]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/recog.c
recog.c (peephole2_optimize): Split blocks when EH insns are generated in the middle...
[thirdparty/gcc.git] / gcc / recog.c
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
30 #include "recog.h"
31 #include "regs.h"
32 #include "expr.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "real.h"
36 #include "toplev.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "reload.h"
40
41 #ifndef STACK_PUSH_CODE
42 #ifdef STACK_GROWS_DOWNWARD
43 #define STACK_PUSH_CODE PRE_DEC
44 #else
45 #define STACK_PUSH_CODE PRE_INC
46 #endif
47 #endif
48
49 #ifndef STACK_POP_CODE
50 #ifdef STACK_GROWS_DOWNWARD
51 #define STACK_POP_CODE POST_INC
52 #else
53 #define STACK_POP_CODE POST_DEC
54 #endif
55 #endif
56
57 static void validate_replace_rtx_1 PARAMS ((rtx *, rtx, rtx, rtx));
58 static rtx *find_single_use_1 PARAMS ((rtx, rtx *));
59 static void validate_replace_src_1 PARAMS ((rtx *, void *));
60 static rtx split_insn PARAMS ((rtx));
61
62 /* Nonzero means allow operands to be volatile.
63 This should be 0 if you are generating rtl, such as if you are calling
64 the functions in optabs.c and expmed.c (most of the time).
65 This should be 1 if all valid insns need to be recognized,
66 such as in regclass.c and final.c and reload.c.
67
68 init_recog and init_recog_no_volatile are responsible for setting this. */
69
70 int volatile_ok;
71
72 struct recog_data recog_data;
73
74 /* Contains a vector of operand_alternative structures for every operand.
75 Set up by preprocess_constraints. */
76 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
77
78 /* On return from `constrain_operands', indicate which alternative
79 was satisfied. */
80
81 int which_alternative;
82
83 /* Nonzero after end of reload pass.
84 Set to 1 or 0 by toplev.c.
85 Controls the significance of (SUBREG (MEM)). */
86
87 int reload_completed;
88
89 /* Initialize data used by the function `recog'.
90 This must be called once in the compilation of a function
91 before any insn recognition may be done in the function. */
92
93 void
94 init_recog_no_volatile ()
95 {
96 volatile_ok = 0;
97 }
98
99 void
100 init_recog ()
101 {
102 volatile_ok = 1;
103 }
104
105 /* Try recognizing the instruction INSN,
106 and return the code number that results.
107 Remember the code so that repeated calls do not
108 need to spend the time for actual rerecognition.
109
110 This function is the normal interface to instruction recognition.
111 The automatically-generated function `recog' is normally called
112 through this one. (The only exception is in combine.c.) */
113
114 int
115 recog_memoized_1 (insn)
116 rtx insn;
117 {
118 if (INSN_CODE (insn) < 0)
119 INSN_CODE (insn) = recog (PATTERN (insn), insn, 0);
120 return INSN_CODE (insn);
121 }
122 \f
123 /* Check that X is an insn-body for an `asm' with operands
124 and that the operands mentioned in it are legitimate. */
125
126 int
127 check_asm_operands (x)
128 rtx x;
129 {
130 int noperands;
131 rtx *operands;
132 const char **constraints;
133 int i;
134
135 /* Post-reload, be more strict with things. */
136 if (reload_completed)
137 {
138 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
139 extract_insn (make_insn_raw (x));
140 constrain_operands (1);
141 return which_alternative >= 0;
142 }
143
144 noperands = asm_noperands (x);
145 if (noperands < 0)
146 return 0;
147 if (noperands == 0)
148 return 1;
149
150 operands = (rtx *) alloca (noperands * sizeof (rtx));
151 constraints = (const char **) alloca (noperands * sizeof (char *));
152
153 decode_asm_operands (x, operands, NULL, constraints, NULL);
154
155 for (i = 0; i < noperands; i++)
156 {
157 const char *c = constraints[i];
158 if (c[0] == '%')
159 c++;
160 if (ISDIGIT ((unsigned char) c[0]) && c[1] == '\0')
161 c = constraints[c[0] - '0'];
162
163 if (! asm_operand_ok (operands[i], c))
164 return 0;
165 }
166
167 return 1;
168 }
169 \f
170 /* Static data for the next two routines. */
171
172 typedef struct change_t
173 {
174 rtx object;
175 int old_code;
176 rtx *loc;
177 rtx old;
178 } change_t;
179
180 static change_t *changes;
181 static int changes_allocated;
182
183 static int num_changes = 0;
184
185 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
186 at which NEW will be placed. If OBJECT is zero, no validation is done,
187 the change is simply made.
188
189 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
190 will be called with the address and mode as parameters. If OBJECT is
191 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
192 the change in place.
193
194 IN_GROUP is non-zero if this is part of a group of changes that must be
195 performed as a group. In that case, the changes will be stored. The
196 function `apply_change_group' will validate and apply the changes.
197
198 If IN_GROUP is zero, this is a single change. Try to recognize the insn
199 or validate the memory reference with the change applied. If the result
200 is not valid for the machine, suppress the change and return zero.
201 Otherwise, perform the change and return 1. */
202
203 int
204 validate_change (object, loc, new, in_group)
205 rtx object;
206 rtx *loc;
207 rtx new;
208 int in_group;
209 {
210 rtx old = *loc;
211
212 if (old == new || rtx_equal_p (old, new))
213 return 1;
214
215 if (in_group == 0 && num_changes != 0)
216 abort ();
217
218 *loc = new;
219
220 /* Save the information describing this change. */
221 if (num_changes >= changes_allocated)
222 {
223 if (changes_allocated == 0)
224 /* This value allows for repeated substitutions inside complex
225 indexed addresses, or changes in up to 5 insns. */
226 changes_allocated = MAX_RECOG_OPERANDS * 5;
227 else
228 changes_allocated *= 2;
229
230 changes =
231 (change_t*) xrealloc (changes,
232 sizeof (change_t) * changes_allocated);
233 }
234
235 changes[num_changes].object = object;
236 changes[num_changes].loc = loc;
237 changes[num_changes].old = old;
238
239 if (object && GET_CODE (object) != MEM)
240 {
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
242 case invalid. */
243 changes[num_changes].old_code = INSN_CODE (object);
244 INSN_CODE (object) = -1;
245 }
246
247 num_changes++;
248
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
251
252 if (in_group)
253 return 1;
254 else
255 return apply_change_group ();
256 }
257
258 /* This subroutine of apply_change_group verifies whether the changes to INSN
259 were valid; i.e. whether INSN can still be recognized. */
260
261 int
262 insn_invalid_p (insn)
263 rtx insn;
264 {
265 rtx pat = PATTERN (insn);
266 int num_clobbers = 0;
267 /* If we are before reload and the pattern is a SET, see if we can add
268 clobbers. */
269 int icode = recog (pat, insn,
270 (GET_CODE (pat) == SET
271 && ! reload_completed && ! reload_in_progress)
272 ? &num_clobbers : 0);
273 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
274
275
276 /* If this is an asm and the operand aren't legal, then fail. Likewise if
277 this is not an asm and the insn wasn't recognized. */
278 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
279 || (!is_asm && icode < 0))
280 return 1;
281
282 /* If we have to add CLOBBERs, fail if we have to add ones that reference
283 hard registers since our callers can't know if they are live or not.
284 Otherwise, add them. */
285 if (num_clobbers > 0)
286 {
287 rtx newpat;
288
289 if (added_clobbers_hard_reg_p (icode))
290 return 1;
291
292 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
293 XVECEXP (newpat, 0, 0) = pat;
294 add_clobbers (newpat, icode);
295 PATTERN (insn) = pat = newpat;
296 }
297
298 /* After reload, verify that all constraints are satisfied. */
299 if (reload_completed)
300 {
301 extract_insn (insn);
302
303 if (! constrain_operands (1))
304 return 1;
305 }
306
307 INSN_CODE (insn) = icode;
308 return 0;
309 }
310
311 /* Apply a group of changes previously issued with `validate_change'.
312 Return 1 if all changes are valid, zero otherwise. */
313
314 int
315 apply_change_group ()
316 {
317 int i;
318 rtx last_validated = NULL_RTX;
319
320 /* The changes have been applied and all INSN_CODEs have been reset to force
321 rerecognition.
322
323 The changes are valid if we aren't given an object, or if we are
324 given a MEM and it still is a valid address, or if this is in insn
325 and it is recognized. In the latter case, if reload has completed,
326 we also require that the operands meet the constraints for
327 the insn. */
328
329 for (i = 0; i < num_changes; i++)
330 {
331 rtx object = changes[i].object;
332
333 /* if there is no object to test or if it is the same as the one we
334 already tested, ignore it. */
335 if (object == 0 || object == last_validated)
336 continue;
337
338 if (GET_CODE (object) == MEM)
339 {
340 if (! memory_address_p (GET_MODE (object), XEXP (object, 0)))
341 break;
342 }
343 else if (insn_invalid_p (object))
344 {
345 rtx pat = PATTERN (object);
346
347 /* Perhaps we couldn't recognize the insn because there were
348 extra CLOBBERs at the end. If so, try to re-recognize
349 without the last CLOBBER (later iterations will cause each of
350 them to be eliminated, in turn). But don't do this if we
351 have an ASM_OPERAND. */
352 if (GET_CODE (pat) == PARALLEL
353 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
354 && asm_noperands (PATTERN (object)) < 0)
355 {
356 rtx newpat;
357
358 if (XVECLEN (pat, 0) == 2)
359 newpat = XVECEXP (pat, 0, 0);
360 else
361 {
362 int j;
363
364 newpat
365 = gen_rtx_PARALLEL (VOIDmode,
366 rtvec_alloc (XVECLEN (pat, 0) - 1));
367 for (j = 0; j < XVECLEN (newpat, 0); j++)
368 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
369 }
370
371 /* Add a new change to this group to replace the pattern
372 with this new pattern. Then consider this change
373 as having succeeded. The change we added will
374 cause the entire call to fail if things remain invalid.
375
376 Note that this can lose if a later change than the one
377 we are processing specified &XVECEXP (PATTERN (object), 0, X)
378 but this shouldn't occur. */
379
380 validate_change (object, &PATTERN (object), newpat, 1);
381 continue;
382 }
383 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
384 /* If this insn is a CLOBBER or USE, it is always valid, but is
385 never recognized. */
386 continue;
387 else
388 break;
389 }
390 last_validated = object;
391 }
392
393 if (i == num_changes)
394 {
395 basic_block bb;
396
397 for (i = 0; i < num_changes; i++)
398 if (changes[i].object
399 && INSN_P (changes[i].object)
400 && basic_block_for_insn
401 && ((unsigned int)INSN_UID (changes[i].object)
402 < basic_block_for_insn->num_elements)
403 && (bb = BLOCK_FOR_INSN (changes[i].object)))
404 bb->flags |= BB_DIRTY;
405
406 num_changes = 0;
407 return 1;
408 }
409 else
410 {
411 cancel_changes (0);
412 return 0;
413 }
414 }
415
416 /* Return the number of changes so far in the current group. */
417
418 int
419 num_validated_changes ()
420 {
421 return num_changes;
422 }
423
424 /* Retract the changes numbered NUM and up. */
425
426 void
427 cancel_changes (num)
428 int num;
429 {
430 int i;
431
432 /* Back out all the changes. Do this in the opposite order in which
433 they were made. */
434 for (i = num_changes - 1; i >= num; i--)
435 {
436 *changes[i].loc = changes[i].old;
437 if (changes[i].object && GET_CODE (changes[i].object) != MEM)
438 INSN_CODE (changes[i].object) = changes[i].old_code;
439 }
440 num_changes = num;
441 }
442
443 /* Replace every occurrence of FROM in X with TO. Mark each change with
444 validate_change passing OBJECT. */
445
446 static void
447 validate_replace_rtx_1 (loc, from, to, object)
448 rtx *loc;
449 rtx from, to, object;
450 {
451 int i, j;
452 const char *fmt;
453 rtx x = *loc;
454 enum rtx_code code;
455 enum machine_mode op0_mode = VOIDmode;
456 int prev_changes = num_changes;
457 rtx new;
458
459 if (!x)
460 return;
461
462 code = GET_CODE (x);
463 fmt = GET_RTX_FORMAT (code);
464 if (fmt[0] == 'e')
465 op0_mode = GET_MODE (XEXP (x, 0));
466
467 /* X matches FROM if it is the same rtx or they are both referring to the
468 same register in the same mode. Avoid calling rtx_equal_p unless the
469 operands look similar. */
470
471 if (x == from
472 || (GET_CODE (x) == REG && GET_CODE (from) == REG
473 && GET_MODE (x) == GET_MODE (from)
474 && REGNO (x) == REGNO (from))
475 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
476 && rtx_equal_p (x, from)))
477 {
478 validate_change (object, loc, to, 1);
479 return;
480 }
481
482 /* Call ourself recursively to perform the replacements. */
483
484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
485 {
486 if (fmt[i] == 'e')
487 validate_replace_rtx_1 (&XEXP (x, i), from, to, object);
488 else if (fmt[i] == 'E')
489 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
490 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object);
491 }
492
493 /* If we didn't substitute, there is nothing more to do. */
494 if (num_changes == prev_changes)
495 return;
496
497 /* Allow substituted expression to have different mode. This is used by
498 regmove to change mode of pseudo register. */
499 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
500 op0_mode = GET_MODE (XEXP (x, 0));
501
502 /* Do changes needed to keep rtx consistent. Don't do any other
503 simplifications, as it is not our job. */
504
505 if ((GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == 'c')
506 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
507 {
508 validate_change (object, loc,
509 gen_rtx_fmt_ee (GET_RTX_CLASS (code) == 'c' ? code
510 : swap_condition (code),
511 GET_MODE (x), XEXP (x, 1),
512 XEXP (x, 0)), 1);
513 x = *loc;
514 code = GET_CODE (x);
515 }
516
517 switch (code)
518 {
519 case PLUS:
520 /* If we have a PLUS whose second operand is now a CONST_INT, use
521 plus_constant to try to simplify it.
522 ??? We may want later to remove this, once simplification is
523 separated from this function. */
524 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
525 validate_change (object, loc,
526 simplify_gen_binary
527 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
528 break;
529 case MINUS:
530 if (GET_CODE (XEXP (x, 1)) == CONST_INT
531 || GET_CODE (XEXP (x, 1)) == CONST_DOUBLE)
532 validate_change (object, loc,
533 simplify_gen_binary
534 (PLUS, GET_MODE (x), XEXP (x, 0),
535 simplify_gen_unary (NEG,
536 GET_MODE (x), XEXP (x, 1),
537 GET_MODE (x))), 1);
538 break;
539 case ZERO_EXTEND:
540 case SIGN_EXTEND:
541 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
542 {
543 new = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
544 op0_mode);
545 /* If any of the above failed, substitute in something that
546 we know won't be recognized. */
547 if (!new)
548 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
549 validate_change (object, loc, new, 1);
550 }
551 break;
552 case SUBREG:
553 /* All subregs possible to simplify should be simplified. */
554 new = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
555 SUBREG_BYTE (x));
556
557 /* Subregs of VOIDmode operands are incorrect. */
558 if (!new && GET_MODE (SUBREG_REG (x)) == VOIDmode)
559 new = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
560 if (new)
561 validate_change (object, loc, new, 1);
562 break;
563 case ZERO_EXTRACT:
564 case SIGN_EXTRACT:
565 /* If we are replacing a register with memory, try to change the memory
566 to be the mode required for memory in extract operations (this isn't
567 likely to be an insertion operation; if it was, nothing bad will
568 happen, we might just fail in some cases). */
569
570 if (GET_CODE (XEXP (x, 0)) == MEM
571 && GET_CODE (XEXP (x, 1)) == CONST_INT
572 && GET_CODE (XEXP (x, 2)) == CONST_INT
573 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0))
574 && !MEM_VOLATILE_P (XEXP (x, 0)))
575 {
576 enum machine_mode wanted_mode = VOIDmode;
577 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
578 int pos = INTVAL (XEXP (x, 2));
579
580 if (GET_CODE (x) == ZERO_EXTRACT)
581 {
582 enum machine_mode new_mode
583 = mode_for_extraction (EP_extzv, 1);
584 if (new_mode != MAX_MACHINE_MODE)
585 wanted_mode = new_mode;
586 }
587 else if (GET_CODE (x) == SIGN_EXTRACT)
588 {
589 enum machine_mode new_mode
590 = mode_for_extraction (EP_extv, 1);
591 if (new_mode != MAX_MACHINE_MODE)
592 wanted_mode = new_mode;
593 }
594
595 /* If we have a narrower mode, we can do something. */
596 if (wanted_mode != VOIDmode
597 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
598 {
599 int offset = pos / BITS_PER_UNIT;
600 rtx newmem;
601
602 /* If the bytes and bits are counted differently, we
603 must adjust the offset. */
604 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
605 offset =
606 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
607 offset);
608
609 pos %= GET_MODE_BITSIZE (wanted_mode);
610
611 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
612
613 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
614 validate_change (object, &XEXP (x, 0), newmem, 1);
615 }
616 }
617
618 break;
619
620 default:
621 break;
622 }
623 }
624
625 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
626 with TO. After all changes have been made, validate by seeing
627 if INSN is still valid. */
628
629 int
630 validate_replace_rtx_subexp (from, to, insn, loc)
631 rtx from, to, insn, *loc;
632 {
633 validate_replace_rtx_1 (loc, from, to, insn);
634 return apply_change_group ();
635 }
636
637 /* Try replacing every occurrence of FROM in INSN with TO. After all
638 changes have been made, validate by seeing if INSN is still valid. */
639
640 int
641 validate_replace_rtx (from, to, insn)
642 rtx from, to, insn;
643 {
644 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
645 return apply_change_group ();
646 }
647
648 /* Try replacing every occurrence of FROM in INSN with TO. */
649
650 void
651 validate_replace_rtx_group (from, to, insn)
652 rtx from, to, insn;
653 {
654 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn);
655 }
656
657 /* Function called by note_uses to replace used subexpressions. */
658 struct validate_replace_src_data
659 {
660 rtx from; /* Old RTX */
661 rtx to; /* New RTX */
662 rtx insn; /* Insn in which substitution is occurring. */
663 };
664
665 static void
666 validate_replace_src_1 (x, data)
667 rtx *x;
668 void *data;
669 {
670 struct validate_replace_src_data *d
671 = (struct validate_replace_src_data *) data;
672
673 validate_replace_rtx_1 (x, d->from, d->to, d->insn);
674 }
675
676 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
677 SET_DESTs. After all changes have been made, validate by seeing if
678 INSN is still valid. */
679
680 int
681 validate_replace_src (from, to, insn)
682 rtx from, to, insn;
683 {
684 struct validate_replace_src_data d;
685
686 d.from = from;
687 d.to = to;
688 d.insn = insn;
689 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
690 return apply_change_group ();
691 }
692 \f
693 #ifdef HAVE_cc0
694 /* Return 1 if the insn using CC0 set by INSN does not contain
695 any ordered tests applied to the condition codes.
696 EQ and NE tests do not count. */
697
698 int
699 next_insn_tests_no_inequality (insn)
700 rtx insn;
701 {
702 rtx next = next_cc0_user (insn);
703
704 /* If there is no next insn, we have to take the conservative choice. */
705 if (next == 0)
706 return 0;
707
708 return ((GET_CODE (next) == JUMP_INSN
709 || GET_CODE (next) == INSN
710 || GET_CODE (next) == CALL_INSN)
711 && ! inequality_comparisons_p (PATTERN (next)));
712 }
713
714 #if 0 /* This is useless since the insn that sets the cc's
715 must be followed immediately by the use of them. */
716 /* Return 1 if the CC value set up by INSN is not used. */
717
718 int
719 next_insns_test_no_inequality (insn)
720 rtx insn;
721 {
722 rtx next = NEXT_INSN (insn);
723
724 for (; next != 0; next = NEXT_INSN (next))
725 {
726 if (GET_CODE (next) == CODE_LABEL
727 || GET_CODE (next) == BARRIER)
728 return 1;
729 if (GET_CODE (next) == NOTE)
730 continue;
731 if (inequality_comparisons_p (PATTERN (next)))
732 return 0;
733 if (sets_cc0_p (PATTERN (next)) == 1)
734 return 1;
735 if (! reg_mentioned_p (cc0_rtx, PATTERN (next)))
736 return 1;
737 }
738 return 1;
739 }
740 #endif
741 #endif
742 \f
743 /* This is used by find_single_use to locate an rtx that contains exactly one
744 use of DEST, which is typically either a REG or CC0. It returns a
745 pointer to the innermost rtx expression containing DEST. Appearances of
746 DEST that are being used to totally replace it are not counted. */
747
748 static rtx *
749 find_single_use_1 (dest, loc)
750 rtx dest;
751 rtx *loc;
752 {
753 rtx x = *loc;
754 enum rtx_code code = GET_CODE (x);
755 rtx *result = 0;
756 rtx *this_result;
757 int i;
758 const char *fmt;
759
760 switch (code)
761 {
762 case CONST_INT:
763 case CONST:
764 case LABEL_REF:
765 case SYMBOL_REF:
766 case CONST_DOUBLE:
767 case CONST_VECTOR:
768 case CLOBBER:
769 return 0;
770
771 case SET:
772 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
773 of a REG that occupies all of the REG, the insn uses DEST if
774 it is mentioned in the destination or the source. Otherwise, we
775 need just check the source. */
776 if (GET_CODE (SET_DEST (x)) != CC0
777 && GET_CODE (SET_DEST (x)) != PC
778 && GET_CODE (SET_DEST (x)) != REG
779 && ! (GET_CODE (SET_DEST (x)) == SUBREG
780 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
781 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
782 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
783 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
784 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
785 break;
786
787 return find_single_use_1 (dest, &SET_SRC (x));
788
789 case MEM:
790 case SUBREG:
791 return find_single_use_1 (dest, &XEXP (x, 0));
792
793 default:
794 break;
795 }
796
797 /* If it wasn't one of the common cases above, check each expression and
798 vector of this code. Look for a unique usage of DEST. */
799
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 {
803 if (fmt[i] == 'e')
804 {
805 if (dest == XEXP (x, i)
806 || (GET_CODE (dest) == REG && GET_CODE (XEXP (x, i)) == REG
807 && REGNO (dest) == REGNO (XEXP (x, i))))
808 this_result = loc;
809 else
810 this_result = find_single_use_1 (dest, &XEXP (x, i));
811
812 if (result == 0)
813 result = this_result;
814 else if (this_result)
815 /* Duplicate usage. */
816 return 0;
817 }
818 else if (fmt[i] == 'E')
819 {
820 int j;
821
822 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
823 {
824 if (XVECEXP (x, i, j) == dest
825 || (GET_CODE (dest) == REG
826 && GET_CODE (XVECEXP (x, i, j)) == REG
827 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
828 this_result = loc;
829 else
830 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
831
832 if (result == 0)
833 result = this_result;
834 else if (this_result)
835 return 0;
836 }
837 }
838 }
839
840 return result;
841 }
842 \f
843 /* See if DEST, produced in INSN, is used only a single time in the
844 sequel. If so, return a pointer to the innermost rtx expression in which
845 it is used.
846
847 If PLOC is non-zero, *PLOC is set to the insn containing the single use.
848
849 This routine will return usually zero either before flow is called (because
850 there will be no LOG_LINKS notes) or after reload (because the REG_DEAD
851 note can't be trusted).
852
853 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
854 care about REG_DEAD notes or LOG_LINKS.
855
856 Otherwise, we find the single use by finding an insn that has a
857 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
858 only referenced once in that insn, we know that it must be the first
859 and last insn referencing DEST. */
860
861 rtx *
862 find_single_use (dest, insn, ploc)
863 rtx dest;
864 rtx insn;
865 rtx *ploc;
866 {
867 rtx next;
868 rtx *result;
869 rtx link;
870
871 #ifdef HAVE_cc0
872 if (dest == cc0_rtx)
873 {
874 next = NEXT_INSN (insn);
875 if (next == 0
876 || (GET_CODE (next) != INSN && GET_CODE (next) != JUMP_INSN))
877 return 0;
878
879 result = find_single_use_1 (dest, &PATTERN (next));
880 if (result && ploc)
881 *ploc = next;
882 return result;
883 }
884 #endif
885
886 if (reload_completed || reload_in_progress || GET_CODE (dest) != REG)
887 return 0;
888
889 for (next = next_nonnote_insn (insn);
890 next != 0 && GET_CODE (next) != CODE_LABEL;
891 next = next_nonnote_insn (next))
892 if (INSN_P (next) && dead_or_set_p (next, dest))
893 {
894 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
895 if (XEXP (link, 0) == insn)
896 break;
897
898 if (link)
899 {
900 result = find_single_use_1 (dest, &PATTERN (next));
901 if (ploc)
902 *ploc = next;
903 return result;
904 }
905 }
906
907 return 0;
908 }
909 \f
910 /* Return 1 if OP is a valid general operand for machine mode MODE.
911 This is either a register reference, a memory reference,
912 or a constant. In the case of a memory reference, the address
913 is checked for general validity for the target machine.
914
915 Register and memory references must have mode MODE in order to be valid,
916 but some constants have no machine mode and are valid for any mode.
917
918 If MODE is VOIDmode, OP is checked for validity for whatever mode
919 it has.
920
921 The main use of this function is as a predicate in match_operand
922 expressions in the machine description.
923
924 For an explanation of this function's behavior for registers of
925 class NO_REGS, see the comment for `register_operand'. */
926
927 int
928 general_operand (op, mode)
929 rtx op;
930 enum machine_mode mode;
931 {
932 enum rtx_code code = GET_CODE (op);
933
934 if (mode == VOIDmode)
935 mode = GET_MODE (op);
936
937 /* Don't accept CONST_INT or anything similar
938 if the caller wants something floating. */
939 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
940 && GET_MODE_CLASS (mode) != MODE_INT
941 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
942 return 0;
943
944 if (GET_CODE (op) == CONST_INT
945 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
946 return 0;
947
948 if (CONSTANT_P (op))
949 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
950 || mode == VOIDmode)
951 #ifdef LEGITIMATE_PIC_OPERAND_P
952 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
953 #endif
954 && LEGITIMATE_CONSTANT_P (op));
955
956 /* Except for certain constants with VOIDmode, already checked for,
957 OP's mode must match MODE if MODE specifies a mode. */
958
959 if (GET_MODE (op) != mode)
960 return 0;
961
962 if (code == SUBREG)
963 {
964 #ifdef INSN_SCHEDULING
965 /* On machines that have insn scheduling, we want all memory
966 reference to be explicit, so outlaw paradoxical SUBREGs. */
967 if (GET_CODE (SUBREG_REG (op)) == MEM
968 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
969 return 0;
970 #endif
971 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
972 may result in incorrect reference. We should simplify all valid
973 subregs of MEM anyway. But allow this after reload because we
974 might be called from cleanup_subreg_operands.
975
976 ??? This is a kludge. */
977 if (!reload_completed && SUBREG_BYTE (op) != 0
978 && GET_CODE (SUBREG_REG (op)) == MEM)
979 return 0;
980
981 op = SUBREG_REG (op);
982 code = GET_CODE (op);
983 }
984
985 if (code == REG)
986 /* A register whose class is NO_REGS is not a general operand. */
987 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
988 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS);
989
990 if (code == MEM)
991 {
992 rtx y = XEXP (op, 0);
993
994 if (! volatile_ok && MEM_VOLATILE_P (op))
995 return 0;
996
997 if (GET_CODE (y) == ADDRESSOF)
998 return 1;
999
1000 /* Use the mem's mode, since it will be reloaded thus. */
1001 mode = GET_MODE (op);
1002 GO_IF_LEGITIMATE_ADDRESS (mode, y, win);
1003 }
1004
1005 /* Pretend this is an operand for now; we'll run force_operand
1006 on its replacement in fixup_var_refs_1. */
1007 if (code == ADDRESSOF)
1008 return 1;
1009
1010 return 0;
1011
1012 win:
1013 return 1;
1014 }
1015 \f
1016 /* Return 1 if OP is a valid memory address for a memory reference
1017 of mode MODE.
1018
1019 The main use of this function is as a predicate in match_operand
1020 expressions in the machine description. */
1021
1022 int
1023 address_operand (op, mode)
1024 rtx op;
1025 enum machine_mode mode;
1026 {
1027 return memory_address_p (mode, op);
1028 }
1029
1030 /* Return 1 if OP is a register reference of mode MODE.
1031 If MODE is VOIDmode, accept a register in any mode.
1032
1033 The main use of this function is as a predicate in match_operand
1034 expressions in the machine description.
1035
1036 As a special exception, registers whose class is NO_REGS are
1037 not accepted by `register_operand'. The reason for this change
1038 is to allow the representation of special architecture artifacts
1039 (such as a condition code register) without extending the rtl
1040 definitions. Since registers of class NO_REGS cannot be used
1041 as registers in any case where register classes are examined,
1042 it is most consistent to keep this function from accepting them. */
1043
1044 int
1045 register_operand (op, mode)
1046 rtx op;
1047 enum machine_mode mode;
1048 {
1049 if (GET_MODE (op) != mode && mode != VOIDmode)
1050 return 0;
1051
1052 if (GET_CODE (op) == SUBREG)
1053 {
1054 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1055 because it is guaranteed to be reloaded into one.
1056 Just make sure the MEM is valid in itself.
1057 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1058 but currently it does result from (SUBREG (REG)...) where the
1059 reg went on the stack.) */
1060 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1061 return general_operand (op, mode);
1062
1063 #ifdef CLASS_CANNOT_CHANGE_MODE
1064 if (GET_CODE (SUBREG_REG (op)) == REG
1065 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER
1066 && (TEST_HARD_REG_BIT
1067 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1068 REGNO (SUBREG_REG (op))))
1069 && CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (SUBREG_REG (op)))
1070 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_INT
1071 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) != MODE_COMPLEX_FLOAT)
1072 return 0;
1073 #endif
1074
1075 op = SUBREG_REG (op);
1076 }
1077
1078 /* If we have an ADDRESSOF, consider it valid since it will be
1079 converted into something that will not be a MEM. */
1080 if (GET_CODE (op) == ADDRESSOF)
1081 return 1;
1082
1083 /* We don't consider registers whose class is NO_REGS
1084 to be a register operand. */
1085 return (GET_CODE (op) == REG
1086 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1087 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1088 }
1089
1090 /* Return 1 for a register in Pmode; ignore the tested mode. */
1091
1092 int
1093 pmode_register_operand (op, mode)
1094 rtx op;
1095 enum machine_mode mode ATTRIBUTE_UNUSED;
1096 {
1097 return register_operand (op, Pmode);
1098 }
1099
1100 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1101 or a hard register. */
1102
1103 int
1104 scratch_operand (op, mode)
1105 rtx op;
1106 enum machine_mode mode;
1107 {
1108 if (GET_MODE (op) != mode && mode != VOIDmode)
1109 return 0;
1110
1111 return (GET_CODE (op) == SCRATCH
1112 || (GET_CODE (op) == REG
1113 && REGNO (op) < FIRST_PSEUDO_REGISTER));
1114 }
1115
1116 /* Return 1 if OP is a valid immediate operand for mode MODE.
1117
1118 The main use of this function is as a predicate in match_operand
1119 expressions in the machine description. */
1120
1121 int
1122 immediate_operand (op, mode)
1123 rtx op;
1124 enum machine_mode mode;
1125 {
1126 /* Don't accept CONST_INT or anything similar
1127 if the caller wants something floating. */
1128 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1129 && GET_MODE_CLASS (mode) != MODE_INT
1130 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1131 return 0;
1132
1133 if (GET_CODE (op) == CONST_INT
1134 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1135 return 0;
1136
1137 /* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and
1138 result in 0/1. It seems a safe assumption that this is
1139 in range for everyone. */
1140 if (GET_CODE (op) == CONSTANT_P_RTX)
1141 return 1;
1142
1143 return (CONSTANT_P (op)
1144 && (GET_MODE (op) == mode || mode == VOIDmode
1145 || GET_MODE (op) == VOIDmode)
1146 #ifdef LEGITIMATE_PIC_OPERAND_P
1147 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1148 #endif
1149 && LEGITIMATE_CONSTANT_P (op));
1150 }
1151
1152 /* Returns 1 if OP is an operand that is a CONST_INT. */
1153
1154 int
1155 const_int_operand (op, mode)
1156 rtx op;
1157 enum machine_mode mode;
1158 {
1159 if (GET_CODE (op) != CONST_INT)
1160 return 0;
1161
1162 if (mode != VOIDmode
1163 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1164 return 0;
1165
1166 return 1;
1167 }
1168
1169 /* Returns 1 if OP is an operand that is a constant integer or constant
1170 floating-point number. */
1171
1172 int
1173 const_double_operand (op, mode)
1174 rtx op;
1175 enum machine_mode mode;
1176 {
1177 /* Don't accept CONST_INT or anything similar
1178 if the caller wants something floating. */
1179 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1180 && GET_MODE_CLASS (mode) != MODE_INT
1181 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1182 return 0;
1183
1184 return ((GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT)
1185 && (mode == VOIDmode || GET_MODE (op) == mode
1186 || GET_MODE (op) == VOIDmode));
1187 }
1188
1189 /* Return 1 if OP is a general operand that is not an immediate operand. */
1190
1191 int
1192 nonimmediate_operand (op, mode)
1193 rtx op;
1194 enum machine_mode mode;
1195 {
1196 return (general_operand (op, mode) && ! CONSTANT_P (op));
1197 }
1198
1199 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1200
1201 int
1202 nonmemory_operand (op, mode)
1203 rtx op;
1204 enum machine_mode mode;
1205 {
1206 if (CONSTANT_P (op))
1207 {
1208 /* Don't accept CONST_INT or anything similar
1209 if the caller wants something floating. */
1210 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1211 && GET_MODE_CLASS (mode) != MODE_INT
1212 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1213 return 0;
1214
1215 if (GET_CODE (op) == CONST_INT
1216 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1217 return 0;
1218
1219 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
1220 || mode == VOIDmode)
1221 #ifdef LEGITIMATE_PIC_OPERAND_P
1222 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1223 #endif
1224 && LEGITIMATE_CONSTANT_P (op));
1225 }
1226
1227 if (GET_MODE (op) != mode && mode != VOIDmode)
1228 return 0;
1229
1230 if (GET_CODE (op) == SUBREG)
1231 {
1232 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1233 because it is guaranteed to be reloaded into one.
1234 Just make sure the MEM is valid in itself.
1235 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1236 but currently it does result from (SUBREG (REG)...) where the
1237 reg went on the stack.) */
1238 if (! reload_completed && GET_CODE (SUBREG_REG (op)) == MEM)
1239 return general_operand (op, mode);
1240 op = SUBREG_REG (op);
1241 }
1242
1243 /* We don't consider registers whose class is NO_REGS
1244 to be a register operand. */
1245 return (GET_CODE (op) == REG
1246 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1247 || REGNO_REG_CLASS (REGNO (op)) != NO_REGS));
1248 }
1249
1250 /* Return 1 if OP is a valid operand that stands for pushing a
1251 value of mode MODE onto the stack.
1252
1253 The main use of this function is as a predicate in match_operand
1254 expressions in the machine description. */
1255
1256 int
1257 push_operand (op, mode)
1258 rtx op;
1259 enum machine_mode mode;
1260 {
1261 unsigned int rounded_size = GET_MODE_SIZE (mode);
1262
1263 #ifdef PUSH_ROUNDING
1264 rounded_size = PUSH_ROUNDING (rounded_size);
1265 #endif
1266
1267 if (GET_CODE (op) != MEM)
1268 return 0;
1269
1270 if (mode != VOIDmode && GET_MODE (op) != mode)
1271 return 0;
1272
1273 op = XEXP (op, 0);
1274
1275 if (rounded_size == GET_MODE_SIZE (mode))
1276 {
1277 if (GET_CODE (op) != STACK_PUSH_CODE)
1278 return 0;
1279 }
1280 else
1281 {
1282 if (GET_CODE (op) != PRE_MODIFY
1283 || GET_CODE (XEXP (op, 1)) != PLUS
1284 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1285 || GET_CODE (XEXP (XEXP (op, 1), 1)) != CONST_INT
1286 #ifdef STACK_GROWS_DOWNWARD
1287 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1288 #else
1289 || INTVAL (XEXP (XEXP (op, 1), 1)) != rounded_size
1290 #endif
1291 )
1292 return 0;
1293 }
1294
1295 return XEXP (op, 0) == stack_pointer_rtx;
1296 }
1297
1298 /* Return 1 if OP is a valid operand that stands for popping a
1299 value of mode MODE off the stack.
1300
1301 The main use of this function is as a predicate in match_operand
1302 expressions in the machine description. */
1303
1304 int
1305 pop_operand (op, mode)
1306 rtx op;
1307 enum machine_mode mode;
1308 {
1309 if (GET_CODE (op) != MEM)
1310 return 0;
1311
1312 if (mode != VOIDmode && GET_MODE (op) != mode)
1313 return 0;
1314
1315 op = XEXP (op, 0);
1316
1317 if (GET_CODE (op) != STACK_POP_CODE)
1318 return 0;
1319
1320 return XEXP (op, 0) == stack_pointer_rtx;
1321 }
1322
1323 /* Return 1 if ADDR is a valid memory address for mode MODE. */
1324
1325 int
1326 memory_address_p (mode, addr)
1327 enum machine_mode mode ATTRIBUTE_UNUSED;
1328 rtx addr;
1329 {
1330 if (GET_CODE (addr) == ADDRESSOF)
1331 return 1;
1332
1333 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1334 return 0;
1335
1336 win:
1337 return 1;
1338 }
1339
1340 /* Return 1 if OP is a valid memory reference with mode MODE,
1341 including a valid address.
1342
1343 The main use of this function is as a predicate in match_operand
1344 expressions in the machine description. */
1345
1346 int
1347 memory_operand (op, mode)
1348 rtx op;
1349 enum machine_mode mode;
1350 {
1351 rtx inner;
1352
1353 if (! reload_completed)
1354 /* Note that no SUBREG is a memory operand before end of reload pass,
1355 because (SUBREG (MEM...)) forces reloading into a register. */
1356 return GET_CODE (op) == MEM && general_operand (op, mode);
1357
1358 if (mode != VOIDmode && GET_MODE (op) != mode)
1359 return 0;
1360
1361 inner = op;
1362 if (GET_CODE (inner) == SUBREG)
1363 inner = SUBREG_REG (inner);
1364
1365 return (GET_CODE (inner) == MEM && general_operand (op, mode));
1366 }
1367
1368 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1369 that is, a memory reference whose address is a general_operand. */
1370
1371 int
1372 indirect_operand (op, mode)
1373 rtx op;
1374 enum machine_mode mode;
1375 {
1376 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1377 if (! reload_completed
1378 && GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == MEM)
1379 {
1380 int offset = SUBREG_BYTE (op);
1381 rtx inner = SUBREG_REG (op);
1382
1383 if (mode != VOIDmode && GET_MODE (op) != mode)
1384 return 0;
1385
1386 /* The only way that we can have a general_operand as the resulting
1387 address is if OFFSET is zero and the address already is an operand
1388 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1389 operand. */
1390
1391 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1392 || (GET_CODE (XEXP (inner, 0)) == PLUS
1393 && GET_CODE (XEXP (XEXP (inner, 0), 1)) == CONST_INT
1394 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1395 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1396 }
1397
1398 return (GET_CODE (op) == MEM
1399 && memory_operand (op, mode)
1400 && general_operand (XEXP (op, 0), Pmode));
1401 }
1402
1403 /* Return 1 if this is a comparison operator. This allows the use of
1404 MATCH_OPERATOR to recognize all the branch insns. */
1405
1406 int
1407 comparison_operator (op, mode)
1408 rtx op;
1409 enum machine_mode mode;
1410 {
1411 return ((mode == VOIDmode || GET_MODE (op) == mode)
1412 && GET_RTX_CLASS (GET_CODE (op)) == '<');
1413 }
1414 \f
1415 /* If BODY is an insn body that uses ASM_OPERANDS,
1416 return the number of operands (both input and output) in the insn.
1417 Otherwise return -1. */
1418
1419 int
1420 asm_noperands (body)
1421 rtx body;
1422 {
1423 switch (GET_CODE (body))
1424 {
1425 case ASM_OPERANDS:
1426 /* No output operands: return number of input operands. */
1427 return ASM_OPERANDS_INPUT_LENGTH (body);
1428 case SET:
1429 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1430 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1431 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body)) + 1;
1432 else
1433 return -1;
1434 case PARALLEL:
1435 if (GET_CODE (XVECEXP (body, 0, 0)) == SET
1436 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1437 {
1438 /* Multiple output operands, or 1 output plus some clobbers:
1439 body is [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1440 int i;
1441 int n_sets;
1442
1443 /* Count backwards through CLOBBERs to determine number of SETs. */
1444 for (i = XVECLEN (body, 0); i > 0; i--)
1445 {
1446 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1447 break;
1448 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1449 return -1;
1450 }
1451
1452 /* N_SETS is now number of output operands. */
1453 n_sets = i;
1454
1455 /* Verify that all the SETs we have
1456 came from a single original asm_operands insn
1457 (so that invalid combinations are blocked). */
1458 for (i = 0; i < n_sets; i++)
1459 {
1460 rtx elt = XVECEXP (body, 0, i);
1461 if (GET_CODE (elt) != SET)
1462 return -1;
1463 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1464 return -1;
1465 /* If these ASM_OPERANDS rtx's came from different original insns
1466 then they aren't allowed together. */
1467 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1468 != ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (body, 0, 0))))
1469 return -1;
1470 }
1471 return (ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)))
1472 + n_sets);
1473 }
1474 else if (GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1475 {
1476 /* 0 outputs, but some clobbers:
1477 body is [(asm_operands ...) (clobber (reg ...))...]. */
1478 int i;
1479
1480 /* Make sure all the other parallel things really are clobbers. */
1481 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1482 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1483 return -1;
1484
1485 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
1486 }
1487 else
1488 return -1;
1489 default:
1490 return -1;
1491 }
1492 }
1493
1494 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1495 copy its operands (both input and output) into the vector OPERANDS,
1496 the locations of the operands within the insn into the vector OPERAND_LOCS,
1497 and the constraints for the operands into CONSTRAINTS.
1498 Write the modes of the operands into MODES.
1499 Return the assembler-template.
1500
1501 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1502 we don't store that info. */
1503
1504 const char *
1505 decode_asm_operands (body, operands, operand_locs, constraints, modes)
1506 rtx body;
1507 rtx *operands;
1508 rtx **operand_locs;
1509 const char **constraints;
1510 enum machine_mode *modes;
1511 {
1512 int i;
1513 int noperands;
1514 const char *template = 0;
1515
1516 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
1517 {
1518 rtx asmop = SET_SRC (body);
1519 /* Single output operand: BODY is (set OUTPUT (asm_operands ....)). */
1520
1521 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop) + 1;
1522
1523 for (i = 1; i < noperands; i++)
1524 {
1525 if (operand_locs)
1526 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i - 1);
1527 if (operands)
1528 operands[i] = ASM_OPERANDS_INPUT (asmop, i - 1);
1529 if (constraints)
1530 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i - 1);
1531 if (modes)
1532 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i - 1);
1533 }
1534
1535 /* The output is in the SET.
1536 Its constraint is in the ASM_OPERANDS itself. */
1537 if (operands)
1538 operands[0] = SET_DEST (body);
1539 if (operand_locs)
1540 operand_locs[0] = &SET_DEST (body);
1541 if (constraints)
1542 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1543 if (modes)
1544 modes[0] = GET_MODE (SET_DEST (body));
1545 template = ASM_OPERANDS_TEMPLATE (asmop);
1546 }
1547 else if (GET_CODE (body) == ASM_OPERANDS)
1548 {
1549 rtx asmop = body;
1550 /* No output operands: BODY is (asm_operands ....). */
1551
1552 noperands = ASM_OPERANDS_INPUT_LENGTH (asmop);
1553
1554 /* The input operands are found in the 1st element vector. */
1555 /* Constraints for inputs are in the 2nd element vector. */
1556 for (i = 0; i < noperands; i++)
1557 {
1558 if (operand_locs)
1559 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1560 if (operands)
1561 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1562 if (constraints)
1563 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1564 if (modes)
1565 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1566 }
1567 template = ASM_OPERANDS_TEMPLATE (asmop);
1568 }
1569 else if (GET_CODE (body) == PARALLEL
1570 && GET_CODE (XVECEXP (body, 0, 0)) == SET
1571 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
1572 {
1573 rtx asmop = SET_SRC (XVECEXP (body, 0, 0));
1574 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1575 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1576 int nout = 0; /* Does not include CLOBBERs. */
1577
1578 /* At least one output, plus some CLOBBERs. */
1579
1580 /* The outputs are in the SETs.
1581 Their constraints are in the ASM_OPERANDS itself. */
1582 for (i = 0; i < nparallel; i++)
1583 {
1584 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1585 break; /* Past last SET */
1586
1587 if (operands)
1588 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1589 if (operand_locs)
1590 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1591 if (constraints)
1592 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1593 if (modes)
1594 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1595 nout++;
1596 }
1597
1598 for (i = 0; i < nin; i++)
1599 {
1600 if (operand_locs)
1601 operand_locs[i + nout] = &ASM_OPERANDS_INPUT (asmop, i);
1602 if (operands)
1603 operands[i + nout] = ASM_OPERANDS_INPUT (asmop, i);
1604 if (constraints)
1605 constraints[i + nout] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1606 if (modes)
1607 modes[i + nout] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1608 }
1609
1610 template = ASM_OPERANDS_TEMPLATE (asmop);
1611 }
1612 else if (GET_CODE (body) == PARALLEL
1613 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
1614 {
1615 /* No outputs, but some CLOBBERs. */
1616
1617 rtx asmop = XVECEXP (body, 0, 0);
1618 int nin = ASM_OPERANDS_INPUT_LENGTH (asmop);
1619
1620 for (i = 0; i < nin; i++)
1621 {
1622 if (operand_locs)
1623 operand_locs[i] = &ASM_OPERANDS_INPUT (asmop, i);
1624 if (operands)
1625 operands[i] = ASM_OPERANDS_INPUT (asmop, i);
1626 if (constraints)
1627 constraints[i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1628 if (modes)
1629 modes[i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1630 }
1631
1632 template = ASM_OPERANDS_TEMPLATE (asmop);
1633 }
1634
1635 return template;
1636 }
1637
1638 /* Check if an asm_operand matches it's constraints.
1639 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1640
1641 int
1642 asm_operand_ok (op, constraint)
1643 rtx op;
1644 const char *constraint;
1645 {
1646 int result = 0;
1647
1648 /* Use constrain_operands after reload. */
1649 if (reload_completed)
1650 abort ();
1651
1652 while (*constraint)
1653 {
1654 char c = *constraint++;
1655 switch (c)
1656 {
1657 case '=':
1658 case '+':
1659 case '*':
1660 case '%':
1661 case '?':
1662 case '!':
1663 case '#':
1664 case '&':
1665 case ',':
1666 break;
1667
1668 case '0': case '1': case '2': case '3': case '4':
1669 case '5': case '6': case '7': case '8': case '9':
1670 /* For best results, our caller should have given us the
1671 proper matching constraint, but we can't actually fail
1672 the check if they didn't. Indicate that results are
1673 inconclusive. */
1674 while (ISDIGIT (*constraint))
1675 constraint++;
1676 result = -1;
1677 break;
1678
1679 case 'p':
1680 if (address_operand (op, VOIDmode))
1681 return 1;
1682 break;
1683
1684 case 'm':
1685 case 'V': /* non-offsettable */
1686 if (memory_operand (op, VOIDmode))
1687 return 1;
1688 break;
1689
1690 case 'o': /* offsettable */
1691 if (offsettable_nonstrict_memref_p (op))
1692 return 1;
1693 break;
1694
1695 case '<':
1696 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
1697 excepting those that expand_call created. Further, on some
1698 machines which do not have generalized auto inc/dec, an inc/dec
1699 is not a memory_operand.
1700
1701 Match any memory and hope things are resolved after reload. */
1702
1703 if (GET_CODE (op) == MEM
1704 && (1
1705 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1706 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1707 return 1;
1708 break;
1709
1710 case '>':
1711 if (GET_CODE (op) == MEM
1712 && (1
1713 || GET_CODE (XEXP (op, 0)) == PRE_INC
1714 || GET_CODE (XEXP (op, 0)) == POST_INC))
1715 return 1;
1716 break;
1717
1718 case 'E':
1719 case 'F':
1720 if (GET_CODE (op) == CONST_DOUBLE)
1721 return 1;
1722 break;
1723
1724 case 'G':
1725 if (GET_CODE (op) == CONST_DOUBLE
1726 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'G'))
1727 return 1;
1728 break;
1729 case 'H':
1730 if (GET_CODE (op) == CONST_DOUBLE
1731 && CONST_DOUBLE_OK_FOR_LETTER_P (op, 'H'))
1732 return 1;
1733 break;
1734
1735 case 's':
1736 if (GET_CODE (op) == CONST_INT
1737 || (GET_CODE (op) == CONST_DOUBLE
1738 && GET_MODE (op) == VOIDmode))
1739 break;
1740 /* FALLTHRU */
1741
1742 case 'i':
1743 if (CONSTANT_P (op)
1744 #ifdef LEGITIMATE_PIC_OPERAND_P
1745 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1746 #endif
1747 )
1748 return 1;
1749 break;
1750
1751 case 'n':
1752 if (GET_CODE (op) == CONST_INT
1753 || (GET_CODE (op) == CONST_DOUBLE
1754 && GET_MODE (op) == VOIDmode))
1755 return 1;
1756 break;
1757
1758 case 'I':
1759 if (GET_CODE (op) == CONST_INT
1760 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'I'))
1761 return 1;
1762 break;
1763 case 'J':
1764 if (GET_CODE (op) == CONST_INT
1765 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'J'))
1766 return 1;
1767 break;
1768 case 'K':
1769 if (GET_CODE (op) == CONST_INT
1770 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'K'))
1771 return 1;
1772 break;
1773 case 'L':
1774 if (GET_CODE (op) == CONST_INT
1775 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'L'))
1776 return 1;
1777 break;
1778 case 'M':
1779 if (GET_CODE (op) == CONST_INT
1780 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'M'))
1781 return 1;
1782 break;
1783 case 'N':
1784 if (GET_CODE (op) == CONST_INT
1785 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'N'))
1786 return 1;
1787 break;
1788 case 'O':
1789 if (GET_CODE (op) == CONST_INT
1790 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'O'))
1791 return 1;
1792 break;
1793 case 'P':
1794 if (GET_CODE (op) == CONST_INT
1795 && CONST_OK_FOR_LETTER_P (INTVAL (op), 'P'))
1796 return 1;
1797 break;
1798
1799 case 'X':
1800 return 1;
1801
1802 case 'g':
1803 if (general_operand (op, VOIDmode))
1804 return 1;
1805 break;
1806
1807 default:
1808 /* For all other letters, we first check for a register class,
1809 otherwise it is an EXTRA_CONSTRAINT. */
1810 if (REG_CLASS_FROM_LETTER (c) != NO_REGS)
1811 {
1812 case 'r':
1813 if (GET_MODE (op) == BLKmode)
1814 break;
1815 if (register_operand (op, VOIDmode))
1816 return 1;
1817 }
1818 #ifdef EXTRA_CONSTRAINT
1819 if (EXTRA_CONSTRAINT (op, c))
1820 return 1;
1821 #endif
1822 break;
1823 }
1824 }
1825
1826 return result;
1827 }
1828 \f
1829 /* Given an rtx *P, if it is a sum containing an integer constant term,
1830 return the location (type rtx *) of the pointer to that constant term.
1831 Otherwise, return a null pointer. */
1832
1833 rtx *
1834 find_constant_term_loc (p)
1835 rtx *p;
1836 {
1837 rtx *tem;
1838 enum rtx_code code = GET_CODE (*p);
1839
1840 /* If *P IS such a constant term, P is its location. */
1841
1842 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1843 || code == CONST)
1844 return p;
1845
1846 /* Otherwise, if not a sum, it has no constant term. */
1847
1848 if (GET_CODE (*p) != PLUS)
1849 return 0;
1850
1851 /* If one of the summands is constant, return its location. */
1852
1853 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1854 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1855 return p;
1856
1857 /* Otherwise, check each summand for containing a constant term. */
1858
1859 if (XEXP (*p, 0) != 0)
1860 {
1861 tem = find_constant_term_loc (&XEXP (*p, 0));
1862 if (tem != 0)
1863 return tem;
1864 }
1865
1866 if (XEXP (*p, 1) != 0)
1867 {
1868 tem = find_constant_term_loc (&XEXP (*p, 1));
1869 if (tem != 0)
1870 return tem;
1871 }
1872
1873 return 0;
1874 }
1875 \f
1876 /* Return 1 if OP is a memory reference
1877 whose address contains no side effects
1878 and remains valid after the addition
1879 of a positive integer less than the
1880 size of the object being referenced.
1881
1882 We assume that the original address is valid and do not check it.
1883
1884 This uses strict_memory_address_p as a subroutine, so
1885 don't use it before reload. */
1886
1887 int
1888 offsettable_memref_p (op)
1889 rtx op;
1890 {
1891 return ((GET_CODE (op) == MEM)
1892 && offsettable_address_p (1, GET_MODE (op), XEXP (op, 0)));
1893 }
1894
1895 /* Similar, but don't require a strictly valid mem ref:
1896 consider pseudo-regs valid as index or base regs. */
1897
1898 int
1899 offsettable_nonstrict_memref_p (op)
1900 rtx op;
1901 {
1902 return ((GET_CODE (op) == MEM)
1903 && offsettable_address_p (0, GET_MODE (op), XEXP (op, 0)));
1904 }
1905
1906 /* Return 1 if Y is a memory address which contains no side effects
1907 and would remain valid after the addition of a positive integer
1908 less than the size of that mode.
1909
1910 We assume that the original address is valid and do not check it.
1911 We do check that it is valid for narrower modes.
1912
1913 If STRICTP is nonzero, we require a strictly valid address,
1914 for the sake of use in reload.c. */
1915
1916 int
1917 offsettable_address_p (strictp, mode, y)
1918 int strictp;
1919 enum machine_mode mode;
1920 rtx y;
1921 {
1922 enum rtx_code ycode = GET_CODE (y);
1923 rtx z;
1924 rtx y1 = y;
1925 rtx *y2;
1926 int (*addressp) PARAMS ((enum machine_mode, rtx)) =
1927 (strictp ? strict_memory_address_p : memory_address_p);
1928 unsigned int mode_sz = GET_MODE_SIZE (mode);
1929
1930 if (CONSTANT_ADDRESS_P (y))
1931 return 1;
1932
1933 /* Adjusting an offsettable address involves changing to a narrower mode.
1934 Make sure that's OK. */
1935
1936 if (mode_dependent_address_p (y))
1937 return 0;
1938
1939 /* ??? How much offset does an offsettable BLKmode reference need?
1940 Clearly that depends on the situation in which it's being used.
1941 However, the current situation in which we test 0xffffffff is
1942 less than ideal. Caveat user. */
1943 if (mode_sz == 0)
1944 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1945
1946 /* If the expression contains a constant term,
1947 see if it remains valid when max possible offset is added. */
1948
1949 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1950 {
1951 int good;
1952
1953 y1 = *y2;
1954 *y2 = plus_constant (*y2, mode_sz - 1);
1955 /* Use QImode because an odd displacement may be automatically invalid
1956 for any wider mode. But it should be valid for a single byte. */
1957 good = (*addressp) (QImode, y);
1958
1959 /* In any case, restore old contents of memory. */
1960 *y2 = y1;
1961 return good;
1962 }
1963
1964 if (GET_RTX_CLASS (ycode) == 'a')
1965 return 0;
1966
1967 /* The offset added here is chosen as the maximum offset that
1968 any instruction could need to add when operating on something
1969 of the specified mode. We assume that if Y and Y+c are
1970 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1971 go inside a LO_SUM here, so we do so as well. */
1972 if (GET_CODE (y) == LO_SUM)
1973 z = gen_rtx_LO_SUM (GET_MODE (y), XEXP (y, 0),
1974 plus_constant (XEXP (y, 1), mode_sz - 1));
1975 else
1976 z = plus_constant (y, mode_sz - 1);
1977
1978 /* Use QImode because an odd displacement may be automatically invalid
1979 for any wider mode. But it should be valid for a single byte. */
1980 return (*addressp) (QImode, z);
1981 }
1982
1983 /* Return 1 if ADDR is an address-expression whose effect depends
1984 on the mode of the memory reference it is used in.
1985
1986 Autoincrement addressing is a typical example of mode-dependence
1987 because the amount of the increment depends on the mode. */
1988
1989 int
1990 mode_dependent_address_p (addr)
1991 rtx addr ATTRIBUTE_UNUSED; /* Maybe used in GO_IF_MODE_DEPENDENT_ADDRESS. */
1992 {
1993 GO_IF_MODE_DEPENDENT_ADDRESS (addr, win);
1994 return 0;
1995 /* Label `win' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
1996 win: ATTRIBUTE_UNUSED_LABEL
1997 return 1;
1998 }
1999
2000 /* Return 1 if OP is a general operand
2001 other than a memory ref with a mode dependent address. */
2002
2003 int
2004 mode_independent_operand (op, mode)
2005 enum machine_mode mode;
2006 rtx op;
2007 {
2008 rtx addr;
2009
2010 if (! general_operand (op, mode))
2011 return 0;
2012
2013 if (GET_CODE (op) != MEM)
2014 return 1;
2015
2016 addr = XEXP (op, 0);
2017 GO_IF_MODE_DEPENDENT_ADDRESS (addr, lose);
2018 return 1;
2019 /* Label `lose' might (not) be used via GO_IF_MODE_DEPENDENT_ADDRESS. */
2020 lose: ATTRIBUTE_UNUSED_LABEL
2021 return 0;
2022 }
2023 \f
2024 /* Like extract_insn, but save insn extracted and don't extract again, when
2025 called again for the same insn expecting that recog_data still contain the
2026 valid information. This is used primary by gen_attr infrastructure that
2027 often does extract insn again and again. */
2028 void
2029 extract_insn_cached (insn)
2030 rtx insn;
2031 {
2032 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2033 return;
2034 extract_insn (insn);
2035 recog_data.insn = insn;
2036 }
2037 /* Do cached extract_insn, constrain_operand and complain about failures.
2038 Used by insn_attrtab. */
2039 void
2040 extract_constrain_insn_cached (insn)
2041 rtx insn;
2042 {
2043 extract_insn_cached (insn);
2044 if (which_alternative == -1
2045 && !constrain_operands (reload_completed))
2046 fatal_insn_not_found (insn);
2047 }
2048 /* Do cached constrain_operand and complain about failures. */
2049 int
2050 constrain_operands_cached (strict)
2051 int strict;
2052 {
2053 if (which_alternative == -1)
2054 return constrain_operands (strict);
2055 else
2056 return 1;
2057 }
2058 \f
2059 /* Analyze INSN and fill in recog_data. */
2060
2061 void
2062 extract_insn (insn)
2063 rtx insn;
2064 {
2065 int i;
2066 int icode;
2067 int noperands;
2068 rtx body = PATTERN (insn);
2069
2070 recog_data.insn = NULL;
2071 recog_data.n_operands = 0;
2072 recog_data.n_alternatives = 0;
2073 recog_data.n_dups = 0;
2074 which_alternative = -1;
2075
2076 switch (GET_CODE (body))
2077 {
2078 case USE:
2079 case CLOBBER:
2080 case ASM_INPUT:
2081 case ADDR_VEC:
2082 case ADDR_DIFF_VEC:
2083 return;
2084
2085 case SET:
2086 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2087 goto asm_insn;
2088 else
2089 goto normal_insn;
2090 case PARALLEL:
2091 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2092 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2093 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2094 goto asm_insn;
2095 else
2096 goto normal_insn;
2097 case ASM_OPERANDS:
2098 asm_insn:
2099 recog_data.n_operands = noperands = asm_noperands (body);
2100 if (noperands >= 0)
2101 {
2102 /* This insn is an `asm' with operands. */
2103
2104 /* expand_asm_operands makes sure there aren't too many operands. */
2105 if (noperands > MAX_RECOG_OPERANDS)
2106 abort ();
2107
2108 /* Now get the operand values and constraints out of the insn. */
2109 decode_asm_operands (body, recog_data.operand,
2110 recog_data.operand_loc,
2111 recog_data.constraints,
2112 recog_data.operand_mode);
2113 if (noperands > 0)
2114 {
2115 const char *p = recog_data.constraints[0];
2116 recog_data.n_alternatives = 1;
2117 while (*p)
2118 recog_data.n_alternatives += (*p++ == ',');
2119 }
2120 break;
2121 }
2122 fatal_insn_not_found (insn);
2123
2124 default:
2125 normal_insn:
2126 /* Ordinary insn: recognize it, get the operands via insn_extract
2127 and get the constraints. */
2128
2129 icode = recog_memoized (insn);
2130 if (icode < 0)
2131 fatal_insn_not_found (insn);
2132
2133 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2134 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2135 recog_data.n_dups = insn_data[icode].n_dups;
2136
2137 insn_extract (insn);
2138
2139 for (i = 0; i < noperands; i++)
2140 {
2141 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2142 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2143 /* VOIDmode match_operands gets mode from their real operand. */
2144 if (recog_data.operand_mode[i] == VOIDmode)
2145 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2146 }
2147 }
2148 for (i = 0; i < noperands; i++)
2149 recog_data.operand_type[i]
2150 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2151 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2152 : OP_IN);
2153
2154 if (recog_data.n_alternatives > MAX_RECOG_ALTERNATIVES)
2155 abort ();
2156 }
2157
2158 /* After calling extract_insn, you can use this function to extract some
2159 information from the constraint strings into a more usable form.
2160 The collected data is stored in recog_op_alt. */
2161 void
2162 preprocess_constraints ()
2163 {
2164 int i;
2165
2166 memset (recog_op_alt, 0, sizeof recog_op_alt);
2167 for (i = 0; i < recog_data.n_operands; i++)
2168 {
2169 int j;
2170 struct operand_alternative *op_alt;
2171 const char *p = recog_data.constraints[i];
2172
2173 op_alt = recog_op_alt[i];
2174
2175 for (j = 0; j < recog_data.n_alternatives; j++)
2176 {
2177 op_alt[j].class = NO_REGS;
2178 op_alt[j].constraint = p;
2179 op_alt[j].matches = -1;
2180 op_alt[j].matched = -1;
2181
2182 if (*p == '\0' || *p == ',')
2183 {
2184 op_alt[j].anything_ok = 1;
2185 continue;
2186 }
2187
2188 for (;;)
2189 {
2190 char c = *p++;
2191 if (c == '#')
2192 do
2193 c = *p++;
2194 while (c != ',' && c != '\0');
2195 if (c == ',' || c == '\0')
2196 break;
2197
2198 switch (c)
2199 {
2200 case '=': case '+': case '*': case '%':
2201 case 'E': case 'F': case 'G': case 'H':
2202 case 's': case 'i': case 'n':
2203 case 'I': case 'J': case 'K': case 'L':
2204 case 'M': case 'N': case 'O': case 'P':
2205 /* These don't say anything we care about. */
2206 break;
2207
2208 case '?':
2209 op_alt[j].reject += 6;
2210 break;
2211 case '!':
2212 op_alt[j].reject += 600;
2213 break;
2214 case '&':
2215 op_alt[j].earlyclobber = 1;
2216 break;
2217
2218 case '0': case '1': case '2': case '3': case '4':
2219 case '5': case '6': case '7': case '8': case '9':
2220 {
2221 char *end;
2222 op_alt[j].matches = strtoul (p - 1, &end, 10);
2223 recog_op_alt[op_alt[j].matches][j].matched = i;
2224 p = end;
2225 }
2226 break;
2227
2228 case 'm':
2229 op_alt[j].memory_ok = 1;
2230 break;
2231 case '<':
2232 op_alt[j].decmem_ok = 1;
2233 break;
2234 case '>':
2235 op_alt[j].incmem_ok = 1;
2236 break;
2237 case 'V':
2238 op_alt[j].nonoffmem_ok = 1;
2239 break;
2240 case 'o':
2241 op_alt[j].offmem_ok = 1;
2242 break;
2243 case 'X':
2244 op_alt[j].anything_ok = 1;
2245 break;
2246
2247 case 'p':
2248 op_alt[j].is_address = 1;
2249 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class]
2250 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
2251 break;
2252
2253 case 'g': case 'r':
2254 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) GENERAL_REGS];
2255 break;
2256
2257 default:
2258 op_alt[j].class = reg_class_subunion[(int) op_alt[j].class][(int) REG_CLASS_FROM_LETTER ((unsigned char) c)];
2259 break;
2260 }
2261 }
2262 }
2263 }
2264 }
2265
2266 /* Check the operands of an insn against the insn's operand constraints
2267 and return 1 if they are valid.
2268 The information about the insn's operands, constraints, operand modes
2269 etc. is obtained from the global variables set up by extract_insn.
2270
2271 WHICH_ALTERNATIVE is set to a number which indicates which
2272 alternative of constraints was matched: 0 for the first alternative,
2273 1 for the next, etc.
2274
2275 In addition, when two operands are match
2276 and it happens that the output operand is (reg) while the
2277 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2278 make the output operand look like the input.
2279 This is because the output operand is the one the template will print.
2280
2281 This is used in final, just before printing the assembler code and by
2282 the routines that determine an insn's attribute.
2283
2284 If STRICT is a positive non-zero value, it means that we have been
2285 called after reload has been completed. In that case, we must
2286 do all checks strictly. If it is zero, it means that we have been called
2287 before reload has completed. In that case, we first try to see if we can
2288 find an alternative that matches strictly. If not, we try again, this
2289 time assuming that reload will fix up the insn. This provides a "best
2290 guess" for the alternative and is used to compute attributes of insns prior
2291 to reload. A negative value of STRICT is used for this internal call. */
2292
2293 struct funny_match
2294 {
2295 int this, other;
2296 };
2297
2298 int
2299 constrain_operands (strict)
2300 int strict;
2301 {
2302 const char *constraints[MAX_RECOG_OPERANDS];
2303 int matching_operands[MAX_RECOG_OPERANDS];
2304 int earlyclobber[MAX_RECOG_OPERANDS];
2305 int c;
2306
2307 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2308 int funny_match_index;
2309
2310 which_alternative = 0;
2311 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2312 return 1;
2313
2314 for (c = 0; c < recog_data.n_operands; c++)
2315 {
2316 constraints[c] = recog_data.constraints[c];
2317 matching_operands[c] = -1;
2318 }
2319
2320 do
2321 {
2322 int opno;
2323 int lose = 0;
2324 funny_match_index = 0;
2325
2326 for (opno = 0; opno < recog_data.n_operands; opno++)
2327 {
2328 rtx op = recog_data.operand[opno];
2329 enum machine_mode mode = GET_MODE (op);
2330 const char *p = constraints[opno];
2331 int offset = 0;
2332 int win = 0;
2333 int val;
2334
2335 earlyclobber[opno] = 0;
2336
2337 /* A unary operator may be accepted by the predicate, but it
2338 is irrelevant for matching constraints. */
2339 if (GET_RTX_CLASS (GET_CODE (op)) == '1')
2340 op = XEXP (op, 0);
2341
2342 if (GET_CODE (op) == SUBREG)
2343 {
2344 if (GET_CODE (SUBREG_REG (op)) == REG
2345 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2346 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2347 GET_MODE (SUBREG_REG (op)),
2348 SUBREG_BYTE (op),
2349 GET_MODE (op));
2350 op = SUBREG_REG (op);
2351 }
2352
2353 /* An empty constraint or empty alternative
2354 allows anything which matched the pattern. */
2355 if (*p == 0 || *p == ',')
2356 win = 1;
2357
2358 while (*p && (c = *p++) != ',')
2359 switch (c)
2360 {
2361 case '?': case '!': case '*': case '%':
2362 case '=': case '+':
2363 break;
2364
2365 case '#':
2366 /* Ignore rest of this alternative as far as
2367 constraint checking is concerned. */
2368 while (*p && *p != ',')
2369 p++;
2370 break;
2371
2372 case '&':
2373 earlyclobber[opno] = 1;
2374 break;
2375
2376 case '0': case '1': case '2': case '3': case '4':
2377 case '5': case '6': case '7': case '8': case '9':
2378 {
2379 /* This operand must be the same as a previous one.
2380 This kind of constraint is used for instructions such
2381 as add when they take only two operands.
2382
2383 Note that the lower-numbered operand is passed first.
2384
2385 If we are not testing strictly, assume that this
2386 constraint will be satisfied. */
2387
2388 char *end;
2389 int match;
2390
2391 match = strtoul (p - 1, &end, 10);
2392 p = end;
2393
2394 if (strict < 0)
2395 val = 1;
2396 else
2397 {
2398 rtx op1 = recog_data.operand[match];
2399 rtx op2 = recog_data.operand[opno];
2400
2401 /* A unary operator may be accepted by the predicate,
2402 but it is irrelevant for matching constraints. */
2403 if (GET_RTX_CLASS (GET_CODE (op1)) == '1')
2404 op1 = XEXP (op1, 0);
2405 if (GET_RTX_CLASS (GET_CODE (op2)) == '1')
2406 op2 = XEXP (op2, 0);
2407
2408 val = operands_match_p (op1, op2);
2409 }
2410
2411 matching_operands[opno] = match;
2412 matching_operands[match] = opno;
2413
2414 if (val != 0)
2415 win = 1;
2416
2417 /* If output is *x and input is *--x, arrange later
2418 to change the output to *--x as well, since the
2419 output op is the one that will be printed. */
2420 if (val == 2 && strict > 0)
2421 {
2422 funny_match[funny_match_index].this = opno;
2423 funny_match[funny_match_index++].other = match;
2424 }
2425 }
2426 break;
2427
2428 case 'p':
2429 /* p is used for address_operands. When we are called by
2430 gen_reload, no one will have checked that the address is
2431 strictly valid, i.e., that all pseudos requiring hard regs
2432 have gotten them. */
2433 if (strict <= 0
2434 || (strict_memory_address_p (recog_data.operand_mode[opno],
2435 op)))
2436 win = 1;
2437 break;
2438
2439 /* No need to check general_operand again;
2440 it was done in insn-recog.c. */
2441 case 'g':
2442 /* Anything goes unless it is a REG and really has a hard reg
2443 but the hard reg is not in the class GENERAL_REGS. */
2444 if (strict < 0
2445 || GENERAL_REGS == ALL_REGS
2446 || GET_CODE (op) != REG
2447 || (reload_in_progress
2448 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2449 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2450 win = 1;
2451 break;
2452
2453 case 'X':
2454 /* This is used for a MATCH_SCRATCH in the cases when
2455 we don't actually need anything. So anything goes
2456 any time. */
2457 win = 1;
2458 break;
2459
2460 case 'm':
2461 if (GET_CODE (op) == MEM
2462 /* Before reload, accept what reload can turn into mem. */
2463 || (strict < 0 && CONSTANT_P (op))
2464 /* During reload, accept a pseudo */
2465 || (reload_in_progress && GET_CODE (op) == REG
2466 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2467 win = 1;
2468 break;
2469
2470 case '<':
2471 if (GET_CODE (op) == MEM
2472 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2473 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2474 win = 1;
2475 break;
2476
2477 case '>':
2478 if (GET_CODE (op) == MEM
2479 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2480 || GET_CODE (XEXP (op, 0)) == POST_INC))
2481 win = 1;
2482 break;
2483
2484 case 'E':
2485 case 'F':
2486 if (GET_CODE (op) == CONST_DOUBLE)
2487 win = 1;
2488 break;
2489
2490 case 'G':
2491 case 'H':
2492 if (GET_CODE (op) == CONST_DOUBLE
2493 && CONST_DOUBLE_OK_FOR_LETTER_P (op, c))
2494 win = 1;
2495 break;
2496
2497 case 's':
2498 if (GET_CODE (op) == CONST_INT
2499 || (GET_CODE (op) == CONST_DOUBLE
2500 && GET_MODE (op) == VOIDmode))
2501 break;
2502 case 'i':
2503 if (CONSTANT_P (op))
2504 win = 1;
2505 break;
2506
2507 case 'n':
2508 if (GET_CODE (op) == CONST_INT
2509 || (GET_CODE (op) == CONST_DOUBLE
2510 && GET_MODE (op) == VOIDmode))
2511 win = 1;
2512 break;
2513
2514 case 'I':
2515 case 'J':
2516 case 'K':
2517 case 'L':
2518 case 'M':
2519 case 'N':
2520 case 'O':
2521 case 'P':
2522 if (GET_CODE (op) == CONST_INT
2523 && CONST_OK_FOR_LETTER_P (INTVAL (op), c))
2524 win = 1;
2525 break;
2526
2527 case 'V':
2528 if (GET_CODE (op) == MEM
2529 && ((strict > 0 && ! offsettable_memref_p (op))
2530 || (strict < 0
2531 && !(CONSTANT_P (op) || GET_CODE (op) == MEM))
2532 || (reload_in_progress
2533 && !(GET_CODE (op) == REG
2534 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2535 win = 1;
2536 break;
2537
2538 case 'o':
2539 if ((strict > 0 && offsettable_memref_p (op))
2540 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2541 /* Before reload, accept what reload can handle. */
2542 || (strict < 0
2543 && (CONSTANT_P (op) || GET_CODE (op) == MEM))
2544 /* During reload, accept a pseudo */
2545 || (reload_in_progress && GET_CODE (op) == REG
2546 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2547 win = 1;
2548 break;
2549
2550 default:
2551 {
2552 enum reg_class class;
2553
2554 class = (c == 'r' ? GENERAL_REGS : REG_CLASS_FROM_LETTER (c));
2555 if (class != NO_REGS)
2556 {
2557 if (strict < 0
2558 || (strict == 0
2559 && GET_CODE (op) == REG
2560 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2561 || (strict == 0 && GET_CODE (op) == SCRATCH)
2562 || (GET_CODE (op) == REG
2563 && reg_fits_class_p (op, class, offset, mode)))
2564 win = 1;
2565 }
2566 #ifdef EXTRA_CONSTRAINT
2567 else if (EXTRA_CONSTRAINT (op, c))
2568 win = 1;
2569 #endif
2570 break;
2571 }
2572 }
2573
2574 constraints[opno] = p;
2575 /* If this operand did not win somehow,
2576 this alternative loses. */
2577 if (! win)
2578 lose = 1;
2579 }
2580 /* This alternative won; the operands are ok.
2581 Change whichever operands this alternative says to change. */
2582 if (! lose)
2583 {
2584 int opno, eopno;
2585
2586 /* See if any earlyclobber operand conflicts with some other
2587 operand. */
2588
2589 if (strict > 0)
2590 for (eopno = 0; eopno < recog_data.n_operands; eopno++)
2591 /* Ignore earlyclobber operands now in memory,
2592 because we would often report failure when we have
2593 two memory operands, one of which was formerly a REG. */
2594 if (earlyclobber[eopno]
2595 && GET_CODE (recog_data.operand[eopno]) == REG)
2596 for (opno = 0; opno < recog_data.n_operands; opno++)
2597 if ((GET_CODE (recog_data.operand[opno]) == MEM
2598 || recog_data.operand_type[opno] != OP_OUT)
2599 && opno != eopno
2600 /* Ignore things like match_operator operands. */
2601 && *recog_data.constraints[opno] != 0
2602 && ! (matching_operands[opno] == eopno
2603 && operands_match_p (recog_data.operand[opno],
2604 recog_data.operand[eopno]))
2605 && ! safe_from_earlyclobber (recog_data.operand[opno],
2606 recog_data.operand[eopno]))
2607 lose = 1;
2608
2609 if (! lose)
2610 {
2611 while (--funny_match_index >= 0)
2612 {
2613 recog_data.operand[funny_match[funny_match_index].other]
2614 = recog_data.operand[funny_match[funny_match_index].this];
2615 }
2616
2617 return 1;
2618 }
2619 }
2620
2621 which_alternative++;
2622 }
2623 while (which_alternative < recog_data.n_alternatives);
2624
2625 which_alternative = -1;
2626 /* If we are about to reject this, but we are not to test strictly,
2627 try a very loose test. Only return failure if it fails also. */
2628 if (strict == 0)
2629 return constrain_operands (-1);
2630 else
2631 return 0;
2632 }
2633
2634 /* Return 1 iff OPERAND (assumed to be a REG rtx)
2635 is a hard reg in class CLASS when its regno is offset by OFFSET
2636 and changed to mode MODE.
2637 If REG occupies multiple hard regs, all of them must be in CLASS. */
2638
2639 int
2640 reg_fits_class_p (operand, class, offset, mode)
2641 rtx operand;
2642 enum reg_class class;
2643 int offset;
2644 enum machine_mode mode;
2645 {
2646 int regno = REGNO (operand);
2647 if (regno < FIRST_PSEUDO_REGISTER
2648 && TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2649 regno + offset))
2650 {
2651 int sr;
2652 regno += offset;
2653 for (sr = HARD_REGNO_NREGS (regno, mode) - 1;
2654 sr > 0; sr--)
2655 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2656 regno + sr))
2657 break;
2658 return sr == 0;
2659 }
2660
2661 return 0;
2662 }
2663 \f
2664 /* Split single instruction. Helper function for split_all_insns.
2665 Return last insn in the sequence if successful, or NULL if unsuccessful. */
2666 static rtx
2667 split_insn (insn)
2668 rtx insn;
2669 {
2670 rtx set;
2671 if (!INSN_P (insn))
2672 ;
2673 /* Don't split no-op move insns. These should silently
2674 disappear later in final. Splitting such insns would
2675 break the code that handles REG_NO_CONFLICT blocks. */
2676
2677 else if ((set = single_set (insn)) != NULL && set_noop_p (set))
2678 {
2679 /* Nops get in the way while scheduling, so delete them
2680 now if register allocation has already been done. It
2681 is too risky to try to do this before register
2682 allocation, and there are unlikely to be very many
2683 nops then anyways. */
2684 if (reload_completed)
2685 delete_insn_and_edges (insn);
2686 }
2687 else
2688 {
2689 /* Split insns here to get max fine-grain parallelism. */
2690 rtx first = PREV_INSN (insn);
2691 rtx last = try_split (PATTERN (insn), insn, 1);
2692
2693 if (last != insn)
2694 {
2695 /* try_split returns the NOTE that INSN became. */
2696 PUT_CODE (insn, NOTE);
2697 NOTE_SOURCE_FILE (insn) = 0;
2698 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2699
2700 /* ??? Coddle to md files that generate subregs in post-
2701 reload splitters instead of computing the proper
2702 hard register. */
2703 if (reload_completed && first != last)
2704 {
2705 first = NEXT_INSN (first);
2706 while (1)
2707 {
2708 if (INSN_P (first))
2709 cleanup_subreg_operands (first);
2710 if (first == last)
2711 break;
2712 first = NEXT_INSN (first);
2713 }
2714 }
2715 return last;
2716 }
2717 }
2718 return NULL_RTX;
2719 }
2720 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2721
2722 void
2723 split_all_insns (upd_life)
2724 int upd_life;
2725 {
2726 sbitmap blocks;
2727 int changed;
2728 int i;
2729
2730 blocks = sbitmap_alloc (n_basic_blocks);
2731 sbitmap_zero (blocks);
2732 changed = 0;
2733
2734 for (i = n_basic_blocks - 1; i >= 0; --i)
2735 {
2736 basic_block bb = BASIC_BLOCK (i);
2737 rtx insn, next;
2738 bool finish = false;
2739
2740 for (insn = bb->head; !finish ; insn = next)
2741 {
2742 rtx last;
2743
2744 /* Can't use `next_real_insn' because that might go across
2745 CODE_LABELS and short-out basic blocks. */
2746 next = NEXT_INSN (insn);
2747 finish = (insn == bb->end);
2748 last = split_insn (insn);
2749 if (last)
2750 {
2751 /* The split sequence may include barrier, but the
2752 BB boundary we are interested in will be set to previous
2753 one. */
2754
2755 while (GET_CODE (last) == BARRIER)
2756 last = PREV_INSN (last);
2757 SET_BIT (blocks, i);
2758 changed = 1;
2759 insn = last;
2760 }
2761 }
2762 }
2763
2764 if (changed)
2765 {
2766 find_many_sub_basic_blocks (blocks);
2767 }
2768
2769 if (changed && upd_life)
2770 {
2771 count_or_remove_death_notes (blocks, 1);
2772 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
2773 }
2774 #ifdef ENABLE_CHECKING
2775 verify_flow_info ();
2776 #endif
2777
2778 sbitmap_free (blocks);
2779 }
2780
2781 /* Same as split_all_insns, but do not expect CFG to be available.
2782 Used by machine depedent reorg passes. */
2783
2784 void
2785 split_all_insns_noflow ()
2786 {
2787 rtx next, insn;
2788
2789 for (insn = get_insns (); insn; insn = next)
2790 {
2791 next = NEXT_INSN (insn);
2792 split_insn (insn);
2793 }
2794 return;
2795 }
2796 \f
2797 #ifdef HAVE_peephole2
2798 struct peep2_insn_data
2799 {
2800 rtx insn;
2801 regset live_before;
2802 };
2803
2804 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2805 static int peep2_current;
2806
2807 /* A non-insn marker indicating the last insn of the block.
2808 The live_before regset for this element is correct, indicating
2809 global_live_at_end for the block. */
2810 #define PEEP2_EOB pc_rtx
2811
2812 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2813 does not exist. Used by the recognizer to find the next insn to match
2814 in a multi-insn pattern. */
2815
2816 rtx
2817 peep2_next_insn (n)
2818 int n;
2819 {
2820 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2821 abort ();
2822
2823 n += peep2_current;
2824 if (n >= MAX_INSNS_PER_PEEP2 + 1)
2825 n -= MAX_INSNS_PER_PEEP2 + 1;
2826
2827 if (peep2_insn_data[n].insn == PEEP2_EOB)
2828 return NULL_RTX;
2829 return peep2_insn_data[n].insn;
2830 }
2831
2832 /* Return true if REGNO is dead before the Nth non-note insn
2833 after `current'. */
2834
2835 int
2836 peep2_regno_dead_p (ofs, regno)
2837 int ofs;
2838 int regno;
2839 {
2840 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2841 abort ();
2842
2843 ofs += peep2_current;
2844 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2845 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2846
2847 if (peep2_insn_data[ofs].insn == NULL_RTX)
2848 abort ();
2849
2850 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
2851 }
2852
2853 /* Similarly for a REG. */
2854
2855 int
2856 peep2_reg_dead_p (ofs, reg)
2857 int ofs;
2858 rtx reg;
2859 {
2860 int regno, n;
2861
2862 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2863 abort ();
2864
2865 ofs += peep2_current;
2866 if (ofs >= MAX_INSNS_PER_PEEP2 + 1)
2867 ofs -= MAX_INSNS_PER_PEEP2 + 1;
2868
2869 if (peep2_insn_data[ofs].insn == NULL_RTX)
2870 abort ();
2871
2872 regno = REGNO (reg);
2873 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2874 while (--n >= 0)
2875 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
2876 return 0;
2877 return 1;
2878 }
2879
2880 /* Try to find a hard register of mode MODE, matching the register class in
2881 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
2882 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
2883 in which case the only condition is that the register must be available
2884 before CURRENT_INSN.
2885 Registers that already have bits set in REG_SET will not be considered.
2886
2887 If an appropriate register is available, it will be returned and the
2888 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
2889 returned. */
2890
2891 rtx
2892 peep2_find_free_register (from, to, class_str, mode, reg_set)
2893 int from, to;
2894 const char *class_str;
2895 enum machine_mode mode;
2896 HARD_REG_SET *reg_set;
2897 {
2898 static int search_ofs;
2899 enum reg_class class;
2900 HARD_REG_SET live;
2901 int i;
2902
2903 if (from >= MAX_INSNS_PER_PEEP2 + 1 || to >= MAX_INSNS_PER_PEEP2 + 1)
2904 abort ();
2905
2906 from += peep2_current;
2907 if (from >= MAX_INSNS_PER_PEEP2 + 1)
2908 from -= MAX_INSNS_PER_PEEP2 + 1;
2909 to += peep2_current;
2910 if (to >= MAX_INSNS_PER_PEEP2 + 1)
2911 to -= MAX_INSNS_PER_PEEP2 + 1;
2912
2913 if (peep2_insn_data[from].insn == NULL_RTX)
2914 abort ();
2915 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
2916
2917 while (from != to)
2918 {
2919 HARD_REG_SET this_live;
2920
2921 if (++from >= MAX_INSNS_PER_PEEP2 + 1)
2922 from = 0;
2923 if (peep2_insn_data[from].insn == NULL_RTX)
2924 abort ();
2925 REG_SET_TO_HARD_REG_SET (this_live, peep2_insn_data[from].live_before);
2926 IOR_HARD_REG_SET (live, this_live);
2927 }
2928
2929 class = (class_str[0] == 'r' ? GENERAL_REGS
2930 : REG_CLASS_FROM_LETTER (class_str[0]));
2931
2932 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2933 {
2934 int raw_regno, regno, success, j;
2935
2936 /* Distribute the free registers as much as possible. */
2937 raw_regno = search_ofs + i;
2938 if (raw_regno >= FIRST_PSEUDO_REGISTER)
2939 raw_regno -= FIRST_PSEUDO_REGISTER;
2940 #ifdef REG_ALLOC_ORDER
2941 regno = reg_alloc_order[raw_regno];
2942 #else
2943 regno = raw_regno;
2944 #endif
2945
2946 /* Don't allocate fixed registers. */
2947 if (fixed_regs[regno])
2948 continue;
2949 /* Make sure the register is of the right class. */
2950 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno))
2951 continue;
2952 /* And can support the mode we need. */
2953 if (! HARD_REGNO_MODE_OK (regno, mode))
2954 continue;
2955 /* And that we don't create an extra save/restore. */
2956 if (! call_used_regs[regno] && ! regs_ever_live[regno])
2957 continue;
2958 /* And we don't clobber traceback for noreturn functions. */
2959 if ((regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM)
2960 && (! reload_completed || frame_pointer_needed))
2961 continue;
2962
2963 success = 1;
2964 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
2965 {
2966 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
2967 || TEST_HARD_REG_BIT (live, regno + j))
2968 {
2969 success = 0;
2970 break;
2971 }
2972 }
2973 if (success)
2974 {
2975 for (j = HARD_REGNO_NREGS (regno, mode) - 1; j >= 0; j--)
2976 SET_HARD_REG_BIT (*reg_set, regno + j);
2977
2978 /* Start the next search with the next register. */
2979 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
2980 raw_regno = 0;
2981 search_ofs = raw_regno;
2982
2983 return gen_rtx_REG (mode, regno);
2984 }
2985 }
2986
2987 search_ofs = 0;
2988 return NULL_RTX;
2989 }
2990
2991 /* Perform the peephole2 optimization pass. */
2992
2993 void
2994 peephole2_optimize (dump_file)
2995 FILE *dump_file ATTRIBUTE_UNUSED;
2996 {
2997 regset_head rs_heads[MAX_INSNS_PER_PEEP2 + 2];
2998 rtx insn, prev;
2999 regset live;
3000 int i, b;
3001 #ifdef HAVE_conditional_execution
3002 sbitmap blocks;
3003 bool changed;
3004 #endif
3005 bool do_cleanup_cfg = false;
3006
3007 /* Initialize the regsets we're going to use. */
3008 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3009 peep2_insn_data[i].live_before = INITIALIZE_REG_SET (rs_heads[i]);
3010 live = INITIALIZE_REG_SET (rs_heads[i]);
3011
3012 #ifdef HAVE_conditional_execution
3013 blocks = sbitmap_alloc (n_basic_blocks);
3014 sbitmap_zero (blocks);
3015 changed = false;
3016 #else
3017 count_or_remove_death_notes (NULL, 1);
3018 #endif
3019
3020 for (b = n_basic_blocks - 1; b >= 0; --b)
3021 {
3022 basic_block bb = BASIC_BLOCK (b);
3023 struct propagate_block_info *pbi;
3024
3025 /* Indicate that all slots except the last holds invalid data. */
3026 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3027 peep2_insn_data[i].insn = NULL_RTX;
3028
3029 /* Indicate that the last slot contains live_after data. */
3030 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3031 peep2_current = MAX_INSNS_PER_PEEP2;
3032
3033 /* Start up propagation. */
3034 COPY_REG_SET (live, bb->global_live_at_end);
3035 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3036
3037 #ifdef HAVE_conditional_execution
3038 pbi = init_propagate_block_info (bb, live, NULL, NULL, 0);
3039 #else
3040 pbi = init_propagate_block_info (bb, live, NULL, NULL, PROP_DEATH_NOTES);
3041 #endif
3042
3043 for (insn = bb->end; ; insn = prev)
3044 {
3045 prev = PREV_INSN (insn);
3046 if (INSN_P (insn))
3047 {
3048 rtx try;
3049 int match_len;
3050 rtx note;
3051
3052 /* Record this insn. */
3053 if (--peep2_current < 0)
3054 peep2_current = MAX_INSNS_PER_PEEP2;
3055 peep2_insn_data[peep2_current].insn = insn;
3056 propagate_one_insn (pbi, insn);
3057 COPY_REG_SET (peep2_insn_data[peep2_current].live_before, live);
3058
3059 /* Match the peephole. */
3060 try = peephole2_insns (PATTERN (insn), insn, &match_len);
3061 if (try != NULL)
3062 {
3063 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3064 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3065 cfg-related call notes. */
3066 for (i = 0; i <= match_len; ++i)
3067 {
3068 int j, k;
3069 rtx old_insn, new_insn, note;
3070
3071 j = i + peep2_current;
3072 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3073 j -= MAX_INSNS_PER_PEEP2 + 1;
3074 old_insn = peep2_insn_data[j].insn;
3075 if (GET_CODE (old_insn) != CALL_INSN)
3076 continue;
3077
3078 new_insn = NULL_RTX;
3079 if (GET_CODE (try) == SEQUENCE)
3080 for (k = XVECLEN (try, 0) - 1; k >= 0; k--)
3081 {
3082 rtx x = XVECEXP (try, 0, k);
3083 if (GET_CODE (x) == CALL_INSN)
3084 {
3085 new_insn = x;
3086 break;
3087 }
3088 }
3089 else if (GET_CODE (try) == CALL_INSN)
3090 new_insn = try;
3091 if (! new_insn)
3092 abort ();
3093
3094 CALL_INSN_FUNCTION_USAGE (new_insn)
3095 = CALL_INSN_FUNCTION_USAGE (old_insn);
3096
3097 for (note = REG_NOTES (old_insn);
3098 note;
3099 note = XEXP (note, 1))
3100 switch (REG_NOTE_KIND (note))
3101 {
3102 case REG_NORETURN:
3103 case REG_SETJMP:
3104 case REG_ALWAYS_RETURN:
3105 REG_NOTES (new_insn)
3106 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3107 XEXP (note, 0),
3108 REG_NOTES (new_insn));
3109 default:
3110 /* Discard all other reg notes. */
3111 break;
3112 }
3113
3114 /* Croak if there is another call in the sequence. */
3115 while (++i <= match_len)
3116 {
3117 j = i + peep2_current;
3118 if (j >= MAX_INSNS_PER_PEEP2 + 1)
3119 j -= MAX_INSNS_PER_PEEP2 + 1;
3120 old_insn = peep2_insn_data[j].insn;
3121 if (GET_CODE (old_insn) == CALL_INSN)
3122 abort ();
3123 }
3124 break;
3125 }
3126
3127 i = match_len + peep2_current;
3128 if (i >= MAX_INSNS_PER_PEEP2 + 1)
3129 i -= MAX_INSNS_PER_PEEP2 + 1;
3130
3131 /* Replace the old sequence with the new. */
3132 try = emit_insn_after (try, peep2_insn_data[i].insn);
3133 delete_insn_chain (insn, peep2_insn_data[i].insn);
3134
3135 /* Re-insert the EH_REGION notes. */
3136 if (try == bb->end
3137 && (note = find_reg_note (peep2_insn_data[i].insn,
3138 REG_EH_REGION, NULL_RTX)))
3139 {
3140 rtx x;
3141 edge eh_edge;
3142
3143 for (eh_edge = bb->succ; eh_edge
3144 ; eh_edge = eh_edge->succ_next)
3145 if (eh_edge->flags & EDGE_EH)
3146 break;
3147
3148 for (x = NEXT_INSN (peep2_insn_data[i].insn);
3149 x != NEXT_INSN (try); x = NEXT_INSN (x))
3150 if (GET_CODE (x) == CALL_INSN
3151 || (flag_non_call_exceptions
3152 && may_trap_p (PATTERN (x))))
3153 {
3154 REG_NOTES (x)
3155 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3156 XEXP (note, 0),
3157 REG_NOTES (x));
3158
3159 if (x != bb->end && eh_edge)
3160 {
3161 edge nfte = split_block (bb, x);
3162 edge nehe = make_edge (nfte->src, eh_edge->dest,
3163 eh_edge->flags);
3164 nehe->probability = eh_edge->probability;
3165 nfte->probability
3166 = REG_BR_PROB_BASE - nehe->probability;
3167
3168 do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3169 #ifdef HAVE_conditional_execution
3170 SET_BIT (blocks, nfte->dest->index);
3171 changed = true;
3172 #endif
3173 bb = nfte->src;
3174 }
3175 }
3176
3177 /* Converting possibly trapping insn to non-trapping is
3178 possible. Zap dummy outgoing edges. */
3179 do_cleanup_cfg |= purge_dead_edges (bb);
3180 }
3181
3182 #ifdef HAVE_conditional_execution
3183 /* With conditional execution, we cannot back up the
3184 live information so easily, since the conditional
3185 death data structures are not so self-contained.
3186 So record that we've made a modification to this
3187 block and update life information at the end. */
3188 SET_BIT (blocks, b);
3189 changed = true;
3190
3191 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3192 peep2_insn_data[i].insn = NULL_RTX;
3193 peep2_insn_data[peep2_current].insn = PEEP2_EOB;
3194 #else
3195 /* Back up lifetime information past the end of the
3196 newly created sequence. */
3197 if (++i >= MAX_INSNS_PER_PEEP2 + 1)
3198 i = 0;
3199 COPY_REG_SET (live, peep2_insn_data[i].live_before);
3200
3201 /* Update life information for the new sequence. */
3202 do
3203 {
3204 if (INSN_P (try))
3205 {
3206 if (--i < 0)
3207 i = MAX_INSNS_PER_PEEP2;
3208 peep2_insn_data[i].insn = try;
3209 propagate_one_insn (pbi, try);
3210 COPY_REG_SET (peep2_insn_data[i].live_before, live);
3211 }
3212 try = PREV_INSN (try);
3213 }
3214 while (try != prev);
3215
3216 /* ??? Should verify that LIVE now matches what we
3217 had before the new sequence. */
3218
3219 peep2_current = i;
3220 #endif
3221 }
3222 }
3223
3224 if (insn == bb->head)
3225 break;
3226 }
3227
3228 free_propagate_block_info (pbi);
3229 }
3230
3231 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3232 FREE_REG_SET (peep2_insn_data[i].live_before);
3233 FREE_REG_SET (live);
3234
3235 /* If we eliminated EH edges, we may be able to merge blocks. Further,
3236 we've changed global life since exception handlers are no longer
3237 reachable. */
3238 if (do_cleanup_cfg)
3239 {
3240 cleanup_cfg (0);
3241 update_life_info (0, UPDATE_LIFE_GLOBAL_RM_NOTES, PROP_DEATH_NOTES);
3242 }
3243 #ifdef HAVE_conditional_execution
3244 else
3245 {
3246 count_or_remove_death_notes (blocks, 1);
3247 update_life_info (blocks, UPDATE_LIFE_LOCAL, PROP_DEATH_NOTES);
3248 }
3249 sbitmap_free (blocks);
3250 #endif
3251 }
3252 #endif /* HAVE_peephole2 */