swap_condition (comparison), mode, ccp_jump))
4132 {
4133 op0 = y, op1 = x;
4134 comparison = swap_condition (comparison);
4135 }
4136
4137 /* If OP0 is still a constant, then both X and Y must be constants
4138 or the opposite comparison is not supported. Force X into a register
4139 to create canonical RTL. */
4140 if (CONSTANT_P (op0))
4141 op0 = force_reg (mode, op0);
4142
4143 if (unsignedp)
4144 comparison = unsigned_condition (comparison);
4145
4146 prepare_cmp_insn (op0, op1, comparison, size, unsignedp, OPTAB_LIB_WIDEN,
4147 &test, &mode);
4148 emit_cmp_and_jump_insn_1 (test, mode, label, prob);
4149 }
4150
4151 \f
4152 /* Emit a library call comparison between floating point X and Y.
4153 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4154
4155 static void
4156 prepare_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison,
4157 rtx *ptest, machine_mode *pmode)
4158 {
4159 enum rtx_code swapped = swap_condition (comparison);
4160 enum rtx_code reversed = reverse_condition_maybe_unordered (comparison);
4161 machine_mode orig_mode = GET_MODE (x);
4162 machine_mode mode;
4163 rtx true_rtx, false_rtx;
4164 rtx value, target, equiv;
4165 rtx_insn *insns;
4166 rtx libfunc = 0;
4167 bool reversed_p = false;
4168 scalar_int_mode cmp_mode = targetm.libgcc_cmp_return_mode ();
4169
4170 FOR_EACH_MODE_FROM (mode, orig_mode)
4171 {
4172 if (code_to_optab (comparison)
4173 && (libfunc = optab_libfunc (code_to_optab (comparison), mode)))
4174 break;
4175
4176 if (code_to_optab (swapped)
4177 && (libfunc = optab_libfunc (code_to_optab (swapped), mode)))
4178 {
4179 std::swap (x, y);
4180 comparison = swapped;
4181 break;
4182 }
4183
4184 if (code_to_optab (reversed)
4185 && (libfunc = optab_libfunc (code_to_optab (reversed), mode)))
4186 {
4187 comparison = reversed;
4188 reversed_p = true;
4189 break;
4190 }
4191 }
4192
4193 gcc_assert (mode != VOIDmode);
4194
4195 if (mode != orig_mode)
4196 {
4197 x = convert_to_mode (mode, x, 0);
4198 y = convert_to_mode (mode, y, 0);
4199 }
4200
4201 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4202 the RTL. The allows the RTL optimizers to delete the libcall if the
4203 condition can be determined at compile-time. */
4204 if (comparison == UNORDERED
4205 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4206 {
4207 true_rtx = const_true_rtx;
4208 false_rtx = const0_rtx;
4209 }
4210 else
4211 {
4212 switch (comparison)
4213 {
4214 case EQ:
4215 true_rtx = const0_rtx;
4216 false_rtx = const_true_rtx;
4217 break;
4218
4219 case NE:
4220 true_rtx = const_true_rtx;
4221 false_rtx = const0_rtx;
4222 break;
4223
4224 case GT:
4225 true_rtx = const1_rtx;
4226 false_rtx = const0_rtx;
4227 break;
4228
4229 case GE:
4230 true_rtx = const0_rtx;
4231 false_rtx = constm1_rtx;
4232 break;
4233
4234 case LT:
4235 true_rtx = constm1_rtx;
4236 false_rtx = const0_rtx;
4237 break;
4238
4239 case LE:
4240 true_rtx = const0_rtx;
4241 false_rtx = const1_rtx;
4242 break;
4243
4244 default:
4245 gcc_unreachable ();
4246 }
4247 }
4248
4249 if (comparison == UNORDERED)
4250 {
4251 rtx temp = simplify_gen_relational (NE, cmp_mode, mode, x, x);
4252 equiv = simplify_gen_relational (NE, cmp_mode, mode, y, y);
4253 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4254 temp, const_true_rtx, equiv);
4255 }
4256 else
4257 {
4258 equiv = simplify_gen_relational (comparison, cmp_mode, mode, x, y);
4259 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison))
4260 equiv = simplify_gen_ternary (IF_THEN_ELSE, cmp_mode, cmp_mode,
4261 equiv, true_rtx, false_rtx);
4262 }
4263
4264 start_sequence ();
4265 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4266 cmp_mode, x, mode, y, mode);
4267 insns = get_insns ();
4268 end_sequence ();
4269
4270 target = gen_reg_rtx (cmp_mode);
4271 emit_libcall_block (insns, target, value, equiv);
4272
4273 if (comparison == UNORDERED
4274 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode, comparison)
4275 || reversed_p)
4276 *ptest = gen_rtx_fmt_ee (reversed_p ? EQ : NE, VOIDmode, target, false_rtx);
4277 else
4278 *ptest = gen_rtx_fmt_ee (comparison, VOIDmode, target, const0_rtx);
4279
4280 *pmode = cmp_mode;
4281 }
4282 \f
4283 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4284
4285 void
4286 emit_indirect_jump (rtx loc)
4287 {
4288 if (!targetm.have_indirect_jump ())
4289 sorry ("indirect jumps are not available on this target");
4290 else
4291 {
4292 struct expand_operand ops[1];
4293 create_address_operand (&ops[0], loc);
4294 expand_jump_insn (targetm.code_for_indirect_jump, 1, ops);
4295 emit_barrier ();
4296 }
4297 }
4298 \f
4299
4300 /* Emit a conditional move instruction if the machine supports one for that
4301 condition and machine mode.
4302
4303 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4304 the mode to use should they be constants. If it is VOIDmode, they cannot
4305 both be constants.
4306
4307 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4308 should be stored there. MODE is the mode to use should they be constants.
4309 If it is VOIDmode, they cannot both be constants.
4310
4311 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4312 is not supported. */
4313
4314 rtx
4315 emit_conditional_move (rtx target, enum rtx_code code, rtx op0, rtx op1,
4316 machine_mode cmode, rtx op2, rtx op3,
4317 machine_mode mode, int unsignedp)
4318 {
4319 rtx comparison;
4320 rtx_insn *last;
4321 enum insn_code icode;
4322 enum rtx_code reversed;
4323
4324 /* If the two source operands are identical, that's just a move. */
4325
4326 if (rtx_equal_p (op2, op3))
4327 {
4328 if (!target)
4329 target = gen_reg_rtx (mode);
4330
4331 emit_move_insn (target, op3);
4332 return target;
4333 }
4334
4335 /* If one operand is constant, make it the second one. Only do this
4336 if the other operand is not constant as well. */
4337
4338 if (swap_commutative_operands_p (op0, op1))
4339 {
4340 std::swap (op0, op1);
4341 code = swap_condition (code);
4342 }
4343
4344 /* get_condition will prefer to generate LT and GT even if the old
4345 comparison was against zero, so undo that canonicalization here since
4346 comparisons against zero are cheaper. */
4347 if (code == LT && op1 == const1_rtx)
4348 code = LE, op1 = const0_rtx;
4349 else if (code == GT && op1 == constm1_rtx)
4350 code = GE, op1 = const0_rtx;
4351
4352 if (cmode == VOIDmode)
4353 cmode = GET_MODE (op0);
4354
4355 enum rtx_code orig_code = code;
4356 bool swapped = false;
4357 if (swap_commutative_operands_p (op2, op3)
4358 && ((reversed = reversed_comparison_code_parts (code, op0, op1, NULL))
4359 != UNKNOWN))
4360 {
4361 std::swap (op2, op3);
4362 code = reversed;
4363 swapped = true;
4364 }
4365
4366 if (mode == VOIDmode)
4367 mode = GET_MODE (op2);
4368
4369 icode = direct_optab_handler (movcc_optab, mode);
4370
4371 if (icode == CODE_FOR_nothing)
4372 return NULL_RTX;
4373
4374 if (!target)
4375 target = gen_reg_rtx (mode);
4376
4377 for (int pass = 0; ; pass++)
4378 {
4379 code = unsignedp ? unsigned_condition (code) : code;
4380 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4381
4382 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4383 punt and let the caller figure out how best to deal with this
4384 situation. */
4385 if (COMPARISON_P (comparison))
4386 {
4387 saved_pending_stack_adjust save;
4388 save_pending_stack_adjust (&save);
4389 last = get_last_insn ();
4390 do_pending_stack_adjust ();
4391 machine_mode cmpmode = cmode;
4392 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4393 GET_CODE (comparison), NULL_RTX, unsignedp,
4394 OPTAB_WIDEN, &comparison, &cmpmode);
4395 if (comparison)
4396 {
4397 struct expand_operand ops[4];
4398
4399 create_output_operand (&ops[0], target, mode);
4400 create_fixed_operand (&ops[1], comparison);
4401 create_input_operand (&ops[2], op2, mode);
4402 create_input_operand (&ops[3], op3, mode);
4403 if (maybe_expand_insn (icode, 4, ops))
4404 {
4405 if (ops[0].value != target)
4406 convert_move (target, ops[0].value, false);
4407 return target;
4408 }
4409 }
4410 delete_insns_since (last);
4411 restore_pending_stack_adjust (&save);
4412 }
4413
4414 if (pass == 1)
4415 return NULL_RTX;
4416
4417 /* If the preferred op2/op3 order is not usable, retry with other
4418 operand order, perhaps it will expand successfully. */
4419 if (swapped)
4420 code = orig_code;
4421 else if ((reversed = reversed_comparison_code_parts (orig_code, op0, op1,
4422 NULL))
4423 != UNKNOWN)
4424 code = reversed;
4425 else
4426 return NULL_RTX;
4427 std::swap (op2, op3);
4428 }
4429 }
4430
4431
4432 /* Emit a conditional negate or bitwise complement using the
4433 negcc or notcc optabs if available. Return NULL_RTX if such operations
4434 are not available. Otherwise return the RTX holding the result.
4435 TARGET is the desired destination of the result. COMP is the comparison
4436 on which to negate. If COND is true move into TARGET the negation
4437 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4438 CODE is either NEG or NOT. MODE is the machine mode in which the
4439 operation is performed. */
4440
4441 rtx
4442 emit_conditional_neg_or_complement (rtx target, rtx_code code,
4443 machine_mode mode, rtx cond, rtx op1,
4444 rtx op2)
4445 {
4446 optab op = unknown_optab;
4447 if (code == NEG)
4448 op = negcc_optab;
4449 else if (code == NOT)
4450 op = notcc_optab;
4451 else
4452 gcc_unreachable ();
4453
4454 insn_code icode = direct_optab_handler (op, mode);
4455
4456 if (icode == CODE_FOR_nothing)
4457 return NULL_RTX;
4458
4459 if (!target)
4460 target = gen_reg_rtx (mode);
4461
4462 rtx_insn *last = get_last_insn ();
4463 struct expand_operand ops[4];
4464
4465 create_output_operand (&ops[0], target, mode);
4466 create_fixed_operand (&ops[1], cond);
4467 create_input_operand (&ops[2], op1, mode);
4468 create_input_operand (&ops[3], op2, mode);
4469
4470 if (maybe_expand_insn (icode, 4, ops))
4471 {
4472 if (ops[0].value != target)
4473 convert_move (target, ops[0].value, false);
4474
4475 return target;
4476 }
4477 delete_insns_since (last);
4478 return NULL_RTX;
4479 }
4480
4481 /* Emit a conditional addition instruction if the machine supports one for that
4482 condition and machine mode.
4483
4484 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4485 the mode to use should they be constants. If it is VOIDmode, they cannot
4486 both be constants.
4487
4488 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4489 should be stored there. MODE is the mode to use should they be constants.
4490 If it is VOIDmode, they cannot both be constants.
4491
4492 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4493 is not supported. */
4494
4495 rtx
4496 emit_conditional_add (rtx target, enum rtx_code code, rtx op0, rtx op1,
4497 machine_mode cmode, rtx op2, rtx op3,
4498 machine_mode mode, int unsignedp)
4499 {
4500 rtx comparison;
4501 rtx_insn *last;
4502 enum insn_code icode;
4503
4504 /* If one operand is constant, make it the second one. Only do this
4505 if the other operand is not constant as well. */
4506
4507 if (swap_commutative_operands_p (op0, op1))
4508 {
4509 std::swap (op0, op1);
4510 code = swap_condition (code);
4511 }
4512
4513 /* get_condition will prefer to generate LT and GT even if the old
4514 comparison was against zero, so undo that canonicalization here since
4515 comparisons against zero are cheaper. */
4516 if (code == LT && op1 == const1_rtx)
4517 code = LE, op1 = const0_rtx;
4518 else if (code == GT && op1 == constm1_rtx)
4519 code = GE, op1 = const0_rtx;
4520
4521 if (cmode == VOIDmode)
4522 cmode = GET_MODE (op0);
4523
4524 if (mode == VOIDmode)
4525 mode = GET_MODE (op2);
4526
4527 icode = optab_handler (addcc_optab, mode);
4528
4529 if (icode == CODE_FOR_nothing)
4530 return 0;
4531
4532 if (!target)
4533 target = gen_reg_rtx (mode);
4534
4535 code = unsignedp ? unsigned_condition (code) : code;
4536 comparison = simplify_gen_relational (code, VOIDmode, cmode, op0, op1);
4537
4538 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4539 return NULL and let the caller figure out how best to deal with this
4540 situation. */
4541 if (!COMPARISON_P (comparison))
4542 return NULL_RTX;
4543
4544 do_pending_stack_adjust ();
4545 last = get_last_insn ();
4546 prepare_cmp_insn (XEXP (comparison, 0), XEXP (comparison, 1),
4547 GET_CODE (comparison), NULL_RTX, unsignedp, OPTAB_WIDEN,
4548 &comparison, &cmode);
4549 if (comparison)
4550 {
4551 struct expand_operand ops[4];
4552
4553 create_output_operand (&ops[0], target, mode);
4554 create_fixed_operand (&ops[1], comparison);
4555 create_input_operand (&ops[2], op2, mode);
4556 create_input_operand (&ops[3], op3, mode);
4557 if (maybe_expand_insn (icode, 4, ops))
4558 {
4559 if (ops[0].value != target)
4560 convert_move (target, ops[0].value, false);
4561 return target;
4562 }
4563 }
4564 delete_insns_since (last);
4565 return NULL_RTX;
4566 }
4567 \f
4568 /* These functions attempt to generate an insn body, rather than
4569 emitting the insn, but if the gen function already emits them, we
4570 make no attempt to turn them back into naked patterns. */
4571
4572 /* Generate and return an insn body to add Y to X. */
4573
4574 rtx_insn *
4575 gen_add2_insn (rtx x, rtx y)
4576 {
4577 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
4578
4579 gcc_assert (insn_operand_matches (icode, 0, x));
4580 gcc_assert (insn_operand_matches (icode, 1, x));
4581 gcc_assert (insn_operand_matches (icode, 2, y));
4582
4583 return GEN_FCN (icode) (x, x, y);
4584 }
4585
4586 /* Generate and return an insn body to add r1 and c,
4587 storing the result in r0. */
4588
4589 rtx_insn *
4590 gen_add3_insn (rtx r0, rtx r1, rtx c)
4591 {
4592 enum insn_code icode = optab_handler (add_optab, GET_MODE (r0));
4593
4594 if (icode == CODE_FOR_nothing
4595 || !insn_operand_matches (icode, 0, r0)
4596 || !insn_operand_matches (icode, 1, r1)
4597 || !insn_operand_matches (icode, 2, c))
4598 return NULL;
4599
4600 return GEN_FCN (icode) (r0, r1, c);
4601 }
4602
4603 int
4604 have_add2_insn (rtx x, rtx y)
4605 {
4606 enum insn_code icode;
4607
4608 gcc_assert (GET_MODE (x) != VOIDmode);
4609
4610 icode = optab_handler (add_optab, GET_MODE (x));
4611
4612 if (icode == CODE_FOR_nothing)
4613 return 0;
4614
4615 if (!insn_operand_matches (icode, 0, x)
4616 || !insn_operand_matches (icode, 1, x)
4617 || !insn_operand_matches (icode, 2, y))
4618 return 0;
4619
4620 return 1;
4621 }
4622
4623 /* Generate and return an insn body to add Y to X. */
4624
4625 rtx_insn *
4626 gen_addptr3_insn (rtx x, rtx y, rtx z)
4627 {
4628 enum insn_code icode = optab_handler (addptr3_optab, GET_MODE (x));
4629
4630 gcc_assert (insn_operand_matches (icode, 0, x));
4631 gcc_assert (insn_operand_matches (icode, 1, y));
4632 gcc_assert (insn_operand_matches (icode, 2, z));
4633
4634 return GEN_FCN (icode) (x, y, z);
4635 }
4636
4637 /* Return true if the target implements an addptr pattern and X, Y,
4638 and Z are valid for the pattern predicates. */
4639
4640 int
4641 have_addptr3_insn (rtx x, rtx y, rtx z)
4642 {
4643 enum insn_code icode;
4644
4645 gcc_assert (GET_MODE (x) != VOIDmode);
4646
4647 icode = optab_handler (addptr3_optab, GET_MODE (x));
4648
4649 if (icode == CODE_FOR_nothing)
4650 return 0;
4651
4652 if (!insn_operand_matches (icode, 0, x)
4653 || !insn_operand_matches (icode, 1, y)
4654 || !insn_operand_matches (icode, 2, z))
4655 return 0;
4656
4657 return 1;
4658 }
4659
4660 /* Generate and return an insn body to subtract Y from X. */
4661
4662 rtx_insn *
4663 gen_sub2_insn (rtx x, rtx y)
4664 {
4665 enum insn_code icode = optab_handler (sub_optab, GET_MODE (x));
4666
4667 gcc_assert (insn_operand_matches (icode, 0, x));
4668 gcc_assert (insn_operand_matches (icode, 1, x));
4669 gcc_assert (insn_operand_matches (icode, 2, y));
4670
4671 return GEN_FCN (icode) (x, x, y);
4672 }
4673
4674 /* Generate and return an insn body to subtract r1 and c,
4675 storing the result in r0. */
4676
4677 rtx_insn *
4678 gen_sub3_insn (rtx r0, rtx r1, rtx c)
4679 {
4680 enum insn_code icode = optab_handler (sub_optab, GET_MODE (r0));
4681
4682 if (icode == CODE_FOR_nothing
4683 || !insn_operand_matches (icode, 0, r0)
4684 || !insn_operand_matches (icode, 1, r1)
4685 || !insn_operand_matches (icode, 2, c))
4686 return NULL;
4687
4688 return GEN_FCN (icode) (r0, r1, c);
4689 }
4690
4691 int
4692 have_sub2_insn (rtx x, rtx y)
4693 {
4694 enum insn_code icode;
4695
4696 gcc_assert (GET_MODE (x) != VOIDmode);
4697
4698 icode = optab_handler (sub_optab, GET_MODE (x));
4699
4700 if (icode == CODE_FOR_nothing)
4701 return 0;
4702
4703 if (!insn_operand_matches (icode, 0, x)
4704 || !insn_operand_matches (icode, 1, x)
4705 || !insn_operand_matches (icode, 2, y))
4706 return 0;
4707
4708 return 1;
4709 }
4710 \f
4711 /* Generate the body of an insn to extend Y (with mode MFROM)
4712 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4713
4714 rtx_insn *
4715 gen_extend_insn (rtx x, rtx y, machine_mode mto,
4716 machine_mode mfrom, int unsignedp)
4717 {
4718 enum insn_code icode = can_extend_p (mto, mfrom, unsignedp);
4719 return GEN_FCN (icode) (x, y);
4720 }
4721 \f
4722 /* Generate code to convert FROM to floating point
4723 and store in TO. FROM must be fixed point and not VOIDmode.
4724 UNSIGNEDP nonzero means regard FROM as unsigned.
4725 Normally this is done by correcting the final value
4726 if it is negative. */
4727
4728 void
4729 expand_float (rtx to, rtx from, int unsignedp)
4730 {
4731 enum insn_code icode;
4732 rtx target = to;
4733 scalar_mode from_mode, to_mode;
4734 machine_mode fmode, imode;
4735 bool can_do_signed = false;
4736
4737 /* Crash now, because we won't be able to decide which mode to use. */
4738 gcc_assert (GET_MODE (from) != VOIDmode);
4739
4740 /* Look for an insn to do the conversion. Do it in the specified
4741 modes if possible; otherwise convert either input, output or both to
4742 wider mode. If the integer mode is wider than the mode of FROM,
4743 we can do the conversion signed even if the input is unsigned. */
4744
4745 FOR_EACH_MODE_FROM (fmode, GET_MODE (to))
4746 FOR_EACH_MODE_FROM (imode, GET_MODE (from))
4747 {
4748 int doing_unsigned = unsignedp;
4749
4750 if (fmode != GET_MODE (to)
4751 && (significand_size (fmode)
4752 < GET_MODE_UNIT_PRECISION (GET_MODE (from))))
4753 continue;
4754
4755 icode = can_float_p (fmode, imode, unsignedp);
4756 if (icode == CODE_FOR_nothing && unsignedp)
4757 {
4758 enum insn_code scode = can_float_p (fmode, imode, 0);
4759 if (scode != CODE_FOR_nothing)
4760 can_do_signed = true;
4761 if (imode != GET_MODE (from))
4762 icode = scode, doing_unsigned = 0;
4763 }
4764
4765 if (icode != CODE_FOR_nothing)
4766 {
4767 if (imode != GET_MODE (from))
4768 from = convert_to_mode (imode, from, unsignedp);
4769
4770 if (fmode != GET_MODE (to))
4771 target = gen_reg_rtx (fmode);
4772
4773 emit_unop_insn (icode, target, from,
4774 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
4775
4776 if (target != to)
4777 convert_move (to, target, 0);
4778 return;
4779 }
4780 }
4781
4782 /* Unsigned integer, and no way to convert directly. Convert as signed,
4783 then unconditionally adjust the result. */
4784 if (unsignedp
4785 && can_do_signed
4786 && is_a <scalar_mode> (GET_MODE (to), &to_mode)
4787 && is_a <scalar_mode> (GET_MODE (from), &from_mode))
4788 {
4789 opt_scalar_mode fmode_iter;
4790 rtx_code_label *label = gen_label_rtx ();
4791 rtx temp;
4792 REAL_VALUE_TYPE offset;
4793
4794 /* Look for a usable floating mode FMODE wider than the source and at
4795 least as wide as the target. Using FMODE will avoid rounding woes
4796 with unsigned values greater than the signed maximum value. */
4797
4798 FOR_EACH_MODE_FROM (fmode_iter, to_mode)
4799 {
4800 scalar_mode fmode = fmode_iter.require ();
4801 if (GET_MODE_PRECISION (from_mode) < GET_MODE_BITSIZE (fmode)
4802 && can_float_p (fmode, from_mode, 0) != CODE_FOR_nothing)
4803 break;
4804 }
4805
4806 if (!fmode_iter.exists (&fmode))
4807 {
4808 /* There is no such mode. Pretend the target is wide enough. */
4809 fmode = to_mode;
4810
4811 /* Avoid double-rounding when TO is narrower than FROM. */
4812 if ((significand_size (fmode) + 1)
4813 < GET_MODE_PRECISION (from_mode))
4814 {
4815 rtx temp1;
4816 rtx_code_label *neglabel = gen_label_rtx ();
4817
4818 /* Don't use TARGET if it isn't a register, is a hard register,
4819 or is the wrong mode. */
4820 if (!REG_P (target)
4821 || REGNO (target) < FIRST_PSEUDO_REGISTER
4822 || GET_MODE (target) != fmode)
4823 target = gen_reg_rtx (fmode);
4824
4825 imode = from_mode;
4826 do_pending_stack_adjust ();
4827
4828 /* Test whether the sign bit is set. */
4829 emit_cmp_and_jump_insns (from, const0_rtx, LT, NULL_RTX, imode,
4830 0, neglabel);
4831
4832 /* The sign bit is not set. Convert as signed. */
4833 expand_float (target, from, 0);
4834 emit_jump_insn (targetm.gen_jump (label));
4835 emit_barrier ();
4836
4837 /* The sign bit is set.
4838 Convert to a usable (positive signed) value by shifting right
4839 one bit, while remembering if a nonzero bit was shifted
4840 out; i.e., compute (from & 1) | (from >> 1). */
4841
4842 emit_label (neglabel);
4843 temp = expand_binop (imode, and_optab, from, const1_rtx,
4844 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4845 temp1 = expand_shift (RSHIFT_EXPR, imode, from, 1, NULL_RTX, 1);
4846 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
4847 OPTAB_LIB_WIDEN);
4848 expand_float (target, temp, 0);
4849
4850 /* Multiply by 2 to undo the shift above. */
4851 temp = expand_binop (fmode, add_optab, target, target,
4852 target, 0, OPTAB_LIB_WIDEN);
4853 if (temp != target)
4854 emit_move_insn (target, temp);
4855
4856 do_pending_stack_adjust ();
4857 emit_label (label);
4858 goto done;
4859 }
4860 }
4861
4862 /* If we are about to do some arithmetic to correct for an
4863 unsigned operand, do it in a pseudo-register. */
4864
4865 if (to_mode != fmode
4866 || !REG_P (to) || REGNO (to) < FIRST_PSEUDO_REGISTER)
4867 target = gen_reg_rtx (fmode);
4868
4869 /* Convert as signed integer to floating. */
4870 expand_float (target, from, 0);
4871
4872 /* If FROM is negative (and therefore TO is negative),
4873 correct its value by 2**bitwidth. */
4874
4875 do_pending_stack_adjust ();
4876 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, from_mode,
4877 0, label);
4878
4879
4880 real_2expN (&offset, GET_MODE_PRECISION (from_mode), fmode);
4881 temp = expand_binop (fmode, add_optab, target,
4882 const_double_from_real_value (offset, fmode),
4883 target, 0, OPTAB_LIB_WIDEN);
4884 if (temp != target)
4885 emit_move_insn (target, temp);
4886
4887 do_pending_stack_adjust ();
4888 emit_label (label);
4889 goto done;
4890 }
4891
4892 /* No hardware instruction available; call a library routine. */
4893 {
4894 rtx libfunc;
4895 rtx_insn *insns;
4896 rtx value;
4897 convert_optab tab = unsignedp ? ufloat_optab : sfloat_optab;
4898
4899 if (is_narrower_int_mode (GET_MODE (from), SImode))
4900 from = convert_to_mode (SImode, from, unsignedp);
4901
4902 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
4903 gcc_assert (libfunc);
4904
4905 start_sequence ();
4906
4907 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
4908 GET_MODE (to), from, GET_MODE (from));
4909 insns = get_insns ();
4910 end_sequence ();
4911
4912 emit_libcall_block (insns, target, value,
4913 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FLOAT : FLOAT,
4914 GET_MODE (to), from));
4915 }
4916
4917 done:
4918
4919 /* Copy result to requested destination
4920 if we have been computing in a temp location. */
4921
4922 if (target != to)
4923 {
4924 if (GET_MODE (target) == GET_MODE (to))
4925 emit_move_insn (to, target);
4926 else
4927 convert_move (to, target, 0);
4928 }
4929 }
4930 \f
4931 /* Generate code to convert FROM to fixed point and store in TO. FROM
4932 must be floating point. */
4933
4934 void
4935 expand_fix (rtx to, rtx from, int unsignedp)
4936 {
4937 enum insn_code icode;
4938 rtx target = to;
4939 machine_mode fmode, imode;
4940 opt_scalar_mode fmode_iter;
4941 bool must_trunc = false;
4942
4943 /* We first try to find a pair of modes, one real and one integer, at
4944 least as wide as FROM and TO, respectively, in which we can open-code
4945 this conversion. If the integer mode is wider than the mode of TO,
4946 we can do the conversion either signed or unsigned. */
4947
4948 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
4949 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
4950 {
4951 int doing_unsigned = unsignedp;
4952
4953 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
4954 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
4955 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
4956
4957 if (icode != CODE_FOR_nothing)
4958 {
4959 rtx_insn *last = get_last_insn ();
4960 if (fmode != GET_MODE (from))
4961 from = convert_to_mode (fmode, from, 0);
4962
4963 if (must_trunc)
4964 {
4965 rtx temp = gen_reg_rtx (GET_MODE (from));
4966 from = expand_unop (GET_MODE (from), ftrunc_optab, from,
4967 temp, 0);
4968 }
4969
4970 if (imode != GET_MODE (to))
4971 target = gen_reg_rtx (imode);
4972
4973 if (maybe_emit_unop_insn (icode, target, from,
4974 doing_unsigned ? UNSIGNED_FIX : FIX))
4975 {
4976 if (target != to)
4977 convert_move (to, target, unsignedp);
4978 return;
4979 }
4980 delete_insns_since (last);
4981 }
4982 }
4983
4984 /* For an unsigned conversion, there is one more way to do it.
4985 If we have a signed conversion, we generate code that compares
4986 the real value to the largest representable positive number. If if
4987 is smaller, the conversion is done normally. Otherwise, subtract
4988 one plus the highest signed number, convert, and add it back.
4989
4990 We only need to check all real modes, since we know we didn't find
4991 anything with a wider integer mode.
4992
4993 This code used to extend FP value into mode wider than the destination.
4994 This is needed for decimal float modes which cannot accurately
4995 represent one plus the highest signed number of the same size, but
4996 not for binary modes. Consider, for instance conversion from SFmode
4997 into DImode.
4998
4999 The hot path through the code is dealing with inputs smaller than 2^63
5000 and doing just the conversion, so there is no bits to lose.
5001
5002 In the other path we know the value is positive in the range 2^63..2^64-1
5003 inclusive. (as for other input overflow happens and result is undefined)
5004 So we know that the most important bit set in mantissa corresponds to
5005 2^63. The subtraction of 2^63 should not generate any rounding as it
5006 simply clears out that bit. The rest is trivial. */
5007
5008 scalar_int_mode to_mode;
5009 if (unsignedp
5010 && is_a <scalar_int_mode> (GET_MODE (to), &to_mode)
5011 && HWI_COMPUTABLE_MODE_P (to_mode))
5012 FOR_EACH_MODE_FROM (fmode_iter, as_a <scalar_mode> (GET_MODE (from)))
5013 {
5014 scalar_mode fmode = fmode_iter.require ();
5015 if (CODE_FOR_nothing != can_fix_p (to_mode, fmode,
5016 0, &must_trunc)
5017 && (!DECIMAL_FLOAT_MODE_P (fmode)
5018 || (GET_MODE_BITSIZE (fmode) > GET_MODE_PRECISION (to_mode))))
5019 {
5020 int bitsize;
5021 REAL_VALUE_TYPE offset;
5022 rtx limit;
5023 rtx_code_label *lab1, *lab2;
5024 rtx_insn *insn;
5025
5026 bitsize = GET_MODE_PRECISION (to_mode);
5027 real_2expN (&offset, bitsize - 1, fmode);
5028 limit = const_double_from_real_value (offset, fmode);
5029 lab1 = gen_label_rtx ();
5030 lab2 = gen_label_rtx ();
5031
5032 if (fmode != GET_MODE (from))
5033 from = convert_to_mode (fmode, from, 0);
5034
5035 /* See if we need to do the subtraction. */
5036 do_pending_stack_adjust ();
5037 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX,
5038 GET_MODE (from), 0, lab1);
5039
5040 /* If not, do the signed "fix" and branch around fixup code. */
5041 expand_fix (to, from, 0);
5042 emit_jump_insn (targetm.gen_jump (lab2));
5043 emit_barrier ();
5044
5045 /* Otherwise, subtract 2**(N-1), convert to signed number,
5046 then add 2**(N-1). Do the addition using XOR since this
5047 will often generate better code. */
5048 emit_label (lab1);
5049 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
5050 NULL_RTX, 0, OPTAB_LIB_WIDEN);
5051 expand_fix (to, target, 0);
5052 target = expand_binop (to_mode, xor_optab, to,
5053 gen_int_mode
5054 (HOST_WIDE_INT_1 << (bitsize - 1),
5055 to_mode),
5056 to, 1, OPTAB_LIB_WIDEN);
5057
5058 if (target != to)
5059 emit_move_insn (to, target);
5060
5061 emit_label (lab2);
5062
5063 if (optab_handler (mov_optab, to_mode) != CODE_FOR_nothing)
5064 {
5065 /* Make a place for a REG_NOTE and add it. */
5066 insn = emit_move_insn (to, to);
5067 set_dst_reg_note (insn, REG_EQUAL,
5068 gen_rtx_fmt_e (UNSIGNED_FIX, to_mode,
5069 copy_rtx (from)),
5070 to);
5071 }
5072
5073 return;
5074 }
5075 }
5076
5077 /* We can't do it with an insn, so use a library call. But first ensure
5078 that the mode of TO is at least as wide as SImode, since those are the
5079 only library calls we know about. */
5080
5081 if (is_narrower_int_mode (GET_MODE (to), SImode))
5082 {
5083 target = gen_reg_rtx (SImode);
5084
5085 expand_fix (target, from, unsignedp);
5086 }
5087 else
5088 {
5089 rtx_insn *insns;
5090 rtx value;
5091 rtx libfunc;
5092
5093 convert_optab tab = unsignedp ? ufix_optab : sfix_optab;
5094 libfunc = convert_optab_libfunc (tab, GET_MODE (to), GET_MODE (from));
5095 gcc_assert (libfunc);
5096
5097 start_sequence ();
5098
5099 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST,
5100 GET_MODE (to), from, GET_MODE (from));
5101 insns = get_insns ();
5102 end_sequence ();
5103
5104 emit_libcall_block (insns, target, value,
5105 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
5106 GET_MODE (to), from));
5107 }
5108
5109 if (target != to)
5110 {
5111 if (GET_MODE (to) == GET_MODE (target))
5112 emit_move_insn (to, target);
5113 else
5114 convert_move (to, target, 0);
5115 }
5116 }
5117
5118
5119 /* Promote integer arguments for a libcall if necessary.
5120 emit_library_call_value cannot do the promotion because it does not
5121 know if it should do a signed or unsigned promotion. This is because
5122 there are no tree types defined for libcalls. */
5123
5124 static rtx
5125 prepare_libcall_arg (rtx arg, int uintp)
5126 {
5127 scalar_int_mode mode;
5128 machine_mode arg_mode;
5129 if (is_a <scalar_int_mode> (GET_MODE (arg), &mode))
5130 {
5131 /* If we need to promote the integer function argument we need to do
5132 it here instead of inside emit_library_call_value because in
5133 emit_library_call_value we don't know if we should do a signed or
5134 unsigned promotion. */
5135
5136 int unsigned_p = 0;
5137 arg_mode = promote_function_mode (NULL_TREE, mode,
5138 &unsigned_p, NULL_TREE, 0);
5139 if (arg_mode != mode)
5140 return convert_to_mode (arg_mode, arg, uintp);
5141 }
5142 return arg;
5143 }
5144
5145 /* Generate code to convert FROM or TO a fixed-point.
5146 If UINTP is true, either TO or FROM is an unsigned integer.
5147 If SATP is true, we need to saturate the result. */
5148
5149 void
5150 expand_fixed_convert (rtx to, rtx from, int uintp, int satp)
5151 {
5152 machine_mode to_mode = GET_MODE (to);
5153 machine_mode from_mode = GET_MODE (from);
5154 convert_optab tab;
5155 enum rtx_code this_code;
5156 enum insn_code code;
5157 rtx_insn *insns;
5158 rtx value;
5159 rtx libfunc;
5160
5161 if (to_mode == from_mode)
5162 {
5163 emit_move_insn (to, from);
5164 return;
5165 }
5166
5167 if (uintp)
5168 {
5169 tab = satp ? satfractuns_optab : fractuns_optab;
5170 this_code = satp ? UNSIGNED_SAT_FRACT : UNSIGNED_FRACT_CONVERT;
5171 }
5172 else
5173 {
5174 tab = satp ? satfract_optab : fract_optab;
5175 this_code = satp ? SAT_FRACT : FRACT_CONVERT;
5176 }
5177 code = convert_optab_handler (tab, to_mode, from_mode);
5178 if (code != CODE_FOR_nothing)
5179 {
5180 emit_unop_insn (code, to, from, this_code);
5181 return;
5182 }
5183
5184 libfunc = convert_optab_libfunc (tab, to_mode, from_mode);
5185 gcc_assert (libfunc);
5186
5187 from = prepare_libcall_arg (from, uintp);
5188 from_mode = GET_MODE (from);
5189
5190 start_sequence ();
5191 value = emit_library_call_value (libfunc, NULL_RTX, LCT_CONST, to_mode,
5192 from, from_mode);
5193 insns = get_insns ();
5194 end_sequence ();
5195
5196 emit_libcall_block (insns, to, value,
5197 gen_rtx_fmt_e (optab_to_code (tab), to_mode, from));
5198 }
5199
5200 /* Generate code to convert FROM to fixed point and store in TO. FROM
5201 must be floating point, TO must be signed. Use the conversion optab
5202 TAB to do the conversion. */
5203
5204 bool
5205 expand_sfix_optab (rtx to, rtx from, convert_optab tab)
5206 {
5207 enum insn_code icode;
5208 rtx target = to;
5209 machine_mode fmode, imode;
5210
5211 /* We first try to find a pair of modes, one real and one integer, at
5212 least as wide as FROM and TO, respectively, in which we can open-code
5213 this conversion. If the integer mode is wider than the mode of TO,
5214 we can do the conversion either signed or unsigned. */
5215
5216 FOR_EACH_MODE_FROM (fmode, GET_MODE (from))
5217 FOR_EACH_MODE_FROM (imode, GET_MODE (to))
5218 {
5219 icode = convert_optab_handler (tab, imode, fmode);
5220 if (icode != CODE_FOR_nothing)
5221 {
5222 rtx_insn *last = get_last_insn ();
5223 if (fmode != GET_MODE (from))
5224 from = convert_to_mode (fmode, from, 0);
5225
5226 if (imode != GET_MODE (to))
5227 target = gen_reg_rtx (imode);
5228
5229 if (!maybe_emit_unop_insn (icode, target, from, UNKNOWN))
5230 {
5231 delete_insns_since (last);
5232 continue;
5233 }
5234 if (target != to)
5235 convert_move (to, target, 0);
5236 return true;
5237 }
5238 }
5239
5240 return false;
5241 }
5242 \f
5243 /* Report whether we have an instruction to perform the operation
5244 specified by CODE on operands of mode MODE. */
5245 int
5246 have_insn_for (enum rtx_code code, machine_mode mode)
5247 {
5248 return (code_to_optab (code)
5249 && (optab_handler (code_to_optab (code), mode)
5250 != CODE_FOR_nothing));
5251 }
5252
5253 /* Print information about the current contents of the optabs on
5254 STDERR. */
5255
5256 DEBUG_FUNCTION void
5257 debug_optab_libfuncs (void)
5258 {
5259 int i, j, k;
5260
5261 /* Dump the arithmetic optabs. */
5262 for (i = FIRST_NORM_OPTAB; i <= LAST_NORMLIB_OPTAB; ++i)
5263 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5264 {
5265 rtx l = optab_libfunc ((optab) i, (machine_mode) j);
5266 if (l)
5267 {
5268 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5269 fprintf (stderr, "%s\t%s:\t%s\n",
5270 GET_RTX_NAME (optab_to_code ((optab) i)),
5271 GET_MODE_NAME (j),
5272 XSTR (l, 0));
5273 }
5274 }
5275
5276 /* Dump the conversion optabs. */
5277 for (i = FIRST_CONV_OPTAB; i <= LAST_CONVLIB_OPTAB; ++i)
5278 for (j = 0; j < NUM_MACHINE_MODES; ++j)
5279 for (k = 0; k < NUM_MACHINE_MODES; ++k)
5280 {
5281 rtx l = convert_optab_libfunc ((optab) i, (machine_mode) j,
5282 (machine_mode) k);
5283 if (l)
5284 {
5285 gcc_assert (GET_CODE (l) == SYMBOL_REF);
5286 fprintf (stderr, "%s\t%s\t%s:\t%s\n",
5287 GET_RTX_NAME (optab_to_code ((optab) i)),
5288 GET_MODE_NAME (j),
5289 GET_MODE_NAME (k),
5290 XSTR (l, 0));
5291 }
5292 }
5293 }
5294
5295 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5296 CODE. Return 0 on failure. */
5297
5298 rtx_insn *
5299 gen_cond_trap (enum rtx_code code, rtx op1, rtx op2, rtx tcode)
5300 {
5301 machine_mode mode = GET_MODE (op1);
5302 enum insn_code icode;
5303 rtx_insn *insn;
5304 rtx trap_rtx;
5305
5306 if (mode == VOIDmode)
5307 return 0;
5308
5309 icode = optab_handler (ctrap_optab, mode);
5310 if (icode == CODE_FOR_nothing)
5311 return 0;
5312
5313 /* Some targets only accept a zero trap code. */
5314 if (!insn_operand_matches (icode, 3, tcode))
5315 return 0;
5316
5317 do_pending_stack_adjust ();
5318 start_sequence ();
5319 prepare_cmp_insn (op1, op2, code, NULL_RTX, false, OPTAB_DIRECT,
5320 &trap_rtx, &mode);
5321 if (!trap_rtx)
5322 insn = NULL;
5323 else
5324 insn = GEN_FCN (icode) (trap_rtx, XEXP (trap_rtx, 0), XEXP (trap_rtx, 1),
5325 tcode);
5326
5327 /* If that failed, then give up. */
5328 if (insn == 0)
5329 {
5330 end_sequence ();
5331 return 0;
5332 }
5333
5334 emit_insn (insn);
5335 insn = get_insns ();
5336 end_sequence ();
5337 return insn;
5338 }
5339
5340 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5341 or unsigned operation code. */
5342
5343 enum rtx_code
5344 get_rtx_code (enum tree_code tcode, bool unsignedp)
5345 {
5346 enum rtx_code code;
5347 switch (tcode)
5348 {
5349 case EQ_EXPR:
5350 code = EQ;
5351 break;
5352 case NE_EXPR:
5353 code = NE;
5354 break;
5355 case LT_EXPR:
5356 code = unsignedp ? LTU : LT;
5357 break;
5358 case LE_EXPR:
5359 code = unsignedp ? LEU : LE;
5360 break;
5361 case GT_EXPR:
5362 code = unsignedp ? GTU : GT;
5363 break;
5364 case GE_EXPR:
5365 code = unsignedp ? GEU : GE;
5366 break;
5367
5368 case UNORDERED_EXPR:
5369 code = UNORDERED;
5370 break;
5371 case ORDERED_EXPR:
5372 code = ORDERED;
5373 break;
5374 case UNLT_EXPR:
5375 code = UNLT;
5376 break;
5377 case UNLE_EXPR:
5378 code = UNLE;
5379 break;
5380 case UNGT_EXPR:
5381 code = UNGT;
5382 break;
5383 case UNGE_EXPR:
5384 code = UNGE;
5385 break;
5386 case UNEQ_EXPR:
5387 code = UNEQ;
5388 break;
5389 case LTGT_EXPR:
5390 code = LTGT;
5391 break;
5392
5393 case BIT_AND_EXPR:
5394 code = AND;
5395 break;
5396
5397 case BIT_IOR_EXPR:
5398 code = IOR;
5399 break;
5400
5401 default:
5402 gcc_unreachable ();
5403 }
5404 return code;
5405 }
5406
5407 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5408 select signed or unsigned operators. OPNO holds the index of the
5409 first comparison operand for insn ICODE. Do not generate the
5410 compare instruction itself. */
5411
5412 static rtx
5413 vector_compare_rtx (machine_mode cmp_mode, enum tree_code tcode,
5414 tree t_op0, tree t_op1, bool unsignedp,
5415 enum insn_code icode, unsigned int opno)
5416 {
5417 struct expand_operand ops[2];
5418 rtx rtx_op0, rtx_op1;
5419 machine_mode m0, m1;
5420 enum rtx_code rcode = get_rtx_code (tcode, unsignedp);
5421
5422 gcc_assert (TREE_CODE_CLASS (tcode) == tcc_comparison);
5423
5424 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5425 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5426 cases, use the original mode. */
5427 rtx_op0 = expand_expr (t_op0, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op0)),
5428 EXPAND_STACK_PARM);
5429 m0 = GET_MODE (rtx_op0);
5430 if (m0 == VOIDmode)
5431 m0 = TYPE_MODE (TREE_TYPE (t_op0));
5432
5433 rtx_op1 = expand_expr (t_op1, NULL_RTX, TYPE_MODE (TREE_TYPE (t_op1)),
5434 EXPAND_STACK_PARM);
5435 m1 = GET_MODE (rtx_op1);
5436 if (m1 == VOIDmode)
5437 m1 = TYPE_MODE (TREE_TYPE (t_op1));
5438
5439 create_input_operand (&ops[0], rtx_op0, m0);
5440 create_input_operand (&ops[1], rtx_op1, m1);
5441 if (!maybe_legitimize_operands (icode, opno, 2, ops))
5442 gcc_unreachable ();
5443 return gen_rtx_fmt_ee (rcode, cmp_mode, ops[0].value, ops[1].value);
5444 }
5445
5446 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5447 the first vec_perm operand, assuming the second operand is a constant
5448 vector of zeros. Return the shift distance in bits if so, or NULL_RTX
5449 if the vec_perm is not a shift. MODE is the mode of the value being
5450 shifted. */
5451 static rtx
5452 shift_amt_for_vec_perm_mask (machine_mode mode, const vec_perm_indices &sel)
5453 {
5454 unsigned int bitsize = GET_MODE_UNIT_BITSIZE (mode);
5455 poly_int64 first = sel[0];
5456 if (maybe_ge (sel[0], GET_MODE_NUNITS (mode)))
5457 return NULL_RTX;
5458
5459 if (!sel.series_p (0, 1, first, 1))
5460 {
5461 unsigned int nelt;
5462 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
5463 return NULL_RTX;
5464 for (unsigned int i = 1; i < nelt; i++)
5465 {
5466 poly_int64 expected = i + first;
5467 /* Indices into the second vector are all equivalent. */
5468 if (maybe_lt (sel[i], nelt)
5469 ? maybe_ne (sel[i], expected)
5470 : maybe_lt (expected, nelt))
5471 return NULL_RTX;
5472 }
5473 }
5474
5475 return gen_int_shift_amount (mode, first * bitsize);
5476 }
5477
5478 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5479
5480 static rtx
5481 expand_vec_perm_1 (enum insn_code icode, rtx target,
5482 rtx v0, rtx v1, rtx sel)
5483 {
5484 machine_mode tmode = GET_MODE (target);
5485 machine_mode smode = GET_MODE (sel);
5486 struct expand_operand ops[4];
5487
5488 gcc_assert (GET_MODE_CLASS (smode) == MODE_VECTOR_INT
5489 || mode_for_int_vector (tmode).require () == smode);
5490 create_output_operand (&ops[0], target, tmode);
5491 create_input_operand (&ops[3], sel, smode);
5492
5493 /* Make an effort to preserve v0 == v1. The target expander is able to
5494 rely on this to determine if we're permuting a single input operand. */
5495 if (rtx_equal_p (v0, v1))
5496 {
5497 if (!insn_operand_matches (icode, 1, v0))
5498 v0 = force_reg (tmode, v0);
5499 gcc_checking_assert (insn_operand_matches (icode, 1, v0));
5500 gcc_checking_assert (insn_operand_matches (icode, 2, v0));
5501
5502 create_fixed_operand (&ops[1], v0);
5503 create_fixed_operand (&ops[2], v0);
5504 }
5505 else
5506 {
5507 create_input_operand (&ops[1], v0, tmode);
5508 create_input_operand (&ops[2], v1, tmode);
5509 }
5510
5511 if (maybe_expand_insn (icode, 4, ops))
5512 return ops[0].value;
5513 return NULL_RTX;
5514 }
5515
5516 /* Implement a permutation of vectors v0 and v1 using the permutation
5517 vector in SEL and return the result. Use TARGET to hold the result
5518 if nonnull and convenient.
5519
5520 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5521 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5522 to have a particular mode. */
5523
5524 rtx
5525 expand_vec_perm_const (machine_mode mode, rtx v0, rtx v1,
5526 const vec_perm_builder &sel, machine_mode sel_mode,
5527 rtx target)
5528 {
5529 if (!target || !register_operand (target, mode))
5530 target = gen_reg_rtx (mode);
5531
5532 /* Set QIMODE to a different vector mode with byte elements.
5533 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5534 machine_mode qimode;
5535 if (!qimode_for_vec_perm (mode).exists (&qimode))
5536 qimode = VOIDmode;
5537
5538 rtx_insn *last = get_last_insn ();
5539
5540 bool single_arg_p = rtx_equal_p (v0, v1);
5541 /* Always specify two input vectors here and leave the target to handle
5542 cases in which the inputs are equal. Not all backends can cope with
5543 the single-input representation when testing for a double-input
5544 target instruction. */
5545 vec_perm_indices indices (sel, 2, GET_MODE_NUNITS (mode));
5546
5547 /* See if this can be handled with a vec_shr. We only do this if the
5548 second vector is all zeroes. */
5549 insn_code shift_code = optab_handler (vec_shr_optab, mode);
5550 insn_code shift_code_qi = ((qimode != VOIDmode && qimode != mode)
5551 ? optab_handler (vec_shr_optab, qimode)
5552 : CODE_FOR_nothing);
5553
5554 if (v1 == CONST0_RTX (GET_MODE (v1))
5555 && (shift_code != CODE_FOR_nothing
5556 || shift_code_qi != CODE_FOR_nothing))
5557 {
5558 rtx shift_amt = shift_amt_for_vec_perm_mask (mode, indices);
5559 if (shift_amt)
5560 {
5561 struct expand_operand ops[3];
5562 if (shift_code != CODE_FOR_nothing)
5563 {
5564 create_output_operand (&ops[0], target, mode);
5565 create_input_operand (&ops[1], v0, mode);
5566 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5567 if (maybe_expand_insn (shift_code, 3, ops))
5568 return ops[0].value;
5569 }
5570 if (shift_code_qi != CODE_FOR_nothing)
5571 {
5572 rtx tmp = gen_reg_rtx (qimode);
5573 create_output_operand (&ops[0], tmp, qimode);
5574 create_input_operand (&ops[1], gen_lowpart (qimode, v0), qimode);
5575 create_convert_operand_from_type (&ops[2], shift_amt, sizetype);
5576 if (maybe_expand_insn (shift_code_qi, 3, ops))
5577 return gen_lowpart (mode, ops[0].value);
5578 }
5579 }
5580 }
5581
5582 if (targetm.vectorize.vec_perm_const != NULL)
5583 {
5584 v0 = force_reg (mode, v0);
5585 if (single_arg_p)
5586 v1 = v0;
5587 else
5588 v1 = force_reg (mode, v1);
5589
5590 if (targetm.vectorize.vec_perm_const (mode, target, v0, v1, indices))
5591 return target;
5592 }
5593
5594 /* Fall back to a constant byte-based permutation. */
5595 vec_perm_indices qimode_indices;
5596 rtx target_qi = NULL_RTX, v0_qi = NULL_RTX, v1_qi = NULL_RTX;
5597 if (qimode != VOIDmode)
5598 {
5599 qimode_indices.new_expanded_vector (indices, GET_MODE_UNIT_SIZE (mode));
5600 target_qi = gen_reg_rtx (qimode);
5601 v0_qi = gen_lowpart (qimode, v0);
5602 v1_qi = gen_lowpart (qimode, v1);
5603 if (targetm.vectorize.vec_perm_const != NULL
5604 && targetm.vectorize.vec_perm_const (qimode, target_qi, v0_qi,
5605 v1_qi, qimode_indices))
5606 return gen_lowpart (mode, target_qi);
5607 }
5608
5609 /* Otherwise expand as a fully variable permuation. */
5610
5611 /* The optabs are only defined for selectors with the same width
5612 as the values being permuted. */
5613 machine_mode required_sel_mode;
5614 if (!mode_for_int_vector (mode).exists (&required_sel_mode)
5615 || !VECTOR_MODE_P (required_sel_mode))
5616 {
5617 delete_insns_since (last);
5618 return NULL_RTX;
5619 }
5620
5621 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5622 If that isn't the mode we want then we need to prove that using
5623 REQUIRED_SEL_MODE is OK. */
5624 if (sel_mode != required_sel_mode)
5625 {
5626 if (!selector_fits_mode_p (required_sel_mode, indices))
5627 {
5628 delete_insns_since (last);
5629 return NULL_RTX;
5630 }
5631 sel_mode = required_sel_mode;
5632 }
5633
5634 insn_code icode = direct_optab_handler (vec_perm_optab, mode);
5635 if (icode != CODE_FOR_nothing)
5636 {
5637 rtx sel_rtx = vec_perm_indices_to_rtx (sel_mode, indices);
5638 rtx tmp = expand_vec_perm_1 (icode, target, v0, v1, sel_rtx);
5639 if (tmp)
5640 return tmp;
5641 }
5642
5643 if (qimode != VOIDmode
5644 && selector_fits_mode_p (qimode, qimode_indices))
5645 {
5646 icode = direct_optab_handler (vec_perm_optab, qimode);
5647 if (icode != CODE_FOR_nothing)
5648 {
5649 rtx sel_qi = vec_perm_indices_to_rtx (qimode, qimode_indices);
5650 rtx tmp = expand_vec_perm_1 (icode, target_qi, v0_qi, v1_qi, sel_qi);
5651 if (tmp)
5652 return gen_lowpart (mode, tmp);
5653 }
5654 }
5655
5656 delete_insns_since (last);
5657 return NULL_RTX;
5658 }
5659
5660 /* Implement a permutation of vectors v0 and v1 using the permutation
5661 vector in SEL and return the result. Use TARGET to hold the result
5662 if nonnull and convenient.
5663
5664 MODE is the mode of the vectors being permuted (V0 and V1).
5665 SEL must have the integer equivalent of MODE and is known to be
5666 unsuitable for permutes with a constant permutation vector. */
5667
5668 rtx
5669 expand_vec_perm_var (machine_mode mode, rtx v0, rtx v1, rtx sel, rtx target)
5670 {
5671 enum insn_code icode;
5672 unsigned int i, u;
5673 rtx tmp, sel_qi;
5674
5675 u = GET_MODE_UNIT_SIZE (mode);
5676
5677 if (!target || GET_MODE (target) != mode)
5678 target = gen_reg_rtx (mode);
5679
5680 icode = direct_optab_handler (vec_perm_optab, mode);
5681 if (icode != CODE_FOR_nothing)
5682 {
5683 tmp = expand_vec_perm_1 (icode, target, v0, v1, sel);
5684 if (tmp)
5685 return tmp;
5686 }
5687
5688 /* As a special case to aid several targets, lower the element-based
5689 permutation to a byte-based permutation and try again. */
5690 machine_mode qimode;
5691 if (!qimode_for_vec_perm (mode).exists (&qimode)
5692 || maybe_gt (GET_MODE_NUNITS (qimode), GET_MODE_MASK (QImode) + 1))
5693 return NULL_RTX;
5694 icode = direct_optab_handler (vec_perm_optab, qimode);
5695 if (icode == CODE_FOR_nothing)
5696 return NULL_RTX;
5697
5698 /* Multiply each element by its byte size. */
5699 machine_mode selmode = GET_MODE (sel);
5700 if (u == 2)
5701 sel = expand_simple_binop (selmode, PLUS, sel, sel,
5702 NULL, 0, OPTAB_DIRECT);
5703 else
5704 sel = expand_simple_binop (selmode, ASHIFT, sel,
5705 gen_int_shift_amount (selmode, exact_log2 (u)),
5706 NULL, 0, OPTAB_DIRECT);
5707 gcc_assert (sel != NULL);
5708
5709 /* Broadcast the low byte each element into each of its bytes.
5710 The encoding has U interleaved stepped patterns, one for each
5711 byte of an element. */
5712 vec_perm_builder const_sel (GET_MODE_SIZE (mode), u, 3);
5713 unsigned int low_byte_in_u = BYTES_BIG_ENDIAN ? u - 1 : 0;
5714 for (i = 0; i < 3; ++i)
5715 for (unsigned int j = 0; j < u; ++j)
5716 const_sel.quick_push (i * u + low_byte_in_u);
5717 sel = gen_lowpart (qimode, sel);
5718 sel = expand_vec_perm_const (qimode, sel, sel, const_sel, qimode, NULL);
5719 gcc_assert (sel != NULL);
5720
5721 /* Add the byte offset to each byte element. */
5722 /* Note that the definition of the indicies here is memory ordering,
5723 so there should be no difference between big and little endian. */
5724 rtx_vector_builder byte_indices (qimode, u, 1);
5725 for (i = 0; i < u; ++i)
5726 byte_indices.quick_push (GEN_INT (i));
5727 tmp = byte_indices.build ();
5728 sel_qi = expand_simple_binop (qimode, PLUS, sel, tmp,
5729 sel, 0, OPTAB_DIRECT);
5730 gcc_assert (sel_qi != NULL);
5731
5732 tmp = mode != qimode ? gen_reg_rtx (qimode) : target;
5733 tmp = expand_vec_perm_1 (icode, tmp, gen_lowpart (qimode, v0),
5734 gen_lowpart (qimode, v1), sel_qi);
5735 if (tmp)
5736 tmp = gen_lowpart (mode, tmp);
5737 return tmp;
5738 }
5739
5740 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5741 three operands. */
5742
5743 rtx
5744 expand_vec_cond_mask_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5745 rtx target)
5746 {
5747 struct expand_operand ops[4];
5748 machine_mode mode = TYPE_MODE (vec_cond_type);
5749 machine_mode mask_mode = TYPE_MODE (TREE_TYPE (op0));
5750 enum insn_code icode = get_vcond_mask_icode (mode, mask_mode);
5751 rtx mask, rtx_op1, rtx_op2;
5752
5753 if (icode == CODE_FOR_nothing)
5754 return 0;
5755
5756 mask = expand_normal (op0);
5757 rtx_op1 = expand_normal (op1);
5758 rtx_op2 = expand_normal (op2);
5759
5760 mask = force_reg (mask_mode, mask);
5761 rtx_op1 = force_reg (GET_MODE (rtx_op1), rtx_op1);
5762
5763 create_output_operand (&ops[0], target, mode);
5764 create_input_operand (&ops[1], rtx_op1, mode);
5765 create_input_operand (&ops[2], rtx_op2, mode);
5766 create_input_operand (&ops[3], mask, mask_mode);
5767 expand_insn (icode, 4, ops);
5768
5769 return ops[0].value;
5770 }
5771
5772 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5773 three operands. */
5774
5775 rtx
5776 expand_vec_cond_expr (tree vec_cond_type, tree op0, tree op1, tree op2,
5777 rtx target)
5778 {
5779 struct expand_operand ops[6];
5780 enum insn_code icode;
5781 rtx comparison, rtx_op1, rtx_op2;
5782 machine_mode mode = TYPE_MODE (vec_cond_type);
5783 machine_mode cmp_op_mode;
5784 bool unsignedp;
5785 tree op0a, op0b;
5786 enum tree_code tcode;
5787
5788 if (COMPARISON_CLASS_P (op0))
5789 {
5790 op0a = TREE_OPERAND (op0, 0);
5791 op0b = TREE_OPERAND (op0, 1);
5792 tcode = TREE_CODE (op0);
5793 }
5794 else
5795 {
5796 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0)));
5797 if (get_vcond_mask_icode (mode, TYPE_MODE (TREE_TYPE (op0)))
5798 != CODE_FOR_nothing)
5799 return expand_vec_cond_mask_expr (vec_cond_type, op0, op1,
5800 op2, target);
5801 /* Fake op0 < 0. */
5802 else
5803 {
5804 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0)))
5805 == MODE_VECTOR_INT);
5806 op0a = op0;
5807 op0b = build_zero_cst (TREE_TYPE (op0));
5808 tcode = LT_EXPR;
5809 }
5810 }
5811 cmp_op_mode = TYPE_MODE (TREE_TYPE (op0a));
5812 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5813
5814
5815 gcc_assert (known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (cmp_op_mode))
5816 && known_eq (GET_MODE_NUNITS (mode),
5817 GET_MODE_NUNITS (cmp_op_mode)));
5818
5819 icode = get_vcond_icode (mode, cmp_op_mode, unsignedp);
5820 if (icode == CODE_FOR_nothing)
5821 {
5822 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5823 icode = get_vcond_eq_icode (mode, cmp_op_mode);
5824 if (icode == CODE_FOR_nothing)
5825 return 0;
5826 }
5827
5828 comparison = vector_compare_rtx (VOIDmode, tcode, op0a, op0b, unsignedp,
5829 icode, 4);
5830 rtx_op1 = expand_normal (op1);
5831 rtx_op2 = expand_normal (op2);
5832
5833 create_output_operand (&ops[0], target, mode);
5834 create_input_operand (&ops[1], rtx_op1, mode);
5835 create_input_operand (&ops[2], rtx_op2, mode);
5836 create_fixed_operand (&ops[3], comparison);
5837 create_fixed_operand (&ops[4], XEXP (comparison, 0));
5838 create_fixed_operand (&ops[5], XEXP (comparison, 1));
5839 expand_insn (icode, 6, ops);
5840 return ops[0].value;
5841 }
5842
5843 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5844 Use TARGET for the result if nonnull and convenient. */
5845
5846 rtx
5847 expand_vec_series_expr (machine_mode vmode, rtx op0, rtx op1, rtx target)
5848 {
5849 struct expand_operand ops[3];
5850 enum insn_code icode;
5851 machine_mode emode = GET_MODE_INNER (vmode);
5852
5853 icode = direct_optab_handler (vec_series_optab, vmode);
5854 gcc_assert (icode != CODE_FOR_nothing);
5855
5856 create_output_operand (&ops[0], target, vmode);
5857 create_input_operand (&ops[1], op0, emode);
5858 create_input_operand (&ops[2], op1, emode);
5859
5860 expand_insn (icode, 3, ops);
5861 return ops[0].value;
5862 }
5863
5864 /* Generate insns for a vector comparison into a mask. */
5865
5866 rtx
5867 expand_vec_cmp_expr (tree type, tree exp, rtx target)
5868 {
5869 struct expand_operand ops[4];
5870 enum insn_code icode;
5871 rtx comparison;
5872 machine_mode mask_mode = TYPE_MODE (type);
5873 machine_mode vmode;
5874 bool unsignedp;
5875 tree op0a, op0b;
5876 enum tree_code tcode;
5877
5878 op0a = TREE_OPERAND (exp, 0);
5879 op0b = TREE_OPERAND (exp, 1);
5880 tcode = TREE_CODE (exp);
5881
5882 unsignedp = TYPE_UNSIGNED (TREE_TYPE (op0a));
5883 vmode = TYPE_MODE (TREE_TYPE (op0a));
5884
5885 icode = get_vec_cmp_icode (vmode, mask_mode, unsignedp);
5886 if (icode == CODE_FOR_nothing)
5887 {
5888 if (tcode == EQ_EXPR || tcode == NE_EXPR)
5889 icode = get_vec_cmp_eq_icode (vmode, mask_mode);
5890 if (icode == CODE_FOR_nothing)
5891 return 0;
5892 }
5893
5894 comparison = vector_compare_rtx (mask_mode, tcode, op0a, op0b,
5895 unsignedp, icode, 2);
5896 create_output_operand (&ops[0], target, mask_mode);
5897 create_fixed_operand (&ops[1], comparison);
5898 create_fixed_operand (&ops[2], XEXP (comparison, 0));
5899 create_fixed_operand (&ops[3], XEXP (comparison, 1));
5900 expand_insn (icode, 4, ops);
5901 return ops[0].value;
5902 }
5903
5904 /* Expand a highpart multiply. */
5905
5906 rtx
5907 expand_mult_highpart (machine_mode mode, rtx op0, rtx op1,
5908 rtx target, bool uns_p)
5909 {
5910 struct expand_operand eops[3];
5911 enum insn_code icode;
5912 int method, i;
5913 machine_mode wmode;
5914 rtx m1, m2;
5915 optab tab1, tab2;
5916
5917 method = can_mult_highpart_p (mode, uns_p);
5918 switch (method)
5919 {
5920 case 0:
5921 return NULL_RTX;
5922 case 1:
5923 tab1 = uns_p ? umul_highpart_optab : smul_highpart_optab;
5924 return expand_binop (mode, tab1, op0, op1, target, uns_p,
5925 OPTAB_LIB_WIDEN);
5926 case 2:
5927 tab1 = uns_p ? vec_widen_umult_even_optab : vec_widen_smult_even_optab;
5928 tab2 = uns_p ? vec_widen_umult_odd_optab : vec_widen_smult_odd_optab;
5929 break;
5930 case 3:
5931 tab1 = uns_p ? vec_widen_umult_lo_optab : vec_widen_smult_lo_optab;
5932 tab2 = uns_p ? vec_widen_umult_hi_optab : vec_widen_smult_hi_optab;
5933 if (BYTES_BIG_ENDIAN)
5934 std::swap (tab1, tab2);
5935 break;
5936 default:
5937 gcc_unreachable ();
5938 }
5939
5940 icode = optab_handler (tab1, mode);
5941 wmode = insn_data[icode].operand[0].mode;
5942 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode),
5943 GET_MODE_NUNITS (mode)));
5944 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode), GET_MODE_SIZE (mode)));
5945
5946 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5947 create_input_operand (&eops[1], op0, mode);
5948 create_input_operand (&eops[2], op1, mode);
5949 expand_insn (icode, 3, eops);
5950 m1 = gen_lowpart (mode, eops[0].value);
5951
5952 create_output_operand (&eops[0], gen_reg_rtx (wmode), wmode);
5953 create_input_operand (&eops[1], op0, mode);
5954 create_input_operand (&eops[2], op1, mode);
5955 expand_insn (optab_handler (tab2, mode), 3, eops);
5956 m2 = gen_lowpart (mode, eops[0].value);
5957
5958 vec_perm_builder sel;
5959 if (method == 2)
5960 {
5961 /* The encoding has 2 interleaved stepped patterns. */
5962 sel.new_vector (GET_MODE_NUNITS (mode), 2, 3);
5963 for (i = 0; i < 6; ++i)
5964 sel.quick_push (!BYTES_BIG_ENDIAN + (i & ~1)
5965 + ((i & 1) ? GET_MODE_NUNITS (mode) : 0));
5966 }
5967 else
5968 {
5969 /* The encoding has a single interleaved stepped pattern. */
5970 sel.new_vector (GET_MODE_NUNITS (mode), 1, 3);
5971 for (i = 0; i < 3; ++i)
5972 sel.quick_push (2 * i + (BYTES_BIG_ENDIAN ? 0 : 1));
5973 }
5974
5975 return expand_vec_perm_const (mode, m1, m2, sel, BLKmode, target);
5976 }
5977 \f
5978 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
5979 pattern. */
5980
5981 static void
5982 find_cc_set (rtx x, const_rtx pat, void *data)
5983 {
5984 if (REG_P (x) && GET_MODE_CLASS (GET_MODE (x)) == MODE_CC
5985 && GET_CODE (pat) == SET)
5986 {
5987 rtx *p_cc_reg = (rtx *) data;
5988 gcc_assert (!*p_cc_reg);
5989 *p_cc_reg = x;
5990 }
5991 }
5992
5993 /* This is a helper function for the other atomic operations. This function
5994 emits a loop that contains SEQ that iterates until a compare-and-swap
5995 operation at the end succeeds. MEM is the memory to be modified. SEQ is
5996 a set of instructions that takes a value from OLD_REG as an input and
5997 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
5998 set to the current contents of MEM. After SEQ, a compare-and-swap will
5999 attempt to update MEM with NEW_REG. The function returns true when the
6000 loop was generated successfully. */
6001
6002 static bool
6003 expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
6004 {
6005 machine_mode mode = GET_MODE (mem);
6006 rtx_code_label *label;
6007 rtx cmp_reg, success, oldval;
6008
6009 /* The loop we want to generate looks like
6010
6011 cmp_reg = mem;
6012 label:
6013 old_reg = cmp_reg;
6014 seq;
6015 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6016 if (success)
6017 goto label;
6018
6019 Note that we only do the plain load from memory once. Subsequent
6020 iterations use the value loaded by the compare-and-swap pattern. */
6021
6022 label = gen_label_rtx ();
6023 cmp_reg = gen_reg_rtx (mode);
6024
6025 emit_move_insn (cmp_reg, mem);
6026 emit_label (label);
6027 emit_move_insn (old_reg, cmp_reg);
6028 if (seq)
6029 emit_insn (seq);
6030
6031 success = NULL_RTX;
6032 oldval = cmp_reg;
6033 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
6034 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
6035 MEMMODEL_RELAXED))
6036 return false;
6037
6038 if (oldval != cmp_reg)
6039 emit_move_insn (cmp_reg, oldval);
6040
6041 /* Mark this jump predicted not taken. */
6042 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
6043 GET_MODE (success), 1, label,
6044 profile_probability::guessed_never ());
6045 return true;
6046 }
6047
6048
6049 /* This function tries to emit an atomic_exchange intruction. VAL is written
6050 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6051 using TARGET if possible. */
6052
6053 static rtx
6054 maybe_emit_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6055 {
6056 machine_mode mode = GET_MODE (mem);
6057 enum insn_code icode;
6058
6059 /* If the target supports the exchange directly, great. */
6060 icode = direct_optab_handler (atomic_exchange_optab, mode);
6061 if (icode != CODE_FOR_nothing)
6062 {
6063 struct expand_operand ops[4];
6064
6065 create_output_operand (&ops[0], target, mode);
6066 create_fixed_operand (&ops[1], mem);
6067 create_input_operand (&ops[2], val, mode);
6068 create_integer_operand (&ops[3], model);
6069 if (maybe_expand_insn (icode, 4, ops))
6070 return ops[0].value;
6071 }
6072
6073 return NULL_RTX;
6074 }
6075
6076 /* This function tries to implement an atomic exchange operation using
6077 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6078 The previous contents of *MEM are returned, using TARGET if possible.
6079 Since this instructionn is an acquire barrier only, stronger memory
6080 models may require additional barriers to be emitted. */
6081
6082 static rtx
6083 maybe_emit_sync_lock_test_and_set (rtx target, rtx mem, rtx val,
6084 enum memmodel model)
6085 {
6086 machine_mode mode = GET_MODE (mem);
6087 enum insn_code icode;
6088 rtx_insn *last_insn = get_last_insn ();
6089
6090 icode = optab_handler (sync_lock_test_and_set_optab, mode);
6091
6092 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6093 exists, and the memory model is stronger than acquire, add a release
6094 barrier before the instruction. */
6095
6096 if (is_mm_seq_cst (model) || is_mm_release (model) || is_mm_acq_rel (model))
6097 expand_mem_thread_fence (model);
6098
6099 if (icode != CODE_FOR_nothing)
6100 {
6101 struct expand_operand ops[3];
6102 create_output_operand (&ops[0], target, mode);
6103 create_fixed_operand (&ops[1], mem);
6104 create_input_operand (&ops[2], val, mode);
6105 if (maybe_expand_insn (icode, 3, ops))
6106 return ops[0].value;
6107 }
6108
6109 /* If an external test-and-set libcall is provided, use that instead of
6110 any external compare-and-swap that we might get from the compare-and-
6111 swap-loop expansion later. */
6112 if (!can_compare_and_swap_p (mode, false))
6113 {
6114 rtx libfunc = optab_libfunc (sync_lock_test_and_set_optab, mode);
6115 if (libfunc != NULL)
6116 {
6117 rtx addr;
6118
6119 addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6120 return emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6121 mode, addr, ptr_mode,
6122 val, mode);
6123 }
6124 }
6125
6126 /* If the test_and_set can't be emitted, eliminate any barrier that might
6127 have been emitted. */
6128 delete_insns_since (last_insn);
6129 return NULL_RTX;
6130 }
6131
6132 /* This function tries to implement an atomic exchange operation using a
6133 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6134 *MEM are returned, using TARGET if possible. No memory model is required
6135 since a compare_and_swap loop is seq-cst. */
6136
6137 static rtx
6138 maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
6139 {
6140 machine_mode mode = GET_MODE (mem);
6141
6142 if (can_compare_and_swap_p (mode, true))
6143 {
6144 if (!target || !register_operand (target, mode))
6145 target = gen_reg_rtx (mode);
6146 if (expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
6147 return target;
6148 }
6149
6150 return NULL_RTX;
6151 }
6152
6153 /* This function tries to implement an atomic test-and-set operation
6154 using the atomic_test_and_set instruction pattern. A boolean value
6155 is returned from the operation, using TARGET if possible. */
6156
6157 static rtx
6158 maybe_emit_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6159 {
6160 machine_mode pat_bool_mode;
6161 struct expand_operand ops[3];
6162
6163 if (!targetm.have_atomic_test_and_set ())
6164 return NULL_RTX;
6165
6166 /* While we always get QImode from __atomic_test_and_set, we get
6167 other memory modes from __sync_lock_test_and_set. Note that we
6168 use no endian adjustment here. This matches the 4.6 behavior
6169 in the Sparc backend. */
6170 enum insn_code icode = targetm.code_for_atomic_test_and_set;
6171 gcc_checking_assert (insn_data[icode].operand[1].mode == QImode);
6172 if (GET_MODE (mem) != QImode)
6173 mem = adjust_address_nv (mem, QImode, 0);
6174
6175 pat_bool_mode = insn_data[icode].operand[0].mode;
6176 create_output_operand (&ops[0], target, pat_bool_mode);
6177 create_fixed_operand (&ops[1], mem);
6178 create_integer_operand (&ops[2], model);
6179
6180 if (maybe_expand_insn (icode, 3, ops))
6181 return ops[0].value;
6182 return NULL_RTX;
6183 }
6184
6185 /* This function expands the legacy _sync_lock test_and_set operation which is
6186 generally an atomic exchange. Some limited targets only allow the
6187 constant 1 to be stored. This is an ACQUIRE operation.
6188
6189 TARGET is an optional place to stick the return value.
6190 MEM is where VAL is stored. */
6191
6192 rtx
6193 expand_sync_lock_test_and_set (rtx target, rtx mem, rtx val)
6194 {
6195 rtx ret;
6196
6197 /* Try an atomic_exchange first. */
6198 ret = maybe_emit_atomic_exchange (target, mem, val, MEMMODEL_SYNC_ACQUIRE);
6199 if (ret)
6200 return ret;
6201
6202 ret = maybe_emit_sync_lock_test_and_set (target, mem, val,
6203 MEMMODEL_SYNC_ACQUIRE);
6204 if (ret)
6205 return ret;
6206
6207 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6208 if (ret)
6209 return ret;
6210
6211 /* If there are no other options, try atomic_test_and_set if the value
6212 being stored is 1. */
6213 if (val == const1_rtx)
6214 ret = maybe_emit_atomic_test_and_set (target, mem, MEMMODEL_SYNC_ACQUIRE);
6215
6216 return ret;
6217 }
6218
6219 /* This function expands the atomic test_and_set operation:
6220 atomically store a boolean TRUE into MEM and return the previous value.
6221
6222 MEMMODEL is the memory model variant to use.
6223 TARGET is an optional place to stick the return value. */
6224
6225 rtx
6226 expand_atomic_test_and_set (rtx target, rtx mem, enum memmodel model)
6227 {
6228 machine_mode mode = GET_MODE (mem);
6229 rtx ret, trueval, subtarget;
6230
6231 ret = maybe_emit_atomic_test_and_set (target, mem, model);
6232 if (ret)
6233 return ret;
6234
6235 /* Be binary compatible with non-default settings of trueval, and different
6236 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6237 another only has atomic-exchange. */
6238 if (targetm.atomic_test_and_set_trueval == 1)
6239 {
6240 trueval = const1_rtx;
6241 subtarget = target ? target : gen_reg_rtx (mode);
6242 }
6243 else
6244 {
6245 trueval = gen_int_mode (targetm.atomic_test_and_set_trueval, mode);
6246 subtarget = gen_reg_rtx (mode);
6247 }
6248
6249 /* Try the atomic-exchange optab... */
6250 ret = maybe_emit_atomic_exchange (subtarget, mem, trueval, model);
6251
6252 /* ... then an atomic-compare-and-swap loop ... */
6253 if (!ret)
6254 ret = maybe_emit_compare_and_swap_exchange_loop (subtarget, mem, trueval);
6255
6256 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6257 if (!ret)
6258 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, trueval, model);
6259
6260 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6261 things with the value 1. Thus we try again without trueval. */
6262 if (!ret && targetm.atomic_test_and_set_trueval != 1)
6263 ret = maybe_emit_sync_lock_test_and_set (subtarget, mem, const1_rtx, model);
6264
6265 /* Failing all else, assume a single threaded environment and simply
6266 perform the operation. */
6267 if (!ret)
6268 {
6269 /* If the result is ignored skip the move to target. */
6270 if (subtarget != const0_rtx)
6271 emit_move_insn (subtarget, mem);
6272
6273 emit_move_insn (mem, trueval);
6274 ret = subtarget;
6275 }
6276
6277 /* Recall that have to return a boolean value; rectify if trueval
6278 is not exactly one. */
6279 if (targetm.atomic_test_and_set_trueval != 1)
6280 ret = emit_store_flag_force (target, NE, ret, const0_rtx, mode, 0, 1);
6281
6282 return ret;
6283 }
6284
6285 /* This function expands the atomic exchange operation:
6286 atomically store VAL in MEM and return the previous value in MEM.
6287
6288 MEMMODEL is the memory model variant to use.
6289 TARGET is an optional place to stick the return value. */
6290
6291 rtx
6292 expand_atomic_exchange (rtx target, rtx mem, rtx val, enum memmodel model)
6293 {
6294 machine_mode mode = GET_MODE (mem);
6295 rtx ret;
6296
6297 /* If loads are not atomic for the required size and we are not called to
6298 provide a __sync builtin, do not do anything so that we stay consistent
6299 with atomic loads of the same size. */
6300 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6301 return NULL_RTX;
6302
6303 ret = maybe_emit_atomic_exchange (target, mem, val, model);
6304
6305 /* Next try a compare-and-swap loop for the exchange. */
6306 if (!ret)
6307 ret = maybe_emit_compare_and_swap_exchange_loop (target, mem, val);
6308
6309 return ret;
6310 }
6311
6312 /* This function expands the atomic compare exchange operation:
6313
6314 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6315 *PTARGET_OVAL is an optional place to store the old value from memory.
6316 Both target parameters may be NULL or const0_rtx to indicate that we do
6317 not care about that return value. Both target parameters are updated on
6318 success to the actual location of the corresponding result.
6319
6320 MEMMODEL is the memory model variant to use.
6321
6322 The return value of the function is true for success. */
6323
6324 bool
6325 expand_atomic_compare_and_swap (rtx *ptarget_bool, rtx *ptarget_oval,
6326 rtx mem, rtx expected, rtx desired,
6327 bool is_weak, enum memmodel succ_model,
6328 enum memmodel fail_model)
6329 {
6330 machine_mode mode = GET_MODE (mem);
6331 struct expand_operand ops[8];
6332 enum insn_code icode;
6333 rtx target_oval, target_bool = NULL_RTX;
6334 rtx libfunc;
6335
6336 /* If loads are not atomic for the required size and we are not called to
6337 provide a __sync builtin, do not do anything so that we stay consistent
6338 with atomic loads of the same size. */
6339 if (!can_atomic_load_p (mode) && !is_mm_sync (succ_model))
6340 return false;
6341
6342 /* Load expected into a register for the compare and swap. */
6343 if (MEM_P (expected))
6344 expected = copy_to_reg (expected);
6345
6346 /* Make sure we always have some place to put the return oldval.
6347 Further, make sure that place is distinct from the input expected,
6348 just in case we need that path down below. */
6349 if (ptarget_oval && *ptarget_oval == const0_rtx)
6350 ptarget_oval = NULL;
6351
6352 if (ptarget_oval == NULL
6353 || (target_oval = *ptarget_oval) == NULL
6354 || reg_overlap_mentioned_p (expected, target_oval))
6355 target_oval = gen_reg_rtx (mode);
6356
6357 icode = direct_optab_handler (atomic_compare_and_swap_optab, mode);
6358 if (icode != CODE_FOR_nothing)
6359 {
6360 machine_mode bool_mode = insn_data[icode].operand[0].mode;
6361
6362 if (ptarget_bool && *ptarget_bool == const0_rtx)
6363 ptarget_bool = NULL;
6364
6365 /* Make sure we always have a place for the bool operand. */
6366 if (ptarget_bool == NULL
6367 || (target_bool = *ptarget_bool) == NULL
6368 || GET_MODE (target_bool) != bool_mode)
6369 target_bool = gen_reg_rtx (bool_mode);
6370
6371 /* Emit the compare_and_swap. */
6372 create_output_operand (&ops[0], target_bool, bool_mode);
6373 create_output_operand (&ops[1], target_oval, mode);
6374 create_fixed_operand (&ops[2], mem);
6375 create_input_operand (&ops[3], expected, mode);
6376 create_input_operand (&ops[4], desired, mode);
6377 create_integer_operand (&ops[5], is_weak);
6378 create_integer_operand (&ops[6], succ_model);
6379 create_integer_operand (&ops[7], fail_model);
6380 if (maybe_expand_insn (icode, 8, ops))
6381 {
6382 /* Return success/failure. */
6383 target_bool = ops[0].value;
6384 target_oval = ops[1].value;
6385 goto success;
6386 }
6387 }
6388
6389 /* Otherwise fall back to the original __sync_val_compare_and_swap
6390 which is always seq-cst. */
6391 icode = optab_handler (sync_compare_and_swap_optab, mode);
6392 if (icode != CODE_FOR_nothing)
6393 {
6394 rtx cc_reg;
6395
6396 create_output_operand (&ops[0], target_oval, mode);
6397 create_fixed_operand (&ops[1], mem);
6398 create_input_operand (&ops[2], expected, mode);
6399 create_input_operand (&ops[3], desired, mode);
6400 if (!maybe_expand_insn (icode, 4, ops))
6401 return false;
6402
6403 target_oval = ops[0].value;
6404
6405 /* If the caller isn't interested in the boolean return value,
6406 skip the computation of it. */
6407 if (ptarget_bool == NULL)
6408 goto success;
6409
6410 /* Otherwise, work out if the compare-and-swap succeeded. */
6411 cc_reg = NULL_RTX;
6412 if (have_insn_for (COMPARE, CCmode))
6413 note_stores (PATTERN (get_last_insn ()), find_cc_set, &cc_reg);
6414 if (cc_reg)
6415 {
6416 target_bool = emit_store_flag_force (target_bool, EQ, cc_reg,
6417 const0_rtx, VOIDmode, 0, 1);
6418 goto success;
6419 }
6420 goto success_bool_from_val;
6421 }
6422
6423 /* Also check for library support for __sync_val_compare_and_swap. */
6424 libfunc = optab_libfunc (sync_compare_and_swap_optab, mode);
6425 if (libfunc != NULL)
6426 {
6427 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
6428 rtx target = emit_library_call_value (libfunc, NULL_RTX, LCT_NORMAL,
6429 mode, addr, ptr_mode,
6430 expected, mode, desired, mode);
6431 emit_move_insn (target_oval, target);
6432
6433 /* Compute the boolean return value only if requested. */
6434 if (ptarget_bool)
6435 goto success_bool_from_val;
6436 else
6437 goto success;
6438 }
6439
6440 /* Failure. */
6441 return false;
6442
6443 success_bool_from_val:
6444 target_bool = emit_store_flag_force (target_bool, EQ, target_oval,
6445 expected, VOIDmode, 1, 1);
6446 success:
6447 /* Make sure that the oval output winds up where the caller asked. */
6448 if (ptarget_oval)
6449 *ptarget_oval = target_oval;
6450 if (ptarget_bool)
6451 *ptarget_bool = target_bool;
6452 return true;
6453 }
6454
6455 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6456
6457 static void
6458 expand_asm_memory_blockage (void)
6459 {
6460 rtx asm_op, clob;
6461
6462 asm_op = gen_rtx_ASM_OPERANDS (VOIDmode, "", "", 0,
6463 rtvec_alloc (0), rtvec_alloc (0),
6464 rtvec_alloc (0), UNKNOWN_LOCATION);
6465 MEM_VOLATILE_P (asm_op) = 1;
6466
6467 clob = gen_rtx_SCRATCH (VOIDmode);
6468 clob = gen_rtx_MEM (BLKmode, clob);
6469 clob = gen_rtx_CLOBBER (VOIDmode, clob);
6470
6471 emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, asm_op, clob)));
6472 }
6473
6474 /* Do not propagate memory accesses across this point. */
6475
6476 static void
6477 expand_memory_blockage (void)
6478 {
6479 if (targetm.have_memory_blockage ())
6480 emit_insn (targetm.gen_memory_blockage ());
6481 else
6482 expand_asm_memory_blockage ();
6483 }
6484
6485 /* This routine will either emit the mem_thread_fence pattern or issue a
6486 sync_synchronize to generate a fence for memory model MEMMODEL. */
6487
6488 void
6489 expand_mem_thread_fence (enum memmodel model)
6490 {
6491 if (is_mm_relaxed (model))
6492 return;
6493 if (targetm.have_mem_thread_fence ())
6494 {
6495 emit_insn (targetm.gen_mem_thread_fence (GEN_INT (model)));
6496 expand_memory_blockage ();
6497 }
6498 else if (targetm.have_memory_barrier ())
6499 emit_insn (targetm.gen_memory_barrier ());
6500 else if (synchronize_libfunc != NULL_RTX)
6501 emit_library_call (synchronize_libfunc, LCT_NORMAL, VOIDmode);
6502 else
6503 expand_memory_blockage ();
6504 }
6505
6506 /* Emit a signal fence with given memory model. */
6507
6508 void
6509 expand_mem_signal_fence (enum memmodel model)
6510 {
6511 /* No machine barrier is required to implement a signal fence, but
6512 a compiler memory barrier must be issued, except for relaxed MM. */
6513 if (!is_mm_relaxed (model))
6514 expand_memory_blockage ();
6515 }
6516
6517 /* This function expands the atomic load operation:
6518 return the atomically loaded value in MEM.
6519
6520 MEMMODEL is the memory model variant to use.
6521 TARGET is an option place to stick the return value. */
6522
6523 rtx
6524 expand_atomic_load (rtx target, rtx mem, enum memmodel model)
6525 {
6526 machine_mode mode = GET_MODE (mem);
6527 enum insn_code icode;
6528
6529 /* If the target supports the load directly, great. */
6530 icode = direct_optab_handler (atomic_load_optab, mode);
6531 if (icode != CODE_FOR_nothing)
6532 {
6533 struct expand_operand ops[3];
6534 rtx_insn *last = get_last_insn ();
6535 if (is_mm_seq_cst (model))
6536 expand_memory_blockage ();
6537
6538 create_output_operand (&ops[0], target, mode);
6539 create_fixed_operand (&ops[1], mem);
6540 create_integer_operand (&ops[2], model);
6541 if (maybe_expand_insn (icode, 3, ops))
6542 {
6543 if (!is_mm_relaxed (model))
6544 expand_memory_blockage ();
6545 return ops[0].value;
6546 }
6547 delete_insns_since (last);
6548 }
6549
6550 /* If the size of the object is greater than word size on this target,
6551 then we assume that a load will not be atomic. We could try to
6552 emulate a load with a compare-and-swap operation, but the store that
6553 doing this could result in would be incorrect if this is a volatile
6554 atomic load or targetting read-only-mapped memory. */
6555 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6556 /* If there is no atomic load, leave the library call. */
6557 return NULL_RTX;
6558
6559 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6560 if (!target || target == const0_rtx)
6561 target = gen_reg_rtx (mode);
6562
6563 /* For SEQ_CST, emit a barrier before the load. */
6564 if (is_mm_seq_cst (model))
6565 expand_mem_thread_fence (model);
6566
6567 emit_move_insn (target, mem);
6568
6569 /* Emit the appropriate barrier after the load. */
6570 expand_mem_thread_fence (model);
6571
6572 return target;
6573 }
6574
6575 /* This function expands the atomic store operation:
6576 Atomically store VAL in MEM.
6577 MEMMODEL is the memory model variant to use.
6578 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6579 function returns const0_rtx if a pattern was emitted. */
6580
6581 rtx
6582 expand_atomic_store (rtx mem, rtx val, enum memmodel model, bool use_release)
6583 {
6584 machine_mode mode = GET_MODE (mem);
6585 enum insn_code icode;
6586 struct expand_operand ops[3];
6587
6588 /* If the target supports the store directly, great. */
6589 icode = direct_optab_handler (atomic_store_optab, mode);
6590 if (icode != CODE_FOR_nothing)
6591 {
6592 rtx_insn *last = get_last_insn ();
6593 if (!is_mm_relaxed (model))
6594 expand_memory_blockage ();
6595 create_fixed_operand (&ops[0], mem);
6596 create_input_operand (&ops[1], val, mode);
6597 create_integer_operand (&ops[2], model);
6598 if (maybe_expand_insn (icode, 3, ops))
6599 {
6600 if (is_mm_seq_cst (model))
6601 expand_memory_blockage ();
6602 return const0_rtx;
6603 }
6604 delete_insns_since (last);
6605 }
6606
6607 /* If using __sync_lock_release is a viable alternative, try it.
6608 Note that this will not be set to true if we are expanding a generic
6609 __atomic_store_n. */
6610 if (use_release)
6611 {
6612 icode = direct_optab_handler (sync_lock_release_optab, mode);
6613 if (icode != CODE_FOR_nothing)
6614 {
6615 create_fixed_operand (&ops[0], mem);
6616 create_input_operand (&ops[1], const0_rtx, mode);
6617 if (maybe_expand_insn (icode, 2, ops))
6618 {
6619 /* lock_release is only a release barrier. */
6620 if (is_mm_seq_cst (model))
6621 expand_mem_thread_fence (model);
6622 return const0_rtx;
6623 }
6624 }
6625 }
6626
6627 /* If the size of the object is greater than word size on this target,
6628 a default store will not be atomic. */
6629 if (maybe_gt (GET_MODE_PRECISION (mode), BITS_PER_WORD))
6630 {
6631 /* If loads are atomic or we are called to provide a __sync builtin,
6632 we can try a atomic_exchange and throw away the result. Otherwise,
6633 don't do anything so that we do not create an inconsistency between
6634 loads and stores. */
6635 if (can_atomic_load_p (mode) || is_mm_sync (model))
6636 {
6637 rtx target = maybe_emit_atomic_exchange (NULL_RTX, mem, val, model);
6638 if (!target)
6639 target = maybe_emit_compare_and_swap_exchange_loop (NULL_RTX, mem,
6640 val);
6641 if (target)
6642 return const0_rtx;
6643 }
6644 return NULL_RTX;
6645 }
6646
6647 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6648 expand_mem_thread_fence (model);
6649
6650 emit_move_insn (mem, val);
6651
6652 /* For SEQ_CST, also emit a barrier after the store. */
6653 if (is_mm_seq_cst (model))
6654 expand_mem_thread_fence (model);
6655
6656 return const0_rtx;
6657 }
6658
6659
6660 /* Structure containing the pointers and values required to process the
6661 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6662
6663 struct atomic_op_functions
6664 {
6665 direct_optab mem_fetch_before;
6666 direct_optab mem_fetch_after;
6667 direct_optab mem_no_result;
6668 optab fetch_before;
6669 optab fetch_after;
6670 direct_optab no_result;
6671 enum rtx_code reverse_code;
6672 };
6673
6674
6675 /* Fill in structure pointed to by OP with the various optab entries for an
6676 operation of type CODE. */
6677
6678 static void
6679 get_atomic_op_for_code (struct atomic_op_functions *op, enum rtx_code code)
6680 {
6681 gcc_assert (op!= NULL);
6682
6683 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6684 in the source code during compilation, and the optab entries are not
6685 computable until runtime. Fill in the values at runtime. */
6686 switch (code)
6687 {
6688 case PLUS:
6689 op->mem_fetch_before = atomic_fetch_add_optab;
6690 op->mem_fetch_after = atomic_add_fetch_optab;
6691 op->mem_no_result = atomic_add_optab;
6692 op->fetch_before = sync_old_add_optab;
6693 op->fetch_after = sync_new_add_optab;
6694 op->no_result = sync_add_optab;
6695 op->reverse_code = MINUS;
6696 break;
6697 case MINUS:
6698 op->mem_fetch_before = atomic_fetch_sub_optab;
6699 op->mem_fetch_after = atomic_sub_fetch_optab;
6700 op->mem_no_result = atomic_sub_optab;
6701 op->fetch_before = sync_old_sub_optab;
6702 op->fetch_after = sync_new_sub_optab;
6703 op->no_result = sync_sub_optab;
6704 op->reverse_code = PLUS;
6705 break;
6706 case XOR:
6707 op->mem_fetch_before = atomic_fetch_xor_optab;
6708 op->mem_fetch_after = atomic_xor_fetch_optab;
6709 op->mem_no_result = atomic_xor_optab;
6710 op->fetch_before = sync_old_xor_optab;
6711 op->fetch_after = sync_new_xor_optab;
6712 op->no_result = sync_xor_optab;
6713 op->reverse_code = XOR;
6714 break;
6715 case AND:
6716 op->mem_fetch_before = atomic_fetch_and_optab;
6717 op->mem_fetch_after = atomic_and_fetch_optab;
6718 op->mem_no_result = atomic_and_optab;
6719 op->fetch_before = sync_old_and_optab;
6720 op->fetch_after = sync_new_and_optab;
6721 op->no_result = sync_and_optab;
6722 op->reverse_code = UNKNOWN;
6723 break;
6724 case IOR:
6725 op->mem_fetch_before = atomic_fetch_or_optab;
6726 op->mem_fetch_after = atomic_or_fetch_optab;
6727 op->mem_no_result = atomic_or_optab;
6728 op->fetch_before = sync_old_ior_optab;
6729 op->fetch_after = sync_new_ior_optab;
6730 op->no_result = sync_ior_optab;
6731 op->reverse_code = UNKNOWN;
6732 break;
6733 case NOT:
6734 op->mem_fetch_before = atomic_fetch_nand_optab;
6735 op->mem_fetch_after = atomic_nand_fetch_optab;
6736 op->mem_no_result = atomic_nand_optab;
6737 op->fetch_before = sync_old_nand_optab;
6738 op->fetch_after = sync_new_nand_optab;
6739 op->no_result = sync_nand_optab;
6740 op->reverse_code = UNKNOWN;
6741 break;
6742 default:
6743 gcc_unreachable ();
6744 }
6745 }
6746
6747 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6748 using memory order MODEL. If AFTER is true the operation needs to return
6749 the value of *MEM after the operation, otherwise the previous value.
6750 TARGET is an optional place to place the result. The result is unused if
6751 it is const0_rtx.
6752 Return the result if there is a better sequence, otherwise NULL_RTX. */
6753
6754 static rtx
6755 maybe_optimize_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6756 enum memmodel model, bool after)
6757 {
6758 /* If the value is prefetched, or not used, it may be possible to replace
6759 the sequence with a native exchange operation. */
6760 if (!after || target == const0_rtx)
6761 {
6762 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6763 if (code == AND && val == const0_rtx)
6764 {
6765 if (target == const0_rtx)
6766 target = gen_reg_rtx (GET_MODE (mem));
6767 return maybe_emit_atomic_exchange (target, mem, val, model);
6768 }
6769
6770 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6771 if (code == IOR && val == constm1_rtx)
6772 {
6773 if (target == const0_rtx)
6774 target = gen_reg_rtx (GET_MODE (mem));
6775 return maybe_emit_atomic_exchange (target, mem, val, model);
6776 }
6777 }
6778
6779 return NULL_RTX;
6780 }
6781
6782 /* Try to emit an instruction for a specific operation varaition.
6783 OPTAB contains the OP functions.
6784 TARGET is an optional place to return the result. const0_rtx means unused.
6785 MEM is the memory location to operate on.
6786 VAL is the value to use in the operation.
6787 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6788 MODEL is the memory model, if used.
6789 AFTER is true if the returned result is the value after the operation. */
6790
6791 static rtx
6792 maybe_emit_op (const struct atomic_op_functions *optab, rtx target, rtx mem,
6793 rtx val, bool use_memmodel, enum memmodel model, bool after)
6794 {
6795 machine_mode mode = GET_MODE (mem);
6796 struct expand_operand ops[4];
6797 enum insn_code icode;
6798 int op_counter = 0;
6799 int num_ops;
6800
6801 /* Check to see if there is a result returned. */
6802 if (target == const0_rtx)
6803 {
6804 if (use_memmodel)
6805 {
6806 icode = direct_optab_handler (optab->mem_no_result, mode);
6807 create_integer_operand (&ops[2], model);
6808 num_ops = 3;
6809 }
6810 else
6811 {
6812 icode = direct_optab_handler (optab->no_result, mode);
6813 num_ops = 2;
6814 }
6815 }
6816 /* Otherwise, we need to generate a result. */
6817 else
6818 {
6819 if (use_memmodel)
6820 {
6821 icode = direct_optab_handler (after ? optab->mem_fetch_after
6822 : optab->mem_fetch_before, mode);
6823 create_integer_operand (&ops[3], model);
6824 num_ops = 4;
6825 }
6826 else
6827 {
6828 icode = optab_handler (after ? optab->fetch_after
6829 : optab->fetch_before, mode);
6830 num_ops = 3;
6831 }
6832 create_output_operand (&ops[op_counter++], target, mode);
6833 }
6834 if (icode == CODE_FOR_nothing)
6835 return NULL_RTX;
6836
6837 create_fixed_operand (&ops[op_counter++], mem);
6838 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6839 create_convert_operand_to (&ops[op_counter++], val, mode, true);
6840
6841 if (maybe_expand_insn (icode, num_ops, ops))
6842 return (target == const0_rtx ? const0_rtx : ops[0].value);
6843
6844 return NULL_RTX;
6845 }
6846
6847
6848 /* This function expands an atomic fetch_OP or OP_fetch operation:
6849 TARGET is an option place to stick the return value. const0_rtx indicates
6850 the result is unused.
6851 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6852 CODE is the operation being performed (OP)
6853 MEMMODEL is the memory model variant to use.
6854 AFTER is true to return the result of the operation (OP_fetch).
6855 AFTER is false to return the value before the operation (fetch_OP).
6856
6857 This function will *only* generate instructions if there is a direct
6858 optab. No compare and swap loops or libcalls will be generated. */
6859
6860 static rtx
6861 expand_atomic_fetch_op_no_fallback (rtx target, rtx mem, rtx val,
6862 enum rtx_code code, enum memmodel model,
6863 bool after)
6864 {
6865 machine_mode mode = GET_MODE (mem);
6866 struct atomic_op_functions optab;
6867 rtx result;
6868 bool unused_result = (target == const0_rtx);
6869
6870 get_atomic_op_for_code (&optab, code);
6871
6872 /* Check to see if there are any better instructions. */
6873 result = maybe_optimize_fetch_op (target, mem, val, code, model, after);
6874 if (result)
6875 return result;
6876
6877 /* Check for the case where the result isn't used and try those patterns. */
6878 if (unused_result)
6879 {
6880 /* Try the memory model variant first. */
6881 result = maybe_emit_op (&optab, target, mem, val, true, model, true);
6882 if (result)
6883 return result;
6884
6885 /* Next try the old style withuot a memory model. */
6886 result = maybe_emit_op (&optab, target, mem, val, false, model, true);
6887 if (result)
6888 return result;
6889
6890 /* There is no no-result pattern, so try patterns with a result. */
6891 target = NULL_RTX;
6892 }
6893
6894 /* Try the __atomic version. */
6895 result = maybe_emit_op (&optab, target, mem, val, true, model, after);
6896 if (result)
6897 return result;
6898
6899 /* Try the older __sync version. */
6900 result = maybe_emit_op (&optab, target, mem, val, false, model, after);
6901 if (result)
6902 return result;
6903
6904 /* If the fetch value can be calculated from the other variation of fetch,
6905 try that operation. */
6906 if (after || unused_result || optab.reverse_code != UNKNOWN)
6907 {
6908 /* Try the __atomic version, then the older __sync version. */
6909 result = maybe_emit_op (&optab, target, mem, val, true, model, !after);
6910 if (!result)
6911 result = maybe_emit_op (&optab, target, mem, val, false, model, !after);
6912
6913 if (result)
6914 {
6915 /* If the result isn't used, no need to do compensation code. */
6916 if (unused_result)
6917 return result;
6918
6919 /* Issue compensation code. Fetch_after == fetch_before OP val.
6920 Fetch_before == after REVERSE_OP val. */
6921 if (!after)
6922 code = optab.reverse_code;
6923 if (code == NOT)
6924 {
6925 result = expand_simple_binop (mode, AND, result, val, NULL_RTX,
6926 true, OPTAB_LIB_WIDEN);
6927 result = expand_simple_unop (mode, NOT, result, target, true);
6928 }
6929 else
6930 result = expand_simple_binop (mode, code, result, val, target,
6931 true, OPTAB_LIB_WIDEN);
6932 return result;
6933 }
6934 }
6935
6936 /* No direct opcode can be generated. */
6937 return NULL_RTX;
6938 }
6939
6940
6941
6942 /* This function expands an atomic fetch_OP or OP_fetch operation:
6943 TARGET is an option place to stick the return value. const0_rtx indicates
6944 the result is unused.
6945 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6946 CODE is the operation being performed (OP)
6947 MEMMODEL is the memory model variant to use.
6948 AFTER is true to return the result of the operation (OP_fetch).
6949 AFTER is false to return the value before the operation (fetch_OP). */
6950 rtx
6951 expand_atomic_fetch_op (rtx target, rtx mem, rtx val, enum rtx_code code,
6952 enum memmodel model, bool after)
6953 {
6954 machine_mode mode = GET_MODE (mem);
6955 rtx result;
6956 bool unused_result = (target == const0_rtx);
6957
6958 /* If loads are not atomic for the required size and we are not called to
6959 provide a __sync builtin, do not do anything so that we stay consistent
6960 with atomic loads of the same size. */
6961 if (!can_atomic_load_p (mode) && !is_mm_sync (model))
6962 return NULL_RTX;
6963
6964 result = expand_atomic_fetch_op_no_fallback (target, mem, val, code, model,
6965 after);
6966
6967 if (result)
6968 return result;
6969
6970 /* Add/sub can be implemented by doing the reverse operation with -(val). */
6971 if (code == PLUS || code == MINUS)
6972 {
6973 rtx tmp;
6974 enum rtx_code reverse = (code == PLUS ? MINUS : PLUS);
6975
6976 start_sequence ();
6977 tmp = expand_simple_unop (mode, NEG, val, NULL_RTX, true);
6978 result = expand_atomic_fetch_op_no_fallback (target, mem, tmp, reverse,
6979 model, after);
6980 if (result)
6981 {
6982 /* PLUS worked so emit the insns and return. */
6983 tmp = get_insns ();
6984 end_sequence ();
6985 emit_insn (tmp);
6986 return result;
6987 }
6988
6989 /* PLUS did not work, so throw away the negation code and continue. */
6990 end_sequence ();
6991 }
6992
6993 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
6994 if (!can_compare_and_swap_p (mode, false))
6995 {
6996 rtx libfunc;
6997 bool fixup = false;
6998 enum rtx_code orig_code = code;
6999 struct atomic_op_functions optab;
7000
7001 get_atomic_op_for_code (&optab, code);
7002 libfunc = optab_libfunc (after ? optab.fetch_after
7003 : optab.fetch_before, mode);
7004 if (libfunc == NULL
7005 && (after || unused_result || optab.reverse_code != UNKNOWN))
7006 {
7007 fixup = true;
7008 if (!after)
7009 code = optab.reverse_code;
7010 libfunc = optab_libfunc (after ? optab.fetch_before
7011 : optab.fetch_after, mode);
7012 }
7013 if (libfunc != NULL)
7014 {
7015 rtx addr = convert_memory_address (ptr_mode, XEXP (mem, 0));
7016 result = emit_library_call_value (libfunc, NULL, LCT_NORMAL, mode,
7017 addr, ptr_mode, val, mode);
7018
7019 if (!unused_result && fixup)
7020 result = expand_simple_binop (mode, code, result, val, target,
7021 true, OPTAB_LIB_WIDEN);
7022 return result;
7023 }
7024
7025 /* We need the original code for any further attempts. */
7026 code = orig_code;
7027 }
7028
7029 /* If nothing else has succeeded, default to a compare and swap loop. */
7030 if (can_compare_and_swap_p (mode, true))
7031 {
7032 rtx_insn *insn;
7033 rtx t0 = gen_reg_rtx (mode), t1;
7034
7035 start_sequence ();
7036
7037 /* If the result is used, get a register for it. */
7038 if (!unused_result)
7039 {
7040 if (!target || !register_operand (target, mode))
7041 target = gen_reg_rtx (mode);
7042 /* If fetch_before, copy the value now. */
7043 if (!after)
7044 emit_move_insn (target, t0);
7045 }
7046 else
7047 target = const0_rtx;
7048
7049 t1 = t0;
7050 if (code == NOT)
7051 {
7052 t1 = expand_simple_binop (mode, AND, t1, val, NULL_RTX,
7053 true, OPTAB_LIB_WIDEN);
7054 t1 = expand_simple_unop (mode, code, t1, NULL_RTX, true);
7055 }
7056 else
7057 t1 = expand_simple_binop (mode, code, t1, val, NULL_RTX, true,
7058 OPTAB_LIB_WIDEN);
7059
7060 /* For after, copy the value now. */
7061 if (!unused_result && after)
7062 emit_move_insn (target, t1);
7063 insn = get_insns ();
7064 end_sequence ();
7065
7066 if (t1 != NULL && expand_compare_and_swap_loop (mem, t0, t1, insn))
7067 return target;
7068 }
7069
7070 return NULL_RTX;
7071 }
7072 \f
7073 /* Return true if OPERAND is suitable for operand number OPNO of
7074 instruction ICODE. */
7075
7076 bool
7077 insn_operand_matches (enum insn_code icode, unsigned int opno, rtx operand)
7078 {
7079 return (!insn_data[(int) icode].operand[opno].predicate
7080 || (insn_data[(int) icode].operand[opno].predicate
7081 (operand, insn_data[(int) icode].operand[opno].mode)));
7082 }
7083 \f
7084 /* TARGET is a target of a multiword operation that we are going to
7085 implement as a series of word-mode operations. Return true if
7086 TARGET is suitable for this purpose. */
7087
7088 bool
7089 valid_multiword_target_p (rtx target)
7090 {
7091 machine_mode mode;
7092 int i, size;
7093
7094 mode = GET_MODE (target);
7095 if (!GET_MODE_SIZE (mode).is_constant (&size))
7096 return false;
7097 for (i = 0; i < size; i += UNITS_PER_WORD)
7098 if (!validate_subreg (word_mode, mode, target, i))
7099 return false;
7100 return true;
7101 }
7102
7103 /* Make OP describe an input operand that has value INTVAL and that has
7104 no inherent mode. This function should only be used for operands that
7105 are always expand-time constants. The backend may request that INTVAL
7106 be copied into a different kind of rtx, but it must specify the mode
7107 of that rtx if so. */
7108
7109 void
7110 create_integer_operand (struct expand_operand *op, poly_int64 intval)
7111 {
7112 create_expand_operand (op, EXPAND_INTEGER,
7113 gen_int_mode (intval, MAX_MODE_INT),
7114 VOIDmode, false, intval);
7115 }
7116
7117 /* Like maybe_legitimize_operand, but do not change the code of the
7118 current rtx value. */
7119
7120 static bool
7121 maybe_legitimize_operand_same_code (enum insn_code icode, unsigned int opno,
7122 struct expand_operand *op)
7123 {
7124 /* See if the operand matches in its current form. */
7125 if (insn_operand_matches (icode, opno, op->value))
7126 return true;
7127
7128 /* If the operand is a memory whose address has no side effects,
7129 try forcing the address into a non-virtual pseudo register.
7130 The check for side effects is important because copy_to_mode_reg
7131 cannot handle things like auto-modified addresses. */
7132 if (insn_data[(int) icode].operand[opno].allows_mem && MEM_P (op->value))
7133 {
7134 rtx addr, mem;
7135
7136 mem = op->value;
7137 addr = XEXP (mem, 0);
7138 if (!(REG_P (addr) && REGNO (addr) > LAST_VIRTUAL_REGISTER)
7139 && !side_effects_p (addr))
7140 {
7141 rtx_insn *last;
7142 machine_mode mode;
7143
7144 last = get_last_insn ();
7145 mode = get_address_mode (mem);
7146 mem = replace_equiv_address (mem, copy_to_mode_reg (mode, addr));
7147 if (insn_operand_matches (icode, opno, mem))
7148 {
7149 op->value = mem;
7150 return true;
7151 }
7152 delete_insns_since (last);
7153 }
7154 }
7155
7156 return false;
7157 }
7158
7159 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7160 on success, storing the new operand value back in OP. */
7161
7162 static bool
7163 maybe_legitimize_operand (enum insn_code icode, unsigned int opno,
7164 struct expand_operand *op)
7165 {
7166 machine_mode mode, imode;
7167 bool old_volatile_ok, result;
7168
7169 mode = op->mode;
7170 switch (op->type)
7171 {
7172 case EXPAND_FIXED:
7173 old_volatile_ok = volatile_ok;
7174 volatile_ok = true;
7175 result = maybe_legitimize_operand_same_code (icode, opno, op);
7176 volatile_ok = old_volatile_ok;
7177 return result;
7178
7179 case EXPAND_OUTPUT:
7180 gcc_assert (mode != VOIDmode);
7181 if (op->value
7182 && op->value != const0_rtx
7183 && GET_MODE (op->value) == mode
7184 && maybe_legitimize_operand_same_code (icode, opno, op))
7185 return true;
7186
7187 op->value = gen_reg_rtx (mode);
7188 op->target = 0;
7189 break;
7190
7191 case EXPAND_INPUT:
7192 input:
7193 gcc_assert (mode != VOIDmode);
7194 gcc_assert (GET_MODE (op->value) == VOIDmode
7195 || GET_MODE (op->value) == mode);
7196 if (maybe_legitimize_operand_same_code (icode, opno, op))
7197 return true;
7198
7199 op->value = copy_to_mode_reg (mode, op->value);
7200 break;
7201
7202 case EXPAND_CONVERT_TO:
7203 gcc_assert (mode != VOIDmode);
7204 op->value = convert_to_mode (mode, op->value, op->unsigned_p);
7205 goto input;
7206
7207 case EXPAND_CONVERT_FROM:
7208 if (GET_MODE (op->value) != VOIDmode)
7209 mode = GET_MODE (op->value);
7210 else
7211 /* The caller must tell us what mode this value has. */
7212 gcc_assert (mode != VOIDmode);
7213
7214 imode = insn_data[(int) icode].operand[opno].mode;
7215 if (imode != VOIDmode && imode != mode)
7216 {
7217 op->value = convert_modes (imode, mode, op->value, op->unsigned_p);
7218 mode = imode;
7219 }
7220 goto input;
7221
7222 case EXPAND_ADDRESS:
7223 op->value = convert_memory_address (as_a <scalar_int_mode> (mode),
7224 op->value);
7225 goto input;
7226
7227 case EXPAND_INTEGER:
7228 mode = insn_data[(int) icode].operand[opno].mode;
7229 if (mode != VOIDmode
7230 && known_eq (trunc_int_for_mode (op->int_value, mode),
7231 op->int_value))
7232 {
7233 op->value = gen_int_mode (op->int_value, mode);
7234 goto input;
7235 }
7236 break;
7237 }
7238 return insn_operand_matches (icode, opno, op->value);
7239 }
7240
7241 /* Make OP describe an input operand that should have the same value
7242 as VALUE, after any mode conversion that the target might request.
7243 TYPE is the type of VALUE. */
7244
7245 void
7246 create_convert_operand_from_type (struct expand_operand *op,
7247 rtx value, tree type)
7248 {
7249 create_convert_operand_from (op, value, TYPE_MODE (type),
7250 TYPE_UNSIGNED (type));
7251 }
7252
7253 /* Return true if the requirements on operands OP1 and OP2 of instruction
7254 ICODE are similar enough for the result of legitimizing OP1 to be
7255 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7256 with OP1 and OP2 respectively. */
7257
7258 static inline bool
7259 can_reuse_operands_p (enum insn_code icode,
7260 unsigned int opno1, unsigned int opno2,
7261 const struct expand_operand *op1,
7262 const struct expand_operand *op2)
7263 {
7264 /* Check requirements that are common to all types. */
7265 if (op1->type != op2->type
7266 || op1->mode != op2->mode
7267 || (insn_data[(int) icode].operand[opno1].mode
7268 != insn_data[(int) icode].operand[opno2].mode))
7269 return false;
7270
7271 /* Check the requirements for specific types. */
7272 switch (op1->type)
7273 {
7274 case EXPAND_OUTPUT:
7275 /* Outputs must remain distinct. */
7276 return false;
7277
7278 case EXPAND_FIXED:
7279 case EXPAND_INPUT:
7280 case EXPAND_ADDRESS:
7281 case EXPAND_INTEGER:
7282 return true;
7283
7284 case EXPAND_CONVERT_TO:
7285 case EXPAND_CONVERT_FROM:
7286 return op1->unsigned_p == op2->unsigned_p;
7287 }
7288 gcc_unreachable ();
7289 }
7290
7291 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7292 of instruction ICODE. Return true on success, leaving the new operand
7293 values in the OPS themselves. Emit no code on failure. */
7294
7295 bool
7296 maybe_legitimize_operands (enum insn_code icode, unsigned int opno,
7297 unsigned int nops, struct expand_operand *ops)
7298 {
7299 rtx_insn *last = get_last_insn ();
7300 rtx *orig_values = XALLOCAVEC (rtx, nops);
7301 for (unsigned int i = 0; i < nops; i++)
7302 {
7303 orig_values[i] = ops[i].value;
7304
7305 /* First try reusing the result of an earlier legitimization.
7306 This avoids duplicate rtl and ensures that tied operands
7307 remain tied.
7308
7309 This search is linear, but NOPS is bounded at compile time
7310 to a small number (current a single digit). */
7311 unsigned int j = 0;
7312 for (; j < i; ++j)
7313 if (can_reuse_operands_p (icode, opno + j, opno + i, &ops[j], &ops[i])
7314 && rtx_equal_p (orig_values[j], orig_values[i])
7315 && ops[j].value
7316 && insn_operand_matches (icode, opno + i, ops[j].value))
7317 {
7318 ops[i].value = copy_rtx (ops[j].value);
7319 break;
7320 }
7321
7322 /* Otherwise try legitimizing the operand on its own. */
7323 if (j == i && !maybe_legitimize_operand (icode, opno + i, &ops[i]))
7324 {
7325 delete_insns_since (last);
7326 return false;
7327 }
7328 }
7329 return true;
7330 }
7331
7332 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7333 as its operands. Return the instruction pattern on success,
7334 and emit any necessary set-up code. Return null and emit no
7335 code on failure. */
7336
7337 rtx_insn *
7338 maybe_gen_insn (enum insn_code icode, unsigned int nops,
7339 struct expand_operand *ops)
7340 {
7341 gcc_assert (nops == (unsigned int) insn_data[(int) icode].n_generator_args);
7342 if (!maybe_legitimize_operands (icode, 0, nops, ops))
7343 return NULL;
7344
7345 switch (nops)
7346 {
7347 case 1:
7348 return GEN_FCN (icode) (ops[0].value);
7349 case 2:
7350 return GEN_FCN (icode) (ops[0].value, ops[1].value);
7351 case 3:
7352 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value);
7353 case 4:
7354 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7355 ops[3].value);
7356 case 5:
7357 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7358 ops[3].value, ops[4].value);
7359 case 6:
7360 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7361 ops[3].value, ops[4].value, ops[5].value);
7362 case 7:
7363 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7364 ops[3].value, ops[4].value, ops[5].value,
7365 ops[6].value);
7366 case 8:
7367 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7368 ops[3].value, ops[4].value, ops[5].value,
7369 ops[6].value, ops[7].value);
7370 case 9:
7371 return GEN_FCN (icode) (ops[0].value, ops[1].value, ops[2].value,
7372 ops[3].value, ops[4].value, ops[5].value,
7373 ops[6].value, ops[7].value, ops[8].value);
7374 }
7375 gcc_unreachable ();
7376 }
7377
7378 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7379 as its operands. Return true on success and emit no code on failure. */
7380
7381 bool
7382 maybe_expand_insn (enum insn_code icode, unsigned int nops,
7383 struct expand_operand *ops)
7384 {
7385 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7386 if (pat)
7387 {
7388 emit_insn (pat);
7389 return true;
7390 }
7391 return false;
7392 }
7393
7394 /* Like maybe_expand_insn, but for jumps. */
7395
7396 bool
7397 maybe_expand_jump_insn (enum insn_code icode, unsigned int nops,
7398 struct expand_operand *ops)
7399 {
7400 rtx_insn *pat = maybe_gen_insn (icode, nops, ops);
7401 if (pat)
7402 {
7403 emit_jump_insn (pat);
7404 return true;
7405 }
7406 return false;
7407 }
7408
7409 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7410 as its operands. */
7411
7412 void
7413 expand_insn (enum insn_code icode, unsigned int nops,
7414 struct expand_operand *ops)
7415 {
7416 if (!maybe_expand_insn (icode, nops, ops))
7417 gcc_unreachable ();
7418 }
7419
7420 /* Like expand_insn, but for jumps. */
7421
7422 void
7423 expand_jump_insn (enum insn_code icode, unsigned int nops,
7424 struct expand_operand *ops)
7425 {
7426 if (!maybe_expand_jump_insn (icode, nops, ops))
7427 gcc_unreachable ();
7428 }