]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/profile.c
[Ada] Replace low-level membership tests with high-level routines
[thirdparty/gcc.git] / gcc / profile.c
1 /* Calculate branch probabilities, and basic block execution counts.
2 Copyright (C) 1990-2019 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, UC Berkeley/Cygnus Support;
4 based on some ideas from Dain Samples of UC Berkeley.
5 Further mangling by Bob Manson, Cygnus Support.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 /* Generate basic block profile instrumentation and auxiliary files.
24 Profile generation is optimized, so that not all arcs in the basic
25 block graph need instrumenting. First, the BB graph is closed with
26 one entry (function start), and one exit (function exit). Any
27 ABNORMAL_EDGE cannot be instrumented (because there is no control
28 path to place the code). We close the graph by inserting fake
29 EDGE_FAKE edges to the EXIT_BLOCK, from the sources of abnormal
30 edges that do not go to the exit_block. We ignore such abnormal
31 edges. Naturally these fake edges are never directly traversed,
32 and so *cannot* be directly instrumented. Some other graph
33 massaging is done. To optimize the instrumentation we generate the
34 BB minimal span tree, only edges that are not on the span tree
35 (plus the entry point) need instrumenting. From that information
36 all other edge counts can be deduced. By construction all fake
37 edges must be on the spanning tree. We also attempt to place
38 EDGE_CRITICAL edges on the spanning tree.
39
40 The auxiliary files generated are <dumpbase>.gcno (at compile time)
41 and <dumpbase>.gcda (at run time). The format is
42 described in full in gcov-io.h. */
43
44 /* ??? Register allocation should use basic block execution counts to
45 give preference to the most commonly executed blocks. */
46
47 /* ??? Should calculate branch probabilities before instrumenting code, since
48 then we can use arc counts to help decide which arcs to instrument. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "backend.h"
54 #include "rtl.h"
55 #include "tree.h"
56 #include "gimple.h"
57 #include "cfghooks.h"
58 #include "cgraph.h"
59 #include "coverage.h"
60 #include "diagnostic-core.h"
61 #include "cfganal.h"
62 #include "value-prof.h"
63 #include "gimple-iterator.h"
64 #include "tree-cfg.h"
65 #include "dumpfile.h"
66 #include "cfgloop.h"
67
68 #include "profile.h"
69
70 /* Map from BBs/edges to gcov counters. */
71 vec<gcov_type> bb_gcov_counts;
72 hash_map<edge,gcov_type> *edge_gcov_counts;
73
74 struct bb_profile_info {
75 unsigned int count_valid : 1;
76
77 /* Number of successor and predecessor edges. */
78 gcov_type succ_count;
79 gcov_type pred_count;
80 };
81
82 #define BB_INFO(b) ((struct bb_profile_info *) (b)->aux)
83
84
85 /* Counter summary from the last set of coverage counts read. */
86
87 gcov_summary *profile_info;
88
89 /* Collect statistics on the performance of this pass for the entire source
90 file. */
91
92 static int total_num_blocks;
93 static int total_num_edges;
94 static int total_num_edges_ignored;
95 static int total_num_edges_instrumented;
96 static int total_num_blocks_created;
97 static int total_num_passes;
98 static int total_num_times_called;
99 static int total_hist_br_prob[20];
100 static int total_num_branches;
101
102 /* Forward declarations. */
103 static void find_spanning_tree (struct edge_list *);
104
105 /* Add edge instrumentation code to the entire insn chain.
106
107 F is the first insn of the chain.
108 NUM_BLOCKS is the number of basic blocks found in F. */
109
110 static unsigned
111 instrument_edges (struct edge_list *el)
112 {
113 unsigned num_instr_edges = 0;
114 int num_edges = NUM_EDGES (el);
115 basic_block bb;
116
117 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
118 {
119 edge e;
120 edge_iterator ei;
121
122 FOR_EACH_EDGE (e, ei, bb->succs)
123 {
124 struct edge_profile_info *inf = EDGE_INFO (e);
125
126 if (!inf->ignore && !inf->on_tree)
127 {
128 gcc_assert (!(e->flags & EDGE_ABNORMAL));
129 if (dump_file)
130 fprintf (dump_file, "Edge %d to %d instrumented%s\n",
131 e->src->index, e->dest->index,
132 EDGE_CRITICAL_P (e) ? " (and split)" : "");
133 gimple_gen_edge_profiler (num_instr_edges++, e);
134 }
135 }
136 }
137
138 total_num_blocks_created += num_edges;
139 if (dump_file)
140 fprintf (dump_file, "%d edges instrumented\n", num_instr_edges);
141 return num_instr_edges;
142 }
143
144 /* Add code to measure histograms for values in list VALUES. */
145 static void
146 instrument_values (histogram_values values)
147 {
148 unsigned i;
149
150 /* Emit code to generate the histograms before the insns. */
151
152 for (i = 0; i < values.length (); i++)
153 {
154 histogram_value hist = values[i];
155 unsigned t = COUNTER_FOR_HIST_TYPE (hist->type);
156
157 if (!coverage_counter_alloc (t, hist->n_counters))
158 continue;
159
160 switch (hist->type)
161 {
162 case HIST_TYPE_INTERVAL:
163 gimple_gen_interval_profiler (hist, t, 0);
164 break;
165
166 case HIST_TYPE_POW2:
167 gimple_gen_pow2_profiler (hist, t, 0);
168 break;
169
170 case HIST_TYPE_TOPN_VALUES:
171 gimple_gen_topn_values_profiler (hist, t, 0);
172 break;
173
174 case HIST_TYPE_INDIR_CALL:
175 gimple_gen_ic_profiler (hist, t, 0);
176 break;
177
178 case HIST_TYPE_AVERAGE:
179 gimple_gen_average_profiler (hist, t, 0);
180 break;
181
182 case HIST_TYPE_IOR:
183 gimple_gen_ior_profiler (hist, t, 0);
184 break;
185
186 case HIST_TYPE_TIME_PROFILE:
187 gimple_gen_time_profiler (t, 0);
188 break;
189
190 default:
191 gcc_unreachable ();
192 }
193 }
194 }
195 \f
196
197 /* Computes hybrid profile for all matching entries in da_file.
198
199 CFG_CHECKSUM is the precomputed checksum for the CFG. */
200
201 static gcov_type *
202 get_exec_counts (unsigned cfg_checksum, unsigned lineno_checksum)
203 {
204 unsigned num_edges = 0;
205 basic_block bb;
206 gcov_type *counts;
207
208 /* Count the edges to be (possibly) instrumented. */
209 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
210 {
211 edge e;
212 edge_iterator ei;
213
214 FOR_EACH_EDGE (e, ei, bb->succs)
215 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
216 num_edges++;
217 }
218
219 counts = get_coverage_counts (GCOV_COUNTER_ARCS, cfg_checksum,
220 lineno_checksum, num_edges);
221 if (!counts)
222 return NULL;
223
224 return counts;
225 }
226
227 static bool
228 is_edge_inconsistent (vec<edge, va_gc> *edges)
229 {
230 edge e;
231 edge_iterator ei;
232 FOR_EACH_EDGE (e, ei, edges)
233 {
234 if (!EDGE_INFO (e)->ignore)
235 {
236 if (edge_gcov_count (e) < 0
237 && (!(e->flags & EDGE_FAKE)
238 || !block_ends_with_call_p (e->src)))
239 {
240 if (dump_file)
241 {
242 fprintf (dump_file,
243 "Edge %i->%i is inconsistent, count%" PRId64,
244 e->src->index, e->dest->index, edge_gcov_count (e));
245 dump_bb (dump_file, e->src, 0, TDF_DETAILS);
246 dump_bb (dump_file, e->dest, 0, TDF_DETAILS);
247 }
248 return true;
249 }
250 }
251 }
252 return false;
253 }
254
255 static void
256 correct_negative_edge_counts (void)
257 {
258 basic_block bb;
259 edge e;
260 edge_iterator ei;
261
262 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
263 {
264 FOR_EACH_EDGE (e, ei, bb->succs)
265 {
266 if (edge_gcov_count (e) < 0)
267 edge_gcov_count (e) = 0;
268 }
269 }
270 }
271
272 /* Check consistency.
273 Return true if inconsistency is found. */
274 static bool
275 is_inconsistent (void)
276 {
277 basic_block bb;
278 bool inconsistent = false;
279 FOR_EACH_BB_FN (bb, cfun)
280 {
281 inconsistent |= is_edge_inconsistent (bb->preds);
282 if (!dump_file && inconsistent)
283 return true;
284 inconsistent |= is_edge_inconsistent (bb->succs);
285 if (!dump_file && inconsistent)
286 return true;
287 if (bb_gcov_count (bb) < 0)
288 {
289 if (dump_file)
290 {
291 fprintf (dump_file, "BB %i count is negative "
292 "%" PRId64,
293 bb->index,
294 bb_gcov_count (bb));
295 dump_bb (dump_file, bb, 0, TDF_DETAILS);
296 }
297 inconsistent = true;
298 }
299 if (bb_gcov_count (bb) != sum_edge_counts (bb->preds))
300 {
301 if (dump_file)
302 {
303 fprintf (dump_file, "BB %i count does not match sum of incoming edges "
304 "%" PRId64" should be %" PRId64,
305 bb->index,
306 bb_gcov_count (bb),
307 sum_edge_counts (bb->preds));
308 dump_bb (dump_file, bb, 0, TDF_DETAILS);
309 }
310 inconsistent = true;
311 }
312 if (bb_gcov_count (bb) != sum_edge_counts (bb->succs) &&
313 ! (find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun)) != NULL
314 && block_ends_with_call_p (bb)))
315 {
316 if (dump_file)
317 {
318 fprintf (dump_file, "BB %i count does not match sum of outgoing edges "
319 "%" PRId64" should be %" PRId64,
320 bb->index,
321 bb_gcov_count (bb),
322 sum_edge_counts (bb->succs));
323 dump_bb (dump_file, bb, 0, TDF_DETAILS);
324 }
325 inconsistent = true;
326 }
327 if (!dump_file && inconsistent)
328 return true;
329 }
330
331 return inconsistent;
332 }
333
334 /* Set each basic block count to the sum of its outgoing edge counts */
335 static void
336 set_bb_counts (void)
337 {
338 basic_block bb;
339 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
340 {
341 bb_gcov_count (bb) = sum_edge_counts (bb->succs);
342 gcc_assert (bb_gcov_count (bb) >= 0);
343 }
344 }
345
346 /* Reads profile data and returns total number of edge counts read */
347 static int
348 read_profile_edge_counts (gcov_type *exec_counts)
349 {
350 basic_block bb;
351 int num_edges = 0;
352 int exec_counts_pos = 0;
353 /* For each edge not on the spanning tree, set its execution count from
354 the .da file. */
355 /* The first count in the .da file is the number of times that the function
356 was entered. This is the exec_count for block zero. */
357
358 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
359 {
360 edge e;
361 edge_iterator ei;
362
363 FOR_EACH_EDGE (e, ei, bb->succs)
364 if (!EDGE_INFO (e)->ignore && !EDGE_INFO (e)->on_tree)
365 {
366 num_edges++;
367 if (exec_counts)
368 edge_gcov_count (e) = exec_counts[exec_counts_pos++];
369 else
370 edge_gcov_count (e) = 0;
371
372 EDGE_INFO (e)->count_valid = 1;
373 BB_INFO (bb)->succ_count--;
374 BB_INFO (e->dest)->pred_count--;
375 if (dump_file)
376 {
377 fprintf (dump_file, "\nRead edge from %i to %i, count:",
378 bb->index, e->dest->index);
379 fprintf (dump_file, "%" PRId64,
380 (int64_t) edge_gcov_count (e));
381 }
382 }
383 }
384
385 return num_edges;
386 }
387
388
389 /* Compute the branch probabilities for the various branches.
390 Annotate them accordingly.
391
392 CFG_CHECKSUM is the precomputed checksum for the CFG. */
393
394 static void
395 compute_branch_probabilities (unsigned cfg_checksum, unsigned lineno_checksum)
396 {
397 basic_block bb;
398 int i;
399 int num_edges = 0;
400 int changes;
401 int passes;
402 int hist_br_prob[20];
403 int num_branches;
404 gcov_type *exec_counts = get_exec_counts (cfg_checksum, lineno_checksum);
405 int inconsistent = 0;
406
407 /* Very simple sanity checks so we catch bugs in our profiling code. */
408 if (!profile_info)
409 {
410 if (dump_file)
411 fprintf (dump_file, "Profile info is missing; giving up\n");
412 return;
413 }
414
415 bb_gcov_counts.safe_grow_cleared (last_basic_block_for_fn (cfun));
416 edge_gcov_counts = new hash_map<edge,gcov_type>;
417
418 /* Attach extra info block to each bb. */
419 alloc_aux_for_blocks (sizeof (struct bb_profile_info));
420 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
421 {
422 edge e;
423 edge_iterator ei;
424
425 FOR_EACH_EDGE (e, ei, bb->succs)
426 if (!EDGE_INFO (e)->ignore)
427 BB_INFO (bb)->succ_count++;
428 FOR_EACH_EDGE (e, ei, bb->preds)
429 if (!EDGE_INFO (e)->ignore)
430 BB_INFO (bb)->pred_count++;
431 }
432
433 /* Avoid predicting entry on exit nodes. */
434 BB_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->succ_count = 2;
435 BB_INFO (ENTRY_BLOCK_PTR_FOR_FN (cfun))->pred_count = 2;
436
437 num_edges = read_profile_edge_counts (exec_counts);
438
439 if (dump_file)
440 fprintf (dump_file, "\n%d edge counts read\n", num_edges);
441
442 /* For every block in the file,
443 - if every exit/entrance edge has a known count, then set the block count
444 - if the block count is known, and every exit/entrance edge but one has
445 a known execution count, then set the count of the remaining edge
446
447 As edge counts are set, decrement the succ/pred count, but don't delete
448 the edge, that way we can easily tell when all edges are known, or only
449 one edge is unknown. */
450
451 /* The order that the basic blocks are iterated through is important.
452 Since the code that finds spanning trees starts with block 0, low numbered
453 edges are put on the spanning tree in preference to high numbered edges.
454 Hence, most instrumented edges are at the end. Graph solving works much
455 faster if we propagate numbers from the end to the start.
456
457 This takes an average of slightly more than 3 passes. */
458
459 changes = 1;
460 passes = 0;
461 while (changes)
462 {
463 passes++;
464 changes = 0;
465 FOR_BB_BETWEEN (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), NULL, prev_bb)
466 {
467 struct bb_profile_info *bi = BB_INFO (bb);
468 if (! bi->count_valid)
469 {
470 if (bi->succ_count == 0)
471 {
472 edge e;
473 edge_iterator ei;
474 gcov_type total = 0;
475
476 FOR_EACH_EDGE (e, ei, bb->succs)
477 total += edge_gcov_count (e);
478 bb_gcov_count (bb) = total;
479 bi->count_valid = 1;
480 changes = 1;
481 }
482 else if (bi->pred_count == 0)
483 {
484 edge e;
485 edge_iterator ei;
486 gcov_type total = 0;
487
488 FOR_EACH_EDGE (e, ei, bb->preds)
489 total += edge_gcov_count (e);
490 bb_gcov_count (bb) = total;
491 bi->count_valid = 1;
492 changes = 1;
493 }
494 }
495 if (bi->count_valid)
496 {
497 if (bi->succ_count == 1)
498 {
499 edge e;
500 edge_iterator ei;
501 gcov_type total = 0;
502
503 /* One of the counts will be invalid, but it is zero,
504 so adding it in also doesn't hurt. */
505 FOR_EACH_EDGE (e, ei, bb->succs)
506 total += edge_gcov_count (e);
507
508 /* Search for the invalid edge, and set its count. */
509 FOR_EACH_EDGE (e, ei, bb->succs)
510 if (! EDGE_INFO (e)->count_valid && ! EDGE_INFO (e)->ignore)
511 break;
512
513 /* Calculate count for remaining edge by conservation. */
514 total = bb_gcov_count (bb) - total;
515
516 gcc_assert (e);
517 EDGE_INFO (e)->count_valid = 1;
518 edge_gcov_count (e) = total;
519 bi->succ_count--;
520
521 BB_INFO (e->dest)->pred_count--;
522 changes = 1;
523 }
524 if (bi->pred_count == 1)
525 {
526 edge e;
527 edge_iterator ei;
528 gcov_type total = 0;
529
530 /* One of the counts will be invalid, but it is zero,
531 so adding it in also doesn't hurt. */
532 FOR_EACH_EDGE (e, ei, bb->preds)
533 total += edge_gcov_count (e);
534
535 /* Search for the invalid edge, and set its count. */
536 FOR_EACH_EDGE (e, ei, bb->preds)
537 if (!EDGE_INFO (e)->count_valid && !EDGE_INFO (e)->ignore)
538 break;
539
540 /* Calculate count for remaining edge by conservation. */
541 total = bb_gcov_count (bb) - total + edge_gcov_count (e);
542
543 gcc_assert (e);
544 EDGE_INFO (e)->count_valid = 1;
545 edge_gcov_count (e) = total;
546 bi->pred_count--;
547
548 BB_INFO (e->src)->succ_count--;
549 changes = 1;
550 }
551 }
552 }
553 }
554
555 total_num_passes += passes;
556 if (dump_file)
557 fprintf (dump_file, "Graph solving took %d passes.\n\n", passes);
558
559 /* If the graph has been correctly solved, every block will have a
560 succ and pred count of zero. */
561 FOR_EACH_BB_FN (bb, cfun)
562 {
563 gcc_assert (!BB_INFO (bb)->succ_count && !BB_INFO (bb)->pred_count);
564 }
565
566 /* Check for inconsistent basic block counts */
567 inconsistent = is_inconsistent ();
568
569 if (inconsistent)
570 {
571 if (flag_profile_correction)
572 {
573 /* Inconsistency detected. Make it flow-consistent. */
574 static int informed = 0;
575 if (dump_enabled_p () && informed == 0)
576 {
577 informed = 1;
578 dump_printf_loc (MSG_NOTE,
579 dump_user_location_t::from_location_t (input_location),
580 "correcting inconsistent profile data\n");
581 }
582 correct_negative_edge_counts ();
583 /* Set bb counts to the sum of the outgoing edge counts */
584 set_bb_counts ();
585 if (dump_file)
586 fprintf (dump_file, "\nCalling mcf_smooth_cfg\n");
587 mcf_smooth_cfg ();
588 }
589 else
590 error ("corrupted profile info: profile data is not flow-consistent");
591 }
592
593 /* For every edge, calculate its branch probability and add a reg_note
594 to the branch insn to indicate this. */
595
596 for (i = 0; i < 20; i++)
597 hist_br_prob[i] = 0;
598 num_branches = 0;
599
600 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
601 {
602 edge e;
603 edge_iterator ei;
604
605 if (bb_gcov_count (bb) < 0)
606 {
607 error ("corrupted profile info: number of iterations for basic block %d thought to be %i",
608 bb->index, (int)bb_gcov_count (bb));
609 bb_gcov_count (bb) = 0;
610 }
611 FOR_EACH_EDGE (e, ei, bb->succs)
612 {
613 /* Function may return twice in the cased the called function is
614 setjmp or calls fork, but we can't represent this by extra
615 edge from the entry, since extra edge from the exit is
616 already present. We get negative frequency from the entry
617 point. */
618 if ((edge_gcov_count (e) < 0
619 && e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
620 || (edge_gcov_count (e) > bb_gcov_count (bb)
621 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)))
622 {
623 if (block_ends_with_call_p (bb))
624 edge_gcov_count (e) = edge_gcov_count (e) < 0
625 ? 0 : bb_gcov_count (bb);
626 }
627 if (edge_gcov_count (e) < 0
628 || edge_gcov_count (e) > bb_gcov_count (bb))
629 {
630 error ("corrupted profile info: number of executions for edge %d-%d thought to be %i",
631 e->src->index, e->dest->index,
632 (int)edge_gcov_count (e));
633 edge_gcov_count (e) = bb_gcov_count (bb) / 2;
634 }
635 }
636 if (bb_gcov_count (bb))
637 {
638 FOR_EACH_EDGE (e, ei, bb->succs)
639 e->probability = profile_probability::probability_in_gcov_type
640 (edge_gcov_count (e), bb_gcov_count (bb));
641 if (bb->index >= NUM_FIXED_BLOCKS
642 && block_ends_with_condjump_p (bb)
643 && EDGE_COUNT (bb->succs) >= 2)
644 {
645 int prob;
646 edge e;
647 int index;
648
649 /* Find the branch edge. It is possible that we do have fake
650 edges here. */
651 FOR_EACH_EDGE (e, ei, bb->succs)
652 if (!(e->flags & (EDGE_FAKE | EDGE_FALLTHRU)))
653 break;
654
655 prob = e->probability.to_reg_br_prob_base ();
656 index = prob * 20 / REG_BR_PROB_BASE;
657
658 if (index == 20)
659 index = 19;
660 hist_br_prob[index]++;
661
662 num_branches++;
663 }
664 }
665 /* As a last resort, distribute the probabilities evenly.
666 Use simple heuristics that if there are normal edges,
667 give all abnormals frequency of 0, otherwise distribute the
668 frequency over abnormals (this is the case of noreturn
669 calls). */
670 else if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
671 {
672 int total = 0;
673
674 FOR_EACH_EDGE (e, ei, bb->succs)
675 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
676 total ++;
677 if (total)
678 {
679 FOR_EACH_EDGE (e, ei, bb->succs)
680 if (!(e->flags & (EDGE_COMPLEX | EDGE_FAKE)))
681 e->probability
682 = profile_probability::guessed_always ().apply_scale (1, total);
683 else
684 e->probability = profile_probability::never ();
685 }
686 else
687 {
688 total += EDGE_COUNT (bb->succs);
689 FOR_EACH_EDGE (e, ei, bb->succs)
690 e->probability
691 = profile_probability::guessed_always ().apply_scale (1, total);
692 }
693 if (bb->index >= NUM_FIXED_BLOCKS
694 && block_ends_with_condjump_p (bb)
695 && EDGE_COUNT (bb->succs) >= 2)
696 num_branches++;
697 }
698 }
699
700 if (exec_counts)
701 profile_status_for_fn (cfun) = PROFILE_READ;
702
703 /* If we have real data, use them! */
704 if (bb_gcov_count (ENTRY_BLOCK_PTR_FOR_FN (cfun))
705 || !flag_guess_branch_prob)
706 FOR_ALL_BB_FN (bb, cfun)
707 bb->count = profile_count::from_gcov_type (bb_gcov_count (bb));
708 /* If function was not trained, preserve local estimates including statically
709 determined zero counts. */
710 else if (profile_status_for_fn (cfun) == PROFILE_READ)
711 FOR_ALL_BB_FN (bb, cfun)
712 if (!(bb->count == profile_count::zero ()))
713 bb->count = bb->count.global0 ();
714
715 bb_gcov_counts.release ();
716 delete edge_gcov_counts;
717 edge_gcov_counts = NULL;
718
719 update_max_bb_count ();
720
721 if (dump_file)
722 {
723 fprintf (dump_file, " Profile feedback for function");
724 fprintf (dump_file, ((profile_status_for_fn (cfun) == PROFILE_READ)
725 ? " is available \n"
726 : " is not available \n"));
727
728 fprintf (dump_file, "%d branches\n", num_branches);
729 if (num_branches)
730 for (i = 0; i < 10; i++)
731 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
732 (hist_br_prob[i] + hist_br_prob[19-i]) * 100 / num_branches,
733 5 * i, 5 * i + 5);
734
735 total_num_branches += num_branches;
736 for (i = 0; i < 20; i++)
737 total_hist_br_prob[i] += hist_br_prob[i];
738
739 fputc ('\n', dump_file);
740 fputc ('\n', dump_file);
741 }
742
743 free_aux_for_blocks ();
744 }
745
746 /* Sort the histogram value and count for TOPN and INDIR_CALL type. */
747
748 static void
749 sort_hist_values (histogram_value hist)
750 {
751 /* counters[2] equal to -1 means that all counters are invalidated. */
752 if (hist->hvalue.counters[2] == -1)
753 return;
754
755 gcc_assert (hist->type == HIST_TYPE_TOPN_VALUES
756 || hist->type == HIST_TYPE_INDIR_CALL);
757
758 gcc_assert (hist->n_counters == GCOV_TOPN_VALUES_COUNTERS);
759
760 /* Hist value is organized as:
761 [total_executions, value1, counter1, ..., value4, counter4]
762 Use decrease bubble sort to rearrange it. The sort starts from <value1,
763 counter1> and compares counter first. If counter is same, compares the
764 value, exchange it if small to keep stable. */
765 for (unsigned i = 0; i < GCOV_TOPN_VALUES - 1; i++)
766 {
767 bool swapped = false;
768 for (unsigned j = 0; j < GCOV_TOPN_VALUES - 1 - i; j++)
769 {
770 gcov_type *p = &hist->hvalue.counters[2 * j + 1];
771 if (p[1] < p[3] || (p[1] == p[3] && p[0] < p[2]))
772 {
773 std::swap (p[0], p[2]);
774 std::swap (p[1], p[3]);
775 swapped = true;
776 }
777 }
778 if (!swapped)
779 break;
780 }
781 }
782 /* Load value histograms values whose description is stored in VALUES array
783 from .gcda file.
784
785 CFG_CHECKSUM is the precomputed checksum for the CFG. */
786
787 static void
788 compute_value_histograms (histogram_values values, unsigned cfg_checksum,
789 unsigned lineno_checksum)
790 {
791 unsigned i, j, t, any;
792 unsigned n_histogram_counters[GCOV_N_VALUE_COUNTERS];
793 gcov_type *histogram_counts[GCOV_N_VALUE_COUNTERS];
794 gcov_type *act_count[GCOV_N_VALUE_COUNTERS];
795 gcov_type *aact_count;
796 struct cgraph_node *node;
797
798 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
799 n_histogram_counters[t] = 0;
800
801 for (i = 0; i < values.length (); i++)
802 {
803 histogram_value hist = values[i];
804 n_histogram_counters[(int) hist->type] += hist->n_counters;
805 }
806
807 any = 0;
808 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
809 {
810 if (!n_histogram_counters[t])
811 {
812 histogram_counts[t] = NULL;
813 continue;
814 }
815
816 histogram_counts[t] = get_coverage_counts (COUNTER_FOR_HIST_TYPE (t),
817 cfg_checksum,
818 lineno_checksum,
819 n_histogram_counters[t]);
820 if (histogram_counts[t])
821 any = 1;
822 act_count[t] = histogram_counts[t];
823 }
824 if (!any)
825 return;
826
827 for (i = 0; i < values.length (); i++)
828 {
829 histogram_value hist = values[i];
830 gimple *stmt = hist->hvalue.stmt;
831
832 t = (int) hist->type;
833
834 aact_count = act_count[t];
835
836 if (act_count[t])
837 act_count[t] += hist->n_counters;
838
839 gimple_add_histogram_value (cfun, stmt, hist);
840 hist->hvalue.counters = XNEWVEC (gcov_type, hist->n_counters);
841 for (j = 0; j < hist->n_counters; j++)
842 if (aact_count)
843 hist->hvalue.counters[j] = aact_count[j];
844 else
845 hist->hvalue.counters[j] = 0;
846
847 if (hist->type == HIST_TYPE_TOPN_VALUES
848 || hist->type == HIST_TYPE_INDIR_CALL)
849 sort_hist_values (hist);
850
851 /* Time profiler counter is not related to any statement,
852 so that we have to read the counter and set the value to
853 the corresponding call graph node. */
854 if (hist->type == HIST_TYPE_TIME_PROFILE)
855 {
856 node = cgraph_node::get (hist->fun->decl);
857 node->tp_first_run = hist->hvalue.counters[0];
858
859 if (dump_file)
860 fprintf (dump_file, "Read tp_first_run: %d\n", node->tp_first_run);
861 }
862 }
863
864 for (t = 0; t < GCOV_N_VALUE_COUNTERS; t++)
865 free (histogram_counts[t]);
866 }
867
868 /* Location triplet which records a location. */
869 struct location_triplet
870 {
871 const char *filename;
872 int lineno;
873 int bb_index;
874 };
875
876 /* Traits class for streamed_locations hash set below. */
877
878 struct location_triplet_hash : typed_noop_remove <location_triplet>
879 {
880 typedef location_triplet value_type;
881 typedef location_triplet compare_type;
882
883 static hashval_t
884 hash (const location_triplet &ref)
885 {
886 inchash::hash hstate (0);
887 if (ref.filename)
888 hstate.add_int (strlen (ref.filename));
889 hstate.add_int (ref.lineno);
890 hstate.add_int (ref.bb_index);
891 return hstate.end ();
892 }
893
894 static bool
895 equal (const location_triplet &ref1, const location_triplet &ref2)
896 {
897 return ref1.lineno == ref2.lineno
898 && ref1.bb_index == ref2.bb_index
899 && ref1.filename != NULL
900 && ref2.filename != NULL
901 && strcmp (ref1.filename, ref2.filename) == 0;
902 }
903
904 static void
905 mark_deleted (location_triplet &ref)
906 {
907 ref.lineno = -1;
908 }
909
910 static void
911 mark_empty (location_triplet &ref)
912 {
913 ref.lineno = -2;
914 }
915
916 static bool
917 is_deleted (const location_triplet &ref)
918 {
919 return ref.lineno == -1;
920 }
921
922 static bool
923 is_empty (const location_triplet &ref)
924 {
925 return ref.lineno == -2;
926 }
927 };
928
929
930
931
932 /* When passed NULL as file_name, initialize.
933 When passed something else, output the necessary commands to change
934 line to LINE and offset to FILE_NAME. */
935 static void
936 output_location (hash_set<location_triplet_hash> *streamed_locations,
937 char const *file_name, int line,
938 gcov_position_t *offset, basic_block bb)
939 {
940 static char const *prev_file_name;
941 static int prev_line;
942 bool name_differs, line_differs;
943
944 location_triplet triplet;
945 triplet.filename = file_name;
946 triplet.lineno = line;
947 triplet.bb_index = bb ? bb->index : 0;
948
949 if (streamed_locations->add (triplet))
950 return;
951
952 if (!file_name)
953 {
954 prev_file_name = NULL;
955 prev_line = -1;
956 return;
957 }
958
959 name_differs = !prev_file_name || filename_cmp (file_name, prev_file_name);
960 line_differs = prev_line != line;
961
962 if (!*offset)
963 {
964 *offset = gcov_write_tag (GCOV_TAG_LINES);
965 gcov_write_unsigned (bb->index);
966 name_differs = line_differs = true;
967 }
968
969 /* If this is a new source file, then output the
970 file's name to the .bb file. */
971 if (name_differs)
972 {
973 prev_file_name = file_name;
974 gcov_write_unsigned (0);
975 gcov_write_filename (prev_file_name);
976 }
977 if (line_differs)
978 {
979 gcov_write_unsigned (line);
980 prev_line = line;
981 }
982 }
983
984 /* Helper for qsort so edges get sorted from highest frequency to smallest.
985 This controls the weight for minimal spanning tree algorithm */
986 static int
987 compare_freqs (const void *p1, const void *p2)
988 {
989 const_edge e1 = *(const const_edge *)p1;
990 const_edge e2 = *(const const_edge *)p2;
991
992 /* Critical edges needs to be split which introduce extra control flow.
993 Make them more heavy. */
994 int m1 = EDGE_CRITICAL_P (e1) ? 2 : 1;
995 int m2 = EDGE_CRITICAL_P (e2) ? 2 : 1;
996
997 if (EDGE_FREQUENCY (e1) * m1 + m1 != EDGE_FREQUENCY (e2) * m2 + m2)
998 return EDGE_FREQUENCY (e2) * m2 + m2 - EDGE_FREQUENCY (e1) * m1 - m1;
999 /* Stabilize sort. */
1000 if (e1->src->index != e2->src->index)
1001 return e2->src->index - e1->src->index;
1002 return e2->dest->index - e1->dest->index;
1003 }
1004
1005 /* Only read execution count for thunks. */
1006
1007 void
1008 read_thunk_profile (struct cgraph_node *node)
1009 {
1010 tree old = current_function_decl;
1011 current_function_decl = node->decl;
1012 gcov_type *counts = get_coverage_counts (GCOV_COUNTER_ARCS, 0, 0, 1);
1013 if (counts)
1014 {
1015 node->callees->count = node->count
1016 = profile_count::from_gcov_type (counts[0]);
1017 free (counts);
1018 }
1019 current_function_decl = old;
1020 return;
1021 }
1022
1023
1024 /* Instrument and/or analyze program behavior based on program the CFG.
1025
1026 This function creates a representation of the control flow graph (of
1027 the function being compiled) that is suitable for the instrumentation
1028 of edges and/or converting measured edge counts to counts on the
1029 complete CFG.
1030
1031 When FLAG_PROFILE_ARCS is nonzero, this function instruments the edges in
1032 the flow graph that are needed to reconstruct the dynamic behavior of the
1033 flow graph. This data is written to the gcno file for gcov.
1034
1035 When FLAG_BRANCH_PROBABILITIES is nonzero, this function reads auxiliary
1036 information from the gcda file containing edge count information from
1037 previous executions of the function being compiled. In this case, the
1038 control flow graph is annotated with actual execution counts by
1039 compute_branch_probabilities().
1040
1041 Main entry point of this file. */
1042
1043 void
1044 branch_prob (bool thunk)
1045 {
1046 basic_block bb;
1047 unsigned i;
1048 unsigned num_edges, ignored_edges;
1049 unsigned num_instrumented;
1050 struct edge_list *el;
1051 histogram_values values = histogram_values ();
1052 unsigned cfg_checksum, lineno_checksum;
1053
1054 total_num_times_called++;
1055
1056 flow_call_edges_add (NULL);
1057 add_noreturn_fake_exit_edges ();
1058
1059 hash_set <location_triplet_hash> streamed_locations;
1060
1061 if (!thunk)
1062 {
1063 /* We can't handle cyclic regions constructed using abnormal edges.
1064 To avoid these we replace every source of abnormal edge by a fake
1065 edge from entry node and every destination by fake edge to exit.
1066 This keeps graph acyclic and our calculation exact for all normal
1067 edges except for exit and entrance ones.
1068
1069 We also add fake exit edges for each call and asm statement in the
1070 basic, since it may not return. */
1071
1072 FOR_EACH_BB_FN (bb, cfun)
1073 {
1074 int need_exit_edge = 0, need_entry_edge = 0;
1075 int have_exit_edge = 0, have_entry_edge = 0;
1076 edge e;
1077 edge_iterator ei;
1078
1079 /* Functions returning multiple times are not handled by extra edges.
1080 Instead we simply allow negative counts on edges from exit to the
1081 block past call and corresponding probabilities. We can't go
1082 with the extra edges because that would result in flowgraph that
1083 needs to have fake edges outside the spanning tree. */
1084
1085 FOR_EACH_EDGE (e, ei, bb->succs)
1086 {
1087 gimple_stmt_iterator gsi;
1088 gimple *last = NULL;
1089
1090 /* It may happen that there are compiler generated statements
1091 without a locus at all. Go through the basic block from the
1092 last to the first statement looking for a locus. */
1093 for (gsi = gsi_last_nondebug_bb (bb);
1094 !gsi_end_p (gsi);
1095 gsi_prev_nondebug (&gsi))
1096 {
1097 last = gsi_stmt (gsi);
1098 if (!RESERVED_LOCATION_P (gimple_location (last)))
1099 break;
1100 }
1101
1102 /* Edge with goto locus might get wrong coverage info unless
1103 it is the only edge out of BB.
1104 Don't do that when the locuses match, so
1105 if (blah) goto something;
1106 is not computed twice. */
1107 if (last
1108 && gimple_has_location (last)
1109 && !RESERVED_LOCATION_P (e->goto_locus)
1110 && !single_succ_p (bb)
1111 && (LOCATION_FILE (e->goto_locus)
1112 != LOCATION_FILE (gimple_location (last))
1113 || (LOCATION_LINE (e->goto_locus)
1114 != LOCATION_LINE (gimple_location (last)))))
1115 {
1116 basic_block new_bb = split_edge (e);
1117 edge ne = single_succ_edge (new_bb);
1118 ne->goto_locus = e->goto_locus;
1119 }
1120 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1121 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1122 need_exit_edge = 1;
1123 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1124 have_exit_edge = 1;
1125 }
1126 FOR_EACH_EDGE (e, ei, bb->preds)
1127 {
1128 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1129 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
1130 need_entry_edge = 1;
1131 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1132 have_entry_edge = 1;
1133 }
1134
1135 if (need_exit_edge && !have_exit_edge)
1136 {
1137 if (dump_file)
1138 fprintf (dump_file, "Adding fake exit edge to bb %i\n",
1139 bb->index);
1140 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
1141 }
1142 if (need_entry_edge && !have_entry_edge)
1143 {
1144 if (dump_file)
1145 fprintf (dump_file, "Adding fake entry edge to bb %i\n",
1146 bb->index);
1147 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), bb, EDGE_FAKE);
1148 /* Avoid bbs that have both fake entry edge and also some
1149 exit edge. One of those edges wouldn't be added to the
1150 spanning tree, but we can't instrument any of them. */
1151 if (have_exit_edge || need_exit_edge)
1152 {
1153 gimple_stmt_iterator gsi;
1154 gimple *first;
1155
1156 gsi = gsi_start_nondebug_after_labels_bb (bb);
1157 gcc_checking_assert (!gsi_end_p (gsi));
1158 first = gsi_stmt (gsi);
1159 /* Don't split the bbs containing __builtin_setjmp_receiver
1160 or ABNORMAL_DISPATCHER calls. These are very
1161 special and don't expect anything to be inserted before
1162 them. */
1163 if (is_gimple_call (first)
1164 && (gimple_call_builtin_p (first, BUILT_IN_SETJMP_RECEIVER)
1165 || (gimple_call_flags (first) & ECF_RETURNS_TWICE)
1166 || (gimple_call_internal_p (first)
1167 && (gimple_call_internal_fn (first)
1168 == IFN_ABNORMAL_DISPATCHER))))
1169 continue;
1170
1171 if (dump_file)
1172 fprintf (dump_file, "Splitting bb %i after labels\n",
1173 bb->index);
1174 split_block_after_labels (bb);
1175 }
1176 }
1177 }
1178 }
1179
1180 el = create_edge_list ();
1181 num_edges = NUM_EDGES (el);
1182 qsort (el->index_to_edge, num_edges, sizeof (edge), compare_freqs);
1183 alloc_aux_for_edges (sizeof (struct edge_profile_info));
1184
1185 /* The basic blocks are expected to be numbered sequentially. */
1186 compact_blocks ();
1187
1188 ignored_edges = 0;
1189 for (i = 0 ; i < num_edges ; i++)
1190 {
1191 edge e = INDEX_EDGE (el, i);
1192
1193 /* Mark edges we've replaced by fake edges above as ignored. */
1194 if ((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL))
1195 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1196 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1197 {
1198 EDGE_INFO (e)->ignore = 1;
1199 ignored_edges++;
1200 }
1201 }
1202
1203 /* Create spanning tree from basic block graph, mark each edge that is
1204 on the spanning tree. We insert as many abnormal and critical edges
1205 as possible to minimize number of edge splits necessary. */
1206
1207 if (!thunk)
1208 find_spanning_tree (el);
1209 else
1210 {
1211 edge e;
1212 edge_iterator ei;
1213 /* Keep only edge from entry block to be instrumented. */
1214 FOR_EACH_BB_FN (bb, cfun)
1215 FOR_EACH_EDGE (e, ei, bb->succs)
1216 EDGE_INFO (e)->ignore = true;
1217 }
1218
1219
1220 /* Fake edges that are not on the tree will not be instrumented, so
1221 mark them ignored. */
1222 for (num_instrumented = i = 0; i < num_edges; i++)
1223 {
1224 edge e = INDEX_EDGE (el, i);
1225 struct edge_profile_info *inf = EDGE_INFO (e);
1226
1227 if (inf->ignore || inf->on_tree)
1228 /*NOP*/;
1229 else if (e->flags & EDGE_FAKE)
1230 {
1231 inf->ignore = 1;
1232 ignored_edges++;
1233 }
1234 else
1235 num_instrumented++;
1236 }
1237
1238 total_num_blocks += n_basic_blocks_for_fn (cfun);
1239 if (dump_file)
1240 fprintf (dump_file, "%d basic blocks\n", n_basic_blocks_for_fn (cfun));
1241
1242 total_num_edges += num_edges;
1243 if (dump_file)
1244 fprintf (dump_file, "%d edges\n", num_edges);
1245
1246 total_num_edges_ignored += ignored_edges;
1247 if (dump_file)
1248 fprintf (dump_file, "%d ignored edges\n", ignored_edges);
1249
1250 total_num_edges_instrumented += num_instrumented;
1251 if (dump_file)
1252 fprintf (dump_file, "%d instrumentation edges\n", num_instrumented);
1253
1254 /* Compute two different checksums. Note that we want to compute
1255 the checksum in only once place, since it depends on the shape
1256 of the control flow which can change during
1257 various transformations. */
1258 if (thunk)
1259 {
1260 /* At stream in time we do not have CFG, so we cannot do checksums. */
1261 cfg_checksum = 0;
1262 lineno_checksum = 0;
1263 }
1264 else
1265 {
1266 cfg_checksum = coverage_compute_cfg_checksum (cfun);
1267 lineno_checksum = coverage_compute_lineno_checksum ();
1268 }
1269
1270 /* Write the data from which gcov can reconstruct the basic block
1271 graph and function line numbers (the gcno file). */
1272 if (coverage_begin_function (lineno_checksum, cfg_checksum))
1273 {
1274 gcov_position_t offset;
1275
1276 /* Basic block flags */
1277 offset = gcov_write_tag (GCOV_TAG_BLOCKS);
1278 gcov_write_unsigned (n_basic_blocks_for_fn (cfun));
1279 gcov_write_length (offset);
1280
1281 /* Arcs */
1282 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
1283 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
1284 {
1285 edge e;
1286 edge_iterator ei;
1287
1288 offset = gcov_write_tag (GCOV_TAG_ARCS);
1289 gcov_write_unsigned (bb->index);
1290
1291 FOR_EACH_EDGE (e, ei, bb->succs)
1292 {
1293 struct edge_profile_info *i = EDGE_INFO (e);
1294 if (!i->ignore)
1295 {
1296 unsigned flag_bits = 0;
1297
1298 if (i->on_tree)
1299 flag_bits |= GCOV_ARC_ON_TREE;
1300 if (e->flags & EDGE_FAKE)
1301 flag_bits |= GCOV_ARC_FAKE;
1302 if (e->flags & EDGE_FALLTHRU)
1303 flag_bits |= GCOV_ARC_FALLTHROUGH;
1304 /* On trees we don't have fallthru flags, but we can
1305 recompute them from CFG shape. */
1306 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)
1307 && e->src->next_bb == e->dest)
1308 flag_bits |= GCOV_ARC_FALLTHROUGH;
1309
1310 gcov_write_unsigned (e->dest->index);
1311 gcov_write_unsigned (flag_bits);
1312 }
1313 }
1314
1315 gcov_write_length (offset);
1316 }
1317
1318 /* Line numbers. */
1319 /* Initialize the output. */
1320 output_location (&streamed_locations, NULL, 0, NULL, NULL);
1321
1322 hash_set<int_hash <location_t, 0, 2> > seen_locations;
1323
1324 FOR_EACH_BB_FN (bb, cfun)
1325 {
1326 gimple_stmt_iterator gsi;
1327 gcov_position_t offset = 0;
1328
1329 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb)
1330 {
1331 location_t loc = DECL_SOURCE_LOCATION (current_function_decl);
1332 seen_locations.add (loc);
1333 expanded_location curr_location = expand_location (loc);
1334 output_location (&streamed_locations, curr_location.file,
1335 curr_location.line, &offset, bb);
1336 }
1337
1338 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1339 {
1340 gimple *stmt = gsi_stmt (gsi);
1341 location_t loc = gimple_location (stmt);
1342 if (!RESERVED_LOCATION_P (loc))
1343 {
1344 seen_locations.add (loc);
1345 output_location (&streamed_locations, gimple_filename (stmt),
1346 gimple_lineno (stmt), &offset, bb);
1347 }
1348 }
1349
1350 /* Notice GOTO expressions eliminated while constructing the CFG.
1351 It's hard to distinguish such expression, but goto_locus should
1352 not be any of already seen location. */
1353 location_t loc;
1354 if (single_succ_p (bb)
1355 && (loc = single_succ_edge (bb)->goto_locus)
1356 && !RESERVED_LOCATION_P (loc)
1357 && !seen_locations.contains (loc))
1358 {
1359 expanded_location curr_location = expand_location (loc);
1360 output_location (&streamed_locations, curr_location.file,
1361 curr_location.line, &offset, bb);
1362 }
1363
1364 if (offset)
1365 {
1366 /* A file of NULL indicates the end of run. */
1367 gcov_write_unsigned (0);
1368 gcov_write_string (NULL);
1369 gcov_write_length (offset);
1370 }
1371 }
1372 }
1373
1374 if (flag_profile_values)
1375 gimple_find_values_to_profile (&values);
1376
1377 if (flag_branch_probabilities)
1378 {
1379 compute_branch_probabilities (cfg_checksum, lineno_checksum);
1380 if (flag_profile_values)
1381 compute_value_histograms (values, cfg_checksum, lineno_checksum);
1382 }
1383
1384 remove_fake_edges ();
1385
1386 /* For each edge not on the spanning tree, add counting code. */
1387 if (profile_arc_flag
1388 && coverage_counter_alloc (GCOV_COUNTER_ARCS, num_instrumented))
1389 {
1390 unsigned n_instrumented;
1391
1392 gimple_init_gcov_profiler ();
1393
1394 n_instrumented = instrument_edges (el);
1395
1396 gcc_assert (n_instrumented == num_instrumented);
1397
1398 if (flag_profile_values)
1399 instrument_values (values);
1400
1401 /* Commit changes done by instrumentation. */
1402 gsi_commit_edge_inserts ();
1403 }
1404
1405 free_aux_for_edges ();
1406
1407 values.release ();
1408 free_edge_list (el);
1409 coverage_end_function (lineno_checksum, cfg_checksum);
1410 if (flag_branch_probabilities
1411 && (profile_status_for_fn (cfun) == PROFILE_READ))
1412 {
1413 class loop *loop;
1414 if (dump_file && (dump_flags & TDF_DETAILS))
1415 report_predictor_hitrates ();
1416
1417 /* At this moment we have precise loop iteration count estimates.
1418 Record them to loop structure before the profile gets out of date. */
1419 FOR_EACH_LOOP (loop, 0)
1420 if (loop->header->count > 0)
1421 {
1422 gcov_type nit = expected_loop_iterations_unbounded (loop);
1423 widest_int bound = gcov_type_to_wide_int (nit);
1424 loop->any_estimate = false;
1425 record_niter_bound (loop, bound, true, false);
1426 }
1427 compute_function_frequency ();
1428 }
1429 }
1430 \f
1431 /* Union find algorithm implementation for the basic blocks using
1432 aux fields. */
1433
1434 static basic_block
1435 find_group (basic_block bb)
1436 {
1437 basic_block group = bb, bb1;
1438
1439 while ((basic_block) group->aux != group)
1440 group = (basic_block) group->aux;
1441
1442 /* Compress path. */
1443 while ((basic_block) bb->aux != group)
1444 {
1445 bb1 = (basic_block) bb->aux;
1446 bb->aux = (void *) group;
1447 bb = bb1;
1448 }
1449 return group;
1450 }
1451
1452 static void
1453 union_groups (basic_block bb1, basic_block bb2)
1454 {
1455 basic_block bb1g = find_group (bb1);
1456 basic_block bb2g = find_group (bb2);
1457
1458 /* ??? I don't have a place for the rank field. OK. Lets go w/o it,
1459 this code is unlikely going to be performance problem anyway. */
1460 gcc_assert (bb1g != bb2g);
1461
1462 bb1g->aux = bb2g;
1463 }
1464 \f
1465 /* This function searches all of the edges in the program flow graph, and puts
1466 as many bad edges as possible onto the spanning tree. Bad edges include
1467 abnormals edges, which can't be instrumented at the moment. Since it is
1468 possible for fake edges to form a cycle, we will have to develop some
1469 better way in the future. Also put critical edges to the tree, since they
1470 are more expensive to instrument. */
1471
1472 static void
1473 find_spanning_tree (struct edge_list *el)
1474 {
1475 int i;
1476 int num_edges = NUM_EDGES (el);
1477 basic_block bb;
1478
1479 /* We use aux field for standard union-find algorithm. */
1480 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
1481 bb->aux = bb;
1482
1483 /* Add fake edge exit to entry we can't instrument. */
1484 union_groups (EXIT_BLOCK_PTR_FOR_FN (cfun), ENTRY_BLOCK_PTR_FOR_FN (cfun));
1485
1486 /* First add all abnormal edges to the tree unless they form a cycle. Also
1487 add all edges to the exit block to avoid inserting profiling code behind
1488 setting return value from function. */
1489 for (i = 0; i < num_edges; i++)
1490 {
1491 edge e = INDEX_EDGE (el, i);
1492 if (((e->flags & (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1493 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1494 && !EDGE_INFO (e)->ignore
1495 && (find_group (e->src) != find_group (e->dest)))
1496 {
1497 if (dump_file)
1498 fprintf (dump_file, "Abnormal edge %d to %d put to tree\n",
1499 e->src->index, e->dest->index);
1500 EDGE_INFO (e)->on_tree = 1;
1501 union_groups (e->src, e->dest);
1502 }
1503 }
1504
1505 /* And now the rest. Edge list is sorted according to frequencies and
1506 thus we will produce minimal spanning tree. */
1507 for (i = 0; i < num_edges; i++)
1508 {
1509 edge e = INDEX_EDGE (el, i);
1510 if (!EDGE_INFO (e)->ignore
1511 && find_group (e->src) != find_group (e->dest))
1512 {
1513 if (dump_file)
1514 fprintf (dump_file, "Normal edge %d to %d put to tree\n",
1515 e->src->index, e->dest->index);
1516 EDGE_INFO (e)->on_tree = 1;
1517 union_groups (e->src, e->dest);
1518 }
1519 }
1520
1521 clear_aux_for_blocks ();
1522 }
1523 \f
1524 /* Perform file-level initialization for branch-prob processing. */
1525
1526 void
1527 init_branch_prob (void)
1528 {
1529 int i;
1530
1531 total_num_blocks = 0;
1532 total_num_edges = 0;
1533 total_num_edges_ignored = 0;
1534 total_num_edges_instrumented = 0;
1535 total_num_blocks_created = 0;
1536 total_num_passes = 0;
1537 total_num_times_called = 0;
1538 total_num_branches = 0;
1539 for (i = 0; i < 20; i++)
1540 total_hist_br_prob[i] = 0;
1541 }
1542
1543 /* Performs file-level cleanup after branch-prob processing
1544 is completed. */
1545
1546 void
1547 end_branch_prob (void)
1548 {
1549 if (dump_file)
1550 {
1551 fprintf (dump_file, "\n");
1552 fprintf (dump_file, "Total number of blocks: %d\n",
1553 total_num_blocks);
1554 fprintf (dump_file, "Total number of edges: %d\n", total_num_edges);
1555 fprintf (dump_file, "Total number of ignored edges: %d\n",
1556 total_num_edges_ignored);
1557 fprintf (dump_file, "Total number of instrumented edges: %d\n",
1558 total_num_edges_instrumented);
1559 fprintf (dump_file, "Total number of blocks created: %d\n",
1560 total_num_blocks_created);
1561 fprintf (dump_file, "Total number of graph solution passes: %d\n",
1562 total_num_passes);
1563 if (total_num_times_called != 0)
1564 fprintf (dump_file, "Average number of graph solution passes: %d\n",
1565 (total_num_passes + (total_num_times_called >> 1))
1566 / total_num_times_called);
1567 fprintf (dump_file, "Total number of branches: %d\n",
1568 total_num_branches);
1569 if (total_num_branches)
1570 {
1571 int i;
1572
1573 for (i = 0; i < 10; i++)
1574 fprintf (dump_file, "%d%% branches in range %d-%d%%\n",
1575 (total_hist_br_prob[i] + total_hist_br_prob[19-i]) * 100
1576 / total_num_branches, 5*i, 5*i+5);
1577 }
1578 }
1579 }