]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
[C++] Protect call to copy_attributes_to_builtin (PR91505)
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "cfghooks.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36 #include "insn-attr.h"
37 #include "addresses.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "cfgcleanup.h"
41 #include "reload.h"
42 #include "tree-pass.h"
43
44 #ifndef STACK_POP_CODE
45 #if STACK_GROWS_DOWNWARD
46 #define STACK_POP_CODE POST_INC
47 #else
48 #define STACK_POP_CODE POST_DEC
49 #endif
50 #endif
51
52 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx_insn *, bool);
53 static void validate_replace_src_1 (rtx *, void *);
54 static rtx_insn *split_insn (rtx_insn *);
55
56 struct target_recog default_target_recog;
57 #if SWITCHABLE_TARGET
58 struct target_recog *this_target_recog = &default_target_recog;
59 #endif
60
61 /* Nonzero means allow operands to be volatile.
62 This should be 0 if you are generating rtl, such as if you are calling
63 the functions in optabs.c and expmed.c (most of the time).
64 This should be 1 if all valid insns need to be recognized,
65 such as in reginfo.c and final.c and reload.c.
66
67 init_recog and init_recog_no_volatile are responsible for setting this. */
68
69 int volatile_ok;
70
71 struct recog_data_d recog_data;
72
73 /* Contains a vector of operand_alternative structures, such that
74 operand OP of alternative A is at index A * n_operands + OP.
75 Set up by preprocess_constraints. */
76 const operand_alternative *recog_op_alt;
77
78 /* Used to provide recog_op_alt for asms. */
79 static operand_alternative asm_op_alt[MAX_RECOG_OPERANDS
80 * MAX_RECOG_ALTERNATIVES];
81
82 /* On return from `constrain_operands', indicate which alternative
83 was satisfied. */
84
85 int which_alternative;
86
87 /* Nonzero after end of reload pass.
88 Set to 1 or 0 by toplev.c.
89 Controls the significance of (SUBREG (MEM)). */
90
91 int reload_completed;
92
93 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
94 int epilogue_completed;
95
96 /* Initialize data used by the function `recog'.
97 This must be called once in the compilation of a function
98 before any insn recognition may be done in the function. */
99
100 void
101 init_recog_no_volatile (void)
102 {
103 volatile_ok = 0;
104 }
105
106 void
107 init_recog (void)
108 {
109 volatile_ok = 1;
110 }
111
112 \f
113 /* Return true if labels in asm operands BODY are LABEL_REFs. */
114
115 static bool
116 asm_labels_ok (rtx body)
117 {
118 rtx asmop;
119 int i;
120
121 asmop = extract_asm_operands (body);
122 if (asmop == NULL_RTX)
123 return true;
124
125 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
126 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
127 return false;
128
129 return true;
130 }
131
132 /* Check that X is an insn-body for an `asm' with operands
133 and that the operands mentioned in it are legitimate. */
134
135 int
136 check_asm_operands (rtx x)
137 {
138 int noperands;
139 rtx *operands;
140 const char **constraints;
141 int i;
142
143 if (!asm_labels_ok (x))
144 return 0;
145
146 /* Post-reload, be more strict with things. */
147 if (reload_completed)
148 {
149 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
150 rtx_insn *insn = make_insn_raw (x);
151 extract_insn (insn);
152 constrain_operands (1, get_enabled_alternatives (insn));
153 return which_alternative >= 0;
154 }
155
156 noperands = asm_noperands (x);
157 if (noperands < 0)
158 return 0;
159 if (noperands == 0)
160 return 1;
161
162 operands = XALLOCAVEC (rtx, noperands);
163 constraints = XALLOCAVEC (const char *, noperands);
164
165 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
166
167 for (i = 0; i < noperands; i++)
168 {
169 const char *c = constraints[i];
170 if (c[0] == '%')
171 c++;
172 if (! asm_operand_ok (operands[i], c, constraints))
173 return 0;
174 }
175
176 return 1;
177 }
178 \f
179 /* Static data for the next two routines. */
180
181 struct change_t
182 {
183 rtx object;
184 int old_code;
185 bool unshare;
186 rtx *loc;
187 rtx old;
188 };
189
190 static change_t *changes;
191 static int changes_allocated;
192
193 static int num_changes = 0;
194
195 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
196 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
197 the change is simply made.
198
199 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
200 will be called with the address and mode as parameters. If OBJECT is
201 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
202 the change in place.
203
204 IN_GROUP is nonzero if this is part of a group of changes that must be
205 performed as a group. In that case, the changes will be stored. The
206 function `apply_change_group' will validate and apply the changes.
207
208 If IN_GROUP is zero, this is a single change. Try to recognize the insn
209 or validate the memory reference with the change applied. If the result
210 is not valid for the machine, suppress the change and return zero.
211 Otherwise, perform the change and return 1. */
212
213 static bool
214 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
215 {
216 rtx old = *loc;
217
218 if (old == new_rtx || rtx_equal_p (old, new_rtx))
219 return 1;
220
221 gcc_assert (in_group != 0 || num_changes == 0);
222
223 *loc = new_rtx;
224
225 /* Save the information describing this change. */
226 if (num_changes >= changes_allocated)
227 {
228 if (changes_allocated == 0)
229 /* This value allows for repeated substitutions inside complex
230 indexed addresses, or changes in up to 5 insns. */
231 changes_allocated = MAX_RECOG_OPERANDS * 5;
232 else
233 changes_allocated *= 2;
234
235 changes = XRESIZEVEC (change_t, changes, changes_allocated);
236 }
237
238 changes[num_changes].object = object;
239 changes[num_changes].loc = loc;
240 changes[num_changes].old = old;
241 changes[num_changes].unshare = unshare;
242
243 if (object && !MEM_P (object))
244 {
245 /* Set INSN_CODE to force rerecognition of insn. Save old code in
246 case invalid. */
247 changes[num_changes].old_code = INSN_CODE (object);
248 INSN_CODE (object) = -1;
249 }
250
251 num_changes++;
252
253 /* If we are making a group of changes, return 1. Otherwise, validate the
254 change group we made. */
255
256 if (in_group)
257 return 1;
258 else
259 return apply_change_group ();
260 }
261
262 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
263 UNSHARE to false. */
264
265 bool
266 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
267 {
268 return validate_change_1 (object, loc, new_rtx, in_group, false);
269 }
270
271 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
272 UNSHARE to true. */
273
274 bool
275 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
276 {
277 return validate_change_1 (object, loc, new_rtx, in_group, true);
278 }
279
280
281 /* Keep X canonicalized if some changes have made it non-canonical; only
282 modifies the operands of X, not (for example) its code. Simplifications
283 are not the job of this routine.
284
285 Return true if anything was changed. */
286 bool
287 canonicalize_change_group (rtx_insn *insn, rtx x)
288 {
289 if (COMMUTATIVE_P (x)
290 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
291 {
292 /* Oops, the caller has made X no longer canonical.
293 Let's redo the changes in the correct order. */
294 rtx tem = XEXP (x, 0);
295 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
296 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
297 return true;
298 }
299 else
300 return false;
301 }
302
303
304 /* This subroutine of apply_change_group verifies whether the changes to INSN
305 were valid; i.e. whether INSN can still be recognized.
306
307 If IN_GROUP is true clobbers which have to be added in order to
308 match the instructions will be added to the current change group.
309 Otherwise the changes will take effect immediately. */
310
311 int
312 insn_invalid_p (rtx_insn *insn, bool in_group)
313 {
314 rtx pat = PATTERN (insn);
315 int num_clobbers = 0;
316 /* If we are before reload and the pattern is a SET, see if we can add
317 clobbers. */
318 int icode = recog (pat, insn,
319 (GET_CODE (pat) == SET
320 && ! reload_completed
321 && ! reload_in_progress)
322 ? &num_clobbers : 0);
323 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
324
325
326 /* If this is an asm and the operand aren't legal, then fail. Likewise if
327 this is not an asm and the insn wasn't recognized. */
328 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
329 || (!is_asm && icode < 0))
330 return 1;
331
332 /* If we have to add CLOBBERs, fail if we have to add ones that reference
333 hard registers since our callers can't know if they are live or not.
334 Otherwise, add them. */
335 if (num_clobbers > 0)
336 {
337 rtx newpat;
338
339 if (added_clobbers_hard_reg_p (icode))
340 return 1;
341
342 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
343 XVECEXP (newpat, 0, 0) = pat;
344 add_clobbers (newpat, icode);
345 if (in_group)
346 validate_change (insn, &PATTERN (insn), newpat, 1);
347 else
348 PATTERN (insn) = pat = newpat;
349 }
350
351 /* After reload, verify that all constraints are satisfied. */
352 if (reload_completed)
353 {
354 extract_insn (insn);
355
356 if (! constrain_operands (1, get_preferred_alternatives (insn)))
357 return 1;
358 }
359
360 INSN_CODE (insn) = icode;
361 return 0;
362 }
363
364 /* Return number of changes made and not validated yet. */
365 int
366 num_changes_pending (void)
367 {
368 return num_changes;
369 }
370
371 /* Tentatively apply the changes numbered NUM and up.
372 Return 1 if all changes are valid, zero otherwise. */
373
374 int
375 verify_changes (int num)
376 {
377 int i;
378 rtx last_validated = NULL_RTX;
379
380 /* The changes have been applied and all INSN_CODEs have been reset to force
381 rerecognition.
382
383 The changes are valid if we aren't given an object, or if we are
384 given a MEM and it still is a valid address, or if this is in insn
385 and it is recognized. In the latter case, if reload has completed,
386 we also require that the operands meet the constraints for
387 the insn. */
388
389 for (i = num; i < num_changes; i++)
390 {
391 rtx object = changes[i].object;
392
393 /* If there is no object to test or if it is the same as the one we
394 already tested, ignore it. */
395 if (object == 0 || object == last_validated)
396 continue;
397
398 if (MEM_P (object))
399 {
400 if (! memory_address_addr_space_p (GET_MODE (object),
401 XEXP (object, 0),
402 MEM_ADDR_SPACE (object)))
403 break;
404 }
405 else if (/* changes[i].old might be zero, e.g. when putting a
406 REG_FRAME_RELATED_EXPR into a previously empty list. */
407 changes[i].old
408 && REG_P (changes[i].old)
409 && asm_noperands (PATTERN (object)) > 0
410 && REG_EXPR (changes[i].old) != NULL_TREE
411 && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (changes[i].old))
412 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
413 && DECL_REGISTER (REG_EXPR (changes[i].old)))
414 {
415 /* Don't allow changes of hard register operands to inline
416 assemblies if they have been defined as register asm ("x"). */
417 break;
418 }
419 else if (DEBUG_INSN_P (object))
420 continue;
421 else if (insn_invalid_p (as_a <rtx_insn *> (object), true))
422 {
423 rtx pat = PATTERN (object);
424
425 /* Perhaps we couldn't recognize the insn because there were
426 extra CLOBBERs at the end. If so, try to re-recognize
427 without the last CLOBBER (later iterations will cause each of
428 them to be eliminated, in turn). But don't do this if we
429 have an ASM_OPERAND. */
430 if (GET_CODE (pat) == PARALLEL
431 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
432 && asm_noperands (PATTERN (object)) < 0)
433 {
434 rtx newpat;
435
436 if (XVECLEN (pat, 0) == 2)
437 newpat = XVECEXP (pat, 0, 0);
438 else
439 {
440 int j;
441
442 newpat
443 = gen_rtx_PARALLEL (VOIDmode,
444 rtvec_alloc (XVECLEN (pat, 0) - 1));
445 for (j = 0; j < XVECLEN (newpat, 0); j++)
446 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
447 }
448
449 /* Add a new change to this group to replace the pattern
450 with this new pattern. Then consider this change
451 as having succeeded. The change we added will
452 cause the entire call to fail if things remain invalid.
453
454 Note that this can lose if a later change than the one
455 we are processing specified &XVECEXP (PATTERN (object), 0, X)
456 but this shouldn't occur. */
457
458 validate_change (object, &PATTERN (object), newpat, 1);
459 continue;
460 }
461 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
462 || GET_CODE (pat) == VAR_LOCATION)
463 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 never recognized. */
465 continue;
466 else
467 break;
468 }
469 last_validated = object;
470 }
471
472 return (i == num_changes);
473 }
474
475 /* A group of changes has previously been issued with validate_change
476 and verified with verify_changes. Call df_insn_rescan for each of
477 the insn changed and clear num_changes. */
478
479 void
480 confirm_change_group (void)
481 {
482 int i;
483 rtx last_object = NULL;
484
485 for (i = 0; i < num_changes; i++)
486 {
487 rtx object = changes[i].object;
488
489 if (changes[i].unshare)
490 *changes[i].loc = copy_rtx (*changes[i].loc);
491
492 /* Avoid unnecessary rescanning when multiple changes to same instruction
493 are made. */
494 if (object)
495 {
496 if (object != last_object && last_object && INSN_P (last_object))
497 df_insn_rescan (as_a <rtx_insn *> (last_object));
498 last_object = object;
499 }
500 }
501
502 if (last_object && INSN_P (last_object))
503 df_insn_rescan (as_a <rtx_insn *> (last_object));
504 num_changes = 0;
505 }
506
507 /* Apply a group of changes previously issued with `validate_change'.
508 If all changes are valid, call confirm_change_group and return 1,
509 otherwise, call cancel_changes and return 0. */
510
511 int
512 apply_change_group (void)
513 {
514 if (verify_changes (0))
515 {
516 confirm_change_group ();
517 return 1;
518 }
519 else
520 {
521 cancel_changes (0);
522 return 0;
523 }
524 }
525
526
527 /* Return the number of changes so far in the current group. */
528
529 int
530 num_validated_changes (void)
531 {
532 return num_changes;
533 }
534
535 /* Retract the changes numbered NUM and up. */
536
537 void
538 cancel_changes (int num)
539 {
540 int i;
541
542 /* Back out all the changes. Do this in the opposite order in which
543 they were made. */
544 for (i = num_changes - 1; i >= num; i--)
545 {
546 *changes[i].loc = changes[i].old;
547 if (changes[i].object && !MEM_P (changes[i].object))
548 INSN_CODE (changes[i].object) = changes[i].old_code;
549 }
550 num_changes = num;
551 }
552
553 /* Reduce conditional compilation elsewhere. */
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
556
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx_insn *object,
559 machine_mode op0_mode)
560 {
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx = NULL_RTX;
564 scalar_int_mode is_mode;
565
566 if (SWAPPABLE_OPERANDS_P (x)
567 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 {
569 validate_unshare_change (object, loc,
570 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
571 : swap_condition (code),
572 GET_MODE (x), XEXP (x, 1),
573 XEXP (x, 0)), 1);
574 x = *loc;
575 code = GET_CODE (x);
576 }
577
578 /* Canonicalize arithmetics with all constant operands. */
579 switch (GET_RTX_CLASS (code))
580 {
581 case RTX_UNARY:
582 if (CONSTANT_P (XEXP (x, 0)))
583 new_rtx = simplify_unary_operation (code, GET_MODE (x), XEXP (x, 0),
584 op0_mode);
585 break;
586 case RTX_COMM_ARITH:
587 case RTX_BIN_ARITH:
588 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
589 new_rtx = simplify_binary_operation (code, GET_MODE (x), XEXP (x, 0),
590 XEXP (x, 1));
591 break;
592 case RTX_COMPARE:
593 case RTX_COMM_COMPARE:
594 if (CONSTANT_P (XEXP (x, 0)) && CONSTANT_P (XEXP (x, 1)))
595 new_rtx = simplify_relational_operation (code, GET_MODE (x), op0_mode,
596 XEXP (x, 0), XEXP (x, 1));
597 break;
598 default:
599 break;
600 }
601 if (new_rtx)
602 {
603 validate_change (object, loc, new_rtx, 1);
604 return;
605 }
606
607 switch (code)
608 {
609 case PLUS:
610 /* If we have a PLUS whose second operand is now a CONST_INT, use
611 simplify_gen_binary to try to simplify it.
612 ??? We may want later to remove this, once simplification is
613 separated from this function. */
614 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
615 validate_change (object, loc,
616 simplify_gen_binary
617 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
618 break;
619 case MINUS:
620 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
621 validate_change (object, loc,
622 simplify_gen_binary
623 (PLUS, GET_MODE (x), XEXP (x, 0),
624 simplify_gen_unary (NEG,
625 GET_MODE (x), XEXP (x, 1),
626 GET_MODE (x))), 1);
627 break;
628 case ZERO_EXTEND:
629 case SIGN_EXTEND:
630 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
631 {
632 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
633 op0_mode);
634 /* If any of the above failed, substitute in something that
635 we know won't be recognized. */
636 if (!new_rtx)
637 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
638 validate_change (object, loc, new_rtx, 1);
639 }
640 break;
641 case SUBREG:
642 /* All subregs possible to simplify should be simplified. */
643 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
644 SUBREG_BYTE (x));
645
646 /* Subregs of VOIDmode operands are incorrect. */
647 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
648 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
649 if (new_rtx)
650 validate_change (object, loc, new_rtx, 1);
651 break;
652 case ZERO_EXTRACT:
653 case SIGN_EXTRACT:
654 /* If we are replacing a register with memory, try to change the memory
655 to be the mode required for memory in extract operations (this isn't
656 likely to be an insertion operation; if it was, nothing bad will
657 happen, we might just fail in some cases). */
658
659 if (MEM_P (XEXP (x, 0))
660 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &is_mode)
661 && CONST_INT_P (XEXP (x, 1))
662 && CONST_INT_P (XEXP (x, 2))
663 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
664 MEM_ADDR_SPACE (XEXP (x, 0)))
665 && !MEM_VOLATILE_P (XEXP (x, 0)))
666 {
667 int pos = INTVAL (XEXP (x, 2));
668 machine_mode new_mode = is_mode;
669 if (GET_CODE (x) == ZERO_EXTRACT && targetm.have_extzv ())
670 new_mode = insn_data[targetm.code_for_extzv].operand[1].mode;
671 else if (GET_CODE (x) == SIGN_EXTRACT && targetm.have_extv ())
672 new_mode = insn_data[targetm.code_for_extv].operand[1].mode;
673 scalar_int_mode wanted_mode = (new_mode == VOIDmode
674 ? word_mode
675 : as_a <scalar_int_mode> (new_mode));
676
677 /* If we have a narrower mode, we can do something. */
678 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
679 {
680 int offset = pos / BITS_PER_UNIT;
681 rtx newmem;
682
683 /* If the bytes and bits are counted differently, we
684 must adjust the offset. */
685 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
686 offset =
687 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
688 offset);
689
690 gcc_assert (GET_MODE_PRECISION (wanted_mode)
691 == GET_MODE_BITSIZE (wanted_mode));
692 pos %= GET_MODE_BITSIZE (wanted_mode);
693
694 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
695
696 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
697 validate_change (object, &XEXP (x, 0), newmem, 1);
698 }
699 }
700
701 break;
702
703 default:
704 break;
705 }
706 }
707
708 /* Replace every occurrence of FROM in X with TO. Mark each change with
709 validate_change passing OBJECT. */
710
711 static void
712 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx_insn *object,
713 bool simplify)
714 {
715 int i, j;
716 const char *fmt;
717 rtx x = *loc;
718 enum rtx_code code;
719 machine_mode op0_mode = VOIDmode;
720 int prev_changes = num_changes;
721
722 if (!x)
723 return;
724
725 code = GET_CODE (x);
726 fmt = GET_RTX_FORMAT (code);
727 if (fmt[0] == 'e')
728 op0_mode = GET_MODE (XEXP (x, 0));
729
730 /* X matches FROM if it is the same rtx or they are both referring to the
731 same register in the same mode. Avoid calling rtx_equal_p unless the
732 operands look similar. */
733
734 if (x == from
735 || (REG_P (x) && REG_P (from)
736 && GET_MODE (x) == GET_MODE (from)
737 && REGNO (x) == REGNO (from))
738 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
739 && rtx_equal_p (x, from)))
740 {
741 validate_unshare_change (object, loc, to, 1);
742 return;
743 }
744
745 /* Call ourself recursively to perform the replacements.
746 We must not replace inside already replaced expression, otherwise we
747 get infinite recursion for replacements like (reg X)->(subreg (reg X))
748 so we must special case shared ASM_OPERANDS. */
749
750 if (GET_CODE (x) == PARALLEL)
751 {
752 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
753 {
754 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
755 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
756 {
757 /* Verify that operands are really shared. */
758 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
759 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
760 (x, 0, j))));
761 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
762 from, to, object, simplify);
763 }
764 else
765 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
766 simplify);
767 }
768 }
769 else
770 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
771 {
772 if (fmt[i] == 'e')
773 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
774 else if (fmt[i] == 'E')
775 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
776 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
777 simplify);
778 }
779
780 /* If we didn't substitute, there is nothing more to do. */
781 if (num_changes == prev_changes)
782 return;
783
784 /* ??? The regmove is no more, so is this aberration still necessary? */
785 /* Allow substituted expression to have different mode. This is used by
786 regmove to change mode of pseudo register. */
787 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
788 op0_mode = GET_MODE (XEXP (x, 0));
789
790 /* Do changes needed to keep rtx consistent. Don't do any other
791 simplifications, as it is not our job. */
792 if (simplify)
793 simplify_while_replacing (loc, to, object, op0_mode);
794 }
795
796 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
797 with TO. After all changes have been made, validate by seeing
798 if INSN is still valid. */
799
800 int
801 validate_replace_rtx_subexp (rtx from, rtx to, rtx_insn *insn, rtx *loc)
802 {
803 validate_replace_rtx_1 (loc, from, to, insn, true);
804 return apply_change_group ();
805 }
806
807 /* Try replacing every occurrence of FROM in INSN with TO. After all
808 changes have been made, validate by seeing if INSN is still valid. */
809
810 int
811 validate_replace_rtx (rtx from, rtx to, rtx_insn *insn)
812 {
813 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
814 return apply_change_group ();
815 }
816
817 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
818 is a part of INSN. After all changes have been made, validate by seeing if
819 INSN is still valid.
820 validate_replace_rtx (from, to, insn) is equivalent to
821 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
822
823 int
824 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx_insn *insn)
825 {
826 validate_replace_rtx_1 (where, from, to, insn, true);
827 return apply_change_group ();
828 }
829
830 /* Same as above, but do not simplify rtx afterwards. */
831 int
832 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
833 rtx_insn *insn)
834 {
835 validate_replace_rtx_1 (where, from, to, insn, false);
836 return apply_change_group ();
837
838 }
839
840 /* Try replacing every occurrence of FROM in INSN with TO. This also
841 will replace in REG_EQUAL and REG_EQUIV notes. */
842
843 void
844 validate_replace_rtx_group (rtx from, rtx to, rtx_insn *insn)
845 {
846 rtx note;
847 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
848 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
849 if (REG_NOTE_KIND (note) == REG_EQUAL
850 || REG_NOTE_KIND (note) == REG_EQUIV)
851 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
852 }
853
854 /* Function called by note_uses to replace used subexpressions. */
855 struct validate_replace_src_data
856 {
857 rtx from; /* Old RTX */
858 rtx to; /* New RTX */
859 rtx_insn *insn; /* Insn in which substitution is occurring. */
860 };
861
862 static void
863 validate_replace_src_1 (rtx *x, void *data)
864 {
865 struct validate_replace_src_data *d
866 = (struct validate_replace_src_data *) data;
867
868 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
869 }
870
871 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
872 SET_DESTs. */
873
874 void
875 validate_replace_src_group (rtx from, rtx to, rtx_insn *insn)
876 {
877 struct validate_replace_src_data d;
878
879 d.from = from;
880 d.to = to;
881 d.insn = insn;
882 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
883 }
884
885 /* Try simplify INSN.
886 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
887 pattern and return true if something was simplified. */
888
889 bool
890 validate_simplify_insn (rtx_insn *insn)
891 {
892 int i;
893 rtx pat = NULL;
894 rtx newpat = NULL;
895
896 pat = PATTERN (insn);
897
898 if (GET_CODE (pat) == SET)
899 {
900 newpat = simplify_rtx (SET_SRC (pat));
901 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
902 validate_change (insn, &SET_SRC (pat), newpat, 1);
903 newpat = simplify_rtx (SET_DEST (pat));
904 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
905 validate_change (insn, &SET_DEST (pat), newpat, 1);
906 }
907 else if (GET_CODE (pat) == PARALLEL)
908 for (i = 0; i < XVECLEN (pat, 0); i++)
909 {
910 rtx s = XVECEXP (pat, 0, i);
911
912 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
913 {
914 newpat = simplify_rtx (SET_SRC (s));
915 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
916 validate_change (insn, &SET_SRC (s), newpat, 1);
917 newpat = simplify_rtx (SET_DEST (s));
918 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
919 validate_change (insn, &SET_DEST (s), newpat, 1);
920 }
921 }
922 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
923 }
924 \f
925 /* Return 1 if the insn using CC0 set by INSN does not contain
926 any ordered tests applied to the condition codes.
927 EQ and NE tests do not count. */
928
929 int
930 next_insn_tests_no_inequality (rtx_insn *insn)
931 {
932 rtx_insn *next = next_cc0_user (insn);
933
934 /* If there is no next insn, we have to take the conservative choice. */
935 if (next == 0)
936 return 0;
937
938 return (INSN_P (next)
939 && ! inequality_comparisons_p (PATTERN (next)));
940 }
941 \f
942 /* Return 1 if OP is a valid general operand for machine mode MODE.
943 This is either a register reference, a memory reference,
944 or a constant. In the case of a memory reference, the address
945 is checked for general validity for the target machine.
946
947 Register and memory references must have mode MODE in order to be valid,
948 but some constants have no machine mode and are valid for any mode.
949
950 If MODE is VOIDmode, OP is checked for validity for whatever mode
951 it has.
952
953 The main use of this function is as a predicate in match_operand
954 expressions in the machine description. */
955
956 int
957 general_operand (rtx op, machine_mode mode)
958 {
959 enum rtx_code code = GET_CODE (op);
960
961 if (mode == VOIDmode)
962 mode = GET_MODE (op);
963
964 /* Don't accept CONST_INT or anything similar
965 if the caller wants something floating. */
966 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
967 && GET_MODE_CLASS (mode) != MODE_INT
968 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
969 return 0;
970
971 if (CONST_INT_P (op)
972 && mode != VOIDmode
973 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
974 return 0;
975
976 if (CONSTANT_P (op))
977 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
978 || mode == VOIDmode)
979 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
980 && targetm.legitimate_constant_p (mode == VOIDmode
981 ? GET_MODE (op)
982 : mode, op));
983
984 /* Except for certain constants with VOIDmode, already checked for,
985 OP's mode must match MODE if MODE specifies a mode. */
986
987 if (GET_MODE (op) != mode)
988 return 0;
989
990 if (code == SUBREG)
991 {
992 rtx sub = SUBREG_REG (op);
993
994 #ifdef INSN_SCHEDULING
995 /* On machines that have insn scheduling, we want all memory
996 reference to be explicit, so outlaw paradoxical SUBREGs.
997 However, we must allow them after reload so that they can
998 get cleaned up by cleanup_subreg_operands. */
999 if (!reload_completed && MEM_P (sub)
1000 && paradoxical_subreg_p (op))
1001 return 0;
1002 #endif
1003 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
1004 may result in incorrect reference. We should simplify all valid
1005 subregs of MEM anyway. But allow this after reload because we
1006 might be called from cleanup_subreg_operands.
1007
1008 ??? This is a kludge. */
1009 if (!reload_completed
1010 && maybe_ne (SUBREG_BYTE (op), 0)
1011 && MEM_P (sub))
1012 return 0;
1013
1014 if (REG_P (sub)
1015 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1016 && !REG_CAN_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1017 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1018 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1019 /* LRA can generate some invalid SUBREGS just for matched
1020 operand reload presentation. LRA needs to treat them as
1021 valid. */
1022 && ! LRA_SUBREG_P (op))
1023 return 0;
1024
1025 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1026 create such rtl, and we must reject it. */
1027 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1028 /* LRA can use subreg to store a floating point value in an
1029 integer mode. Although the floating point and the
1030 integer modes need the same number of hard registers, the
1031 size of floating point mode can be less than the integer
1032 mode. */
1033 && ! lra_in_progress
1034 && paradoxical_subreg_p (op))
1035 return 0;
1036
1037 op = sub;
1038 code = GET_CODE (op);
1039 }
1040
1041 if (code == REG)
1042 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1043 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1044
1045 if (code == MEM)
1046 {
1047 rtx y = XEXP (op, 0);
1048
1049 if (! volatile_ok && MEM_VOLATILE_P (op))
1050 return 0;
1051
1052 /* Use the mem's mode, since it will be reloaded thus. LRA can
1053 generate move insn with invalid addresses which is made valid
1054 and efficiently calculated by LRA through further numerous
1055 transformations. */
1056 if (lra_in_progress
1057 || memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1058 return 1;
1059 }
1060
1061 return 0;
1062 }
1063 \f
1064 /* Return 1 if OP is a valid memory address for a memory reference
1065 of mode MODE.
1066
1067 The main use of this function is as a predicate in match_operand
1068 expressions in the machine description. */
1069
1070 int
1071 address_operand (rtx op, machine_mode mode)
1072 {
1073 /* Wrong mode for an address expr. */
1074 if (GET_MODE (op) != VOIDmode
1075 && ! SCALAR_INT_MODE_P (GET_MODE (op)))
1076 return false;
1077
1078 return memory_address_p (mode, op);
1079 }
1080
1081 /* Return 1 if OP is a register reference of mode MODE.
1082 If MODE is VOIDmode, accept a register in any mode.
1083
1084 The main use of this function is as a predicate in match_operand
1085 expressions in the machine description. */
1086
1087 int
1088 register_operand (rtx op, machine_mode mode)
1089 {
1090 if (GET_CODE (op) == SUBREG)
1091 {
1092 rtx sub = SUBREG_REG (op);
1093
1094 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1095 because it is guaranteed to be reloaded into one.
1096 Just make sure the MEM is valid in itself.
1097 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1098 but currently it does result from (SUBREG (REG)...) where the
1099 reg went on the stack.) */
1100 if (!REG_P (sub) && (reload_completed || !MEM_P (sub)))
1101 return 0;
1102 }
1103 else if (!REG_P (op))
1104 return 0;
1105 return general_operand (op, mode);
1106 }
1107
1108 /* Return 1 for a register in Pmode; ignore the tested mode. */
1109
1110 int
1111 pmode_register_operand (rtx op, machine_mode mode ATTRIBUTE_UNUSED)
1112 {
1113 return register_operand (op, Pmode);
1114 }
1115
1116 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1117 or a hard register. */
1118
1119 int
1120 scratch_operand (rtx op, machine_mode mode)
1121 {
1122 if (GET_MODE (op) != mode && mode != VOIDmode)
1123 return 0;
1124
1125 return (GET_CODE (op) == SCRATCH
1126 || (REG_P (op)
1127 && (lra_in_progress
1128 || (REGNO (op) < FIRST_PSEUDO_REGISTER
1129 && REGNO_REG_CLASS (REGNO (op)) != NO_REGS))));
1130 }
1131
1132 /* Return 1 if OP is a valid immediate operand for mode MODE.
1133
1134 The main use of this function is as a predicate in match_operand
1135 expressions in the machine description. */
1136
1137 int
1138 immediate_operand (rtx op, machine_mode mode)
1139 {
1140 /* Don't accept CONST_INT or anything similar
1141 if the caller wants something floating. */
1142 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1143 && GET_MODE_CLASS (mode) != MODE_INT
1144 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1145 return 0;
1146
1147 if (CONST_INT_P (op)
1148 && mode != VOIDmode
1149 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1150 return 0;
1151
1152 return (CONSTANT_P (op)
1153 && (GET_MODE (op) == mode || mode == VOIDmode
1154 || GET_MODE (op) == VOIDmode)
1155 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1156 && targetm.legitimate_constant_p (mode == VOIDmode
1157 ? GET_MODE (op)
1158 : mode, op));
1159 }
1160
1161 /* Returns 1 if OP is an operand that is a CONST_INT of mode MODE. */
1162
1163 int
1164 const_int_operand (rtx op, machine_mode mode)
1165 {
1166 if (!CONST_INT_P (op))
1167 return 0;
1168
1169 if (mode != VOIDmode
1170 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1171 return 0;
1172
1173 return 1;
1174 }
1175
1176 #if TARGET_SUPPORTS_WIDE_INT
1177 /* Returns 1 if OP is an operand that is a CONST_INT or CONST_WIDE_INT
1178 of mode MODE. */
1179 int
1180 const_scalar_int_operand (rtx op, machine_mode mode)
1181 {
1182 if (!CONST_SCALAR_INT_P (op))
1183 return 0;
1184
1185 if (CONST_INT_P (op))
1186 return const_int_operand (op, mode);
1187
1188 if (mode != VOIDmode)
1189 {
1190 scalar_int_mode int_mode = as_a <scalar_int_mode> (mode);
1191 int prec = GET_MODE_PRECISION (int_mode);
1192 int bitsize = GET_MODE_BITSIZE (int_mode);
1193
1194 if (CONST_WIDE_INT_NUNITS (op) * HOST_BITS_PER_WIDE_INT > bitsize)
1195 return 0;
1196
1197 if (prec == bitsize)
1198 return 1;
1199 else
1200 {
1201 /* Multiword partial int. */
1202 HOST_WIDE_INT x
1203 = CONST_WIDE_INT_ELT (op, CONST_WIDE_INT_NUNITS (op) - 1);
1204 return (sext_hwi (x, prec & (HOST_BITS_PER_WIDE_INT - 1)) == x);
1205 }
1206 }
1207 return 1;
1208 }
1209
1210 /* Returns 1 if OP is an operand that is a constant integer or constant
1211 floating-point number of MODE. */
1212
1213 int
1214 const_double_operand (rtx op, machine_mode mode)
1215 {
1216 return (GET_CODE (op) == CONST_DOUBLE)
1217 && (GET_MODE (op) == mode || mode == VOIDmode);
1218 }
1219 #else
1220 /* Returns 1 if OP is an operand that is a constant integer or constant
1221 floating-point number of MODE. */
1222
1223 int
1224 const_double_operand (rtx op, machine_mode mode)
1225 {
1226 /* Don't accept CONST_INT or anything similar
1227 if the caller wants something floating. */
1228 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1229 && GET_MODE_CLASS (mode) != MODE_INT
1230 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1231 return 0;
1232
1233 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1234 && (mode == VOIDmode || GET_MODE (op) == mode
1235 || GET_MODE (op) == VOIDmode));
1236 }
1237 #endif
1238 /* Return 1 if OP is a general operand that is not an immediate
1239 operand of mode MODE. */
1240
1241 int
1242 nonimmediate_operand (rtx op, machine_mode mode)
1243 {
1244 return (general_operand (op, mode) && ! CONSTANT_P (op));
1245 }
1246
1247 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1248
1249 int
1250 nonmemory_operand (rtx op, machine_mode mode)
1251 {
1252 if (CONSTANT_P (op))
1253 return immediate_operand (op, mode);
1254 return register_operand (op, mode);
1255 }
1256
1257 /* Return 1 if OP is a valid operand that stands for pushing a
1258 value of mode MODE onto the stack.
1259
1260 The main use of this function is as a predicate in match_operand
1261 expressions in the machine description. */
1262
1263 int
1264 push_operand (rtx op, machine_mode mode)
1265 {
1266 if (!MEM_P (op))
1267 return 0;
1268
1269 if (mode != VOIDmode && GET_MODE (op) != mode)
1270 return 0;
1271
1272 poly_int64 rounded_size = GET_MODE_SIZE (mode);
1273
1274 #ifdef PUSH_ROUNDING
1275 rounded_size = PUSH_ROUNDING (MACRO_INT (rounded_size));
1276 #endif
1277
1278 op = XEXP (op, 0);
1279
1280 if (known_eq (rounded_size, GET_MODE_SIZE (mode)))
1281 {
1282 if (GET_CODE (op) != STACK_PUSH_CODE)
1283 return 0;
1284 }
1285 else
1286 {
1287 poly_int64 offset;
1288 if (GET_CODE (op) != PRE_MODIFY
1289 || GET_CODE (XEXP (op, 1)) != PLUS
1290 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1291 || !poly_int_rtx_p (XEXP (XEXP (op, 1), 1), &offset)
1292 || (STACK_GROWS_DOWNWARD
1293 ? maybe_ne (offset, -rounded_size)
1294 : maybe_ne (offset, rounded_size)))
1295 return 0;
1296 }
1297
1298 return XEXP (op, 0) == stack_pointer_rtx;
1299 }
1300
1301 /* Return 1 if OP is a valid operand that stands for popping a
1302 value of mode MODE off the stack.
1303
1304 The main use of this function is as a predicate in match_operand
1305 expressions in the machine description. */
1306
1307 int
1308 pop_operand (rtx op, machine_mode mode)
1309 {
1310 if (!MEM_P (op))
1311 return 0;
1312
1313 if (mode != VOIDmode && GET_MODE (op) != mode)
1314 return 0;
1315
1316 op = XEXP (op, 0);
1317
1318 if (GET_CODE (op) != STACK_POP_CODE)
1319 return 0;
1320
1321 return XEXP (op, 0) == stack_pointer_rtx;
1322 }
1323
1324 /* Return 1 if ADDR is a valid memory address
1325 for mode MODE in address space AS. */
1326
1327 int
1328 memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
1329 rtx addr, addr_space_t as)
1330 {
1331 #ifdef GO_IF_LEGITIMATE_ADDRESS
1332 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1333 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1334 return 0;
1335
1336 win:
1337 return 1;
1338 #else
1339 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1340 #endif
1341 }
1342
1343 /* Return 1 if OP is a valid memory reference with mode MODE,
1344 including a valid address.
1345
1346 The main use of this function is as a predicate in match_operand
1347 expressions in the machine description. */
1348
1349 int
1350 memory_operand (rtx op, machine_mode mode)
1351 {
1352 rtx inner;
1353
1354 if (! reload_completed)
1355 /* Note that no SUBREG is a memory operand before end of reload pass,
1356 because (SUBREG (MEM...)) forces reloading into a register. */
1357 return MEM_P (op) && general_operand (op, mode);
1358
1359 if (mode != VOIDmode && GET_MODE (op) != mode)
1360 return 0;
1361
1362 inner = op;
1363 if (GET_CODE (inner) == SUBREG)
1364 inner = SUBREG_REG (inner);
1365
1366 return (MEM_P (inner) && general_operand (op, mode));
1367 }
1368
1369 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1370 that is, a memory reference whose address is a general_operand. */
1371
1372 int
1373 indirect_operand (rtx op, machine_mode mode)
1374 {
1375 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1376 if (! reload_completed
1377 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1378 {
1379 if (mode != VOIDmode && GET_MODE (op) != mode)
1380 return 0;
1381
1382 /* The only way that we can have a general_operand as the resulting
1383 address is if OFFSET is zero and the address already is an operand
1384 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1385 operand. */
1386 poly_int64 offset;
1387 rtx addr = strip_offset (XEXP (SUBREG_REG (op), 0), &offset);
1388 return (known_eq (offset + SUBREG_BYTE (op), 0)
1389 && general_operand (addr, Pmode));
1390 }
1391
1392 return (MEM_P (op)
1393 && memory_operand (op, mode)
1394 && general_operand (XEXP (op, 0), Pmode));
1395 }
1396
1397 /* Return 1 if this is an ordered comparison operator (not including
1398 ORDERED and UNORDERED). */
1399
1400 int
1401 ordered_comparison_operator (rtx op, machine_mode mode)
1402 {
1403 if (mode != VOIDmode && GET_MODE (op) != mode)
1404 return false;
1405 switch (GET_CODE (op))
1406 {
1407 case EQ:
1408 case NE:
1409 case LT:
1410 case LTU:
1411 case LE:
1412 case LEU:
1413 case GT:
1414 case GTU:
1415 case GE:
1416 case GEU:
1417 return true;
1418 default:
1419 return false;
1420 }
1421 }
1422
1423 /* Return 1 if this is a comparison operator. This allows the use of
1424 MATCH_OPERATOR to recognize all the branch insns. */
1425
1426 int
1427 comparison_operator (rtx op, machine_mode mode)
1428 {
1429 return ((mode == VOIDmode || GET_MODE (op) == mode)
1430 && COMPARISON_P (op));
1431 }
1432 \f
1433 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1434
1435 rtx
1436 extract_asm_operands (rtx body)
1437 {
1438 rtx tmp;
1439 switch (GET_CODE (body))
1440 {
1441 case ASM_OPERANDS:
1442 return body;
1443
1444 case SET:
1445 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1446 tmp = SET_SRC (body);
1447 if (GET_CODE (tmp) == ASM_OPERANDS)
1448 return tmp;
1449 break;
1450
1451 case PARALLEL:
1452 tmp = XVECEXP (body, 0, 0);
1453 if (GET_CODE (tmp) == ASM_OPERANDS)
1454 return tmp;
1455 if (GET_CODE (tmp) == SET)
1456 {
1457 tmp = SET_SRC (tmp);
1458 if (GET_CODE (tmp) == ASM_OPERANDS)
1459 return tmp;
1460 }
1461 break;
1462
1463 default:
1464 break;
1465 }
1466 return NULL;
1467 }
1468
1469 /* If BODY is an insn body that uses ASM_OPERANDS,
1470 return the number of operands (both input and output) in the insn.
1471 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1472 return 0.
1473 Otherwise return -1. */
1474
1475 int
1476 asm_noperands (const_rtx body)
1477 {
1478 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1479 int i, n_sets = 0;
1480
1481 if (asm_op == NULL)
1482 {
1483 if (GET_CODE (body) == PARALLEL && XVECLEN (body, 0) >= 2
1484 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
1485 {
1486 /* body is [(asm_input ...) (clobber (reg ...))...]. */
1487 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1488 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1489 return -1;
1490 return 0;
1491 }
1492 return -1;
1493 }
1494
1495 if (GET_CODE (body) == SET)
1496 n_sets = 1;
1497 else if (GET_CODE (body) == PARALLEL)
1498 {
1499 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1500 {
1501 /* Multiple output operands, or 1 output plus some clobbers:
1502 body is
1503 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1504 /* Count backwards through CLOBBERs to determine number of SETs. */
1505 for (i = XVECLEN (body, 0); i > 0; i--)
1506 {
1507 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1508 break;
1509 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1510 return -1;
1511 }
1512
1513 /* N_SETS is now number of output operands. */
1514 n_sets = i;
1515
1516 /* Verify that all the SETs we have
1517 came from a single original asm_operands insn
1518 (so that invalid combinations are blocked). */
1519 for (i = 0; i < n_sets; i++)
1520 {
1521 rtx elt = XVECEXP (body, 0, i);
1522 if (GET_CODE (elt) != SET)
1523 return -1;
1524 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1525 return -1;
1526 /* If these ASM_OPERANDS rtx's came from different original insns
1527 then they aren't allowed together. */
1528 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1529 != ASM_OPERANDS_INPUT_VEC (asm_op))
1530 return -1;
1531 }
1532 }
1533 else
1534 {
1535 /* 0 outputs, but some clobbers:
1536 body is [(asm_operands ...) (clobber (reg ...))...]. */
1537 /* Make sure all the other parallel things really are clobbers. */
1538 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1539 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1540 return -1;
1541 }
1542 }
1543
1544 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1545 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1546 }
1547
1548 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1549 copy its operands (both input and output) into the vector OPERANDS,
1550 the locations of the operands within the insn into the vector OPERAND_LOCS,
1551 and the constraints for the operands into CONSTRAINTS.
1552 Write the modes of the operands into MODES.
1553 Write the location info into LOC.
1554 Return the assembler-template.
1555 If BODY is an insn body that uses ASM_INPUT with CLOBBERS in PARALLEL,
1556 return the basic assembly string.
1557
1558 If LOC, MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1559 we don't store that info. */
1560
1561 const char *
1562 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1563 const char **constraints, machine_mode *modes,
1564 location_t *loc)
1565 {
1566 int nbase = 0, n, i;
1567 rtx asmop;
1568
1569 switch (GET_CODE (body))
1570 {
1571 case ASM_OPERANDS:
1572 /* Zero output asm: BODY is (asm_operands ...). */
1573 asmop = body;
1574 break;
1575
1576 case SET:
1577 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1578 asmop = SET_SRC (body);
1579
1580 /* The output is in the SET.
1581 Its constraint is in the ASM_OPERANDS itself. */
1582 if (operands)
1583 operands[0] = SET_DEST (body);
1584 if (operand_locs)
1585 operand_locs[0] = &SET_DEST (body);
1586 if (constraints)
1587 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1588 if (modes)
1589 modes[0] = GET_MODE (SET_DEST (body));
1590 nbase = 1;
1591 break;
1592
1593 case PARALLEL:
1594 {
1595 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1596
1597 asmop = XVECEXP (body, 0, 0);
1598 if (GET_CODE (asmop) == SET)
1599 {
1600 asmop = SET_SRC (asmop);
1601
1602 /* At least one output, plus some CLOBBERs. The outputs are in
1603 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1604 for (i = 0; i < nparallel; i++)
1605 {
1606 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1607 break; /* Past last SET */
1608 gcc_assert (GET_CODE (XVECEXP (body, 0, i)) == SET);
1609 if (operands)
1610 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1611 if (operand_locs)
1612 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1613 if (constraints)
1614 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1615 if (modes)
1616 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1617 }
1618 nbase = i;
1619 }
1620 else if (GET_CODE (asmop) == ASM_INPUT)
1621 {
1622 if (loc)
1623 *loc = ASM_INPUT_SOURCE_LOCATION (asmop);
1624 return XSTR (asmop, 0);
1625 }
1626 break;
1627 }
1628
1629 default:
1630 gcc_unreachable ();
1631 }
1632
1633 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1634 for (i = 0; i < n; i++)
1635 {
1636 if (operand_locs)
1637 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1638 if (operands)
1639 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1640 if (constraints)
1641 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1642 if (modes)
1643 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1644 }
1645 nbase += n;
1646
1647 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1648 for (i = 0; i < n; i++)
1649 {
1650 if (operand_locs)
1651 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1652 if (operands)
1653 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1654 if (constraints)
1655 constraints[nbase + i] = "";
1656 if (modes)
1657 modes[nbase + i] = Pmode;
1658 }
1659
1660 if (loc)
1661 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1662
1663 return ASM_OPERANDS_TEMPLATE (asmop);
1664 }
1665
1666 /* Parse inline assembly string STRING and determine which operands are
1667 referenced by % markers. For the first NOPERANDS operands, set USED[I]
1668 to true if operand I is referenced.
1669
1670 This is intended to distinguish barrier-like asms such as:
1671
1672 asm ("" : "=m" (...));
1673
1674 from real references such as:
1675
1676 asm ("sw\t$0, %0" : "=m" (...)); */
1677
1678 void
1679 get_referenced_operands (const char *string, bool *used,
1680 unsigned int noperands)
1681 {
1682 memset (used, 0, sizeof (bool) * noperands);
1683 const char *p = string;
1684 while (*p)
1685 switch (*p)
1686 {
1687 case '%':
1688 p += 1;
1689 /* A letter followed by a digit indicates an operand number. */
1690 if (ISALPHA (p[0]) && ISDIGIT (p[1]))
1691 p += 1;
1692 if (ISDIGIT (*p))
1693 {
1694 char *endptr;
1695 unsigned long opnum = strtoul (p, &endptr, 10);
1696 if (endptr != p && opnum < noperands)
1697 used[opnum] = true;
1698 p = endptr;
1699 }
1700 else
1701 p += 1;
1702 break;
1703
1704 default:
1705 p++;
1706 break;
1707 }
1708 }
1709
1710 /* Check if an asm_operand matches its constraints.
1711 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1712
1713 int
1714 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1715 {
1716 int result = 0;
1717 bool incdec_ok = false;
1718
1719 /* Use constrain_operands after reload. */
1720 gcc_assert (!reload_completed);
1721
1722 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1723 many alternatives as required to match the other operands. */
1724 if (*constraint == '\0')
1725 result = 1;
1726
1727 while (*constraint)
1728 {
1729 enum constraint_num cn;
1730 char c = *constraint;
1731 int len;
1732 switch (c)
1733 {
1734 case ',':
1735 constraint++;
1736 continue;
1737
1738 case '0': case '1': case '2': case '3': case '4':
1739 case '5': case '6': case '7': case '8': case '9':
1740 /* If caller provided constraints pointer, look up
1741 the matching constraint. Otherwise, our caller should have
1742 given us the proper matching constraint, but we can't
1743 actually fail the check if they didn't. Indicate that
1744 results are inconclusive. */
1745 if (constraints)
1746 {
1747 char *end;
1748 unsigned long match;
1749
1750 match = strtoul (constraint, &end, 10);
1751 if (!result)
1752 result = asm_operand_ok (op, constraints[match], NULL);
1753 constraint = (const char *) end;
1754 }
1755 else
1756 {
1757 do
1758 constraint++;
1759 while (ISDIGIT (*constraint));
1760 if (! result)
1761 result = -1;
1762 }
1763 continue;
1764
1765 /* The rest of the compiler assumes that reloading the address
1766 of a MEM into a register will make it fit an 'o' constraint.
1767 That is, if it sees a MEM operand for an 'o' constraint,
1768 it assumes that (mem (base-reg)) will fit.
1769
1770 That assumption fails on targets that don't have offsettable
1771 addresses at all. We therefore need to treat 'o' asm
1772 constraints as a special case and only accept operands that
1773 are already offsettable, thus proving that at least one
1774 offsettable address exists. */
1775 case 'o': /* offsettable */
1776 if (offsettable_nonstrict_memref_p (op))
1777 result = 1;
1778 break;
1779
1780 case 'g':
1781 if (general_operand (op, VOIDmode))
1782 result = 1;
1783 break;
1784
1785 case '<':
1786 case '>':
1787 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed
1788 to exist, excepting those that expand_call created. Further,
1789 on some machines which do not have generalized auto inc/dec,
1790 an inc/dec is not a memory_operand.
1791
1792 Match any memory and hope things are resolved after reload. */
1793 incdec_ok = true;
1794 /* FALLTHRU */
1795 default:
1796 cn = lookup_constraint (constraint);
1797 switch (get_constraint_type (cn))
1798 {
1799 case CT_REGISTER:
1800 if (!result
1801 && reg_class_for_constraint (cn) != NO_REGS
1802 && GET_MODE (op) != BLKmode
1803 && register_operand (op, VOIDmode))
1804 result = 1;
1805 break;
1806
1807 case CT_CONST_INT:
1808 if (!result
1809 && CONST_INT_P (op)
1810 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1811 result = 1;
1812 break;
1813
1814 case CT_MEMORY:
1815 case CT_SPECIAL_MEMORY:
1816 /* Every memory operand can be reloaded to fit. */
1817 result = result || memory_operand (op, VOIDmode);
1818 break;
1819
1820 case CT_ADDRESS:
1821 /* Every address operand can be reloaded to fit. */
1822 result = result || address_operand (op, VOIDmode);
1823 break;
1824
1825 case CT_FIXED_FORM:
1826 result = result || constraint_satisfied_p (op, cn);
1827 break;
1828 }
1829 break;
1830 }
1831 len = CONSTRAINT_LEN (c, constraint);
1832 do
1833 constraint++;
1834 while (--len && *constraint && *constraint != ',');
1835 if (len)
1836 return 0;
1837 }
1838
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (AUTO_INC_DEC && !incdec_ok && result && MEM_P (op))
1841 switch (GET_CODE (XEXP (op, 0)))
1842 {
1843 case PRE_INC:
1844 case POST_INC:
1845 case PRE_DEC:
1846 case POST_DEC:
1847 case PRE_MODIFY:
1848 case POST_MODIFY:
1849 return 0;
1850 default:
1851 break;
1852 }
1853
1854 return result;
1855 }
1856 \f
1857 /* Given an rtx *P, if it is a sum containing an integer constant term,
1858 return the location (type rtx *) of the pointer to that constant term.
1859 Otherwise, return a null pointer. */
1860
1861 rtx *
1862 find_constant_term_loc (rtx *p)
1863 {
1864 rtx *tem;
1865 enum rtx_code code = GET_CODE (*p);
1866
1867 /* If *P IS such a constant term, P is its location. */
1868
1869 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1870 || code == CONST)
1871 return p;
1872
1873 /* Otherwise, if not a sum, it has no constant term. */
1874
1875 if (GET_CODE (*p) != PLUS)
1876 return 0;
1877
1878 /* If one of the summands is constant, return its location. */
1879
1880 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1881 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1882 return p;
1883
1884 /* Otherwise, check each summand for containing a constant term. */
1885
1886 if (XEXP (*p, 0) != 0)
1887 {
1888 tem = find_constant_term_loc (&XEXP (*p, 0));
1889 if (tem != 0)
1890 return tem;
1891 }
1892
1893 if (XEXP (*p, 1) != 0)
1894 {
1895 tem = find_constant_term_loc (&XEXP (*p, 1));
1896 if (tem != 0)
1897 return tem;
1898 }
1899
1900 return 0;
1901 }
1902 \f
1903 /* Return 1 if OP is a memory reference
1904 whose address contains no side effects
1905 and remains valid after the addition
1906 of a positive integer less than the
1907 size of the object being referenced.
1908
1909 We assume that the original address is valid and do not check it.
1910
1911 This uses strict_memory_address_p as a subroutine, so
1912 don't use it before reload. */
1913
1914 int
1915 offsettable_memref_p (rtx op)
1916 {
1917 return ((MEM_P (op))
1918 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1919 MEM_ADDR_SPACE (op)));
1920 }
1921
1922 /* Similar, but don't require a strictly valid mem ref:
1923 consider pseudo-regs valid as index or base regs. */
1924
1925 int
1926 offsettable_nonstrict_memref_p (rtx op)
1927 {
1928 return ((MEM_P (op))
1929 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1930 MEM_ADDR_SPACE (op)));
1931 }
1932
1933 /* Return 1 if Y is a memory address which contains no side effects
1934 and would remain valid for address space AS after the addition of
1935 a positive integer less than the size of that mode.
1936
1937 We assume that the original address is valid and do not check it.
1938 We do check that it is valid for narrower modes.
1939
1940 If STRICTP is nonzero, we require a strictly valid address,
1941 for the sake of use in reload.c. */
1942
1943 int
1944 offsettable_address_addr_space_p (int strictp, machine_mode mode, rtx y,
1945 addr_space_t as)
1946 {
1947 enum rtx_code ycode = GET_CODE (y);
1948 rtx z;
1949 rtx y1 = y;
1950 rtx *y2;
1951 int (*addressp) (machine_mode, rtx, addr_space_t) =
1952 (strictp ? strict_memory_address_addr_space_p
1953 : memory_address_addr_space_p);
1954 poly_int64 mode_sz = GET_MODE_SIZE (mode);
1955
1956 if (CONSTANT_ADDRESS_P (y))
1957 return 1;
1958
1959 /* Adjusting an offsettable address involves changing to a narrower mode.
1960 Make sure that's OK. */
1961
1962 if (mode_dependent_address_p (y, as))
1963 return 0;
1964
1965 machine_mode address_mode = GET_MODE (y);
1966 if (address_mode == VOIDmode)
1967 address_mode = targetm.addr_space.address_mode (as);
1968 #ifdef POINTERS_EXTEND_UNSIGNED
1969 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1970 #endif
1971
1972 /* ??? How much offset does an offsettable BLKmode reference need?
1973 Clearly that depends on the situation in which it's being used.
1974 However, the current situation in which we test 0xffffffff is
1975 less than ideal. Caveat user. */
1976 if (known_eq (mode_sz, 0))
1977 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1978
1979 /* If the expression contains a constant term,
1980 see if it remains valid when max possible offset is added. */
1981
1982 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1983 {
1984 int good;
1985
1986 y1 = *y2;
1987 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1988 /* Use QImode because an odd displacement may be automatically invalid
1989 for any wider mode. But it should be valid for a single byte. */
1990 good = (*addressp) (QImode, y, as);
1991
1992 /* In any case, restore old contents of memory. */
1993 *y2 = y1;
1994 return good;
1995 }
1996
1997 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1998 return 0;
1999
2000 /* The offset added here is chosen as the maximum offset that
2001 any instruction could need to add when operating on something
2002 of the specified mode. We assume that if Y and Y+c are
2003 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2004 go inside a LO_SUM here, so we do so as well. */
2005 if (GET_CODE (y) == LO_SUM
2006 && mode != BLKmode
2007 && known_le (mode_sz, GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT))
2008 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2009 plus_constant (address_mode, XEXP (y, 1),
2010 mode_sz - 1));
2011 #ifdef POINTERS_EXTEND_UNSIGNED
2012 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2013 else if (POINTERS_EXTEND_UNSIGNED > 0
2014 && GET_CODE (y) == ZERO_EXTEND
2015 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2016 z = gen_rtx_ZERO_EXTEND (address_mode,
2017 plus_constant (pointer_mode, XEXP (y, 0),
2018 mode_sz - 1));
2019 #endif
2020 else
2021 z = plus_constant (address_mode, y, mode_sz - 1);
2022
2023 /* Use QImode because an odd displacement may be automatically invalid
2024 for any wider mode. But it should be valid for a single byte. */
2025 return (*addressp) (QImode, z, as);
2026 }
2027
2028 /* Return 1 if ADDR is an address-expression whose effect depends
2029 on the mode of the memory reference it is used in.
2030
2031 ADDRSPACE is the address space associated with the address.
2032
2033 Autoincrement addressing is a typical example of mode-dependence
2034 because the amount of the increment depends on the mode. */
2035
2036 bool
2037 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2038 {
2039 /* Auto-increment addressing with anything other than post_modify
2040 or pre_modify always introduces a mode dependency. Catch such
2041 cases now instead of deferring to the target. */
2042 if (GET_CODE (addr) == PRE_INC
2043 || GET_CODE (addr) == POST_INC
2044 || GET_CODE (addr) == PRE_DEC
2045 || GET_CODE (addr) == POST_DEC)
2046 return true;
2047
2048 return targetm.mode_dependent_address_p (addr, addrspace);
2049 }
2050 \f
2051 /* Return true if boolean attribute ATTR is supported. */
2052
2053 static bool
2054 have_bool_attr (bool_attr attr)
2055 {
2056 switch (attr)
2057 {
2058 case BA_ENABLED:
2059 return HAVE_ATTR_enabled;
2060 case BA_PREFERRED_FOR_SIZE:
2061 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_size;
2062 case BA_PREFERRED_FOR_SPEED:
2063 return HAVE_ATTR_enabled || HAVE_ATTR_preferred_for_speed;
2064 }
2065 gcc_unreachable ();
2066 }
2067
2068 /* Return the value of ATTR for instruction INSN. */
2069
2070 static bool
2071 get_bool_attr (rtx_insn *insn, bool_attr attr)
2072 {
2073 switch (attr)
2074 {
2075 case BA_ENABLED:
2076 return get_attr_enabled (insn);
2077 case BA_PREFERRED_FOR_SIZE:
2078 return get_attr_enabled (insn) && get_attr_preferred_for_size (insn);
2079 case BA_PREFERRED_FOR_SPEED:
2080 return get_attr_enabled (insn) && get_attr_preferred_for_speed (insn);
2081 }
2082 gcc_unreachable ();
2083 }
2084
2085 /* Like get_bool_attr_mask, but don't use the cache. */
2086
2087 static alternative_mask
2088 get_bool_attr_mask_uncached (rtx_insn *insn, bool_attr attr)
2089 {
2090 /* Temporarily install enough information for get_attr_<foo> to assume
2091 that the insn operands are already cached. As above, the attribute
2092 mustn't depend on the values of operands, so we don't provide their
2093 real values here. */
2094 rtx_insn *old_insn = recog_data.insn;
2095 int old_alternative = which_alternative;
2096
2097 recog_data.insn = insn;
2098 alternative_mask mask = ALL_ALTERNATIVES;
2099 int n_alternatives = insn_data[INSN_CODE (insn)].n_alternatives;
2100 for (int i = 0; i < n_alternatives; i++)
2101 {
2102 which_alternative = i;
2103 if (!get_bool_attr (insn, attr))
2104 mask &= ~ALTERNATIVE_BIT (i);
2105 }
2106
2107 recog_data.insn = old_insn;
2108 which_alternative = old_alternative;
2109 return mask;
2110 }
2111
2112 /* Return the mask of operand alternatives that are allowed for INSN
2113 by boolean attribute ATTR. This mask depends only on INSN and on
2114 the current target; it does not depend on things like the values of
2115 operands. */
2116
2117 static alternative_mask
2118 get_bool_attr_mask (rtx_insn *insn, bool_attr attr)
2119 {
2120 /* Quick exit for asms and for targets that don't use these attributes. */
2121 int code = INSN_CODE (insn);
2122 if (code < 0 || !have_bool_attr (attr))
2123 return ALL_ALTERNATIVES;
2124
2125 /* Calling get_attr_<foo> can be expensive, so cache the mask
2126 for speed. */
2127 if (!this_target_recog->x_bool_attr_masks[code][attr])
2128 this_target_recog->x_bool_attr_masks[code][attr]
2129 = get_bool_attr_mask_uncached (insn, attr);
2130 return this_target_recog->x_bool_attr_masks[code][attr];
2131 }
2132
2133 /* Return the set of alternatives of INSN that are allowed by the current
2134 target. */
2135
2136 alternative_mask
2137 get_enabled_alternatives (rtx_insn *insn)
2138 {
2139 return get_bool_attr_mask (insn, BA_ENABLED);
2140 }
2141
2142 /* Return the set of alternatives of INSN that are allowed by the current
2143 target and are preferred for the current size/speed optimization
2144 choice. */
2145
2146 alternative_mask
2147 get_preferred_alternatives (rtx_insn *insn)
2148 {
2149 if (optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn)))
2150 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2151 else
2152 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2153 }
2154
2155 /* Return the set of alternatives of INSN that are allowed by the current
2156 target and are preferred for the size/speed optimization choice
2157 associated with BB. Passing a separate BB is useful if INSN has not
2158 been emitted yet or if we are considering moving it to a different
2159 block. */
2160
2161 alternative_mask
2162 get_preferred_alternatives (rtx_insn *insn, basic_block bb)
2163 {
2164 if (optimize_bb_for_speed_p (bb))
2165 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SPEED);
2166 else
2167 return get_bool_attr_mask (insn, BA_PREFERRED_FOR_SIZE);
2168 }
2169
2170 /* Assert that the cached boolean attributes for INSN are still accurate.
2171 The backend is required to define these attributes in a way that only
2172 depends on the current target (rather than operands, compiler phase,
2173 etc.). */
2174
2175 bool
2176 check_bool_attrs (rtx_insn *insn)
2177 {
2178 int code = INSN_CODE (insn);
2179 if (code >= 0)
2180 for (int i = 0; i <= BA_LAST; ++i)
2181 {
2182 enum bool_attr attr = (enum bool_attr) i;
2183 if (this_target_recog->x_bool_attr_masks[code][attr])
2184 gcc_assert (this_target_recog->x_bool_attr_masks[code][attr]
2185 == get_bool_attr_mask_uncached (insn, attr));
2186 }
2187 return true;
2188 }
2189
2190 /* Like extract_insn, but save insn extracted and don't extract again, when
2191 called again for the same insn expecting that recog_data still contain the
2192 valid information. This is used primary by gen_attr infrastructure that
2193 often does extract insn again and again. */
2194 void
2195 extract_insn_cached (rtx_insn *insn)
2196 {
2197 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2198 return;
2199 extract_insn (insn);
2200 recog_data.insn = insn;
2201 }
2202
2203 /* Do uncached extract_insn, constrain_operands and complain about failures.
2204 This should be used when extracting a pre-existing constrained instruction
2205 if the caller wants to know which alternative was chosen. */
2206 void
2207 extract_constrain_insn (rtx_insn *insn)
2208 {
2209 extract_insn (insn);
2210 if (!constrain_operands (reload_completed, get_enabled_alternatives (insn)))
2211 fatal_insn_not_found (insn);
2212 }
2213
2214 /* Do cached extract_insn, constrain_operands and complain about failures.
2215 Used by insn_attrtab. */
2216 void
2217 extract_constrain_insn_cached (rtx_insn *insn)
2218 {
2219 extract_insn_cached (insn);
2220 if (which_alternative == -1
2221 && !constrain_operands (reload_completed,
2222 get_enabled_alternatives (insn)))
2223 fatal_insn_not_found (insn);
2224 }
2225
2226 /* Do cached constrain_operands on INSN and complain about failures. */
2227 int
2228 constrain_operands_cached (rtx_insn *insn, int strict)
2229 {
2230 if (which_alternative == -1)
2231 return constrain_operands (strict, get_enabled_alternatives (insn));
2232 else
2233 return 1;
2234 }
2235 \f
2236 /* Analyze INSN and fill in recog_data. */
2237
2238 void
2239 extract_insn (rtx_insn *insn)
2240 {
2241 int i;
2242 int icode;
2243 int noperands;
2244 rtx body = PATTERN (insn);
2245
2246 recog_data.n_operands = 0;
2247 recog_data.n_alternatives = 0;
2248 recog_data.n_dups = 0;
2249 recog_data.is_asm = false;
2250
2251 switch (GET_CODE (body))
2252 {
2253 case USE:
2254 case CLOBBER:
2255 case ASM_INPUT:
2256 case ADDR_VEC:
2257 case ADDR_DIFF_VEC:
2258 case VAR_LOCATION:
2259 case DEBUG_MARKER:
2260 return;
2261
2262 case SET:
2263 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2264 goto asm_insn;
2265 else
2266 goto normal_insn;
2267 case PARALLEL:
2268 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2269 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2270 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS
2271 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2272 goto asm_insn;
2273 else
2274 goto normal_insn;
2275 case ASM_OPERANDS:
2276 asm_insn:
2277 recog_data.n_operands = noperands = asm_noperands (body);
2278 if (noperands >= 0)
2279 {
2280 /* This insn is an `asm' with operands. */
2281
2282 /* expand_asm_operands makes sure there aren't too many operands. */
2283 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2284
2285 /* Now get the operand values and constraints out of the insn. */
2286 decode_asm_operands (body, recog_data.operand,
2287 recog_data.operand_loc,
2288 recog_data.constraints,
2289 recog_data.operand_mode, NULL);
2290 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2291 if (noperands > 0)
2292 {
2293 const char *p = recog_data.constraints[0];
2294 recog_data.n_alternatives = 1;
2295 while (*p)
2296 recog_data.n_alternatives += (*p++ == ',');
2297 }
2298 recog_data.is_asm = true;
2299 break;
2300 }
2301 fatal_insn_not_found (insn);
2302
2303 default:
2304 normal_insn:
2305 /* Ordinary insn: recognize it, get the operands via insn_extract
2306 and get the constraints. */
2307
2308 icode = recog_memoized (insn);
2309 if (icode < 0)
2310 fatal_insn_not_found (insn);
2311
2312 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2313 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2314 recog_data.n_dups = insn_data[icode].n_dups;
2315
2316 insn_extract (insn);
2317
2318 for (i = 0; i < noperands; i++)
2319 {
2320 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2321 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2322 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2323 /* VOIDmode match_operands gets mode from their real operand. */
2324 if (recog_data.operand_mode[i] == VOIDmode)
2325 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2326 }
2327 }
2328 for (i = 0; i < noperands; i++)
2329 recog_data.operand_type[i]
2330 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2331 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2332 : OP_IN);
2333
2334 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2335
2336 recog_data.insn = NULL;
2337 which_alternative = -1;
2338 }
2339
2340 /* Fill in OP_ALT_BASE for an instruction that has N_OPERANDS
2341 operands, N_ALTERNATIVES alternatives and constraint strings
2342 CONSTRAINTS. OP_ALT_BASE has N_ALTERNATIVES * N_OPERANDS entries
2343 and CONSTRAINTS has N_OPERANDS entries. OPLOC should be passed in
2344 if the insn is an asm statement and preprocessing should take the
2345 asm operands into account, e.g. to determine whether they could be
2346 addresses in constraints that require addresses; it should then
2347 point to an array of pointers to each operand. */
2348
2349 void
2350 preprocess_constraints (int n_operands, int n_alternatives,
2351 const char **constraints,
2352 operand_alternative *op_alt_base,
2353 rtx **oploc)
2354 {
2355 for (int i = 0; i < n_operands; i++)
2356 {
2357 int j;
2358 struct operand_alternative *op_alt;
2359 const char *p = constraints[i];
2360
2361 op_alt = op_alt_base;
2362
2363 for (j = 0; j < n_alternatives; j++, op_alt += n_operands)
2364 {
2365 op_alt[i].cl = NO_REGS;
2366 op_alt[i].constraint = p;
2367 op_alt[i].matches = -1;
2368 op_alt[i].matched = -1;
2369
2370 if (*p == '\0' || *p == ',')
2371 {
2372 op_alt[i].anything_ok = 1;
2373 continue;
2374 }
2375
2376 for (;;)
2377 {
2378 char c = *p;
2379 if (c == '#')
2380 do
2381 c = *++p;
2382 while (c != ',' && c != '\0');
2383 if (c == ',' || c == '\0')
2384 {
2385 p++;
2386 break;
2387 }
2388
2389 switch (c)
2390 {
2391 case '?':
2392 op_alt[i].reject += 6;
2393 break;
2394 case '!':
2395 op_alt[i].reject += 600;
2396 break;
2397 case '&':
2398 op_alt[i].earlyclobber = 1;
2399 break;
2400
2401 case '0': case '1': case '2': case '3': case '4':
2402 case '5': case '6': case '7': case '8': case '9':
2403 {
2404 char *end;
2405 op_alt[i].matches = strtoul (p, &end, 10);
2406 op_alt[op_alt[i].matches].matched = i;
2407 p = end;
2408 }
2409 continue;
2410
2411 case 'X':
2412 op_alt[i].anything_ok = 1;
2413 break;
2414
2415 case 'g':
2416 op_alt[i].cl =
2417 reg_class_subunion[(int) op_alt[i].cl][(int) GENERAL_REGS];
2418 break;
2419
2420 default:
2421 enum constraint_num cn = lookup_constraint (p);
2422 enum reg_class cl;
2423 switch (get_constraint_type (cn))
2424 {
2425 case CT_REGISTER:
2426 cl = reg_class_for_constraint (cn);
2427 if (cl != NO_REGS)
2428 op_alt[i].cl = reg_class_subunion[op_alt[i].cl][cl];
2429 break;
2430
2431 case CT_CONST_INT:
2432 break;
2433
2434 case CT_MEMORY:
2435 case CT_SPECIAL_MEMORY:
2436 op_alt[i].memory_ok = 1;
2437 break;
2438
2439 case CT_ADDRESS:
2440 if (oploc && !address_operand (*oploc[i], VOIDmode))
2441 break;
2442
2443 op_alt[i].is_address = 1;
2444 op_alt[i].cl
2445 = (reg_class_subunion
2446 [(int) op_alt[i].cl]
2447 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2448 ADDRESS, SCRATCH)]);
2449 break;
2450
2451 case CT_FIXED_FORM:
2452 break;
2453 }
2454 break;
2455 }
2456 p += CONSTRAINT_LEN (c, p);
2457 }
2458 }
2459 }
2460 }
2461
2462 /* Return an array of operand_alternative instructions for
2463 instruction ICODE. */
2464
2465 const operand_alternative *
2466 preprocess_insn_constraints (unsigned int icode)
2467 {
2468 gcc_checking_assert (IN_RANGE (icode, 0, NUM_INSN_CODES - 1));
2469 if (this_target_recog->x_op_alt[icode])
2470 return this_target_recog->x_op_alt[icode];
2471
2472 int n_operands = insn_data[icode].n_operands;
2473 if (n_operands == 0)
2474 return 0;
2475 /* Always provide at least one alternative so that which_op_alt ()
2476 works correctly. If the instruction has 0 alternatives (i.e. all
2477 constraint strings are empty) then each operand in this alternative
2478 will have anything_ok set. */
2479 int n_alternatives = MAX (insn_data[icode].n_alternatives, 1);
2480 int n_entries = n_operands * n_alternatives;
2481
2482 operand_alternative *op_alt = XCNEWVEC (operand_alternative, n_entries);
2483 const char **constraints = XALLOCAVEC (const char *, n_operands);
2484
2485 for (int i = 0; i < n_operands; ++i)
2486 constraints[i] = insn_data[icode].operand[i].constraint;
2487 preprocess_constraints (n_operands, n_alternatives, constraints, op_alt,
2488 NULL);
2489
2490 this_target_recog->x_op_alt[icode] = op_alt;
2491 return op_alt;
2492 }
2493
2494 /* After calling extract_insn, you can use this function to extract some
2495 information from the constraint strings into a more usable form.
2496 The collected data is stored in recog_op_alt. */
2497
2498 void
2499 preprocess_constraints (rtx_insn *insn)
2500 {
2501 int icode = INSN_CODE (insn);
2502 if (icode >= 0)
2503 recog_op_alt = preprocess_insn_constraints (icode);
2504 else
2505 {
2506 int n_operands = recog_data.n_operands;
2507 int n_alternatives = recog_data.n_alternatives;
2508 int n_entries = n_operands * n_alternatives;
2509 memset (asm_op_alt, 0, n_entries * sizeof (operand_alternative));
2510 preprocess_constraints (n_operands, n_alternatives,
2511 recog_data.constraints, asm_op_alt,
2512 NULL);
2513 recog_op_alt = asm_op_alt;
2514 }
2515 }
2516
2517 /* Check the operands of an insn against the insn's operand constraints
2518 and return 1 if they match any of the alternatives in ALTERNATIVES.
2519
2520 The information about the insn's operands, constraints, operand modes
2521 etc. is obtained from the global variables set up by extract_insn.
2522
2523 WHICH_ALTERNATIVE is set to a number which indicates which
2524 alternative of constraints was matched: 0 for the first alternative,
2525 1 for the next, etc.
2526
2527 In addition, when two operands are required to match
2528 and it happens that the output operand is (reg) while the
2529 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2530 make the output operand look like the input.
2531 This is because the output operand is the one the template will print.
2532
2533 This is used in final, just before printing the assembler code and by
2534 the routines that determine an insn's attribute.
2535
2536 If STRICT is a positive nonzero value, it means that we have been
2537 called after reload has been completed. In that case, we must
2538 do all checks strictly. If it is zero, it means that we have been called
2539 before reload has completed. In that case, we first try to see if we can
2540 find an alternative that matches strictly. If not, we try again, this
2541 time assuming that reload will fix up the insn. This provides a "best
2542 guess" for the alternative and is used to compute attributes of insns prior
2543 to reload. A negative value of STRICT is used for this internal call. */
2544
2545 struct funny_match
2546 {
2547 int this_op, other;
2548 };
2549
2550 int
2551 constrain_operands (int strict, alternative_mask alternatives)
2552 {
2553 const char *constraints[MAX_RECOG_OPERANDS];
2554 int matching_operands[MAX_RECOG_OPERANDS];
2555 int earlyclobber[MAX_RECOG_OPERANDS];
2556 int c;
2557
2558 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2559 int funny_match_index;
2560
2561 which_alternative = 0;
2562 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2563 return 1;
2564
2565 for (c = 0; c < recog_data.n_operands; c++)
2566 {
2567 constraints[c] = recog_data.constraints[c];
2568 matching_operands[c] = -1;
2569 }
2570
2571 do
2572 {
2573 int seen_earlyclobber_at = -1;
2574 int opno;
2575 int lose = 0;
2576 funny_match_index = 0;
2577
2578 if (!TEST_BIT (alternatives, which_alternative))
2579 {
2580 int i;
2581
2582 for (i = 0; i < recog_data.n_operands; i++)
2583 constraints[i] = skip_alternative (constraints[i]);
2584
2585 which_alternative++;
2586 continue;
2587 }
2588
2589 for (opno = 0; opno < recog_data.n_operands; opno++)
2590 {
2591 rtx op = recog_data.operand[opno];
2592 machine_mode mode = GET_MODE (op);
2593 const char *p = constraints[opno];
2594 int offset = 0;
2595 int win = 0;
2596 int val;
2597 int len;
2598
2599 earlyclobber[opno] = 0;
2600
2601 /* A unary operator may be accepted by the predicate, but it
2602 is irrelevant for matching constraints. */
2603 if (UNARY_P (op))
2604 op = XEXP (op, 0);
2605
2606 if (GET_CODE (op) == SUBREG)
2607 {
2608 if (REG_P (SUBREG_REG (op))
2609 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2610 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2611 GET_MODE (SUBREG_REG (op)),
2612 SUBREG_BYTE (op),
2613 GET_MODE (op));
2614 op = SUBREG_REG (op);
2615 }
2616
2617 /* An empty constraint or empty alternative
2618 allows anything which matched the pattern. */
2619 if (*p == 0 || *p == ',')
2620 win = 1;
2621
2622 do
2623 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2624 {
2625 case '\0':
2626 len = 0;
2627 break;
2628 case ',':
2629 c = '\0';
2630 break;
2631
2632 case '#':
2633 /* Ignore rest of this alternative as far as
2634 constraint checking is concerned. */
2635 do
2636 p++;
2637 while (*p && *p != ',');
2638 len = 0;
2639 break;
2640
2641 case '&':
2642 earlyclobber[opno] = 1;
2643 if (seen_earlyclobber_at < 0)
2644 seen_earlyclobber_at = opno;
2645 break;
2646
2647 case '0': case '1': case '2': case '3': case '4':
2648 case '5': case '6': case '7': case '8': case '9':
2649 {
2650 /* This operand must be the same as a previous one.
2651 This kind of constraint is used for instructions such
2652 as add when they take only two operands.
2653
2654 Note that the lower-numbered operand is passed first.
2655
2656 If we are not testing strictly, assume that this
2657 constraint will be satisfied. */
2658
2659 char *end;
2660 int match;
2661
2662 match = strtoul (p, &end, 10);
2663 p = end;
2664
2665 if (strict < 0)
2666 val = 1;
2667 else
2668 {
2669 rtx op1 = recog_data.operand[match];
2670 rtx op2 = recog_data.operand[opno];
2671
2672 /* A unary operator may be accepted by the predicate,
2673 but it is irrelevant for matching constraints. */
2674 if (UNARY_P (op1))
2675 op1 = XEXP (op1, 0);
2676 if (UNARY_P (op2))
2677 op2 = XEXP (op2, 0);
2678
2679 val = operands_match_p (op1, op2);
2680 }
2681
2682 matching_operands[opno] = match;
2683 matching_operands[match] = opno;
2684
2685 if (val != 0)
2686 win = 1;
2687
2688 /* If output is *x and input is *--x, arrange later
2689 to change the output to *--x as well, since the
2690 output op is the one that will be printed. */
2691 if (val == 2 && strict > 0)
2692 {
2693 funny_match[funny_match_index].this_op = opno;
2694 funny_match[funny_match_index++].other = match;
2695 }
2696 }
2697 len = 0;
2698 break;
2699
2700 case 'p':
2701 /* p is used for address_operands. When we are called by
2702 gen_reload, no one will have checked that the address is
2703 strictly valid, i.e., that all pseudos requiring hard regs
2704 have gotten them. We also want to make sure we have a
2705 valid mode. */
2706 if ((GET_MODE (op) == VOIDmode
2707 || SCALAR_INT_MODE_P (GET_MODE (op)))
2708 && (strict <= 0
2709 || (strict_memory_address_p
2710 (recog_data.operand_mode[opno], op))))
2711 win = 1;
2712 break;
2713
2714 /* No need to check general_operand again;
2715 it was done in insn-recog.c. Well, except that reload
2716 doesn't check the validity of its replacements, but
2717 that should only matter when there's a bug. */
2718 case 'g':
2719 /* Anything goes unless it is a REG and really has a hard reg
2720 but the hard reg is not in the class GENERAL_REGS. */
2721 if (REG_P (op))
2722 {
2723 if (strict < 0
2724 || GENERAL_REGS == ALL_REGS
2725 || (reload_in_progress
2726 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2727 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2728 win = 1;
2729 }
2730 else if (strict < 0 || general_operand (op, mode))
2731 win = 1;
2732 break;
2733
2734 default:
2735 {
2736 enum constraint_num cn = lookup_constraint (p);
2737 enum reg_class cl = reg_class_for_constraint (cn);
2738 if (cl != NO_REGS)
2739 {
2740 if (strict < 0
2741 || (strict == 0
2742 && REG_P (op)
2743 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2744 || (strict == 0 && GET_CODE (op) == SCRATCH)
2745 || (REG_P (op)
2746 && reg_fits_class_p (op, cl, offset, mode)))
2747 win = 1;
2748 }
2749
2750 else if (constraint_satisfied_p (op, cn))
2751 win = 1;
2752
2753 else if (insn_extra_memory_constraint (cn)
2754 /* Every memory operand can be reloaded to fit. */
2755 && ((strict < 0 && MEM_P (op))
2756 /* Before reload, accept what reload can turn
2757 into a mem. */
2758 || (strict < 0 && CONSTANT_P (op))
2759 /* Before reload, accept a pseudo,
2760 since LRA can turn it into a mem. */
2761 || (strict < 0 && targetm.lra_p () && REG_P (op)
2762 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2763 /* During reload, accept a pseudo */
2764 || (reload_in_progress && REG_P (op)
2765 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2766 win = 1;
2767 else if (insn_extra_address_constraint (cn)
2768 /* Every address operand can be reloaded to fit. */
2769 && strict < 0)
2770 win = 1;
2771 /* Cater to architectures like IA-64 that define extra memory
2772 constraints without using define_memory_constraint. */
2773 else if (reload_in_progress
2774 && REG_P (op)
2775 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2776 && reg_renumber[REGNO (op)] < 0
2777 && reg_equiv_mem (REGNO (op)) != 0
2778 && constraint_satisfied_p
2779 (reg_equiv_mem (REGNO (op)), cn))
2780 win = 1;
2781 break;
2782 }
2783 }
2784 while (p += len, c);
2785
2786 constraints[opno] = p;
2787 /* If this operand did not win somehow,
2788 this alternative loses. */
2789 if (! win)
2790 lose = 1;
2791 }
2792 /* This alternative won; the operands are ok.
2793 Change whichever operands this alternative says to change. */
2794 if (! lose)
2795 {
2796 int opno, eopno;
2797
2798 /* See if any earlyclobber operand conflicts with some other
2799 operand. */
2800
2801 if (strict > 0 && seen_earlyclobber_at >= 0)
2802 for (eopno = seen_earlyclobber_at;
2803 eopno < recog_data.n_operands;
2804 eopno++)
2805 /* Ignore earlyclobber operands now in memory,
2806 because we would often report failure when we have
2807 two memory operands, one of which was formerly a REG. */
2808 if (earlyclobber[eopno]
2809 && REG_P (recog_data.operand[eopno]))
2810 for (opno = 0; opno < recog_data.n_operands; opno++)
2811 if ((MEM_P (recog_data.operand[opno])
2812 || recog_data.operand_type[opno] != OP_OUT)
2813 && opno != eopno
2814 /* Ignore things like match_operator operands. */
2815 && *recog_data.constraints[opno] != 0
2816 && ! (matching_operands[opno] == eopno
2817 && operands_match_p (recog_data.operand[opno],
2818 recog_data.operand[eopno]))
2819 && ! safe_from_earlyclobber (recog_data.operand[opno],
2820 recog_data.operand[eopno]))
2821 lose = 1;
2822
2823 if (! lose)
2824 {
2825 while (--funny_match_index >= 0)
2826 {
2827 recog_data.operand[funny_match[funny_match_index].other]
2828 = recog_data.operand[funny_match[funny_match_index].this_op];
2829 }
2830
2831 /* For operands without < or > constraints reject side-effects. */
2832 if (AUTO_INC_DEC && recog_data.is_asm)
2833 {
2834 for (opno = 0; opno < recog_data.n_operands; opno++)
2835 if (MEM_P (recog_data.operand[opno]))
2836 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2837 {
2838 case PRE_INC:
2839 case POST_INC:
2840 case PRE_DEC:
2841 case POST_DEC:
2842 case PRE_MODIFY:
2843 case POST_MODIFY:
2844 if (strchr (recog_data.constraints[opno], '<') == NULL
2845 && strchr (recog_data.constraints[opno], '>')
2846 == NULL)
2847 return 0;
2848 break;
2849 default:
2850 break;
2851 }
2852 }
2853
2854 return 1;
2855 }
2856 }
2857
2858 which_alternative++;
2859 }
2860 while (which_alternative < recog_data.n_alternatives);
2861
2862 which_alternative = -1;
2863 /* If we are about to reject this, but we are not to test strictly,
2864 try a very loose test. Only return failure if it fails also. */
2865 if (strict == 0)
2866 return constrain_operands (-1, alternatives);
2867 else
2868 return 0;
2869 }
2870
2871 /* Return true iff OPERAND (assumed to be a REG rtx)
2872 is a hard reg in class CLASS when its regno is offset by OFFSET
2873 and changed to mode MODE.
2874 If REG occupies multiple hard regs, all of them must be in CLASS. */
2875
2876 bool
2877 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2878 machine_mode mode)
2879 {
2880 unsigned int regno = REGNO (operand);
2881
2882 if (cl == NO_REGS)
2883 return false;
2884
2885 /* Regno must not be a pseudo register. Offset may be negative. */
2886 return (HARD_REGISTER_NUM_P (regno)
2887 && HARD_REGISTER_NUM_P (regno + offset)
2888 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2889 regno + offset));
2890 }
2891 \f
2892 /* Split single instruction. Helper function for split_all_insns and
2893 split_all_insns_noflow. Return last insn in the sequence if successful,
2894 or NULL if unsuccessful. */
2895
2896 static rtx_insn *
2897 split_insn (rtx_insn *insn)
2898 {
2899 /* Split insns here to get max fine-grain parallelism. */
2900 rtx_insn *first = PREV_INSN (insn);
2901 rtx_insn *last = try_split (PATTERN (insn), insn, 1);
2902 rtx insn_set, last_set, note;
2903
2904 if (last == insn)
2905 return NULL;
2906
2907 /* If the original instruction was a single set that was known to be
2908 equivalent to a constant, see if we can say the same about the last
2909 instruction in the split sequence. The two instructions must set
2910 the same destination. */
2911 insn_set = single_set (insn);
2912 if (insn_set)
2913 {
2914 last_set = single_set (last);
2915 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2916 {
2917 note = find_reg_equal_equiv_note (insn);
2918 if (note && CONSTANT_P (XEXP (note, 0)))
2919 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2920 else if (CONSTANT_P (SET_SRC (insn_set)))
2921 set_unique_reg_note (last, REG_EQUAL,
2922 copy_rtx (SET_SRC (insn_set)));
2923 }
2924 }
2925
2926 /* try_split returns the NOTE that INSN became. */
2927 SET_INSN_DELETED (insn);
2928
2929 /* ??? Coddle to md files that generate subregs in post-reload
2930 splitters instead of computing the proper hard register. */
2931 if (reload_completed && first != last)
2932 {
2933 first = NEXT_INSN (first);
2934 for (;;)
2935 {
2936 if (INSN_P (first))
2937 cleanup_subreg_operands (first);
2938 if (first == last)
2939 break;
2940 first = NEXT_INSN (first);
2941 }
2942 }
2943
2944 return last;
2945 }
2946
2947 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2948
2949 void
2950 split_all_insns (void)
2951 {
2952 bool changed;
2953 bool need_cfg_cleanup = false;
2954 basic_block bb;
2955
2956 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
2957 bitmap_clear (blocks);
2958 changed = false;
2959
2960 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2961 {
2962 rtx_insn *insn, *next;
2963 bool finish = false;
2964
2965 rtl_profile_for_bb (bb);
2966 for (insn = BB_HEAD (bb); !finish ; insn = next)
2967 {
2968 /* Can't use `next_real_insn' because that might go across
2969 CODE_LABELS and short-out basic blocks. */
2970 next = NEXT_INSN (insn);
2971 finish = (insn == BB_END (bb));
2972
2973 /* If INSN has a REG_EH_REGION note and we split INSN, the
2974 resulting split may not have/need REG_EH_REGION notes.
2975
2976 If that happens and INSN was the last reference to the
2977 given EH region, then the EH region will become unreachable.
2978 We cannot leave the unreachable blocks in the CFG as that
2979 will trigger a checking failure.
2980
2981 So track if INSN has a REG_EH_REGION note. If so and we
2982 split INSN, then trigger a CFG cleanup. */
2983 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2984 if (INSN_P (insn))
2985 {
2986 rtx set = single_set (insn);
2987
2988 /* Don't split no-op move insns. These should silently
2989 disappear later in final. Splitting such insns would
2990 break the code that handles LIBCALL blocks. */
2991 if (set && set_noop_p (set))
2992 {
2993 /* Nops get in the way while scheduling, so delete them
2994 now if register allocation has already been done. It
2995 is too risky to try to do this before register
2996 allocation, and there are unlikely to be very many
2997 nops then anyways. */
2998 if (reload_completed)
2999 delete_insn_and_edges (insn);
3000 if (note)
3001 need_cfg_cleanup = true;
3002 }
3003 else
3004 {
3005 if (split_insn (insn))
3006 {
3007 bitmap_set_bit (blocks, bb->index);
3008 changed = true;
3009 if (note)
3010 need_cfg_cleanup = true;
3011 }
3012 }
3013 }
3014 }
3015 }
3016
3017 default_rtl_profile ();
3018 if (changed)
3019 {
3020 find_many_sub_basic_blocks (blocks);
3021
3022 /* Splitting could drop an REG_EH_REGION if it potentially
3023 trapped in its original form, but does not in its split
3024 form. Consider a FLOAT_TRUNCATE which splits into a memory
3025 store/load pair and -fnon-call-exceptions. */
3026 if (need_cfg_cleanup)
3027 cleanup_cfg (0);
3028 }
3029
3030 checking_verify_flow_info ();
3031 }
3032
3033 /* Same as split_all_insns, but do not expect CFG to be available.
3034 Used by machine dependent reorg passes. */
3035
3036 unsigned int
3037 split_all_insns_noflow (void)
3038 {
3039 rtx_insn *next, *insn;
3040
3041 for (insn = get_insns (); insn; insn = next)
3042 {
3043 next = NEXT_INSN (insn);
3044 if (INSN_P (insn))
3045 {
3046 /* Don't split no-op move insns. These should silently
3047 disappear later in final. Splitting such insns would
3048 break the code that handles LIBCALL blocks. */
3049 rtx set = single_set (insn);
3050 if (set && set_noop_p (set))
3051 {
3052 /* Nops get in the way while scheduling, so delete them
3053 now if register allocation has already been done. It
3054 is too risky to try to do this before register
3055 allocation, and there are unlikely to be very many
3056 nops then anyways.
3057
3058 ??? Should we use delete_insn when the CFG isn't valid? */
3059 if (reload_completed)
3060 delete_insn_and_edges (insn);
3061 }
3062 else
3063 split_insn (insn);
3064 }
3065 }
3066 return 0;
3067 }
3068 \f
3069 struct peep2_insn_data
3070 {
3071 rtx_insn *insn;
3072 regset live_before;
3073 };
3074
3075 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
3076 static int peep2_current;
3077
3078 static bool peep2_do_rebuild_jump_labels;
3079 static bool peep2_do_cleanup_cfg;
3080
3081 /* The number of instructions available to match a peep2. */
3082 int peep2_current_count;
3083
3084 /* A marker indicating the last insn of the block. The live_before regset
3085 for this element is correct, indicating DF_LIVE_OUT for the block. */
3086 #define PEEP2_EOB invalid_insn_rtx
3087
3088 /* Wrap N to fit into the peep2_insn_data buffer. */
3089
3090 static int
3091 peep2_buf_position (int n)
3092 {
3093 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3094 n -= MAX_INSNS_PER_PEEP2 + 1;
3095 return n;
3096 }
3097
3098 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3099 does not exist. Used by the recognizer to find the next insn to match
3100 in a multi-insn pattern. */
3101
3102 rtx_insn *
3103 peep2_next_insn (int n)
3104 {
3105 gcc_assert (n <= peep2_current_count);
3106
3107 n = peep2_buf_position (peep2_current + n);
3108
3109 return peep2_insn_data[n].insn;
3110 }
3111
3112 /* Return true if REGNO is dead before the Nth non-note insn
3113 after `current'. */
3114
3115 int
3116 peep2_regno_dead_p (int ofs, int regno)
3117 {
3118 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3119
3120 ofs = peep2_buf_position (peep2_current + ofs);
3121
3122 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3123
3124 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3125 }
3126
3127 /* Similarly for a REG. */
3128
3129 int
3130 peep2_reg_dead_p (int ofs, rtx reg)
3131 {
3132 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3133
3134 ofs = peep2_buf_position (peep2_current + ofs);
3135
3136 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3137
3138 unsigned int end_regno = END_REGNO (reg);
3139 for (unsigned int regno = REGNO (reg); regno < end_regno; ++regno)
3140 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno))
3141 return 0;
3142 return 1;
3143 }
3144
3145 /* Regno offset to be used in the register search. */
3146 static int search_ofs;
3147
3148 /* Try to find a hard register of mode MODE, matching the register class in
3149 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3150 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3151 in which case the only condition is that the register must be available
3152 before CURRENT_INSN.
3153 Registers that already have bits set in REG_SET will not be considered.
3154
3155 If an appropriate register is available, it will be returned and the
3156 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3157 returned. */
3158
3159 rtx
3160 peep2_find_free_register (int from, int to, const char *class_str,
3161 machine_mode mode, HARD_REG_SET *reg_set)
3162 {
3163 enum reg_class cl;
3164 HARD_REG_SET live;
3165 df_ref def;
3166 int i;
3167
3168 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3169 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3170
3171 from = peep2_buf_position (peep2_current + from);
3172 to = peep2_buf_position (peep2_current + to);
3173
3174 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3175 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3176
3177 while (from != to)
3178 {
3179 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3180
3181 /* Don't use registers set or clobbered by the insn. */
3182 FOR_EACH_INSN_DEF (def, peep2_insn_data[from].insn)
3183 SET_HARD_REG_BIT (live, DF_REF_REGNO (def));
3184
3185 from = peep2_buf_position (from + 1);
3186 }
3187
3188 cl = reg_class_for_constraint (lookup_constraint (class_str));
3189
3190 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3191 {
3192 int raw_regno, regno, success, j;
3193
3194 /* Distribute the free registers as much as possible. */
3195 raw_regno = search_ofs + i;
3196 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3197 raw_regno -= FIRST_PSEUDO_REGISTER;
3198 #ifdef REG_ALLOC_ORDER
3199 regno = reg_alloc_order[raw_regno];
3200 #else
3201 regno = raw_regno;
3202 #endif
3203
3204 /* Can it support the mode we need? */
3205 if (!targetm.hard_regno_mode_ok (regno, mode))
3206 continue;
3207
3208 success = 1;
3209 for (j = 0; success && j < hard_regno_nregs (regno, mode); j++)
3210 {
3211 /* Don't allocate fixed registers. */
3212 if (fixed_regs[regno + j])
3213 {
3214 success = 0;
3215 break;
3216 }
3217 /* Don't allocate global registers. */
3218 if (global_regs[regno + j])
3219 {
3220 success = 0;
3221 break;
3222 }
3223 /* Make sure the register is of the right class. */
3224 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3225 {
3226 success = 0;
3227 break;
3228 }
3229 /* And that we don't create an extra save/restore. */
3230 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3231 {
3232 success = 0;
3233 break;
3234 }
3235
3236 if (! targetm.hard_regno_scratch_ok (regno + j))
3237 {
3238 success = 0;
3239 break;
3240 }
3241
3242 /* And we don't clobber traceback for noreturn functions. */
3243 if ((regno + j == FRAME_POINTER_REGNUM
3244 || regno + j == HARD_FRAME_POINTER_REGNUM)
3245 && (! reload_completed || frame_pointer_needed))
3246 {
3247 success = 0;
3248 break;
3249 }
3250
3251 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3252 || TEST_HARD_REG_BIT (live, regno + j))
3253 {
3254 success = 0;
3255 break;
3256 }
3257 }
3258
3259 if (success)
3260 {
3261 add_to_hard_reg_set (reg_set, mode, regno);
3262
3263 /* Start the next search with the next register. */
3264 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3265 raw_regno = 0;
3266 search_ofs = raw_regno;
3267
3268 return gen_rtx_REG (mode, regno);
3269 }
3270 }
3271
3272 search_ofs = 0;
3273 return NULL_RTX;
3274 }
3275
3276 /* Forget all currently tracked instructions, only remember current
3277 LIVE regset. */
3278
3279 static void
3280 peep2_reinit_state (regset live)
3281 {
3282 int i;
3283
3284 /* Indicate that all slots except the last holds invalid data. */
3285 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3286 peep2_insn_data[i].insn = NULL;
3287 peep2_current_count = 0;
3288
3289 /* Indicate that the last slot contains live_after data. */
3290 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3291 peep2_current = MAX_INSNS_PER_PEEP2;
3292
3293 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3294 }
3295
3296 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3297 starting at INSN. Perform the replacement, removing the old insns and
3298 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3299 if the replacement is rejected. */
3300
3301 static rtx_insn *
3302 peep2_attempt (basic_block bb, rtx_insn *insn, int match_len, rtx_insn *attempt)
3303 {
3304 int i;
3305 rtx_insn *last, *before_try, *x;
3306 rtx eh_note, as_note;
3307 rtx_insn *old_insn;
3308 rtx_insn *new_insn;
3309 bool was_call = false;
3310
3311 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3312 match more than one insn, or to be split into more than one insn. */
3313 old_insn = peep2_insn_data[peep2_current].insn;
3314 if (RTX_FRAME_RELATED_P (old_insn))
3315 {
3316 bool any_note = false;
3317 rtx note;
3318
3319 if (match_len != 0)
3320 return NULL;
3321
3322 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3323 may be in the stream for the purpose of register allocation. */
3324 if (active_insn_p (attempt))
3325 new_insn = attempt;
3326 else
3327 new_insn = next_active_insn (attempt);
3328 if (next_active_insn (new_insn))
3329 return NULL;
3330
3331 /* We have a 1-1 replacement. Copy over any frame-related info. */
3332 RTX_FRAME_RELATED_P (new_insn) = 1;
3333
3334 /* Allow the backend to fill in a note during the split. */
3335 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3336 switch (REG_NOTE_KIND (note))
3337 {
3338 case REG_FRAME_RELATED_EXPR:
3339 case REG_CFA_DEF_CFA:
3340 case REG_CFA_ADJUST_CFA:
3341 case REG_CFA_OFFSET:
3342 case REG_CFA_REGISTER:
3343 case REG_CFA_EXPRESSION:
3344 case REG_CFA_RESTORE:
3345 case REG_CFA_SET_VDRAP:
3346 any_note = true;
3347 break;
3348 default:
3349 break;
3350 }
3351
3352 /* If the backend didn't supply a note, copy one over. */
3353 if (!any_note)
3354 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3355 switch (REG_NOTE_KIND (note))
3356 {
3357 case REG_FRAME_RELATED_EXPR:
3358 case REG_CFA_DEF_CFA:
3359 case REG_CFA_ADJUST_CFA:
3360 case REG_CFA_OFFSET:
3361 case REG_CFA_REGISTER:
3362 case REG_CFA_EXPRESSION:
3363 case REG_CFA_RESTORE:
3364 case REG_CFA_SET_VDRAP:
3365 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3366 any_note = true;
3367 break;
3368 default:
3369 break;
3370 }
3371
3372 /* If there still isn't a note, make sure the unwind info sees the
3373 same expression as before the split. */
3374 if (!any_note)
3375 {
3376 rtx old_set, new_set;
3377
3378 /* The old insn had better have been simple, or annotated. */
3379 old_set = single_set (old_insn);
3380 gcc_assert (old_set != NULL);
3381
3382 new_set = single_set (new_insn);
3383 if (!new_set || !rtx_equal_p (new_set, old_set))
3384 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3385 }
3386
3387 /* Copy prologue/epilogue status. This is required in order to keep
3388 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3389 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3390 }
3391
3392 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3393 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3394 cfg-related call notes. */
3395 for (i = 0; i <= match_len; ++i)
3396 {
3397 int j;
3398 rtx note;
3399
3400 j = peep2_buf_position (peep2_current + i);
3401 old_insn = peep2_insn_data[j].insn;
3402 if (!CALL_P (old_insn))
3403 continue;
3404 was_call = true;
3405
3406 new_insn = attempt;
3407 while (new_insn != NULL_RTX)
3408 {
3409 if (CALL_P (new_insn))
3410 break;
3411 new_insn = NEXT_INSN (new_insn);
3412 }
3413
3414 gcc_assert (new_insn != NULL_RTX);
3415
3416 CALL_INSN_FUNCTION_USAGE (new_insn)
3417 = CALL_INSN_FUNCTION_USAGE (old_insn);
3418 SIBLING_CALL_P (new_insn) = SIBLING_CALL_P (old_insn);
3419
3420 for (note = REG_NOTES (old_insn);
3421 note;
3422 note = XEXP (note, 1))
3423 switch (REG_NOTE_KIND (note))
3424 {
3425 case REG_NORETURN:
3426 case REG_SETJMP:
3427 case REG_TM:
3428 case REG_CALL_NOCF_CHECK:
3429 add_reg_note (new_insn, REG_NOTE_KIND (note),
3430 XEXP (note, 0));
3431 break;
3432 default:
3433 /* Discard all other reg notes. */
3434 break;
3435 }
3436
3437 /* Croak if there is another call in the sequence. */
3438 while (++i <= match_len)
3439 {
3440 j = peep2_buf_position (peep2_current + i);
3441 old_insn = peep2_insn_data[j].insn;
3442 gcc_assert (!CALL_P (old_insn));
3443 }
3444 break;
3445 }
3446
3447 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3448 move those notes over to the new sequence. */
3449 as_note = NULL;
3450 for (i = match_len; i >= 0; --i)
3451 {
3452 int j = peep2_buf_position (peep2_current + i);
3453 old_insn = peep2_insn_data[j].insn;
3454
3455 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3456 if (as_note)
3457 break;
3458 }
3459
3460 i = peep2_buf_position (peep2_current + match_len);
3461 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3462
3463 /* Replace the old sequence with the new. */
3464 rtx_insn *peepinsn = peep2_insn_data[i].insn;
3465 last = emit_insn_after_setloc (attempt,
3466 peep2_insn_data[i].insn,
3467 INSN_LOCATION (peepinsn));
3468 if (JUMP_P (peepinsn) && JUMP_P (last))
3469 CROSSING_JUMP_P (last) = CROSSING_JUMP_P (peepinsn);
3470 before_try = PREV_INSN (insn);
3471 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3472
3473 /* Re-insert the EH_REGION notes. */
3474 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3475 {
3476 edge eh_edge;
3477 edge_iterator ei;
3478
3479 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3480 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3481 break;
3482
3483 if (eh_note)
3484 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3485
3486 if (eh_edge)
3487 for (x = last; x != before_try; x = PREV_INSN (x))
3488 if (x != BB_END (bb)
3489 && (can_throw_internal (x)
3490 || can_nonlocal_goto (x)))
3491 {
3492 edge nfte, nehe;
3493 int flags;
3494
3495 nfte = split_block (bb, x);
3496 flags = (eh_edge->flags
3497 & (EDGE_EH | EDGE_ABNORMAL));
3498 if (CALL_P (x))
3499 flags |= EDGE_ABNORMAL_CALL;
3500 nehe = make_edge (nfte->src, eh_edge->dest,
3501 flags);
3502
3503 nehe->probability = eh_edge->probability;
3504 nfte->probability = nehe->probability.invert ();
3505
3506 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3507 bb = nfte->src;
3508 eh_edge = nehe;
3509 }
3510
3511 /* Converting possibly trapping insn to non-trapping is
3512 possible. Zap dummy outgoing edges. */
3513 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3514 }
3515
3516 /* Re-insert the ARGS_SIZE notes. */
3517 if (as_note)
3518 fixup_args_size_notes (before_try, last, get_args_size (as_note));
3519
3520 /* If we generated a jump instruction, it won't have
3521 JUMP_LABEL set. Recompute after we're done. */
3522 for (x = last; x != before_try; x = PREV_INSN (x))
3523 if (JUMP_P (x))
3524 {
3525 peep2_do_rebuild_jump_labels = true;
3526 break;
3527 }
3528
3529 return last;
3530 }
3531
3532 /* After performing a replacement in basic block BB, fix up the life
3533 information in our buffer. LAST is the last of the insns that we
3534 emitted as a replacement. PREV is the insn before the start of
3535 the replacement. MATCH_LEN is the number of instructions that were
3536 matched, and which now need to be replaced in the buffer. */
3537
3538 static void
3539 peep2_update_life (basic_block bb, int match_len, rtx_insn *last,
3540 rtx_insn *prev)
3541 {
3542 int i = peep2_buf_position (peep2_current + match_len + 1);
3543 rtx_insn *x;
3544 regset_head live;
3545
3546 INIT_REG_SET (&live);
3547 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3548
3549 gcc_assert (peep2_current_count >= match_len + 1);
3550 peep2_current_count -= match_len + 1;
3551
3552 x = last;
3553 do
3554 {
3555 if (INSN_P (x))
3556 {
3557 df_insn_rescan (x);
3558 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3559 {
3560 peep2_current_count++;
3561 if (--i < 0)
3562 i = MAX_INSNS_PER_PEEP2;
3563 peep2_insn_data[i].insn = x;
3564 df_simulate_one_insn_backwards (bb, x, &live);
3565 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3566 }
3567 }
3568 x = PREV_INSN (x);
3569 }
3570 while (x != prev);
3571 CLEAR_REG_SET (&live);
3572
3573 peep2_current = i;
3574 }
3575
3576 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3577 Return true if we added it, false otherwise. The caller will try to match
3578 peepholes against the buffer if we return false; otherwise it will try to
3579 add more instructions to the buffer. */
3580
3581 static bool
3582 peep2_fill_buffer (basic_block bb, rtx_insn *insn, regset live)
3583 {
3584 int pos;
3585
3586 /* Once we have filled the maximum number of insns the buffer can hold,
3587 allow the caller to match the insns against peepholes. We wait until
3588 the buffer is full in case the target has similar peepholes of different
3589 length; we always want to match the longest if possible. */
3590 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3591 return false;
3592
3593 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3594 any other pattern, lest it change the semantics of the frame info. */
3595 if (RTX_FRAME_RELATED_P (insn))
3596 {
3597 /* Let the buffer drain first. */
3598 if (peep2_current_count > 0)
3599 return false;
3600 /* Now the insn will be the only thing in the buffer. */
3601 }
3602
3603 pos = peep2_buf_position (peep2_current + peep2_current_count);
3604 peep2_insn_data[pos].insn = insn;
3605 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3606 peep2_current_count++;
3607
3608 df_simulate_one_insn_forwards (bb, insn, live);
3609 return true;
3610 }
3611
3612 /* Perform the peephole2 optimization pass. */
3613
3614 static void
3615 peephole2_optimize (void)
3616 {
3617 rtx_insn *insn;
3618 bitmap live;
3619 int i;
3620 basic_block bb;
3621
3622 peep2_do_cleanup_cfg = false;
3623 peep2_do_rebuild_jump_labels = false;
3624
3625 df_set_flags (DF_LR_RUN_DCE);
3626 df_note_add_problem ();
3627 df_analyze ();
3628
3629 /* Initialize the regsets we're going to use. */
3630 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3631 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3632 search_ofs = 0;
3633 live = BITMAP_ALLOC (&reg_obstack);
3634
3635 FOR_EACH_BB_REVERSE_FN (bb, cfun)
3636 {
3637 bool past_end = false;
3638 int pos;
3639
3640 rtl_profile_for_bb (bb);
3641
3642 /* Start up propagation. */
3643 bitmap_copy (live, DF_LR_IN (bb));
3644 df_simulate_initialize_forwards (bb, live);
3645 peep2_reinit_state (live);
3646
3647 insn = BB_HEAD (bb);
3648 for (;;)
3649 {
3650 rtx_insn *attempt, *head;
3651 int match_len;
3652
3653 if (!past_end && !NONDEBUG_INSN_P (insn))
3654 {
3655 next_insn:
3656 insn = NEXT_INSN (insn);
3657 if (insn == NEXT_INSN (BB_END (bb)))
3658 past_end = true;
3659 continue;
3660 }
3661 if (!past_end && peep2_fill_buffer (bb, insn, live))
3662 goto next_insn;
3663
3664 /* If we did not fill an empty buffer, it signals the end of the
3665 block. */
3666 if (peep2_current_count == 0)
3667 break;
3668
3669 /* The buffer filled to the current maximum, so try to match. */
3670
3671 pos = peep2_buf_position (peep2_current + peep2_current_count);
3672 peep2_insn_data[pos].insn = PEEP2_EOB;
3673 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3674
3675 /* Match the peephole. */
3676 head = peep2_insn_data[peep2_current].insn;
3677 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3678 if (attempt != NULL)
3679 {
3680 rtx_insn *last = peep2_attempt (bb, head, match_len, attempt);
3681 if (last)
3682 {
3683 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3684 continue;
3685 }
3686 }
3687
3688 /* No match: advance the buffer by one insn. */
3689 peep2_current = peep2_buf_position (peep2_current + 1);
3690 peep2_current_count--;
3691 }
3692 }
3693
3694 default_rtl_profile ();
3695 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3696 BITMAP_FREE (peep2_insn_data[i].live_before);
3697 BITMAP_FREE (live);
3698 if (peep2_do_rebuild_jump_labels)
3699 rebuild_jump_labels (get_insns ());
3700 if (peep2_do_cleanup_cfg)
3701 cleanup_cfg (CLEANUP_CFG_CHANGED);
3702 }
3703
3704 /* Common predicates for use with define_bypass. */
3705
3706 /* Helper function for store_data_bypass_p, handle just a single SET
3707 IN_SET. */
3708
3709 static bool
3710 store_data_bypass_p_1 (rtx_insn *out_insn, rtx in_set)
3711 {
3712 if (!MEM_P (SET_DEST (in_set)))
3713 return false;
3714
3715 rtx out_set = single_set (out_insn);
3716 if (out_set)
3717 return !reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set));
3718
3719 rtx out_pat = PATTERN (out_insn);
3720 if (GET_CODE (out_pat) != PARALLEL)
3721 return false;
3722
3723 for (int i = 0; i < XVECLEN (out_pat, 0); i++)
3724 {
3725 rtx out_exp = XVECEXP (out_pat, 0, i);
3726
3727 if (GET_CODE (out_exp) == CLOBBER || GET_CODE (out_exp) == USE
3728 || GET_CODE (out_exp) == CLOBBER_HIGH)
3729 continue;
3730
3731 gcc_assert (GET_CODE (out_exp) == SET);
3732
3733 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3734 return false;
3735 }
3736
3737 return true;
3738 }
3739
3740 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3741 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3742 must be either a single_set or a PARALLEL with SETs inside. */
3743
3744 int
3745 store_data_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3746 {
3747 rtx in_set = single_set (in_insn);
3748 if (in_set)
3749 return store_data_bypass_p_1 (out_insn, in_set);
3750
3751 rtx in_pat = PATTERN (in_insn);
3752 if (GET_CODE (in_pat) != PARALLEL)
3753 return false;
3754
3755 for (int i = 0; i < XVECLEN (in_pat, 0); i++)
3756 {
3757 rtx in_exp = XVECEXP (in_pat, 0, i);
3758
3759 if (GET_CODE (in_exp) == CLOBBER || GET_CODE (in_exp) == USE
3760 || GET_CODE (in_exp) == CLOBBER_HIGH)
3761 continue;
3762
3763 gcc_assert (GET_CODE (in_exp) == SET);
3764
3765 if (!store_data_bypass_p_1 (out_insn, in_exp))
3766 return false;
3767 }
3768
3769 return true;
3770 }
3771
3772 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3773 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3774 or multiple set; IN_INSN should be single_set for truth, but for convenience
3775 of insn categorization may be any JUMP or CALL insn. */
3776
3777 int
3778 if_test_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
3779 {
3780 rtx out_set, in_set;
3781
3782 in_set = single_set (in_insn);
3783 if (! in_set)
3784 {
3785 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3786 return false;
3787 }
3788
3789 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3790 return false;
3791 in_set = SET_SRC (in_set);
3792
3793 out_set = single_set (out_insn);
3794 if (out_set)
3795 {
3796 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3797 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3798 return false;
3799 }
3800 else
3801 {
3802 rtx out_pat;
3803 int i;
3804
3805 out_pat = PATTERN (out_insn);
3806 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3807
3808 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3809 {
3810 rtx exp = XVECEXP (out_pat, 0, i);
3811
3812 if (GET_CODE (exp) == CLOBBER || GET_CODE (exp) == CLOBBER_HIGH)
3813 continue;
3814
3815 gcc_assert (GET_CODE (exp) == SET);
3816
3817 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3818 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3819 return false;
3820 }
3821 }
3822
3823 return true;
3824 }
3825 \f
3826 static unsigned int
3827 rest_of_handle_peephole2 (void)
3828 {
3829 if (HAVE_peephole2)
3830 peephole2_optimize ();
3831
3832 return 0;
3833 }
3834
3835 namespace {
3836
3837 const pass_data pass_data_peephole2 =
3838 {
3839 RTL_PASS, /* type */
3840 "peephole2", /* name */
3841 OPTGROUP_NONE, /* optinfo_flags */
3842 TV_PEEPHOLE2, /* tv_id */
3843 0, /* properties_required */
3844 0, /* properties_provided */
3845 0, /* properties_destroyed */
3846 0, /* todo_flags_start */
3847 TODO_df_finish, /* todo_flags_finish */
3848 };
3849
3850 class pass_peephole2 : public rtl_opt_pass
3851 {
3852 public:
3853 pass_peephole2 (gcc::context *ctxt)
3854 : rtl_opt_pass (pass_data_peephole2, ctxt)
3855 {}
3856
3857 /* opt_pass methods: */
3858 /* The epiphany backend creates a second instance of this pass, so we need
3859 a clone method. */
3860 opt_pass * clone () { return new pass_peephole2 (m_ctxt); }
3861 virtual bool gate (function *) { return (optimize > 0 && flag_peephole2); }
3862 virtual unsigned int execute (function *)
3863 {
3864 return rest_of_handle_peephole2 ();
3865 }
3866
3867 }; // class pass_peephole2
3868
3869 } // anon namespace
3870
3871 rtl_opt_pass *
3872 make_pass_peephole2 (gcc::context *ctxt)
3873 {
3874 return new pass_peephole2 (ctxt);
3875 }
3876
3877 namespace {
3878
3879 const pass_data pass_data_split_all_insns =
3880 {
3881 RTL_PASS, /* type */
3882 "split1", /* name */
3883 OPTGROUP_NONE, /* optinfo_flags */
3884 TV_NONE, /* tv_id */
3885 0, /* properties_required */
3886 PROP_rtl_split_insns, /* properties_provided */
3887 0, /* properties_destroyed */
3888 0, /* todo_flags_start */
3889 0, /* todo_flags_finish */
3890 };
3891
3892 class pass_split_all_insns : public rtl_opt_pass
3893 {
3894 public:
3895 pass_split_all_insns (gcc::context *ctxt)
3896 : rtl_opt_pass (pass_data_split_all_insns, ctxt)
3897 {}
3898
3899 /* opt_pass methods: */
3900 /* The epiphany backend creates a second instance of this pass, so
3901 we need a clone method. */
3902 opt_pass * clone () { return new pass_split_all_insns (m_ctxt); }
3903 virtual unsigned int execute (function *)
3904 {
3905 split_all_insns ();
3906 return 0;
3907 }
3908
3909 }; // class pass_split_all_insns
3910
3911 } // anon namespace
3912
3913 rtl_opt_pass *
3914 make_pass_split_all_insns (gcc::context *ctxt)
3915 {
3916 return new pass_split_all_insns (ctxt);
3917 }
3918
3919 namespace {
3920
3921 const pass_data pass_data_split_after_reload =
3922 {
3923 RTL_PASS, /* type */
3924 "split2", /* name */
3925 OPTGROUP_NONE, /* optinfo_flags */
3926 TV_NONE, /* tv_id */
3927 0, /* properties_required */
3928 0, /* properties_provided */
3929 0, /* properties_destroyed */
3930 0, /* todo_flags_start */
3931 0, /* todo_flags_finish */
3932 };
3933
3934 class pass_split_after_reload : public rtl_opt_pass
3935 {
3936 public:
3937 pass_split_after_reload (gcc::context *ctxt)
3938 : rtl_opt_pass (pass_data_split_after_reload, ctxt)
3939 {}
3940
3941 /* opt_pass methods: */
3942 virtual bool gate (function *)
3943 {
3944 /* If optimizing, then go ahead and split insns now. */
3945 if (optimize > 0)
3946 return true;
3947
3948 #ifdef STACK_REGS
3949 return true;
3950 #else
3951 return false;
3952 #endif
3953 }
3954
3955 virtual unsigned int execute (function *)
3956 {
3957 split_all_insns ();
3958 return 0;
3959 }
3960
3961 }; // class pass_split_after_reload
3962
3963 } // anon namespace
3964
3965 rtl_opt_pass *
3966 make_pass_split_after_reload (gcc::context *ctxt)
3967 {
3968 return new pass_split_after_reload (ctxt);
3969 }
3970
3971 namespace {
3972
3973 const pass_data pass_data_split_before_regstack =
3974 {
3975 RTL_PASS, /* type */
3976 "split3", /* name */
3977 OPTGROUP_NONE, /* optinfo_flags */
3978 TV_NONE, /* tv_id */
3979 0, /* properties_required */
3980 0, /* properties_provided */
3981 0, /* properties_destroyed */
3982 0, /* todo_flags_start */
3983 0, /* todo_flags_finish */
3984 };
3985
3986 class pass_split_before_regstack : public rtl_opt_pass
3987 {
3988 public:
3989 pass_split_before_regstack (gcc::context *ctxt)
3990 : rtl_opt_pass (pass_data_split_before_regstack, ctxt)
3991 {}
3992
3993 /* opt_pass methods: */
3994 virtual bool gate (function *);
3995 virtual unsigned int execute (function *)
3996 {
3997 split_all_insns ();
3998 return 0;
3999 }
4000
4001 }; // class pass_split_before_regstack
4002
4003 bool
4004 pass_split_before_regstack::gate (function *)
4005 {
4006 #if HAVE_ATTR_length && defined (STACK_REGS)
4007 /* If flow2 creates new instructions which need splitting
4008 and scheduling after reload is not done, they might not be
4009 split until final which doesn't allow splitting
4010 if HAVE_ATTR_length. */
4011 # ifdef INSN_SCHEDULING
4012 return (optimize && !flag_schedule_insns_after_reload);
4013 # else
4014 return (optimize);
4015 # endif
4016 #else
4017 return 0;
4018 #endif
4019 }
4020
4021 } // anon namespace
4022
4023 rtl_opt_pass *
4024 make_pass_split_before_regstack (gcc::context *ctxt)
4025 {
4026 return new pass_split_before_regstack (ctxt);
4027 }
4028
4029 static unsigned int
4030 rest_of_handle_split_before_sched2 (void)
4031 {
4032 #ifdef INSN_SCHEDULING
4033 split_all_insns ();
4034 #endif
4035 return 0;
4036 }
4037
4038 namespace {
4039
4040 const pass_data pass_data_split_before_sched2 =
4041 {
4042 RTL_PASS, /* type */
4043 "split4", /* name */
4044 OPTGROUP_NONE, /* optinfo_flags */
4045 TV_NONE, /* tv_id */
4046 0, /* properties_required */
4047 0, /* properties_provided */
4048 0, /* properties_destroyed */
4049 0, /* todo_flags_start */
4050 0, /* todo_flags_finish */
4051 };
4052
4053 class pass_split_before_sched2 : public rtl_opt_pass
4054 {
4055 public:
4056 pass_split_before_sched2 (gcc::context *ctxt)
4057 : rtl_opt_pass (pass_data_split_before_sched2, ctxt)
4058 {}
4059
4060 /* opt_pass methods: */
4061 virtual bool gate (function *)
4062 {
4063 #ifdef INSN_SCHEDULING
4064 return optimize > 0 && flag_schedule_insns_after_reload;
4065 #else
4066 return false;
4067 #endif
4068 }
4069
4070 virtual unsigned int execute (function *)
4071 {
4072 return rest_of_handle_split_before_sched2 ();
4073 }
4074
4075 }; // class pass_split_before_sched2
4076
4077 } // anon namespace
4078
4079 rtl_opt_pass *
4080 make_pass_split_before_sched2 (gcc::context *ctxt)
4081 {
4082 return new pass_split_before_sched2 (ctxt);
4083 }
4084
4085 namespace {
4086
4087 const pass_data pass_data_split_for_shorten_branches =
4088 {
4089 RTL_PASS, /* type */
4090 "split5", /* name */
4091 OPTGROUP_NONE, /* optinfo_flags */
4092 TV_NONE, /* tv_id */
4093 0, /* properties_required */
4094 0, /* properties_provided */
4095 0, /* properties_destroyed */
4096 0, /* todo_flags_start */
4097 0, /* todo_flags_finish */
4098 };
4099
4100 class pass_split_for_shorten_branches : public rtl_opt_pass
4101 {
4102 public:
4103 pass_split_for_shorten_branches (gcc::context *ctxt)
4104 : rtl_opt_pass (pass_data_split_for_shorten_branches, ctxt)
4105 {}
4106
4107 /* opt_pass methods: */
4108 virtual bool gate (function *)
4109 {
4110 /* The placement of the splitting that we do for shorten_branches
4111 depends on whether regstack is used by the target or not. */
4112 #if HAVE_ATTR_length && !defined (STACK_REGS)
4113 return true;
4114 #else
4115 return false;
4116 #endif
4117 }
4118
4119 virtual unsigned int execute (function *)
4120 {
4121 return split_all_insns_noflow ();
4122 }
4123
4124 }; // class pass_split_for_shorten_branches
4125
4126 } // anon namespace
4127
4128 rtl_opt_pass *
4129 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4130 {
4131 return new pass_split_for_shorten_branches (ctxt);
4132 }
4133
4134 /* (Re)initialize the target information after a change in target. */
4135
4136 void
4137 recog_init ()
4138 {
4139 /* The information is zero-initialized, so we don't need to do anything
4140 first time round. */
4141 if (!this_target_recog->x_initialized)
4142 {
4143 this_target_recog->x_initialized = true;
4144 return;
4145 }
4146 memset (this_target_recog->x_bool_attr_masks, 0,
4147 sizeof (this_target_recog->x_bool_attr_masks));
4148 for (unsigned int i = 0; i < NUM_INSN_CODES; ++i)
4149 if (this_target_recog->x_op_alt[i])
4150 {
4151 free (this_target_recog->x_op_alt[i]);
4152 this_target_recog->x_op_alt[i] = 0;
4153 }
4154 }