]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/predict.cc
Update copyright years.
[thirdparty/gcc.git] / gcc / predict.cc
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2024 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* References:
21
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
28
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "memmodel.h"
41 #include "emit-rtl.h"
42 #include "cgraph.h"
43 #include "coverage.h"
44 #include "diagnostic-core.h"
45 #include "gimple-predict.h"
46 #include "fold-const.h"
47 #include "calls.h"
48 #include "cfganal.h"
49 #include "profile.h"
50 #include "sreal.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
59 #include "selftest.h"
60 #include "cfgrtl.h"
61 #include "stringpool.h"
62 #include "attribs.h"
63
64 /* Enum with reasons why a predictor is ignored. */
65
66 enum predictor_reason
67 {
68 REASON_NONE,
69 REASON_IGNORED,
70 REASON_SINGLE_EDGE_DUPLICATE,
71 REASON_EDGE_PAIR_DUPLICATE
72 };
73
74 /* String messages for the aforementioned enum. */
75
76 static const char *reason_messages[] = {"", " (ignored)",
77 " (single edge duplicate)", " (edge pair duplicate)"};
78
79
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 class loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 class loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
90 static HOST_WIDE_INT get_predictor_value (br_predictor, HOST_WIDE_INT);
91 static void determine_unlikely_bbs ();
92 static void estimate_bb_frequencies ();
93
94 /* Information we hold about each branch predictor.
95 Filled using information from predict.def. */
96
97 struct predictor_info
98 {
99 const char *const name; /* Name used in the debugging dumps. */
100 const int hitrate; /* Expected hitrate used by
101 predict_insn_def call. */
102 const int flags;
103 };
104
105 /* Use given predictor without Dempster-Shaffer theory if it matches
106 using first_match heuristics. */
107 #define PRED_FLAG_FIRST_MATCH 1
108
109 /* Recompute hitrate in percent to our representation. */
110
111 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
112
113 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
114 static const struct predictor_info predictor_info[]= {
115 #include "predict.def"
116
117 /* Upper bound on predictors. */
118 {NULL, 0, 0}
119 };
120 #undef DEF_PREDICTOR
121
122 static gcov_type min_count = -1;
123
124 /* Determine the threshold for hot BB counts. */
125
126 gcov_type
127 get_hot_bb_threshold ()
128 {
129 if (min_count == -1)
130 {
131 const int hot_frac = param_hot_bb_count_fraction;
132 const gcov_type min_hot_count
133 = hot_frac
134 ? profile_info->sum_max / hot_frac
135 : (gcov_type)profile_count::max_count;
136 set_hot_bb_threshold (min_hot_count);
137 if (dump_file)
138 fprintf (dump_file, "Setting hotness threshold to %" PRId64 ".\n",
139 min_hot_count);
140 }
141 return min_count;
142 }
143
144 /* Set the threshold for hot BB counts. */
145
146 void
147 set_hot_bb_threshold (gcov_type min)
148 {
149 min_count = min;
150 }
151
152 /* Return TRUE if COUNT is considered to be hot in function FUN. */
153
154 bool
155 maybe_hot_count_p (struct function *fun, profile_count count)
156 {
157 if (!count.initialized_p ())
158 return true;
159 if (count.ipa () == profile_count::zero ())
160 return false;
161 if (!count.ipa_p ())
162 {
163 struct cgraph_node *node = cgraph_node::get (fun->decl);
164 if (!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
165 {
166 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
167 return false;
168 if (node->frequency == NODE_FREQUENCY_HOT)
169 return true;
170 }
171 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
172 return true;
173 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
174 && count < (ENTRY_BLOCK_PTR_FOR_FN (fun)->count.apply_scale (2, 3)))
175 return false;
176 if (count * param_hot_bb_frequency_fraction
177 < ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
178 return false;
179 return true;
180 }
181 /* Code executed at most once is not hot. */
182 if (count <= MAX (profile_info ? profile_info->runs : 1, 1))
183 return false;
184 return (count >= get_hot_bb_threshold ());
185 }
186
187 /* Return true if basic block BB of function FUN can be CPU intensive
188 and should thus be optimized for maximum performance. */
189
190 bool
191 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
192 {
193 gcc_checking_assert (fun);
194 return maybe_hot_count_p (fun, bb->count);
195 }
196
197 /* Return true if edge E can be CPU intensive and should thus be optimized
198 for maximum performance. */
199
200 bool
201 maybe_hot_edge_p (edge e)
202 {
203 return maybe_hot_count_p (cfun, e->count ());
204 }
205
206 /* Return true if COUNT is considered to be never executed in function FUN
207 or if function FUN is considered so in the static profile. */
208
209 static bool
210 probably_never_executed (struct function *fun, profile_count count)
211 {
212 gcc_checking_assert (fun);
213 if (count.ipa () == profile_count::zero ())
214 return true;
215 /* Do not trust adjusted counts. This will make us to drop int cold section
216 code with low execution count as a result of inlining. These low counts
217 are not safe even with read profile and may lead us to dropping
218 code which actually gets executed into cold section of binary that is not
219 desirable. */
220 if (count.precise_p () && profile_status_for_fn (fun) == PROFILE_READ)
221 {
222 const int unlikely_frac = param_unlikely_bb_count_fraction;
223 if (count * unlikely_frac >= profile_info->runs)
224 return false;
225 return true;
226 }
227 if ((!profile_info || profile_status_for_fn (fun) != PROFILE_READ)
228 && (cgraph_node::get (fun->decl)->frequency
229 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
230 return true;
231 return false;
232 }
233
234 /* Return true if basic block BB of function FUN is probably never executed. */
235
236 bool
237 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
238 {
239 return probably_never_executed (fun, bb->count);
240 }
241
242 /* Return true if edge E is unlikely executed for obvious reasons. */
243
244 static bool
245 unlikely_executed_edge_p (edge e)
246 {
247 return (e->src->count == profile_count::zero ()
248 || e->probability == profile_probability::never ())
249 || (e->flags & (EDGE_EH | EDGE_FAKE));
250 }
251
252 /* Return true if edge E of function FUN is probably never executed. */
253
254 bool
255 probably_never_executed_edge_p (struct function *fun, edge e)
256 {
257 if (unlikely_executed_edge_p (e))
258 return true;
259 return probably_never_executed (fun, e->count ());
260 }
261
262 /* Return true if function FUN should always be optimized for size. */
263
264 optimize_size_level
265 optimize_function_for_size_p (struct function *fun)
266 {
267 if (!fun || !fun->decl)
268 return optimize_size ? OPTIMIZE_SIZE_MAX : OPTIMIZE_SIZE_NO;
269 cgraph_node *n = cgraph_node::get (fun->decl);
270 if (n)
271 return n->optimize_for_size_p ();
272 return OPTIMIZE_SIZE_NO;
273 }
274
275 /* Return true if function FUN should always be optimized for speed. */
276
277 bool
278 optimize_function_for_speed_p (struct function *fun)
279 {
280 return !optimize_function_for_size_p (fun);
281 }
282
283 /* Return the optimization type that should be used for function FUN. */
284
285 optimization_type
286 function_optimization_type (struct function *fun)
287 {
288 return (optimize_function_for_speed_p (fun)
289 ? OPTIMIZE_FOR_SPEED
290 : OPTIMIZE_FOR_SIZE);
291 }
292
293 /* Return TRUE if basic block BB should be optimized for size. */
294
295 optimize_size_level
296 optimize_bb_for_size_p (const_basic_block bb)
297 {
298 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
299
300 if (bb && ret < OPTIMIZE_SIZE_MAX && bb->count == profile_count::zero ())
301 ret = OPTIMIZE_SIZE_MAX;
302 if (bb && ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_bb_p (cfun, bb))
303 ret = OPTIMIZE_SIZE_BALANCED;
304 return ret;
305 }
306
307 /* Return TRUE if basic block BB should be optimized for speed. */
308
309 bool
310 optimize_bb_for_speed_p (const_basic_block bb)
311 {
312 return !optimize_bb_for_size_p (bb);
313 }
314
315 /* Return the optimization type that should be used for basic block BB. */
316
317 optimization_type
318 bb_optimization_type (const_basic_block bb)
319 {
320 return (optimize_bb_for_speed_p (bb)
321 ? OPTIMIZE_FOR_SPEED
322 : OPTIMIZE_FOR_SIZE);
323 }
324
325 /* Return TRUE if edge E should be optimized for size. */
326
327 optimize_size_level
328 optimize_edge_for_size_p (edge e)
329 {
330 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
331
332 if (ret < OPTIMIZE_SIZE_MAX && unlikely_executed_edge_p (e))
333 ret = OPTIMIZE_SIZE_MAX;
334 if (ret < OPTIMIZE_SIZE_BALANCED && !maybe_hot_edge_p (e))
335 ret = OPTIMIZE_SIZE_BALANCED;
336 return ret;
337 }
338
339 /* Return TRUE if edge E should be optimized for speed. */
340
341 bool
342 optimize_edge_for_speed_p (edge e)
343 {
344 return !optimize_edge_for_size_p (e);
345 }
346
347 /* Return TRUE if the current function is optimized for size. */
348
349 optimize_size_level
350 optimize_insn_for_size_p (void)
351 {
352 enum optimize_size_level ret = optimize_function_for_size_p (cfun);
353 if (ret < OPTIMIZE_SIZE_BALANCED && !crtl->maybe_hot_insn_p)
354 ret = OPTIMIZE_SIZE_BALANCED;
355 return ret;
356 }
357
358 /* Return TRUE if the current function is optimized for speed. */
359
360 bool
361 optimize_insn_for_speed_p (void)
362 {
363 return !optimize_insn_for_size_p ();
364 }
365
366 /* Return the optimization type that should be used for the current
367 instruction. */
368
369 optimization_type
370 insn_optimization_type ()
371 {
372 return (optimize_insn_for_speed_p ()
373 ? OPTIMIZE_FOR_SPEED
374 : OPTIMIZE_FOR_SIZE);
375 }
376
377 /* Return TRUE if LOOP should be optimized for size. */
378
379 optimize_size_level
380 optimize_loop_for_size_p (class loop *loop)
381 {
382 return optimize_bb_for_size_p (loop->header);
383 }
384
385 /* Return TRUE if LOOP should be optimized for speed. */
386
387 bool
388 optimize_loop_for_speed_p (class loop *loop)
389 {
390 return optimize_bb_for_speed_p (loop->header);
391 }
392
393 /* Return TRUE if nest rooted at LOOP should be optimized for speed. */
394
395 bool
396 optimize_loop_nest_for_speed_p (class loop *loop)
397 {
398 class loop *l = loop;
399 if (optimize_loop_for_speed_p (loop))
400 return true;
401 l = loop->inner;
402 while (l && l != loop)
403 {
404 if (optimize_loop_for_speed_p (l))
405 return true;
406 if (l->inner)
407 l = l->inner;
408 else if (l->next)
409 l = l->next;
410 else
411 {
412 while (l != loop && !l->next)
413 l = loop_outer (l);
414 if (l != loop)
415 l = l->next;
416 }
417 }
418 return false;
419 }
420
421 /* Return TRUE if nest rooted at LOOP should be optimized for size. */
422
423 optimize_size_level
424 optimize_loop_nest_for_size_p (class loop *loop)
425 {
426 enum optimize_size_level ret = optimize_loop_for_size_p (loop);
427 class loop *l = loop;
428
429 l = loop->inner;
430 while (l && l != loop)
431 {
432 if (ret == OPTIMIZE_SIZE_NO)
433 break;
434 ret = MIN (optimize_loop_for_size_p (l), ret);
435 if (l->inner)
436 l = l->inner;
437 else if (l->next)
438 l = l->next;
439 else
440 {
441 while (l != loop && !l->next)
442 l = loop_outer (l);
443 if (l != loop)
444 l = l->next;
445 }
446 }
447 return ret;
448 }
449
450 /* Return true if edge E is likely to be well predictable by branch
451 predictor. */
452
453 bool
454 predictable_edge_p (edge e)
455 {
456 if (!e->probability.initialized_p ())
457 return false;
458 if ((e->probability.to_reg_br_prob_base ()
459 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100)
460 || (REG_BR_PROB_BASE - e->probability.to_reg_br_prob_base ()
461 <= param_predictable_branch_outcome * REG_BR_PROB_BASE / 100))
462 return true;
463 return false;
464 }
465
466
467 /* Set RTL expansion for BB profile. */
468
469 void
470 rtl_profile_for_bb (basic_block bb)
471 {
472 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
473 }
474
475 /* Set RTL expansion for edge profile. */
476
477 void
478 rtl_profile_for_edge (edge e)
479 {
480 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
481 }
482
483 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
484 void
485 default_rtl_profile (void)
486 {
487 crtl->maybe_hot_insn_p = true;
488 }
489
490 /* Return true if the one of outgoing edges is already predicted by
491 PREDICTOR. */
492
493 bool
494 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
495 {
496 rtx note;
497 if (!INSN_P (BB_END (bb)))
498 return false;
499 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
500 if (REG_NOTE_KIND (note) == REG_BR_PRED
501 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
502 return true;
503 return false;
504 }
505
506 /* Structure representing predictions in tree level. */
507
508 struct edge_prediction {
509 struct edge_prediction *ep_next;
510 edge ep_edge;
511 enum br_predictor ep_predictor;
512 int ep_probability;
513 };
514
515 /* This map contains for a basic block the list of predictions for the
516 outgoing edges. */
517
518 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
519
520 /* Return true if the one of outgoing edges is already predicted by
521 PREDICTOR. */
522
523 bool
524 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
525 {
526 struct edge_prediction *i;
527 edge_prediction **preds = bb_predictions->get (bb);
528
529 if (!preds)
530 return false;
531
532 for (i = *preds; i; i = i->ep_next)
533 if (i->ep_predictor == predictor)
534 return true;
535 return false;
536 }
537
538 /* Return true if the one of outgoing edges is already predicted by
539 PREDICTOR for edge E predicted as TAKEN. */
540
541 bool
542 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
543 {
544 struct edge_prediction *i;
545 basic_block bb = e->src;
546 edge_prediction **preds = bb_predictions->get (bb);
547 if (!preds)
548 return false;
549
550 int probability = predictor_info[(int) predictor].hitrate;
551
552 if (taken != TAKEN)
553 probability = REG_BR_PROB_BASE - probability;
554
555 for (i = *preds; i; i = i->ep_next)
556 if (i->ep_predictor == predictor
557 && i->ep_edge == e
558 && i->ep_probability == probability)
559 return true;
560 return false;
561 }
562
563 /* Same predicate as above, working on edges. */
564 bool
565 edge_probability_reliable_p (const_edge e)
566 {
567 return e->probability.probably_reliable_p ();
568 }
569
570 /* Same predicate as edge_probability_reliable_p, working on notes. */
571 bool
572 br_prob_note_reliable_p (const_rtx note)
573 {
574 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
575 return profile_probability::from_reg_br_prob_note
576 (XINT (note, 0)).probably_reliable_p ();
577 }
578
579 static void
580 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
581 {
582 gcc_assert (any_condjump_p (insn));
583 if (!flag_guess_branch_prob)
584 return;
585
586 add_reg_note (insn, REG_BR_PRED,
587 gen_rtx_CONCAT (VOIDmode,
588 GEN_INT ((int) predictor),
589 GEN_INT ((int) probability)));
590 }
591
592 /* Predict insn by given predictor. */
593
594 void
595 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
596 enum prediction taken)
597 {
598 int probability = predictor_info[(int) predictor].hitrate;
599 gcc_assert (probability != PROB_UNINITIALIZED);
600
601 if (taken != TAKEN)
602 probability = REG_BR_PROB_BASE - probability;
603
604 predict_insn (insn, predictor, probability);
605 }
606
607 /* Predict edge E with given probability if possible. */
608
609 void
610 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
611 {
612 rtx_insn *last_insn;
613 last_insn = BB_END (e->src);
614
615 /* We can store the branch prediction information only about
616 conditional jumps. */
617 if (!any_condjump_p (last_insn))
618 return;
619
620 /* We always store probability of branching. */
621 if (e->flags & EDGE_FALLTHRU)
622 probability = REG_BR_PROB_BASE - probability;
623
624 predict_insn (last_insn, predictor, probability);
625 }
626
627 /* Predict edge E with the given PROBABILITY. */
628 void
629 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
630 {
631 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
632 && EDGE_COUNT (e->src->succs) > 1
633 && flag_guess_branch_prob
634 && optimize)
635 {
636 struct edge_prediction *i = XNEW (struct edge_prediction);
637 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
638
639 i->ep_next = preds;
640 preds = i;
641 i->ep_probability = probability;
642 i->ep_predictor = predictor;
643 i->ep_edge = e;
644 }
645 }
646
647 /* Filter edge predictions PREDS by a function FILTER: if FILTER return false
648 the prediction is removed.
649 DATA are passed to the filter function. */
650
651 static void
652 filter_predictions (edge_prediction **preds,
653 bool (*filter) (edge_prediction *, void *), void *data)
654 {
655 if (!bb_predictions)
656 return;
657
658 if (preds)
659 {
660 struct edge_prediction **prediction = preds;
661 struct edge_prediction *next;
662
663 while (*prediction)
664 {
665 if ((*filter) (*prediction, data))
666 prediction = &((*prediction)->ep_next);
667 else
668 {
669 next = (*prediction)->ep_next;
670 free (*prediction);
671 *prediction = next;
672 }
673 }
674 }
675 }
676
677 /* Filter function predicate that returns true for a edge predicate P
678 if its edge is equal to DATA. */
679
680 static bool
681 not_equal_edge_p (edge_prediction *p, void *data)
682 {
683 return p->ep_edge != (edge)data;
684 }
685
686 /* Remove all predictions on given basic block that are attached
687 to edge E. */
688 void
689 remove_predictions_associated_with_edge (edge e)
690 {
691 if (!bb_predictions)
692 return;
693
694 edge_prediction **preds = bb_predictions->get (e->src);
695 filter_predictions (preds, not_equal_edge_p, e);
696 }
697
698 /* Clears the list of predictions stored for BB. */
699
700 static void
701 clear_bb_predictions (basic_block bb)
702 {
703 edge_prediction **preds = bb_predictions->get (bb);
704 struct edge_prediction *pred, *next;
705
706 if (!preds)
707 return;
708
709 for (pred = *preds; pred; pred = next)
710 {
711 next = pred->ep_next;
712 free (pred);
713 }
714 *preds = NULL;
715 }
716
717 /* Return true when we can store prediction on insn INSN.
718 At the moment we represent predictions only on conditional
719 jumps, not at computed jump or other complicated cases. */
720 static bool
721 can_predict_insn_p (const rtx_insn *insn)
722 {
723 return (JUMP_P (insn)
724 && any_condjump_p (insn)
725 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
726 }
727
728 /* Predict edge E by given predictor if possible. */
729
730 void
731 predict_edge_def (edge e, enum br_predictor predictor,
732 enum prediction taken)
733 {
734 int probability = predictor_info[(int) predictor].hitrate;
735
736 if (taken != TAKEN)
737 probability = REG_BR_PROB_BASE - probability;
738
739 predict_edge (e, predictor, probability);
740 }
741
742 /* Invert all branch predictions or probability notes in the INSN. This needs
743 to be done each time we invert the condition used by the jump. */
744
745 void
746 invert_br_probabilities (rtx insn)
747 {
748 rtx note;
749
750 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
751 if (REG_NOTE_KIND (note) == REG_BR_PROB)
752 XINT (note, 0) = profile_probability::from_reg_br_prob_note
753 (XINT (note, 0)).invert ().to_reg_br_prob_note ();
754 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
755 XEXP (XEXP (note, 0), 1)
756 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
757 }
758
759 /* Dump information about the branch prediction to the output file. */
760
761 static void
762 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
763 basic_block bb, enum predictor_reason reason = REASON_NONE,
764 edge ep_edge = NULL)
765 {
766 edge e = ep_edge;
767 edge_iterator ei;
768
769 if (!file)
770 return;
771
772 if (e == NULL)
773 FOR_EACH_EDGE (e, ei, bb->succs)
774 if (! (e->flags & EDGE_FALLTHRU))
775 break;
776
777 char edge_info_str[128];
778 if (ep_edge)
779 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
780 ep_edge->dest->index);
781 else
782 edge_info_str[0] = '\0';
783
784 fprintf (file, " %s heuristics%s%s: %.2f%%",
785 predictor_info[predictor].name,
786 edge_info_str, reason_messages[reason],
787 probability * 100.0 / REG_BR_PROB_BASE);
788
789 if (bb->count.initialized_p ())
790 {
791 fprintf (file, " exec ");
792 bb->count.dump (file);
793 if (e && e->count ().initialized_p () && bb->count.to_gcov_type ())
794 {
795 fprintf (file, " hit ");
796 e->count ().dump (file);
797 fprintf (file, " (%.1f%%)", e->count ().to_gcov_type() * 100.0
798 / bb->count.to_gcov_type ());
799 }
800 }
801
802 fprintf (file, "\n");
803
804 /* Print output that be easily read by analyze_brprob.py script. We are
805 interested only in counts that are read from GCDA files. */
806 if (dump_file && (dump_flags & TDF_DETAILS)
807 && bb->count.precise_p ()
808 && reason == REASON_NONE)
809 {
810 fprintf (file, ";;heuristics;%s;%" PRId64 ";%" PRId64 ";%.1f;\n",
811 predictor_info[predictor].name,
812 bb->count.to_gcov_type (), e->count ().to_gcov_type (),
813 probability * 100.0 / REG_BR_PROB_BASE);
814 }
815 }
816
817 /* Return true if STMT is known to be unlikely executed. */
818
819 static bool
820 unlikely_executed_stmt_p (gimple *stmt)
821 {
822 if (!is_gimple_call (stmt))
823 return false;
824 /* NORETURN attribute alone is not strong enough: exit() may be quite
825 likely executed once during program run. */
826 if (gimple_call_fntype (stmt)
827 && lookup_attribute ("cold",
828 TYPE_ATTRIBUTES (gimple_call_fntype (stmt)))
829 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
830 return true;
831 tree decl = gimple_call_fndecl (stmt);
832 if (!decl)
833 return false;
834 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl))
835 && !lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl)))
836 return true;
837
838 cgraph_node *n = cgraph_node::get (decl);
839 if (!n)
840 return false;
841
842 availability avail;
843 n = n->ultimate_alias_target (&avail);
844 if (avail < AVAIL_AVAILABLE)
845 return false;
846 if (!n->analyzed
847 || n->decl == current_function_decl)
848 return false;
849 return n->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED;
850 }
851
852 /* Return true if BB is unlikely executed. */
853
854 static bool
855 unlikely_executed_bb_p (basic_block bb)
856 {
857 if (bb->count == profile_count::zero ())
858 return true;
859 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun) || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
860 return false;
861 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
862 !gsi_end_p (gsi); gsi_next (&gsi))
863 {
864 if (unlikely_executed_stmt_p (gsi_stmt (gsi)))
865 return true;
866 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
867 return false;
868 }
869 return false;
870 }
871
872 /* We cannot predict the probabilities of outgoing edges of bb. Set them
873 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
874 even probability for all edges not mentioned in the set. These edges
875 are given PROB_VERY_UNLIKELY probability. Similarly for LIKELY_EDGES,
876 if we have exactly one likely edge, make the other edges predicted
877 as not probable. */
878
879 static void
880 set_even_probabilities (basic_block bb,
881 hash_set<edge> *unlikely_edges = NULL,
882 hash_set<edge_prediction *> *likely_edges = NULL)
883 {
884 unsigned nedges = 0, unlikely_count = 0;
885 edge e = NULL;
886 edge_iterator ei;
887 profile_probability all = profile_probability::always ();
888
889 FOR_EACH_EDGE (e, ei, bb->succs)
890 if (e->probability.initialized_p ())
891 all -= e->probability;
892 else if (!unlikely_executed_edge_p (e))
893 {
894 nedges++;
895 if (unlikely_edges != NULL && unlikely_edges->contains (e))
896 {
897 all -= profile_probability::very_unlikely ();
898 unlikely_count++;
899 }
900 }
901
902 /* Make the distribution even if all edges are unlikely. */
903 unsigned likely_count = likely_edges ? likely_edges->elements () : 0;
904 if (unlikely_count == nedges)
905 {
906 unlikely_edges = NULL;
907 unlikely_count = 0;
908 }
909
910 /* If we have one likely edge, then use its probability and distribute
911 remaining probabilities as even. */
912 if (likely_count == 1)
913 {
914 FOR_EACH_EDGE (e, ei, bb->succs)
915 if (e->probability.initialized_p ())
916 ;
917 else if (!unlikely_executed_edge_p (e))
918 {
919 edge_prediction *prediction = *likely_edges->begin ();
920 int p = prediction->ep_probability;
921 profile_probability prob
922 = profile_probability::from_reg_br_prob_base (p);
923
924 if (prediction->ep_edge == e)
925 e->probability = prob;
926 else if (unlikely_edges != NULL && unlikely_edges->contains (e))
927 e->probability = profile_probability::very_unlikely ();
928 else
929 {
930 profile_probability remainder = prob.invert ();
931 remainder -= (profile_probability::very_unlikely ()
932 * unlikely_count);
933 int count = nedges - unlikely_count - 1;
934 gcc_assert (count >= 0);
935
936 e->probability = remainder / count;
937 }
938 }
939 else
940 e->probability = profile_probability::never ();
941 }
942 else
943 {
944 /* Make all unlikely edges unlikely and the rest will have even
945 probability. */
946 unsigned scale = nedges - unlikely_count;
947 FOR_EACH_EDGE (e, ei, bb->succs)
948 if (e->probability.initialized_p ())
949 ;
950 else if (!unlikely_executed_edge_p (e))
951 {
952 if (unlikely_edges != NULL && unlikely_edges->contains (e))
953 e->probability = profile_probability::very_unlikely ();
954 else
955 e->probability = all / scale;
956 }
957 else
958 e->probability = profile_probability::never ();
959 }
960 }
961
962 /* Add REG_BR_PROB note to JUMP with PROB. */
963
964 void
965 add_reg_br_prob_note (rtx_insn *jump, profile_probability prob)
966 {
967 gcc_checking_assert (JUMP_P (jump) && !find_reg_note (jump, REG_BR_PROB, 0));
968 add_int_reg_note (jump, REG_BR_PROB, prob.to_reg_br_prob_note ());
969 }
970
971 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
972 note if not already present. Remove now useless REG_BR_PRED notes. */
973
974 static void
975 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
976 {
977 rtx prob_note;
978 rtx *pnote;
979 rtx note;
980 int best_probability = PROB_EVEN;
981 enum br_predictor best_predictor = END_PREDICTORS;
982 int combined_probability = REG_BR_PROB_BASE / 2;
983 int d;
984 bool first_match = false;
985 bool found = false;
986
987 if (!can_predict_insn_p (insn))
988 {
989 set_even_probabilities (bb);
990 return;
991 }
992
993 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
994 pnote = &REG_NOTES (insn);
995 if (dump_file)
996 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
997 bb->index);
998
999 /* We implement "first match" heuristics and use probability guessed
1000 by predictor with smallest index. */
1001 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1002 if (REG_NOTE_KIND (note) == REG_BR_PRED)
1003 {
1004 enum br_predictor predictor = ((enum br_predictor)
1005 INTVAL (XEXP (XEXP (note, 0), 0)));
1006 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
1007
1008 found = true;
1009 if (best_predictor > predictor
1010 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1011 best_probability = probability, best_predictor = predictor;
1012
1013 d = (combined_probability * probability
1014 + (REG_BR_PROB_BASE - combined_probability)
1015 * (REG_BR_PROB_BASE - probability));
1016
1017 /* Use FP math to avoid overflows of 32bit integers. */
1018 if (d == 0)
1019 /* If one probability is 0% and one 100%, avoid division by zero. */
1020 combined_probability = REG_BR_PROB_BASE / 2;
1021 else
1022 combined_probability = (((double) combined_probability) * probability
1023 * REG_BR_PROB_BASE / d + 0.5);
1024 }
1025
1026 /* Decide which heuristic to use. In case we didn't match anything,
1027 use no_prediction heuristic, in case we did match, use either
1028 first match or Dempster-Shaffer theory depending on the flags. */
1029
1030 if (best_predictor != END_PREDICTORS)
1031 first_match = true;
1032
1033 if (!found)
1034 dump_prediction (dump_file, PRED_NO_PREDICTION,
1035 combined_probability, bb);
1036 else
1037 {
1038 if (!first_match)
1039 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
1040 bb, !first_match ? REASON_NONE : REASON_IGNORED);
1041 else
1042 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
1043 bb, first_match ? REASON_NONE : REASON_IGNORED);
1044 }
1045
1046 if (first_match)
1047 combined_probability = best_probability;
1048 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1049
1050 while (*pnote)
1051 {
1052 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
1053 {
1054 enum br_predictor predictor = ((enum br_predictor)
1055 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
1056 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
1057
1058 dump_prediction (dump_file, predictor, probability, bb,
1059 (!first_match || best_predictor == predictor)
1060 ? REASON_NONE : REASON_IGNORED);
1061 *pnote = XEXP (*pnote, 1);
1062 }
1063 else
1064 pnote = &XEXP (*pnote, 1);
1065 }
1066
1067 if (!prob_note)
1068 {
1069 profile_probability p
1070 = profile_probability::from_reg_br_prob_base (combined_probability);
1071 add_reg_br_prob_note (insn, p);
1072
1073 /* Save the prediction into CFG in case we are seeing non-degenerated
1074 conditional jump. */
1075 if (!single_succ_p (bb))
1076 {
1077 BRANCH_EDGE (bb)->probability = p;
1078 FALLTHRU_EDGE (bb)->probability
1079 = BRANCH_EDGE (bb)->probability.invert ();
1080 }
1081 }
1082 else if (!single_succ_p (bb))
1083 {
1084 profile_probability prob = profile_probability::from_reg_br_prob_note
1085 (XINT (prob_note, 0));
1086
1087 BRANCH_EDGE (bb)->probability = prob;
1088 FALLTHRU_EDGE (bb)->probability = prob.invert ();
1089 }
1090 else
1091 single_succ_edge (bb)->probability = profile_probability::always ();
1092 }
1093
1094 /* Edge prediction hash traits. */
1095
1096 struct predictor_hash: pointer_hash <edge_prediction>
1097 {
1098
1099 static inline hashval_t hash (const edge_prediction *);
1100 static inline bool equal (const edge_prediction *, const edge_prediction *);
1101 };
1102
1103 /* Calculate hash value of an edge prediction P based on predictor and
1104 normalized probability. */
1105
1106 inline hashval_t
1107 predictor_hash::hash (const edge_prediction *p)
1108 {
1109 inchash::hash hstate;
1110 hstate.add_int (p->ep_predictor);
1111
1112 int prob = p->ep_probability;
1113 if (prob > REG_BR_PROB_BASE / 2)
1114 prob = REG_BR_PROB_BASE - prob;
1115
1116 hstate.add_int (prob);
1117
1118 return hstate.end ();
1119 }
1120
1121 /* Return true whether edge predictions P1 and P2 use the same predictor and
1122 have equal (or opposed probability). */
1123
1124 inline bool
1125 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
1126 {
1127 return (p1->ep_predictor == p2->ep_predictor
1128 && (p1->ep_probability == p2->ep_probability
1129 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
1130 }
1131
1132 struct predictor_hash_traits: predictor_hash,
1133 typed_noop_remove <edge_prediction *> {};
1134
1135 /* Return true if edge prediction P is not in DATA hash set. */
1136
1137 static bool
1138 not_removed_prediction_p (edge_prediction *p, void *data)
1139 {
1140 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
1141 return !remove->contains (p);
1142 }
1143
1144 /* Prune predictions for a basic block BB. Currently we do following
1145 clean-up steps:
1146
1147 1) remove duplicate prediction that is guessed with the same probability
1148 (different than 1/2) to both edge
1149 2) remove duplicates for a prediction that belongs with the same probability
1150 to a single edge
1151
1152 */
1153
1154 static void
1155 prune_predictions_for_bb (basic_block bb)
1156 {
1157 edge_prediction **preds = bb_predictions->get (bb);
1158
1159 if (preds)
1160 {
1161 hash_table <predictor_hash_traits> s (13);
1162 hash_set <edge_prediction *> remove;
1163
1164 /* Step 1: identify predictors that should be removed. */
1165 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1166 {
1167 edge_prediction *existing = s.find (pred);
1168 if (existing)
1169 {
1170 if (pred->ep_edge == existing->ep_edge
1171 && pred->ep_probability == existing->ep_probability)
1172 {
1173 /* Remove a duplicate predictor. */
1174 dump_prediction (dump_file, pred->ep_predictor,
1175 pred->ep_probability, bb,
1176 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1177
1178 remove.add (pred);
1179 }
1180 else if (pred->ep_edge != existing->ep_edge
1181 && pred->ep_probability == existing->ep_probability
1182 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1183 {
1184 /* Remove both predictors as they predict the same
1185 for both edges. */
1186 dump_prediction (dump_file, existing->ep_predictor,
1187 pred->ep_probability, bb,
1188 REASON_EDGE_PAIR_DUPLICATE,
1189 existing->ep_edge);
1190 dump_prediction (dump_file, pred->ep_predictor,
1191 pred->ep_probability, bb,
1192 REASON_EDGE_PAIR_DUPLICATE,
1193 pred->ep_edge);
1194
1195 remove.add (existing);
1196 remove.add (pred);
1197 }
1198 }
1199
1200 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1201 *slot2 = pred;
1202 }
1203
1204 /* Step 2: Remove predictors. */
1205 filter_predictions (preds, not_removed_prediction_p, &remove);
1206 }
1207 }
1208
1209 /* Combine predictions into single probability and store them into CFG.
1210 Remove now useless prediction entries.
1211 If DRY_RUN is set, only produce dumps and do not modify profile. */
1212
1213 static void
1214 combine_predictions_for_bb (basic_block bb, bool dry_run)
1215 {
1216 int best_probability = PROB_EVEN;
1217 enum br_predictor best_predictor = END_PREDICTORS;
1218 int combined_probability = REG_BR_PROB_BASE / 2;
1219 int d;
1220 bool first_match = false;
1221 bool found = false;
1222 struct edge_prediction *pred;
1223 int nedges = 0;
1224 edge e, first = NULL, second = NULL;
1225 edge_iterator ei;
1226 int nzero = 0;
1227 int nunknown = 0;
1228
1229 FOR_EACH_EDGE (e, ei, bb->succs)
1230 {
1231 if (!unlikely_executed_edge_p (e))
1232 {
1233 nedges ++;
1234 if (first && !second)
1235 second = e;
1236 if (!first)
1237 first = e;
1238 }
1239 else if (!e->probability.initialized_p ())
1240 e->probability = profile_probability::never ();
1241 if (!e->probability.initialized_p ())
1242 nunknown++;
1243 else if (e->probability == profile_probability::never ())
1244 nzero++;
1245 }
1246
1247 /* When there is no successor or only one choice, prediction is easy.
1248
1249 When we have a basic block with more than 2 successors, the situation
1250 is more complicated as DS theory cannot be used literally.
1251 More precisely, let's assume we predicted edge e1 with probability p1,
1252 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1253 need to find probability of e.g. m1({b2}), which we don't know.
1254 The only approximation is to equally distribute 1-p1 to all edges
1255 different from b1.
1256
1257 According to numbers we've got from SPEC2006 benchark, there's only
1258 one interesting reliable predictor (noreturn call), which can be
1259 handled with a bit easier approach. */
1260 if (nedges != 2)
1261 {
1262 hash_set<edge> unlikely_edges (4);
1263 hash_set<edge_prediction *> likely_edges (4);
1264
1265 /* Identify all edges that have a probability close to very unlikely.
1266 Doing the approach for very unlikely doesn't worth for doing as
1267 there's no such probability in SPEC2006 benchmark. */
1268 edge_prediction **preds = bb_predictions->get (bb);
1269 if (preds)
1270 for (pred = *preds; pred; pred = pred->ep_next)
1271 {
1272 if (pred->ep_probability <= PROB_VERY_UNLIKELY
1273 || pred->ep_predictor == PRED_COLD_LABEL)
1274 unlikely_edges.add (pred->ep_edge);
1275 else if (pred->ep_probability >= PROB_VERY_LIKELY
1276 || pred->ep_predictor == PRED_BUILTIN_EXPECT
1277 || pred->ep_predictor == PRED_HOT_LABEL)
1278 likely_edges.add (pred);
1279 }
1280
1281 /* It can happen that an edge is both in likely_edges and unlikely_edges.
1282 Clear both sets in that situation. */
1283 for (hash_set<edge_prediction *>::iterator it = likely_edges.begin ();
1284 it != likely_edges.end (); ++it)
1285 if (unlikely_edges.contains ((*it)->ep_edge))
1286 {
1287 likely_edges.empty ();
1288 unlikely_edges.empty ();
1289 break;
1290 }
1291
1292 if (!dry_run)
1293 set_even_probabilities (bb, &unlikely_edges, &likely_edges);
1294 clear_bb_predictions (bb);
1295 if (dump_file)
1296 {
1297 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1298 if (unlikely_edges.is_empty ())
1299 fprintf (dump_file,
1300 "%i edges in bb %i predicted to even probabilities\n",
1301 nedges, bb->index);
1302 else
1303 {
1304 fprintf (dump_file,
1305 "%i edges in bb %i predicted with some unlikely edges\n",
1306 nedges, bb->index);
1307 FOR_EACH_EDGE (e, ei, bb->succs)
1308 if (!unlikely_executed_edge_p (e))
1309 dump_prediction (dump_file, PRED_COMBINED,
1310 e->probability.to_reg_br_prob_base (), bb, REASON_NONE, e);
1311 }
1312 }
1313 return;
1314 }
1315
1316 if (dump_file)
1317 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1318
1319 prune_predictions_for_bb (bb);
1320
1321 edge_prediction **preds = bb_predictions->get (bb);
1322
1323 if (preds)
1324 {
1325 /* We implement "first match" heuristics and use probability guessed
1326 by predictor with smallest index. */
1327 for (pred = *preds; pred; pred = pred->ep_next)
1328 {
1329 enum br_predictor predictor = pred->ep_predictor;
1330 int probability = pred->ep_probability;
1331
1332 if (pred->ep_edge != first)
1333 probability = REG_BR_PROB_BASE - probability;
1334
1335 found = true;
1336 /* First match heuristics would be widly confused if we predicted
1337 both directions. */
1338 if (best_predictor > predictor
1339 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1340 {
1341 struct edge_prediction *pred2;
1342 int prob = probability;
1343
1344 for (pred2 = (struct edge_prediction *) *preds;
1345 pred2; pred2 = pred2->ep_next)
1346 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1347 {
1348 int probability2 = pred2->ep_probability;
1349
1350 if (pred2->ep_edge != first)
1351 probability2 = REG_BR_PROB_BASE - probability2;
1352
1353 if ((probability < REG_BR_PROB_BASE / 2) !=
1354 (probability2 < REG_BR_PROB_BASE / 2))
1355 break;
1356
1357 /* If the same predictor later gave better result, go for it! */
1358 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1359 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1360 prob = probability2;
1361 }
1362 if (!pred2)
1363 best_probability = prob, best_predictor = predictor;
1364 }
1365
1366 d = (combined_probability * probability
1367 + (REG_BR_PROB_BASE - combined_probability)
1368 * (REG_BR_PROB_BASE - probability));
1369
1370 /* Use FP math to avoid overflows of 32bit integers. */
1371 if (d == 0)
1372 /* If one probability is 0% and one 100%, avoid division by zero. */
1373 combined_probability = REG_BR_PROB_BASE / 2;
1374 else
1375 combined_probability = (((double) combined_probability)
1376 * probability
1377 * REG_BR_PROB_BASE / d + 0.5);
1378 }
1379 }
1380
1381 /* Decide which heuristic to use. In case we didn't match anything,
1382 use no_prediction heuristic, in case we did match, use either
1383 first match or Dempster-Shaffer theory depending on the flags. */
1384
1385 if (best_predictor != END_PREDICTORS)
1386 first_match = true;
1387
1388 if (!found)
1389 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1390 else
1391 {
1392 if (!first_match)
1393 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1394 !first_match ? REASON_NONE : REASON_IGNORED);
1395 else
1396 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1397 first_match ? REASON_NONE : REASON_IGNORED);
1398 }
1399
1400 if (first_match)
1401 combined_probability = best_probability;
1402 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1403
1404 if (preds)
1405 {
1406 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1407 {
1408 enum br_predictor predictor = pred->ep_predictor;
1409 int probability = pred->ep_probability;
1410
1411 dump_prediction (dump_file, predictor, probability, bb,
1412 (!first_match || best_predictor == predictor)
1413 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1414 }
1415 }
1416 clear_bb_predictions (bb);
1417
1418
1419 /* If we have only one successor which is unknown, we can compute missing
1420 probability. */
1421 if (nunknown == 1)
1422 {
1423 profile_probability prob = profile_probability::always ();
1424 edge missing = NULL;
1425
1426 FOR_EACH_EDGE (e, ei, bb->succs)
1427 if (e->probability.initialized_p ())
1428 prob -= e->probability;
1429 else if (missing == NULL)
1430 missing = e;
1431 else
1432 gcc_unreachable ();
1433 missing->probability = prob;
1434 }
1435 /* If nothing is unknown, we have nothing to update. */
1436 else if (!nunknown && nzero != (int)EDGE_COUNT (bb->succs))
1437 ;
1438 else if (!dry_run)
1439 {
1440 first->probability
1441 = profile_probability::from_reg_br_prob_base (combined_probability);
1442 second->probability = first->probability.invert ();
1443 }
1444 }
1445
1446 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1447 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1448
1449 T1 and T2 should be one of the following cases:
1450 1. T1 is SSA_NAME, T2 is NULL
1451 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1452 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1453
1454 static tree
1455 strips_small_constant (tree t1, tree t2)
1456 {
1457 tree ret = NULL;
1458 int value = 0;
1459
1460 if (!t1)
1461 return NULL;
1462 else if (TREE_CODE (t1) == SSA_NAME)
1463 ret = t1;
1464 else if (tree_fits_shwi_p (t1))
1465 value = tree_to_shwi (t1);
1466 else
1467 return NULL;
1468
1469 if (!t2)
1470 return ret;
1471 else if (tree_fits_shwi_p (t2))
1472 value = tree_to_shwi (t2);
1473 else if (TREE_CODE (t2) == SSA_NAME)
1474 {
1475 if (ret)
1476 return NULL;
1477 else
1478 ret = t2;
1479 }
1480
1481 if (value <= 4 && value >= -4)
1482 return ret;
1483 else
1484 return NULL;
1485 }
1486
1487 /* Return the SSA_NAME in T or T's operands.
1488 Return NULL if SSA_NAME cannot be found. */
1489
1490 static tree
1491 get_base_value (tree t)
1492 {
1493 if (TREE_CODE (t) == SSA_NAME)
1494 return t;
1495
1496 if (!BINARY_CLASS_P (t))
1497 return NULL;
1498
1499 switch (TREE_OPERAND_LENGTH (t))
1500 {
1501 case 1:
1502 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1503 case 2:
1504 return strips_small_constant (TREE_OPERAND (t, 0),
1505 TREE_OPERAND (t, 1));
1506 default:
1507 return NULL;
1508 }
1509 }
1510
1511 /* Check the compare STMT in LOOP. If it compares an induction
1512 variable to a loop invariant, return true, and save
1513 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1514 Otherwise return false and set LOOP_INVAIANT to NULL. */
1515
1516 static bool
1517 is_comparison_with_loop_invariant_p (gcond *stmt, class loop *loop,
1518 tree *loop_invariant,
1519 enum tree_code *compare_code,
1520 tree *loop_step,
1521 tree *loop_iv_base)
1522 {
1523 tree op0, op1, bound, base;
1524 affine_iv iv0, iv1;
1525 enum tree_code code;
1526 tree step;
1527
1528 code = gimple_cond_code (stmt);
1529 *loop_invariant = NULL;
1530
1531 switch (code)
1532 {
1533 case GT_EXPR:
1534 case GE_EXPR:
1535 case NE_EXPR:
1536 case LT_EXPR:
1537 case LE_EXPR:
1538 case EQ_EXPR:
1539 break;
1540
1541 default:
1542 return false;
1543 }
1544
1545 op0 = gimple_cond_lhs (stmt);
1546 op1 = gimple_cond_rhs (stmt);
1547
1548 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1549 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1550 return false;
1551 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1552 return false;
1553 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1554 return false;
1555 if (TREE_CODE (iv0.step) != INTEGER_CST
1556 || TREE_CODE (iv1.step) != INTEGER_CST)
1557 return false;
1558 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1559 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1560 return false;
1561
1562 if (integer_zerop (iv0.step))
1563 {
1564 if (code != NE_EXPR && code != EQ_EXPR)
1565 code = invert_tree_comparison (code, false);
1566 bound = iv0.base;
1567 base = iv1.base;
1568 if (tree_fits_shwi_p (iv1.step))
1569 step = iv1.step;
1570 else
1571 return false;
1572 }
1573 else
1574 {
1575 bound = iv1.base;
1576 base = iv0.base;
1577 if (tree_fits_shwi_p (iv0.step))
1578 step = iv0.step;
1579 else
1580 return false;
1581 }
1582
1583 if (TREE_CODE (bound) != INTEGER_CST)
1584 bound = get_base_value (bound);
1585 if (!bound)
1586 return false;
1587 if (TREE_CODE (base) != INTEGER_CST)
1588 base = get_base_value (base);
1589 if (!base)
1590 return false;
1591
1592 *loop_invariant = bound;
1593 *compare_code = code;
1594 *loop_step = step;
1595 *loop_iv_base = base;
1596 return true;
1597 }
1598
1599 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1600
1601 static bool
1602 expr_coherent_p (tree t1, tree t2)
1603 {
1604 gimple *stmt;
1605 tree ssa_name_1 = NULL;
1606 tree ssa_name_2 = NULL;
1607
1608 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1609 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1610
1611 if (t1 == t2)
1612 return true;
1613
1614 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1615 return true;
1616 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1617 return false;
1618
1619 /* Check to see if t1 is expressed/defined with t2. */
1620 stmt = SSA_NAME_DEF_STMT (t1);
1621 gcc_assert (stmt != NULL);
1622 if (is_gimple_assign (stmt))
1623 {
1624 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1625 if (ssa_name_1 && ssa_name_1 == t2)
1626 return true;
1627 }
1628
1629 /* Check to see if t2 is expressed/defined with t1. */
1630 stmt = SSA_NAME_DEF_STMT (t2);
1631 gcc_assert (stmt != NULL);
1632 if (is_gimple_assign (stmt))
1633 {
1634 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1635 if (ssa_name_2 && ssa_name_2 == t1)
1636 return true;
1637 }
1638
1639 /* Compare if t1 and t2's def_stmts are identical. */
1640 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1641 return true;
1642 else
1643 return false;
1644 }
1645
1646 /* Return true if E is predicted by one of loop heuristics. */
1647
1648 static bool
1649 predicted_by_loop_heuristics_p (basic_block bb)
1650 {
1651 struct edge_prediction *i;
1652 edge_prediction **preds = bb_predictions->get (bb);
1653
1654 if (!preds)
1655 return false;
1656
1657 for (i = *preds; i; i = i->ep_next)
1658 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1659 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1660 || i->ep_predictor == PRED_LOOP_ITERATIONS
1661 || i->ep_predictor == PRED_LOOP_EXIT
1662 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1663 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1664 return true;
1665 return false;
1666 }
1667
1668 /* Predict branch probability of BB when BB contains a branch that compares
1669 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1670 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1671
1672 E.g.
1673 for (int i = 0; i < bound; i++) {
1674 if (i < bound - 2)
1675 computation_1();
1676 else
1677 computation_2();
1678 }
1679
1680 In this loop, we will predict the branch inside the loop to be taken. */
1681
1682 static void
1683 predict_iv_comparison (class loop *loop, basic_block bb,
1684 tree loop_bound_var,
1685 tree loop_iv_base_var,
1686 enum tree_code loop_bound_code,
1687 int loop_bound_step)
1688 {
1689 tree compare_var, compare_base;
1690 enum tree_code compare_code;
1691 tree compare_step_var;
1692 edge then_edge;
1693 edge_iterator ei;
1694
1695 if (predicted_by_loop_heuristics_p (bb))
1696 return;
1697
1698 gcond *stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
1699 if (!stmt)
1700 return;
1701 if (!is_comparison_with_loop_invariant_p (stmt,
1702 loop, &compare_var,
1703 &compare_code,
1704 &compare_step_var,
1705 &compare_base))
1706 return;
1707
1708 /* Find the taken edge. */
1709 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1710 if (then_edge->flags & EDGE_TRUE_VALUE)
1711 break;
1712
1713 /* When comparing an IV to a loop invariant, NE is more likely to be
1714 taken while EQ is more likely to be not-taken. */
1715 if (compare_code == NE_EXPR)
1716 {
1717 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1718 return;
1719 }
1720 else if (compare_code == EQ_EXPR)
1721 {
1722 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1723 return;
1724 }
1725
1726 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1727 return;
1728
1729 /* If loop bound, base and compare bound are all constants, we can
1730 calculate the probability directly. */
1731 if (tree_fits_shwi_p (loop_bound_var)
1732 && tree_fits_shwi_p (compare_var)
1733 && tree_fits_shwi_p (compare_base))
1734 {
1735 int probability;
1736 wi::overflow_type overflow;
1737 bool overall_overflow = false;
1738 widest_int compare_count, tem;
1739
1740 /* (loop_bound - base) / compare_step */
1741 tem = wi::sub (wi::to_widest (loop_bound_var),
1742 wi::to_widest (compare_base), SIGNED, &overflow);
1743 overall_overflow |= overflow;
1744 widest_int loop_count = wi::div_trunc (tem,
1745 wi::to_widest (compare_step_var),
1746 SIGNED, &overflow);
1747 overall_overflow |= overflow;
1748
1749 if (!wi::neg_p (wi::to_widest (compare_step_var))
1750 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1751 {
1752 /* (loop_bound - compare_bound) / compare_step */
1753 tem = wi::sub (wi::to_widest (loop_bound_var),
1754 wi::to_widest (compare_var), SIGNED, &overflow);
1755 overall_overflow |= overflow;
1756 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1757 SIGNED, &overflow);
1758 overall_overflow |= overflow;
1759 }
1760 else
1761 {
1762 /* (compare_bound - base) / compare_step */
1763 tem = wi::sub (wi::to_widest (compare_var),
1764 wi::to_widest (compare_base), SIGNED, &overflow);
1765 overall_overflow |= overflow;
1766 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1767 SIGNED, &overflow);
1768 overall_overflow |= overflow;
1769 }
1770 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1771 ++compare_count;
1772 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1773 ++loop_count;
1774 if (wi::neg_p (compare_count))
1775 compare_count = 0;
1776 if (wi::neg_p (loop_count))
1777 loop_count = 0;
1778 if (loop_count == 0)
1779 probability = 0;
1780 else if (wi::cmps (compare_count, loop_count) == 1)
1781 probability = REG_BR_PROB_BASE;
1782 else
1783 {
1784 tem = compare_count * REG_BR_PROB_BASE;
1785 tem = wi::udiv_trunc (tem, loop_count);
1786 probability = tem.to_uhwi ();
1787 }
1788
1789 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1790 if (!overall_overflow)
1791 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1792
1793 return;
1794 }
1795
1796 if (expr_coherent_p (loop_bound_var, compare_var))
1797 {
1798 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1799 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1800 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1801 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1802 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1803 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1804 else if (loop_bound_code == NE_EXPR)
1805 {
1806 /* If the loop backedge condition is "(i != bound)", we do
1807 the comparison based on the step of IV:
1808 * step < 0 : backedge condition is like (i > bound)
1809 * step > 0 : backedge condition is like (i < bound) */
1810 gcc_assert (loop_bound_step != 0);
1811 if (loop_bound_step > 0
1812 && (compare_code == LT_EXPR
1813 || compare_code == LE_EXPR))
1814 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1815 else if (loop_bound_step < 0
1816 && (compare_code == GT_EXPR
1817 || compare_code == GE_EXPR))
1818 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1819 else
1820 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1821 }
1822 else
1823 /* The branch is predicted not-taken if loop_bound_code is
1824 opposite with compare_code. */
1825 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1826 }
1827 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1828 {
1829 /* For cases like:
1830 for (i = s; i < h; i++)
1831 if (i > s + 2) ....
1832 The branch should be predicted taken. */
1833 if (loop_bound_step > 0
1834 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1835 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1836 else if (loop_bound_step < 0
1837 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1838 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1839 else
1840 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1841 }
1842 }
1843
1844 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1845 exits are resulted from short-circuit conditions that will generate an
1846 if_tmp. E.g.:
1847
1848 if (foo() || global > 10)
1849 break;
1850
1851 This will be translated into:
1852
1853 BB3:
1854 loop header...
1855 BB4:
1856 if foo() goto BB6 else goto BB5
1857 BB5:
1858 if global > 10 goto BB6 else goto BB7
1859 BB6:
1860 goto BB7
1861 BB7:
1862 iftmp = (PHI 0(BB5), 1(BB6))
1863 if iftmp == 1 goto BB8 else goto BB3
1864 BB8:
1865 outside of the loop...
1866
1867 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1868 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1869 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1870 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1871
1872 static void
1873 predict_extra_loop_exits (class loop *loop, edge exit_edge)
1874 {
1875 unsigned i;
1876 bool check_value_one;
1877 gimple *lhs_def_stmt;
1878 gphi *phi_stmt;
1879 tree cmp_rhs, cmp_lhs;
1880
1881 gcond *cmp_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (exit_edge->src));
1882 if (!cmp_stmt)
1883 return;
1884
1885 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1886 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1887 if (!TREE_CONSTANT (cmp_rhs)
1888 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1889 return;
1890 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1891 return;
1892
1893 /* If check_value_one is true, only the phi_args with value '1' will lead
1894 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1895 loop exit. */
1896 check_value_one = (((integer_onep (cmp_rhs))
1897 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1898 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1899
1900 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1901 if (!lhs_def_stmt)
1902 return;
1903
1904 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1905 if (!phi_stmt)
1906 return;
1907
1908 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1909 {
1910 edge e1;
1911 edge_iterator ei;
1912 tree val = gimple_phi_arg_def (phi_stmt, i);
1913 edge e = gimple_phi_arg_edge (phi_stmt, i);
1914
1915 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1916 continue;
1917 if ((check_value_one ^ integer_onep (val)) == 1)
1918 continue;
1919 if (EDGE_COUNT (e->src->succs) != 1)
1920 {
1921 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1922 loop);
1923 continue;
1924 }
1925
1926 FOR_EACH_EDGE (e1, ei, e->src->preds)
1927 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN,
1928 loop);
1929 }
1930 }
1931
1932
1933 /* Predict edge probabilities by exploiting loop structure. */
1934
1935 static void
1936 predict_loops (void)
1937 {
1938 basic_block bb;
1939 hash_set <class loop *> with_recursion(10);
1940
1941 FOR_EACH_BB_FN (bb, cfun)
1942 {
1943 gimple_stmt_iterator gsi;
1944 tree decl;
1945
1946 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1947 if (is_gimple_call (gsi_stmt (gsi))
1948 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1949 && recursive_call_p (current_function_decl, decl))
1950 {
1951 class loop *loop = bb->loop_father;
1952 while (loop && !with_recursion.add (loop))
1953 loop = loop_outer (loop);
1954 }
1955 }
1956
1957 /* Try to predict out blocks in a loop that are not part of a
1958 natural loop. */
1959 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1960 {
1961 basic_block bb, *bbs;
1962 unsigned j, n_exits = 0;
1963 class tree_niter_desc niter_desc;
1964 edge ex;
1965 class nb_iter_bound *nb_iter;
1966 enum tree_code loop_bound_code = ERROR_MARK;
1967 tree loop_bound_step = NULL;
1968 tree loop_bound_var = NULL;
1969 tree loop_iv_base = NULL;
1970 gcond *stmt = NULL;
1971 bool recursion = with_recursion.contains (loop);
1972
1973 auto_vec<edge> exits = get_loop_exit_edges (loop);
1974 FOR_EACH_VEC_ELT (exits, j, ex)
1975 if (!unlikely_executed_edge_p (ex) && !(ex->flags & EDGE_ABNORMAL_CALL))
1976 n_exits ++;
1977 if (!n_exits)
1978 continue;
1979
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1981 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1982 loop->num, recursion ? " (with recursion)":"", n_exits);
1983 if (dump_file && (dump_flags & TDF_DETAILS)
1984 && max_loop_iterations_int (loop) >= 0)
1985 {
1986 fprintf (dump_file,
1987 "Loop %d iterates at most %i times.\n", loop->num,
1988 (int)max_loop_iterations_int (loop));
1989 }
1990 if (dump_file && (dump_flags & TDF_DETAILS)
1991 && likely_max_loop_iterations_int (loop) >= 0)
1992 {
1993 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1994 loop->num, (int)likely_max_loop_iterations_int (loop));
1995 }
1996
1997 FOR_EACH_VEC_ELT (exits, j, ex)
1998 {
1999 tree niter = NULL;
2000 HOST_WIDE_INT nitercst;
2001 int max = param_max_predicted_iterations;
2002 int probability;
2003 enum br_predictor predictor;
2004 widest_int nit;
2005
2006 if (unlikely_executed_edge_p (ex)
2007 || (ex->flags & EDGE_ABNORMAL_CALL))
2008 continue;
2009 /* Loop heuristics do not expect exit conditional to be inside
2010 inner loop. We predict from innermost to outermost loop. */
2011 if (predicted_by_loop_heuristics_p (ex->src))
2012 {
2013 if (dump_file && (dump_flags & TDF_DETAILS))
2014 fprintf (dump_file, "Skipping exit %i->%i because "
2015 "it is already predicted.\n",
2016 ex->src->index, ex->dest->index);
2017 continue;
2018 }
2019 predict_extra_loop_exits (loop, ex);
2020
2021 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
2022 niter = niter_desc.niter;
2023 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
2024 niter = loop_niter_by_eval (loop, ex);
2025 if (dump_file && (dump_flags & TDF_DETAILS)
2026 && TREE_CODE (niter) == INTEGER_CST)
2027 {
2028 fprintf (dump_file, "Exit %i->%i %d iterates ",
2029 ex->src->index, ex->dest->index,
2030 loop->num);
2031 print_generic_expr (dump_file, niter, TDF_SLIM);
2032 fprintf (dump_file, " times.\n");
2033 }
2034
2035 if (TREE_CODE (niter) == INTEGER_CST)
2036 {
2037 if (tree_fits_uhwi_p (niter)
2038 && max
2039 && compare_tree_int (niter, max - 1) == -1)
2040 nitercst = tree_to_uhwi (niter) + 1;
2041 else
2042 nitercst = max;
2043 predictor = PRED_LOOP_ITERATIONS;
2044 }
2045 /* If we have just one exit and we can derive some information about
2046 the number of iterations of the loop from the statements inside
2047 the loop, use it to predict this exit. */
2048 else if (n_exits == 1
2049 && estimated_stmt_executions (loop, &nit))
2050 {
2051 if (wi::gtu_p (nit, max))
2052 nitercst = max;
2053 else
2054 nitercst = nit.to_shwi ();
2055 predictor = PRED_LOOP_ITERATIONS_GUESSED;
2056 }
2057 /* If we have likely upper bound, trust it for very small iteration
2058 counts. Such loops would otherwise get mispredicted by standard
2059 LOOP_EXIT heuristics. */
2060 else if (n_exits == 1
2061 && likely_max_stmt_executions (loop, &nit)
2062 && wi::ltu_p (nit,
2063 RDIV (REG_BR_PROB_BASE,
2064 REG_BR_PROB_BASE
2065 - predictor_info
2066 [recursion
2067 ? PRED_LOOP_EXIT_WITH_RECURSION
2068 : PRED_LOOP_EXIT].hitrate)))
2069 {
2070 nitercst = nit.to_shwi ();
2071 predictor = PRED_LOOP_ITERATIONS_MAX;
2072 }
2073 else
2074 {
2075 if (dump_file && (dump_flags & TDF_DETAILS))
2076 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
2077 ex->src->index, ex->dest->index);
2078 continue;
2079 }
2080
2081 if (dump_file && (dump_flags & TDF_DETAILS))
2082 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
2083 (int)nitercst, predictor_info[predictor].name);
2084 /* If the prediction for number of iterations is zero, do not
2085 predict the exit edges. */
2086 if (nitercst == 0)
2087 continue;
2088
2089 probability = RDIV (REG_BR_PROB_BASE, nitercst);
2090 predict_edge (ex, predictor, probability);
2091 }
2092
2093 /* Find information about loop bound variables. */
2094 for (nb_iter = loop->bounds; nb_iter;
2095 nb_iter = nb_iter->next)
2096 if (nb_iter->stmt
2097 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
2098 {
2099 stmt = as_a <gcond *> (nb_iter->stmt);
2100 break;
2101 }
2102 if (!stmt)
2103 stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (loop->header));
2104 if (stmt)
2105 is_comparison_with_loop_invariant_p (stmt, loop,
2106 &loop_bound_var,
2107 &loop_bound_code,
2108 &loop_bound_step,
2109 &loop_iv_base);
2110
2111 bbs = get_loop_body (loop);
2112
2113 for (j = 0; j < loop->num_nodes; j++)
2114 {
2115 edge e;
2116 edge_iterator ei;
2117
2118 bb = bbs[j];
2119
2120 /* Bypass loop heuristics on continue statement. These
2121 statements construct loops via "non-loop" constructs
2122 in the source language and are better to be handled
2123 separately. */
2124 if (predicted_by_p (bb, PRED_CONTINUE))
2125 {
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2127 fprintf (dump_file, "BB %i predicted by continue.\n",
2128 bb->index);
2129 continue;
2130 }
2131
2132 /* If we already used more reliable loop exit predictors, do not
2133 bother with PRED_LOOP_EXIT. */
2134 if (!predicted_by_loop_heuristics_p (bb))
2135 {
2136 /* For loop with many exits we don't want to predict all exits
2137 with the pretty large probability, because if all exits are
2138 considered in row, the loop would be predicted to iterate
2139 almost never. The code to divide probability by number of
2140 exits is very rough. It should compute the number of exits
2141 taken in each patch through function (not the overall number
2142 of exits that might be a lot higher for loops with wide switch
2143 statements in them) and compute n-th square root.
2144
2145 We limit the minimal probability by 2% to avoid
2146 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
2147 as this was causing regression in perl benchmark containing such
2148 a wide loop. */
2149
2150 int probability = ((REG_BR_PROB_BASE
2151 - predictor_info
2152 [recursion
2153 ? PRED_LOOP_EXIT_WITH_RECURSION
2154 : PRED_LOOP_EXIT].hitrate)
2155 / n_exits);
2156 if (probability < HITRATE (2))
2157 probability = HITRATE (2);
2158 FOR_EACH_EDGE (e, ei, bb->succs)
2159 if (e->dest->index < NUM_FIXED_BLOCKS
2160 || !flow_bb_inside_loop_p (loop, e->dest))
2161 {
2162 if (dump_file && (dump_flags & TDF_DETAILS))
2163 fprintf (dump_file,
2164 "Predicting exit %i->%i with prob %i.\n",
2165 e->src->index, e->dest->index, probability);
2166 predict_edge (e,
2167 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
2168 : PRED_LOOP_EXIT, probability);
2169 }
2170 }
2171 if (loop_bound_var)
2172 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
2173 loop_bound_code,
2174 tree_to_shwi (loop_bound_step));
2175 }
2176
2177 /* In the following code
2178 for (loop1)
2179 if (cond)
2180 for (loop2)
2181 body;
2182 guess that cond is unlikely. */
2183 if (loop_outer (loop)->num)
2184 {
2185 basic_block bb = NULL;
2186 edge preheader_edge = loop_preheader_edge (loop);
2187
2188 if (single_pred_p (preheader_edge->src)
2189 && single_succ_p (preheader_edge->src))
2190 preheader_edge = single_pred_edge (preheader_edge->src);
2191
2192 /* Pattern match fortran loop preheader:
2193 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2194 _17 = (logical(kind=4)) _16;
2195 if (_17 != 0)
2196 goto <bb 11>;
2197 else
2198 goto <bb 13>;
2199
2200 Loop guard branch prediction says nothing about duplicated loop
2201 headers produced by fortran frontend and in this case we want
2202 to predict paths leading to this preheader. */
2203
2204 gcond *stmt
2205 = safe_dyn_cast <gcond *> (*gsi_last_bb (preheader_edge->src));
2206 if (stmt
2207 && gimple_cond_code (stmt) == NE_EXPR
2208 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2209 && integer_zerop (gimple_cond_rhs (stmt)))
2210 {
2211 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2212 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2213 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (call_stmt))
2214 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2215 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2216 if (gimple_call_internal_p (call_stmt, IFN_BUILTIN_EXPECT)
2217 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2218 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2219 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2220 == PRED_FORTRAN_LOOP_PREHEADER)
2221 bb = preheader_edge->src;
2222 }
2223 if (!bb)
2224 {
2225 if (!dominated_by_p (CDI_DOMINATORS,
2226 loop_outer (loop)->latch, loop->header))
2227 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2228 recursion
2229 ? PRED_LOOP_GUARD_WITH_RECURSION
2230 : PRED_LOOP_GUARD,
2231 NOT_TAKEN,
2232 loop_outer (loop));
2233 }
2234 else
2235 {
2236 if (!dominated_by_p (CDI_DOMINATORS,
2237 loop_outer (loop)->latch, bb))
2238 predict_paths_leading_to (bb,
2239 recursion
2240 ? PRED_LOOP_GUARD_WITH_RECURSION
2241 : PRED_LOOP_GUARD,
2242 NOT_TAKEN,
2243 loop_outer (loop));
2244 }
2245 }
2246
2247 /* Free basic blocks from get_loop_body. */
2248 free (bbs);
2249 }
2250 }
2251
2252 /* Attempt to predict probabilities of BB outgoing edges using local
2253 properties. */
2254 static void
2255 bb_estimate_probability_locally (basic_block bb)
2256 {
2257 rtx_insn *last_insn = BB_END (bb);
2258 rtx cond;
2259
2260 if (! can_predict_insn_p (last_insn))
2261 return;
2262 cond = get_condition (last_insn, NULL, false, false);
2263 if (! cond)
2264 return;
2265
2266 /* Try "pointer heuristic."
2267 A comparison ptr == 0 is predicted as false.
2268 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2269 if (COMPARISON_P (cond)
2270 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2271 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2272 {
2273 if (GET_CODE (cond) == EQ)
2274 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2275 else if (GET_CODE (cond) == NE)
2276 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2277 }
2278 else
2279
2280 /* Try "opcode heuristic."
2281 EQ tests are usually false and NE tests are usually true. Also,
2282 most quantities are positive, so we can make the appropriate guesses
2283 about signed comparisons against zero. */
2284 switch (GET_CODE (cond))
2285 {
2286 case CONST_INT:
2287 /* Unconditional branch. */
2288 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2289 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2290 break;
2291
2292 case EQ:
2293 case UNEQ:
2294 /* Floating point comparisons appears to behave in a very
2295 unpredictable way because of special role of = tests in
2296 FP code. */
2297 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2298 ;
2299 /* Comparisons with 0 are often used for booleans and there is
2300 nothing useful to predict about them. */
2301 else if (XEXP (cond, 1) == const0_rtx
2302 || XEXP (cond, 0) == const0_rtx)
2303 ;
2304 else
2305 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2306 break;
2307
2308 case NE:
2309 case LTGT:
2310 /* Floating point comparisons appears to behave in a very
2311 unpredictable way because of special role of = tests in
2312 FP code. */
2313 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2314 ;
2315 /* Comparisons with 0 are often used for booleans and there is
2316 nothing useful to predict about them. */
2317 else if (XEXP (cond, 1) == const0_rtx
2318 || XEXP (cond, 0) == const0_rtx)
2319 ;
2320 else
2321 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2322 break;
2323
2324 case ORDERED:
2325 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2326 break;
2327
2328 case UNORDERED:
2329 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2330 break;
2331
2332 case LE:
2333 case LT:
2334 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2335 || XEXP (cond, 1) == constm1_rtx)
2336 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2337 break;
2338
2339 case GE:
2340 case GT:
2341 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2342 || XEXP (cond, 1) == constm1_rtx)
2343 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2344 break;
2345
2346 default:
2347 break;
2348 }
2349 }
2350
2351 /* Set edge->probability for each successor edge of BB. */
2352 void
2353 guess_outgoing_edge_probabilities (basic_block bb)
2354 {
2355 bb_estimate_probability_locally (bb);
2356 combine_predictions_for_insn (BB_END (bb), bb);
2357 }
2358 \f
2359 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor,
2360 HOST_WIDE_INT *probability);
2361
2362 /* Helper function for expr_expected_value. */
2363
2364 static tree
2365 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2366 tree op1, bitmap visited, enum br_predictor *predictor,
2367 HOST_WIDE_INT *probability)
2368 {
2369 gimple *def;
2370
2371 /* Reset returned probability value. */
2372 *probability = -1;
2373 *predictor = PRED_UNCONDITIONAL;
2374
2375 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2376 {
2377 if (TREE_CONSTANT (op0))
2378 return op0;
2379
2380 if (code == IMAGPART_EXPR)
2381 {
2382 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2383 {
2384 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2385 if (is_gimple_call (def)
2386 && gimple_call_internal_p (def)
2387 && (gimple_call_internal_fn (def)
2388 == IFN_ATOMIC_COMPARE_EXCHANGE))
2389 {
2390 /* Assume that any given atomic operation has low contention,
2391 and thus the compare-and-swap operation succeeds. */
2392 *predictor = PRED_COMPARE_AND_SWAP;
2393 return build_one_cst (TREE_TYPE (op0));
2394 }
2395 }
2396 }
2397
2398 if (code != SSA_NAME)
2399 return NULL_TREE;
2400
2401 def = SSA_NAME_DEF_STMT (op0);
2402
2403 /* If we were already here, break the infinite cycle. */
2404 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2405 return NULL;
2406
2407 if (gimple_code (def) == GIMPLE_PHI)
2408 {
2409 /* All the arguments of the PHI node must have the same constant
2410 length. */
2411 int i, n = gimple_phi_num_args (def);
2412 tree val = NULL, new_val;
2413
2414 for (i = 0; i < n; i++)
2415 {
2416 tree arg = PHI_ARG_DEF (def, i);
2417 enum br_predictor predictor2;
2418
2419 /* If this PHI has itself as an argument, we cannot
2420 determine the string length of this argument. However,
2421 if we can find an expected constant value for the other
2422 PHI args then we can still be sure that this is
2423 likely a constant. So be optimistic and just
2424 continue with the next argument. */
2425 if (arg == PHI_RESULT (def))
2426 continue;
2427
2428 HOST_WIDE_INT probability2;
2429 new_val = expr_expected_value (arg, visited, &predictor2,
2430 &probability2);
2431
2432 /* It is difficult to combine value predictors. Simply assume
2433 that later predictor is weaker and take its prediction. */
2434 if (*predictor < predictor2)
2435 {
2436 *predictor = predictor2;
2437 *probability = probability2;
2438 }
2439 if (!new_val)
2440 return NULL;
2441 if (!val)
2442 val = new_val;
2443 else if (!operand_equal_p (val, new_val, false))
2444 return NULL;
2445 }
2446 return val;
2447 }
2448 if (is_gimple_assign (def))
2449 {
2450 if (gimple_assign_lhs (def) != op0)
2451 return NULL;
2452
2453 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2454 gimple_assign_rhs1 (def),
2455 gimple_assign_rhs_code (def),
2456 gimple_assign_rhs2 (def),
2457 visited, predictor, probability);
2458 }
2459
2460 if (is_gimple_call (def))
2461 {
2462 tree decl = gimple_call_fndecl (def);
2463 if (!decl)
2464 {
2465 if (gimple_call_internal_p (def)
2466 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2467 {
2468 gcc_assert (gimple_call_num_args (def) == 3);
2469 tree val = gimple_call_arg (def, 0);
2470 if (TREE_CONSTANT (val))
2471 return val;
2472 tree val2 = gimple_call_arg (def, 2);
2473 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2474 && tree_fits_uhwi_p (val2)
2475 && tree_to_uhwi (val2) < END_PREDICTORS);
2476 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2477 if (*predictor == PRED_BUILTIN_EXPECT)
2478 *probability
2479 = HITRATE (param_builtin_expect_probability);
2480 return gimple_call_arg (def, 1);
2481 }
2482 return NULL;
2483 }
2484
2485 if (DECL_IS_MALLOC (decl) || DECL_IS_OPERATOR_NEW_P (decl))
2486 {
2487 if (predictor)
2488 *predictor = PRED_MALLOC_NONNULL;
2489 /* FIXME: This is wrong and we need to convert the logic
2490 to value ranges. This makes predictor to assume that
2491 malloc always returns (size_t)1 which is not the same
2492 as returning non-NULL. */
2493 return fold_convert (type, boolean_true_node);
2494 }
2495
2496 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2497 switch (DECL_FUNCTION_CODE (decl))
2498 {
2499 case BUILT_IN_EXPECT:
2500 {
2501 tree val;
2502 if (gimple_call_num_args (def) != 2)
2503 return NULL;
2504 val = gimple_call_arg (def, 0);
2505 if (TREE_CONSTANT (val))
2506 return val;
2507 *predictor = PRED_BUILTIN_EXPECT;
2508 *probability
2509 = HITRATE (param_builtin_expect_probability);
2510 return gimple_call_arg (def, 1);
2511 }
2512 case BUILT_IN_EXPECT_WITH_PROBABILITY:
2513 {
2514 tree val;
2515 if (gimple_call_num_args (def) != 3)
2516 return NULL;
2517 val = gimple_call_arg (def, 0);
2518 if (TREE_CONSTANT (val))
2519 return val;
2520 /* Compute final probability as:
2521 probability * REG_BR_PROB_BASE. */
2522 tree prob = gimple_call_arg (def, 2);
2523 tree t = TREE_TYPE (prob);
2524 tree base = build_int_cst (integer_type_node,
2525 REG_BR_PROB_BASE);
2526 base = build_real_from_int_cst (t, base);
2527 tree r = fold_build2_initializer_loc (UNKNOWN_LOCATION,
2528 MULT_EXPR, t, prob, base);
2529 if (TREE_CODE (r) != REAL_CST)
2530 {
2531 error_at (gimple_location (def),
2532 "probability %qE must be "
2533 "constant floating-point expression", prob);
2534 return NULL;
2535 }
2536 HOST_WIDE_INT probi
2537 = real_to_integer (TREE_REAL_CST_PTR (r));
2538 if (probi >= 0 && probi <= REG_BR_PROB_BASE)
2539 {
2540 *predictor = PRED_BUILTIN_EXPECT_WITH_PROBABILITY;
2541 *probability = probi;
2542 }
2543 else
2544 error_at (gimple_location (def),
2545 "probability %qE is outside "
2546 "the range [0.0, 1.0]", prob);
2547
2548 return gimple_call_arg (def, 1);
2549 }
2550
2551 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2552 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2553 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2554 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2555 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2556 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2557 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2558 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2559 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2560 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2561 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2562 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2563 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2564 /* Assume that any given atomic operation has low contention,
2565 and thus the compare-and-swap operation succeeds. */
2566 *predictor = PRED_COMPARE_AND_SWAP;
2567 return boolean_true_node;
2568 case BUILT_IN_REALLOC:
2569 case BUILT_IN_GOMP_REALLOC:
2570 if (predictor)
2571 *predictor = PRED_MALLOC_NONNULL;
2572 /* FIXME: This is wrong and we need to convert the logic
2573 to value ranges. */
2574 return fold_convert (type, boolean_true_node);
2575 default:
2576 break;
2577 }
2578 }
2579
2580 return NULL;
2581 }
2582
2583 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2584 {
2585 tree res;
2586 tree nop0 = op0;
2587 tree nop1 = op1;
2588 if (TREE_CODE (op0) != INTEGER_CST)
2589 {
2590 /* See if expected value of op0 is good enough to determine the result. */
2591 nop0 = expr_expected_value (op0, visited, predictor, probability);
2592 if (nop0
2593 && (res = fold_build2 (code, type, nop0, op1)) != NULL
2594 && TREE_CODE (res) == INTEGER_CST)
2595 return res;
2596 if (!nop0)
2597 nop0 = op0;
2598 }
2599 enum br_predictor predictor2;
2600 HOST_WIDE_INT probability2;
2601 if (TREE_CODE (op1) != INTEGER_CST)
2602 {
2603 /* See if expected value of op1 is good enough to determine the result. */
2604 nop1 = expr_expected_value (op1, visited, &predictor2, &probability2);
2605 if (nop1
2606 && (res = fold_build2 (code, type, op0, nop1)) != NULL
2607 && TREE_CODE (res) == INTEGER_CST)
2608 {
2609 *predictor = predictor2;
2610 *probability = probability2;
2611 return res;
2612 }
2613 if (!nop1)
2614 nop1 = op1;
2615 }
2616 if (nop0 == op0 || nop1 == op1)
2617 return NULL;
2618 /* Finally see if we have two known values. */
2619 res = fold_build2 (code, type, nop0, nop1);
2620 if (TREE_CODE (res) == INTEGER_CST
2621 && TREE_CODE (nop0) == INTEGER_CST
2622 && TREE_CODE (nop1) == INTEGER_CST)
2623 {
2624 /* Combine binary predictions. */
2625 if (*probability != -1 || probability2 != -1)
2626 {
2627 HOST_WIDE_INT p1 = get_predictor_value (*predictor, *probability);
2628 HOST_WIDE_INT p2 = get_predictor_value (predictor2, probability2);
2629 *probability = RDIV (p1 * p2, REG_BR_PROB_BASE);
2630 }
2631
2632 if (predictor2 < *predictor)
2633 *predictor = predictor2;
2634
2635 return res;
2636 }
2637 return NULL;
2638 }
2639 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2640 {
2641 tree res;
2642 op0 = expr_expected_value (op0, visited, predictor, probability);
2643 if (!op0)
2644 return NULL;
2645 res = fold_build1 (code, type, op0);
2646 if (TREE_CONSTANT (res))
2647 return res;
2648 return NULL;
2649 }
2650 return NULL;
2651 }
2652
2653 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2654 The function is used by builtin_expect branch predictor so the evidence
2655 must come from this construct and additional possible constant folding.
2656
2657 We may want to implement more involved value guess (such as value range
2658 propagation based prediction), but such tricks shall go to new
2659 implementation. */
2660
2661 static tree
2662 expr_expected_value (tree expr, bitmap visited,
2663 enum br_predictor *predictor,
2664 HOST_WIDE_INT *probability)
2665 {
2666 enum tree_code code;
2667 tree op0, op1;
2668
2669 if (TREE_CONSTANT (expr))
2670 {
2671 *predictor = PRED_UNCONDITIONAL;
2672 *probability = -1;
2673 return expr;
2674 }
2675
2676 extract_ops_from_tree (expr, &code, &op0, &op1);
2677 return expr_expected_value_1 (TREE_TYPE (expr),
2678 op0, code, op1, visited, predictor,
2679 probability);
2680 }
2681 \f
2682
2683 /* Return probability of a PREDICTOR. If the predictor has variable
2684 probability return passed PROBABILITY. */
2685
2686 static HOST_WIDE_INT
2687 get_predictor_value (br_predictor predictor, HOST_WIDE_INT probability)
2688 {
2689 switch (predictor)
2690 {
2691 case PRED_BUILTIN_EXPECT:
2692 case PRED_BUILTIN_EXPECT_WITH_PROBABILITY:
2693 gcc_assert (probability != -1);
2694 return probability;
2695 default:
2696 gcc_assert (probability == -1);
2697 return predictor_info[(int) predictor].hitrate;
2698 }
2699 }
2700
2701 /* Predict using opcode of the last statement in basic block. */
2702 static void
2703 tree_predict_by_opcode (basic_block bb)
2704 {
2705 edge then_edge;
2706 tree op0, op1;
2707 tree type;
2708 tree val;
2709 enum tree_code cmp;
2710 edge_iterator ei;
2711 enum br_predictor predictor;
2712 HOST_WIDE_INT probability;
2713
2714 gimple *stmt = *gsi_last_bb (bb);
2715 if (!stmt)
2716 return;
2717
2718 if (gswitch *sw = dyn_cast <gswitch *> (stmt))
2719 {
2720 tree index = gimple_switch_index (sw);
2721 tree val = expr_expected_value (index, auto_bitmap (),
2722 &predictor, &probability);
2723 if (val && TREE_CODE (val) == INTEGER_CST)
2724 {
2725 edge e = find_taken_edge_switch_expr (sw, val);
2726 if (predictor == PRED_BUILTIN_EXPECT)
2727 {
2728 int percent = param_builtin_expect_probability;
2729 gcc_assert (percent >= 0 && percent <= 100);
2730 predict_edge (e, PRED_BUILTIN_EXPECT,
2731 HITRATE (percent));
2732 }
2733 else
2734 predict_edge_def (e, predictor, TAKEN);
2735 }
2736 }
2737
2738 if (gimple_code (stmt) != GIMPLE_COND)
2739 return;
2740 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2741 if (then_edge->flags & EDGE_TRUE_VALUE)
2742 break;
2743 op0 = gimple_cond_lhs (stmt);
2744 op1 = gimple_cond_rhs (stmt);
2745 cmp = gimple_cond_code (stmt);
2746 type = TREE_TYPE (op0);
2747 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, auto_bitmap (),
2748 &predictor, &probability);
2749 if (val && TREE_CODE (val) == INTEGER_CST)
2750 {
2751 HOST_WIDE_INT prob = get_predictor_value (predictor, probability);
2752 if (integer_zerop (val))
2753 prob = REG_BR_PROB_BASE - prob;
2754 predict_edge (then_edge, predictor, prob);
2755 }
2756 /* Try "pointer heuristic."
2757 A comparison ptr == 0 is predicted as false.
2758 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2759 if (POINTER_TYPE_P (type))
2760 {
2761 if (cmp == EQ_EXPR)
2762 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2763 else if (cmp == NE_EXPR)
2764 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2765 }
2766 else
2767
2768 /* Try "opcode heuristic."
2769 EQ tests are usually false and NE tests are usually true. Also,
2770 most quantities are positive, so we can make the appropriate guesses
2771 about signed comparisons against zero. */
2772 switch (cmp)
2773 {
2774 case EQ_EXPR:
2775 case UNEQ_EXPR:
2776 /* Floating point comparisons appears to behave in a very
2777 unpredictable way because of special role of = tests in
2778 FP code. */
2779 if (FLOAT_TYPE_P (type))
2780 ;
2781 /* Comparisons with 0 are often used for booleans and there is
2782 nothing useful to predict about them. */
2783 else if (integer_zerop (op0) || integer_zerop (op1))
2784 ;
2785 else
2786 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2787 break;
2788
2789 case NE_EXPR:
2790 case LTGT_EXPR:
2791 /* Floating point comparisons appears to behave in a very
2792 unpredictable way because of special role of = tests in
2793 FP code. */
2794 if (FLOAT_TYPE_P (type))
2795 ;
2796 /* Comparisons with 0 are often used for booleans and there is
2797 nothing useful to predict about them. */
2798 else if (integer_zerop (op0)
2799 || integer_zerop (op1))
2800 ;
2801 else
2802 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2803 break;
2804
2805 case ORDERED_EXPR:
2806 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2807 break;
2808
2809 case UNORDERED_EXPR:
2810 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2811 break;
2812
2813 case LE_EXPR:
2814 case LT_EXPR:
2815 if (integer_zerop (op1)
2816 || integer_onep (op1)
2817 || integer_all_onesp (op1)
2818 || real_zerop (op1)
2819 || real_onep (op1)
2820 || real_minus_onep (op1))
2821 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2822 break;
2823
2824 case GE_EXPR:
2825 case GT_EXPR:
2826 if (integer_zerop (op1)
2827 || integer_onep (op1)
2828 || integer_all_onesp (op1)
2829 || real_zerop (op1)
2830 || real_onep (op1)
2831 || real_minus_onep (op1))
2832 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2833 break;
2834
2835 default:
2836 break;
2837 }
2838 }
2839
2840 /* Returns TRUE if the STMT is exit(0) like statement. */
2841
2842 static bool
2843 is_exit_with_zero_arg (const gimple *stmt)
2844 {
2845 /* This is not exit, _exit or _Exit. */
2846 if (!gimple_call_builtin_p (stmt, BUILT_IN_EXIT)
2847 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT)
2848 && !gimple_call_builtin_p (stmt, BUILT_IN__EXIT2))
2849 return false;
2850
2851 /* Argument is an interger zero. */
2852 return integer_zerop (gimple_call_arg (stmt, 0));
2853 }
2854
2855 /* Try to guess whether the value of return means error code. */
2856
2857 static enum br_predictor
2858 return_prediction (tree val, enum prediction *prediction)
2859 {
2860 /* VOID. */
2861 if (!val)
2862 return PRED_NO_PREDICTION;
2863 /* Different heuristics for pointers and scalars. */
2864 if (POINTER_TYPE_P (TREE_TYPE (val)))
2865 {
2866 /* NULL is usually not returned. */
2867 if (integer_zerop (val))
2868 {
2869 *prediction = NOT_TAKEN;
2870 return PRED_NULL_RETURN;
2871 }
2872 }
2873 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2874 {
2875 /* Negative return values are often used to indicate
2876 errors. */
2877 if (TREE_CODE (val) == INTEGER_CST
2878 && tree_int_cst_sgn (val) < 0)
2879 {
2880 *prediction = NOT_TAKEN;
2881 return PRED_NEGATIVE_RETURN;
2882 }
2883 /* Constant return values seems to be commonly taken.
2884 Zero/one often represent booleans so exclude them from the
2885 heuristics. */
2886 if (TREE_CONSTANT (val)
2887 && (!integer_zerop (val) && !integer_onep (val)))
2888 {
2889 *prediction = NOT_TAKEN;
2890 return PRED_CONST_RETURN;
2891 }
2892 }
2893 return PRED_NO_PREDICTION;
2894 }
2895
2896 /* Return zero if phi result could have values other than -1, 0 or 1,
2897 otherwise return a bitmask, with bits 0, 1 and 2 set if -1, 0 and 1
2898 values are used or likely. */
2899
2900 static int
2901 zero_one_minusone (gphi *phi, int limit)
2902 {
2903 int phi_num_args = gimple_phi_num_args (phi);
2904 int ret = 0;
2905 for (int i = 0; i < phi_num_args; i++)
2906 {
2907 tree t = PHI_ARG_DEF (phi, i);
2908 if (TREE_CODE (t) != INTEGER_CST)
2909 continue;
2910 wide_int w = wi::to_wide (t);
2911 if (w == -1)
2912 ret |= 1;
2913 else if (w == 0)
2914 ret |= 2;
2915 else if (w == 1)
2916 ret |= 4;
2917 else
2918 return 0;
2919 }
2920 for (int i = 0; i < phi_num_args; i++)
2921 {
2922 tree t = PHI_ARG_DEF (phi, i);
2923 if (TREE_CODE (t) == INTEGER_CST)
2924 continue;
2925 if (TREE_CODE (t) != SSA_NAME)
2926 return 0;
2927 gimple *g = SSA_NAME_DEF_STMT (t);
2928 if (gimple_code (g) == GIMPLE_PHI && limit > 0)
2929 if (int r = zero_one_minusone (as_a <gphi *> (g), limit - 1))
2930 {
2931 ret |= r;
2932 continue;
2933 }
2934 if (!is_gimple_assign (g))
2935 return 0;
2936 if (gimple_assign_cast_p (g))
2937 {
2938 tree rhs1 = gimple_assign_rhs1 (g);
2939 if (TREE_CODE (rhs1) != SSA_NAME
2940 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2941 || TYPE_PRECISION (TREE_TYPE (rhs1)) != 1
2942 || !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
2943 return 0;
2944 ret |= (2 | 4);
2945 continue;
2946 }
2947 if (TREE_CODE_CLASS (gimple_assign_rhs_code (g)) != tcc_comparison)
2948 return 0;
2949 ret |= (2 | 4);
2950 }
2951 return ret;
2952 }
2953
2954 /* Find the basic block with return expression and look up for possible
2955 return value trying to apply RETURN_PREDICTION heuristics. */
2956 static void
2957 apply_return_prediction (void)
2958 {
2959 greturn *return_stmt = NULL;
2960 tree return_val;
2961 edge e;
2962 gphi *phi;
2963 int phi_num_args, i;
2964 enum br_predictor pred;
2965 enum prediction direction;
2966 edge_iterator ei;
2967
2968 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2969 {
2970 if (greturn *last = safe_dyn_cast <greturn *> (*gsi_last_bb (e->src)))
2971 {
2972 return_stmt = last;
2973 break;
2974 }
2975 }
2976 if (!e)
2977 return;
2978 return_val = gimple_return_retval (return_stmt);
2979 if (!return_val)
2980 return;
2981 if (TREE_CODE (return_val) != SSA_NAME
2982 || !SSA_NAME_DEF_STMT (return_val)
2983 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2984 return;
2985 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2986 phi_num_args = gimple_phi_num_args (phi);
2987 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2988
2989 /* Avoid the case where the function returns -1, 0 and 1 values and
2990 nothing else. Those could be qsort etc. comparison functions
2991 where the negative return isn't less probable than positive.
2992 For this require that the function returns at least -1 or 1
2993 or -1 and a boolean value or comparison result, so that functions
2994 returning just -1 and 0 are treated as if -1 represents error value. */
2995 if (INTEGRAL_TYPE_P (TREE_TYPE (return_val))
2996 && !TYPE_UNSIGNED (TREE_TYPE (return_val))
2997 && TYPE_PRECISION (TREE_TYPE (return_val)) > 1)
2998 if (int r = zero_one_minusone (phi, 3))
2999 if ((r & (1 | 4)) == (1 | 4))
3000 return;
3001
3002 /* Avoid the degenerate case where all return values form the function
3003 belongs to same category (ie they are all positive constants)
3004 so we can hardly say something about them. */
3005 for (i = 1; i < phi_num_args; i++)
3006 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
3007 break;
3008 if (i != phi_num_args)
3009 for (i = 0; i < phi_num_args; i++)
3010 {
3011 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
3012 if (pred != PRED_NO_PREDICTION)
3013 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
3014 direction);
3015 }
3016 }
3017
3018 /* Look for basic block that contains unlikely to happen events
3019 (such as noreturn calls) and mark all paths leading to execution
3020 of this basic blocks as unlikely. */
3021
3022 static void
3023 tree_bb_level_predictions (void)
3024 {
3025 basic_block bb;
3026 bool has_return_edges = false;
3027 edge e;
3028 edge_iterator ei;
3029
3030 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
3031 if (!unlikely_executed_edge_p (e) && !(e->flags & EDGE_ABNORMAL_CALL))
3032 {
3033 has_return_edges = true;
3034 break;
3035 }
3036
3037 apply_return_prediction ();
3038
3039 FOR_EACH_BB_FN (bb, cfun)
3040 {
3041 gimple_stmt_iterator gsi;
3042
3043 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3044 {
3045 gimple *stmt = gsi_stmt (gsi);
3046 tree decl;
3047
3048 if (is_gimple_call (stmt))
3049 {
3050 if (gimple_call_noreturn_p (stmt)
3051 && has_return_edges
3052 && !is_exit_with_zero_arg (stmt))
3053 predict_paths_leading_to (bb, PRED_NORETURN,
3054 NOT_TAKEN);
3055 decl = gimple_call_fndecl (stmt);
3056 if (decl
3057 && lookup_attribute ("cold",
3058 DECL_ATTRIBUTES (decl)))
3059 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
3060 NOT_TAKEN);
3061 if (decl && recursive_call_p (current_function_decl, decl))
3062 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
3063 NOT_TAKEN);
3064 }
3065 else if (gimple_code (stmt) == GIMPLE_PREDICT)
3066 {
3067 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
3068 gimple_predict_outcome (stmt));
3069 /* Keep GIMPLE_PREDICT around so early inlining will propagate
3070 hints to callers. */
3071 }
3072 }
3073 }
3074 }
3075
3076 /* Callback for hash_map::traverse, asserts that the pointer map is
3077 empty. */
3078
3079 bool
3080 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
3081 void *)
3082 {
3083 gcc_assert (!value);
3084 return true;
3085 }
3086
3087 /* Predict branch probabilities and estimate profile for basic block BB.
3088 When LOCAL_ONLY is set do not use any global properties of CFG. */
3089
3090 static void
3091 tree_estimate_probability_bb (basic_block bb, bool local_only)
3092 {
3093 edge e;
3094 edge_iterator ei;
3095
3096 FOR_EACH_EDGE (e, ei, bb->succs)
3097 {
3098 /* Look for block we are guarding (ie we dominate it,
3099 but it doesn't postdominate us). */
3100 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
3101 && !local_only
3102 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
3103 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
3104 {
3105 gimple_stmt_iterator bi;
3106
3107 /* The call heuristic claims that a guarded function call
3108 is improbable. This is because such calls are often used
3109 to signal exceptional situations such as printing error
3110 messages. */
3111 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
3112 gsi_next (&bi))
3113 {
3114 gimple *stmt = gsi_stmt (bi);
3115 if (is_gimple_call (stmt)
3116 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
3117 /* Constant and pure calls are hardly used to signalize
3118 something exceptional. */
3119 && gimple_has_side_effects (stmt))
3120 {
3121 if (gimple_call_fndecl (stmt))
3122 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
3123 else if (virtual_method_call_p (gimple_call_fn (stmt)))
3124 predict_edge_def (e, PRED_POLYMORPHIC_CALL, NOT_TAKEN);
3125 else
3126 predict_edge_def (e, PRED_INDIR_CALL, TAKEN);
3127 break;
3128 }
3129 }
3130 }
3131 }
3132 tree_predict_by_opcode (bb);
3133 }
3134
3135 /* Predict branch probabilities and estimate profile of the tree CFG.
3136 This function can be called from the loop optimizers to recompute
3137 the profile information.
3138 If DRY_RUN is set, do not modify CFG and only produce dump files. */
3139
3140 void
3141 tree_estimate_probability (bool dry_run)
3142 {
3143 basic_block bb;
3144
3145 connect_infinite_loops_to_exit ();
3146 /* We use loop_niter_by_eval, which requires that the loops have
3147 preheaders. */
3148 create_preheaders (CP_SIMPLE_PREHEADERS);
3149 calculate_dominance_info (CDI_POST_DOMINATORS);
3150 /* Decide which edges are known to be unlikely. This improves later
3151 branch prediction. */
3152 determine_unlikely_bbs ();
3153
3154 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3155 tree_bb_level_predictions ();
3156 record_loop_exits ();
3157
3158 if (number_of_loops (cfun) > 1)
3159 predict_loops ();
3160
3161 FOR_EACH_BB_FN (bb, cfun)
3162 tree_estimate_probability_bb (bb, false);
3163
3164 FOR_EACH_BB_FN (bb, cfun)
3165 combine_predictions_for_bb (bb, dry_run);
3166
3167 if (flag_checking)
3168 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3169
3170 delete bb_predictions;
3171 bb_predictions = NULL;
3172
3173 if (!dry_run
3174 && profile_status_for_fn (cfun) != PROFILE_READ)
3175 estimate_bb_frequencies ();
3176 free_dominance_info (CDI_POST_DOMINATORS);
3177 remove_fake_exit_edges ();
3178 }
3179
3180 /* Set edge->probability for each successor edge of BB. */
3181 void
3182 tree_guess_outgoing_edge_probabilities (basic_block bb)
3183 {
3184 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
3185 tree_estimate_probability_bb (bb, true);
3186 combine_predictions_for_bb (bb, false);
3187 if (flag_checking)
3188 bb_predictions->traverse<void *, assert_is_empty> (NULL);
3189 delete bb_predictions;
3190 bb_predictions = NULL;
3191 }
3192 \f
3193 /* Filter function predicate that returns true for a edge predicate P
3194 if its edge is equal to DATA. */
3195
3196 static bool
3197 not_loop_guard_equal_edge_p (edge_prediction *p, void *data)
3198 {
3199 return p->ep_edge != (edge)data || p->ep_predictor != PRED_LOOP_GUARD;
3200 }
3201
3202 /* Predict edge E with PRED unless it is already predicted by some predictor
3203 considered equivalent. */
3204
3205 static void
3206 maybe_predict_edge (edge e, enum br_predictor pred, enum prediction taken)
3207 {
3208 if (edge_predicted_by_p (e, pred, taken))
3209 return;
3210 if (pred == PRED_LOOP_GUARD
3211 && edge_predicted_by_p (e, PRED_LOOP_GUARD_WITH_RECURSION, taken))
3212 return;
3213 /* Consider PRED_LOOP_GUARD_WITH_RECURSION superrior to LOOP_GUARD. */
3214 if (pred == PRED_LOOP_GUARD_WITH_RECURSION)
3215 {
3216 edge_prediction **preds = bb_predictions->get (e->src);
3217 if (preds)
3218 filter_predictions (preds, not_loop_guard_equal_edge_p, e);
3219 }
3220 predict_edge_def (e, pred, taken);
3221 }
3222 /* Predict edges to successors of CUR whose sources are not postdominated by
3223 BB by PRED and recurse to all postdominators. */
3224
3225 static void
3226 predict_paths_for_bb (basic_block cur, basic_block bb,
3227 enum br_predictor pred,
3228 enum prediction taken,
3229 bitmap visited, class loop *in_loop = NULL)
3230 {
3231 edge e;
3232 edge_iterator ei;
3233 basic_block son;
3234
3235 /* If we exited the loop or CUR is unconditional in the loop, there is
3236 nothing to do. */
3237 if (in_loop
3238 && (!flow_bb_inside_loop_p (in_loop, cur)
3239 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
3240 return;
3241
3242 /* We are looking for all edges forming edge cut induced by
3243 set of all blocks postdominated by BB. */
3244 FOR_EACH_EDGE (e, ei, cur->preds)
3245 if (e->src->index >= NUM_FIXED_BLOCKS
3246 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
3247 {
3248 edge e2;
3249 edge_iterator ei2;
3250 bool found = false;
3251
3252 /* Ignore fake edges and eh, we predict them as not taken anyway. */
3253 if (unlikely_executed_edge_p (e))
3254 continue;
3255 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
3256
3257 /* See if there is an edge from e->src that is not abnormal
3258 and does not lead to BB and does not exit the loop. */
3259 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3260 if (e2 != e
3261 && !unlikely_executed_edge_p (e2)
3262 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
3263 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
3264 {
3265 found = true;
3266 break;
3267 }
3268
3269 /* If there is non-abnormal path leaving e->src, predict edge
3270 using predictor. Otherwise we need to look for paths
3271 leading to e->src.
3272
3273 The second may lead to infinite loop in the case we are predicitng
3274 regions that are only reachable by abnormal edges. We simply
3275 prevent visiting given BB twice. */
3276 if (found)
3277 maybe_predict_edge (e, pred, taken);
3278 else if (bitmap_set_bit (visited, e->src->index))
3279 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
3280 }
3281 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
3282 son;
3283 son = next_dom_son (CDI_POST_DOMINATORS, son))
3284 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
3285 }
3286
3287 /* Sets branch probabilities according to PREDiction and
3288 FLAGS. */
3289
3290 static void
3291 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
3292 enum prediction taken, class loop *in_loop)
3293 {
3294 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3295 }
3296
3297 /* Like predict_paths_leading_to but take edge instead of basic block. */
3298
3299 static void
3300 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
3301 enum prediction taken, class loop *in_loop)
3302 {
3303 bool has_nonloop_edge = false;
3304 edge_iterator ei;
3305 edge e2;
3306
3307 basic_block bb = e->src;
3308 FOR_EACH_EDGE (e2, ei, bb->succs)
3309 if (e2->dest != e->src && e2->dest != e->dest
3310 && !unlikely_executed_edge_p (e2)
3311 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
3312 {
3313 has_nonloop_edge = true;
3314 break;
3315 }
3316
3317 if (!has_nonloop_edge)
3318 predict_paths_for_bb (bb, bb, pred, taken, auto_bitmap (), in_loop);
3319 else
3320 maybe_predict_edge (e, pred, taken);
3321 }
3322 \f
3323 /* This is used to carry information about basic blocks. It is
3324 attached to the AUX field of the standard CFG block. */
3325
3326 class block_info
3327 {
3328 public:
3329 /* Estimated frequency of execution of basic_block. */
3330 sreal frequency;
3331
3332 /* To keep queue of basic blocks to process. */
3333 basic_block next;
3334
3335 /* Number of predecessors we need to visit first. */
3336 int npredecessors;
3337 };
3338
3339 /* Similar information for edges. */
3340 class edge_prob_info
3341 {
3342 public:
3343 /* In case edge is a loopback edge, the probability edge will be reached
3344 in case header is. Estimated number of iterations of the loop can be
3345 then computed as 1 / (1 - back_edge_prob). */
3346 sreal back_edge_prob;
3347 /* True if the edge is a loopback edge in the natural loop. */
3348 unsigned int back_edge:1;
3349 };
3350
3351 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
3352 #undef EDGE_INFO
3353 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
3354
3355 /* Helper function for estimate_bb_frequencies.
3356 Propagate the frequencies in blocks marked in
3357 TOVISIT, starting in HEAD. */
3358
3359 static void
3360 propagate_freq (basic_block head, bitmap tovisit,
3361 sreal max_cyclic_prob)
3362 {
3363 basic_block bb;
3364 basic_block last;
3365 unsigned i;
3366 edge e;
3367 basic_block nextbb;
3368 bitmap_iterator bi;
3369
3370 /* For each basic block we need to visit count number of his predecessors
3371 we need to visit first. */
3372 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
3373 {
3374 edge_iterator ei;
3375 int count = 0;
3376
3377 bb = BASIC_BLOCK_FOR_FN (cfun, i);
3378
3379 FOR_EACH_EDGE (e, ei, bb->preds)
3380 {
3381 bool visit = bitmap_bit_p (tovisit, e->src->index);
3382
3383 if (visit && !(e->flags & EDGE_DFS_BACK))
3384 count++;
3385 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
3386 fprintf (dump_file,
3387 "Irreducible region hit, ignoring edge to %i->%i\n",
3388 e->src->index, bb->index);
3389 }
3390 BLOCK_INFO (bb)->npredecessors = count;
3391 /* When function never returns, we will never process exit block. */
3392 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3393 bb->count = profile_count::zero ();
3394 }
3395
3396 BLOCK_INFO (head)->frequency = 1;
3397 last = head;
3398 for (bb = head; bb; bb = nextbb)
3399 {
3400 edge_iterator ei;
3401 sreal cyclic_probability = 0;
3402 sreal frequency = 0;
3403
3404 nextbb = BLOCK_INFO (bb)->next;
3405 BLOCK_INFO (bb)->next = NULL;
3406
3407 /* Compute frequency of basic block. */
3408 if (bb != head)
3409 {
3410 if (flag_checking)
3411 FOR_EACH_EDGE (e, ei, bb->preds)
3412 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3413 || (e->flags & EDGE_DFS_BACK));
3414
3415 FOR_EACH_EDGE (e, ei, bb->preds)
3416 if (EDGE_INFO (e)->back_edge)
3417 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3418 else if (!(e->flags & EDGE_DFS_BACK))
3419 {
3420 /* FIXME: Graphite is producing edges with no profile. Once
3421 this is fixed, drop this. */
3422 sreal tmp = e->probability.initialized_p () ?
3423 e->probability.to_sreal () : 0;
3424 frequency += tmp * BLOCK_INFO (e->src)->frequency;
3425 }
3426
3427 if (cyclic_probability == 0)
3428 {
3429 BLOCK_INFO (bb)->frequency = frequency;
3430 }
3431 else
3432 {
3433 if (cyclic_probability > max_cyclic_prob)
3434 {
3435 if (dump_file)
3436 fprintf (dump_file,
3437 "cyclic probability of bb %i is %f (capped to %f)"
3438 "; turning freq %f",
3439 bb->index, cyclic_probability.to_double (),
3440 max_cyclic_prob.to_double (),
3441 frequency.to_double ());
3442
3443 cyclic_probability = max_cyclic_prob;
3444 }
3445 else if (dump_file)
3446 fprintf (dump_file,
3447 "cyclic probability of bb %i is %f; turning freq %f",
3448 bb->index, cyclic_probability.to_double (),
3449 frequency.to_double ());
3450
3451 BLOCK_INFO (bb)->frequency = frequency
3452 / (sreal (1) - cyclic_probability);
3453 if (dump_file)
3454 fprintf (dump_file, " to %f\n",
3455 BLOCK_INFO (bb)->frequency.to_double ());
3456 }
3457 }
3458
3459 bitmap_clear_bit (tovisit, bb->index);
3460
3461 e = find_edge (bb, head);
3462 if (e)
3463 {
3464 /* FIXME: Graphite is producing edges with no profile. Once
3465 this is fixed, drop this. */
3466 sreal tmp = e->probability.initialized_p () ?
3467 e->probability.to_sreal () : 0;
3468 EDGE_INFO (e)->back_edge_prob = tmp * BLOCK_INFO (bb)->frequency;
3469 }
3470
3471 /* Propagate to successor blocks. */
3472 FOR_EACH_EDGE (e, ei, bb->succs)
3473 if (!(e->flags & EDGE_DFS_BACK)
3474 && BLOCK_INFO (e->dest)->npredecessors)
3475 {
3476 BLOCK_INFO (e->dest)->npredecessors--;
3477 if (!BLOCK_INFO (e->dest)->npredecessors)
3478 {
3479 if (!nextbb)
3480 nextbb = e->dest;
3481 else
3482 BLOCK_INFO (last)->next = e->dest;
3483
3484 last = e->dest;
3485 }
3486 }
3487 }
3488 }
3489
3490 /* Estimate frequencies in loops at same nest level. */
3491
3492 static void
3493 estimate_loops_at_level (class loop *first_loop, sreal max_cyclic_prob)
3494 {
3495 class loop *loop;
3496
3497 for (loop = first_loop; loop; loop = loop->next)
3498 {
3499 edge e;
3500 basic_block *bbs;
3501 unsigned i;
3502 auto_bitmap tovisit;
3503
3504 estimate_loops_at_level (loop->inner, max_cyclic_prob);
3505
3506 /* Find current loop back edge and mark it. */
3507 e = loop_latch_edge (loop);
3508 EDGE_INFO (e)->back_edge = 1;
3509
3510 bbs = get_loop_body (loop);
3511 for (i = 0; i < loop->num_nodes; i++)
3512 bitmap_set_bit (tovisit, bbs[i]->index);
3513 free (bbs);
3514 propagate_freq (loop->header, tovisit, max_cyclic_prob);
3515 }
3516 }
3517
3518 /* Propagates frequencies through structure of loops. */
3519
3520 static void
3521 estimate_loops (void)
3522 {
3523 auto_bitmap tovisit;
3524 basic_block bb;
3525 sreal max_cyclic_prob = (sreal)1
3526 - (sreal)1 / (param_max_predicted_iterations + 1);
3527
3528 /* Start by estimating the frequencies in the loops. */
3529 if (number_of_loops (cfun) > 1)
3530 estimate_loops_at_level (current_loops->tree_root->inner, max_cyclic_prob);
3531
3532 /* Now propagate the frequencies through all the blocks. */
3533 FOR_ALL_BB_FN (bb, cfun)
3534 {
3535 bitmap_set_bit (tovisit, bb->index);
3536 }
3537 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit, max_cyclic_prob);
3538 }
3539
3540 /* Drop the profile for NODE to guessed, and update its frequency based on
3541 whether it is expected to be hot given the CALL_COUNT. */
3542
3543 static void
3544 drop_profile (struct cgraph_node *node, profile_count call_count)
3545 {
3546 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3547 /* In the case where this was called by another function with a
3548 dropped profile, call_count will be 0. Since there are no
3549 non-zero call counts to this function, we don't know for sure
3550 whether it is hot, and therefore it will be marked normal below. */
3551 bool hot = maybe_hot_count_p (NULL, call_count);
3552
3553 if (dump_file)
3554 fprintf (dump_file,
3555 "Dropping 0 profile for %s. %s based on calls.\n",
3556 node->dump_name (),
3557 hot ? "Function is hot" : "Function is normal");
3558 /* We only expect to miss profiles for functions that are reached
3559 via non-zero call edges in cases where the function may have
3560 been linked from another module or library (COMDATs and extern
3561 templates). See the comments below for handle_missing_profiles.
3562 Also, only warn in cases where the missing counts exceed the
3563 number of training runs. In certain cases with an execv followed
3564 by a no-return call the profile for the no-return call is not
3565 dumped and there can be a mismatch. */
3566 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3567 && call_count > profile_info->runs)
3568 {
3569 if (flag_profile_correction)
3570 {
3571 if (dump_file)
3572 fprintf (dump_file,
3573 "Missing counts for called function %s\n",
3574 node->dump_name ());
3575 }
3576 else
3577 warning (0, "Missing counts for called function %s",
3578 node->dump_name ());
3579 }
3580
3581 basic_block bb;
3582 if (opt_for_fn (node->decl, flag_guess_branch_prob))
3583 {
3584 bool clear_zeros
3585 = !ENTRY_BLOCK_PTR_FOR_FN (fn)->count.nonzero_p ();
3586 FOR_ALL_BB_FN (bb, fn)
3587 if (clear_zeros || !(bb->count == profile_count::zero ()))
3588 bb->count = bb->count.guessed_local ();
3589 fn->cfg->count_max = fn->cfg->count_max.guessed_local ();
3590 }
3591 else
3592 {
3593 FOR_ALL_BB_FN (bb, fn)
3594 bb->count = profile_count::uninitialized ();
3595 fn->cfg->count_max = profile_count::uninitialized ();
3596 }
3597
3598 struct cgraph_edge *e;
3599 for (e = node->callees; e; e = e->next_callee)
3600 e->count = gimple_bb (e->call_stmt)->count;
3601 for (e = node->indirect_calls; e; e = e->next_callee)
3602 e->count = gimple_bb (e->call_stmt)->count;
3603 node->count = ENTRY_BLOCK_PTR_FOR_FN (fn)->count;
3604
3605 profile_status_for_fn (fn)
3606 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3607 node->frequency
3608 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3609 }
3610
3611 /* In the case of COMDAT routines, multiple object files will contain the same
3612 function and the linker will select one for the binary. In that case
3613 all the other copies from the profile instrument binary will be missing
3614 profile counts. Look for cases where this happened, due to non-zero
3615 call counts going to 0-count functions, and drop the profile to guessed
3616 so that we can use the estimated probabilities and avoid optimizing only
3617 for size.
3618
3619 The other case where the profile may be missing is when the routine
3620 is not going to be emitted to the object file, e.g. for "extern template"
3621 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3622 all other cases of non-zero calls to 0-count functions. */
3623
3624 void
3625 handle_missing_profiles (void)
3626 {
3627 const int unlikely_frac = param_unlikely_bb_count_fraction;
3628 struct cgraph_node *node;
3629 auto_vec<struct cgraph_node *, 64> worklist;
3630
3631 /* See if 0 count function has non-0 count callers. In this case we
3632 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3633 FOR_EACH_DEFINED_FUNCTION (node)
3634 {
3635 struct cgraph_edge *e;
3636 profile_count call_count = profile_count::zero ();
3637 gcov_type max_tp_first_run = 0;
3638 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3639
3640 if (node->count.ipa ().nonzero_p ())
3641 continue;
3642 for (e = node->callers; e; e = e->next_caller)
3643 if (e->count.ipa ().initialized_p () && e->count.ipa () > 0)
3644 {
3645 call_count = call_count + e->count.ipa ();
3646
3647 if (e->caller->tp_first_run > max_tp_first_run)
3648 max_tp_first_run = e->caller->tp_first_run;
3649 }
3650
3651 /* If time profile is missing, let assign the maximum that comes from
3652 caller functions. */
3653 if (!node->tp_first_run && max_tp_first_run)
3654 node->tp_first_run = max_tp_first_run + 1;
3655
3656 if (call_count > 0
3657 && fn && fn->cfg
3658 && call_count * unlikely_frac >= profile_info->runs)
3659 {
3660 drop_profile (node, call_count);
3661 worklist.safe_push (node);
3662 }
3663 }
3664
3665 /* Propagate the profile dropping to other 0-count COMDATs that are
3666 potentially called by COMDATs we already dropped the profile on. */
3667 while (worklist.length () > 0)
3668 {
3669 struct cgraph_edge *e;
3670
3671 node = worklist.pop ();
3672 for (e = node->callees; e; e = e->next_caller)
3673 {
3674 struct cgraph_node *callee = e->callee;
3675 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3676
3677 if (!(e->count.ipa () == profile_count::zero ())
3678 && callee->count.ipa ().nonzero_p ())
3679 continue;
3680 if ((DECL_COMDAT (callee->decl) || DECL_EXTERNAL (callee->decl))
3681 && fn && fn->cfg
3682 && profile_status_for_fn (fn) == PROFILE_READ)
3683 {
3684 drop_profile (node, profile_count::zero ());
3685 worklist.safe_push (callee);
3686 }
3687 }
3688 }
3689 }
3690
3691 /* Convert counts measured by profile driven feedback to frequencies.
3692 Return nonzero iff there was any nonzero execution count. */
3693
3694 bool
3695 update_max_bb_count (void)
3696 {
3697 profile_count true_count_max = profile_count::uninitialized ();
3698 basic_block bb;
3699
3700 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3701 true_count_max = true_count_max.max (bb->count);
3702
3703 cfun->cfg->count_max = true_count_max;
3704
3705 return true_count_max.ipa ().nonzero_p ();
3706 }
3707
3708 /* Return true if function is likely to be expensive, so there is no point to
3709 optimize performance of prologue, epilogue or do inlining at the expense
3710 of code size growth. THRESHOLD is the limit of number of instructions
3711 function can execute at average to be still considered not expensive. */
3712
3713 bool
3714 expensive_function_p (int threshold)
3715 {
3716 basic_block bb;
3717
3718 /* If profile was scaled in a way entry block has count 0, then the function
3719 is deifnitly taking a lot of time. */
3720 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.nonzero_p ())
3721 return true;
3722
3723 profile_count limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count * threshold;
3724 profile_count sum = profile_count::zero ();
3725 FOR_EACH_BB_FN (bb, cfun)
3726 {
3727 rtx_insn *insn;
3728
3729 if (!bb->count.initialized_p ())
3730 {
3731 if (dump_file)
3732 fprintf (dump_file, "Function is considered expensive because"
3733 " count of bb %i is not initialized\n", bb->index);
3734 return true;
3735 }
3736
3737 FOR_BB_INSNS (bb, insn)
3738 if (active_insn_p (insn))
3739 {
3740 sum += bb->count;
3741 if (sum > limit)
3742 return true;
3743 }
3744 }
3745
3746 return false;
3747 }
3748
3749 /* All basic blocks that are reachable only from unlikely basic blocks are
3750 unlikely. */
3751
3752 void
3753 propagate_unlikely_bbs_forward (void)
3754 {
3755 auto_vec<basic_block, 64> worklist;
3756 basic_block bb;
3757 edge_iterator ei;
3758 edge e;
3759
3760 if (!(ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ()))
3761 {
3762 ENTRY_BLOCK_PTR_FOR_FN (cfun)->aux = (void *)(size_t) 1;
3763 worklist.safe_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3764
3765 while (worklist.length () > 0)
3766 {
3767 bb = worklist.pop ();
3768 FOR_EACH_EDGE (e, ei, bb->succs)
3769 if (!(e->count () == profile_count::zero ())
3770 && !(e->dest->count == profile_count::zero ())
3771 && !e->dest->aux)
3772 {
3773 e->dest->aux = (void *)(size_t) 1;
3774 worklist.safe_push (e->dest);
3775 }
3776 }
3777 }
3778
3779 FOR_ALL_BB_FN (bb, cfun)
3780 {
3781 if (!bb->aux)
3782 {
3783 if (!(bb->count == profile_count::zero ())
3784 && (dump_file && (dump_flags & TDF_DETAILS)))
3785 fprintf (dump_file,
3786 "Basic block %i is marked unlikely by forward prop\n",
3787 bb->index);
3788 bb->count = profile_count::zero ();
3789 }
3790 else
3791 bb->aux = NULL;
3792 }
3793 }
3794
3795 /* Determine basic blocks/edges that are known to be unlikely executed and set
3796 their counters to zero.
3797 This is done with first identifying obviously unlikely BBs/edges and then
3798 propagating in both directions. */
3799
3800 static void
3801 determine_unlikely_bbs ()
3802 {
3803 basic_block bb;
3804 auto_vec<basic_block, 64> worklist;
3805 edge_iterator ei;
3806 edge e;
3807
3808 FOR_EACH_BB_FN (bb, cfun)
3809 {
3810 if (!(bb->count == profile_count::zero ())
3811 && unlikely_executed_bb_p (bb))
3812 {
3813 if (dump_file && (dump_flags & TDF_DETAILS))
3814 fprintf (dump_file, "Basic block %i is locally unlikely\n",
3815 bb->index);
3816 bb->count = profile_count::zero ();
3817 }
3818
3819 FOR_EACH_EDGE (e, ei, bb->succs)
3820 if (!(e->probability == profile_probability::never ())
3821 && unlikely_executed_edge_p (e))
3822 {
3823 if (dump_file && (dump_flags & TDF_DETAILS))
3824 fprintf (dump_file, "Edge %i->%i is locally unlikely\n",
3825 bb->index, e->dest->index);
3826 e->probability = profile_probability::never ();
3827 }
3828
3829 gcc_checking_assert (!bb->aux);
3830 }
3831 propagate_unlikely_bbs_forward ();
3832
3833 auto_vec<int, 64> nsuccs;
3834 nsuccs.safe_grow_cleared (last_basic_block_for_fn (cfun), true);
3835 FOR_ALL_BB_FN (bb, cfun)
3836 if (!(bb->count == profile_count::zero ())
3837 && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3838 {
3839 nsuccs[bb->index] = 0;
3840 FOR_EACH_EDGE (e, ei, bb->succs)
3841 if (!(e->probability == profile_probability::never ())
3842 && !(e->dest->count == profile_count::zero ()))
3843 nsuccs[bb->index]++;
3844 if (!nsuccs[bb->index])
3845 worklist.safe_push (bb);
3846 }
3847 while (worklist.length () > 0)
3848 {
3849 bb = worklist.pop ();
3850 if (bb->count == profile_count::zero ())
3851 continue;
3852 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3853 {
3854 bool found = false;
3855 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
3856 !gsi_end_p (gsi); gsi_next (&gsi))
3857 if (stmt_can_terminate_bb_p (gsi_stmt (gsi))
3858 /* stmt_can_terminate_bb_p special cases noreturns because it
3859 assumes that fake edges are created. We want to know that
3860 noreturn alone does not imply BB to be unlikely. */
3861 || (is_gimple_call (gsi_stmt (gsi))
3862 && (gimple_call_flags (gsi_stmt (gsi)) & ECF_NORETURN)))
3863 {
3864 found = true;
3865 break;
3866 }
3867 if (found)
3868 continue;
3869 }
3870 if (dump_file && (dump_flags & TDF_DETAILS))
3871 fprintf (dump_file,
3872 "Basic block %i is marked unlikely by backward prop\n",
3873 bb->index);
3874 bb->count = profile_count::zero ();
3875 FOR_EACH_EDGE (e, ei, bb->preds)
3876 if (!(e->probability == profile_probability::never ()))
3877 {
3878 if (!(e->src->count == profile_count::zero ()))
3879 {
3880 gcc_checking_assert (nsuccs[e->src->index] > 0);
3881 nsuccs[e->src->index]--;
3882 if (!nsuccs[e->src->index])
3883 worklist.safe_push (e->src);
3884 }
3885 }
3886 }
3887 /* Finally all edges from non-0 regions to 0 are unlikely. */
3888 FOR_ALL_BB_FN (bb, cfun)
3889 {
3890 if (!(bb->count == profile_count::zero ()))
3891 FOR_EACH_EDGE (e, ei, bb->succs)
3892 if (!(e->probability == profile_probability::never ())
3893 && e->dest->count == profile_count::zero ())
3894 {
3895 if (dump_file && (dump_flags & TDF_DETAILS))
3896 fprintf (dump_file, "Edge %i->%i is unlikely because "
3897 "it enters unlikely block\n",
3898 bb->index, e->dest->index);
3899 e->probability = profile_probability::never ();
3900 }
3901
3902 edge other = NULL;
3903
3904 FOR_EACH_EDGE (e, ei, bb->succs)
3905 if (e->probability == profile_probability::never ())
3906 ;
3907 else if (other)
3908 {
3909 other = NULL;
3910 break;
3911 }
3912 else
3913 other = e;
3914 if (other
3915 && !(other->probability == profile_probability::always ()))
3916 {
3917 if (dump_file && (dump_flags & TDF_DETAILS))
3918 fprintf (dump_file, "Edge %i->%i is locally likely\n",
3919 bb->index, other->dest->index);
3920 other->probability = profile_probability::always ();
3921 }
3922 }
3923 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count == profile_count::zero ())
3924 cgraph_node::get (current_function_decl)->count = profile_count::zero ();
3925 }
3926
3927 /* Estimate and propagate basic block frequencies using the given branch
3928 probabilities. */
3929
3930 static void
3931 estimate_bb_frequencies ()
3932 {
3933 basic_block bb;
3934 sreal freq_max;
3935
3936 determine_unlikely_bbs ();
3937
3938 mark_dfs_back_edges ();
3939
3940 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3941 profile_probability::always ();
3942
3943 /* Set up block info for each basic block. */
3944 alloc_aux_for_blocks (sizeof (block_info));
3945 alloc_aux_for_edges (sizeof (edge_prob_info));
3946 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3947 {
3948 edge e;
3949 edge_iterator ei;
3950
3951 FOR_EACH_EDGE (e, ei, bb->succs)
3952 {
3953 /* FIXME: Graphite is producing edges with no profile. Once
3954 this is fixed, drop this. */
3955 if (e->probability.initialized_p ())
3956 EDGE_INFO (e)->back_edge_prob
3957 = e->probability.to_sreal ();
3958 else
3959 /* back_edge_prob = 0.5 */
3960 EDGE_INFO (e)->back_edge_prob = sreal (1, -1);
3961 }
3962 }
3963
3964 /* First compute frequencies locally for each loop from innermost
3965 to outermost to examine frequencies for back edges. */
3966 estimate_loops ();
3967
3968 freq_max = 0;
3969 FOR_EACH_BB_FN (bb, cfun)
3970 if (freq_max < BLOCK_INFO (bb)->frequency)
3971 freq_max = BLOCK_INFO (bb)->frequency;
3972
3973 /* Scaling frequencies up to maximal profile count may result in
3974 frequent overflows especially when inlining loops.
3975 Small scalling results in unnecesary precision loss. Stay in
3976 the half of the (exponential) range. */
3977 freq_max = (sreal (1) << (profile_count::n_bits / 2)) / freq_max;
3978 if (freq_max < 16)
3979 freq_max = 16;
3980 profile_count ipa_count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ();
3981 cfun->cfg->count_max = profile_count::uninitialized ();
3982 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3983 {
3984 sreal tmp = BLOCK_INFO (bb)->frequency;
3985 if (tmp >= 1)
3986 {
3987 gimple_stmt_iterator gsi;
3988 tree decl;
3989
3990 /* Self recursive calls can not have frequency greater than 1
3991 or program will never terminate. This will result in an
3992 inconsistent bb profile but it is better than greatly confusing
3993 IPA cost metrics. */
3994 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3995 if (is_gimple_call (gsi_stmt (gsi))
3996 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
3997 && recursive_call_p (current_function_decl, decl))
3998 {
3999 if (dump_file)
4000 fprintf (dump_file, "Dropping frequency of recursive call"
4001 " in bb %i from %f\n", bb->index,
4002 tmp.to_double ());
4003 tmp = (sreal)9 / (sreal)10;
4004 break;
4005 }
4006 }
4007 tmp = tmp * freq_max;
4008 profile_count count = profile_count::from_gcov_type (tmp.to_nearest_int ());
4009
4010 /* If we have profile feedback in which this function was never
4011 executed, then preserve this info. */
4012 if (!(bb->count == profile_count::zero ()))
4013 bb->count = count.guessed_local ().combine_with_ipa_count (ipa_count);
4014 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4015 }
4016
4017 free_aux_for_blocks ();
4018 free_aux_for_edges ();
4019 compute_function_frequency ();
4020 }
4021
4022 /* Decide whether function is hot, cold or unlikely executed. */
4023 void
4024 compute_function_frequency (void)
4025 {
4026 basic_block bb;
4027 struct cgraph_node *node = cgraph_node::get (current_function_decl);
4028
4029 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4030 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
4031 node->only_called_at_startup = true;
4032 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
4033 node->only_called_at_exit = true;
4034
4035 if (!ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa_p ())
4036 {
4037 int flags = flags_from_decl_or_type (current_function_decl);
4038 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4039 != NULL)
4040 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4041 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
4042 != NULL)
4043 node->frequency = NODE_FREQUENCY_HOT;
4044 else if (flags & ECF_NORETURN)
4045 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4046 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
4047 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4048 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4049 || DECL_STATIC_DESTRUCTOR (current_function_decl))
4050 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
4051 return;
4052 }
4053
4054 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
4055 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
4056 == NULL)
4057 warn_function_cold (current_function_decl);
4058 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa() == profile_count::zero ())
4059 return;
4060 FOR_EACH_BB_FN (bb, cfun)
4061 {
4062 if (maybe_hot_bb_p (cfun, bb))
4063 {
4064 node->frequency = NODE_FREQUENCY_HOT;
4065 return;
4066 }
4067 if (!probably_never_executed_bb_p (cfun, bb))
4068 node->frequency = NODE_FREQUENCY_NORMAL;
4069 }
4070 }
4071
4072 /* Build PREDICT_EXPR. */
4073 tree
4074 build_predict_expr (enum br_predictor predictor, enum prediction taken)
4075 {
4076 tree t = build1 (PREDICT_EXPR, void_type_node,
4077 build_int_cst (integer_type_node, predictor));
4078 SET_PREDICT_EXPR_OUTCOME (t, taken);
4079 return t;
4080 }
4081
4082 const char *
4083 predictor_name (enum br_predictor predictor)
4084 {
4085 return predictor_info[predictor].name;
4086 }
4087
4088 /* Predict branch probabilities and estimate profile of the tree CFG. */
4089
4090 namespace {
4091
4092 const pass_data pass_data_profile =
4093 {
4094 GIMPLE_PASS, /* type */
4095 "profile_estimate", /* name */
4096 OPTGROUP_NONE, /* optinfo_flags */
4097 TV_BRANCH_PROB, /* tv_id */
4098 PROP_cfg, /* properties_required */
4099 0, /* properties_provided */
4100 0, /* properties_destroyed */
4101 0, /* todo_flags_start */
4102 0, /* todo_flags_finish */
4103 };
4104
4105 class pass_profile : public gimple_opt_pass
4106 {
4107 public:
4108 pass_profile (gcc::context *ctxt)
4109 : gimple_opt_pass (pass_data_profile, ctxt)
4110 {}
4111
4112 /* opt_pass methods: */
4113 bool gate (function *) final override { return flag_guess_branch_prob; }
4114 unsigned int execute (function *) final override;
4115
4116 }; // class pass_profile
4117
4118 unsigned int
4119 pass_profile::execute (function *fun)
4120 {
4121 unsigned nb_loops;
4122
4123 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
4124 return 0;
4125
4126 loop_optimizer_init (LOOPS_NORMAL);
4127 if (dump_file && (dump_flags & TDF_DETAILS))
4128 flow_loops_dump (dump_file, NULL, 0);
4129
4130 nb_loops = number_of_loops (fun);
4131 if (nb_loops > 1)
4132 scev_initialize ();
4133
4134 tree_estimate_probability (false);
4135 cfun->cfg->full_profile = true;
4136
4137 if (nb_loops > 1)
4138 scev_finalize ();
4139
4140 loop_optimizer_finalize ();
4141 if (dump_file && (dump_flags & TDF_DETAILS))
4142 gimple_dump_cfg (dump_file, dump_flags);
4143 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
4144 profile_status_for_fn (fun) = PROFILE_GUESSED;
4145 if (dump_file && (dump_flags & TDF_DETAILS))
4146 {
4147 sreal iterations;
4148 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
4149 if (expected_loop_iterations_by_profile (loop, &iterations))
4150 fprintf (dump_file, "Loop got predicted %d to iterate %f times.\n",
4151 loop->num, iterations.to_double ());
4152 }
4153 return 0;
4154 }
4155
4156 } // anon namespace
4157
4158 gimple_opt_pass *
4159 make_pass_profile (gcc::context *ctxt)
4160 {
4161 return new pass_profile (ctxt);
4162 }
4163
4164 /* Return true when PRED predictor should be removed after early
4165 tree passes. Most of the predictors are beneficial to survive
4166 as early inlining can also distribute then into caller's bodies. */
4167
4168 static bool
4169 strip_predictor_early (enum br_predictor pred)
4170 {
4171 switch (pred)
4172 {
4173 case PRED_TREE_EARLY_RETURN:
4174 return true;
4175 default:
4176 return false;
4177 }
4178 }
4179
4180 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
4181 we no longer need. EARLY is set to true when called from early
4182 optimizations. */
4183
4184 unsigned int
4185 strip_predict_hints (function *fun, bool early)
4186 {
4187 basic_block bb;
4188 gimple *ass_stmt;
4189 tree var;
4190 bool changed = false;
4191
4192 FOR_EACH_BB_FN (bb, fun)
4193 {
4194 gimple_stmt_iterator bi;
4195 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
4196 {
4197 gimple *stmt = gsi_stmt (bi);
4198
4199 if (gimple_code (stmt) == GIMPLE_PREDICT)
4200 {
4201 if (!early
4202 || strip_predictor_early (gimple_predict_predictor (stmt)))
4203 {
4204 gsi_remove (&bi, true);
4205 changed = true;
4206 continue;
4207 }
4208 }
4209 else if (is_gimple_call (stmt))
4210 {
4211 tree fndecl = gimple_call_fndecl (stmt);
4212
4213 if (!early
4214 && ((fndecl != NULL_TREE
4215 && fndecl_built_in_p (fndecl, BUILT_IN_EXPECT)
4216 && gimple_call_num_args (stmt) == 2)
4217 || (fndecl != NULL_TREE
4218 && fndecl_built_in_p (fndecl,
4219 BUILT_IN_EXPECT_WITH_PROBABILITY)
4220 && gimple_call_num_args (stmt) == 3)
4221 || (gimple_call_internal_p (stmt)
4222 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT)))
4223 {
4224 var = gimple_call_lhs (stmt);
4225 changed = true;
4226 if (var)
4227 {
4228 ass_stmt
4229 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
4230 gsi_replace (&bi, ass_stmt, true);
4231 }
4232 else
4233 {
4234 gsi_remove (&bi, true);
4235 continue;
4236 }
4237 }
4238 }
4239 gsi_next (&bi);
4240 }
4241 }
4242 return changed ? TODO_cleanup_cfg : 0;
4243 }
4244
4245 namespace {
4246
4247 const pass_data pass_data_strip_predict_hints =
4248 {
4249 GIMPLE_PASS, /* type */
4250 "*strip_predict_hints", /* name */
4251 OPTGROUP_NONE, /* optinfo_flags */
4252 TV_BRANCH_PROB, /* tv_id */
4253 PROP_cfg, /* properties_required */
4254 0, /* properties_provided */
4255 0, /* properties_destroyed */
4256 0, /* todo_flags_start */
4257 0, /* todo_flags_finish */
4258 };
4259
4260 class pass_strip_predict_hints : public gimple_opt_pass
4261 {
4262 public:
4263 pass_strip_predict_hints (gcc::context *ctxt)
4264 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
4265 {}
4266
4267 /* opt_pass methods: */
4268 opt_pass * clone () final override
4269 {
4270 return new pass_strip_predict_hints (m_ctxt);
4271 }
4272 void set_pass_param (unsigned int n, bool param) final override
4273 {
4274 gcc_assert (n == 0);
4275 early_p = param;
4276 }
4277
4278 unsigned int execute (function *) final override;
4279
4280 private:
4281 bool early_p;
4282
4283 }; // class pass_strip_predict_hints
4284
4285 unsigned int
4286 pass_strip_predict_hints::execute (function *fun)
4287 {
4288 return strip_predict_hints (fun, early_p);
4289 }
4290
4291 } // anon namespace
4292
4293 gimple_opt_pass *
4294 make_pass_strip_predict_hints (gcc::context *ctxt)
4295 {
4296 return new pass_strip_predict_hints (ctxt);
4297 }
4298
4299 /* Rebuild function frequencies. Passes are in general expected to
4300 maintain profile by hand, however in some cases this is not possible:
4301 for example when inlining several functions with loops freuqencies might run
4302 out of scale and thus needs to be recomputed. */
4303
4304 void
4305 rebuild_frequencies (void)
4306 {
4307 /* If we have no profile, do nothing. Note that after inlining
4308 profile_status_for_fn may not represent the actual presence/absence of
4309 profile. */
4310 if (profile_status_for_fn (cfun) == PROFILE_ABSENT
4311 && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.initialized_p ())
4312 return;
4313
4314
4315 /* See if everything is OK and update count_max. */
4316 basic_block bb;
4317 bool inconsistency_found = false;
4318 bool uninitialized_probablity_found = false;
4319 bool uninitialized_count_found = false;
4320
4321 cfun->cfg->count_max = profile_count::uninitialized ();
4322 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
4323 {
4324 cfun->cfg->count_max = cfun->cfg->count_max.max (bb->count);
4325 /* Uninitialized count may be result of inlining or an omision in an
4326 optimization pass. */
4327 if (!bb->count.initialized_p ())
4328 {
4329 uninitialized_count_found = true;
4330 if (dump_file)
4331 fprintf (dump_file, "BB %i has uninitialized count\n",
4332 bb->index);
4333 }
4334 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
4335 && (!uninitialized_probablity_found || !inconsistency_found))
4336 {
4337 profile_count sum = profile_count::zero ();
4338 edge e;
4339 edge_iterator ei;
4340
4341 FOR_EACH_EDGE (e, ei, bb->preds)
4342 {
4343 sum += e->count ();
4344 /* Uninitialized probability may be result of inlining or an
4345 omision in an optimization pass. */
4346 if (!e->probability.initialized_p ())
4347 {
4348 if (dump_file)
4349 fprintf (dump_file,
4350 "Edge %i->%i has uninitialized probability\n",
4351 e->src->index, e->dest->index);
4352 }
4353 }
4354 if (sum.differs_from_p (bb->count))
4355 {
4356 if (dump_file)
4357 fprintf (dump_file,
4358 "BB %i has invalid sum of incomming counts\n",
4359 bb->index);
4360 inconsistency_found = true;
4361 }
4362 }
4363 }
4364
4365 /* If everything is OK, do not re-propagate frequencies. */
4366 if (!inconsistency_found
4367 && (!uninitialized_count_found || uninitialized_probablity_found)
4368 && !cfun->cfg->count_max.very_large_p ())
4369 {
4370 if (dump_file)
4371 fprintf (dump_file, "Profile is consistent\n");
4372 return;
4373 }
4374 /* Do not re-propagate if we have profile feedback. Even if the profile is
4375 inconsistent from previous transofrmations, it is probably more realistic
4376 for hot part of the program than result of repropagating.
4377
4378 Consider example where we previously has
4379
4380 if (test)
4381 then [large probability for true]
4382
4383 and we later proved that test is always 0. In this case, if profile was
4384 read correctly, we must have duplicated the conditional (for example by
4385 inlining) in to a context where test is false. From profile feedback
4386 we know that most executions if the conditionals were true, so the
4387 important copy is not the one we look on.
4388
4389 Propagating from probabilities would make profile look consistent, but
4390 because probablities after code duplication may not be representative
4391 for a given run, we would only propagate the error further. */
4392 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.ipa ().nonzero_p ()
4393 && !uninitialized_count_found)
4394 {
4395 if (dump_file)
4396 fprintf (dump_file,
4397 "Profile is inconsistent but read from profile feedback;"
4398 " not rebuilding\n");
4399 return;
4400 }
4401
4402 loop_optimizer_init (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
4403 connect_infinite_loops_to_exit ();
4404 estimate_bb_frequencies ();
4405 remove_fake_exit_edges ();
4406 loop_optimizer_finalize ();
4407 if (dump_file)
4408 fprintf (dump_file, "Rebuilt basic block counts\n");
4409
4410 return;
4411 }
4412
4413 namespace {
4414
4415 const pass_data pass_data_rebuild_frequencies =
4416 {
4417 GIMPLE_PASS, /* type */
4418 "rebuild_frequencies", /* name */
4419 OPTGROUP_NONE, /* optinfo_flags */
4420 TV_REBUILD_FREQUENCIES, /* tv_id */
4421 PROP_cfg, /* properties_required */
4422 0, /* properties_provided */
4423 0, /* properties_destroyed */
4424 0, /* todo_flags_start */
4425 0, /* todo_flags_finish */
4426 };
4427
4428 class pass_rebuild_frequencies : public gimple_opt_pass
4429 {
4430 public:
4431 pass_rebuild_frequencies (gcc::context *ctxt)
4432 : gimple_opt_pass (pass_data_rebuild_frequencies, ctxt)
4433 {}
4434
4435 /* opt_pass methods: */
4436 opt_pass * clone () final override
4437 {
4438 return new pass_rebuild_frequencies (m_ctxt);
4439 }
4440 void set_pass_param (unsigned int n, bool param) final override
4441 {
4442 gcc_assert (n == 0);
4443 early_p = param;
4444 }
4445
4446 unsigned int execute (function *) final override
4447 {
4448 rebuild_frequencies ();
4449 return 0;
4450 }
4451
4452 private:
4453 bool early_p;
4454
4455 }; // class pass_rebuild_frequencies
4456
4457 } // anon namespace
4458
4459 gimple_opt_pass *
4460 make_pass_rebuild_frequencies (gcc::context *ctxt)
4461 {
4462 return new pass_rebuild_frequencies (ctxt);
4463 }
4464
4465 /* Perform a dry run of the branch prediction pass and report comparsion of
4466 the predicted and real profile into the dump file. */
4467
4468 void
4469 report_predictor_hitrates (void)
4470 {
4471 unsigned nb_loops;
4472
4473 loop_optimizer_init (LOOPS_NORMAL);
4474 if (dump_file && (dump_flags & TDF_DETAILS))
4475 flow_loops_dump (dump_file, NULL, 0);
4476
4477 nb_loops = number_of_loops (cfun);
4478 if (nb_loops > 1)
4479 scev_initialize ();
4480
4481 tree_estimate_probability (true);
4482
4483 if (nb_loops > 1)
4484 scev_finalize ();
4485
4486 loop_optimizer_finalize ();
4487 }
4488
4489 /* Force edge E to be cold.
4490 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
4491 keep low probability to represent possible error in a guess. This is used
4492 i.e. in case we predict loop to likely iterate given number of times but
4493 we are not 100% sure.
4494
4495 This function locally updates profile without attempt to keep global
4496 consistency which cannot be reached in full generality without full profile
4497 rebuild from probabilities alone. Doing so is not necessarily a good idea
4498 because frequencies and counts may be more realistic then probabilities.
4499
4500 In some cases (such as for elimination of early exits during full loop
4501 unrolling) the caller can ensure that profile will get consistent
4502 afterwards. */
4503
4504 void
4505 force_edge_cold (edge e, bool impossible)
4506 {
4507 profile_count count_sum = profile_count::zero ();
4508 profile_probability prob_sum = profile_probability::never ();
4509 edge_iterator ei;
4510 edge e2;
4511 bool uninitialized_exit = false;
4512
4513 /* When branch probability guesses are not known, then do nothing. */
4514 if (!impossible && !e->count ().initialized_p ())
4515 return;
4516
4517 profile_probability goal = (impossible ? profile_probability::never ()
4518 : profile_probability::very_unlikely ());
4519
4520 /* If edge is already improbably or cold, just return. */
4521 if (e->probability <= goal
4522 && (!impossible || e->count () == profile_count::zero ()))
4523 return;
4524 FOR_EACH_EDGE (e2, ei, e->src->succs)
4525 if (e2 != e)
4526 {
4527 if (e->flags & EDGE_FAKE)
4528 continue;
4529 if (e2->count ().initialized_p ())
4530 count_sum += e2->count ();
4531 if (e2->probability.initialized_p ())
4532 prob_sum += e2->probability;
4533 else
4534 uninitialized_exit = true;
4535 }
4536
4537 /* If we are not guessing profiles but have some other edges out,
4538 just assume the control flow goes elsewhere. */
4539 if (uninitialized_exit)
4540 e->probability = goal;
4541 /* If there are other edges out of e->src, redistribute probabilitity
4542 there. */
4543 else if (prob_sum > profile_probability::never ())
4544 {
4545 if (dump_file && (dump_flags & TDF_DETAILS))
4546 {
4547 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
4548 "probability to other edges. Original probability: ",
4549 e->src->index, e->dest->index,
4550 impossible ? "impossible" : "cold");
4551 e->probability.dump (dump_file);
4552 fprintf (dump_file, "\n");
4553 }
4554 set_edge_probability_and_rescale_others (e, goal);
4555 if (current_ir_type () != IR_GIMPLE
4556 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4557 update_br_prob_note (e->src);
4558 }
4559 /* If all edges out of e->src are unlikely, the basic block itself
4560 is unlikely. */
4561 else
4562 {
4563 if (prob_sum == profile_probability::never ())
4564 e->probability = profile_probability::always ();
4565 else
4566 {
4567 if (impossible)
4568 e->probability = profile_probability::never ();
4569 /* If BB has some edges out that are not impossible, we cannot
4570 assume that BB itself is. */
4571 impossible = false;
4572 }
4573 if (current_ir_type () != IR_GIMPLE
4574 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
4575 update_br_prob_note (e->src);
4576 if (e->src->count == profile_count::zero ())
4577 return;
4578 if (count_sum == profile_count::zero () && impossible)
4579 {
4580 bool found = false;
4581 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
4582 ;
4583 else if (current_ir_type () == IR_GIMPLE)
4584 for (gimple_stmt_iterator gsi = gsi_start_bb (e->src);
4585 !gsi_end_p (gsi); gsi_next (&gsi))
4586 {
4587 if (stmt_can_terminate_bb_p (gsi_stmt (gsi)))
4588 {
4589 found = true;
4590 break;
4591 }
4592 }
4593 /* FIXME: Implement RTL path. */
4594 else
4595 found = true;
4596 if (!found)
4597 {
4598 if (dump_file && (dump_flags & TDF_DETAILS))
4599 fprintf (dump_file,
4600 "Making bb %i impossible and dropping count to 0.\n",
4601 e->src->index);
4602 e->src->count = profile_count::zero ();
4603 FOR_EACH_EDGE (e2, ei, e->src->preds)
4604 force_edge_cold (e2, impossible);
4605 return;
4606 }
4607 }
4608
4609 /* If we did not adjusting, the source basic block has no likely edeges
4610 leaving other direction. In that case force that bb cold, too.
4611 This in general is difficult task to do, but handle special case when
4612 BB has only one predecestor. This is common case when we are updating
4613 after loop transforms. */
4614 if (!(prob_sum > profile_probability::never ())
4615 && count_sum == profile_count::zero ()
4616 && single_pred_p (e->src) && e->src->count.to_frequency (cfun)
4617 > (impossible ? 0 : 1))
4618 {
4619 int old_frequency = e->src->count.to_frequency (cfun);
4620 if (dump_file && (dump_flags & TDF_DETAILS))
4621 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
4622 impossible ? "impossible" : "cold");
4623 int new_frequency = MIN (e->src->count.to_frequency (cfun),
4624 impossible ? 0 : 1);
4625 if (impossible)
4626 e->src->count = profile_count::zero ();
4627 else
4628 e->src->count = e->count ().apply_scale (new_frequency,
4629 old_frequency);
4630 force_edge_cold (single_pred_edge (e->src), impossible);
4631 }
4632 else if (dump_file && (dump_flags & TDF_DETAILS)
4633 && maybe_hot_bb_p (cfun, e->src))
4634 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
4635 impossible ? "impossible" : "cold");
4636 }
4637 }
4638
4639 #if CHECKING_P
4640
4641 namespace selftest {
4642
4643 /* Test that value range of predictor values defined in predict.def is
4644 within range (50, 100]. */
4645
4646 struct branch_predictor
4647 {
4648 const char *name;
4649 int probability;
4650 };
4651
4652 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) { NAME, HITRATE },
4653
4654 static void
4655 test_prediction_value_range ()
4656 {
4657 branch_predictor predictors[] = {
4658 #include "predict.def"
4659 { NULL, PROB_UNINITIALIZED }
4660 };
4661
4662 for (unsigned i = 0; predictors[i].name != NULL; i++)
4663 {
4664 if (predictors[i].probability == PROB_UNINITIALIZED)
4665 continue;
4666
4667 unsigned p = 100 * predictors[i].probability / REG_BR_PROB_BASE;
4668 ASSERT_TRUE (p >= 50 && p <= 100);
4669 }
4670 }
4671
4672 #undef DEF_PREDICTOR
4673
4674 /* Run all of the selfests within this file. */
4675
4676 void
4677 predict_cc_tests ()
4678 {
4679 test_prediction_value_range ();
4680 }
4681
4682 } // namespace selftest
4683 #endif /* CHECKING_P. */