]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/postreload.c
[Ada] Two typo fixes
[thirdparty/gcc.git] / gcc / postreload.c
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "recog.h"
35
36 #include "cfgrtl.h"
37 #include "cfgbuild.h"
38 #include "cfgcleanup.h"
39 #include "reload.h"
40 #include "cselib.h"
41 #include "tree-pass.h"
42 #include "dbgcnt.h"
43 #include "function-abi.h"
44 #include "rtl-iter.h"
45
46 static int reload_cse_noop_set_p (rtx);
47 static bool reload_cse_simplify (rtx_insn *, rtx);
48 static void reload_cse_regs_1 (void);
49 static int reload_cse_simplify_set (rtx, rtx_insn *);
50 static int reload_cse_simplify_operands (rtx_insn *, rtx);
51
52 static void reload_combine (void);
53 static void reload_combine_note_use (rtx *, rtx_insn *, int, rtx);
54 static void reload_combine_note_store (rtx, const_rtx, void *);
55
56 static bool reload_cse_move2add (rtx_insn *);
57 static void move2add_note_store (rtx, const_rtx, void *);
58
59 /* Call cse / combine like post-reload optimization phases.
60 FIRST is the first instruction. */
61
62 static void
63 reload_cse_regs (rtx_insn *first ATTRIBUTE_UNUSED)
64 {
65 bool moves_converted;
66 reload_cse_regs_1 ();
67 reload_combine ();
68 moves_converted = reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
70 {
71 if (moves_converted)
72 reload_combine ();
73 reload_cse_regs_1 ();
74 }
75 }
76
77 /* See whether a single set SET is a noop. */
78 static int
79 reload_cse_noop_set_p (rtx set)
80 {
81 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
82 return 0;
83
84 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
85 }
86
87 /* Try to simplify INSN. Return true if the CFG may have changed. */
88 static bool
89 reload_cse_simplify (rtx_insn *insn, rtx testreg)
90 {
91 rtx body = PATTERN (insn);
92 basic_block insn_bb = BLOCK_FOR_INSN (insn);
93 unsigned insn_bb_succs = EDGE_COUNT (insn_bb->succs);
94
95 /* If NO_FUNCTION_CSE has been set by the target, then we should not try
96 to cse function calls. */
97 if (NO_FUNCTION_CSE && CALL_P (insn))
98 return false;
99
100 /* Remember if this insn has been sp += const_int. */
101 rtx sp_set = set_for_reg_notes (insn);
102 rtx sp_addend = NULL_RTX;
103 if (sp_set
104 && SET_DEST (sp_set) == stack_pointer_rtx
105 && GET_CODE (SET_SRC (sp_set)) == PLUS
106 && XEXP (SET_SRC (sp_set), 0) == stack_pointer_rtx
107 && CONST_INT_P (XEXP (SET_SRC (sp_set), 1)))
108 sp_addend = XEXP (SET_SRC (sp_set), 1);
109
110 if (GET_CODE (body) == SET)
111 {
112 int count = 0;
113
114 /* Simplify even if we may think it is a no-op.
115 We may think a memory load of a value smaller than WORD_SIZE
116 is redundant because we haven't taken into account possible
117 implicit extension. reload_cse_simplify_set() will bring
118 this out, so it's safer to simplify before we delete. */
119 count += reload_cse_simplify_set (body, insn);
120
121 if (!count && reload_cse_noop_set_p (body))
122 {
123 if (check_for_inc_dec (insn))
124 delete_insn_and_edges (insn);
125 /* We're done with this insn. */
126 goto done;
127 }
128
129 if (count > 0)
130 apply_change_group ();
131 else
132 reload_cse_simplify_operands (insn, testreg);
133 }
134 else if (GET_CODE (body) == PARALLEL)
135 {
136 int i;
137 int count = 0;
138 rtx value = NULL_RTX;
139
140 /* Registers mentioned in the clobber list for an asm cannot be reused
141 within the body of the asm. Invalidate those registers now so that
142 we don't try to substitute values for them. */
143 if (asm_noperands (body) >= 0)
144 {
145 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
146 {
147 rtx part = XVECEXP (body, 0, i);
148 if (GET_CODE (part) == CLOBBER && REG_P (XEXP (part, 0)))
149 cselib_invalidate_rtx (XEXP (part, 0));
150 }
151 }
152
153 /* If every action in a PARALLEL is a noop, we can delete
154 the entire PARALLEL. */
155 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
156 {
157 rtx part = XVECEXP (body, 0, i);
158 if (GET_CODE (part) == SET)
159 {
160 if (! reload_cse_noop_set_p (part))
161 break;
162 if (REG_P (SET_DEST (part))
163 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
164 {
165 if (value)
166 break;
167 value = SET_DEST (part);
168 }
169 }
170 else if (GET_CODE (part) != CLOBBER && GET_CODE (part) != USE)
171 break;
172 }
173
174 if (i < 0)
175 {
176 if (check_for_inc_dec (insn))
177 delete_insn_and_edges (insn);
178 /* We're done with this insn. */
179 goto done;
180 }
181
182 /* It's not a no-op, but we can try to simplify it. */
183 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
184 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
185 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
186
187 if (count > 0)
188 apply_change_group ();
189 else
190 reload_cse_simplify_operands (insn, testreg);
191 }
192
193 /* If sp += const_int insn is changed into sp = reg;, add REG_EQUAL
194 note so that the stack_adjustments pass can undo it if beneficial. */
195 if (sp_addend
196 && SET_DEST (sp_set) == stack_pointer_rtx
197 && REG_P (SET_SRC (sp_set)))
198 set_dst_reg_note (insn, REG_EQUAL,
199 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
200 sp_addend), stack_pointer_rtx);
201
202 done:
203 return (EDGE_COUNT (insn_bb->succs) != insn_bb_succs);
204 }
205
206 /* Do a very simple CSE pass over the hard registers.
207
208 This function detects no-op moves where we happened to assign two
209 different pseudo-registers to the same hard register, and then
210 copied one to the other. Reload will generate a useless
211 instruction copying a register to itself.
212
213 This function also detects cases where we load a value from memory
214 into two different registers, and (if memory is more expensive than
215 registers) changes it to simply copy the first register into the
216 second register.
217
218 Another optimization is performed that scans the operands of each
219 instruction to see whether the value is already available in a
220 hard register. It then replaces the operand with the hard register
221 if possible, much like an optional reload would. */
222
223 static void
224 reload_cse_regs_1 (void)
225 {
226 bool cfg_changed = false;
227 basic_block bb;
228 rtx_insn *insn;
229 rtx testreg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
230
231 cselib_init (CSELIB_RECORD_MEMORY);
232 init_alias_analysis ();
233
234 FOR_EACH_BB_FN (bb, cfun)
235 FOR_BB_INSNS (bb, insn)
236 {
237 if (INSN_P (insn))
238 cfg_changed |= reload_cse_simplify (insn, testreg);
239
240 cselib_process_insn (insn);
241 }
242
243 /* Clean up. */
244 end_alias_analysis ();
245 cselib_finish ();
246 if (cfg_changed)
247 cleanup_cfg (0);
248 }
249
250 /* Try to simplify a single SET instruction. SET is the set pattern.
251 INSN is the instruction it came from.
252 This function only handles one case: if we set a register to a value
253 which is not a register, we try to find that value in some other register
254 and change the set into a register copy. */
255
256 static int
257 reload_cse_simplify_set (rtx set, rtx_insn *insn)
258 {
259 int did_change = 0;
260 int dreg;
261 rtx src;
262 reg_class_t dclass;
263 int old_cost;
264 cselib_val *val;
265 struct elt_loc_list *l;
266 enum rtx_code extend_op = UNKNOWN;
267 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
268
269 dreg = true_regnum (SET_DEST (set));
270 if (dreg < 0)
271 return 0;
272
273 src = SET_SRC (set);
274 if (side_effects_p (src) || true_regnum (src) >= 0)
275 return 0;
276
277 dclass = REGNO_REG_CLASS (dreg);
278
279 /* When replacing a memory with a register, we need to honor assumptions
280 that combine made wrt the contents of sign bits. We'll do this by
281 generating an extend instruction instead of a reg->reg copy. Thus
282 the destination must be a register that we can widen. */
283 if (MEM_P (src)
284 && (extend_op = load_extend_op (GET_MODE (src))) != UNKNOWN
285 && !REG_P (SET_DEST (set)))
286 return 0;
287
288 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0, VOIDmode);
289 if (! val)
290 return 0;
291
292 /* If memory loads are cheaper than register copies, don't change them. */
293 if (MEM_P (src))
294 old_cost = memory_move_cost (GET_MODE (src), dclass, true);
295 else if (REG_P (src))
296 old_cost = register_move_cost (GET_MODE (src),
297 REGNO_REG_CLASS (REGNO (src)), dclass);
298 else
299 old_cost = set_src_cost (src, GET_MODE (SET_DEST (set)), speed);
300
301 for (l = val->locs; l; l = l->next)
302 {
303 rtx this_rtx = l->loc;
304 int this_cost;
305
306 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
307 {
308 if (extend_op != UNKNOWN)
309 {
310 wide_int result;
311
312 if (!CONST_SCALAR_INT_P (this_rtx))
313 continue;
314
315 switch (extend_op)
316 {
317 case ZERO_EXTEND:
318 result = wide_int::from (rtx_mode_t (this_rtx,
319 GET_MODE (src)),
320 BITS_PER_WORD, UNSIGNED);
321 break;
322 case SIGN_EXTEND:
323 result = wide_int::from (rtx_mode_t (this_rtx,
324 GET_MODE (src)),
325 BITS_PER_WORD, SIGNED);
326 break;
327 default:
328 gcc_unreachable ();
329 }
330 this_rtx = immed_wide_int_const (result, word_mode);
331 }
332
333 this_cost = set_src_cost (this_rtx, GET_MODE (SET_DEST (set)), speed);
334 }
335 else if (REG_P (this_rtx))
336 {
337 if (extend_op != UNKNOWN)
338 {
339 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
340 this_cost = set_src_cost (this_rtx, word_mode, speed);
341 }
342 else
343 this_cost = register_move_cost (GET_MODE (this_rtx),
344 REGNO_REG_CLASS (REGNO (this_rtx)),
345 dclass);
346 }
347 else
348 continue;
349
350 /* If equal costs, prefer registers over anything else. That
351 tends to lead to smaller instructions on some machines. */
352 if (this_cost < old_cost
353 || (this_cost == old_cost
354 && REG_P (this_rtx)
355 && !REG_P (SET_SRC (set))))
356 {
357 if (extend_op != UNKNOWN
358 && REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
359 GET_MODE (SET_DEST (set)), word_mode))
360 {
361 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
362 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
363 validate_change (insn, &SET_DEST (set), wide_dest, 1);
364 }
365
366 validate_unshare_change (insn, &SET_SRC (set), this_rtx, 1);
367 old_cost = this_cost, did_change = 1;
368 }
369 }
370
371 return did_change;
372 }
373
374 /* Try to replace operands in INSN with equivalent values that are already
375 in registers. This can be viewed as optional reloading.
376
377 For each non-register operand in the insn, see if any hard regs are
378 known to be equivalent to that operand. Record the alternatives which
379 can accept these hard registers. Among all alternatives, select the
380 ones which are better or equal to the one currently matching, where
381 "better" is in terms of '?' and '!' constraints. Among the remaining
382 alternatives, select the one which replaces most operands with
383 hard registers. */
384
385 static int
386 reload_cse_simplify_operands (rtx_insn *insn, rtx testreg)
387 {
388 int i, j;
389
390 /* For each operand, all registers that are equivalent to it. */
391 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
392
393 const char *constraints[MAX_RECOG_OPERANDS];
394
395 /* Vector recording how bad an alternative is. */
396 int *alternative_reject;
397 /* Vector recording how many registers can be introduced by choosing
398 this alternative. */
399 int *alternative_nregs;
400 /* Array of vectors recording, for each operand and each alternative,
401 which hard register to substitute, or -1 if the operand should be
402 left as it is. */
403 int *op_alt_regno[MAX_RECOG_OPERANDS];
404 /* Array of alternatives, sorted in order of decreasing desirability. */
405 int *alternative_order;
406
407 extract_constrain_insn (insn);
408
409 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
410 return 0;
411
412 alternative_reject = XALLOCAVEC (int, recog_data.n_alternatives);
413 alternative_nregs = XALLOCAVEC (int, recog_data.n_alternatives);
414 alternative_order = XALLOCAVEC (int, recog_data.n_alternatives);
415 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
416 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
417
418 /* For each operand, find out which regs are equivalent. */
419 for (i = 0; i < recog_data.n_operands; i++)
420 {
421 cselib_val *v;
422 struct elt_loc_list *l;
423 rtx op;
424
425 CLEAR_HARD_REG_SET (equiv_regs[i]);
426
427 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
428 right, so avoid the problem here. Similarly NOTE_INSN_DELETED_LABEL.
429 Likewise if we have a constant and the insn pattern doesn't tell us
430 the mode we need. */
431 if (LABEL_P (recog_data.operand[i])
432 || (NOTE_P (recog_data.operand[i])
433 && NOTE_KIND (recog_data.operand[i]) == NOTE_INSN_DELETED_LABEL)
434 || (CONSTANT_P (recog_data.operand[i])
435 && recog_data.operand_mode[i] == VOIDmode))
436 continue;
437
438 op = recog_data.operand[i];
439 if (MEM_P (op) && load_extend_op (GET_MODE (op)) != UNKNOWN)
440 {
441 rtx set = single_set (insn);
442
443 /* We might have multiple sets, some of which do implicit
444 extension. Punt on this for now. */
445 if (! set)
446 continue;
447 /* If the destination is also a MEM or a STRICT_LOW_PART, no
448 extension applies.
449 Also, if there is an explicit extension, we don't have to
450 worry about an implicit one. */
451 else if (MEM_P (SET_DEST (set))
452 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART
453 || GET_CODE (SET_SRC (set)) == ZERO_EXTEND
454 || GET_CODE (SET_SRC (set)) == SIGN_EXTEND)
455 ; /* Continue ordinary processing. */
456 /* If the register cannot change mode to word_mode, it follows that
457 it cannot have been used in word_mode. */
458 else if (REG_P (SET_DEST (set))
459 && !REG_CAN_CHANGE_MODE_P (REGNO (SET_DEST (set)),
460 GET_MODE (SET_DEST (set)),
461 word_mode))
462 ; /* Continue ordinary processing. */
463 /* If this is a straight load, make the extension explicit. */
464 else if (REG_P (SET_DEST (set))
465 && recog_data.n_operands == 2
466 && SET_SRC (set) == op
467 && SET_DEST (set) == recog_data.operand[1-i])
468 {
469 validate_change (insn, recog_data.operand_loc[i],
470 gen_rtx_fmt_e (load_extend_op (GET_MODE (op)),
471 word_mode, op),
472 1);
473 validate_change (insn, recog_data.operand_loc[1-i],
474 gen_rtx_REG (word_mode, REGNO (SET_DEST (set))),
475 1);
476 if (! apply_change_group ())
477 return 0;
478 return reload_cse_simplify_operands (insn, testreg);
479 }
480 else
481 /* ??? There might be arithmetic operations with memory that are
482 safe to optimize, but is it worth the trouble? */
483 continue;
484 }
485
486 if (side_effects_p (op))
487 continue;
488 v = cselib_lookup (op, recog_data.operand_mode[i], 0, VOIDmode);
489 if (! v)
490 continue;
491
492 for (l = v->locs; l; l = l->next)
493 if (REG_P (l->loc))
494 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
495 }
496
497 alternative_mask preferred = get_preferred_alternatives (insn);
498 for (i = 0; i < recog_data.n_operands; i++)
499 {
500 machine_mode mode;
501 int regno;
502 const char *p;
503
504 op_alt_regno[i] = XALLOCAVEC (int, recog_data.n_alternatives);
505 for (j = 0; j < recog_data.n_alternatives; j++)
506 op_alt_regno[i][j] = -1;
507
508 p = constraints[i] = recog_data.constraints[i];
509 mode = recog_data.operand_mode[i];
510
511 /* Add the reject values for each alternative given by the constraints
512 for this operand. */
513 j = 0;
514 while (*p != '\0')
515 {
516 char c = *p++;
517 if (c == ',')
518 j++;
519 else if (c == '?')
520 alternative_reject[j] += 3;
521 else if (c == '!')
522 alternative_reject[j] += 300;
523 }
524
525 /* We won't change operands which are already registers. We
526 also don't want to modify output operands. */
527 regno = true_regnum (recog_data.operand[i]);
528 if (regno >= 0
529 || constraints[i][0] == '='
530 || constraints[i][0] == '+')
531 continue;
532
533 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
534 {
535 enum reg_class rclass = NO_REGS;
536
537 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
538 continue;
539
540 set_mode_and_regno (testreg, mode, regno);
541
542 /* We found a register equal to this operand. Now look for all
543 alternatives that can accept this register and have not been
544 assigned a register they can use yet. */
545 j = 0;
546 p = constraints[i];
547 for (;;)
548 {
549 char c = *p;
550
551 switch (c)
552 {
553 case 'g':
554 rclass = reg_class_subunion[rclass][GENERAL_REGS];
555 break;
556
557 default:
558 rclass
559 = (reg_class_subunion
560 [rclass]
561 [reg_class_for_constraint (lookup_constraint (p))]);
562 break;
563
564 case ',': case '\0':
565 /* See if REGNO fits this alternative, and set it up as the
566 replacement register if we don't have one for this
567 alternative yet and the operand being replaced is not
568 a cheap CONST_INT. */
569 if (op_alt_regno[i][j] == -1
570 && TEST_BIT (preferred, j)
571 && reg_fits_class_p (testreg, rclass, 0, mode)
572 && (!CONST_INT_P (recog_data.operand[i])
573 || (set_src_cost (recog_data.operand[i], mode,
574 optimize_bb_for_speed_p
575 (BLOCK_FOR_INSN (insn)))
576 > set_src_cost (testreg, mode,
577 optimize_bb_for_speed_p
578 (BLOCK_FOR_INSN (insn))))))
579 {
580 alternative_nregs[j]++;
581 op_alt_regno[i][j] = regno;
582 }
583 j++;
584 rclass = NO_REGS;
585 break;
586 }
587 p += CONSTRAINT_LEN (c, p);
588
589 if (c == '\0')
590 break;
591 }
592 }
593 }
594
595 /* Record all alternatives which are better or equal to the currently
596 matching one in the alternative_order array. */
597 for (i = j = 0; i < recog_data.n_alternatives; i++)
598 if (alternative_reject[i] <= alternative_reject[which_alternative])
599 alternative_order[j++] = i;
600 recog_data.n_alternatives = j;
601
602 /* Sort it. Given a small number of alternatives, a dumb algorithm
603 won't hurt too much. */
604 for (i = 0; i < recog_data.n_alternatives - 1; i++)
605 {
606 int best = i;
607 int best_reject = alternative_reject[alternative_order[i]];
608 int best_nregs = alternative_nregs[alternative_order[i]];
609
610 for (j = i + 1; j < recog_data.n_alternatives; j++)
611 {
612 int this_reject = alternative_reject[alternative_order[j]];
613 int this_nregs = alternative_nregs[alternative_order[j]];
614
615 if (this_reject < best_reject
616 || (this_reject == best_reject && this_nregs > best_nregs))
617 {
618 best = j;
619 best_reject = this_reject;
620 best_nregs = this_nregs;
621 }
622 }
623
624 std::swap (alternative_order[best], alternative_order[i]);
625 }
626
627 /* Substitute the operands as determined by op_alt_regno for the best
628 alternative. */
629 j = alternative_order[0];
630
631 for (i = 0; i < recog_data.n_operands; i++)
632 {
633 machine_mode mode = recog_data.operand_mode[i];
634 if (op_alt_regno[i][j] == -1)
635 continue;
636
637 validate_change (insn, recog_data.operand_loc[i],
638 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
639 }
640
641 for (i = recog_data.n_dups - 1; i >= 0; i--)
642 {
643 int op = recog_data.dup_num[i];
644 machine_mode mode = recog_data.operand_mode[op];
645
646 if (op_alt_regno[op][j] == -1)
647 continue;
648
649 validate_change (insn, recog_data.dup_loc[i],
650 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
651 }
652
653 return apply_change_group ();
654 }
655 \f
656 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
657 addressing now.
658 This code might also be useful when reload gave up on reg+reg addressing
659 because of clashes between the return register and INDEX_REG_CLASS. */
660
661 /* The maximum number of uses of a register we can keep track of to
662 replace them with reg+reg addressing. */
663 #define RELOAD_COMBINE_MAX_USES 16
664
665 /* Describes a recorded use of a register. */
666 struct reg_use
667 {
668 /* The insn where a register has been used. */
669 rtx_insn *insn;
670 /* Points to the memory reference enclosing the use, if any, NULL_RTX
671 otherwise. */
672 rtx containing_mem;
673 /* Location of the register within INSN. */
674 rtx *usep;
675 /* The reverse uid of the insn. */
676 int ruid;
677 };
678
679 /* If the register is used in some unknown fashion, USE_INDEX is negative.
680 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
681 indicates where it is first set or clobbered.
682 Otherwise, USE_INDEX is the index of the last encountered use of the
683 register (which is first among these we have seen since we scan backwards).
684 USE_RUID indicates the first encountered, i.e. last, of these uses.
685 If ALL_OFFSETS_MATCH is true, all encountered uses were inside a PLUS
686 with a constant offset; OFFSET contains this constant in that case.
687 STORE_RUID is always meaningful if we only want to use a value in a
688 register in a different place: it denotes the next insn in the insn
689 stream (i.e. the last encountered) that sets or clobbers the register.
690 REAL_STORE_RUID is similar, but clobbers are ignored when updating it.
691 EXPR is the expression used when storing the register. */
692 static struct
693 {
694 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
695 rtx offset;
696 int use_index;
697 int store_ruid;
698 int real_store_ruid;
699 int use_ruid;
700 bool all_offsets_match;
701 rtx expr;
702 } reg_state[FIRST_PSEUDO_REGISTER];
703
704 /* Reverse linear uid. This is increased in reload_combine while scanning
705 the instructions from last to first. It is used to set last_label_ruid
706 and the store_ruid / use_ruid fields in reg_state. */
707 static int reload_combine_ruid;
708
709 /* The RUID of the last label we encountered in reload_combine. */
710 static int last_label_ruid;
711
712 /* The RUID of the last jump we encountered in reload_combine. */
713 static int last_jump_ruid;
714
715 /* The register numbers of the first and last index register. A value of
716 -1 in LAST_INDEX_REG indicates that we've previously computed these
717 values and found no suitable index registers. */
718 static int first_index_reg = -1;
719 static int last_index_reg;
720
721 #define LABEL_LIVE(LABEL) \
722 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
723
724 /* Subroutine of reload_combine_split_ruids, called to fix up a single
725 ruid pointed to by *PRUID if it is higher than SPLIT_RUID. */
726
727 static inline void
728 reload_combine_split_one_ruid (int *pruid, int split_ruid)
729 {
730 if (*pruid > split_ruid)
731 (*pruid)++;
732 }
733
734 /* Called when we insert a new insn in a position we've already passed in
735 the scan. Examine all our state, increasing all ruids that are higher
736 than SPLIT_RUID by one in order to make room for a new insn. */
737
738 static void
739 reload_combine_split_ruids (int split_ruid)
740 {
741 unsigned i;
742
743 reload_combine_split_one_ruid (&reload_combine_ruid, split_ruid);
744 reload_combine_split_one_ruid (&last_label_ruid, split_ruid);
745 reload_combine_split_one_ruid (&last_jump_ruid, split_ruid);
746
747 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
748 {
749 int j, idx = reg_state[i].use_index;
750 reload_combine_split_one_ruid (&reg_state[i].use_ruid, split_ruid);
751 reload_combine_split_one_ruid (&reg_state[i].store_ruid, split_ruid);
752 reload_combine_split_one_ruid (&reg_state[i].real_store_ruid,
753 split_ruid);
754 if (idx < 0)
755 continue;
756 for (j = idx; j < RELOAD_COMBINE_MAX_USES; j++)
757 {
758 reload_combine_split_one_ruid (&reg_state[i].reg_use[j].ruid,
759 split_ruid);
760 }
761 }
762 }
763
764 /* Called when we are about to rescan a previously encountered insn with
765 reload_combine_note_use after modifying some part of it. This clears all
766 information about uses in that particular insn. */
767
768 static void
769 reload_combine_purge_insn_uses (rtx_insn *insn)
770 {
771 unsigned i;
772
773 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
774 {
775 int j, k, idx = reg_state[i].use_index;
776 if (idx < 0)
777 continue;
778 j = k = RELOAD_COMBINE_MAX_USES;
779 while (j-- > idx)
780 {
781 if (reg_state[i].reg_use[j].insn != insn)
782 {
783 k--;
784 if (k != j)
785 reg_state[i].reg_use[k] = reg_state[i].reg_use[j];
786 }
787 }
788 reg_state[i].use_index = k;
789 }
790 }
791
792 /* Called when we need to forget about all uses of REGNO after an insn
793 which is identified by RUID. */
794
795 static void
796 reload_combine_purge_reg_uses_after_ruid (unsigned regno, int ruid)
797 {
798 int j, k, idx = reg_state[regno].use_index;
799 if (idx < 0)
800 return;
801 j = k = RELOAD_COMBINE_MAX_USES;
802 while (j-- > idx)
803 {
804 if (reg_state[regno].reg_use[j].ruid >= ruid)
805 {
806 k--;
807 if (k != j)
808 reg_state[regno].reg_use[k] = reg_state[regno].reg_use[j];
809 }
810 }
811 reg_state[regno].use_index = k;
812 }
813
814 /* Find the use of REGNO with the ruid that is highest among those
815 lower than RUID_LIMIT, and return it if it is the only use of this
816 reg in the insn. Return NULL otherwise. */
817
818 static struct reg_use *
819 reload_combine_closest_single_use (unsigned regno, int ruid_limit)
820 {
821 int i, best_ruid = 0;
822 int use_idx = reg_state[regno].use_index;
823 struct reg_use *retval;
824
825 if (use_idx < 0)
826 return NULL;
827 retval = NULL;
828 for (i = use_idx; i < RELOAD_COMBINE_MAX_USES; i++)
829 {
830 struct reg_use *use = reg_state[regno].reg_use + i;
831 int this_ruid = use->ruid;
832 if (this_ruid >= ruid_limit)
833 continue;
834 if (this_ruid > best_ruid)
835 {
836 best_ruid = this_ruid;
837 retval = use;
838 }
839 else if (this_ruid == best_ruid)
840 retval = NULL;
841 }
842 if (last_label_ruid >= best_ruid)
843 return NULL;
844 return retval;
845 }
846
847 /* After we've moved an add insn, fix up any debug insns that occur
848 between the old location of the add and the new location. REG is
849 the destination register of the add insn; REPLACEMENT is the
850 SET_SRC of the add. FROM and TO specify the range in which we
851 should make this change on debug insns. */
852
853 static void
854 fixup_debug_insns (rtx reg, rtx replacement, rtx_insn *from, rtx_insn *to)
855 {
856 rtx_insn *insn;
857 for (insn = from; insn != to; insn = NEXT_INSN (insn))
858 {
859 rtx t;
860
861 if (!DEBUG_BIND_INSN_P (insn))
862 continue;
863
864 t = INSN_VAR_LOCATION_LOC (insn);
865 t = simplify_replace_rtx (t, reg, replacement);
866 validate_change (insn, &INSN_VAR_LOCATION_LOC (insn), t, 0);
867 }
868 }
869
870 /* Subroutine of reload_combine_recognize_const_pattern. Try to replace REG
871 with SRC in the insn described by USE, taking costs into account. Return
872 true if we made the replacement. */
873
874 static bool
875 try_replace_in_use (struct reg_use *use, rtx reg, rtx src)
876 {
877 rtx_insn *use_insn = use->insn;
878 rtx mem = use->containing_mem;
879 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
880
881 if (mem != NULL_RTX)
882 {
883 addr_space_t as = MEM_ADDR_SPACE (mem);
884 rtx oldaddr = XEXP (mem, 0);
885 rtx newaddr = NULL_RTX;
886 int old_cost = address_cost (oldaddr, GET_MODE (mem), as, speed);
887 int new_cost;
888
889 newaddr = simplify_replace_rtx (oldaddr, reg, src);
890 if (memory_address_addr_space_p (GET_MODE (mem), newaddr, as))
891 {
892 XEXP (mem, 0) = newaddr;
893 new_cost = address_cost (newaddr, GET_MODE (mem), as, speed);
894 XEXP (mem, 0) = oldaddr;
895 if (new_cost <= old_cost
896 && validate_change (use_insn,
897 &XEXP (mem, 0), newaddr, 0))
898 return true;
899 }
900 }
901 else
902 {
903 rtx new_set = single_set (use_insn);
904 if (new_set
905 && REG_P (SET_DEST (new_set))
906 && GET_CODE (SET_SRC (new_set)) == PLUS
907 && REG_P (XEXP (SET_SRC (new_set), 0))
908 && CONSTANT_P (XEXP (SET_SRC (new_set), 1)))
909 {
910 rtx new_src;
911 machine_mode mode = GET_MODE (SET_DEST (new_set));
912 int old_cost = set_src_cost (SET_SRC (new_set), mode, speed);
913
914 gcc_assert (rtx_equal_p (XEXP (SET_SRC (new_set), 0), reg));
915 new_src = simplify_replace_rtx (SET_SRC (new_set), reg, src);
916
917 if (set_src_cost (new_src, mode, speed) <= old_cost
918 && validate_change (use_insn, &SET_SRC (new_set),
919 new_src, 0))
920 return true;
921 }
922 }
923 return false;
924 }
925
926 /* Called by reload_combine when scanning INSN. This function tries to detect
927 patterns where a constant is added to a register, and the result is used
928 in an address.
929 Return true if no further processing is needed on INSN; false if it wasn't
930 recognized and should be handled normally. */
931
932 static bool
933 reload_combine_recognize_const_pattern (rtx_insn *insn)
934 {
935 int from_ruid = reload_combine_ruid;
936 rtx set, pat, reg, src, addreg;
937 unsigned int regno;
938 struct reg_use *use;
939 bool must_move_add;
940 rtx_insn *add_moved_after_insn = NULL;
941 int add_moved_after_ruid = 0;
942 int clobbered_regno = -1;
943
944 set = single_set (insn);
945 if (set == NULL_RTX)
946 return false;
947
948 reg = SET_DEST (set);
949 src = SET_SRC (set);
950 if (!REG_P (reg)
951 || REG_NREGS (reg) != 1
952 || GET_MODE (reg) != Pmode
953 || reg == stack_pointer_rtx)
954 return false;
955
956 regno = REGNO (reg);
957
958 /* We look for a REG1 = REG2 + CONSTANT insn, followed by either
959 uses of REG1 inside an address, or inside another add insn. If
960 possible and profitable, merge the addition into subsequent
961 uses. */
962 if (GET_CODE (src) != PLUS
963 || !REG_P (XEXP (src, 0))
964 || !CONSTANT_P (XEXP (src, 1)))
965 return false;
966
967 addreg = XEXP (src, 0);
968 must_move_add = rtx_equal_p (reg, addreg);
969
970 pat = PATTERN (insn);
971 if (must_move_add && set != pat)
972 {
973 /* We have to be careful when moving the add; apart from the
974 single_set there may also be clobbers. Recognize one special
975 case, that of one clobber alongside the set (likely a clobber
976 of the CC register). */
977 gcc_assert (GET_CODE (PATTERN (insn)) == PARALLEL);
978 if (XVECLEN (pat, 0) != 2 || XVECEXP (pat, 0, 0) != set
979 || GET_CODE (XVECEXP (pat, 0, 1)) != CLOBBER
980 || !REG_P (XEXP (XVECEXP (pat, 0, 1), 0)))
981 return false;
982 clobbered_regno = REGNO (XEXP (XVECEXP (pat, 0, 1), 0));
983 }
984
985 do
986 {
987 use = reload_combine_closest_single_use (regno, from_ruid);
988
989 if (use)
990 /* Start the search for the next use from here. */
991 from_ruid = use->ruid;
992
993 if (use && GET_MODE (*use->usep) == Pmode)
994 {
995 bool delete_add = false;
996 rtx_insn *use_insn = use->insn;
997 int use_ruid = use->ruid;
998
999 /* Avoid moving the add insn past a jump. */
1000 if (must_move_add && use_ruid <= last_jump_ruid)
1001 break;
1002
1003 /* If the add clobbers another hard reg in parallel, don't move
1004 it past a real set of this hard reg. */
1005 if (must_move_add && clobbered_regno >= 0
1006 && reg_state[clobbered_regno].real_store_ruid >= use_ruid)
1007 break;
1008
1009 /* Do not separate cc0 setter and cc0 user on HAVE_cc0 targets. */
1010 if (HAVE_cc0 && must_move_add && sets_cc0_p (PATTERN (use_insn)))
1011 break;
1012
1013 gcc_assert (reg_state[regno].store_ruid <= use_ruid);
1014 /* Avoid moving a use of ADDREG past a point where it is stored. */
1015 if (reg_state[REGNO (addreg)].store_ruid > use_ruid)
1016 break;
1017
1018 /* We also must not move the addition past an insn that sets
1019 the same register, unless we can combine two add insns. */
1020 if (must_move_add && reg_state[regno].store_ruid == use_ruid)
1021 {
1022 if (use->containing_mem == NULL_RTX)
1023 delete_add = true;
1024 else
1025 break;
1026 }
1027
1028 if (try_replace_in_use (use, reg, src))
1029 {
1030 reload_combine_purge_insn_uses (use_insn);
1031 reload_combine_note_use (&PATTERN (use_insn), use_insn,
1032 use_ruid, NULL_RTX);
1033
1034 if (delete_add)
1035 {
1036 fixup_debug_insns (reg, src, insn, use_insn);
1037 delete_insn (insn);
1038 return true;
1039 }
1040 if (must_move_add)
1041 {
1042 add_moved_after_insn = use_insn;
1043 add_moved_after_ruid = use_ruid;
1044 }
1045 continue;
1046 }
1047 }
1048 /* If we get here, we couldn't handle this use. */
1049 if (must_move_add)
1050 break;
1051 }
1052 while (use);
1053
1054 if (!must_move_add || add_moved_after_insn == NULL_RTX)
1055 /* Process the add normally. */
1056 return false;
1057
1058 fixup_debug_insns (reg, src, insn, add_moved_after_insn);
1059
1060 reorder_insns (insn, insn, add_moved_after_insn);
1061 reload_combine_purge_reg_uses_after_ruid (regno, add_moved_after_ruid);
1062 reload_combine_split_ruids (add_moved_after_ruid - 1);
1063 reload_combine_note_use (&PATTERN (insn), insn,
1064 add_moved_after_ruid, NULL_RTX);
1065 reg_state[regno].store_ruid = add_moved_after_ruid;
1066
1067 return true;
1068 }
1069
1070 /* Called by reload_combine when scanning INSN. Try to detect a pattern we
1071 can handle and improve. Return true if no further processing is needed on
1072 INSN; false if it wasn't recognized and should be handled normally. */
1073
1074 static bool
1075 reload_combine_recognize_pattern (rtx_insn *insn)
1076 {
1077 rtx set, reg, src;
1078
1079 set = single_set (insn);
1080 if (set == NULL_RTX)
1081 return false;
1082
1083 reg = SET_DEST (set);
1084 src = SET_SRC (set);
1085 if (!REG_P (reg) || REG_NREGS (reg) != 1)
1086 return false;
1087
1088 unsigned int regno = REGNO (reg);
1089 machine_mode mode = GET_MODE (reg);
1090
1091 if (reg_state[regno].use_index < 0
1092 || reg_state[regno].use_index >= RELOAD_COMBINE_MAX_USES)
1093 return false;
1094
1095 for (int i = reg_state[regno].use_index;
1096 i < RELOAD_COMBINE_MAX_USES; i++)
1097 {
1098 struct reg_use *use = reg_state[regno].reg_use + i;
1099 if (GET_MODE (*use->usep) != mode)
1100 return false;
1101 /* Don't try to adjust (use (REGX)). */
1102 if (GET_CODE (PATTERN (use->insn)) == USE
1103 && &XEXP (PATTERN (use->insn), 0) == use->usep)
1104 return false;
1105 }
1106
1107 /* Look for (set (REGX) (CONST_INT))
1108 (set (REGX) (PLUS (REGX) (REGY)))
1109 ...
1110 ... (MEM (REGX)) ...
1111 and convert it to
1112 (set (REGZ) (CONST_INT))
1113 ...
1114 ... (MEM (PLUS (REGZ) (REGY)))... .
1115
1116 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
1117 and that we know all uses of REGX before it dies.
1118 Also, explicitly check that REGX != REGY; our life information
1119 does not yet show whether REGY changes in this insn. */
1120
1121 if (GET_CODE (src) == PLUS
1122 && reg_state[regno].all_offsets_match
1123 && last_index_reg != -1
1124 && REG_P (XEXP (src, 1))
1125 && rtx_equal_p (XEXP (src, 0), reg)
1126 && !rtx_equal_p (XEXP (src, 1), reg)
1127 && last_label_ruid < reg_state[regno].use_ruid)
1128 {
1129 rtx base = XEXP (src, 1);
1130 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
1131 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
1132 rtx index_reg = NULL_RTX;
1133 rtx reg_sum = NULL_RTX;
1134 int i;
1135
1136 /* Now we need to set INDEX_REG to an index register (denoted as
1137 REGZ in the illustration above) and REG_SUM to the expression
1138 register+register that we want to use to substitute uses of REG
1139 (typically in MEMs) with. First check REG and BASE for being
1140 index registers; we can use them even if they are not dead. */
1141 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
1142 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
1143 REGNO (base)))
1144 {
1145 index_reg = reg;
1146 reg_sum = src;
1147 }
1148 else
1149 {
1150 /* Otherwise, look for a free index register. Since we have
1151 checked above that neither REG nor BASE are index registers,
1152 if we find anything at all, it will be different from these
1153 two registers. */
1154 for (i = first_index_reg; i <= last_index_reg; i++)
1155 {
1156 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], i)
1157 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
1158 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
1159 && (crtl->abi->clobbers_full_reg_p (i)
1160 || df_regs_ever_live_p (i))
1161 && (!frame_pointer_needed || i != HARD_FRAME_POINTER_REGNUM)
1162 && !fixed_regs[i] && !global_regs[i]
1163 && hard_regno_nregs (i, GET_MODE (reg)) == 1
1164 && targetm.hard_regno_scratch_ok (i))
1165 {
1166 index_reg = gen_rtx_REG (GET_MODE (reg), i);
1167 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
1168 break;
1169 }
1170 }
1171 }
1172
1173 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
1174 (REGY), i.e. BASE, is not clobbered before the last use we'll
1175 create. */
1176 if (reg_sum
1177 && prev_set
1178 && CONST_INT_P (SET_SRC (prev_set))
1179 && rtx_equal_p (SET_DEST (prev_set), reg)
1180 && (reg_state[REGNO (base)].store_ruid
1181 <= reg_state[regno].use_ruid))
1182 {
1183 /* Change destination register and, if necessary, the constant
1184 value in PREV, the constant loading instruction. */
1185 validate_change (prev, &SET_DEST (prev_set), index_reg, 1);
1186 if (reg_state[regno].offset != const0_rtx)
1187 {
1188 HOST_WIDE_INT c
1189 = trunc_int_for_mode (UINTVAL (SET_SRC (prev_set))
1190 + UINTVAL (reg_state[regno].offset),
1191 GET_MODE (index_reg));
1192 validate_change (prev, &SET_SRC (prev_set), GEN_INT (c), 1);
1193 }
1194
1195 /* Now for every use of REG that we have recorded, replace REG
1196 with REG_SUM. */
1197 for (i = reg_state[regno].use_index;
1198 i < RELOAD_COMBINE_MAX_USES; i++)
1199 validate_unshare_change (reg_state[regno].reg_use[i].insn,
1200 reg_state[regno].reg_use[i].usep,
1201 /* Each change must have its own
1202 replacement. */
1203 reg_sum, 1);
1204
1205 if (apply_change_group ())
1206 {
1207 struct reg_use *lowest_ruid = NULL;
1208
1209 /* For every new use of REG_SUM, we have to record the use
1210 of BASE therein, i.e. operand 1. */
1211 for (i = reg_state[regno].use_index;
1212 i < RELOAD_COMBINE_MAX_USES; i++)
1213 {
1214 struct reg_use *use = reg_state[regno].reg_use + i;
1215 reload_combine_note_use (&XEXP (*use->usep, 1), use->insn,
1216 use->ruid, use->containing_mem);
1217 if (lowest_ruid == NULL || use->ruid < lowest_ruid->ruid)
1218 lowest_ruid = use;
1219 }
1220
1221 fixup_debug_insns (reg, reg_sum, insn, lowest_ruid->insn);
1222
1223 /* Delete the reg-reg addition. */
1224 delete_insn (insn);
1225
1226 if (reg_state[regno].offset != const0_rtx)
1227 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
1228 are now invalid. */
1229 remove_reg_equal_equiv_notes (prev);
1230
1231 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
1232 return true;
1233 }
1234 }
1235 }
1236 return false;
1237 }
1238
1239 static void
1240 reload_combine (void)
1241 {
1242 rtx_insn *insn, *prev;
1243 basic_block bb;
1244 unsigned int r;
1245 int min_labelno, n_labels;
1246 HARD_REG_SET ever_live_at_start, *label_live;
1247
1248 /* To avoid wasting too much time later searching for an index register,
1249 determine the minimum and maximum index register numbers. */
1250 if (INDEX_REG_CLASS == NO_REGS)
1251 last_index_reg = -1;
1252 else if (first_index_reg == -1 && last_index_reg == 0)
1253 {
1254 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1255 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
1256 {
1257 if (first_index_reg == -1)
1258 first_index_reg = r;
1259
1260 last_index_reg = r;
1261 }
1262
1263 /* If no index register is available, we can quit now. Set LAST_INDEX_REG
1264 to -1 so we'll know to quit early the next time we get here. */
1265 if (first_index_reg == -1)
1266 {
1267 last_index_reg = -1;
1268 return;
1269 }
1270 }
1271
1272 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
1273 information is a bit fuzzy immediately after reload, but it's
1274 still good enough to determine which registers are live at a jump
1275 destination. */
1276 min_labelno = get_first_label_num ();
1277 n_labels = max_label_num () - min_labelno;
1278 label_live = XNEWVEC (HARD_REG_SET, n_labels);
1279 CLEAR_HARD_REG_SET (ever_live_at_start);
1280
1281 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1282 {
1283 insn = BB_HEAD (bb);
1284 if (LABEL_P (insn))
1285 {
1286 HARD_REG_SET live;
1287 bitmap live_in = df_get_live_in (bb);
1288
1289 REG_SET_TO_HARD_REG_SET (live, live_in);
1290 compute_use_by_pseudos (&live, live_in);
1291 LABEL_LIVE (insn) = live;
1292 ever_live_at_start |= live;
1293 }
1294 }
1295
1296 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
1297 last_label_ruid = last_jump_ruid = reload_combine_ruid = 0;
1298 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1299 {
1300 reg_state[r].store_ruid = 0;
1301 reg_state[r].real_store_ruid = 0;
1302 if (fixed_regs[r])
1303 reg_state[r].use_index = -1;
1304 else
1305 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1306 }
1307
1308 for (insn = get_last_insn (); insn; insn = prev)
1309 {
1310 bool control_flow_insn;
1311 rtx note;
1312
1313 prev = PREV_INSN (insn);
1314
1315 /* We cannot do our optimization across labels. Invalidating all the use
1316 information we have would be costly, so we just note where the label
1317 is and then later disable any optimization that would cross it. */
1318 if (LABEL_P (insn))
1319 last_label_ruid = reload_combine_ruid;
1320 else if (BARRIER_P (insn))
1321 {
1322 /* Crossing a barrier resets all the use information. */
1323 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1324 if (! fixed_regs[r])
1325 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1326 }
1327 else if (INSN_P (insn) && volatile_insn_p (PATTERN (insn)))
1328 /* Optimizations across insns being marked as volatile must be
1329 prevented. All the usage information is invalidated
1330 here. */
1331 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1332 if (! fixed_regs[r]
1333 && reg_state[r].use_index != RELOAD_COMBINE_MAX_USES)
1334 reg_state[r].use_index = -1;
1335
1336 if (! NONDEBUG_INSN_P (insn))
1337 continue;
1338
1339 reload_combine_ruid++;
1340
1341 control_flow_insn = control_flow_insn_p (insn);
1342 if (control_flow_insn)
1343 last_jump_ruid = reload_combine_ruid;
1344
1345 if (reload_combine_recognize_const_pattern (insn)
1346 || reload_combine_recognize_pattern (insn))
1347 continue;
1348
1349 note_stores (insn, reload_combine_note_store, NULL);
1350
1351 if (CALL_P (insn))
1352 {
1353 rtx link;
1354 HARD_REG_SET used_regs = insn_callee_abi (insn).full_reg_clobbers ();
1355
1356 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1357 if (TEST_HARD_REG_BIT (used_regs, r))
1358 {
1359 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
1360 reg_state[r].store_ruid = reload_combine_ruid;
1361 }
1362
1363 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
1364 link = XEXP (link, 1))
1365 {
1366 rtx setuse = XEXP (link, 0);
1367 rtx usage_rtx = XEXP (setuse, 0);
1368
1369 if (GET_CODE (setuse) == USE && REG_P (usage_rtx))
1370 {
1371 unsigned int end_regno = END_REGNO (usage_rtx);
1372 for (unsigned int i = REGNO (usage_rtx); i < end_regno; ++i)
1373 reg_state[i].use_index = -1;
1374 }
1375 }
1376 }
1377
1378 if (control_flow_insn && !ANY_RETURN_P (PATTERN (insn)))
1379 {
1380 /* Non-spill registers might be used at the call destination in
1381 some unknown fashion, so we have to mark the unknown use. */
1382 HARD_REG_SET *live;
1383
1384 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
1385 && JUMP_LABEL (insn))
1386 {
1387 if (ANY_RETURN_P (JUMP_LABEL (insn)))
1388 live = NULL;
1389 else
1390 live = &LABEL_LIVE (JUMP_LABEL (insn));
1391 }
1392 else
1393 live = &ever_live_at_start;
1394
1395 if (live)
1396 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1397 if (TEST_HARD_REG_BIT (*live, r))
1398 reg_state[r].use_index = -1;
1399 }
1400
1401 reload_combine_note_use (&PATTERN (insn), insn, reload_combine_ruid,
1402 NULL_RTX);
1403
1404 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1405 {
1406 if (REG_NOTE_KIND (note) == REG_INC && REG_P (XEXP (note, 0)))
1407 {
1408 int regno = REGNO (XEXP (note, 0));
1409 reg_state[regno].store_ruid = reload_combine_ruid;
1410 reg_state[regno].real_store_ruid = reload_combine_ruid;
1411 reg_state[regno].use_index = -1;
1412 }
1413 }
1414 }
1415
1416 free (label_live);
1417 }
1418
1419 /* Check if DST is a register or a subreg of a register; if it is,
1420 update store_ruid, real_store_ruid and use_index in the reg_state
1421 structure accordingly. Called via note_stores from reload_combine. */
1422
1423 static void
1424 reload_combine_note_store (rtx dst, const_rtx set, void *data ATTRIBUTE_UNUSED)
1425 {
1426 int regno = 0;
1427 int i;
1428 machine_mode mode = GET_MODE (dst);
1429
1430 if (GET_CODE (dst) == SUBREG)
1431 {
1432 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1433 GET_MODE (SUBREG_REG (dst)),
1434 SUBREG_BYTE (dst),
1435 GET_MODE (dst));
1436 dst = SUBREG_REG (dst);
1437 }
1438
1439 /* Some targets do argument pushes without adding REG_INC notes. */
1440
1441 if (MEM_P (dst))
1442 {
1443 dst = XEXP (dst, 0);
1444 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1445 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC
1446 || GET_CODE (dst) == PRE_MODIFY || GET_CODE (dst) == POST_MODIFY)
1447 {
1448 unsigned int end_regno = END_REGNO (XEXP (dst, 0));
1449 for (unsigned int i = REGNO (XEXP (dst, 0)); i < end_regno; ++i)
1450 {
1451 /* We could probably do better, but for now mark the register
1452 as used in an unknown fashion and set/clobbered at this
1453 insn. */
1454 reg_state[i].use_index = -1;
1455 reg_state[i].store_ruid = reload_combine_ruid;
1456 reg_state[i].real_store_ruid = reload_combine_ruid;
1457 }
1458 }
1459 else
1460 return;
1461 }
1462
1463 if (!REG_P (dst))
1464 return;
1465 regno += REGNO (dst);
1466
1467 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
1468 careful with registers / register parts that are not full words.
1469 Similarly for ZERO_EXTRACT. */
1470 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
1471 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
1472 {
1473 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1474 {
1475 reg_state[i].use_index = -1;
1476 reg_state[i].store_ruid = reload_combine_ruid;
1477 reg_state[i].real_store_ruid = reload_combine_ruid;
1478 }
1479 }
1480 else
1481 {
1482 for (i = end_hard_regno (mode, regno) - 1; i >= regno; i--)
1483 {
1484 reg_state[i].store_ruid = reload_combine_ruid;
1485 if (GET_CODE (set) == SET)
1486 reg_state[i].real_store_ruid = reload_combine_ruid;
1487 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
1488 }
1489 }
1490 }
1491
1492 /* XP points to a piece of rtl that has to be checked for any uses of
1493 registers.
1494 *XP is the pattern of INSN, or a part of it.
1495 Called from reload_combine, and recursively by itself. */
1496 static void
1497 reload_combine_note_use (rtx *xp, rtx_insn *insn, int ruid, rtx containing_mem)
1498 {
1499 rtx x = *xp;
1500 enum rtx_code code = x->code;
1501 const char *fmt;
1502 int i, j;
1503 rtx offset = const0_rtx; /* For the REG case below. */
1504
1505 switch (code)
1506 {
1507 case SET:
1508 if (REG_P (SET_DEST (x)))
1509 {
1510 reload_combine_note_use (&SET_SRC (x), insn, ruid, NULL_RTX);
1511 return;
1512 }
1513 break;
1514
1515 case USE:
1516 /* If this is the USE of a return value, we can't change it. */
1517 if (REG_P (XEXP (x, 0)) && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
1518 {
1519 /* Mark the return register as used in an unknown fashion. */
1520 rtx reg = XEXP (x, 0);
1521 unsigned int end_regno = END_REGNO (reg);
1522 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
1523 reg_state[regno].use_index = -1;
1524 return;
1525 }
1526 break;
1527
1528 case CLOBBER:
1529 if (REG_P (SET_DEST (x)))
1530 {
1531 /* No spurious CLOBBERs of pseudo registers may remain. */
1532 gcc_assert (REGNO (SET_DEST (x)) < FIRST_PSEUDO_REGISTER);
1533 return;
1534 }
1535 break;
1536
1537 case PLUS:
1538 /* We are interested in (plus (reg) (const_int)) . */
1539 if (!REG_P (XEXP (x, 0))
1540 || !CONST_INT_P (XEXP (x, 1)))
1541 break;
1542 offset = XEXP (x, 1);
1543 x = XEXP (x, 0);
1544 /* Fall through. */
1545 case REG:
1546 {
1547 int regno = REGNO (x);
1548 int use_index;
1549 int nregs;
1550
1551 /* No spurious USEs of pseudo registers may remain. */
1552 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
1553
1554 nregs = REG_NREGS (x);
1555
1556 /* We can't substitute into multi-hard-reg uses. */
1557 if (nregs > 1)
1558 {
1559 while (--nregs >= 0)
1560 reg_state[regno + nregs].use_index = -1;
1561 return;
1562 }
1563
1564 /* We may be called to update uses in previously seen insns.
1565 Don't add uses beyond the last store we saw. */
1566 if (ruid < reg_state[regno].store_ruid)
1567 return;
1568
1569 /* If this register is already used in some unknown fashion, we
1570 can't do anything.
1571 If we decrement the index from zero to -1, we can't store more
1572 uses, so this register becomes used in an unknown fashion. */
1573 use_index = --reg_state[regno].use_index;
1574 if (use_index < 0)
1575 return;
1576
1577 if (use_index == RELOAD_COMBINE_MAX_USES - 1)
1578 {
1579 /* This is the first use of this register we have seen since we
1580 marked it as dead. */
1581 reg_state[regno].offset = offset;
1582 reg_state[regno].all_offsets_match = true;
1583 reg_state[regno].use_ruid = ruid;
1584 }
1585 else
1586 {
1587 if (reg_state[regno].use_ruid > ruid)
1588 reg_state[regno].use_ruid = ruid;
1589
1590 if (! rtx_equal_p (offset, reg_state[regno].offset))
1591 reg_state[regno].all_offsets_match = false;
1592 }
1593
1594 reg_state[regno].reg_use[use_index].insn = insn;
1595 reg_state[regno].reg_use[use_index].ruid = ruid;
1596 reg_state[regno].reg_use[use_index].containing_mem = containing_mem;
1597 reg_state[regno].reg_use[use_index].usep = xp;
1598 return;
1599 }
1600
1601 case MEM:
1602 containing_mem = x;
1603 break;
1604
1605 default:
1606 break;
1607 }
1608
1609 /* Recursively process the components of X. */
1610 fmt = GET_RTX_FORMAT (code);
1611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1612 {
1613 if (fmt[i] == 'e')
1614 reload_combine_note_use (&XEXP (x, i), insn, ruid, containing_mem);
1615 else if (fmt[i] == 'E')
1616 {
1617 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1618 reload_combine_note_use (&XVECEXP (x, i, j), insn, ruid,
1619 containing_mem);
1620 }
1621 }
1622 }
1623 \f
1624 /* See if we can reduce the cost of a constant by replacing a move
1625 with an add. We track situations in which a register is set to a
1626 constant or to a register plus a constant. */
1627 /* We cannot do our optimization across labels. Invalidating all the
1628 information about register contents we have would be costly, so we
1629 use move2add_last_label_luid to note where the label is and then
1630 later disable any optimization that would cross it.
1631 reg_offset[n] / reg_base_reg[n] / reg_symbol_ref[n] / reg_mode[n]
1632 are only valid if reg_set_luid[n] is greater than
1633 move2add_last_label_luid.
1634 For a set that established a new (potential) base register with
1635 non-constant value, we use move2add_luid from the place where the
1636 setting insn is encountered; registers based off that base then
1637 get the same reg_set_luid. Constants all get
1638 move2add_last_label_luid + 1 as their reg_set_luid. */
1639 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1640
1641 /* If reg_base_reg[n] is negative, register n has been set to
1642 reg_offset[n] or reg_symbol_ref[n] + reg_offset[n] in mode reg_mode[n].
1643 If reg_base_reg[n] is non-negative, register n has been set to the
1644 sum of reg_offset[n] and the value of register reg_base_reg[n]
1645 before reg_set_luid[n], calculated in mode reg_mode[n] .
1646 For multi-hard-register registers, all but the first one are
1647 recorded as BLKmode in reg_mode. Setting reg_mode to VOIDmode
1648 marks it as invalid. */
1649 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1650 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1651 static rtx reg_symbol_ref[FIRST_PSEUDO_REGISTER];
1652 static machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1653
1654 /* move2add_luid is linearly increased while scanning the instructions
1655 from first to last. It is used to set reg_set_luid in
1656 reload_cse_move2add and move2add_note_store. */
1657 static int move2add_luid;
1658
1659 /* move2add_last_label_luid is set whenever a label is found. Labels
1660 invalidate all previously collected reg_offset data. */
1661 static int move2add_last_label_luid;
1662
1663 /* ??? We don't know how zero / sign extension is handled, hence we
1664 can't go from a narrower to a wider mode. */
1665 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1666 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1667 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1668 && TRULY_NOOP_TRUNCATION_MODES_P (OUTMODE, INMODE)))
1669
1670 /* Record that REG is being set to a value with the mode of REG. */
1671
1672 static void
1673 move2add_record_mode (rtx reg)
1674 {
1675 int regno, nregs;
1676 machine_mode mode = GET_MODE (reg);
1677
1678 if (GET_CODE (reg) == SUBREG)
1679 {
1680 regno = subreg_regno (reg);
1681 nregs = subreg_nregs (reg);
1682 }
1683 else if (REG_P (reg))
1684 {
1685 regno = REGNO (reg);
1686 nregs = REG_NREGS (reg);
1687 }
1688 else
1689 gcc_unreachable ();
1690 for (int i = nregs - 1; i > 0; i--)
1691 reg_mode[regno + i] = BLKmode;
1692 reg_mode[regno] = mode;
1693 }
1694
1695 /* Record that REG is being set to the sum of SYM and OFF. */
1696
1697 static void
1698 move2add_record_sym_value (rtx reg, rtx sym, rtx off)
1699 {
1700 int regno = REGNO (reg);
1701
1702 move2add_record_mode (reg);
1703 reg_set_luid[regno] = move2add_luid;
1704 reg_base_reg[regno] = -1;
1705 reg_symbol_ref[regno] = sym;
1706 reg_offset[regno] = INTVAL (off);
1707 }
1708
1709 /* Check if REGNO contains a valid value in MODE. */
1710
1711 static bool
1712 move2add_valid_value_p (int regno, scalar_int_mode mode)
1713 {
1714 if (reg_set_luid[regno] <= move2add_last_label_luid)
1715 return false;
1716
1717 if (mode != reg_mode[regno])
1718 {
1719 scalar_int_mode old_mode;
1720 if (!is_a <scalar_int_mode> (reg_mode[regno], &old_mode)
1721 || !MODES_OK_FOR_MOVE2ADD (mode, old_mode))
1722 return false;
1723 /* The value loaded into regno in reg_mode[regno] is also valid in
1724 mode after truncation only if (REG:mode regno) is the lowpart of
1725 (REG:reg_mode[regno] regno). Now, for big endian, the starting
1726 regno of the lowpart might be different. */
1727 poly_int64 s_off = subreg_lowpart_offset (mode, old_mode);
1728 s_off = subreg_regno_offset (regno, old_mode, s_off, mode);
1729 if (maybe_ne (s_off, 0))
1730 /* We could in principle adjust regno, check reg_mode[regno] to be
1731 BLKmode, and return s_off to the caller (vs. -1 for failure),
1732 but we currently have no callers that could make use of this
1733 information. */
1734 return false;
1735 }
1736
1737 for (int i = end_hard_regno (mode, regno) - 1; i > regno; i--)
1738 if (reg_mode[i] != BLKmode)
1739 return false;
1740 return true;
1741 }
1742
1743 /* This function is called with INSN that sets REG (of mode MODE)
1744 to (SYM + OFF), while REG is known to already have value (SYM + offset).
1745 This function tries to change INSN into an add instruction
1746 (set (REG) (plus (REG) (OFF - offset))) using the known value.
1747 It also updates the information about REG's known value.
1748 Return true if we made a change. */
1749
1750 static bool
1751 move2add_use_add2_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1752 rtx_insn *insn)
1753 {
1754 rtx pat = PATTERN (insn);
1755 rtx src = SET_SRC (pat);
1756 int regno = REGNO (reg);
1757 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[regno], mode);
1758 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1759 bool changed = false;
1760
1761 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1762 use (set (reg) (reg)) instead.
1763 We don't delete this insn, nor do we convert it into a
1764 note, to avoid losing register notes or the return
1765 value flag. jump2 already knows how to get rid of
1766 no-op moves. */
1767 if (new_src == const0_rtx)
1768 {
1769 /* If the constants are different, this is a
1770 truncation, that, if turned into (set (reg)
1771 (reg)), would be discarded. Maybe we should
1772 try a truncMN pattern? */
1773 if (INTVAL (off) == reg_offset [regno])
1774 changed = validate_change (insn, &SET_SRC (pat), reg, 0);
1775 }
1776 else
1777 {
1778 struct full_rtx_costs oldcst, newcst;
1779 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
1780
1781 get_full_set_rtx_cost (pat, &oldcst);
1782 SET_SRC (pat) = tem;
1783 get_full_set_rtx_cost (pat, &newcst);
1784 SET_SRC (pat) = src;
1785
1786 if (costs_lt_p (&newcst, &oldcst, speed)
1787 && have_add2_insn (reg, new_src))
1788 changed = validate_change (insn, &SET_SRC (pat), tem, 0);
1789 else if (sym == NULL_RTX && mode != BImode)
1790 {
1791 scalar_int_mode narrow_mode;
1792 FOR_EACH_MODE_UNTIL (narrow_mode, mode)
1793 {
1794 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1795 && ((reg_offset[regno] & ~GET_MODE_MASK (narrow_mode))
1796 == (INTVAL (off) & ~GET_MODE_MASK (narrow_mode))))
1797 {
1798 rtx narrow_reg = gen_lowpart_common (narrow_mode, reg);
1799 rtx narrow_src = gen_int_mode (INTVAL (off),
1800 narrow_mode);
1801 rtx new_set
1802 = gen_rtx_SET (gen_rtx_STRICT_LOW_PART (VOIDmode,
1803 narrow_reg),
1804 narrow_src);
1805 get_full_set_rtx_cost (new_set, &newcst);
1806 if (costs_lt_p (&newcst, &oldcst, speed))
1807 {
1808 changed = validate_change (insn, &PATTERN (insn),
1809 new_set, 0);
1810 if (changed)
1811 break;
1812 }
1813 }
1814 }
1815 }
1816 }
1817 move2add_record_sym_value (reg, sym, off);
1818 return changed;
1819 }
1820
1821
1822 /* This function is called with INSN that sets REG (of mode MODE) to
1823 (SYM + OFF), but REG doesn't have known value (SYM + offset). This
1824 function tries to find another register which is known to already have
1825 value (SYM + offset) and change INSN into an add instruction
1826 (set (REG) (plus (the found register) (OFF - offset))) if such
1827 a register is found. It also updates the information about
1828 REG's known value.
1829 Return true iff we made a change. */
1830
1831 static bool
1832 move2add_use_add3_insn (scalar_int_mode mode, rtx reg, rtx sym, rtx off,
1833 rtx_insn *insn)
1834 {
1835 rtx pat = PATTERN (insn);
1836 rtx src = SET_SRC (pat);
1837 int regno = REGNO (reg);
1838 int min_regno = 0;
1839 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
1840 int i;
1841 bool changed = false;
1842 struct full_rtx_costs oldcst, newcst, mincst;
1843 rtx plus_expr;
1844
1845 init_costs_to_max (&mincst);
1846 get_full_set_rtx_cost (pat, &oldcst);
1847
1848 plus_expr = gen_rtx_PLUS (GET_MODE (reg), reg, const0_rtx);
1849 SET_SRC (pat) = plus_expr;
1850
1851 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1852 if (move2add_valid_value_p (i, mode)
1853 && reg_base_reg[i] < 0
1854 && reg_symbol_ref[i] != NULL_RTX
1855 && rtx_equal_p (sym, reg_symbol_ref[i]))
1856 {
1857 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[i],
1858 GET_MODE (reg));
1859 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1860 use (set (reg) (reg)) instead.
1861 We don't delete this insn, nor do we convert it into a
1862 note, to avoid losing register notes or the return
1863 value flag. jump2 already knows how to get rid of
1864 no-op moves. */
1865 if (new_src == const0_rtx)
1866 {
1867 init_costs_to_zero (&mincst);
1868 min_regno = i;
1869 break;
1870 }
1871 else
1872 {
1873 XEXP (plus_expr, 1) = new_src;
1874 get_full_set_rtx_cost (pat, &newcst);
1875
1876 if (costs_lt_p (&newcst, &mincst, speed))
1877 {
1878 mincst = newcst;
1879 min_regno = i;
1880 }
1881 }
1882 }
1883 SET_SRC (pat) = src;
1884
1885 if (costs_lt_p (&mincst, &oldcst, speed))
1886 {
1887 rtx tem;
1888
1889 tem = gen_rtx_REG (GET_MODE (reg), min_regno);
1890 if (i != min_regno)
1891 {
1892 rtx new_src = gen_int_mode (UINTVAL (off) - reg_offset[min_regno],
1893 GET_MODE (reg));
1894 tem = gen_rtx_PLUS (GET_MODE (reg), tem, new_src);
1895 }
1896 if (validate_change (insn, &SET_SRC (pat), tem, 0))
1897 changed = true;
1898 }
1899 reg_set_luid[regno] = move2add_luid;
1900 move2add_record_sym_value (reg, sym, off);
1901 return changed;
1902 }
1903
1904 /* Convert move insns with constant inputs to additions if they are cheaper.
1905 Return true if any changes were made. */
1906 static bool
1907 reload_cse_move2add (rtx_insn *first)
1908 {
1909 int i;
1910 rtx_insn *insn;
1911 bool changed = false;
1912
1913 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1914 {
1915 reg_set_luid[i] = 0;
1916 reg_offset[i] = 0;
1917 reg_base_reg[i] = 0;
1918 reg_symbol_ref[i] = NULL_RTX;
1919 reg_mode[i] = VOIDmode;
1920 }
1921
1922 move2add_last_label_luid = 0;
1923 move2add_luid = 2;
1924 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1925 {
1926 rtx pat, note;
1927
1928 if (LABEL_P (insn))
1929 {
1930 move2add_last_label_luid = move2add_luid;
1931 /* We're going to increment move2add_luid twice after a
1932 label, so that we can use move2add_last_label_luid + 1 as
1933 the luid for constants. */
1934 move2add_luid++;
1935 continue;
1936 }
1937 if (! INSN_P (insn))
1938 continue;
1939 pat = PATTERN (insn);
1940 /* For simplicity, we only perform this optimization on
1941 straightforward SETs. */
1942 scalar_int_mode mode;
1943 if (GET_CODE (pat) == SET
1944 && REG_P (SET_DEST (pat))
1945 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (pat)), &mode))
1946 {
1947 rtx reg = SET_DEST (pat);
1948 int regno = REGNO (reg);
1949 rtx src = SET_SRC (pat);
1950
1951 /* Check if we have valid information on the contents of this
1952 register in the mode of REG. */
1953 if (move2add_valid_value_p (regno, mode)
1954 && dbg_cnt (cse2_move2add))
1955 {
1956 /* Try to transform (set (REGX) (CONST_INT A))
1957 ...
1958 (set (REGX) (CONST_INT B))
1959 to
1960 (set (REGX) (CONST_INT A))
1961 ...
1962 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1963 or
1964 (set (REGX) (CONST_INT A))
1965 ...
1966 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1967 */
1968
1969 if (CONST_INT_P (src)
1970 && reg_base_reg[regno] < 0
1971 && reg_symbol_ref[regno] == NULL_RTX)
1972 {
1973 changed |= move2add_use_add2_insn (mode, reg, NULL_RTX,
1974 src, insn);
1975 continue;
1976 }
1977
1978 /* Try to transform (set (REGX) (REGY))
1979 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1980 ...
1981 (set (REGX) (REGY))
1982 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1983 to
1984 (set (REGX) (REGY))
1985 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1986 ...
1987 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1988 else if (REG_P (src)
1989 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1990 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1991 && move2add_valid_value_p (REGNO (src), mode))
1992 {
1993 rtx_insn *next = next_nonnote_nondebug_insn (insn);
1994 rtx set = NULL_RTX;
1995 if (next)
1996 set = single_set (next);
1997 if (set
1998 && SET_DEST (set) == reg
1999 && GET_CODE (SET_SRC (set)) == PLUS
2000 && XEXP (SET_SRC (set), 0) == reg
2001 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
2002 {
2003 rtx src3 = XEXP (SET_SRC (set), 1);
2004 unsigned HOST_WIDE_INT added_offset = UINTVAL (src3);
2005 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
2006 HOST_WIDE_INT regno_offset = reg_offset[regno];
2007 rtx new_src =
2008 gen_int_mode (added_offset
2009 + base_offset
2010 - regno_offset,
2011 mode);
2012 bool success = false;
2013 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
2014
2015 if (new_src == const0_rtx)
2016 /* See above why we create (set (reg) (reg)) here. */
2017 success
2018 = validate_change (next, &SET_SRC (set), reg, 0);
2019 else
2020 {
2021 rtx old_src = SET_SRC (set);
2022 struct full_rtx_costs oldcst, newcst;
2023 rtx tem = gen_rtx_PLUS (mode, reg, new_src);
2024
2025 get_full_set_rtx_cost (set, &oldcst);
2026 SET_SRC (set) = tem;
2027 get_full_set_src_cost (tem, mode, &newcst);
2028 SET_SRC (set) = old_src;
2029 costs_add_n_insns (&oldcst, 1);
2030
2031 if (costs_lt_p (&newcst, &oldcst, speed)
2032 && have_add2_insn (reg, new_src))
2033 {
2034 rtx newpat = gen_rtx_SET (reg, tem);
2035 success
2036 = validate_change (next, &PATTERN (next),
2037 newpat, 0);
2038 }
2039 }
2040 if (success)
2041 delete_insn (insn);
2042 changed |= success;
2043 insn = next;
2044 move2add_record_mode (reg);
2045 reg_offset[regno]
2046 = trunc_int_for_mode (added_offset + base_offset,
2047 mode);
2048 continue;
2049 }
2050 }
2051 }
2052
2053 /* Try to transform
2054 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2055 ...
2056 (set (REGY) (CONST (PLUS (SYMBOL_REF) (CONST_INT B))))
2057 to
2058 (set (REGX) (CONST (PLUS (SYMBOL_REF) (CONST_INT A))))
2059 ...
2060 (set (REGY) (CONST (PLUS (REGX) (CONST_INT B-A)))) */
2061 if ((GET_CODE (src) == SYMBOL_REF
2062 || (GET_CODE (src) == CONST
2063 && GET_CODE (XEXP (src, 0)) == PLUS
2064 && GET_CODE (XEXP (XEXP (src, 0), 0)) == SYMBOL_REF
2065 && CONST_INT_P (XEXP (XEXP (src, 0), 1))))
2066 && dbg_cnt (cse2_move2add))
2067 {
2068 rtx sym, off;
2069
2070 if (GET_CODE (src) == SYMBOL_REF)
2071 {
2072 sym = src;
2073 off = const0_rtx;
2074 }
2075 else
2076 {
2077 sym = XEXP (XEXP (src, 0), 0);
2078 off = XEXP (XEXP (src, 0), 1);
2079 }
2080
2081 /* If the reg already contains the value which is sum of
2082 sym and some constant value, we can use an add2 insn. */
2083 if (move2add_valid_value_p (regno, mode)
2084 && reg_base_reg[regno] < 0
2085 && reg_symbol_ref[regno] != NULL_RTX
2086 && rtx_equal_p (sym, reg_symbol_ref[regno]))
2087 changed |= move2add_use_add2_insn (mode, reg, sym, off, insn);
2088
2089 /* Otherwise, we have to find a register whose value is sum
2090 of sym and some constant value. */
2091 else
2092 changed |= move2add_use_add3_insn (mode, reg, sym, off, insn);
2093
2094 continue;
2095 }
2096 }
2097
2098 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2099 {
2100 if (REG_NOTE_KIND (note) == REG_INC
2101 && REG_P (XEXP (note, 0)))
2102 {
2103 /* Reset the information about this register. */
2104 int regno = REGNO (XEXP (note, 0));
2105 if (regno < FIRST_PSEUDO_REGISTER)
2106 {
2107 move2add_record_mode (XEXP (note, 0));
2108 reg_mode[regno] = VOIDmode;
2109 }
2110 }
2111 }
2112
2113 /* There are no REG_INC notes for SP autoinc. */
2114 subrtx_var_iterator::array_type array;
2115 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
2116 {
2117 rtx mem = *iter;
2118 if (mem
2119 && MEM_P (mem)
2120 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
2121 {
2122 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
2123 reg_mode[STACK_POINTER_REGNUM] = VOIDmode;
2124 }
2125 }
2126
2127 note_stores (insn, move2add_note_store, insn);
2128
2129 /* If INSN is a conditional branch, we try to extract an
2130 implicit set out of it. */
2131 if (any_condjump_p (insn))
2132 {
2133 rtx cnd = fis_get_condition (insn);
2134
2135 if (cnd != NULL_RTX
2136 && GET_CODE (cnd) == NE
2137 && REG_P (XEXP (cnd, 0))
2138 && !reg_set_p (XEXP (cnd, 0), insn)
2139 /* The following two checks, which are also in
2140 move2add_note_store, are intended to reduce the
2141 number of calls to gen_rtx_SET to avoid memory
2142 allocation if possible. */
2143 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
2144 && REG_NREGS (XEXP (cnd, 0)) == 1
2145 && CONST_INT_P (XEXP (cnd, 1)))
2146 {
2147 rtx implicit_set =
2148 gen_rtx_SET (XEXP (cnd, 0), XEXP (cnd, 1));
2149 move2add_note_store (SET_DEST (implicit_set), implicit_set, insn);
2150 }
2151 }
2152
2153 /* If this is a CALL_INSN, all call used registers are stored with
2154 unknown values. */
2155 if (CALL_P (insn))
2156 {
2157 function_abi callee_abi = insn_callee_abi (insn);
2158 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
2159 if (reg_mode[i] != VOIDmode
2160 && reg_mode[i] != BLKmode
2161 && callee_abi.clobbers_reg_p (reg_mode[i], i))
2162 /* Reset the information about this register. */
2163 reg_mode[i] = VOIDmode;
2164 }
2165 }
2166 return changed;
2167 }
2168
2169 /* SET is a SET or CLOBBER that sets DST. DATA is the insn which
2170 contains SET.
2171 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
2172 Called from reload_cse_move2add via note_stores. */
2173
2174 static void
2175 move2add_note_store (rtx dst, const_rtx set, void *data)
2176 {
2177 rtx_insn *insn = (rtx_insn *) data;
2178 unsigned int regno = 0;
2179 scalar_int_mode mode;
2180
2181 if (GET_CODE (dst) == SUBREG)
2182 regno = subreg_regno (dst);
2183 else if (REG_P (dst))
2184 regno = REGNO (dst);
2185 else
2186 return;
2187
2188 if (!is_a <scalar_int_mode> (GET_MODE (dst), &mode))
2189 goto invalidate;
2190
2191 if (GET_CODE (set) == SET)
2192 {
2193 rtx note, sym = NULL_RTX;
2194 rtx off;
2195
2196 note = find_reg_equal_equiv_note (insn);
2197 if (note && GET_CODE (XEXP (note, 0)) == SYMBOL_REF)
2198 {
2199 sym = XEXP (note, 0);
2200 off = const0_rtx;
2201 }
2202 else if (note && GET_CODE (XEXP (note, 0)) == CONST
2203 && GET_CODE (XEXP (XEXP (note, 0), 0)) == PLUS
2204 && GET_CODE (XEXP (XEXP (XEXP (note, 0), 0), 0)) == SYMBOL_REF
2205 && CONST_INT_P (XEXP (XEXP (XEXP (note, 0), 0), 1)))
2206 {
2207 sym = XEXP (XEXP (XEXP (note, 0), 0), 0);
2208 off = XEXP (XEXP (XEXP (note, 0), 0), 1);
2209 }
2210
2211 if (sym != NULL_RTX)
2212 {
2213 move2add_record_sym_value (dst, sym, off);
2214 return;
2215 }
2216 }
2217
2218 if (GET_CODE (set) == SET
2219 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
2220 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
2221 {
2222 rtx src = SET_SRC (set);
2223 rtx base_reg;
2224 unsigned HOST_WIDE_INT offset;
2225 int base_regno;
2226
2227 switch (GET_CODE (src))
2228 {
2229 case PLUS:
2230 if (REG_P (XEXP (src, 0)))
2231 {
2232 base_reg = XEXP (src, 0);
2233
2234 if (CONST_INT_P (XEXP (src, 1)))
2235 offset = UINTVAL (XEXP (src, 1));
2236 else if (REG_P (XEXP (src, 1))
2237 && move2add_valid_value_p (REGNO (XEXP (src, 1)), mode))
2238 {
2239 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0
2240 && reg_symbol_ref[REGNO (XEXP (src, 1))] == NULL_RTX)
2241 offset = reg_offset[REGNO (XEXP (src, 1))];
2242 /* Maybe the first register is known to be a
2243 constant. */
2244 else if (move2add_valid_value_p (REGNO (base_reg), mode)
2245 && reg_base_reg[REGNO (base_reg)] < 0
2246 && reg_symbol_ref[REGNO (base_reg)] == NULL_RTX)
2247 {
2248 offset = reg_offset[REGNO (base_reg)];
2249 base_reg = XEXP (src, 1);
2250 }
2251 else
2252 goto invalidate;
2253 }
2254 else
2255 goto invalidate;
2256
2257 break;
2258 }
2259
2260 goto invalidate;
2261
2262 case REG:
2263 base_reg = src;
2264 offset = 0;
2265 break;
2266
2267 case CONST_INT:
2268 /* Start tracking the register as a constant. */
2269 reg_base_reg[regno] = -1;
2270 reg_symbol_ref[regno] = NULL_RTX;
2271 reg_offset[regno] = INTVAL (SET_SRC (set));
2272 /* We assign the same luid to all registers set to constants. */
2273 reg_set_luid[regno] = move2add_last_label_luid + 1;
2274 move2add_record_mode (dst);
2275 return;
2276
2277 default:
2278 goto invalidate;
2279 }
2280
2281 base_regno = REGNO (base_reg);
2282 /* If information about the base register is not valid, set it
2283 up as a new base register, pretending its value is known
2284 starting from the current insn. */
2285 if (!move2add_valid_value_p (base_regno, mode))
2286 {
2287 reg_base_reg[base_regno] = base_regno;
2288 reg_symbol_ref[base_regno] = NULL_RTX;
2289 reg_offset[base_regno] = 0;
2290 reg_set_luid[base_regno] = move2add_luid;
2291 gcc_assert (GET_MODE (base_reg) == mode);
2292 move2add_record_mode (base_reg);
2293 }
2294
2295 /* Copy base information from our base register. */
2296 reg_set_luid[regno] = reg_set_luid[base_regno];
2297 reg_base_reg[regno] = reg_base_reg[base_regno];
2298 reg_symbol_ref[regno] = reg_symbol_ref[base_regno];
2299
2300 /* Compute the sum of the offsets or constants. */
2301 reg_offset[regno]
2302 = trunc_int_for_mode (offset + reg_offset[base_regno], mode);
2303
2304 move2add_record_mode (dst);
2305 }
2306 else
2307 {
2308 invalidate:
2309 /* Invalidate the contents of the register. */
2310 move2add_record_mode (dst);
2311 reg_mode[regno] = VOIDmode;
2312 }
2313 }
2314 \f
2315 namespace {
2316
2317 const pass_data pass_data_postreload_cse =
2318 {
2319 RTL_PASS, /* type */
2320 "postreload", /* name */
2321 OPTGROUP_NONE, /* optinfo_flags */
2322 TV_RELOAD_CSE_REGS, /* tv_id */
2323 0, /* properties_required */
2324 0, /* properties_provided */
2325 0, /* properties_destroyed */
2326 0, /* todo_flags_start */
2327 TODO_df_finish, /* todo_flags_finish */
2328 };
2329
2330 class pass_postreload_cse : public rtl_opt_pass
2331 {
2332 public:
2333 pass_postreload_cse (gcc::context *ctxt)
2334 : rtl_opt_pass (pass_data_postreload_cse, ctxt)
2335 {}
2336
2337 /* opt_pass methods: */
2338 virtual bool gate (function *) { return (optimize > 0 && reload_completed); }
2339
2340 virtual unsigned int execute (function *);
2341
2342 }; // class pass_postreload_cse
2343
2344 unsigned int
2345 pass_postreload_cse::execute (function *fun)
2346 {
2347 if (!dbg_cnt (postreload_cse))
2348 return 0;
2349
2350 /* Do a very simple CSE pass over just the hard registers. */
2351 reload_cse_regs (get_insns ());
2352 /* Reload_cse_regs can eliminate potentially-trapping MEMs.
2353 Remove any EH edges associated with them. */
2354 if (fun->can_throw_non_call_exceptions
2355 && purge_all_dead_edges ())
2356 cleanup_cfg (0);
2357
2358 return 0;
2359 }
2360
2361 } // anon namespace
2362
2363 rtl_opt_pass *
2364 make_pass_postreload_cse (gcc::context *ctxt)
2365 {
2366 return new pass_postreload_cse (ctxt);
2367 }