]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / gcc / reload.c
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
28
29 Before processing the first insn of the function, call `init_reload'.
30
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
37
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
44
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
53
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
56
57 NOTE SIDE EFFECTS:
58
59 find_reloads can alter the operands of the instruction it is called on.
60
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
65
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
68
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
72
73 Using a reload register for several reloads in one insn:
74
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
78
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
82
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
86
87 #define REG_OK_STRICT
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tm_p.h"
95 #include "insn-config.h"
96 #include "expr.h"
97 #include "optabs.h"
98 #include "recog.h"
99 #include "reload.h"
100 #include "regs.h"
101 #include "hard-reg-set.h"
102 #include "flags.h"
103 #include "real.h"
104 #include "output.h"
105 #include "function.h"
106 #include "toplev.h"
107 #include "params.h"
108 #include "target.h"
109
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
113
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
117
118 /* True if X is a constant that can be forced into the constant pool. */
119 #define CONST_POOL_OK_P(X) \
120 (CONSTANT_P (X) \
121 && GET_CODE (X) != HIGH \
122 && !targetm.cannot_force_const_mem (X))
123 \f
124 /* All reloads of the current insn are recorded here. See reload.h for
125 comments. */
126 int n_reloads;
127 struct reload rld[MAX_RELOADS];
128
129 /* All the "earlyclobber" operands of the current insn
130 are recorded here. */
131 int n_earlyclobbers;
132 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
133
134 int reload_n_operands;
135
136 /* Replacing reloads.
137
138 If `replace_reloads' is nonzero, then as each reload is recorded
139 an entry is made for it in the table `replacements'.
140 Then later `subst_reloads' can look through that table and
141 perform all the replacements needed. */
142
143 /* Nonzero means record the places to replace. */
144 static int replace_reloads;
145
146 /* Each replacement is recorded with a structure like this. */
147 struct replacement
148 {
149 rtx *where; /* Location to store in */
150 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
151 a SUBREG; 0 otherwise. */
152 int what; /* which reload this is for */
153 enum machine_mode mode; /* mode it must have */
154 };
155
156 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
157
158 /* Number of replacements currently recorded. */
159 static int n_replacements;
160
161 /* Used to track what is modified by an operand. */
162 struct decomposition
163 {
164 int reg_flag; /* Nonzero if referencing a register. */
165 int safe; /* Nonzero if this can't conflict with anything. */
166 rtx base; /* Base address for MEM. */
167 HOST_WIDE_INT start; /* Starting offset or register number. */
168 HOST_WIDE_INT end; /* Ending offset or register number. */
169 };
170
171 #ifdef SECONDARY_MEMORY_NEEDED
172
173 /* Save MEMs needed to copy from one class of registers to another. One MEM
174 is used per mode, but normally only one or two modes are ever used.
175
176 We keep two versions, before and after register elimination. The one
177 after register elimination is record separately for each operand. This
178 is done in case the address is not valid to be sure that we separately
179 reload each. */
180
181 static rtx secondary_memlocs[NUM_MACHINE_MODES];
182 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
183 static int secondary_memlocs_elim_used = 0;
184 #endif
185
186 /* The instruction we are doing reloads for;
187 so we can test whether a register dies in it. */
188 static rtx this_insn;
189
190 /* Nonzero if this instruction is a user-specified asm with operands. */
191 static int this_insn_is_asm;
192
193 /* If hard_regs_live_known is nonzero,
194 we can tell which hard regs are currently live,
195 at least enough to succeed in choosing dummy reloads. */
196 static int hard_regs_live_known;
197
198 /* Indexed by hard reg number,
199 element is nonnegative if hard reg has been spilled.
200 This vector is passed to `find_reloads' as an argument
201 and is not changed here. */
202 static short *static_reload_reg_p;
203
204 /* Set to 1 in subst_reg_equivs if it changes anything. */
205 static int subst_reg_equivs_changed;
206
207 /* On return from push_reload, holds the reload-number for the OUT
208 operand, which can be different for that from the input operand. */
209 static int output_reloadnum;
210
211 /* Compare two RTX's. */
212 #define MATCHES(x, y) \
213 (x == y || (x != 0 && (GET_CODE (x) == REG \
214 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
215 : rtx_equal_p (x, y) && ! side_effects_p (x))))
216
217 /* Indicates if two reloads purposes are for similar enough things that we
218 can merge their reloads. */
219 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
220 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
221 || ((when1) == (when2) && (op1) == (op2)) \
222 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
223 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
224 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
225 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
226 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
227
228 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
229 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
230 ((when1) != (when2) \
231 || ! ((op1) == (op2) \
232 || (when1) == RELOAD_FOR_INPUT \
233 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
234 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
235
236 /* If we are going to reload an address, compute the reload type to
237 use. */
238 #define ADDR_TYPE(type) \
239 ((type) == RELOAD_FOR_INPUT_ADDRESS \
240 ? RELOAD_FOR_INPADDR_ADDRESS \
241 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
242 ? RELOAD_FOR_OUTADDR_ADDRESS \
243 : (type)))
244
245 #ifdef HAVE_SECONDARY_RELOADS
246 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
247 enum machine_mode, enum reload_type,
248 enum insn_code *);
249 #endif
250 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
251 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
252 static void push_replacement (rtx *, int, enum machine_mode);
253 static void dup_replacements (rtx *, rtx *);
254 static void combine_reloads (void);
255 static int find_reusable_reload (rtx *, rtx, enum reg_class,
256 enum reload_type, int, int);
257 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
258 enum machine_mode, enum reg_class, int, int);
259 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
260 static struct decomposition decompose (rtx);
261 static int immune_p (rtx, rtx, struct decomposition);
262 static int alternative_allows_memconst (const char *, int);
263 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
264 int *);
265 static rtx make_memloc (rtx, int);
266 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
267 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
268 int, enum reload_type, int, rtx);
269 static rtx subst_reg_equivs (rtx, rtx);
270 static rtx subst_indexed_address (rtx);
271 static void update_auto_inc_notes (rtx, int, int);
272 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
273 int, enum reload_type,int, rtx);
274 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
275 enum machine_mode, int,
276 enum reload_type, int);
277 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
278 int, rtx);
279 static void copy_replacements_1 (rtx *, rtx *, int);
280 static int find_inc_amount (rtx, rtx);
281 \f
282 #ifdef HAVE_SECONDARY_RELOADS
283
284 /* Determine if any secondary reloads are needed for loading (if IN_P is
285 nonzero) or storing (if IN_P is zero) X to or from a reload register of
286 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
287 are needed, push them.
288
289 Return the reload number of the secondary reload we made, or -1 if
290 we didn't need one. *PICODE is set to the insn_code to use if we do
291 need a secondary reload. */
292
293 static int
294 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
295 enum reg_class reload_class,
296 enum machine_mode reload_mode, enum reload_type type,
297 enum insn_code *picode)
298 {
299 enum reg_class class = NO_REGS;
300 enum machine_mode mode = reload_mode;
301 enum insn_code icode = CODE_FOR_nothing;
302 enum reg_class t_class = NO_REGS;
303 enum machine_mode t_mode = VOIDmode;
304 enum insn_code t_icode = CODE_FOR_nothing;
305 enum reload_type secondary_type;
306 int s_reload, t_reload = -1;
307
308 if (type == RELOAD_FOR_INPUT_ADDRESS
309 || type == RELOAD_FOR_OUTPUT_ADDRESS
310 || type == RELOAD_FOR_INPADDR_ADDRESS
311 || type == RELOAD_FOR_OUTADDR_ADDRESS)
312 secondary_type = type;
313 else
314 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315
316 *picode = CODE_FOR_nothing;
317
318 /* If X is a paradoxical SUBREG, use the inner value to determine both the
319 mode and object being reloaded. */
320 if (GET_CODE (x) == SUBREG
321 && (GET_MODE_SIZE (GET_MODE (x))
322 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 {
324 x = SUBREG_REG (x);
325 reload_mode = GET_MODE (x);
326 }
327
328 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
329 is still a pseudo-register by now, it *must* have an equivalent MEM
330 but we don't want to assume that), use that equivalent when seeing if
331 a secondary reload is needed since whether or not a reload is needed
332 might be sensitive to the form of the MEM. */
333
334 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
335 && reg_equiv_mem[REGNO (x)] != 0)
336 x = reg_equiv_mem[REGNO (x)];
337
338 #ifdef SECONDARY_INPUT_RELOAD_CLASS
339 if (in_p)
340 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
341 #endif
342
343 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
344 if (! in_p)
345 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
346 #endif
347
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS)
350 return -1;
351
352 /* Get a possible insn to use. If the predicate doesn't accept X, don't
353 use the insn. */
354
355 icode = (in_p ? reload_in_optab[(int) reload_mode]
356 : reload_out_optab[(int) reload_mode]);
357
358 if (icode != CODE_FOR_nothing
359 && insn_data[(int) icode].operand[in_p].predicate
360 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
361 icode = CODE_FOR_nothing;
362
363 /* If we will be using an insn, see if it can directly handle the reload
364 register we will be using. If it can, the secondary reload is for a
365 scratch register. If it can't, we will use the secondary reload for
366 an intermediate register and require a tertiary reload for the scratch
367 register. */
368
369 if (icode != CODE_FOR_nothing)
370 {
371 /* If IN_P is nonzero, the reload register will be the output in
372 operand 0. If IN_P is zero, the reload register will be the input
373 in operand 1. Outputs should have an initial "=", which we must
374 skip. */
375
376 enum reg_class insn_class;
377
378 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
379 insn_class = ALL_REGS;
380 else
381 {
382 const char *insn_constraint
383 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
384 char insn_letter = *insn_constraint;
385 insn_class
386 = (insn_letter == 'r' ? GENERAL_REGS
387 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
388 insn_constraint));
389
390 if (insn_class == NO_REGS)
391 abort ();
392 if (in_p
393 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
394 abort ();
395 }
396
397 /* The scratch register's constraint must start with "=&". */
398 if (insn_data[(int) icode].operand[2].constraint[0] != '='
399 || insn_data[(int) icode].operand[2].constraint[1] != '&')
400 abort ();
401
402 if (reg_class_subset_p (reload_class, insn_class))
403 mode = insn_data[(int) icode].operand[2].mode;
404 else
405 {
406 const char *t_constraint
407 = &insn_data[(int) icode].operand[2].constraint[2];
408 char t_letter = *t_constraint;
409 class = insn_class;
410 t_mode = insn_data[(int) icode].operand[2].mode;
411 t_class = (t_letter == 'r' ? GENERAL_REGS
412 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
413 t_constraint));
414 t_icode = icode;
415 icode = CODE_FOR_nothing;
416 }
417 }
418
419 /* This case isn't valid, so fail. Reload is allowed to use the same
420 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
421 in the case of a secondary register, we actually need two different
422 registers for correct code. We fail here to prevent the possibility of
423 silently generating incorrect code later.
424
425 The convention is that secondary input reloads are valid only if the
426 secondary_class is different from class. If you have such a case, you
427 can not use secondary reloads, you must work around the problem some
428 other way.
429
430 Allow this when a reload_in/out pattern is being used. I.e. assume
431 that the generated code handles this case. */
432
433 if (in_p && class == reload_class && icode == CODE_FOR_nothing
434 && t_icode == CODE_FOR_nothing)
435 abort ();
436
437 /* If we need a tertiary reload, see if we have one we can reuse or else
438 make a new one. */
439
440 if (t_class != NO_REGS)
441 {
442 for (t_reload = 0; t_reload < n_reloads; t_reload++)
443 if (rld[t_reload].secondary_p
444 && (reg_class_subset_p (t_class, rld[t_reload].class)
445 || reg_class_subset_p (rld[t_reload].class, t_class))
446 && ((in_p && rld[t_reload].inmode == t_mode)
447 || (! in_p && rld[t_reload].outmode == t_mode))
448 && ((in_p && (rld[t_reload].secondary_in_icode
449 == CODE_FOR_nothing))
450 || (! in_p &&(rld[t_reload].secondary_out_icode
451 == CODE_FOR_nothing)))
452 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
453 && MERGABLE_RELOADS (secondary_type,
454 rld[t_reload].when_needed,
455 opnum, rld[t_reload].opnum))
456 {
457 if (in_p)
458 rld[t_reload].inmode = t_mode;
459 if (! in_p)
460 rld[t_reload].outmode = t_mode;
461
462 if (reg_class_subset_p (t_class, rld[t_reload].class))
463 rld[t_reload].class = t_class;
464
465 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
466 rld[t_reload].optional &= optional;
467 rld[t_reload].secondary_p = 1;
468 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
469 opnum, rld[t_reload].opnum))
470 rld[t_reload].when_needed = RELOAD_OTHER;
471 }
472
473 if (t_reload == n_reloads)
474 {
475 /* We need to make a new tertiary reload for this register class. */
476 rld[t_reload].in = rld[t_reload].out = 0;
477 rld[t_reload].class = t_class;
478 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
479 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
480 rld[t_reload].reg_rtx = 0;
481 rld[t_reload].optional = optional;
482 rld[t_reload].inc = 0;
483 /* Maybe we could combine these, but it seems too tricky. */
484 rld[t_reload].nocombine = 1;
485 rld[t_reload].in_reg = 0;
486 rld[t_reload].out_reg = 0;
487 rld[t_reload].opnum = opnum;
488 rld[t_reload].when_needed = secondary_type;
489 rld[t_reload].secondary_in_reload = -1;
490 rld[t_reload].secondary_out_reload = -1;
491 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
492 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_p = 1;
494
495 n_reloads++;
496 }
497 }
498
499 /* See if we can reuse an existing secondary reload. */
500 for (s_reload = 0; s_reload < n_reloads; s_reload++)
501 if (rld[s_reload].secondary_p
502 && (reg_class_subset_p (class, rld[s_reload].class)
503 || reg_class_subset_p (rld[s_reload].class, class))
504 && ((in_p && rld[s_reload].inmode == mode)
505 || (! in_p && rld[s_reload].outmode == mode))
506 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
507 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
508 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
509 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
510 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
511 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
512 opnum, rld[s_reload].opnum))
513 {
514 if (in_p)
515 rld[s_reload].inmode = mode;
516 if (! in_p)
517 rld[s_reload].outmode = mode;
518
519 if (reg_class_subset_p (class, rld[s_reload].class))
520 rld[s_reload].class = class;
521
522 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
523 rld[s_reload].optional &= optional;
524 rld[s_reload].secondary_p = 1;
525 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
526 opnum, rld[s_reload].opnum))
527 rld[s_reload].when_needed = RELOAD_OTHER;
528 }
529
530 if (s_reload == n_reloads)
531 {
532 #ifdef SECONDARY_MEMORY_NEEDED
533 /* If we need a memory location to copy between the two reload regs,
534 set it up now. Note that we do the input case before making
535 the reload and the output case after. This is due to the
536 way reloads are output. */
537
538 if (in_p && icode == CODE_FOR_nothing
539 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
540 {
541 get_secondary_mem (x, reload_mode, opnum, type);
542
543 /* We may have just added new reloads. Make sure we add
544 the new reload at the end. */
545 s_reload = n_reloads;
546 }
547 #endif
548
549 /* We need to make a new secondary reload for this register class. */
550 rld[s_reload].in = rld[s_reload].out = 0;
551 rld[s_reload].class = class;
552
553 rld[s_reload].inmode = in_p ? mode : VOIDmode;
554 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
555 rld[s_reload].reg_rtx = 0;
556 rld[s_reload].optional = optional;
557 rld[s_reload].inc = 0;
558 /* Maybe we could combine these, but it seems too tricky. */
559 rld[s_reload].nocombine = 1;
560 rld[s_reload].in_reg = 0;
561 rld[s_reload].out_reg = 0;
562 rld[s_reload].opnum = opnum;
563 rld[s_reload].when_needed = secondary_type;
564 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
565 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
566 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
567 rld[s_reload].secondary_out_icode
568 = ! in_p ? t_icode : CODE_FOR_nothing;
569 rld[s_reload].secondary_p = 1;
570
571 n_reloads++;
572
573 #ifdef SECONDARY_MEMORY_NEEDED
574 if (! in_p && icode == CODE_FOR_nothing
575 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
576 get_secondary_mem (x, mode, opnum, type);
577 #endif
578 }
579
580 *picode = icode;
581 return s_reload;
582 }
583 #endif /* HAVE_SECONDARY_RELOADS */
584 \f
585 #ifdef SECONDARY_MEMORY_NEEDED
586
587 /* Return a memory location that will be used to copy X in mode MODE.
588 If we haven't already made a location for this mode in this insn,
589 call find_reloads_address on the location being returned. */
590
591 rtx
592 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
593 int opnum, enum reload_type type)
594 {
595 rtx loc;
596 int mem_valid;
597
598 /* By default, if MODE is narrower than a word, widen it to a word.
599 This is required because most machines that require these memory
600 locations do not support short load and stores from all registers
601 (e.g., FP registers). */
602
603 #ifdef SECONDARY_MEMORY_NEEDED_MODE
604 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
605 #else
606 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
607 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
608 #endif
609
610 /* If we already have made a MEM for this operand in MODE, return it. */
611 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
612 return secondary_memlocs_elim[(int) mode][opnum];
613
614 /* If this is the first time we've tried to get a MEM for this mode,
615 allocate a new one. `something_changed' in reload will get set
616 by noticing that the frame size has changed. */
617
618 if (secondary_memlocs[(int) mode] == 0)
619 {
620 #ifdef SECONDARY_MEMORY_NEEDED_RTX
621 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
622 #else
623 secondary_memlocs[(int) mode]
624 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
625 #endif
626 }
627
628 /* Get a version of the address doing any eliminations needed. If that
629 didn't give us a new MEM, make a new one if it isn't valid. */
630
631 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
632 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
633
634 if (! mem_valid && loc == secondary_memlocs[(int) mode])
635 loc = copy_rtx (loc);
636
637 /* The only time the call below will do anything is if the stack
638 offset is too large. In that case IND_LEVELS doesn't matter, so we
639 can just pass a zero. Adjust the type to be the address of the
640 corresponding object. If the address was valid, save the eliminated
641 address. If it wasn't valid, we need to make a reload each time, so
642 don't save it. */
643
644 if (! mem_valid)
645 {
646 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
647 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
648 : RELOAD_OTHER);
649
650 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
651 opnum, type, 0, 0);
652 }
653
654 secondary_memlocs_elim[(int) mode][opnum] = loc;
655 if (secondary_memlocs_elim_used <= (int)mode)
656 secondary_memlocs_elim_used = (int)mode + 1;
657 return loc;
658 }
659
660 /* Clear any secondary memory locations we've made. */
661
662 void
663 clear_secondary_mem (void)
664 {
665 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
666 }
667 #endif /* SECONDARY_MEMORY_NEEDED */
668 \f
669 /* Find the largest class for which every register number plus N is valid in
670 M1 (if in range) and is cheap to move into REGNO.
671 Abort if no such class exists. */
672
673 static enum reg_class
674 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
675 unsigned int dest_regno ATTRIBUTE_UNUSED)
676 {
677 int best_cost = -1;
678 int class;
679 int regno;
680 enum reg_class best_class = NO_REGS;
681 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
682 unsigned int best_size = 0;
683 int cost;
684
685 for (class = 1; class < N_REG_CLASSES; class++)
686 {
687 int bad = 0;
688 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
689 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
690 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
691 && ! HARD_REGNO_MODE_OK (regno + n, m1))
692 bad = 1;
693
694 if (bad)
695 continue;
696 cost = REGISTER_MOVE_COST (m1, class, dest_class);
697
698 if ((reg_class_size[class] > best_size
699 && (best_cost < 0 || best_cost >= cost))
700 || best_cost > cost)
701 {
702 best_class = class;
703 best_size = reg_class_size[class];
704 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
705 }
706 }
707
708 if (best_size == 0)
709 abort ();
710
711 return best_class;
712 }
713 \f
714 /* Return the number of a previously made reload that can be combined with
715 a new one, or n_reloads if none of the existing reloads can be used.
716 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
717 push_reload, they determine the kind of the new reload that we try to
718 combine. P_IN points to the corresponding value of IN, which can be
719 modified by this function.
720 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
721
722 static int
723 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
724 enum reload_type type, int opnum, int dont_share)
725 {
726 rtx in = *p_in;
727 int i;
728 /* We can't merge two reloads if the output of either one is
729 earlyclobbered. */
730
731 if (earlyclobber_operand_p (out))
732 return n_reloads;
733
734 /* We can use an existing reload if the class is right
735 and at least one of IN and OUT is a match
736 and the other is at worst neutral.
737 (A zero compared against anything is neutral.)
738
739 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
740 for the same thing since that can cause us to need more reload registers
741 than we otherwise would. */
742
743 for (i = 0; i < n_reloads; i++)
744 if ((reg_class_subset_p (class, rld[i].class)
745 || reg_class_subset_p (rld[i].class, class))
746 /* If the existing reload has a register, it must fit our class. */
747 && (rld[i].reg_rtx == 0
748 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
749 true_regnum (rld[i].reg_rtx)))
750 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
751 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
752 || (out != 0 && MATCHES (rld[i].out, out)
753 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
754 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
755 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
756 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
757 return i;
758
759 /* Reloading a plain reg for input can match a reload to postincrement
760 that reg, since the postincrement's value is the right value.
761 Likewise, it can match a preincrement reload, since we regard
762 the preincrementation as happening before any ref in this insn
763 to that register. */
764 for (i = 0; i < n_reloads; i++)
765 if ((reg_class_subset_p (class, rld[i].class)
766 || reg_class_subset_p (rld[i].class, class))
767 /* If the existing reload has a register, it must fit our
768 class. */
769 && (rld[i].reg_rtx == 0
770 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
771 true_regnum (rld[i].reg_rtx)))
772 && out == 0 && rld[i].out == 0 && rld[i].in != 0
773 && ((GET_CODE (in) == REG
774 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
775 && MATCHES (XEXP (rld[i].in, 0), in))
776 || (GET_CODE (rld[i].in) == REG
777 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
778 && MATCHES (XEXP (in, 0), rld[i].in)))
779 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
780 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
781 && MERGABLE_RELOADS (type, rld[i].when_needed,
782 opnum, rld[i].opnum))
783 {
784 /* Make sure reload_in ultimately has the increment,
785 not the plain register. */
786 if (GET_CODE (in) == REG)
787 *p_in = rld[i].in;
788 return i;
789 }
790 return n_reloads;
791 }
792
793 /* Return nonzero if X is a SUBREG which will require reloading of its
794 SUBREG_REG expression. */
795
796 static int
797 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
798 {
799 rtx inner;
800
801 /* Only SUBREGs are problematical. */
802 if (GET_CODE (x) != SUBREG)
803 return 0;
804
805 inner = SUBREG_REG (x);
806
807 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
808 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
809 return 1;
810
811 /* If INNER is not a hard register, then INNER will not need to
812 be reloaded. */
813 if (GET_CODE (inner) != REG
814 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
815 return 0;
816
817 /* If INNER is not ok for MODE, then INNER will need reloading. */
818 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
819 return 1;
820
821 /* If the outer part is a word or smaller, INNER larger than a
822 word and the number of regs for INNER is not the same as the
823 number of words in INNER, then INNER will need reloading. */
824 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
825 && output
826 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
827 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
828 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
829 }
830
831 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
832 requiring an extra reload register. The caller has already found that
833 IN contains some reference to REGNO, so check that we can produce the
834 new value in a single step. E.g. if we have
835 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
836 instruction that adds one to a register, this should succeed.
837 However, if we have something like
838 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
839 needs to be loaded into a register first, we need a separate reload
840 register.
841 Such PLUS reloads are generated by find_reload_address_part.
842 The out-of-range PLUS expressions are usually introduced in the instruction
843 patterns by register elimination and substituting pseudos without a home
844 by their function-invariant equivalences. */
845 static int
846 can_reload_into (rtx in, int regno, enum machine_mode mode)
847 {
848 rtx dst, test_insn;
849 int r = 0;
850 struct recog_data save_recog_data;
851
852 /* For matching constraints, we often get notional input reloads where
853 we want to use the original register as the reload register. I.e.
854 technically this is a non-optional input-output reload, but IN is
855 already a valid register, and has been chosen as the reload register.
856 Speed this up, since it trivially works. */
857 if (GET_CODE (in) == REG)
858 return 1;
859
860 /* To test MEMs properly, we'd have to take into account all the reloads
861 that are already scheduled, which can become quite complicated.
862 And since we've already handled address reloads for this MEM, it
863 should always succeed anyway. */
864 if (GET_CODE (in) == MEM)
865 return 1;
866
867 /* If we can make a simple SET insn that does the job, everything should
868 be fine. */
869 dst = gen_rtx_REG (mode, regno);
870 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
871 save_recog_data = recog_data;
872 if (recog_memoized (test_insn) >= 0)
873 {
874 extract_insn (test_insn);
875 r = constrain_operands (1);
876 }
877 recog_data = save_recog_data;
878 return r;
879 }
880
881 /* Record one reload that needs to be performed.
882 IN is an rtx saying where the data are to be found before this instruction.
883 OUT says where they must be stored after the instruction.
884 (IN is zero for data not read, and OUT is zero for data not written.)
885 INLOC and OUTLOC point to the places in the instructions where
886 IN and OUT were found.
887 If IN and OUT are both nonzero, it means the same register must be used
888 to reload both IN and OUT.
889
890 CLASS is a register class required for the reloaded data.
891 INMODE is the machine mode that the instruction requires
892 for the reg that replaces IN and OUTMODE is likewise for OUT.
893
894 If IN is zero, then OUT's location and mode should be passed as
895 INLOC and INMODE.
896
897 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
898
899 OPTIONAL nonzero means this reload does not need to be performed:
900 it can be discarded if that is more convenient.
901
902 OPNUM and TYPE say what the purpose of this reload is.
903
904 The return value is the reload-number for this reload.
905
906 If both IN and OUT are nonzero, in some rare cases we might
907 want to make two separate reloads. (Actually we never do this now.)
908 Therefore, the reload-number for OUT is stored in
909 output_reloadnum when we return; the return value applies to IN.
910 Usually (presently always), when IN and OUT are nonzero,
911 the two reload-numbers are equal, but the caller should be careful to
912 distinguish them. */
913
914 int
915 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
916 enum reg_class class, enum machine_mode inmode,
917 enum machine_mode outmode, int strict_low, int optional,
918 int opnum, enum reload_type type)
919 {
920 int i;
921 int dont_share = 0;
922 int dont_remove_subreg = 0;
923 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
924 int secondary_in_reload = -1, secondary_out_reload = -1;
925 enum insn_code secondary_in_icode = CODE_FOR_nothing;
926 enum insn_code secondary_out_icode = CODE_FOR_nothing;
927
928 /* INMODE and/or OUTMODE could be VOIDmode if no mode
929 has been specified for the operand. In that case,
930 use the operand's mode as the mode to reload. */
931 if (inmode == VOIDmode && in != 0)
932 inmode = GET_MODE (in);
933 if (outmode == VOIDmode && out != 0)
934 outmode = GET_MODE (out);
935
936 /* If IN is a pseudo register everywhere-equivalent to a constant, and
937 it is not in a hard register, reload straight from the constant,
938 since we want to get rid of such pseudo registers.
939 Often this is done earlier, but not always in find_reloads_address. */
940 if (in != 0 && GET_CODE (in) == REG)
941 {
942 int regno = REGNO (in);
943
944 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
945 && reg_equiv_constant[regno] != 0)
946 in = reg_equiv_constant[regno];
947 }
948
949 /* Likewise for OUT. Of course, OUT will never be equivalent to
950 an actual constant, but it might be equivalent to a memory location
951 (in the case of a parameter). */
952 if (out != 0 && GET_CODE (out) == REG)
953 {
954 int regno = REGNO (out);
955
956 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
957 && reg_equiv_constant[regno] != 0)
958 out = reg_equiv_constant[regno];
959 }
960
961 /* If we have a read-write operand with an address side-effect,
962 change either IN or OUT so the side-effect happens only once. */
963 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
964 switch (GET_CODE (XEXP (in, 0)))
965 {
966 case POST_INC: case POST_DEC: case POST_MODIFY:
967 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
968 break;
969
970 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
971 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
972 break;
973
974 default:
975 break;
976 }
977
978 /* If we are reloading a (SUBREG constant ...), really reload just the
979 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
980 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
981 a pseudo and hence will become a MEM) with M1 wider than M2 and the
982 register is a pseudo, also reload the inside expression.
983 For machines that extend byte loads, do this for any SUBREG of a pseudo
984 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
985 M2 is an integral mode that gets extended when loaded.
986 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
987 either M1 is not valid for R or M2 is wider than a word but we only
988 need one word to store an M2-sized quantity in R.
989 (However, if OUT is nonzero, we need to reload the reg *and*
990 the subreg, so do nothing here, and let following statement handle it.)
991
992 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
993 we can't handle it here because CONST_INT does not indicate a mode.
994
995 Similarly, we must reload the inside expression if we have a
996 STRICT_LOW_PART (presumably, in == out in the cas).
997
998 Also reload the inner expression if it does not require a secondary
999 reload but the SUBREG does.
1000
1001 Finally, reload the inner expression if it is a register that is in
1002 the class whose registers cannot be referenced in a different size
1003 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1004 cannot reload just the inside since we might end up with the wrong
1005 register class. But if it is inside a STRICT_LOW_PART, we have
1006 no choice, so we hope we do get the right register class there. */
1007
1008 if (in != 0 && GET_CODE (in) == SUBREG
1009 && (subreg_lowpart_p (in) || strict_low)
1010 #ifdef CANNOT_CHANGE_MODE_CLASS
1011 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1012 #endif
1013 && (CONSTANT_P (SUBREG_REG (in))
1014 || GET_CODE (SUBREG_REG (in)) == PLUS
1015 || strict_low
1016 || (((GET_CODE (SUBREG_REG (in)) == REG
1017 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1018 || GET_CODE (SUBREG_REG (in)) == MEM)
1019 && ((GET_MODE_SIZE (inmode)
1020 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1021 #ifdef LOAD_EXTEND_OP
1022 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1023 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1024 <= UNITS_PER_WORD)
1025 && (GET_MODE_SIZE (inmode)
1026 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1027 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1028 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1029 #endif
1030 #ifdef WORD_REGISTER_OPERATIONS
1031 || ((GET_MODE_SIZE (inmode)
1032 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1033 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1034 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1035 / UNITS_PER_WORD)))
1036 #endif
1037 ))
1038 || (GET_CODE (SUBREG_REG (in)) == REG
1039 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1040 /* The case where out is nonzero
1041 is handled differently in the following statement. */
1042 && (out == 0 || subreg_lowpart_p (in))
1043 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1044 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1045 > UNITS_PER_WORD)
1046 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1047 / UNITS_PER_WORD)
1048 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1049 [GET_MODE (SUBREG_REG (in))]))
1050 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1051 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1052 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1053 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1054 GET_MODE (SUBREG_REG (in)),
1055 SUBREG_REG (in))
1056 == NO_REGS))
1057 #endif
1058 #ifdef CANNOT_CHANGE_MODE_CLASS
1059 || (GET_CODE (SUBREG_REG (in)) == REG
1060 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1061 && REG_CANNOT_CHANGE_MODE_P
1062 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1063 #endif
1064 ))
1065 {
1066 in_subreg_loc = inloc;
1067 inloc = &SUBREG_REG (in);
1068 in = *inloc;
1069 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1070 if (GET_CODE (in) == MEM)
1071 /* This is supposed to happen only for paradoxical subregs made by
1072 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1073 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1074 abort ();
1075 #endif
1076 inmode = GET_MODE (in);
1077 }
1078
1079 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1080 either M1 is not valid for R or M2 is wider than a word but we only
1081 need one word to store an M2-sized quantity in R.
1082
1083 However, we must reload the inner reg *as well as* the subreg in
1084 that case. */
1085
1086 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1087 code above. This can happen if SUBREG_BYTE != 0. */
1088
1089 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1090 {
1091 enum reg_class in_class = class;
1092
1093 if (GET_CODE (SUBREG_REG (in)) == REG)
1094 in_class
1095 = find_valid_class (inmode,
1096 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1097 GET_MODE (SUBREG_REG (in)),
1098 SUBREG_BYTE (in),
1099 GET_MODE (in)),
1100 REGNO (SUBREG_REG (in)));
1101
1102 /* This relies on the fact that emit_reload_insns outputs the
1103 instructions for input reloads of type RELOAD_OTHER in the same
1104 order as the reloads. Thus if the outer reload is also of type
1105 RELOAD_OTHER, we are guaranteed that this inner reload will be
1106 output before the outer reload. */
1107 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1108 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1109 dont_remove_subreg = 1;
1110 }
1111
1112 /* Similarly for paradoxical and problematical SUBREGs on the output.
1113 Note that there is no reason we need worry about the previous value
1114 of SUBREG_REG (out); even if wider than out,
1115 storing in a subreg is entitled to clobber it all
1116 (except in the case of STRICT_LOW_PART,
1117 and in that case the constraint should label it input-output.) */
1118 if (out != 0 && GET_CODE (out) == SUBREG
1119 && (subreg_lowpart_p (out) || strict_low)
1120 #ifdef CANNOT_CHANGE_MODE_CLASS
1121 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1122 #endif
1123 && (CONSTANT_P (SUBREG_REG (out))
1124 || strict_low
1125 || (((GET_CODE (SUBREG_REG (out)) == REG
1126 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1127 || GET_CODE (SUBREG_REG (out)) == MEM)
1128 && ((GET_MODE_SIZE (outmode)
1129 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1130 #ifdef WORD_REGISTER_OPERATIONS
1131 || ((GET_MODE_SIZE (outmode)
1132 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1133 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1134 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1135 / UNITS_PER_WORD)))
1136 #endif
1137 ))
1138 || (GET_CODE (SUBREG_REG (out)) == REG
1139 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1140 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1141 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1142 > UNITS_PER_WORD)
1143 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1144 / UNITS_PER_WORD)
1145 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1146 [GET_MODE (SUBREG_REG (out))]))
1147 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1148 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1149 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1150 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1151 GET_MODE (SUBREG_REG (out)),
1152 SUBREG_REG (out))
1153 == NO_REGS))
1154 #endif
1155 #ifdef CANNOT_CHANGE_MODE_CLASS
1156 || (GET_CODE (SUBREG_REG (out)) == REG
1157 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1158 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1159 GET_MODE (SUBREG_REG (out)),
1160 outmode))
1161 #endif
1162 ))
1163 {
1164 out_subreg_loc = outloc;
1165 outloc = &SUBREG_REG (out);
1166 out = *outloc;
1167 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1168 if (GET_CODE (out) == MEM
1169 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1170 abort ();
1171 #endif
1172 outmode = GET_MODE (out);
1173 }
1174
1175 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1176 either M1 is not valid for R or M2 is wider than a word but we only
1177 need one word to store an M2-sized quantity in R.
1178
1179 However, we must reload the inner reg *as well as* the subreg in
1180 that case. In this case, the inner reg is an in-out reload. */
1181
1182 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1183 {
1184 /* This relies on the fact that emit_reload_insns outputs the
1185 instructions for output reloads of type RELOAD_OTHER in reverse
1186 order of the reloads. Thus if the outer reload is also of type
1187 RELOAD_OTHER, we are guaranteed that this inner reload will be
1188 output after the outer reload. */
1189 dont_remove_subreg = 1;
1190 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1191 &SUBREG_REG (out),
1192 find_valid_class (outmode,
1193 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1194 GET_MODE (SUBREG_REG (out)),
1195 SUBREG_BYTE (out),
1196 GET_MODE (out)),
1197 REGNO (SUBREG_REG (out))),
1198 VOIDmode, VOIDmode, 0, 0,
1199 opnum, RELOAD_OTHER);
1200 }
1201
1202 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1203 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1204 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1205 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1206 dont_share = 1;
1207
1208 /* If IN is a SUBREG of a hard register, make a new REG. This
1209 simplifies some of the cases below. */
1210
1211 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1212 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1213 && ! dont_remove_subreg)
1214 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1215
1216 /* Similarly for OUT. */
1217 if (out != 0 && GET_CODE (out) == SUBREG
1218 && GET_CODE (SUBREG_REG (out)) == REG
1219 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1220 && ! dont_remove_subreg)
1221 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1222
1223 /* Narrow down the class of register wanted if that is
1224 desirable on this machine for efficiency. */
1225 if (in != 0)
1226 class = PREFERRED_RELOAD_CLASS (in, class);
1227
1228 /* Output reloads may need analogous treatment, different in detail. */
1229 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1230 if (out != 0)
1231 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1232 #endif
1233
1234 /* Make sure we use a class that can handle the actual pseudo
1235 inside any subreg. For example, on the 386, QImode regs
1236 can appear within SImode subregs. Although GENERAL_REGS
1237 can handle SImode, QImode needs a smaller class. */
1238 #ifdef LIMIT_RELOAD_CLASS
1239 if (in_subreg_loc)
1240 class = LIMIT_RELOAD_CLASS (inmode, class);
1241 else if (in != 0 && GET_CODE (in) == SUBREG)
1242 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1243
1244 if (out_subreg_loc)
1245 class = LIMIT_RELOAD_CLASS (outmode, class);
1246 if (out != 0 && GET_CODE (out) == SUBREG)
1247 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1248 #endif
1249
1250 /* Verify that this class is at least possible for the mode that
1251 is specified. */
1252 if (this_insn_is_asm)
1253 {
1254 enum machine_mode mode;
1255 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1256 mode = inmode;
1257 else
1258 mode = outmode;
1259 if (mode == VOIDmode)
1260 {
1261 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1262 mode = word_mode;
1263 if (in != 0)
1264 inmode = word_mode;
1265 if (out != 0)
1266 outmode = word_mode;
1267 }
1268 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1269 if (HARD_REGNO_MODE_OK (i, mode)
1270 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1271 {
1272 int nregs = hard_regno_nregs[i][mode];
1273
1274 int j;
1275 for (j = 1; j < nregs; j++)
1276 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1277 break;
1278 if (j == nregs)
1279 break;
1280 }
1281 if (i == FIRST_PSEUDO_REGISTER)
1282 {
1283 error_for_asm (this_insn, "impossible register constraint in `asm'");
1284 class = ALL_REGS;
1285 }
1286 }
1287
1288 /* Optional output reloads are always OK even if we have no register class,
1289 since the function of these reloads is only to have spill_reg_store etc.
1290 set, so that the storing insn can be deleted later. */
1291 if (class == NO_REGS
1292 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1293 abort ();
1294
1295 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1296
1297 if (i == n_reloads)
1298 {
1299 /* See if we need a secondary reload register to move between CLASS
1300 and IN or CLASS and OUT. Get the icode and push any required reloads
1301 needed for each of them if so. */
1302
1303 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1304 if (in != 0)
1305 secondary_in_reload
1306 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1307 &secondary_in_icode);
1308 #endif
1309
1310 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1311 if (out != 0 && GET_CODE (out) != SCRATCH)
1312 secondary_out_reload
1313 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1314 type, &secondary_out_icode);
1315 #endif
1316
1317 /* We found no existing reload suitable for re-use.
1318 So add an additional reload. */
1319
1320 #ifdef SECONDARY_MEMORY_NEEDED
1321 /* If a memory location is needed for the copy, make one. */
1322 if (in != 0 && (GET_CODE (in) == REG || GET_CODE (in) == SUBREG)
1323 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1324 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1325 class, inmode))
1326 get_secondary_mem (in, inmode, opnum, type);
1327 #endif
1328
1329 i = n_reloads;
1330 rld[i].in = in;
1331 rld[i].out = out;
1332 rld[i].class = class;
1333 rld[i].inmode = inmode;
1334 rld[i].outmode = outmode;
1335 rld[i].reg_rtx = 0;
1336 rld[i].optional = optional;
1337 rld[i].inc = 0;
1338 rld[i].nocombine = 0;
1339 rld[i].in_reg = inloc ? *inloc : 0;
1340 rld[i].out_reg = outloc ? *outloc : 0;
1341 rld[i].opnum = opnum;
1342 rld[i].when_needed = type;
1343 rld[i].secondary_in_reload = secondary_in_reload;
1344 rld[i].secondary_out_reload = secondary_out_reload;
1345 rld[i].secondary_in_icode = secondary_in_icode;
1346 rld[i].secondary_out_icode = secondary_out_icode;
1347 rld[i].secondary_p = 0;
1348
1349 n_reloads++;
1350
1351 #ifdef SECONDARY_MEMORY_NEEDED
1352 if (out != 0 && (GET_CODE (out) == REG || GET_CODE (out) == SUBREG)
1353 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1354 && SECONDARY_MEMORY_NEEDED (class,
1355 REGNO_REG_CLASS (reg_or_subregno (out)),
1356 outmode))
1357 get_secondary_mem (out, outmode, opnum, type);
1358 #endif
1359 }
1360 else
1361 {
1362 /* We are reusing an existing reload,
1363 but we may have additional information for it.
1364 For example, we may now have both IN and OUT
1365 while the old one may have just one of them. */
1366
1367 /* The modes can be different. If they are, we want to reload in
1368 the larger mode, so that the value is valid for both modes. */
1369 if (inmode != VOIDmode
1370 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1371 rld[i].inmode = inmode;
1372 if (outmode != VOIDmode
1373 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1374 rld[i].outmode = outmode;
1375 if (in != 0)
1376 {
1377 rtx in_reg = inloc ? *inloc : 0;
1378 /* If we merge reloads for two distinct rtl expressions that
1379 are identical in content, there might be duplicate address
1380 reloads. Remove the extra set now, so that if we later find
1381 that we can inherit this reload, we can get rid of the
1382 address reloads altogether.
1383
1384 Do not do this if both reloads are optional since the result
1385 would be an optional reload which could potentially leave
1386 unresolved address replacements.
1387
1388 It is not sufficient to call transfer_replacements since
1389 choose_reload_regs will remove the replacements for address
1390 reloads of inherited reloads which results in the same
1391 problem. */
1392 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1393 && ! (rld[i].optional && optional))
1394 {
1395 /* We must keep the address reload with the lower operand
1396 number alive. */
1397 if (opnum > rld[i].opnum)
1398 {
1399 remove_address_replacements (in);
1400 in = rld[i].in;
1401 in_reg = rld[i].in_reg;
1402 }
1403 else
1404 remove_address_replacements (rld[i].in);
1405 }
1406 rld[i].in = in;
1407 rld[i].in_reg = in_reg;
1408 }
1409 if (out != 0)
1410 {
1411 rld[i].out = out;
1412 rld[i].out_reg = outloc ? *outloc : 0;
1413 }
1414 if (reg_class_subset_p (class, rld[i].class))
1415 rld[i].class = class;
1416 rld[i].optional &= optional;
1417 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1418 opnum, rld[i].opnum))
1419 rld[i].when_needed = RELOAD_OTHER;
1420 rld[i].opnum = MIN (rld[i].opnum, opnum);
1421 }
1422
1423 /* If the ostensible rtx being reloaded differs from the rtx found
1424 in the location to substitute, this reload is not safe to combine
1425 because we cannot reliably tell whether it appears in the insn. */
1426
1427 if (in != 0 && in != *inloc)
1428 rld[i].nocombine = 1;
1429
1430 #if 0
1431 /* This was replaced by changes in find_reloads_address_1 and the new
1432 function inc_for_reload, which go with a new meaning of reload_inc. */
1433
1434 /* If this is an IN/OUT reload in an insn that sets the CC,
1435 it must be for an autoincrement. It doesn't work to store
1436 the incremented value after the insn because that would clobber the CC.
1437 So we must do the increment of the value reloaded from,
1438 increment it, store it back, then decrement again. */
1439 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1440 {
1441 out = 0;
1442 rld[i].out = 0;
1443 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1444 /* If we did not find a nonzero amount-to-increment-by,
1445 that contradicts the belief that IN is being incremented
1446 in an address in this insn. */
1447 if (rld[i].inc == 0)
1448 abort ();
1449 }
1450 #endif
1451
1452 /* If we will replace IN and OUT with the reload-reg,
1453 record where they are located so that substitution need
1454 not do a tree walk. */
1455
1456 if (replace_reloads)
1457 {
1458 if (inloc != 0)
1459 {
1460 struct replacement *r = &replacements[n_replacements++];
1461 r->what = i;
1462 r->subreg_loc = in_subreg_loc;
1463 r->where = inloc;
1464 r->mode = inmode;
1465 }
1466 if (outloc != 0 && outloc != inloc)
1467 {
1468 struct replacement *r = &replacements[n_replacements++];
1469 r->what = i;
1470 r->where = outloc;
1471 r->subreg_loc = out_subreg_loc;
1472 r->mode = outmode;
1473 }
1474 }
1475
1476 /* If this reload is just being introduced and it has both
1477 an incoming quantity and an outgoing quantity that are
1478 supposed to be made to match, see if either one of the two
1479 can serve as the place to reload into.
1480
1481 If one of them is acceptable, set rld[i].reg_rtx
1482 to that one. */
1483
1484 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1485 {
1486 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1487 inmode, outmode,
1488 rld[i].class, i,
1489 earlyclobber_operand_p (out));
1490
1491 /* If the outgoing register already contains the same value
1492 as the incoming one, we can dispense with loading it.
1493 The easiest way to tell the caller that is to give a phony
1494 value for the incoming operand (same as outgoing one). */
1495 if (rld[i].reg_rtx == out
1496 && (GET_CODE (in) == REG || CONSTANT_P (in))
1497 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1498 static_reload_reg_p, i, inmode))
1499 rld[i].in = out;
1500 }
1501
1502 /* If this is an input reload and the operand contains a register that
1503 dies in this insn and is used nowhere else, see if it is the right class
1504 to be used for this reload. Use it if so. (This occurs most commonly
1505 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1506 this if it is also an output reload that mentions the register unless
1507 the output is a SUBREG that clobbers an entire register.
1508
1509 Note that the operand might be one of the spill regs, if it is a
1510 pseudo reg and we are in a block where spilling has not taken place.
1511 But if there is no spilling in this block, that is OK.
1512 An explicitly used hard reg cannot be a spill reg. */
1513
1514 if (rld[i].reg_rtx == 0 && in != 0)
1515 {
1516 rtx note;
1517 int regno;
1518 enum machine_mode rel_mode = inmode;
1519
1520 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1521 rel_mode = outmode;
1522
1523 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1524 if (REG_NOTE_KIND (note) == REG_DEAD
1525 && GET_CODE (XEXP (note, 0)) == REG
1526 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1527 && reg_mentioned_p (XEXP (note, 0), in)
1528 && ! refers_to_regno_for_reload_p (regno,
1529 (regno
1530 + hard_regno_nregs[regno]
1531 [rel_mode]),
1532 PATTERN (this_insn), inloc)
1533 /* If this is also an output reload, IN cannot be used as
1534 the reload register if it is set in this insn unless IN
1535 is also OUT. */
1536 && (out == 0 || in == out
1537 || ! hard_reg_set_here_p (regno,
1538 (regno
1539 + hard_regno_nregs[regno]
1540 [rel_mode]),
1541 PATTERN (this_insn)))
1542 /* ??? Why is this code so different from the previous?
1543 Is there any simple coherent way to describe the two together?
1544 What's going on here. */
1545 && (in != out
1546 || (GET_CODE (in) == SUBREG
1547 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1548 / UNITS_PER_WORD)
1549 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1550 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1551 /* Make sure the operand fits in the reg that dies. */
1552 && (GET_MODE_SIZE (rel_mode)
1553 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1554 && HARD_REGNO_MODE_OK (regno, inmode)
1555 && HARD_REGNO_MODE_OK (regno, outmode))
1556 {
1557 unsigned int offs;
1558 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1559 hard_regno_nregs[regno][outmode]);
1560
1561 for (offs = 0; offs < nregs; offs++)
1562 if (fixed_regs[regno + offs]
1563 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1564 regno + offs))
1565 break;
1566
1567 if (offs == nregs
1568 && (! (refers_to_regno_for_reload_p
1569 (regno, (regno + hard_regno_nregs[regno][inmode]),
1570 in, (rtx *)0))
1571 || can_reload_into (in, regno, inmode)))
1572 {
1573 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1574 break;
1575 }
1576 }
1577 }
1578
1579 if (out)
1580 output_reloadnum = i;
1581
1582 return i;
1583 }
1584
1585 /* Record an additional place we must replace a value
1586 for which we have already recorded a reload.
1587 RELOADNUM is the value returned by push_reload
1588 when the reload was recorded.
1589 This is used in insn patterns that use match_dup. */
1590
1591 static void
1592 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1593 {
1594 if (replace_reloads)
1595 {
1596 struct replacement *r = &replacements[n_replacements++];
1597 r->what = reloadnum;
1598 r->where = loc;
1599 r->subreg_loc = 0;
1600 r->mode = mode;
1601 }
1602 }
1603
1604 /* Duplicate any replacement we have recorded to apply at
1605 location ORIG_LOC to also be performed at DUP_LOC.
1606 This is used in insn patterns that use match_dup. */
1607
1608 static void
1609 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1610 {
1611 int i, n = n_replacements;
1612
1613 for (i = 0; i < n; i++)
1614 {
1615 struct replacement *r = &replacements[i];
1616 if (r->where == orig_loc)
1617 push_replacement (dup_loc, r->what, r->mode);
1618 }
1619 }
1620 \f
1621 /* Transfer all replacements that used to be in reload FROM to be in
1622 reload TO. */
1623
1624 void
1625 transfer_replacements (int to, int from)
1626 {
1627 int i;
1628
1629 for (i = 0; i < n_replacements; i++)
1630 if (replacements[i].what == from)
1631 replacements[i].what = to;
1632 }
1633 \f
1634 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1635 or a subpart of it. If we have any replacements registered for IN_RTX,
1636 cancel the reloads that were supposed to load them.
1637 Return nonzero if we canceled any reloads. */
1638 int
1639 remove_address_replacements (rtx in_rtx)
1640 {
1641 int i, j;
1642 char reload_flags[MAX_RELOADS];
1643 int something_changed = 0;
1644
1645 memset (reload_flags, 0, sizeof reload_flags);
1646 for (i = 0, j = 0; i < n_replacements; i++)
1647 {
1648 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1649 reload_flags[replacements[i].what] |= 1;
1650 else
1651 {
1652 replacements[j++] = replacements[i];
1653 reload_flags[replacements[i].what] |= 2;
1654 }
1655 }
1656 /* Note that the following store must be done before the recursive calls. */
1657 n_replacements = j;
1658
1659 for (i = n_reloads - 1; i >= 0; i--)
1660 {
1661 if (reload_flags[i] == 1)
1662 {
1663 deallocate_reload_reg (i);
1664 remove_address_replacements (rld[i].in);
1665 rld[i].in = 0;
1666 something_changed = 1;
1667 }
1668 }
1669 return something_changed;
1670 }
1671 \f
1672 /* If there is only one output reload, and it is not for an earlyclobber
1673 operand, try to combine it with a (logically unrelated) input reload
1674 to reduce the number of reload registers needed.
1675
1676 This is safe if the input reload does not appear in
1677 the value being output-reloaded, because this implies
1678 it is not needed any more once the original insn completes.
1679
1680 If that doesn't work, see we can use any of the registers that
1681 die in this insn as a reload register. We can if it is of the right
1682 class and does not appear in the value being output-reloaded. */
1683
1684 static void
1685 combine_reloads (void)
1686 {
1687 int i;
1688 int output_reload = -1;
1689 int secondary_out = -1;
1690 rtx note;
1691
1692 /* Find the output reload; return unless there is exactly one
1693 and that one is mandatory. */
1694
1695 for (i = 0; i < n_reloads; i++)
1696 if (rld[i].out != 0)
1697 {
1698 if (output_reload >= 0)
1699 return;
1700 output_reload = i;
1701 }
1702
1703 if (output_reload < 0 || rld[output_reload].optional)
1704 return;
1705
1706 /* An input-output reload isn't combinable. */
1707
1708 if (rld[output_reload].in != 0)
1709 return;
1710
1711 /* If this reload is for an earlyclobber operand, we can't do anything. */
1712 if (earlyclobber_operand_p (rld[output_reload].out))
1713 return;
1714
1715 /* If there is a reload for part of the address of this operand, we would
1716 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1717 its life to the point where doing this combine would not lower the
1718 number of spill registers needed. */
1719 for (i = 0; i < n_reloads; i++)
1720 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1721 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1722 && rld[i].opnum == rld[output_reload].opnum)
1723 return;
1724
1725 /* Check each input reload; can we combine it? */
1726
1727 for (i = 0; i < n_reloads; i++)
1728 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1729 /* Life span of this reload must not extend past main insn. */
1730 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1731 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1732 && rld[i].when_needed != RELOAD_OTHER
1733 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1734 == CLASS_MAX_NREGS (rld[output_reload].class,
1735 rld[output_reload].outmode))
1736 && rld[i].inc == 0
1737 && rld[i].reg_rtx == 0
1738 #ifdef SECONDARY_MEMORY_NEEDED
1739 /* Don't combine two reloads with different secondary
1740 memory locations. */
1741 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1742 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1743 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1744 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1745 #endif
1746 && (SMALL_REGISTER_CLASSES
1747 ? (rld[i].class == rld[output_reload].class)
1748 : (reg_class_subset_p (rld[i].class,
1749 rld[output_reload].class)
1750 || reg_class_subset_p (rld[output_reload].class,
1751 rld[i].class)))
1752 && (MATCHES (rld[i].in, rld[output_reload].out)
1753 /* Args reversed because the first arg seems to be
1754 the one that we imagine being modified
1755 while the second is the one that might be affected. */
1756 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1757 rld[i].in)
1758 /* However, if the input is a register that appears inside
1759 the output, then we also can't share.
1760 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1761 If the same reload reg is used for both reg 69 and the
1762 result to be stored in memory, then that result
1763 will clobber the address of the memory ref. */
1764 && ! (GET_CODE (rld[i].in) == REG
1765 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1766 rld[output_reload].out))))
1767 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1768 rld[i].when_needed != RELOAD_FOR_INPUT)
1769 && (reg_class_size[(int) rld[i].class]
1770 || SMALL_REGISTER_CLASSES)
1771 /* We will allow making things slightly worse by combining an
1772 input and an output, but no worse than that. */
1773 && (rld[i].when_needed == RELOAD_FOR_INPUT
1774 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1775 {
1776 int j;
1777
1778 /* We have found a reload to combine with! */
1779 rld[i].out = rld[output_reload].out;
1780 rld[i].out_reg = rld[output_reload].out_reg;
1781 rld[i].outmode = rld[output_reload].outmode;
1782 /* Mark the old output reload as inoperative. */
1783 rld[output_reload].out = 0;
1784 /* The combined reload is needed for the entire insn. */
1785 rld[i].when_needed = RELOAD_OTHER;
1786 /* If the output reload had a secondary reload, copy it. */
1787 if (rld[output_reload].secondary_out_reload != -1)
1788 {
1789 rld[i].secondary_out_reload
1790 = rld[output_reload].secondary_out_reload;
1791 rld[i].secondary_out_icode
1792 = rld[output_reload].secondary_out_icode;
1793 }
1794
1795 #ifdef SECONDARY_MEMORY_NEEDED
1796 /* Copy any secondary MEM. */
1797 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1798 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1799 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1800 #endif
1801 /* If required, minimize the register class. */
1802 if (reg_class_subset_p (rld[output_reload].class,
1803 rld[i].class))
1804 rld[i].class = rld[output_reload].class;
1805
1806 /* Transfer all replacements from the old reload to the combined. */
1807 for (j = 0; j < n_replacements; j++)
1808 if (replacements[j].what == output_reload)
1809 replacements[j].what = i;
1810
1811 return;
1812 }
1813
1814 /* If this insn has only one operand that is modified or written (assumed
1815 to be the first), it must be the one corresponding to this reload. It
1816 is safe to use anything that dies in this insn for that output provided
1817 that it does not occur in the output (we already know it isn't an
1818 earlyclobber. If this is an asm insn, give up. */
1819
1820 if (INSN_CODE (this_insn) == -1)
1821 return;
1822
1823 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1824 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1825 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1826 return;
1827
1828 /* See if some hard register that dies in this insn and is not used in
1829 the output is the right class. Only works if the register we pick
1830 up can fully hold our output reload. */
1831 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1832 if (REG_NOTE_KIND (note) == REG_DEAD
1833 && GET_CODE (XEXP (note, 0)) == REG
1834 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1835 rld[output_reload].out)
1836 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1837 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1838 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1839 REGNO (XEXP (note, 0)))
1840 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1841 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1842 /* Ensure that a secondary or tertiary reload for this output
1843 won't want this register. */
1844 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1845 || (! (TEST_HARD_REG_BIT
1846 (reg_class_contents[(int) rld[secondary_out].class],
1847 REGNO (XEXP (note, 0))))
1848 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1849 || ! (TEST_HARD_REG_BIT
1850 (reg_class_contents[(int) rld[secondary_out].class],
1851 REGNO (XEXP (note, 0)))))))
1852 && ! fixed_regs[REGNO (XEXP (note, 0))])
1853 {
1854 rld[output_reload].reg_rtx
1855 = gen_rtx_REG (rld[output_reload].outmode,
1856 REGNO (XEXP (note, 0)));
1857 return;
1858 }
1859 }
1860 \f
1861 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1862 See if one of IN and OUT is a register that may be used;
1863 this is desirable since a spill-register won't be needed.
1864 If so, return the register rtx that proves acceptable.
1865
1866 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1867 CLASS is the register class required for the reload.
1868
1869 If FOR_REAL is >= 0, it is the number of the reload,
1870 and in some cases when it can be discovered that OUT doesn't need
1871 to be computed, clear out rld[FOR_REAL].out.
1872
1873 If FOR_REAL is -1, this should not be done, because this call
1874 is just to see if a register can be found, not to find and install it.
1875
1876 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1877 puts an additional constraint on being able to use IN for OUT since
1878 IN must not appear elsewhere in the insn (it is assumed that IN itself
1879 is safe from the earlyclobber). */
1880
1881 static rtx
1882 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1883 enum machine_mode inmode, enum machine_mode outmode,
1884 enum reg_class class, int for_real, int earlyclobber)
1885 {
1886 rtx in = real_in;
1887 rtx out = real_out;
1888 int in_offset = 0;
1889 int out_offset = 0;
1890 rtx value = 0;
1891
1892 /* If operands exceed a word, we can't use either of them
1893 unless they have the same size. */
1894 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1895 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1896 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1897 return 0;
1898
1899 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1900 respectively refers to a hard register. */
1901
1902 /* Find the inside of any subregs. */
1903 while (GET_CODE (out) == SUBREG)
1904 {
1905 if (GET_CODE (SUBREG_REG (out)) == REG
1906 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1907 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1908 GET_MODE (SUBREG_REG (out)),
1909 SUBREG_BYTE (out),
1910 GET_MODE (out));
1911 out = SUBREG_REG (out);
1912 }
1913 while (GET_CODE (in) == SUBREG)
1914 {
1915 if (GET_CODE (SUBREG_REG (in)) == REG
1916 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1917 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1918 GET_MODE (SUBREG_REG (in)),
1919 SUBREG_BYTE (in),
1920 GET_MODE (in));
1921 in = SUBREG_REG (in);
1922 }
1923
1924 /* Narrow down the reg class, the same way push_reload will;
1925 otherwise we might find a dummy now, but push_reload won't. */
1926 class = PREFERRED_RELOAD_CLASS (in, class);
1927
1928 /* See if OUT will do. */
1929 if (GET_CODE (out) == REG
1930 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1931 {
1932 unsigned int regno = REGNO (out) + out_offset;
1933 unsigned int nwords = hard_regno_nregs[regno][outmode];
1934 rtx saved_rtx;
1935
1936 /* When we consider whether the insn uses OUT,
1937 ignore references within IN. They don't prevent us
1938 from copying IN into OUT, because those refs would
1939 move into the insn that reloads IN.
1940
1941 However, we only ignore IN in its role as this reload.
1942 If the insn uses IN elsewhere and it contains OUT,
1943 that counts. We can't be sure it's the "same" operand
1944 so it might not go through this reload. */
1945 saved_rtx = *inloc;
1946 *inloc = const0_rtx;
1947
1948 if (regno < FIRST_PSEUDO_REGISTER
1949 && HARD_REGNO_MODE_OK (regno, outmode)
1950 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1951 PATTERN (this_insn), outloc))
1952 {
1953 unsigned int i;
1954
1955 for (i = 0; i < nwords; i++)
1956 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1957 regno + i))
1958 break;
1959
1960 if (i == nwords)
1961 {
1962 if (GET_CODE (real_out) == REG)
1963 value = real_out;
1964 else
1965 value = gen_rtx_REG (outmode, regno);
1966 }
1967 }
1968
1969 *inloc = saved_rtx;
1970 }
1971
1972 /* Consider using IN if OUT was not acceptable
1973 or if OUT dies in this insn (like the quotient in a divmod insn).
1974 We can't use IN unless it is dies in this insn,
1975 which means we must know accurately which hard regs are live.
1976 Also, the result can't go in IN if IN is used within OUT,
1977 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1978 if (hard_regs_live_known
1979 && GET_CODE (in) == REG
1980 && REGNO (in) < FIRST_PSEUDO_REGISTER
1981 && (value == 0
1982 || find_reg_note (this_insn, REG_UNUSED, real_out))
1983 && find_reg_note (this_insn, REG_DEAD, real_in)
1984 && !fixed_regs[REGNO (in)]
1985 && HARD_REGNO_MODE_OK (REGNO (in),
1986 /* The only case where out and real_out might
1987 have different modes is where real_out
1988 is a subreg, and in that case, out
1989 has a real mode. */
1990 (GET_MODE (out) != VOIDmode
1991 ? GET_MODE (out) : outmode)))
1992 {
1993 unsigned int regno = REGNO (in) + in_offset;
1994 unsigned int nwords = hard_regno_nregs[regno][inmode];
1995
1996 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1997 && ! hard_reg_set_here_p (regno, regno + nwords,
1998 PATTERN (this_insn))
1999 && (! earlyclobber
2000 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2001 PATTERN (this_insn), inloc)))
2002 {
2003 unsigned int i;
2004
2005 for (i = 0; i < nwords; i++)
2006 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2007 regno + i))
2008 break;
2009
2010 if (i == nwords)
2011 {
2012 /* If we were going to use OUT as the reload reg
2013 and changed our mind, it means OUT is a dummy that
2014 dies here. So don't bother copying value to it. */
2015 if (for_real >= 0 && value == real_out)
2016 rld[for_real].out = 0;
2017 if (GET_CODE (real_in) == REG)
2018 value = real_in;
2019 else
2020 value = gen_rtx_REG (inmode, regno);
2021 }
2022 }
2023 }
2024
2025 return value;
2026 }
2027 \f
2028 /* This page contains subroutines used mainly for determining
2029 whether the IN or an OUT of a reload can serve as the
2030 reload register. */
2031
2032 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2033
2034 int
2035 earlyclobber_operand_p (rtx x)
2036 {
2037 int i;
2038
2039 for (i = 0; i < n_earlyclobbers; i++)
2040 if (reload_earlyclobbers[i] == x)
2041 return 1;
2042
2043 return 0;
2044 }
2045
2046 /* Return 1 if expression X alters a hard reg in the range
2047 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2048 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2049 X should be the body of an instruction. */
2050
2051 static int
2052 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2053 {
2054 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2055 {
2056 rtx op0 = SET_DEST (x);
2057
2058 while (GET_CODE (op0) == SUBREG)
2059 op0 = SUBREG_REG (op0);
2060 if (GET_CODE (op0) == REG)
2061 {
2062 unsigned int r = REGNO (op0);
2063
2064 /* See if this reg overlaps range under consideration. */
2065 if (r < end_regno
2066 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2067 return 1;
2068 }
2069 }
2070 else if (GET_CODE (x) == PARALLEL)
2071 {
2072 int i = XVECLEN (x, 0) - 1;
2073
2074 for (; i >= 0; i--)
2075 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2076 return 1;
2077 }
2078
2079 return 0;
2080 }
2081
2082 /* Return 1 if ADDR is a valid memory address for mode MODE,
2083 and check that each pseudo reg has the proper kind of
2084 hard reg. */
2085
2086 int
2087 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2088 {
2089 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2090 return 0;
2091
2092 win:
2093 return 1;
2094 }
2095 \f
2096 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2097 if they are the same hard reg, and has special hacks for
2098 autoincrement and autodecrement.
2099 This is specifically intended for find_reloads to use
2100 in determining whether two operands match.
2101 X is the operand whose number is the lower of the two.
2102
2103 The value is 2 if Y contains a pre-increment that matches
2104 a non-incrementing address in X. */
2105
2106 /* ??? To be completely correct, we should arrange to pass
2107 for X the output operand and for Y the input operand.
2108 For now, we assume that the output operand has the lower number
2109 because that is natural in (SET output (... input ...)). */
2110
2111 int
2112 operands_match_p (rtx x, rtx y)
2113 {
2114 int i;
2115 RTX_CODE code = GET_CODE (x);
2116 const char *fmt;
2117 int success_2;
2118
2119 if (x == y)
2120 return 1;
2121 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2122 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2123 && GET_CODE (SUBREG_REG (y)) == REG)))
2124 {
2125 int j;
2126
2127 if (code == SUBREG)
2128 {
2129 i = REGNO (SUBREG_REG (x));
2130 if (i >= FIRST_PSEUDO_REGISTER)
2131 goto slow;
2132 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2133 GET_MODE (SUBREG_REG (x)),
2134 SUBREG_BYTE (x),
2135 GET_MODE (x));
2136 }
2137 else
2138 i = REGNO (x);
2139
2140 if (GET_CODE (y) == SUBREG)
2141 {
2142 j = REGNO (SUBREG_REG (y));
2143 if (j >= FIRST_PSEUDO_REGISTER)
2144 goto slow;
2145 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2146 GET_MODE (SUBREG_REG (y)),
2147 SUBREG_BYTE (y),
2148 GET_MODE (y));
2149 }
2150 else
2151 j = REGNO (y);
2152
2153 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2154 multiple hard register group, so that for example (reg:DI 0) and
2155 (reg:SI 1) will be considered the same register. */
2156 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2157 && i < FIRST_PSEUDO_REGISTER)
2158 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2159 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2160 && j < FIRST_PSEUDO_REGISTER)
2161 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2162
2163 return i == j;
2164 }
2165 /* If two operands must match, because they are really a single
2166 operand of an assembler insn, then two postincrements are invalid
2167 because the assembler insn would increment only once.
2168 On the other hand, a postincrement matches ordinary indexing
2169 if the postincrement is the output operand. */
2170 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2171 return operands_match_p (XEXP (x, 0), y);
2172 /* Two preincrements are invalid
2173 because the assembler insn would increment only once.
2174 On the other hand, a preincrement matches ordinary indexing
2175 if the preincrement is the input operand.
2176 In this case, return 2, since some callers need to do special
2177 things when this happens. */
2178 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2179 || GET_CODE (y) == PRE_MODIFY)
2180 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2181
2182 slow:
2183
2184 /* Now we have disposed of all the cases
2185 in which different rtx codes can match. */
2186 if (code != GET_CODE (y))
2187 return 0;
2188 if (code == LABEL_REF)
2189 return XEXP (x, 0) == XEXP (y, 0);
2190 if (code == SYMBOL_REF)
2191 return XSTR (x, 0) == XSTR (y, 0);
2192
2193 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2194
2195 if (GET_MODE (x) != GET_MODE (y))
2196 return 0;
2197
2198 /* Compare the elements. If any pair of corresponding elements
2199 fail to match, return 0 for the whole things. */
2200
2201 success_2 = 0;
2202 fmt = GET_RTX_FORMAT (code);
2203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2204 {
2205 int val, j;
2206 switch (fmt[i])
2207 {
2208 case 'w':
2209 if (XWINT (x, i) != XWINT (y, i))
2210 return 0;
2211 break;
2212
2213 case 'i':
2214 if (XINT (x, i) != XINT (y, i))
2215 return 0;
2216 break;
2217
2218 case 'e':
2219 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2220 if (val == 0)
2221 return 0;
2222 /* If any subexpression returns 2,
2223 we should return 2 if we are successful. */
2224 if (val == 2)
2225 success_2 = 1;
2226 break;
2227
2228 case '0':
2229 break;
2230
2231 case 'E':
2232 if (XVECLEN (x, i) != XVECLEN (y, i))
2233 return 0;
2234 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2235 {
2236 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2237 if (val == 0)
2238 return 0;
2239 if (val == 2)
2240 success_2 = 1;
2241 }
2242 break;
2243
2244 /* It is believed that rtx's at this level will never
2245 contain anything but integers and other rtx's,
2246 except for within LABEL_REFs and SYMBOL_REFs. */
2247 default:
2248 abort ();
2249 }
2250 }
2251 return 1 + success_2;
2252 }
2253 \f
2254 /* Describe the range of registers or memory referenced by X.
2255 If X is a register, set REG_FLAG and put the first register
2256 number into START and the last plus one into END.
2257 If X is a memory reference, put a base address into BASE
2258 and a range of integer offsets into START and END.
2259 If X is pushing on the stack, we can assume it causes no trouble,
2260 so we set the SAFE field. */
2261
2262 static struct decomposition
2263 decompose (rtx x)
2264 {
2265 struct decomposition val;
2266 int all_const = 0;
2267
2268 memset (&val, 0, sizeof (val));
2269
2270 if (GET_CODE (x) == MEM)
2271 {
2272 rtx base = NULL_RTX, offset = 0;
2273 rtx addr = XEXP (x, 0);
2274
2275 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2276 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2277 {
2278 val.base = XEXP (addr, 0);
2279 val.start = -GET_MODE_SIZE (GET_MODE (x));
2280 val.end = GET_MODE_SIZE (GET_MODE (x));
2281 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2282 return val;
2283 }
2284
2285 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2286 {
2287 if (GET_CODE (XEXP (addr, 1)) == PLUS
2288 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2289 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2290 {
2291 val.base = XEXP (addr, 0);
2292 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2293 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2294 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2295 return val;
2296 }
2297 }
2298
2299 if (GET_CODE (addr) == CONST)
2300 {
2301 addr = XEXP (addr, 0);
2302 all_const = 1;
2303 }
2304 if (GET_CODE (addr) == PLUS)
2305 {
2306 if (CONSTANT_P (XEXP (addr, 0)))
2307 {
2308 base = XEXP (addr, 1);
2309 offset = XEXP (addr, 0);
2310 }
2311 else if (CONSTANT_P (XEXP (addr, 1)))
2312 {
2313 base = XEXP (addr, 0);
2314 offset = XEXP (addr, 1);
2315 }
2316 }
2317
2318 if (offset == 0)
2319 {
2320 base = addr;
2321 offset = const0_rtx;
2322 }
2323 if (GET_CODE (offset) == CONST)
2324 offset = XEXP (offset, 0);
2325 if (GET_CODE (offset) == PLUS)
2326 {
2327 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2328 {
2329 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2330 offset = XEXP (offset, 0);
2331 }
2332 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2333 {
2334 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2335 offset = XEXP (offset, 1);
2336 }
2337 else
2338 {
2339 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2340 offset = const0_rtx;
2341 }
2342 }
2343 else if (GET_CODE (offset) != CONST_INT)
2344 {
2345 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2346 offset = const0_rtx;
2347 }
2348
2349 if (all_const && GET_CODE (base) == PLUS)
2350 base = gen_rtx_CONST (GET_MODE (base), base);
2351
2352 if (GET_CODE (offset) != CONST_INT)
2353 abort ();
2354
2355 val.start = INTVAL (offset);
2356 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2357 val.base = base;
2358 return val;
2359 }
2360 else if (GET_CODE (x) == REG)
2361 {
2362 val.reg_flag = 1;
2363 val.start = true_regnum (x);
2364 if (val.start < 0)
2365 {
2366 /* A pseudo with no hard reg. */
2367 val.start = REGNO (x);
2368 val.end = val.start + 1;
2369 }
2370 else
2371 /* A hard reg. */
2372 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2373 }
2374 else if (GET_CODE (x) == SUBREG)
2375 {
2376 if (GET_CODE (SUBREG_REG (x)) != REG)
2377 /* This could be more precise, but it's good enough. */
2378 return decompose (SUBREG_REG (x));
2379 val.reg_flag = 1;
2380 val.start = true_regnum (x);
2381 if (val.start < 0)
2382 return decompose (SUBREG_REG (x));
2383 else
2384 /* A hard reg. */
2385 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2386 }
2387 else if (CONSTANT_P (x)
2388 /* This hasn't been assigned yet, so it can't conflict yet. */
2389 || GET_CODE (x) == SCRATCH)
2390 val.safe = 1;
2391 else
2392 abort ();
2393 return val;
2394 }
2395
2396 /* Return 1 if altering Y will not modify the value of X.
2397 Y is also described by YDATA, which should be decompose (Y). */
2398
2399 static int
2400 immune_p (rtx x, rtx y, struct decomposition ydata)
2401 {
2402 struct decomposition xdata;
2403
2404 if (ydata.reg_flag)
2405 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2406 if (ydata.safe)
2407 return 1;
2408
2409 if (GET_CODE (y) != MEM)
2410 abort ();
2411 /* If Y is memory and X is not, Y can't affect X. */
2412 if (GET_CODE (x) != MEM)
2413 return 1;
2414
2415 xdata = decompose (x);
2416
2417 if (! rtx_equal_p (xdata.base, ydata.base))
2418 {
2419 /* If bases are distinct symbolic constants, there is no overlap. */
2420 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2421 return 1;
2422 /* Constants and stack slots never overlap. */
2423 if (CONSTANT_P (xdata.base)
2424 && (ydata.base == frame_pointer_rtx
2425 || ydata.base == hard_frame_pointer_rtx
2426 || ydata.base == stack_pointer_rtx))
2427 return 1;
2428 if (CONSTANT_P (ydata.base)
2429 && (xdata.base == frame_pointer_rtx
2430 || xdata.base == hard_frame_pointer_rtx
2431 || xdata.base == stack_pointer_rtx))
2432 return 1;
2433 /* If either base is variable, we don't know anything. */
2434 return 0;
2435 }
2436
2437 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2438 }
2439
2440 /* Similar, but calls decompose. */
2441
2442 int
2443 safe_from_earlyclobber (rtx op, rtx clobber)
2444 {
2445 struct decomposition early_data;
2446
2447 early_data = decompose (clobber);
2448 return immune_p (op, clobber, early_data);
2449 }
2450 \f
2451 /* Main entry point of this file: search the body of INSN
2452 for values that need reloading and record them with push_reload.
2453 REPLACE nonzero means record also where the values occur
2454 so that subst_reloads can be used.
2455
2456 IND_LEVELS says how many levels of indirection are supported by this
2457 machine; a value of zero means that a memory reference is not a valid
2458 memory address.
2459
2460 LIVE_KNOWN says we have valid information about which hard
2461 regs are live at each point in the program; this is true when
2462 we are called from global_alloc but false when stupid register
2463 allocation has been done.
2464
2465 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2466 which is nonnegative if the reg has been commandeered for reloading into.
2467 It is copied into STATIC_RELOAD_REG_P and referenced from there
2468 by various subroutines.
2469
2470 Return TRUE if some operands need to be changed, because of swapping
2471 commutative operands, reg_equiv_address substitution, or whatever. */
2472
2473 int
2474 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2475 short *reload_reg_p)
2476 {
2477 int insn_code_number;
2478 int i, j;
2479 int noperands;
2480 /* These start out as the constraints for the insn
2481 and they are chewed up as we consider alternatives. */
2482 char *constraints[MAX_RECOG_OPERANDS];
2483 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2484 a register. */
2485 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2486 char pref_or_nothing[MAX_RECOG_OPERANDS];
2487 /* Nonzero for a MEM operand whose entire address needs a reload. */
2488 int address_reloaded[MAX_RECOG_OPERANDS];
2489 /* Nonzero for an address operand that needs to be completely reloaded. */
2490 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2491 /* Value of enum reload_type to use for operand. */
2492 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2493 /* Value of enum reload_type to use within address of operand. */
2494 enum reload_type address_type[MAX_RECOG_OPERANDS];
2495 /* Save the usage of each operand. */
2496 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2497 int no_input_reloads = 0, no_output_reloads = 0;
2498 int n_alternatives;
2499 int this_alternative[MAX_RECOG_OPERANDS];
2500 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2501 char this_alternative_win[MAX_RECOG_OPERANDS];
2502 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2503 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2504 int this_alternative_matches[MAX_RECOG_OPERANDS];
2505 int swapped;
2506 int goal_alternative[MAX_RECOG_OPERANDS];
2507 int this_alternative_number;
2508 int goal_alternative_number = 0;
2509 int operand_reloadnum[MAX_RECOG_OPERANDS];
2510 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2511 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2512 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2513 char goal_alternative_win[MAX_RECOG_OPERANDS];
2514 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2515 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2516 int goal_alternative_swapped;
2517 int best;
2518 int commutative;
2519 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2520 rtx substed_operand[MAX_RECOG_OPERANDS];
2521 rtx body = PATTERN (insn);
2522 rtx set = single_set (insn);
2523 int goal_earlyclobber = 0, this_earlyclobber;
2524 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2525 int retval = 0;
2526
2527 this_insn = insn;
2528 n_reloads = 0;
2529 n_replacements = 0;
2530 n_earlyclobbers = 0;
2531 replace_reloads = replace;
2532 hard_regs_live_known = live_known;
2533 static_reload_reg_p = reload_reg_p;
2534
2535 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2536 neither are insns that SET cc0. Insns that use CC0 are not allowed
2537 to have any input reloads. */
2538 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2539 no_output_reloads = 1;
2540
2541 #ifdef HAVE_cc0
2542 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2543 no_input_reloads = 1;
2544 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2545 no_output_reloads = 1;
2546 #endif
2547
2548 #ifdef SECONDARY_MEMORY_NEEDED
2549 /* The eliminated forms of any secondary memory locations are per-insn, so
2550 clear them out here. */
2551
2552 if (secondary_memlocs_elim_used)
2553 {
2554 memset (secondary_memlocs_elim, 0,
2555 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2556 secondary_memlocs_elim_used = 0;
2557 }
2558 #endif
2559
2560 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2561 is cheap to move between them. If it is not, there may not be an insn
2562 to do the copy, so we may need a reload. */
2563 if (GET_CODE (body) == SET
2564 && GET_CODE (SET_DEST (body)) == REG
2565 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2566 && GET_CODE (SET_SRC (body)) == REG
2567 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2568 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2569 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2570 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2571 return 0;
2572
2573 extract_insn (insn);
2574
2575 noperands = reload_n_operands = recog_data.n_operands;
2576 n_alternatives = recog_data.n_alternatives;
2577
2578 /* Just return "no reloads" if insn has no operands with constraints. */
2579 if (noperands == 0 || n_alternatives == 0)
2580 return 0;
2581
2582 insn_code_number = INSN_CODE (insn);
2583 this_insn_is_asm = insn_code_number < 0;
2584
2585 memcpy (operand_mode, recog_data.operand_mode,
2586 noperands * sizeof (enum machine_mode));
2587 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2588
2589 commutative = -1;
2590
2591 /* If we will need to know, later, whether some pair of operands
2592 are the same, we must compare them now and save the result.
2593 Reloading the base and index registers will clobber them
2594 and afterward they will fail to match. */
2595
2596 for (i = 0; i < noperands; i++)
2597 {
2598 char *p;
2599 int c;
2600
2601 substed_operand[i] = recog_data.operand[i];
2602 p = constraints[i];
2603
2604 modified[i] = RELOAD_READ;
2605
2606 /* Scan this operand's constraint to see if it is an output operand,
2607 an in-out operand, is commutative, or should match another. */
2608
2609 while ((c = *p))
2610 {
2611 p += CONSTRAINT_LEN (c, p);
2612 switch (c)
2613 {
2614 case '=':
2615 modified[i] = RELOAD_WRITE;
2616 break;
2617 case '+':
2618 modified[i] = RELOAD_READ_WRITE;
2619 break;
2620 case '%':
2621 {
2622 /* The last operand should not be marked commutative. */
2623 if (i == noperands - 1)
2624 abort ();
2625
2626 /* We currently only support one commutative pair of
2627 operands. Some existing asm code currently uses more
2628 than one pair. Previously, that would usually work,
2629 but sometimes it would crash the compiler. We
2630 continue supporting that case as well as we can by
2631 silently ignoring all but the first pair. In the
2632 future we may handle it correctly. */
2633 if (commutative < 0)
2634 commutative = i;
2635 else if (!this_insn_is_asm)
2636 abort ();
2637 }
2638 break;
2639 /* Use of ISDIGIT is tempting here, but it may get expensive because
2640 of locale support we don't want. */
2641 case '0': case '1': case '2': case '3': case '4':
2642 case '5': case '6': case '7': case '8': case '9':
2643 {
2644 c = strtoul (p - 1, &p, 10);
2645
2646 operands_match[c][i]
2647 = operands_match_p (recog_data.operand[c],
2648 recog_data.operand[i]);
2649
2650 /* An operand may not match itself. */
2651 if (c == i)
2652 abort ();
2653
2654 /* If C can be commuted with C+1, and C might need to match I,
2655 then C+1 might also need to match I. */
2656 if (commutative >= 0)
2657 {
2658 if (c == commutative || c == commutative + 1)
2659 {
2660 int other = c + (c == commutative ? 1 : -1);
2661 operands_match[other][i]
2662 = operands_match_p (recog_data.operand[other],
2663 recog_data.operand[i]);
2664 }
2665 if (i == commutative || i == commutative + 1)
2666 {
2667 int other = i + (i == commutative ? 1 : -1);
2668 operands_match[c][other]
2669 = operands_match_p (recog_data.operand[c],
2670 recog_data.operand[other]);
2671 }
2672 /* Note that C is supposed to be less than I.
2673 No need to consider altering both C and I because in
2674 that case we would alter one into the other. */
2675 }
2676 }
2677 }
2678 }
2679 }
2680
2681 /* Examine each operand that is a memory reference or memory address
2682 and reload parts of the addresses into index registers.
2683 Also here any references to pseudo regs that didn't get hard regs
2684 but are equivalent to constants get replaced in the insn itself
2685 with those constants. Nobody will ever see them again.
2686
2687 Finally, set up the preferred classes of each operand. */
2688
2689 for (i = 0; i < noperands; i++)
2690 {
2691 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2692
2693 address_reloaded[i] = 0;
2694 address_operand_reloaded[i] = 0;
2695 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2696 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2697 : RELOAD_OTHER);
2698 address_type[i]
2699 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2700 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2701 : RELOAD_OTHER);
2702
2703 if (*constraints[i] == 0)
2704 /* Ignore things like match_operator operands. */
2705 ;
2706 else if (constraints[i][0] == 'p'
2707 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2708 {
2709 address_operand_reloaded[i]
2710 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2711 recog_data.operand[i],
2712 recog_data.operand_loc[i],
2713 i, operand_type[i], ind_levels, insn);
2714
2715 /* If we now have a simple operand where we used to have a
2716 PLUS or MULT, re-recognize and try again. */
2717 if ((OBJECT_P (*recog_data.operand_loc[i])
2718 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2719 && (GET_CODE (recog_data.operand[i]) == MULT
2720 || GET_CODE (recog_data.operand[i]) == PLUS))
2721 {
2722 INSN_CODE (insn) = -1;
2723 retval = find_reloads (insn, replace, ind_levels, live_known,
2724 reload_reg_p);
2725 return retval;
2726 }
2727
2728 recog_data.operand[i] = *recog_data.operand_loc[i];
2729 substed_operand[i] = recog_data.operand[i];
2730
2731 /* Address operands are reloaded in their existing mode,
2732 no matter what is specified in the machine description. */
2733 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2734 }
2735 else if (code == MEM)
2736 {
2737 address_reloaded[i]
2738 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2739 recog_data.operand_loc[i],
2740 XEXP (recog_data.operand[i], 0),
2741 &XEXP (recog_data.operand[i], 0),
2742 i, address_type[i], ind_levels, insn);
2743 recog_data.operand[i] = *recog_data.operand_loc[i];
2744 substed_operand[i] = recog_data.operand[i];
2745 }
2746 else if (code == SUBREG)
2747 {
2748 rtx reg = SUBREG_REG (recog_data.operand[i]);
2749 rtx op
2750 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2751 ind_levels,
2752 set != 0
2753 && &SET_DEST (set) == recog_data.operand_loc[i],
2754 insn,
2755 &address_reloaded[i]);
2756
2757 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2758 that didn't get a hard register, emit a USE with a REG_EQUAL
2759 note in front so that we might inherit a previous, possibly
2760 wider reload. */
2761
2762 if (replace
2763 && GET_CODE (op) == MEM
2764 && GET_CODE (reg) == REG
2765 && (GET_MODE_SIZE (GET_MODE (reg))
2766 >= GET_MODE_SIZE (GET_MODE (op))))
2767 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2768 insn),
2769 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2770
2771 substed_operand[i] = recog_data.operand[i] = op;
2772 }
2773 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2774 /* We can get a PLUS as an "operand" as a result of register
2775 elimination. See eliminate_regs and gen_reload. We handle
2776 a unary operator by reloading the operand. */
2777 substed_operand[i] = recog_data.operand[i]
2778 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2779 ind_levels, 0, insn,
2780 &address_reloaded[i]);
2781 else if (code == REG)
2782 {
2783 /* This is equivalent to calling find_reloads_toplev.
2784 The code is duplicated for speed.
2785 When we find a pseudo always equivalent to a constant,
2786 we replace it by the constant. We must be sure, however,
2787 that we don't try to replace it in the insn in which it
2788 is being set. */
2789 int regno = REGNO (recog_data.operand[i]);
2790 if (reg_equiv_constant[regno] != 0
2791 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2792 {
2793 /* Record the existing mode so that the check if constants are
2794 allowed will work when operand_mode isn't specified. */
2795
2796 if (operand_mode[i] == VOIDmode)
2797 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2798
2799 substed_operand[i] = recog_data.operand[i]
2800 = reg_equiv_constant[regno];
2801 }
2802 if (reg_equiv_memory_loc[regno] != 0
2803 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2804 /* We need not give a valid is_set_dest argument since the case
2805 of a constant equivalence was checked above. */
2806 substed_operand[i] = recog_data.operand[i]
2807 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2808 ind_levels, 0, insn,
2809 &address_reloaded[i]);
2810 }
2811 /* If the operand is still a register (we didn't replace it with an
2812 equivalent), get the preferred class to reload it into. */
2813 code = GET_CODE (recog_data.operand[i]);
2814 preferred_class[i]
2815 = ((code == REG && REGNO (recog_data.operand[i])
2816 >= FIRST_PSEUDO_REGISTER)
2817 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2818 : NO_REGS);
2819 pref_or_nothing[i]
2820 = (code == REG
2821 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2822 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2823 }
2824
2825 /* If this is simply a copy from operand 1 to operand 0, merge the
2826 preferred classes for the operands. */
2827 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2828 && recog_data.operand[1] == SET_SRC (set))
2829 {
2830 preferred_class[0] = preferred_class[1]
2831 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2832 pref_or_nothing[0] |= pref_or_nothing[1];
2833 pref_or_nothing[1] |= pref_or_nothing[0];
2834 }
2835
2836 /* Now see what we need for pseudo-regs that didn't get hard regs
2837 or got the wrong kind of hard reg. For this, we must consider
2838 all the operands together against the register constraints. */
2839
2840 best = MAX_RECOG_OPERANDS * 2 + 600;
2841
2842 swapped = 0;
2843 goal_alternative_swapped = 0;
2844 try_swapped:
2845
2846 /* The constraints are made of several alternatives.
2847 Each operand's constraint looks like foo,bar,... with commas
2848 separating the alternatives. The first alternatives for all
2849 operands go together, the second alternatives go together, etc.
2850
2851 First loop over alternatives. */
2852
2853 for (this_alternative_number = 0;
2854 this_alternative_number < n_alternatives;
2855 this_alternative_number++)
2856 {
2857 /* Loop over operands for one constraint alternative. */
2858 /* LOSERS counts those that don't fit this alternative
2859 and would require loading. */
2860 int losers = 0;
2861 /* BAD is set to 1 if it some operand can't fit this alternative
2862 even after reloading. */
2863 int bad = 0;
2864 /* REJECT is a count of how undesirable this alternative says it is
2865 if any reloading is required. If the alternative matches exactly
2866 then REJECT is ignored, but otherwise it gets this much
2867 counted against it in addition to the reloading needed. Each
2868 ? counts three times here since we want the disparaging caused by
2869 a bad register class to only count 1/3 as much. */
2870 int reject = 0;
2871
2872 this_earlyclobber = 0;
2873
2874 for (i = 0; i < noperands; i++)
2875 {
2876 char *p = constraints[i];
2877 char *end;
2878 int len;
2879 int win = 0;
2880 int did_match = 0;
2881 /* 0 => this operand can be reloaded somehow for this alternative. */
2882 int badop = 1;
2883 /* 0 => this operand can be reloaded if the alternative allows regs. */
2884 int winreg = 0;
2885 int c;
2886 int m;
2887 rtx operand = recog_data.operand[i];
2888 int offset = 0;
2889 /* Nonzero means this is a MEM that must be reloaded into a reg
2890 regardless of what the constraint says. */
2891 int force_reload = 0;
2892 int offmemok = 0;
2893 /* Nonzero if a constant forced into memory would be OK for this
2894 operand. */
2895 int constmemok = 0;
2896 int earlyclobber = 0;
2897
2898 /* If the predicate accepts a unary operator, it means that
2899 we need to reload the operand, but do not do this for
2900 match_operator and friends. */
2901 if (UNARY_P (operand) && *p != 0)
2902 operand = XEXP (operand, 0);
2903
2904 /* If the operand is a SUBREG, extract
2905 the REG or MEM (or maybe even a constant) within.
2906 (Constants can occur as a result of reg_equiv_constant.) */
2907
2908 while (GET_CODE (operand) == SUBREG)
2909 {
2910 /* Offset only matters when operand is a REG and
2911 it is a hard reg. This is because it is passed
2912 to reg_fits_class_p if it is a REG and all pseudos
2913 return 0 from that function. */
2914 if (GET_CODE (SUBREG_REG (operand)) == REG
2915 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2916 {
2917 if (!subreg_offset_representable_p
2918 (REGNO (SUBREG_REG (operand)),
2919 GET_MODE (SUBREG_REG (operand)),
2920 SUBREG_BYTE (operand),
2921 GET_MODE (operand)))
2922 force_reload = 1;
2923 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2924 GET_MODE (SUBREG_REG (operand)),
2925 SUBREG_BYTE (operand),
2926 GET_MODE (operand));
2927 }
2928 operand = SUBREG_REG (operand);
2929 /* Force reload if this is a constant or PLUS or if there may
2930 be a problem accessing OPERAND in the outer mode. */
2931 if (CONSTANT_P (operand)
2932 || GET_CODE (operand) == PLUS
2933 /* We must force a reload of paradoxical SUBREGs
2934 of a MEM because the alignment of the inner value
2935 may not be enough to do the outer reference. On
2936 big-endian machines, it may also reference outside
2937 the object.
2938
2939 On machines that extend byte operations and we have a
2940 SUBREG where both the inner and outer modes are no wider
2941 than a word and the inner mode is narrower, is integral,
2942 and gets extended when loaded from memory, combine.c has
2943 made assumptions about the behavior of the machine in such
2944 register access. If the data is, in fact, in memory we
2945 must always load using the size assumed to be in the
2946 register and let the insn do the different-sized
2947 accesses.
2948
2949 This is doubly true if WORD_REGISTER_OPERATIONS. In
2950 this case eliminate_regs has left non-paradoxical
2951 subregs for push_reload to see. Make sure it does
2952 by forcing the reload.
2953
2954 ??? When is it right at this stage to have a subreg
2955 of a mem that is _not_ to be handled specially? IMO
2956 those should have been reduced to just a mem. */
2957 || ((GET_CODE (operand) == MEM
2958 || (GET_CODE (operand)== REG
2959 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2960 #ifndef WORD_REGISTER_OPERATIONS
2961 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2962 < BIGGEST_ALIGNMENT)
2963 && (GET_MODE_SIZE (operand_mode[i])
2964 > GET_MODE_SIZE (GET_MODE (operand))))
2965 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2966 #ifdef LOAD_EXTEND_OP
2967 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2968 && (GET_MODE_SIZE (GET_MODE (operand))
2969 <= UNITS_PER_WORD)
2970 && (GET_MODE_SIZE (operand_mode[i])
2971 > GET_MODE_SIZE (GET_MODE (operand)))
2972 && INTEGRAL_MODE_P (GET_MODE (operand))
2973 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2974 #endif
2975 )
2976 #endif
2977 )
2978 )
2979 force_reload = 1;
2980 }
2981
2982 this_alternative[i] = (int) NO_REGS;
2983 this_alternative_win[i] = 0;
2984 this_alternative_match_win[i] = 0;
2985 this_alternative_offmemok[i] = 0;
2986 this_alternative_earlyclobber[i] = 0;
2987 this_alternative_matches[i] = -1;
2988
2989 /* An empty constraint or empty alternative
2990 allows anything which matched the pattern. */
2991 if (*p == 0 || *p == ',')
2992 win = 1, badop = 0;
2993
2994 /* Scan this alternative's specs for this operand;
2995 set WIN if the operand fits any letter in this alternative.
2996 Otherwise, clear BADOP if this operand could
2997 fit some letter after reloads,
2998 or set WINREG if this operand could fit after reloads
2999 provided the constraint allows some registers. */
3000
3001 do
3002 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3003 {
3004 case '\0':
3005 len = 0;
3006 break;
3007 case ',':
3008 c = '\0';
3009 break;
3010
3011 case '=': case '+': case '*':
3012 break;
3013
3014 case '%':
3015 /* We only support one commutative marker, the first
3016 one. We already set commutative above. */
3017 break;
3018
3019 case '?':
3020 reject += 6;
3021 break;
3022
3023 case '!':
3024 reject = 600;
3025 break;
3026
3027 case '#':
3028 /* Ignore rest of this alternative as far as
3029 reloading is concerned. */
3030 do
3031 p++;
3032 while (*p && *p != ',');
3033 len = 0;
3034 break;
3035
3036 case '0': case '1': case '2': case '3': case '4':
3037 case '5': case '6': case '7': case '8': case '9':
3038 m = strtoul (p, &end, 10);
3039 p = end;
3040 len = 0;
3041
3042 this_alternative_matches[i] = m;
3043 /* We are supposed to match a previous operand.
3044 If we do, we win if that one did.
3045 If we do not, count both of the operands as losers.
3046 (This is too conservative, since most of the time
3047 only a single reload insn will be needed to make
3048 the two operands win. As a result, this alternative
3049 may be rejected when it is actually desirable.) */
3050 if ((swapped && (m != commutative || i != commutative + 1))
3051 /* If we are matching as if two operands were swapped,
3052 also pretend that operands_match had been computed
3053 with swapped.
3054 But if I is the second of those and C is the first,
3055 don't exchange them, because operands_match is valid
3056 only on one side of its diagonal. */
3057 ? (operands_match
3058 [(m == commutative || m == commutative + 1)
3059 ? 2 * commutative + 1 - m : m]
3060 [(i == commutative || i == commutative + 1)
3061 ? 2 * commutative + 1 - i : i])
3062 : operands_match[m][i])
3063 {
3064 /* If we are matching a non-offsettable address where an
3065 offsettable address was expected, then we must reject
3066 this combination, because we can't reload it. */
3067 if (this_alternative_offmemok[m]
3068 && GET_CODE (recog_data.operand[m]) == MEM
3069 && this_alternative[m] == (int) NO_REGS
3070 && ! this_alternative_win[m])
3071 bad = 1;
3072
3073 did_match = this_alternative_win[m];
3074 }
3075 else
3076 {
3077 /* Operands don't match. */
3078 rtx value;
3079 /* Retroactively mark the operand we had to match
3080 as a loser, if it wasn't already. */
3081 if (this_alternative_win[m])
3082 losers++;
3083 this_alternative_win[m] = 0;
3084 if (this_alternative[m] == (int) NO_REGS)
3085 bad = 1;
3086 /* But count the pair only once in the total badness of
3087 this alternative, if the pair can be a dummy reload. */
3088 value
3089 = find_dummy_reload (recog_data.operand[i],
3090 recog_data.operand[m],
3091 recog_data.operand_loc[i],
3092 recog_data.operand_loc[m],
3093 operand_mode[i], operand_mode[m],
3094 this_alternative[m], -1,
3095 this_alternative_earlyclobber[m]);
3096
3097 if (value != 0)
3098 losers--;
3099 }
3100 /* This can be fixed with reloads if the operand
3101 we are supposed to match can be fixed with reloads. */
3102 badop = 0;
3103 this_alternative[i] = this_alternative[m];
3104
3105 /* If we have to reload this operand and some previous
3106 operand also had to match the same thing as this
3107 operand, we don't know how to do that. So reject this
3108 alternative. */
3109 if (! did_match || force_reload)
3110 for (j = 0; j < i; j++)
3111 if (this_alternative_matches[j]
3112 == this_alternative_matches[i])
3113 badop = 1;
3114 break;
3115
3116 case 'p':
3117 /* All necessary reloads for an address_operand
3118 were handled in find_reloads_address. */
3119 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3120 win = 1;
3121 badop = 0;
3122 break;
3123
3124 case 'm':
3125 if (force_reload)
3126 break;
3127 if (GET_CODE (operand) == MEM
3128 || (GET_CODE (operand) == REG
3129 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3130 && reg_renumber[REGNO (operand)] < 0))
3131 win = 1;
3132 if (CONST_POOL_OK_P (operand))
3133 badop = 0;
3134 constmemok = 1;
3135 break;
3136
3137 case '<':
3138 if (GET_CODE (operand) == MEM
3139 && ! address_reloaded[i]
3140 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3141 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3142 win = 1;
3143 break;
3144
3145 case '>':
3146 if (GET_CODE (operand) == MEM
3147 && ! address_reloaded[i]
3148 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3149 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3150 win = 1;
3151 break;
3152
3153 /* Memory operand whose address is not offsettable. */
3154 case 'V':
3155 if (force_reload)
3156 break;
3157 if (GET_CODE (operand) == MEM
3158 && ! (ind_levels ? offsettable_memref_p (operand)
3159 : offsettable_nonstrict_memref_p (operand))
3160 /* Certain mem addresses will become offsettable
3161 after they themselves are reloaded. This is important;
3162 we don't want our own handling of unoffsettables
3163 to override the handling of reg_equiv_address. */
3164 && !(GET_CODE (XEXP (operand, 0)) == REG
3165 && (ind_levels == 0
3166 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3167 win = 1;
3168 break;
3169
3170 /* Memory operand whose address is offsettable. */
3171 case 'o':
3172 if (force_reload)
3173 break;
3174 if ((GET_CODE (operand) == MEM
3175 /* If IND_LEVELS, find_reloads_address won't reload a
3176 pseudo that didn't get a hard reg, so we have to
3177 reject that case. */
3178 && ((ind_levels ? offsettable_memref_p (operand)
3179 : offsettable_nonstrict_memref_p (operand))
3180 /* A reloaded address is offsettable because it is now
3181 just a simple register indirect. */
3182 || address_reloaded[i]))
3183 || (GET_CODE (operand) == REG
3184 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3185 && reg_renumber[REGNO (operand)] < 0
3186 /* If reg_equiv_address is nonzero, we will be
3187 loading it into a register; hence it will be
3188 offsettable, but we cannot say that reg_equiv_mem
3189 is offsettable without checking. */
3190 && ((reg_equiv_mem[REGNO (operand)] != 0
3191 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3192 || (reg_equiv_address[REGNO (operand)] != 0))))
3193 win = 1;
3194 if (CONST_POOL_OK_P (operand)
3195 || GET_CODE (operand) == MEM)
3196 badop = 0;
3197 constmemok = 1;
3198 offmemok = 1;
3199 break;
3200
3201 case '&':
3202 /* Output operand that is stored before the need for the
3203 input operands (and their index registers) is over. */
3204 earlyclobber = 1, this_earlyclobber = 1;
3205 break;
3206
3207 case 'E':
3208 case 'F':
3209 if (GET_CODE (operand) == CONST_DOUBLE
3210 || (GET_CODE (operand) == CONST_VECTOR
3211 && (GET_MODE_CLASS (GET_MODE (operand))
3212 == MODE_VECTOR_FLOAT)))
3213 win = 1;
3214 break;
3215
3216 case 'G':
3217 case 'H':
3218 if (GET_CODE (operand) == CONST_DOUBLE
3219 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3220 win = 1;
3221 break;
3222
3223 case 's':
3224 if (GET_CODE (operand) == CONST_INT
3225 || (GET_CODE (operand) == CONST_DOUBLE
3226 && GET_MODE (operand) == VOIDmode))
3227 break;
3228 case 'i':
3229 if (CONSTANT_P (operand)
3230 #ifdef LEGITIMATE_PIC_OPERAND_P
3231 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3232 #endif
3233 )
3234 win = 1;
3235 break;
3236
3237 case 'n':
3238 if (GET_CODE (operand) == CONST_INT
3239 || (GET_CODE (operand) == CONST_DOUBLE
3240 && GET_MODE (operand) == VOIDmode))
3241 win = 1;
3242 break;
3243
3244 case 'I':
3245 case 'J':
3246 case 'K':
3247 case 'L':
3248 case 'M':
3249 case 'N':
3250 case 'O':
3251 case 'P':
3252 if (GET_CODE (operand) == CONST_INT
3253 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3254 win = 1;
3255 break;
3256
3257 case 'X':
3258 win = 1;
3259 break;
3260
3261 case 'g':
3262 if (! force_reload
3263 /* A PLUS is never a valid operand, but reload can make
3264 it from a register when eliminating registers. */
3265 && GET_CODE (operand) != PLUS
3266 /* A SCRATCH is not a valid operand. */
3267 && GET_CODE (operand) != SCRATCH
3268 #ifdef LEGITIMATE_PIC_OPERAND_P
3269 && (! CONSTANT_P (operand)
3270 || ! flag_pic
3271 || LEGITIMATE_PIC_OPERAND_P (operand))
3272 #endif
3273 && (GENERAL_REGS == ALL_REGS
3274 || GET_CODE (operand) != REG
3275 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3276 && reg_renumber[REGNO (operand)] < 0)))
3277 win = 1;
3278 /* Drop through into 'r' case. */
3279
3280 case 'r':
3281 this_alternative[i]
3282 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3283 goto reg;
3284
3285 default:
3286 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3287 {
3288 #ifdef EXTRA_CONSTRAINT_STR
3289 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3290 {
3291 if (force_reload)
3292 break;
3293 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3294 win = 1;
3295 /* If the address was already reloaded,
3296 we win as well. */
3297 else if (GET_CODE (operand) == MEM
3298 && address_reloaded[i])
3299 win = 1;
3300 /* Likewise if the address will be reloaded because
3301 reg_equiv_address is nonzero. For reg_equiv_mem
3302 we have to check. */
3303 else if (GET_CODE (operand) == REG
3304 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3305 && reg_renumber[REGNO (operand)] < 0
3306 && ((reg_equiv_mem[REGNO (operand)] != 0
3307 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3308 || (reg_equiv_address[REGNO (operand)] != 0)))
3309 win = 1;
3310
3311 /* If we didn't already win, we can reload
3312 constants via force_const_mem, and other
3313 MEMs by reloading the address like for 'o'. */
3314 if (CONST_POOL_OK_P (operand)
3315 || GET_CODE (operand) == MEM)
3316 badop = 0;
3317 constmemok = 1;
3318 offmemok = 1;
3319 break;
3320 }
3321 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3322 {
3323 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3324 win = 1;
3325
3326 /* If we didn't already win, we can reload
3327 the address into a base register. */
3328 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3329 badop = 0;
3330 break;
3331 }
3332
3333 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3334 win = 1;
3335 #endif
3336 break;
3337 }
3338
3339 this_alternative[i]
3340 = (int) (reg_class_subunion
3341 [this_alternative[i]]
3342 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3343 reg:
3344 if (GET_MODE (operand) == BLKmode)
3345 break;
3346 winreg = 1;
3347 if (GET_CODE (operand) == REG
3348 && reg_fits_class_p (operand, this_alternative[i],
3349 offset, GET_MODE (recog_data.operand[i])))
3350 win = 1;
3351 break;
3352 }
3353 while ((p += len), c);
3354
3355 constraints[i] = p;
3356
3357 /* If this operand could be handled with a reg,
3358 and some reg is allowed, then this operand can be handled. */
3359 if (winreg && this_alternative[i] != (int) NO_REGS)
3360 badop = 0;
3361
3362 /* Record which operands fit this alternative. */
3363 this_alternative_earlyclobber[i] = earlyclobber;
3364 if (win && ! force_reload)
3365 this_alternative_win[i] = 1;
3366 else if (did_match && ! force_reload)
3367 this_alternative_match_win[i] = 1;
3368 else
3369 {
3370 int const_to_mem = 0;
3371
3372 this_alternative_offmemok[i] = offmemok;
3373 losers++;
3374 if (badop)
3375 bad = 1;
3376 /* Alternative loses if it has no regs for a reg operand. */
3377 if (GET_CODE (operand) == REG
3378 && this_alternative[i] == (int) NO_REGS
3379 && this_alternative_matches[i] < 0)
3380 bad = 1;
3381
3382 /* If this is a constant that is reloaded into the desired
3383 class by copying it to memory first, count that as another
3384 reload. This is consistent with other code and is
3385 required to avoid choosing another alternative when
3386 the constant is moved into memory by this function on
3387 an early reload pass. Note that the test here is
3388 precisely the same as in the code below that calls
3389 force_const_mem. */
3390 if (CONST_POOL_OK_P (operand)
3391 && ((PREFERRED_RELOAD_CLASS (operand,
3392 (enum reg_class) this_alternative[i])
3393 == NO_REGS)
3394 || no_input_reloads)
3395 && operand_mode[i] != VOIDmode)
3396 {
3397 const_to_mem = 1;
3398 if (this_alternative[i] != (int) NO_REGS)
3399 losers++;
3400 }
3401
3402 /* If we can't reload this value at all, reject this
3403 alternative. Note that we could also lose due to
3404 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3405 here. */
3406
3407 if (! CONSTANT_P (operand)
3408 && (enum reg_class) this_alternative[i] != NO_REGS
3409 && (PREFERRED_RELOAD_CLASS (operand,
3410 (enum reg_class) this_alternative[i])
3411 == NO_REGS))
3412 bad = 1;
3413
3414 /* Alternative loses if it requires a type of reload not
3415 permitted for this insn. We can always reload SCRATCH
3416 and objects with a REG_UNUSED note. */
3417 else if (GET_CODE (operand) != SCRATCH
3418 && modified[i] != RELOAD_READ && no_output_reloads
3419 && ! find_reg_note (insn, REG_UNUSED, operand))
3420 bad = 1;
3421 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3422 && ! const_to_mem)
3423 bad = 1;
3424
3425 /* We prefer to reload pseudos over reloading other things,
3426 since such reloads may be able to be eliminated later.
3427 If we are reloading a SCRATCH, we won't be generating any
3428 insns, just using a register, so it is also preferred.
3429 So bump REJECT in other cases. Don't do this in the
3430 case where we are forcing a constant into memory and
3431 it will then win since we don't want to have a different
3432 alternative match then. */
3433 if (! (GET_CODE (operand) == REG
3434 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3435 && GET_CODE (operand) != SCRATCH
3436 && ! (const_to_mem && constmemok))
3437 reject += 2;
3438
3439 /* Input reloads can be inherited more often than output
3440 reloads can be removed, so penalize output reloads. */
3441 if (operand_type[i] != RELOAD_FOR_INPUT
3442 && GET_CODE (operand) != SCRATCH)
3443 reject++;
3444 }
3445
3446 /* If this operand is a pseudo register that didn't get a hard
3447 reg and this alternative accepts some register, see if the
3448 class that we want is a subset of the preferred class for this
3449 register. If not, but it intersects that class, use the
3450 preferred class instead. If it does not intersect the preferred
3451 class, show that usage of this alternative should be discouraged;
3452 it will be discouraged more still if the register is `preferred
3453 or nothing'. We do this because it increases the chance of
3454 reusing our spill register in a later insn and avoiding a pair
3455 of memory stores and loads.
3456
3457 Don't bother with this if this alternative will accept this
3458 operand.
3459
3460 Don't do this for a multiword operand, since it is only a
3461 small win and has the risk of requiring more spill registers,
3462 which could cause a large loss.
3463
3464 Don't do this if the preferred class has only one register
3465 because we might otherwise exhaust the class. */
3466
3467 if (! win && ! did_match
3468 && this_alternative[i] != (int) NO_REGS
3469 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3470 && reg_class_size[(int) preferred_class[i]] > 1)
3471 {
3472 if (! reg_class_subset_p (this_alternative[i],
3473 preferred_class[i]))
3474 {
3475 /* Since we don't have a way of forming the intersection,
3476 we just do something special if the preferred class
3477 is a subset of the class we have; that's the most
3478 common case anyway. */
3479 if (reg_class_subset_p (preferred_class[i],
3480 this_alternative[i]))
3481 this_alternative[i] = (int) preferred_class[i];
3482 else
3483 reject += (2 + 2 * pref_or_nothing[i]);
3484 }
3485 }
3486 }
3487
3488 /* Now see if any output operands that are marked "earlyclobber"
3489 in this alternative conflict with any input operands
3490 or any memory addresses. */
3491
3492 for (i = 0; i < noperands; i++)
3493 if (this_alternative_earlyclobber[i]
3494 && (this_alternative_win[i] || this_alternative_match_win[i]))
3495 {
3496 struct decomposition early_data;
3497
3498 early_data = decompose (recog_data.operand[i]);
3499
3500 if (modified[i] == RELOAD_READ)
3501 abort ();
3502
3503 if (this_alternative[i] == NO_REGS)
3504 {
3505 this_alternative_earlyclobber[i] = 0;
3506 if (this_insn_is_asm)
3507 error_for_asm (this_insn,
3508 "`&' constraint used with no register class");
3509 else
3510 abort ();
3511 }
3512
3513 for (j = 0; j < noperands; j++)
3514 /* Is this an input operand or a memory ref? */
3515 if ((GET_CODE (recog_data.operand[j]) == MEM
3516 || modified[j] != RELOAD_WRITE)
3517 && j != i
3518 /* Ignore things like match_operator operands. */
3519 && *recog_data.constraints[j] != 0
3520 /* Don't count an input operand that is constrained to match
3521 the early clobber operand. */
3522 && ! (this_alternative_matches[j] == i
3523 && rtx_equal_p (recog_data.operand[i],
3524 recog_data.operand[j]))
3525 /* Is it altered by storing the earlyclobber operand? */
3526 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3527 early_data))
3528 {
3529 /* If the output is in a single-reg class,
3530 it's costly to reload it, so reload the input instead. */
3531 if (reg_class_size[this_alternative[i]] == 1
3532 && (GET_CODE (recog_data.operand[j]) == REG
3533 || GET_CODE (recog_data.operand[j]) == SUBREG))
3534 {
3535 losers++;
3536 this_alternative_win[j] = 0;
3537 this_alternative_match_win[j] = 0;
3538 }
3539 else
3540 break;
3541 }
3542 /* If an earlyclobber operand conflicts with something,
3543 it must be reloaded, so request this and count the cost. */
3544 if (j != noperands)
3545 {
3546 losers++;
3547 this_alternative_win[i] = 0;
3548 this_alternative_match_win[j] = 0;
3549 for (j = 0; j < noperands; j++)
3550 if (this_alternative_matches[j] == i
3551 && this_alternative_match_win[j])
3552 {
3553 this_alternative_win[j] = 0;
3554 this_alternative_match_win[j] = 0;
3555 losers++;
3556 }
3557 }
3558 }
3559
3560 /* If one alternative accepts all the operands, no reload required,
3561 choose that alternative; don't consider the remaining ones. */
3562 if (losers == 0)
3563 {
3564 /* Unswap these so that they are never swapped at `finish'. */
3565 if (commutative >= 0)
3566 {
3567 recog_data.operand[commutative] = substed_operand[commutative];
3568 recog_data.operand[commutative + 1]
3569 = substed_operand[commutative + 1];
3570 }
3571 for (i = 0; i < noperands; i++)
3572 {
3573 goal_alternative_win[i] = this_alternative_win[i];
3574 goal_alternative_match_win[i] = this_alternative_match_win[i];
3575 goal_alternative[i] = this_alternative[i];
3576 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3577 goal_alternative_matches[i] = this_alternative_matches[i];
3578 goal_alternative_earlyclobber[i]
3579 = this_alternative_earlyclobber[i];
3580 }
3581 goal_alternative_number = this_alternative_number;
3582 goal_alternative_swapped = swapped;
3583 goal_earlyclobber = this_earlyclobber;
3584 goto finish;
3585 }
3586
3587 /* REJECT, set by the ! and ? constraint characters and when a register
3588 would be reloaded into a non-preferred class, discourages the use of
3589 this alternative for a reload goal. REJECT is incremented by six
3590 for each ? and two for each non-preferred class. */
3591 losers = losers * 6 + reject;
3592
3593 /* If this alternative can be made to work by reloading,
3594 and it needs less reloading than the others checked so far,
3595 record it as the chosen goal for reloading. */
3596 if (! bad && best > losers)
3597 {
3598 for (i = 0; i < noperands; i++)
3599 {
3600 goal_alternative[i] = this_alternative[i];
3601 goal_alternative_win[i] = this_alternative_win[i];
3602 goal_alternative_match_win[i] = this_alternative_match_win[i];
3603 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3604 goal_alternative_matches[i] = this_alternative_matches[i];
3605 goal_alternative_earlyclobber[i]
3606 = this_alternative_earlyclobber[i];
3607 }
3608 goal_alternative_swapped = swapped;
3609 best = losers;
3610 goal_alternative_number = this_alternative_number;
3611 goal_earlyclobber = this_earlyclobber;
3612 }
3613 }
3614
3615 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3616 then we need to try each alternative twice,
3617 the second time matching those two operands
3618 as if we had exchanged them.
3619 To do this, really exchange them in operands.
3620
3621 If we have just tried the alternatives the second time,
3622 return operands to normal and drop through. */
3623
3624 if (commutative >= 0)
3625 {
3626 swapped = !swapped;
3627 if (swapped)
3628 {
3629 enum reg_class tclass;
3630 int t;
3631
3632 recog_data.operand[commutative] = substed_operand[commutative + 1];
3633 recog_data.operand[commutative + 1] = substed_operand[commutative];
3634 /* Swap the duplicates too. */
3635 for (i = 0; i < recog_data.n_dups; i++)
3636 if (recog_data.dup_num[i] == commutative
3637 || recog_data.dup_num[i] == commutative + 1)
3638 *recog_data.dup_loc[i]
3639 = recog_data.operand[(int) recog_data.dup_num[i]];
3640
3641 tclass = preferred_class[commutative];
3642 preferred_class[commutative] = preferred_class[commutative + 1];
3643 preferred_class[commutative + 1] = tclass;
3644
3645 t = pref_or_nothing[commutative];
3646 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3647 pref_or_nothing[commutative + 1] = t;
3648
3649 memcpy (constraints, recog_data.constraints,
3650 noperands * sizeof (char *));
3651 goto try_swapped;
3652 }
3653 else
3654 {
3655 recog_data.operand[commutative] = substed_operand[commutative];
3656 recog_data.operand[commutative + 1]
3657 = substed_operand[commutative + 1];
3658 /* Unswap the duplicates too. */
3659 for (i = 0; i < recog_data.n_dups; i++)
3660 if (recog_data.dup_num[i] == commutative
3661 || recog_data.dup_num[i] == commutative + 1)
3662 *recog_data.dup_loc[i]
3663 = recog_data.operand[(int) recog_data.dup_num[i]];
3664 }
3665 }
3666
3667 /* The operands don't meet the constraints.
3668 goal_alternative describes the alternative
3669 that we could reach by reloading the fewest operands.
3670 Reload so as to fit it. */
3671
3672 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3673 {
3674 /* No alternative works with reloads?? */
3675 if (insn_code_number >= 0)
3676 fatal_insn ("unable to generate reloads for:", insn);
3677 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3678 /* Avoid further trouble with this insn. */
3679 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3680 n_reloads = 0;
3681 return 0;
3682 }
3683
3684 /* Jump to `finish' from above if all operands are valid already.
3685 In that case, goal_alternative_win is all 1. */
3686 finish:
3687
3688 /* Right now, for any pair of operands I and J that are required to match,
3689 with I < J,
3690 goal_alternative_matches[J] is I.
3691 Set up goal_alternative_matched as the inverse function:
3692 goal_alternative_matched[I] = J. */
3693
3694 for (i = 0; i < noperands; i++)
3695 goal_alternative_matched[i] = -1;
3696
3697 for (i = 0; i < noperands; i++)
3698 if (! goal_alternative_win[i]
3699 && goal_alternative_matches[i] >= 0)
3700 goal_alternative_matched[goal_alternative_matches[i]] = i;
3701
3702 for (i = 0; i < noperands; i++)
3703 goal_alternative_win[i] |= goal_alternative_match_win[i];
3704
3705 /* If the best alternative is with operands 1 and 2 swapped,
3706 consider them swapped before reporting the reloads. Update the
3707 operand numbers of any reloads already pushed. */
3708
3709 if (goal_alternative_swapped)
3710 {
3711 rtx tem;
3712
3713 tem = substed_operand[commutative];
3714 substed_operand[commutative] = substed_operand[commutative + 1];
3715 substed_operand[commutative + 1] = tem;
3716 tem = recog_data.operand[commutative];
3717 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3718 recog_data.operand[commutative + 1] = tem;
3719 tem = *recog_data.operand_loc[commutative];
3720 *recog_data.operand_loc[commutative]
3721 = *recog_data.operand_loc[commutative + 1];
3722 *recog_data.operand_loc[commutative + 1] = tem;
3723
3724 for (i = 0; i < n_reloads; i++)
3725 {
3726 if (rld[i].opnum == commutative)
3727 rld[i].opnum = commutative + 1;
3728 else if (rld[i].opnum == commutative + 1)
3729 rld[i].opnum = commutative;
3730 }
3731 }
3732
3733 for (i = 0; i < noperands; i++)
3734 {
3735 operand_reloadnum[i] = -1;
3736
3737 /* If this is an earlyclobber operand, we need to widen the scope.
3738 The reload must remain valid from the start of the insn being
3739 reloaded until after the operand is stored into its destination.
3740 We approximate this with RELOAD_OTHER even though we know that we
3741 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3742
3743 One special case that is worth checking is when we have an
3744 output that is earlyclobber but isn't used past the insn (typically
3745 a SCRATCH). In this case, we only need have the reload live
3746 through the insn itself, but not for any of our input or output
3747 reloads.
3748 But we must not accidentally narrow the scope of an existing
3749 RELOAD_OTHER reload - leave these alone.
3750
3751 In any case, anything needed to address this operand can remain
3752 however they were previously categorized. */
3753
3754 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3755 operand_type[i]
3756 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3757 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3758 }
3759
3760 /* Any constants that aren't allowed and can't be reloaded
3761 into registers are here changed into memory references. */
3762 for (i = 0; i < noperands; i++)
3763 if (! goal_alternative_win[i]
3764 && CONST_POOL_OK_P (recog_data.operand[i])
3765 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3766 (enum reg_class) goal_alternative[i])
3767 == NO_REGS)
3768 || no_input_reloads)
3769 && operand_mode[i] != VOIDmode)
3770 {
3771 substed_operand[i] = recog_data.operand[i]
3772 = find_reloads_toplev (force_const_mem (operand_mode[i],
3773 recog_data.operand[i]),
3774 i, address_type[i], ind_levels, 0, insn,
3775 NULL);
3776 if (alternative_allows_memconst (recog_data.constraints[i],
3777 goal_alternative_number))
3778 goal_alternative_win[i] = 1;
3779 }
3780
3781 /* Record the values of the earlyclobber operands for the caller. */
3782 if (goal_earlyclobber)
3783 for (i = 0; i < noperands; i++)
3784 if (goal_alternative_earlyclobber[i])
3785 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3786
3787 /* Now record reloads for all the operands that need them. */
3788 for (i = 0; i < noperands; i++)
3789 if (! goal_alternative_win[i])
3790 {
3791 /* Operands that match previous ones have already been handled. */
3792 if (goal_alternative_matches[i] >= 0)
3793 ;
3794 /* Handle an operand with a nonoffsettable address
3795 appearing where an offsettable address will do
3796 by reloading the address into a base register.
3797
3798 ??? We can also do this when the operand is a register and
3799 reg_equiv_mem is not offsettable, but this is a bit tricky,
3800 so we don't bother with it. It may not be worth doing. */
3801 else if (goal_alternative_matched[i] == -1
3802 && goal_alternative_offmemok[i]
3803 && GET_CODE (recog_data.operand[i]) == MEM)
3804 {
3805 operand_reloadnum[i]
3806 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3807 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3808 MODE_BASE_REG_CLASS (VOIDmode),
3809 GET_MODE (XEXP (recog_data.operand[i], 0)),
3810 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3811 rld[operand_reloadnum[i]].inc
3812 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3813
3814 /* If this operand is an output, we will have made any
3815 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3816 now we are treating part of the operand as an input, so
3817 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3818
3819 if (modified[i] == RELOAD_WRITE)
3820 {
3821 for (j = 0; j < n_reloads; j++)
3822 {
3823 if (rld[j].opnum == i)
3824 {
3825 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3826 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3827 else if (rld[j].when_needed
3828 == RELOAD_FOR_OUTADDR_ADDRESS)
3829 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3830 }
3831 }
3832 }
3833 }
3834 else if (goal_alternative_matched[i] == -1)
3835 {
3836 operand_reloadnum[i]
3837 = push_reload ((modified[i] != RELOAD_WRITE
3838 ? recog_data.operand[i] : 0),
3839 (modified[i] != RELOAD_READ
3840 ? recog_data.operand[i] : 0),
3841 (modified[i] != RELOAD_WRITE
3842 ? recog_data.operand_loc[i] : 0),
3843 (modified[i] != RELOAD_READ
3844 ? recog_data.operand_loc[i] : 0),
3845 (enum reg_class) goal_alternative[i],
3846 (modified[i] == RELOAD_WRITE
3847 ? VOIDmode : operand_mode[i]),
3848 (modified[i] == RELOAD_READ
3849 ? VOIDmode : operand_mode[i]),
3850 (insn_code_number < 0 ? 0
3851 : insn_data[insn_code_number].operand[i].strict_low),
3852 0, i, operand_type[i]);
3853 }
3854 /* In a matching pair of operands, one must be input only
3855 and the other must be output only.
3856 Pass the input operand as IN and the other as OUT. */
3857 else if (modified[i] == RELOAD_READ
3858 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3859 {
3860 operand_reloadnum[i]
3861 = push_reload (recog_data.operand[i],
3862 recog_data.operand[goal_alternative_matched[i]],
3863 recog_data.operand_loc[i],
3864 recog_data.operand_loc[goal_alternative_matched[i]],
3865 (enum reg_class) goal_alternative[i],
3866 operand_mode[i],
3867 operand_mode[goal_alternative_matched[i]],
3868 0, 0, i, RELOAD_OTHER);
3869 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3870 }
3871 else if (modified[i] == RELOAD_WRITE
3872 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3873 {
3874 operand_reloadnum[goal_alternative_matched[i]]
3875 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3876 recog_data.operand[i],
3877 recog_data.operand_loc[goal_alternative_matched[i]],
3878 recog_data.operand_loc[i],
3879 (enum reg_class) goal_alternative[i],
3880 operand_mode[goal_alternative_matched[i]],
3881 operand_mode[i],
3882 0, 0, i, RELOAD_OTHER);
3883 operand_reloadnum[i] = output_reloadnum;
3884 }
3885 else if (insn_code_number >= 0)
3886 abort ();
3887 else
3888 {
3889 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3890 /* Avoid further trouble with this insn. */
3891 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3892 n_reloads = 0;
3893 return 0;
3894 }
3895 }
3896 else if (goal_alternative_matched[i] < 0
3897 && goal_alternative_matches[i] < 0
3898 && !address_operand_reloaded[i]
3899 && optimize)
3900 {
3901 /* For each non-matching operand that's a MEM or a pseudo-register
3902 that didn't get a hard register, make an optional reload.
3903 This may get done even if the insn needs no reloads otherwise. */
3904
3905 rtx operand = recog_data.operand[i];
3906
3907 while (GET_CODE (operand) == SUBREG)
3908 operand = SUBREG_REG (operand);
3909 if ((GET_CODE (operand) == MEM
3910 || (GET_CODE (operand) == REG
3911 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3912 /* If this is only for an output, the optional reload would not
3913 actually cause us to use a register now, just note that
3914 something is stored here. */
3915 && ((enum reg_class) goal_alternative[i] != NO_REGS
3916 || modified[i] == RELOAD_WRITE)
3917 && ! no_input_reloads
3918 /* An optional output reload might allow to delete INSN later.
3919 We mustn't make in-out reloads on insns that are not permitted
3920 output reloads.
3921 If this is an asm, we can't delete it; we must not even call
3922 push_reload for an optional output reload in this case,
3923 because we can't be sure that the constraint allows a register,
3924 and push_reload verifies the constraints for asms. */
3925 && (modified[i] == RELOAD_READ
3926 || (! no_output_reloads && ! this_insn_is_asm)))
3927 operand_reloadnum[i]
3928 = push_reload ((modified[i] != RELOAD_WRITE
3929 ? recog_data.operand[i] : 0),
3930 (modified[i] != RELOAD_READ
3931 ? recog_data.operand[i] : 0),
3932 (modified[i] != RELOAD_WRITE
3933 ? recog_data.operand_loc[i] : 0),
3934 (modified[i] != RELOAD_READ
3935 ? recog_data.operand_loc[i] : 0),
3936 (enum reg_class) goal_alternative[i],
3937 (modified[i] == RELOAD_WRITE
3938 ? VOIDmode : operand_mode[i]),
3939 (modified[i] == RELOAD_READ
3940 ? VOIDmode : operand_mode[i]),
3941 (insn_code_number < 0 ? 0
3942 : insn_data[insn_code_number].operand[i].strict_low),
3943 1, i, operand_type[i]);
3944 /* If a memory reference remains (either as a MEM or a pseudo that
3945 did not get a hard register), yet we can't make an optional
3946 reload, check if this is actually a pseudo register reference;
3947 we then need to emit a USE and/or a CLOBBER so that reload
3948 inheritance will do the right thing. */
3949 else if (replace
3950 && (GET_CODE (operand) == MEM
3951 || (GET_CODE (operand) == REG
3952 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3953 && reg_renumber [REGNO (operand)] < 0)))
3954 {
3955 operand = *recog_data.operand_loc[i];
3956
3957 while (GET_CODE (operand) == SUBREG)
3958 operand = SUBREG_REG (operand);
3959 if (GET_CODE (operand) == REG)
3960 {
3961 if (modified[i] != RELOAD_WRITE)
3962 /* We mark the USE with QImode so that we recognize
3963 it as one that can be safely deleted at the end
3964 of reload. */
3965 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3966 insn), QImode);
3967 if (modified[i] != RELOAD_READ)
3968 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3969 }
3970 }
3971 }
3972 else if (goal_alternative_matches[i] >= 0
3973 && goal_alternative_win[goal_alternative_matches[i]]
3974 && modified[i] == RELOAD_READ
3975 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3976 && ! no_input_reloads && ! no_output_reloads
3977 && optimize)
3978 {
3979 /* Similarly, make an optional reload for a pair of matching
3980 objects that are in MEM or a pseudo that didn't get a hard reg. */
3981
3982 rtx operand = recog_data.operand[i];
3983
3984 while (GET_CODE (operand) == SUBREG)
3985 operand = SUBREG_REG (operand);
3986 if ((GET_CODE (operand) == MEM
3987 || (GET_CODE (operand) == REG
3988 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3989 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3990 != NO_REGS))
3991 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3992 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3993 recog_data.operand[i],
3994 recog_data.operand_loc[goal_alternative_matches[i]],
3995 recog_data.operand_loc[i],
3996 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3997 operand_mode[goal_alternative_matches[i]],
3998 operand_mode[i],
3999 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4000 }
4001
4002 /* Perform whatever substitutions on the operands we are supposed
4003 to make due to commutativity or replacement of registers
4004 with equivalent constants or memory slots. */
4005
4006 for (i = 0; i < noperands; i++)
4007 {
4008 /* We only do this on the last pass through reload, because it is
4009 possible for some data (like reg_equiv_address) to be changed during
4010 later passes. Moreover, we loose the opportunity to get a useful
4011 reload_{in,out}_reg when we do these replacements. */
4012
4013 if (replace)
4014 {
4015 rtx substitution = substed_operand[i];
4016
4017 *recog_data.operand_loc[i] = substitution;
4018
4019 /* If we're replacing an operand with a LABEL_REF, we need
4020 to make sure that there's a REG_LABEL note attached to
4021 this instruction. */
4022 if (GET_CODE (insn) != JUMP_INSN
4023 && GET_CODE (substitution) == LABEL_REF
4024 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4025 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4026 XEXP (substitution, 0),
4027 REG_NOTES (insn));
4028 }
4029 else
4030 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4031 }
4032
4033 /* If this insn pattern contains any MATCH_DUP's, make sure that
4034 they will be substituted if the operands they match are substituted.
4035 Also do now any substitutions we already did on the operands.
4036
4037 Don't do this if we aren't making replacements because we might be
4038 propagating things allocated by frame pointer elimination into places
4039 it doesn't expect. */
4040
4041 if (insn_code_number >= 0 && replace)
4042 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4043 {
4044 int opno = recog_data.dup_num[i];
4045 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4046 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4047 }
4048
4049 #if 0
4050 /* This loses because reloading of prior insns can invalidate the equivalence
4051 (or at least find_equiv_reg isn't smart enough to find it any more),
4052 causing this insn to need more reload regs than it needed before.
4053 It may be too late to make the reload regs available.
4054 Now this optimization is done safely in choose_reload_regs. */
4055
4056 /* For each reload of a reg into some other class of reg,
4057 search for an existing equivalent reg (same value now) in the right class.
4058 We can use it as long as we don't need to change its contents. */
4059 for (i = 0; i < n_reloads; i++)
4060 if (rld[i].reg_rtx == 0
4061 && rld[i].in != 0
4062 && GET_CODE (rld[i].in) == REG
4063 && rld[i].out == 0)
4064 {
4065 rld[i].reg_rtx
4066 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4067 static_reload_reg_p, 0, rld[i].inmode);
4068 /* Prevent generation of insn to load the value
4069 because the one we found already has the value. */
4070 if (rld[i].reg_rtx)
4071 rld[i].in = rld[i].reg_rtx;
4072 }
4073 #endif
4074
4075 /* Perhaps an output reload can be combined with another
4076 to reduce needs by one. */
4077 if (!goal_earlyclobber)
4078 combine_reloads ();
4079
4080 /* If we have a pair of reloads for parts of an address, they are reloading
4081 the same object, the operands themselves were not reloaded, and they
4082 are for two operands that are supposed to match, merge the reloads and
4083 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4084
4085 for (i = 0; i < n_reloads; i++)
4086 {
4087 int k;
4088
4089 for (j = i + 1; j < n_reloads; j++)
4090 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4091 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4092 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4093 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4094 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4095 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4096 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4097 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4098 && rtx_equal_p (rld[i].in, rld[j].in)
4099 && (operand_reloadnum[rld[i].opnum] < 0
4100 || rld[operand_reloadnum[rld[i].opnum]].optional)
4101 && (operand_reloadnum[rld[j].opnum] < 0
4102 || rld[operand_reloadnum[rld[j].opnum]].optional)
4103 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4104 || (goal_alternative_matches[rld[j].opnum]
4105 == rld[i].opnum)))
4106 {
4107 for (k = 0; k < n_replacements; k++)
4108 if (replacements[k].what == j)
4109 replacements[k].what = i;
4110
4111 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4112 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4113 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4114 else
4115 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4116 rld[j].in = 0;
4117 }
4118 }
4119
4120 /* Scan all the reloads and update their type.
4121 If a reload is for the address of an operand and we didn't reload
4122 that operand, change the type. Similarly, change the operand number
4123 of a reload when two operands match. If a reload is optional, treat it
4124 as though the operand isn't reloaded.
4125
4126 ??? This latter case is somewhat odd because if we do the optional
4127 reload, it means the object is hanging around. Thus we need only
4128 do the address reload if the optional reload was NOT done.
4129
4130 Change secondary reloads to be the address type of their operand, not
4131 the normal type.
4132
4133 If an operand's reload is now RELOAD_OTHER, change any
4134 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4135 RELOAD_FOR_OTHER_ADDRESS. */
4136
4137 for (i = 0; i < n_reloads; i++)
4138 {
4139 if (rld[i].secondary_p
4140 && rld[i].when_needed == operand_type[rld[i].opnum])
4141 rld[i].when_needed = address_type[rld[i].opnum];
4142
4143 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4144 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4145 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4146 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4147 && (operand_reloadnum[rld[i].opnum] < 0
4148 || rld[operand_reloadnum[rld[i].opnum]].optional))
4149 {
4150 /* If we have a secondary reload to go along with this reload,
4151 change its type to RELOAD_FOR_OPADDR_ADDR. */
4152
4153 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4154 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4155 && rld[i].secondary_in_reload != -1)
4156 {
4157 int secondary_in_reload = rld[i].secondary_in_reload;
4158
4159 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4160
4161 /* If there's a tertiary reload we have to change it also. */
4162 if (secondary_in_reload > 0
4163 && rld[secondary_in_reload].secondary_in_reload != -1)
4164 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4165 = RELOAD_FOR_OPADDR_ADDR;
4166 }
4167
4168 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4169 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4170 && rld[i].secondary_out_reload != -1)
4171 {
4172 int secondary_out_reload = rld[i].secondary_out_reload;
4173
4174 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4175
4176 /* If there's a tertiary reload we have to change it also. */
4177 if (secondary_out_reload
4178 && rld[secondary_out_reload].secondary_out_reload != -1)
4179 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4180 = RELOAD_FOR_OPADDR_ADDR;
4181 }
4182
4183 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4184 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4185 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4186 else
4187 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4188 }
4189
4190 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4191 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4192 && operand_reloadnum[rld[i].opnum] >= 0
4193 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4194 == RELOAD_OTHER))
4195 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4196
4197 if (goal_alternative_matches[rld[i].opnum] >= 0)
4198 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4199 }
4200
4201 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4202 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4203 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4204
4205 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4206 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4207 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4208 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4209 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4210 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4211 This is complicated by the fact that a single operand can have more
4212 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4213 choose_reload_regs without affecting code quality, and cases that
4214 actually fail are extremely rare, so it turns out to be better to fix
4215 the problem here by not generating cases that choose_reload_regs will
4216 fail for. */
4217 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4218 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4219 a single operand.
4220 We can reduce the register pressure by exploiting that a
4221 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4222 does not conflict with any of them, if it is only used for the first of
4223 the RELOAD_FOR_X_ADDRESS reloads. */
4224 {
4225 int first_op_addr_num = -2;
4226 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4227 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4228 int need_change = 0;
4229 /* We use last_op_addr_reload and the contents of the above arrays
4230 first as flags - -2 means no instance encountered, -1 means exactly
4231 one instance encountered.
4232 If more than one instance has been encountered, we store the reload
4233 number of the first reload of the kind in question; reload numbers
4234 are known to be non-negative. */
4235 for (i = 0; i < noperands; i++)
4236 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4237 for (i = n_reloads - 1; i >= 0; i--)
4238 {
4239 switch (rld[i].when_needed)
4240 {
4241 case RELOAD_FOR_OPERAND_ADDRESS:
4242 if (++first_op_addr_num >= 0)
4243 {
4244 first_op_addr_num = i;
4245 need_change = 1;
4246 }
4247 break;
4248 case RELOAD_FOR_INPUT_ADDRESS:
4249 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4250 {
4251 first_inpaddr_num[rld[i].opnum] = i;
4252 need_change = 1;
4253 }
4254 break;
4255 case RELOAD_FOR_OUTPUT_ADDRESS:
4256 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4257 {
4258 first_outpaddr_num[rld[i].opnum] = i;
4259 need_change = 1;
4260 }
4261 break;
4262 default:
4263 break;
4264 }
4265 }
4266
4267 if (need_change)
4268 {
4269 for (i = 0; i < n_reloads; i++)
4270 {
4271 int first_num;
4272 enum reload_type type;
4273
4274 switch (rld[i].when_needed)
4275 {
4276 case RELOAD_FOR_OPADDR_ADDR:
4277 first_num = first_op_addr_num;
4278 type = RELOAD_FOR_OPERAND_ADDRESS;
4279 break;
4280 case RELOAD_FOR_INPADDR_ADDRESS:
4281 first_num = first_inpaddr_num[rld[i].opnum];
4282 type = RELOAD_FOR_INPUT_ADDRESS;
4283 break;
4284 case RELOAD_FOR_OUTADDR_ADDRESS:
4285 first_num = first_outpaddr_num[rld[i].opnum];
4286 type = RELOAD_FOR_OUTPUT_ADDRESS;
4287 break;
4288 default:
4289 continue;
4290 }
4291 if (first_num < 0)
4292 continue;
4293 else if (i > first_num)
4294 rld[i].when_needed = type;
4295 else
4296 {
4297 /* Check if the only TYPE reload that uses reload I is
4298 reload FIRST_NUM. */
4299 for (j = n_reloads - 1; j > first_num; j--)
4300 {
4301 if (rld[j].when_needed == type
4302 && (rld[i].secondary_p
4303 ? rld[j].secondary_in_reload == i
4304 : reg_mentioned_p (rld[i].in, rld[j].in)))
4305 {
4306 rld[i].when_needed = type;
4307 break;
4308 }
4309 }
4310 }
4311 }
4312 }
4313 }
4314
4315 /* See if we have any reloads that are now allowed to be merged
4316 because we've changed when the reload is needed to
4317 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4318 check for the most common cases. */
4319
4320 for (i = 0; i < n_reloads; i++)
4321 if (rld[i].in != 0 && rld[i].out == 0
4322 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4323 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4324 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4325 for (j = 0; j < n_reloads; j++)
4326 if (i != j && rld[j].in != 0 && rld[j].out == 0
4327 && rld[j].when_needed == rld[i].when_needed
4328 && MATCHES (rld[i].in, rld[j].in)
4329 && rld[i].class == rld[j].class
4330 && !rld[i].nocombine && !rld[j].nocombine
4331 && rld[i].reg_rtx == rld[j].reg_rtx)
4332 {
4333 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4334 transfer_replacements (i, j);
4335 rld[j].in = 0;
4336 }
4337
4338 #ifdef HAVE_cc0
4339 /* If we made any reloads for addresses, see if they violate a
4340 "no input reloads" requirement for this insn. But loads that we
4341 do after the insn (such as for output addresses) are fine. */
4342 if (no_input_reloads)
4343 for (i = 0; i < n_reloads; i++)
4344 if (rld[i].in != 0
4345 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4346 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4347 abort ();
4348 #endif
4349
4350 /* Compute reload_mode and reload_nregs. */
4351 for (i = 0; i < n_reloads; i++)
4352 {
4353 rld[i].mode
4354 = (rld[i].inmode == VOIDmode
4355 || (GET_MODE_SIZE (rld[i].outmode)
4356 > GET_MODE_SIZE (rld[i].inmode)))
4357 ? rld[i].outmode : rld[i].inmode;
4358
4359 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4360 }
4361
4362 /* Special case a simple move with an input reload and a
4363 destination of a hard reg, if the hard reg is ok, use it. */
4364 for (i = 0; i < n_reloads; i++)
4365 if (rld[i].when_needed == RELOAD_FOR_INPUT
4366 && GET_CODE (PATTERN (insn)) == SET
4367 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4368 && SET_SRC (PATTERN (insn)) == rld[i].in)
4369 {
4370 rtx dest = SET_DEST (PATTERN (insn));
4371 unsigned int regno = REGNO (dest);
4372
4373 if (regno < FIRST_PSEUDO_REGISTER
4374 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4375 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4376 {
4377 int nr = hard_regno_nregs[regno][rld[i].mode];
4378 int ok = 1, nri;
4379
4380 for (nri = 1; nri < nr; nri ++)
4381 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4382 ok = 0;
4383
4384 if (ok)
4385 rld[i].reg_rtx = dest;
4386 }
4387 }
4388
4389 return retval;
4390 }
4391
4392 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4393 accepts a memory operand with constant address. */
4394
4395 static int
4396 alternative_allows_memconst (const char *constraint, int altnum)
4397 {
4398 int c;
4399 /* Skip alternatives before the one requested. */
4400 while (altnum > 0)
4401 {
4402 while (*constraint++ != ',');
4403 altnum--;
4404 }
4405 /* Scan the requested alternative for 'm' or 'o'.
4406 If one of them is present, this alternative accepts memory constants. */
4407 for (; (c = *constraint) && c != ',' && c != '#';
4408 constraint += CONSTRAINT_LEN (c, constraint))
4409 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4410 return 1;
4411 return 0;
4412 }
4413 \f
4414 /* Scan X for memory references and scan the addresses for reloading.
4415 Also checks for references to "constant" regs that we want to eliminate
4416 and replaces them with the values they stand for.
4417 We may alter X destructively if it contains a reference to such.
4418 If X is just a constant reg, we return the equivalent value
4419 instead of X.
4420
4421 IND_LEVELS says how many levels of indirect addressing this machine
4422 supports.
4423
4424 OPNUM and TYPE identify the purpose of the reload.
4425
4426 IS_SET_DEST is true if X is the destination of a SET, which is not
4427 appropriate to be replaced by a constant.
4428
4429 INSN, if nonzero, is the insn in which we do the reload. It is used
4430 to determine if we may generate output reloads, and where to put USEs
4431 for pseudos that we have to replace with stack slots.
4432
4433 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4434 result of find_reloads_address. */
4435
4436 static rtx
4437 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4438 int ind_levels, int is_set_dest, rtx insn,
4439 int *address_reloaded)
4440 {
4441 RTX_CODE code = GET_CODE (x);
4442
4443 const char *fmt = GET_RTX_FORMAT (code);
4444 int i;
4445 int copied;
4446
4447 if (code == REG)
4448 {
4449 /* This code is duplicated for speed in find_reloads. */
4450 int regno = REGNO (x);
4451 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4452 x = reg_equiv_constant[regno];
4453 #if 0
4454 /* This creates (subreg (mem...)) which would cause an unnecessary
4455 reload of the mem. */
4456 else if (reg_equiv_mem[regno] != 0)
4457 x = reg_equiv_mem[regno];
4458 #endif
4459 else if (reg_equiv_memory_loc[regno]
4460 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4461 {
4462 rtx mem = make_memloc (x, regno);
4463 if (reg_equiv_address[regno]
4464 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4465 {
4466 /* If this is not a toplevel operand, find_reloads doesn't see
4467 this substitution. We have to emit a USE of the pseudo so
4468 that delete_output_reload can see it. */
4469 if (replace_reloads && recog_data.operand[opnum] != x)
4470 /* We mark the USE with QImode so that we recognize it
4471 as one that can be safely deleted at the end of
4472 reload. */
4473 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4474 QImode);
4475 x = mem;
4476 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4477 opnum, type, ind_levels, insn);
4478 if (address_reloaded)
4479 *address_reloaded = i;
4480 }
4481 }
4482 return x;
4483 }
4484 if (code == MEM)
4485 {
4486 rtx tem = x;
4487
4488 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4489 opnum, type, ind_levels, insn);
4490 if (address_reloaded)
4491 *address_reloaded = i;
4492
4493 return tem;
4494 }
4495
4496 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4497 {
4498 /* Check for SUBREG containing a REG that's equivalent to a constant.
4499 If the constant has a known value, truncate it right now.
4500 Similarly if we are extracting a single-word of a multi-word
4501 constant. If the constant is symbolic, allow it to be substituted
4502 normally. push_reload will strip the subreg later. If the
4503 constant is VOIDmode, abort because we will lose the mode of
4504 the register (this should never happen because one of the cases
4505 above should handle it). */
4506
4507 int regno = REGNO (SUBREG_REG (x));
4508 rtx tem;
4509
4510 if (subreg_lowpart_p (x)
4511 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4512 && reg_equiv_constant[regno] != 0
4513 && (tem = gen_lowpart_common (GET_MODE (x),
4514 reg_equiv_constant[regno])) != 0)
4515 return tem;
4516
4517 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4518 && reg_equiv_constant[regno] != 0)
4519 {
4520 tem =
4521 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4522 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4523 if (!tem)
4524 abort ();
4525 return tem;
4526 }
4527
4528 /* If the subreg contains a reg that will be converted to a mem,
4529 convert the subreg to a narrower memref now.
4530 Otherwise, we would get (subreg (mem ...) ...),
4531 which would force reload of the mem.
4532
4533 We also need to do this if there is an equivalent MEM that is
4534 not offsettable. In that case, alter_subreg would produce an
4535 invalid address on big-endian machines.
4536
4537 For machines that extend byte loads, we must not reload using
4538 a wider mode if we have a paradoxical SUBREG. find_reloads will
4539 force a reload in that case. So we should not do anything here. */
4540
4541 else if (regno >= FIRST_PSEUDO_REGISTER
4542 #ifdef LOAD_EXTEND_OP
4543 && (GET_MODE_SIZE (GET_MODE (x))
4544 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4545 #endif
4546 && (reg_equiv_address[regno] != 0
4547 || (reg_equiv_mem[regno] != 0
4548 && (! strict_memory_address_p (GET_MODE (x),
4549 XEXP (reg_equiv_mem[regno], 0))
4550 || ! offsettable_memref_p (reg_equiv_mem[regno])
4551 || num_not_at_initial_offset))))
4552 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4553 insn);
4554 }
4555
4556 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4557 {
4558 if (fmt[i] == 'e')
4559 {
4560 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4561 ind_levels, is_set_dest, insn,
4562 address_reloaded);
4563 /* If we have replaced a reg with it's equivalent memory loc -
4564 that can still be handled here e.g. if it's in a paradoxical
4565 subreg - we must make the change in a copy, rather than using
4566 a destructive change. This way, find_reloads can still elect
4567 not to do the change. */
4568 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4569 {
4570 x = shallow_copy_rtx (x);
4571 copied = 1;
4572 }
4573 XEXP (x, i) = new_part;
4574 }
4575 }
4576 return x;
4577 }
4578
4579 /* Return a mem ref for the memory equivalent of reg REGNO.
4580 This mem ref is not shared with anything. */
4581
4582 static rtx
4583 make_memloc (rtx ad, int regno)
4584 {
4585 /* We must rerun eliminate_regs, in case the elimination
4586 offsets have changed. */
4587 rtx tem
4588 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4589
4590 /* If TEM might contain a pseudo, we must copy it to avoid
4591 modifying it when we do the substitution for the reload. */
4592 if (rtx_varies_p (tem, 0))
4593 tem = copy_rtx (tem);
4594
4595 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4596 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4597
4598 /* Copy the result if it's still the same as the equivalence, to avoid
4599 modifying it when we do the substitution for the reload. */
4600 if (tem == reg_equiv_memory_loc[regno])
4601 tem = copy_rtx (tem);
4602 return tem;
4603 }
4604
4605 /* Returns true if AD could be turned into a valid memory reference
4606 to mode MODE by reloading the part pointed to by PART into a
4607 register. */
4608
4609 static int
4610 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4611 {
4612 int retv;
4613 rtx tem = *part;
4614 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4615
4616 *part = reg;
4617 retv = memory_address_p (mode, ad);
4618 *part = tem;
4619
4620 return retv;
4621 }
4622
4623 /* Record all reloads needed for handling memory address AD
4624 which appears in *LOC in a memory reference to mode MODE
4625 which itself is found in location *MEMREFLOC.
4626 Note that we take shortcuts assuming that no multi-reg machine mode
4627 occurs as part of an address.
4628
4629 OPNUM and TYPE specify the purpose of this reload.
4630
4631 IND_LEVELS says how many levels of indirect addressing this machine
4632 supports.
4633
4634 INSN, if nonzero, is the insn in which we do the reload. It is used
4635 to determine if we may generate output reloads, and where to put USEs
4636 for pseudos that we have to replace with stack slots.
4637
4638 Value is nonzero if this address is reloaded or replaced as a whole.
4639 This is interesting to the caller if the address is an autoincrement.
4640
4641 Note that there is no verification that the address will be valid after
4642 this routine does its work. Instead, we rely on the fact that the address
4643 was valid when reload started. So we need only undo things that reload
4644 could have broken. These are wrong register types, pseudos not allocated
4645 to a hard register, and frame pointer elimination. */
4646
4647 static int
4648 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4649 rtx *loc, int opnum, enum reload_type type,
4650 int ind_levels, rtx insn)
4651 {
4652 int regno;
4653 int removed_and = 0;
4654 rtx tem;
4655
4656 /* If the address is a register, see if it is a legitimate address and
4657 reload if not. We first handle the cases where we need not reload
4658 or where we must reload in a non-standard way. */
4659
4660 if (GET_CODE (ad) == REG)
4661 {
4662 regno = REGNO (ad);
4663
4664 /* If the register is equivalent to an invariant expression, substitute
4665 the invariant, and eliminate any eliminable register references. */
4666 tem = reg_equiv_constant[regno];
4667 if (tem != 0
4668 && (tem = eliminate_regs (tem, mode, insn))
4669 && strict_memory_address_p (mode, tem))
4670 {
4671 *loc = ad = tem;
4672 return 0;
4673 }
4674
4675 tem = reg_equiv_memory_loc[regno];
4676 if (tem != 0)
4677 {
4678 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4679 {
4680 tem = make_memloc (ad, regno);
4681 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4682 {
4683 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4684 &XEXP (tem, 0), opnum,
4685 ADDR_TYPE (type), ind_levels, insn);
4686 }
4687 /* We can avoid a reload if the register's equivalent memory
4688 expression is valid as an indirect memory address.
4689 But not all addresses are valid in a mem used as an indirect
4690 address: only reg or reg+constant. */
4691
4692 if (ind_levels > 0
4693 && strict_memory_address_p (mode, tem)
4694 && (GET_CODE (XEXP (tem, 0)) == REG
4695 || (GET_CODE (XEXP (tem, 0)) == PLUS
4696 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4697 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4698 {
4699 /* TEM is not the same as what we'll be replacing the
4700 pseudo with after reload, put a USE in front of INSN
4701 in the final reload pass. */
4702 if (replace_reloads
4703 && num_not_at_initial_offset
4704 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4705 {
4706 *loc = tem;
4707 /* We mark the USE with QImode so that we
4708 recognize it as one that can be safely
4709 deleted at the end of reload. */
4710 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4711 insn), QImode);
4712
4713 /* This doesn't really count as replacing the address
4714 as a whole, since it is still a memory access. */
4715 }
4716 return 0;
4717 }
4718 ad = tem;
4719 }
4720 }
4721
4722 /* The only remaining case where we can avoid a reload is if this is a
4723 hard register that is valid as a base register and which is not the
4724 subject of a CLOBBER in this insn. */
4725
4726 else if (regno < FIRST_PSEUDO_REGISTER
4727 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4728 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4729 return 0;
4730
4731 /* If we do not have one of the cases above, we must do the reload. */
4732 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4733 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4734 return 1;
4735 }
4736
4737 if (strict_memory_address_p (mode, ad))
4738 {
4739 /* The address appears valid, so reloads are not needed.
4740 But the address may contain an eliminable register.
4741 This can happen because a machine with indirect addressing
4742 may consider a pseudo register by itself a valid address even when
4743 it has failed to get a hard reg.
4744 So do a tree-walk to find and eliminate all such regs. */
4745
4746 /* But first quickly dispose of a common case. */
4747 if (GET_CODE (ad) == PLUS
4748 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4749 && GET_CODE (XEXP (ad, 0)) == REG
4750 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4751 return 0;
4752
4753 subst_reg_equivs_changed = 0;
4754 *loc = subst_reg_equivs (ad, insn);
4755
4756 if (! subst_reg_equivs_changed)
4757 return 0;
4758
4759 /* Check result for validity after substitution. */
4760 if (strict_memory_address_p (mode, ad))
4761 return 0;
4762 }
4763
4764 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4765 do
4766 {
4767 if (memrefloc)
4768 {
4769 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4770 ind_levels, win);
4771 }
4772 break;
4773 win:
4774 *memrefloc = copy_rtx (*memrefloc);
4775 XEXP (*memrefloc, 0) = ad;
4776 move_replacements (&ad, &XEXP (*memrefloc, 0));
4777 return 1;
4778 }
4779 while (0);
4780 #endif
4781
4782 /* The address is not valid. We have to figure out why. First see if
4783 we have an outer AND and remove it if so. Then analyze what's inside. */
4784
4785 if (GET_CODE (ad) == AND)
4786 {
4787 removed_and = 1;
4788 loc = &XEXP (ad, 0);
4789 ad = *loc;
4790 }
4791
4792 /* One possibility for why the address is invalid is that it is itself
4793 a MEM. This can happen when the frame pointer is being eliminated, a
4794 pseudo is not allocated to a hard register, and the offset between the
4795 frame and stack pointers is not its initial value. In that case the
4796 pseudo will have been replaced by a MEM referring to the
4797 stack pointer. */
4798 if (GET_CODE (ad) == MEM)
4799 {
4800 /* First ensure that the address in this MEM is valid. Then, unless
4801 indirect addresses are valid, reload the MEM into a register. */
4802 tem = ad;
4803 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4804 opnum, ADDR_TYPE (type),
4805 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4806
4807 /* If tem was changed, then we must create a new memory reference to
4808 hold it and store it back into memrefloc. */
4809 if (tem != ad && memrefloc)
4810 {
4811 *memrefloc = copy_rtx (*memrefloc);
4812 copy_replacements (tem, XEXP (*memrefloc, 0));
4813 loc = &XEXP (*memrefloc, 0);
4814 if (removed_and)
4815 loc = &XEXP (*loc, 0);
4816 }
4817
4818 /* Check similar cases as for indirect addresses as above except
4819 that we can allow pseudos and a MEM since they should have been
4820 taken care of above. */
4821
4822 if (ind_levels == 0
4823 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4824 || GET_CODE (XEXP (tem, 0)) == MEM
4825 || ! (GET_CODE (XEXP (tem, 0)) == REG
4826 || (GET_CODE (XEXP (tem, 0)) == PLUS
4827 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4828 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4829 {
4830 /* Must use TEM here, not AD, since it is the one that will
4831 have any subexpressions reloaded, if needed. */
4832 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4833 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4834 VOIDmode, 0,
4835 0, opnum, type);
4836 return ! removed_and;
4837 }
4838 else
4839 return 0;
4840 }
4841
4842 /* If we have address of a stack slot but it's not valid because the
4843 displacement is too large, compute the sum in a register.
4844 Handle all base registers here, not just fp/ap/sp, because on some
4845 targets (namely SH) we can also get too large displacements from
4846 big-endian corrections. */
4847 else if (GET_CODE (ad) == PLUS
4848 && GET_CODE (XEXP (ad, 0)) == REG
4849 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4850 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4851 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4852 {
4853 /* Unshare the MEM rtx so we can safely alter it. */
4854 if (memrefloc)
4855 {
4856 *memrefloc = copy_rtx (*memrefloc);
4857 loc = &XEXP (*memrefloc, 0);
4858 if (removed_and)
4859 loc = &XEXP (*loc, 0);
4860 }
4861
4862 if (double_reg_address_ok)
4863 {
4864 /* Unshare the sum as well. */
4865 *loc = ad = copy_rtx (ad);
4866
4867 /* Reload the displacement into an index reg.
4868 We assume the frame pointer or arg pointer is a base reg. */
4869 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4870 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4871 type, ind_levels);
4872 return 0;
4873 }
4874 else
4875 {
4876 /* If the sum of two regs is not necessarily valid,
4877 reload the sum into a base reg.
4878 That will at least work. */
4879 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4880 Pmode, opnum, type, ind_levels);
4881 }
4882 return ! removed_and;
4883 }
4884
4885 /* If we have an indexed stack slot, there are three possible reasons why
4886 it might be invalid: The index might need to be reloaded, the address
4887 might have been made by frame pointer elimination and hence have a
4888 constant out of range, or both reasons might apply.
4889
4890 We can easily check for an index needing reload, but even if that is the
4891 case, we might also have an invalid constant. To avoid making the
4892 conservative assumption and requiring two reloads, we see if this address
4893 is valid when not interpreted strictly. If it is, the only problem is
4894 that the index needs a reload and find_reloads_address_1 will take care
4895 of it.
4896
4897 Handle all base registers here, not just fp/ap/sp, because on some
4898 targets (namely SPARC) we can also get invalid addresses from preventive
4899 subreg big-endian corrections made by find_reloads_toplev.
4900
4901 If we decide to do something, it must be that `double_reg_address_ok'
4902 is true. We generate a reload of the base register + constant and
4903 rework the sum so that the reload register will be added to the index.
4904 This is safe because we know the address isn't shared.
4905
4906 We check for the base register as both the first and second operand of
4907 the innermost PLUS. */
4908
4909 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4910 && GET_CODE (XEXP (ad, 0)) == PLUS
4911 && GET_CODE (XEXP (XEXP (ad, 0), 0)) == REG
4912 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4913 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4914 || XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4915 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4916 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4917 #endif
4918 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4919 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4920 #endif
4921 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4922 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4923 {
4924 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4925 plus_constant (XEXP (XEXP (ad, 0), 0),
4926 INTVAL (XEXP (ad, 1))),
4927 XEXP (XEXP (ad, 0), 1));
4928 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4929 MODE_BASE_REG_CLASS (mode),
4930 GET_MODE (ad), opnum, type, ind_levels);
4931 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4932 type, 0, insn);
4933
4934 return 0;
4935 }
4936
4937 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4938 && GET_CODE (XEXP (ad, 0)) == PLUS
4939 && GET_CODE (XEXP (XEXP (ad, 0), 1)) == REG
4940 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4941 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4942 || XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4943 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4944 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4945 #endif
4946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4947 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4948 #endif
4949 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4950 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4951 {
4952 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4953 XEXP (XEXP (ad, 0), 0),
4954 plus_constant (XEXP (XEXP (ad, 0), 1),
4955 INTVAL (XEXP (ad, 1))));
4956 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4957 MODE_BASE_REG_CLASS (mode),
4958 GET_MODE (ad), opnum, type, ind_levels);
4959 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4960 type, 0, insn);
4961
4962 return 0;
4963 }
4964
4965 /* See if address becomes valid when an eliminable register
4966 in a sum is replaced. */
4967
4968 tem = ad;
4969 if (GET_CODE (ad) == PLUS)
4970 tem = subst_indexed_address (ad);
4971 if (tem != ad && strict_memory_address_p (mode, tem))
4972 {
4973 /* Ok, we win that way. Replace any additional eliminable
4974 registers. */
4975
4976 subst_reg_equivs_changed = 0;
4977 tem = subst_reg_equivs (tem, insn);
4978
4979 /* Make sure that didn't make the address invalid again. */
4980
4981 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4982 {
4983 *loc = tem;
4984 return 0;
4985 }
4986 }
4987
4988 /* If constants aren't valid addresses, reload the constant address
4989 into a register. */
4990 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4991 {
4992 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4993 Unshare it so we can safely alter it. */
4994 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4995 && CONSTANT_POOL_ADDRESS_P (ad))
4996 {
4997 *memrefloc = copy_rtx (*memrefloc);
4998 loc = &XEXP (*memrefloc, 0);
4999 if (removed_and)
5000 loc = &XEXP (*loc, 0);
5001 }
5002
5003 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5004 Pmode, opnum, type, ind_levels);
5005 return ! removed_and;
5006 }
5007
5008 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5009 insn);
5010 }
5011 \f
5012 /* Find all pseudo regs appearing in AD
5013 that are eliminable in favor of equivalent values
5014 and do not have hard regs; replace them by their equivalents.
5015 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5016 front of it for pseudos that we have to replace with stack slots. */
5017
5018 static rtx
5019 subst_reg_equivs (rtx ad, rtx insn)
5020 {
5021 RTX_CODE code = GET_CODE (ad);
5022 int i;
5023 const char *fmt;
5024
5025 switch (code)
5026 {
5027 case HIGH:
5028 case CONST_INT:
5029 case CONST:
5030 case CONST_DOUBLE:
5031 case CONST_VECTOR:
5032 case SYMBOL_REF:
5033 case LABEL_REF:
5034 case PC:
5035 case CC0:
5036 return ad;
5037
5038 case REG:
5039 {
5040 int regno = REGNO (ad);
5041
5042 if (reg_equiv_constant[regno] != 0)
5043 {
5044 subst_reg_equivs_changed = 1;
5045 return reg_equiv_constant[regno];
5046 }
5047 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5048 {
5049 rtx mem = make_memloc (ad, regno);
5050 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5051 {
5052 subst_reg_equivs_changed = 1;
5053 /* We mark the USE with QImode so that we recognize it
5054 as one that can be safely deleted at the end of
5055 reload. */
5056 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5057 QImode);
5058 return mem;
5059 }
5060 }
5061 }
5062 return ad;
5063
5064 case PLUS:
5065 /* Quickly dispose of a common case. */
5066 if (XEXP (ad, 0) == frame_pointer_rtx
5067 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5068 return ad;
5069 break;
5070
5071 default:
5072 break;
5073 }
5074
5075 fmt = GET_RTX_FORMAT (code);
5076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5077 if (fmt[i] == 'e')
5078 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5079 return ad;
5080 }
5081 \f
5082 /* Compute the sum of X and Y, making canonicalizations assumed in an
5083 address, namely: sum constant integers, surround the sum of two
5084 constants with a CONST, put the constant as the second operand, and
5085 group the constant on the outermost sum.
5086
5087 This routine assumes both inputs are already in canonical form. */
5088
5089 rtx
5090 form_sum (rtx x, rtx y)
5091 {
5092 rtx tem;
5093 enum machine_mode mode = GET_MODE (x);
5094
5095 if (mode == VOIDmode)
5096 mode = GET_MODE (y);
5097
5098 if (mode == VOIDmode)
5099 mode = Pmode;
5100
5101 if (GET_CODE (x) == CONST_INT)
5102 return plus_constant (y, INTVAL (x));
5103 else if (GET_CODE (y) == CONST_INT)
5104 return plus_constant (x, INTVAL (y));
5105 else if (CONSTANT_P (x))
5106 tem = x, x = y, y = tem;
5107
5108 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5109 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5110
5111 /* Note that if the operands of Y are specified in the opposite
5112 order in the recursive calls below, infinite recursion will occur. */
5113 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5114 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5115
5116 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5117 constant will have been placed second. */
5118 if (CONSTANT_P (x) && CONSTANT_P (y))
5119 {
5120 if (GET_CODE (x) == CONST)
5121 x = XEXP (x, 0);
5122 if (GET_CODE (y) == CONST)
5123 y = XEXP (y, 0);
5124
5125 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5126 }
5127
5128 return gen_rtx_PLUS (mode, x, y);
5129 }
5130 \f
5131 /* If ADDR is a sum containing a pseudo register that should be
5132 replaced with a constant (from reg_equiv_constant),
5133 return the result of doing so, and also apply the associative
5134 law so that the result is more likely to be a valid address.
5135 (But it is not guaranteed to be one.)
5136
5137 Note that at most one register is replaced, even if more are
5138 replaceable. Also, we try to put the result into a canonical form
5139 so it is more likely to be a valid address.
5140
5141 In all other cases, return ADDR. */
5142
5143 static rtx
5144 subst_indexed_address (rtx addr)
5145 {
5146 rtx op0 = 0, op1 = 0, op2 = 0;
5147 rtx tem;
5148 int regno;
5149
5150 if (GET_CODE (addr) == PLUS)
5151 {
5152 /* Try to find a register to replace. */
5153 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5154 if (GET_CODE (op0) == REG
5155 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5156 && reg_renumber[regno] < 0
5157 && reg_equiv_constant[regno] != 0)
5158 op0 = reg_equiv_constant[regno];
5159 else if (GET_CODE (op1) == REG
5160 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5161 && reg_renumber[regno] < 0
5162 && reg_equiv_constant[regno] != 0)
5163 op1 = reg_equiv_constant[regno];
5164 else if (GET_CODE (op0) == PLUS
5165 && (tem = subst_indexed_address (op0)) != op0)
5166 op0 = tem;
5167 else if (GET_CODE (op1) == PLUS
5168 && (tem = subst_indexed_address (op1)) != op1)
5169 op1 = tem;
5170 else
5171 return addr;
5172
5173 /* Pick out up to three things to add. */
5174 if (GET_CODE (op1) == PLUS)
5175 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5176 else if (GET_CODE (op0) == PLUS)
5177 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5178
5179 /* Compute the sum. */
5180 if (op2 != 0)
5181 op1 = form_sum (op1, op2);
5182 if (op1 != 0)
5183 op0 = form_sum (op0, op1);
5184
5185 return op0;
5186 }
5187 return addr;
5188 }
5189 \f
5190 /* Update the REG_INC notes for an insn. It updates all REG_INC
5191 notes for the instruction which refer to REGNO the to refer
5192 to the reload number.
5193
5194 INSN is the insn for which any REG_INC notes need updating.
5195
5196 REGNO is the register number which has been reloaded.
5197
5198 RELOADNUM is the reload number. */
5199
5200 static void
5201 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5202 int reloadnum ATTRIBUTE_UNUSED)
5203 {
5204 #ifdef AUTO_INC_DEC
5205 rtx link;
5206
5207 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5208 if (REG_NOTE_KIND (link) == REG_INC
5209 && (int) REGNO (XEXP (link, 0)) == regno)
5210 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5211 #endif
5212 }
5213 \f
5214 /* Record the pseudo registers we must reload into hard registers in a
5215 subexpression of a would-be memory address, X referring to a value
5216 in mode MODE. (This function is not called if the address we find
5217 is strictly valid.)
5218
5219 CONTEXT = 1 means we are considering regs as index regs,
5220 = 0 means we are considering them as base regs.
5221
5222 OPNUM and TYPE specify the purpose of any reloads made.
5223
5224 IND_LEVELS says how many levels of indirect addressing are
5225 supported at this point in the address.
5226
5227 INSN, if nonzero, is the insn in which we do the reload. It is used
5228 to determine if we may generate output reloads.
5229
5230 We return nonzero if X, as a whole, is reloaded or replaced. */
5231
5232 /* Note that we take shortcuts assuming that no multi-reg machine mode
5233 occurs as part of an address.
5234 Also, this is not fully machine-customizable; it works for machines
5235 such as VAXen and 68000's and 32000's, but other possible machines
5236 could have addressing modes that this does not handle right. */
5237
5238 static int
5239 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5240 rtx *loc, int opnum, enum reload_type type,
5241 int ind_levels, rtx insn)
5242 {
5243 RTX_CODE code = GET_CODE (x);
5244
5245 switch (code)
5246 {
5247 case PLUS:
5248 {
5249 rtx orig_op0 = XEXP (x, 0);
5250 rtx orig_op1 = XEXP (x, 1);
5251 RTX_CODE code0 = GET_CODE (orig_op0);
5252 RTX_CODE code1 = GET_CODE (orig_op1);
5253 rtx op0 = orig_op0;
5254 rtx op1 = orig_op1;
5255
5256 if (GET_CODE (op0) == SUBREG)
5257 {
5258 op0 = SUBREG_REG (op0);
5259 code0 = GET_CODE (op0);
5260 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5261 op0 = gen_rtx_REG (word_mode,
5262 (REGNO (op0) +
5263 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5264 GET_MODE (SUBREG_REG (orig_op0)),
5265 SUBREG_BYTE (orig_op0),
5266 GET_MODE (orig_op0))));
5267 }
5268
5269 if (GET_CODE (op1) == SUBREG)
5270 {
5271 op1 = SUBREG_REG (op1);
5272 code1 = GET_CODE (op1);
5273 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5274 /* ??? Why is this given op1's mode and above for
5275 ??? op0 SUBREGs we use word_mode? */
5276 op1 = gen_rtx_REG (GET_MODE (op1),
5277 (REGNO (op1) +
5278 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5279 GET_MODE (SUBREG_REG (orig_op1)),
5280 SUBREG_BYTE (orig_op1),
5281 GET_MODE (orig_op1))));
5282 }
5283 /* Plus in the index register may be created only as a result of
5284 register remateralization for expression like &localvar*4. Reload it.
5285 It may be possible to combine the displacement on the outer level,
5286 but it is probably not worthwhile to do so. */
5287 if (context)
5288 {
5289 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5290 opnum, ADDR_TYPE (type), ind_levels, insn);
5291 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5292 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5293 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5294 return 1;
5295 }
5296
5297 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5298 || code0 == ZERO_EXTEND || code1 == MEM)
5299 {
5300 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5301 type, ind_levels, insn);
5302 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5303 type, ind_levels, insn);
5304 }
5305
5306 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5307 || code1 == ZERO_EXTEND || code0 == MEM)
5308 {
5309 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5310 type, ind_levels, insn);
5311 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5312 type, ind_levels, insn);
5313 }
5314
5315 else if (code0 == CONST_INT || code0 == CONST
5316 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5317 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5318 type, ind_levels, insn);
5319
5320 else if (code1 == CONST_INT || code1 == CONST
5321 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5322 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5323 type, ind_levels, insn);
5324
5325 else if (code0 == REG && code1 == REG)
5326 {
5327 if (REG_OK_FOR_INDEX_P (op0)
5328 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5329 return 0;
5330 else if (REG_OK_FOR_INDEX_P (op1)
5331 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5332 return 0;
5333 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5334 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5335 type, ind_levels, insn);
5336 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5337 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5338 type, ind_levels, insn);
5339 else if (REG_OK_FOR_INDEX_P (op1))
5340 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5341 type, ind_levels, insn);
5342 else if (REG_OK_FOR_INDEX_P (op0))
5343 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5344 type, ind_levels, insn);
5345 else
5346 {
5347 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5348 type, ind_levels, insn);
5349 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5350 type, ind_levels, insn);
5351 }
5352 }
5353
5354 else if (code0 == REG)
5355 {
5356 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5357 type, ind_levels, insn);
5358 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5359 type, ind_levels, insn);
5360 }
5361
5362 else if (code1 == REG)
5363 {
5364 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5365 type, ind_levels, insn);
5366 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5367 type, ind_levels, insn);
5368 }
5369 }
5370
5371 return 0;
5372
5373 case POST_MODIFY:
5374 case PRE_MODIFY:
5375 {
5376 rtx op0 = XEXP (x, 0);
5377 rtx op1 = XEXP (x, 1);
5378
5379 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5380 return 0;
5381
5382 /* Currently, we only support {PRE,POST}_MODIFY constructs
5383 where a base register is {inc,dec}remented by the contents
5384 of another register or by a constant value. Thus, these
5385 operands must match. */
5386 if (op0 != XEXP (op1, 0))
5387 abort ();
5388
5389 /* Require index register (or constant). Let's just handle the
5390 register case in the meantime... If the target allows
5391 auto-modify by a constant then we could try replacing a pseudo
5392 register with its equivalent constant where applicable. */
5393 if (REG_P (XEXP (op1, 1)))
5394 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5395 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5396 opnum, type, ind_levels, insn);
5397
5398 if (REG_P (XEXP (op1, 0)))
5399 {
5400 int regno = REGNO (XEXP (op1, 0));
5401 int reloadnum;
5402
5403 /* A register that is incremented cannot be constant! */
5404 if (regno >= FIRST_PSEUDO_REGISTER
5405 && reg_equiv_constant[regno] != 0)
5406 abort ();
5407
5408 /* Handle a register that is equivalent to a memory location
5409 which cannot be addressed directly. */
5410 if (reg_equiv_memory_loc[regno] != 0
5411 && (reg_equiv_address[regno] != 0
5412 || num_not_at_initial_offset))
5413 {
5414 rtx tem = make_memloc (XEXP (x, 0), regno);
5415
5416 if (reg_equiv_address[regno]
5417 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5418 {
5419 /* First reload the memory location's address.
5420 We can't use ADDR_TYPE (type) here, because we need to
5421 write back the value after reading it, hence we actually
5422 need two registers. */
5423 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5424 &XEXP (tem, 0), opnum,
5425 RELOAD_OTHER,
5426 ind_levels, insn);
5427
5428 /* Then reload the memory location into a base
5429 register. */
5430 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5431 &XEXP (op1, 0),
5432 MODE_BASE_REG_CLASS (mode),
5433 GET_MODE (x), GET_MODE (x), 0,
5434 0, opnum, RELOAD_OTHER);
5435
5436 update_auto_inc_notes (this_insn, regno, reloadnum);
5437 return 0;
5438 }
5439 }
5440
5441 if (reg_renumber[regno] >= 0)
5442 regno = reg_renumber[regno];
5443
5444 /* We require a base register here... */
5445 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5446 {
5447 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5448 &XEXP (op1, 0), &XEXP (x, 0),
5449 MODE_BASE_REG_CLASS (mode),
5450 GET_MODE (x), GET_MODE (x), 0, 0,
5451 opnum, RELOAD_OTHER);
5452
5453 update_auto_inc_notes (this_insn, regno, reloadnum);
5454 return 0;
5455 }
5456 }
5457 else
5458 abort ();
5459 }
5460 return 0;
5461
5462 case POST_INC:
5463 case POST_DEC:
5464 case PRE_INC:
5465 case PRE_DEC:
5466 if (GET_CODE (XEXP (x, 0)) == REG)
5467 {
5468 int regno = REGNO (XEXP (x, 0));
5469 int value = 0;
5470 rtx x_orig = x;
5471
5472 /* A register that is incremented cannot be constant! */
5473 if (regno >= FIRST_PSEUDO_REGISTER
5474 && reg_equiv_constant[regno] != 0)
5475 abort ();
5476
5477 /* Handle a register that is equivalent to a memory location
5478 which cannot be addressed directly. */
5479 if (reg_equiv_memory_loc[regno] != 0
5480 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5481 {
5482 rtx tem = make_memloc (XEXP (x, 0), regno);
5483 if (reg_equiv_address[regno]
5484 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5485 {
5486 /* First reload the memory location's address.
5487 We can't use ADDR_TYPE (type) here, because we need to
5488 write back the value after reading it, hence we actually
5489 need two registers. */
5490 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5491 &XEXP (tem, 0), opnum, type,
5492 ind_levels, insn);
5493 /* Put this inside a new increment-expression. */
5494 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5495 /* Proceed to reload that, as if it contained a register. */
5496 }
5497 }
5498
5499 /* If we have a hard register that is ok as an index,
5500 don't make a reload. If an autoincrement of a nice register
5501 isn't "valid", it must be that no autoincrement is "valid".
5502 If that is true and something made an autoincrement anyway,
5503 this must be a special context where one is allowed.
5504 (For example, a "push" instruction.)
5505 We can't improve this address, so leave it alone. */
5506
5507 /* Otherwise, reload the autoincrement into a suitable hard reg
5508 and record how much to increment by. */
5509
5510 if (reg_renumber[regno] >= 0)
5511 regno = reg_renumber[regno];
5512 if ((regno >= FIRST_PSEUDO_REGISTER
5513 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5514 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5515 {
5516 int reloadnum;
5517
5518 /* If we can output the register afterwards, do so, this
5519 saves the extra update.
5520 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5521 CALL_INSN - and it does not set CC0.
5522 But don't do this if we cannot directly address the
5523 memory location, since this will make it harder to
5524 reuse address reloads, and increases register pressure.
5525 Also don't do this if we can probably update x directly. */
5526 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5527 ? XEXP (x, 0)
5528 : reg_equiv_mem[regno]);
5529 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5530 if (insn && GET_CODE (insn) == INSN && equiv
5531 && memory_operand (equiv, GET_MODE (equiv))
5532 #ifdef HAVE_cc0
5533 && ! sets_cc0_p (PATTERN (insn))
5534 #endif
5535 && ! (icode != CODE_FOR_nothing
5536 && ((*insn_data[icode].operand[0].predicate)
5537 (equiv, Pmode))
5538 && ((*insn_data[icode].operand[1].predicate)
5539 (equiv, Pmode))))
5540 {
5541 /* We use the original pseudo for loc, so that
5542 emit_reload_insns() knows which pseudo this
5543 reload refers to and updates the pseudo rtx, not
5544 its equivalent memory location, as well as the
5545 corresponding entry in reg_last_reload_reg. */
5546 loc = &XEXP (x_orig, 0);
5547 x = XEXP (x, 0);
5548 reloadnum
5549 = push_reload (x, x, loc, loc,
5550 (context ? INDEX_REG_CLASS :
5551 MODE_BASE_REG_CLASS (mode)),
5552 GET_MODE (x), GET_MODE (x), 0, 0,
5553 opnum, RELOAD_OTHER);
5554 }
5555 else
5556 {
5557 reloadnum
5558 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5559 (context ? INDEX_REG_CLASS :
5560 MODE_BASE_REG_CLASS (mode)),
5561 GET_MODE (x), GET_MODE (x), 0, 0,
5562 opnum, type);
5563 rld[reloadnum].inc
5564 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5565
5566 value = 1;
5567 }
5568
5569 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5570 reloadnum);
5571 }
5572 return value;
5573 }
5574
5575 else if (GET_CODE (XEXP (x, 0)) == MEM)
5576 {
5577 /* This is probably the result of a substitution, by eliminate_regs,
5578 of an equivalent address for a pseudo that was not allocated to a
5579 hard register. Verify that the specified address is valid and
5580 reload it into a register. */
5581 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5582 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5583 rtx link;
5584 int reloadnum;
5585
5586 /* Since we know we are going to reload this item, don't decrement
5587 for the indirection level.
5588
5589 Note that this is actually conservative: it would be slightly
5590 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5591 reload1.c here. */
5592 /* We can't use ADDR_TYPE (type) here, because we need to
5593 write back the value after reading it, hence we actually
5594 need two registers. */
5595 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5596 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5597 opnum, type, ind_levels, insn);
5598
5599 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5600 (context ? INDEX_REG_CLASS :
5601 MODE_BASE_REG_CLASS (mode)),
5602 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5603 rld[reloadnum].inc
5604 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5605
5606 link = FIND_REG_INC_NOTE (this_insn, tem);
5607 if (link != 0)
5608 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5609
5610 return 1;
5611 }
5612 return 0;
5613
5614 case MEM:
5615 /* This is probably the result of a substitution, by eliminate_regs, of
5616 an equivalent address for a pseudo that was not allocated to a hard
5617 register. Verify that the specified address is valid and reload it
5618 into a register.
5619
5620 Since we know we are going to reload this item, don't decrement for
5621 the indirection level.
5622
5623 Note that this is actually conservative: it would be slightly more
5624 efficient to use the value of SPILL_INDIRECT_LEVELS from
5625 reload1.c here. */
5626
5627 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5628 opnum, ADDR_TYPE (type), ind_levels, insn);
5629 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5630 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5631 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5632 return 1;
5633
5634 case REG:
5635 {
5636 int regno = REGNO (x);
5637
5638 if (reg_equiv_constant[regno] != 0)
5639 {
5640 find_reloads_address_part (reg_equiv_constant[regno], loc,
5641 (context ? INDEX_REG_CLASS :
5642 MODE_BASE_REG_CLASS (mode)),
5643 GET_MODE (x), opnum, type, ind_levels);
5644 return 1;
5645 }
5646
5647 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5648 that feeds this insn. */
5649 if (reg_equiv_mem[regno] != 0)
5650 {
5651 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5652 (context ? INDEX_REG_CLASS :
5653 MODE_BASE_REG_CLASS (mode)),
5654 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5655 return 1;
5656 }
5657 #endif
5658
5659 if (reg_equiv_memory_loc[regno]
5660 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5661 {
5662 rtx tem = make_memloc (x, regno);
5663 if (reg_equiv_address[regno] != 0
5664 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5665 {
5666 x = tem;
5667 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5668 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5669 ind_levels, insn);
5670 }
5671 }
5672
5673 if (reg_renumber[regno] >= 0)
5674 regno = reg_renumber[regno];
5675
5676 if ((regno >= FIRST_PSEUDO_REGISTER
5677 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5678 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5679 {
5680 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5681 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5682 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5683 return 1;
5684 }
5685
5686 /* If a register appearing in an address is the subject of a CLOBBER
5687 in this insn, reload it into some other register to be safe.
5688 The CLOBBER is supposed to make the register unavailable
5689 from before this insn to after it. */
5690 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5691 {
5692 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5693 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5694 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5695 return 1;
5696 }
5697 }
5698 return 0;
5699
5700 case SUBREG:
5701 if (GET_CODE (SUBREG_REG (x)) == REG)
5702 {
5703 /* If this is a SUBREG of a hard register and the resulting register
5704 is of the wrong class, reload the whole SUBREG. This avoids
5705 needless copies if SUBREG_REG is multi-word. */
5706 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5707 {
5708 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5709
5710 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5711 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5712 {
5713 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5714 (context ? INDEX_REG_CLASS :
5715 MODE_BASE_REG_CLASS (mode)),
5716 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5717 return 1;
5718 }
5719 }
5720 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5721 is larger than the class size, then reload the whole SUBREG. */
5722 else
5723 {
5724 enum reg_class class = (context ? INDEX_REG_CLASS
5725 : MODE_BASE_REG_CLASS (mode));
5726 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5727 > reg_class_size[class])
5728 {
5729 x = find_reloads_subreg_address (x, 0, opnum, type,
5730 ind_levels, insn);
5731 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5732 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5733 return 1;
5734 }
5735 }
5736 }
5737 break;
5738
5739 default:
5740 break;
5741 }
5742
5743 {
5744 const char *fmt = GET_RTX_FORMAT (code);
5745 int i;
5746
5747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5748 {
5749 if (fmt[i] == 'e')
5750 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5751 opnum, type, ind_levels, insn);
5752 }
5753 }
5754
5755 return 0;
5756 }
5757 \f
5758 /* X, which is found at *LOC, is a part of an address that needs to be
5759 reloaded into a register of class CLASS. If X is a constant, or if
5760 X is a PLUS that contains a constant, check that the constant is a
5761 legitimate operand and that we are supposed to be able to load
5762 it into the register.
5763
5764 If not, force the constant into memory and reload the MEM instead.
5765
5766 MODE is the mode to use, in case X is an integer constant.
5767
5768 OPNUM and TYPE describe the purpose of any reloads made.
5769
5770 IND_LEVELS says how many levels of indirect addressing this machine
5771 supports. */
5772
5773 static void
5774 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5775 enum machine_mode mode, int opnum,
5776 enum reload_type type, int ind_levels)
5777 {
5778 if (CONSTANT_P (x)
5779 && (! LEGITIMATE_CONSTANT_P (x)
5780 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5781 {
5782 rtx tem;
5783
5784 tem = x = force_const_mem (mode, x);
5785 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5786 opnum, type, ind_levels, 0);
5787 }
5788
5789 else if (GET_CODE (x) == PLUS
5790 && CONSTANT_P (XEXP (x, 1))
5791 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5792 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5793 {
5794 rtx tem;
5795
5796 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5797 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5798 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5799 opnum, type, ind_levels, 0);
5800 }
5801
5802 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5803 mode, VOIDmode, 0, 0, opnum, type);
5804 }
5805 \f
5806 /* X, a subreg of a pseudo, is a part of an address that needs to be
5807 reloaded.
5808
5809 If the pseudo is equivalent to a memory location that cannot be directly
5810 addressed, make the necessary address reloads.
5811
5812 If address reloads have been necessary, or if the address is changed
5813 by register elimination, return the rtx of the memory location;
5814 otherwise, return X.
5815
5816 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5817 memory location.
5818
5819 OPNUM and TYPE identify the purpose of the reload.
5820
5821 IND_LEVELS says how many levels of indirect addressing are
5822 supported at this point in the address.
5823
5824 INSN, if nonzero, is the insn in which we do the reload. It is used
5825 to determine where to put USEs for pseudos that we have to replace with
5826 stack slots. */
5827
5828 static rtx
5829 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5830 enum reload_type type, int ind_levels, rtx insn)
5831 {
5832 int regno = REGNO (SUBREG_REG (x));
5833
5834 if (reg_equiv_memory_loc[regno])
5835 {
5836 /* If the address is not directly addressable, or if the address is not
5837 offsettable, then it must be replaced. */
5838 if (! force_replace
5839 && (reg_equiv_address[regno]
5840 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5841 force_replace = 1;
5842
5843 if (force_replace || num_not_at_initial_offset)
5844 {
5845 rtx tem = make_memloc (SUBREG_REG (x), regno);
5846
5847 /* If the address changes because of register elimination, then
5848 it must be replaced. */
5849 if (force_replace
5850 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5851 {
5852 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5853 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5854 int offset;
5855
5856 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5857 hold the correct (negative) byte offset. */
5858 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5859 offset = inner_size - outer_size;
5860 else
5861 offset = SUBREG_BYTE (x);
5862
5863 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5864 PUT_MODE (tem, GET_MODE (x));
5865
5866 /* If this was a paradoxical subreg that we replaced, the
5867 resulting memory must be sufficiently aligned to allow
5868 us to widen the mode of the memory. */
5869 if (outer_size > inner_size && STRICT_ALIGNMENT)
5870 {
5871 rtx base;
5872
5873 base = XEXP (tem, 0);
5874 if (GET_CODE (base) == PLUS)
5875 {
5876 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5877 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5878 return x;
5879 base = XEXP (base, 0);
5880 }
5881 if (GET_CODE (base) != REG
5882 || (REGNO_POINTER_ALIGN (REGNO (base))
5883 < outer_size * BITS_PER_UNIT))
5884 return x;
5885 }
5886
5887 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5888 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5889 ind_levels, insn);
5890
5891 /* If this is not a toplevel operand, find_reloads doesn't see
5892 this substitution. We have to emit a USE of the pseudo so
5893 that delete_output_reload can see it. */
5894 if (replace_reloads && recog_data.operand[opnum] != x)
5895 /* We mark the USE with QImode so that we recognize it
5896 as one that can be safely deleted at the end of
5897 reload. */
5898 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5899 SUBREG_REG (x)),
5900 insn), QImode);
5901 x = tem;
5902 }
5903 }
5904 }
5905 return x;
5906 }
5907 \f
5908 /* Substitute into the current INSN the registers into which we have reloaded
5909 the things that need reloading. The array `replacements'
5910 contains the locations of all pointers that must be changed
5911 and says what to replace them with.
5912
5913 Return the rtx that X translates into; usually X, but modified. */
5914
5915 void
5916 subst_reloads (rtx insn)
5917 {
5918 int i;
5919
5920 for (i = 0; i < n_replacements; i++)
5921 {
5922 struct replacement *r = &replacements[i];
5923 rtx reloadreg = rld[r->what].reg_rtx;
5924 if (reloadreg)
5925 {
5926 #ifdef ENABLE_CHECKING
5927 /* Internal consistency test. Check that we don't modify
5928 anything in the equivalence arrays. Whenever something from
5929 those arrays needs to be reloaded, it must be unshared before
5930 being substituted into; the equivalence must not be modified.
5931 Otherwise, if the equivalence is used after that, it will
5932 have been modified, and the thing substituted (probably a
5933 register) is likely overwritten and not a usable equivalence. */
5934 int check_regno;
5935
5936 for (check_regno = 0; check_regno < max_regno; check_regno++)
5937 {
5938 #define CHECK_MODF(ARRAY) \
5939 if (ARRAY[check_regno] \
5940 && loc_mentioned_in_p (r->where, \
5941 ARRAY[check_regno])) \
5942 abort ()
5943
5944 CHECK_MODF (reg_equiv_constant);
5945 CHECK_MODF (reg_equiv_memory_loc);
5946 CHECK_MODF (reg_equiv_address);
5947 CHECK_MODF (reg_equiv_mem);
5948 #undef CHECK_MODF
5949 }
5950 #endif /* ENABLE_CHECKING */
5951
5952 /* If we're replacing a LABEL_REF with a register, add a
5953 REG_LABEL note to indicate to flow which label this
5954 register refers to. */
5955 if (GET_CODE (*r->where) == LABEL_REF
5956 && GET_CODE (insn) == JUMP_INSN)
5957 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5958 XEXP (*r->where, 0),
5959 REG_NOTES (insn));
5960
5961 /* Encapsulate RELOADREG so its machine mode matches what
5962 used to be there. Note that gen_lowpart_common will
5963 do the wrong thing if RELOADREG is multi-word. RELOADREG
5964 will always be a REG here. */
5965 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5966 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5967
5968 /* If we are putting this into a SUBREG and RELOADREG is a
5969 SUBREG, we would be making nested SUBREGs, so we have to fix
5970 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5971
5972 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5973 {
5974 if (GET_MODE (*r->subreg_loc)
5975 == GET_MODE (SUBREG_REG (reloadreg)))
5976 *r->subreg_loc = SUBREG_REG (reloadreg);
5977 else
5978 {
5979 int final_offset =
5980 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5981
5982 /* When working with SUBREGs the rule is that the byte
5983 offset must be a multiple of the SUBREG's mode. */
5984 final_offset = (final_offset /
5985 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5986 final_offset = (final_offset *
5987 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5988
5989 *r->where = SUBREG_REG (reloadreg);
5990 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5991 }
5992 }
5993 else
5994 *r->where = reloadreg;
5995 }
5996 /* If reload got no reg and isn't optional, something's wrong. */
5997 else if (! rld[r->what].optional)
5998 abort ();
5999 }
6000 }
6001 \f
6002 /* Make a copy of any replacements being done into X and move those
6003 copies to locations in Y, a copy of X. */
6004
6005 void
6006 copy_replacements (rtx x, rtx y)
6007 {
6008 /* We can't support X being a SUBREG because we might then need to know its
6009 location if something inside it was replaced. */
6010 if (GET_CODE (x) == SUBREG)
6011 abort ();
6012
6013 copy_replacements_1 (&x, &y, n_replacements);
6014 }
6015
6016 static void
6017 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6018 {
6019 int i, j;
6020 rtx x, y;
6021 struct replacement *r;
6022 enum rtx_code code;
6023 const char *fmt;
6024
6025 for (j = 0; j < orig_replacements; j++)
6026 {
6027 if (replacements[j].subreg_loc == px)
6028 {
6029 r = &replacements[n_replacements++];
6030 r->where = replacements[j].where;
6031 r->subreg_loc = py;
6032 r->what = replacements[j].what;
6033 r->mode = replacements[j].mode;
6034 }
6035 else if (replacements[j].where == px)
6036 {
6037 r = &replacements[n_replacements++];
6038 r->where = py;
6039 r->subreg_loc = 0;
6040 r->what = replacements[j].what;
6041 r->mode = replacements[j].mode;
6042 }
6043 }
6044
6045 x = *px;
6046 y = *py;
6047 code = GET_CODE (x);
6048 fmt = GET_RTX_FORMAT (code);
6049
6050 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6051 {
6052 if (fmt[i] == 'e')
6053 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6054 else if (fmt[i] == 'E')
6055 for (j = XVECLEN (x, i); --j >= 0; )
6056 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6057 orig_replacements);
6058 }
6059 }
6060
6061 /* Change any replacements being done to *X to be done to *Y. */
6062
6063 void
6064 move_replacements (rtx *x, rtx *y)
6065 {
6066 int i;
6067
6068 for (i = 0; i < n_replacements; i++)
6069 if (replacements[i].subreg_loc == x)
6070 replacements[i].subreg_loc = y;
6071 else if (replacements[i].where == x)
6072 {
6073 replacements[i].where = y;
6074 replacements[i].subreg_loc = 0;
6075 }
6076 }
6077 \f
6078 /* If LOC was scheduled to be replaced by something, return the replacement.
6079 Otherwise, return *LOC. */
6080
6081 rtx
6082 find_replacement (rtx *loc)
6083 {
6084 struct replacement *r;
6085
6086 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6087 {
6088 rtx reloadreg = rld[r->what].reg_rtx;
6089
6090 if (reloadreg && r->where == loc)
6091 {
6092 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6093 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6094
6095 return reloadreg;
6096 }
6097 else if (reloadreg && r->subreg_loc == loc)
6098 {
6099 /* RELOADREG must be either a REG or a SUBREG.
6100
6101 ??? Is it actually still ever a SUBREG? If so, why? */
6102
6103 if (GET_CODE (reloadreg) == REG)
6104 return gen_rtx_REG (GET_MODE (*loc),
6105 (REGNO (reloadreg) +
6106 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6107 GET_MODE (SUBREG_REG (*loc)),
6108 SUBREG_BYTE (*loc),
6109 GET_MODE (*loc))));
6110 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6111 return reloadreg;
6112 else
6113 {
6114 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6115
6116 /* When working with SUBREGs the rule is that the byte
6117 offset must be a multiple of the SUBREG's mode. */
6118 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6119 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6120 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6121 final_offset);
6122 }
6123 }
6124 }
6125
6126 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6127 what's inside and make a new rtl if so. */
6128 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6129 || GET_CODE (*loc) == MULT)
6130 {
6131 rtx x = find_replacement (&XEXP (*loc, 0));
6132 rtx y = find_replacement (&XEXP (*loc, 1));
6133
6134 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6135 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6136 }
6137
6138 return *loc;
6139 }
6140 \f
6141 /* Return nonzero if register in range [REGNO, ENDREGNO)
6142 appears either explicitly or implicitly in X
6143 other than being stored into (except for earlyclobber operands).
6144
6145 References contained within the substructure at LOC do not count.
6146 LOC may be zero, meaning don't ignore anything.
6147
6148 This is similar to refers_to_regno_p in rtlanal.c except that we
6149 look at equivalences for pseudos that didn't get hard registers. */
6150
6151 int
6152 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6153 rtx x, rtx *loc)
6154 {
6155 int i;
6156 unsigned int r;
6157 RTX_CODE code;
6158 const char *fmt;
6159
6160 if (x == 0)
6161 return 0;
6162
6163 repeat:
6164 code = GET_CODE (x);
6165
6166 switch (code)
6167 {
6168 case REG:
6169 r = REGNO (x);
6170
6171 /* If this is a pseudo, a hard register must not have been allocated.
6172 X must therefore either be a constant or be in memory. */
6173 if (r >= FIRST_PSEUDO_REGISTER)
6174 {
6175 if (reg_equiv_memory_loc[r])
6176 return refers_to_regno_for_reload_p (regno, endregno,
6177 reg_equiv_memory_loc[r],
6178 (rtx*) 0);
6179
6180 if (reg_equiv_constant[r])
6181 return 0;
6182
6183 abort ();
6184 }
6185
6186 return (endregno > r
6187 && regno < r + (r < FIRST_PSEUDO_REGISTER
6188 ? hard_regno_nregs[r][GET_MODE (x)]
6189 : 1));
6190
6191 case SUBREG:
6192 /* If this is a SUBREG of a hard reg, we can see exactly which
6193 registers are being modified. Otherwise, handle normally. */
6194 if (GET_CODE (SUBREG_REG (x)) == REG
6195 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6196 {
6197 unsigned int inner_regno = subreg_regno (x);
6198 unsigned int inner_endregno
6199 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6200 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6201
6202 return endregno > inner_regno && regno < inner_endregno;
6203 }
6204 break;
6205
6206 case CLOBBER:
6207 case SET:
6208 if (&SET_DEST (x) != loc
6209 /* Note setting a SUBREG counts as referring to the REG it is in for
6210 a pseudo but not for hard registers since we can
6211 treat each word individually. */
6212 && ((GET_CODE (SET_DEST (x)) == SUBREG
6213 && loc != &SUBREG_REG (SET_DEST (x))
6214 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6215 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6216 && refers_to_regno_for_reload_p (regno, endregno,
6217 SUBREG_REG (SET_DEST (x)),
6218 loc))
6219 /* If the output is an earlyclobber operand, this is
6220 a conflict. */
6221 || ((GET_CODE (SET_DEST (x)) != REG
6222 || earlyclobber_operand_p (SET_DEST (x)))
6223 && refers_to_regno_for_reload_p (regno, endregno,
6224 SET_DEST (x), loc))))
6225 return 1;
6226
6227 if (code == CLOBBER || loc == &SET_SRC (x))
6228 return 0;
6229 x = SET_SRC (x);
6230 goto repeat;
6231
6232 default:
6233 break;
6234 }
6235
6236 /* X does not match, so try its subexpressions. */
6237
6238 fmt = GET_RTX_FORMAT (code);
6239 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6240 {
6241 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6242 {
6243 if (i == 0)
6244 {
6245 x = XEXP (x, 0);
6246 goto repeat;
6247 }
6248 else
6249 if (refers_to_regno_for_reload_p (regno, endregno,
6250 XEXP (x, i), loc))
6251 return 1;
6252 }
6253 else if (fmt[i] == 'E')
6254 {
6255 int j;
6256 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6257 if (loc != &XVECEXP (x, i, j)
6258 && refers_to_regno_for_reload_p (regno, endregno,
6259 XVECEXP (x, i, j), loc))
6260 return 1;
6261 }
6262 }
6263 return 0;
6264 }
6265
6266 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6267 we check if any register number in X conflicts with the relevant register
6268 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6269 contains a MEM (we don't bother checking for memory addresses that can't
6270 conflict because we expect this to be a rare case.
6271
6272 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6273 that we look at equivalences for pseudos that didn't get hard registers. */
6274
6275 int
6276 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6277 {
6278 int regno, endregno;
6279
6280 /* Overly conservative. */
6281 if (GET_CODE (x) == STRICT_LOW_PART
6282 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6283 x = XEXP (x, 0);
6284
6285 /* If either argument is a constant, then modifying X can not affect IN. */
6286 if (CONSTANT_P (x) || CONSTANT_P (in))
6287 return 0;
6288 else if (GET_CODE (x) == SUBREG)
6289 {
6290 regno = REGNO (SUBREG_REG (x));
6291 if (regno < FIRST_PSEUDO_REGISTER)
6292 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6293 GET_MODE (SUBREG_REG (x)),
6294 SUBREG_BYTE (x),
6295 GET_MODE (x));
6296 }
6297 else if (GET_CODE (x) == REG)
6298 {
6299 regno = REGNO (x);
6300
6301 /* If this is a pseudo, it must not have been assigned a hard register.
6302 Therefore, it must either be in memory or be a constant. */
6303
6304 if (regno >= FIRST_PSEUDO_REGISTER)
6305 {
6306 if (reg_equiv_memory_loc[regno])
6307 return refers_to_mem_for_reload_p (in);
6308 else if (reg_equiv_constant[regno])
6309 return 0;
6310 abort ();
6311 }
6312 }
6313 else if (GET_CODE (x) == MEM)
6314 return refers_to_mem_for_reload_p (in);
6315 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6316 || GET_CODE (x) == CC0)
6317 return reg_mentioned_p (x, in);
6318 else if (GET_CODE (x) == PLUS)
6319 {
6320 /* We actually want to know if X is mentioned somewhere inside IN.
6321 We must not say that (plus (sp) (const_int 124)) is in
6322 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6323 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6324 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6325 while (GET_CODE (in) == MEM)
6326 in = XEXP (in, 0);
6327 if (GET_CODE (in) == REG)
6328 return 0;
6329 else if (GET_CODE (in) == PLUS)
6330 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6331 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6332 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6333 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6334 }
6335 else
6336 abort ();
6337
6338 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6339 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6340
6341 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6342 }
6343
6344 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6345 registers. */
6346
6347 int
6348 refers_to_mem_for_reload_p (rtx x)
6349 {
6350 const char *fmt;
6351 int i;
6352
6353 if (GET_CODE (x) == MEM)
6354 return 1;
6355
6356 if (GET_CODE (x) == REG)
6357 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6358 && reg_equiv_memory_loc[REGNO (x)]);
6359
6360 fmt = GET_RTX_FORMAT (GET_CODE (x));
6361 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6362 if (fmt[i] == 'e'
6363 && (GET_CODE (XEXP (x, i)) == MEM
6364 || refers_to_mem_for_reload_p (XEXP (x, i))))
6365 return 1;
6366
6367 return 0;
6368 }
6369 \f
6370 /* Check the insns before INSN to see if there is a suitable register
6371 containing the same value as GOAL.
6372 If OTHER is -1, look for a register in class CLASS.
6373 Otherwise, just see if register number OTHER shares GOAL's value.
6374
6375 Return an rtx for the register found, or zero if none is found.
6376
6377 If RELOAD_REG_P is (short *)1,
6378 we reject any hard reg that appears in reload_reg_rtx
6379 because such a hard reg is also needed coming into this insn.
6380
6381 If RELOAD_REG_P is any other nonzero value,
6382 it is a vector indexed by hard reg number
6383 and we reject any hard reg whose element in the vector is nonnegative
6384 as well as any that appears in reload_reg_rtx.
6385
6386 If GOAL is zero, then GOALREG is a register number; we look
6387 for an equivalent for that register.
6388
6389 MODE is the machine mode of the value we want an equivalence for.
6390 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6391
6392 This function is used by jump.c as well as in the reload pass.
6393
6394 If GOAL is the sum of the stack pointer and a constant, we treat it
6395 as if it were a constant except that sp is required to be unchanging. */
6396
6397 rtx
6398 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6399 short *reload_reg_p, int goalreg, enum machine_mode mode)
6400 {
6401 rtx p = insn;
6402 rtx goaltry, valtry, value, where;
6403 rtx pat;
6404 int regno = -1;
6405 int valueno;
6406 int goal_mem = 0;
6407 int goal_const = 0;
6408 int goal_mem_addr_varies = 0;
6409 int need_stable_sp = 0;
6410 int nregs;
6411 int valuenregs;
6412 int num = 0;
6413
6414 if (goal == 0)
6415 regno = goalreg;
6416 else if (GET_CODE (goal) == REG)
6417 regno = REGNO (goal);
6418 else if (GET_CODE (goal) == MEM)
6419 {
6420 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6421 if (MEM_VOLATILE_P (goal))
6422 return 0;
6423 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6424 return 0;
6425 /* An address with side effects must be reexecuted. */
6426 switch (code)
6427 {
6428 case POST_INC:
6429 case PRE_INC:
6430 case POST_DEC:
6431 case PRE_DEC:
6432 case POST_MODIFY:
6433 case PRE_MODIFY:
6434 return 0;
6435 default:
6436 break;
6437 }
6438 goal_mem = 1;
6439 }
6440 else if (CONSTANT_P (goal))
6441 goal_const = 1;
6442 else if (GET_CODE (goal) == PLUS
6443 && XEXP (goal, 0) == stack_pointer_rtx
6444 && CONSTANT_P (XEXP (goal, 1)))
6445 goal_const = need_stable_sp = 1;
6446 else if (GET_CODE (goal) == PLUS
6447 && XEXP (goal, 0) == frame_pointer_rtx
6448 && CONSTANT_P (XEXP (goal, 1)))
6449 goal_const = 1;
6450 else
6451 return 0;
6452
6453 num = 0;
6454 /* Scan insns back from INSN, looking for one that copies
6455 a value into or out of GOAL.
6456 Stop and give up if we reach a label. */
6457
6458 while (1)
6459 {
6460 p = PREV_INSN (p);
6461 num++;
6462 if (p == 0 || GET_CODE (p) == CODE_LABEL
6463 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6464 return 0;
6465
6466 if (GET_CODE (p) == INSN
6467 /* If we don't want spill regs ... */
6468 && (! (reload_reg_p != 0
6469 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6470 /* ... then ignore insns introduced by reload; they aren't
6471 useful and can cause results in reload_as_needed to be
6472 different from what they were when calculating the need for
6473 spills. If we notice an input-reload insn here, we will
6474 reject it below, but it might hide a usable equivalent.
6475 That makes bad code. It may even abort: perhaps no reg was
6476 spilled for this insn because it was assumed we would find
6477 that equivalent. */
6478 || INSN_UID (p) < reload_first_uid))
6479 {
6480 rtx tem;
6481 pat = single_set (p);
6482
6483 /* First check for something that sets some reg equal to GOAL. */
6484 if (pat != 0
6485 && ((regno >= 0
6486 && true_regnum (SET_SRC (pat)) == regno
6487 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6488 ||
6489 (regno >= 0
6490 && true_regnum (SET_DEST (pat)) == regno
6491 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6492 ||
6493 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6494 /* When looking for stack pointer + const,
6495 make sure we don't use a stack adjust. */
6496 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6497 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6498 || (goal_mem
6499 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6500 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6501 || (goal_mem
6502 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6503 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6504 /* If we are looking for a constant,
6505 and something equivalent to that constant was copied
6506 into a reg, we can use that reg. */
6507 || (goal_const && REG_NOTES (p) != 0
6508 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6509 && ((rtx_equal_p (XEXP (tem, 0), goal)
6510 && (valueno
6511 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6512 || (GET_CODE (SET_DEST (pat)) == REG
6513 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6514 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6515 == MODE_FLOAT)
6516 && GET_CODE (goal) == CONST_INT
6517 && 0 != (goaltry
6518 = operand_subword (XEXP (tem, 0), 0, 0,
6519 VOIDmode))
6520 && rtx_equal_p (goal, goaltry)
6521 && (valtry
6522 = operand_subword (SET_DEST (pat), 0, 0,
6523 VOIDmode))
6524 && (valueno = true_regnum (valtry)) >= 0)))
6525 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6526 NULL_RTX))
6527 && GET_CODE (SET_DEST (pat)) == REG
6528 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6529 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6530 == MODE_FLOAT)
6531 && GET_CODE (goal) == CONST_INT
6532 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6533 VOIDmode))
6534 && rtx_equal_p (goal, goaltry)
6535 && (valtry
6536 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6537 && (valueno = true_regnum (valtry)) >= 0)))
6538 {
6539 if (other >= 0)
6540 {
6541 if (valueno != other)
6542 continue;
6543 }
6544 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6545 continue;
6546 else
6547 {
6548 int i;
6549
6550 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6551 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6552 valueno + i))
6553 break;
6554 if (i >= 0)
6555 continue;
6556 }
6557 value = valtry;
6558 where = p;
6559 break;
6560 }
6561 }
6562 }
6563
6564 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6565 (or copying VALUE into GOAL, if GOAL is also a register).
6566 Now verify that VALUE is really valid. */
6567
6568 /* VALUENO is the register number of VALUE; a hard register. */
6569
6570 /* Don't try to re-use something that is killed in this insn. We want
6571 to be able to trust REG_UNUSED notes. */
6572 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6573 return 0;
6574
6575 /* If we propose to get the value from the stack pointer or if GOAL is
6576 a MEM based on the stack pointer, we need a stable SP. */
6577 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6578 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6579 goal)))
6580 need_stable_sp = 1;
6581
6582 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6583 if (GET_MODE (value) != mode)
6584 return 0;
6585
6586 /* Reject VALUE if it was loaded from GOAL
6587 and is also a register that appears in the address of GOAL. */
6588
6589 if (goal_mem && value == SET_DEST (single_set (where))
6590 && refers_to_regno_for_reload_p (valueno,
6591 (valueno
6592 + hard_regno_nregs[valueno][mode]),
6593 goal, (rtx*) 0))
6594 return 0;
6595
6596 /* Reject registers that overlap GOAL. */
6597
6598 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6599 nregs = hard_regno_nregs[regno][mode];
6600 else
6601 nregs = 1;
6602 valuenregs = hard_regno_nregs[valueno][mode];
6603
6604 if (!goal_mem && !goal_const
6605 && regno + nregs > valueno && regno < valueno + valuenregs)
6606 return 0;
6607
6608 /* Reject VALUE if it is one of the regs reserved for reloads.
6609 Reload1 knows how to reuse them anyway, and it would get
6610 confused if we allocated one without its knowledge.
6611 (Now that insns introduced by reload are ignored above,
6612 this case shouldn't happen, but I'm not positive.) */
6613
6614 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6615 {
6616 int i;
6617 for (i = 0; i < valuenregs; ++i)
6618 if (reload_reg_p[valueno + i] >= 0)
6619 return 0;
6620 }
6621
6622 /* Reject VALUE if it is a register being used for an input reload
6623 even if it is not one of those reserved. */
6624
6625 if (reload_reg_p != 0)
6626 {
6627 int i;
6628 for (i = 0; i < n_reloads; i++)
6629 if (rld[i].reg_rtx != 0 && rld[i].in)
6630 {
6631 int regno1 = REGNO (rld[i].reg_rtx);
6632 int nregs1 = hard_regno_nregs[regno1]
6633 [GET_MODE (rld[i].reg_rtx)];
6634 if (regno1 < valueno + valuenregs
6635 && regno1 + nregs1 > valueno)
6636 return 0;
6637 }
6638 }
6639
6640 if (goal_mem)
6641 /* We must treat frame pointer as varying here,
6642 since it can vary--in a nonlocal goto as generated by expand_goto. */
6643 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6644
6645 /* Now verify that the values of GOAL and VALUE remain unaltered
6646 until INSN is reached. */
6647
6648 p = insn;
6649 while (1)
6650 {
6651 p = PREV_INSN (p);
6652 if (p == where)
6653 return value;
6654
6655 /* Don't trust the conversion past a function call
6656 if either of the two is in a call-clobbered register, or memory. */
6657 if (GET_CODE (p) == CALL_INSN)
6658 {
6659 int i;
6660
6661 if (goal_mem || need_stable_sp)
6662 return 0;
6663
6664 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6665 for (i = 0; i < nregs; ++i)
6666 if (call_used_regs[regno + i])
6667 return 0;
6668
6669 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6670 for (i = 0; i < valuenregs; ++i)
6671 if (call_used_regs[valueno + i])
6672 return 0;
6673 #ifdef NON_SAVING_SETJMP
6674 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6675 return 0;
6676 #endif
6677 }
6678
6679 if (INSN_P (p))
6680 {
6681 pat = PATTERN (p);
6682
6683 /* Watch out for unspec_volatile, and volatile asms. */
6684 if (volatile_insn_p (pat))
6685 return 0;
6686
6687 /* If this insn P stores in either GOAL or VALUE, return 0.
6688 If GOAL is a memory ref and this insn writes memory, return 0.
6689 If GOAL is a memory ref and its address is not constant,
6690 and this insn P changes a register used in GOAL, return 0. */
6691
6692 if (GET_CODE (pat) == COND_EXEC)
6693 pat = COND_EXEC_CODE (pat);
6694 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6695 {
6696 rtx dest = SET_DEST (pat);
6697 while (GET_CODE (dest) == SUBREG
6698 || GET_CODE (dest) == ZERO_EXTRACT
6699 || GET_CODE (dest) == SIGN_EXTRACT
6700 || GET_CODE (dest) == STRICT_LOW_PART)
6701 dest = XEXP (dest, 0);
6702 if (GET_CODE (dest) == REG)
6703 {
6704 int xregno = REGNO (dest);
6705 int xnregs;
6706 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6707 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6708 else
6709 xnregs = 1;
6710 if (xregno < regno + nregs && xregno + xnregs > regno)
6711 return 0;
6712 if (xregno < valueno + valuenregs
6713 && xregno + xnregs > valueno)
6714 return 0;
6715 if (goal_mem_addr_varies
6716 && reg_overlap_mentioned_for_reload_p (dest, goal))
6717 return 0;
6718 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6719 return 0;
6720 }
6721 else if (goal_mem && GET_CODE (dest) == MEM
6722 && ! push_operand (dest, GET_MODE (dest)))
6723 return 0;
6724 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6725 && reg_equiv_memory_loc[regno] != 0)
6726 return 0;
6727 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6728 return 0;
6729 }
6730 else if (GET_CODE (pat) == PARALLEL)
6731 {
6732 int i;
6733 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6734 {
6735 rtx v1 = XVECEXP (pat, 0, i);
6736 if (GET_CODE (v1) == COND_EXEC)
6737 v1 = COND_EXEC_CODE (v1);
6738 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6739 {
6740 rtx dest = SET_DEST (v1);
6741 while (GET_CODE (dest) == SUBREG
6742 || GET_CODE (dest) == ZERO_EXTRACT
6743 || GET_CODE (dest) == SIGN_EXTRACT
6744 || GET_CODE (dest) == STRICT_LOW_PART)
6745 dest = XEXP (dest, 0);
6746 if (GET_CODE (dest) == REG)
6747 {
6748 int xregno = REGNO (dest);
6749 int xnregs;
6750 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6751 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6752 else
6753 xnregs = 1;
6754 if (xregno < regno + nregs
6755 && xregno + xnregs > regno)
6756 return 0;
6757 if (xregno < valueno + valuenregs
6758 && xregno + xnregs > valueno)
6759 return 0;
6760 if (goal_mem_addr_varies
6761 && reg_overlap_mentioned_for_reload_p (dest,
6762 goal))
6763 return 0;
6764 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6765 return 0;
6766 }
6767 else if (goal_mem && GET_CODE (dest) == MEM
6768 && ! push_operand (dest, GET_MODE (dest)))
6769 return 0;
6770 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6771 && reg_equiv_memory_loc[regno] != 0)
6772 return 0;
6773 else if (need_stable_sp
6774 && push_operand (dest, GET_MODE (dest)))
6775 return 0;
6776 }
6777 }
6778 }
6779
6780 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6781 {
6782 rtx link;
6783
6784 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6785 link = XEXP (link, 1))
6786 {
6787 pat = XEXP (link, 0);
6788 if (GET_CODE (pat) == CLOBBER)
6789 {
6790 rtx dest = SET_DEST (pat);
6791
6792 if (GET_CODE (dest) == REG)
6793 {
6794 int xregno = REGNO (dest);
6795 int xnregs
6796 = hard_regno_nregs[xregno][GET_MODE (dest)];
6797
6798 if (xregno < regno + nregs
6799 && xregno + xnregs > regno)
6800 return 0;
6801 else if (xregno < valueno + valuenregs
6802 && xregno + xnregs > valueno)
6803 return 0;
6804 else if (goal_mem_addr_varies
6805 && reg_overlap_mentioned_for_reload_p (dest,
6806 goal))
6807 return 0;
6808 }
6809
6810 else if (goal_mem && GET_CODE (dest) == MEM
6811 && ! push_operand (dest, GET_MODE (dest)))
6812 return 0;
6813 else if (need_stable_sp
6814 && push_operand (dest, GET_MODE (dest)))
6815 return 0;
6816 }
6817 }
6818 }
6819
6820 #ifdef AUTO_INC_DEC
6821 /* If this insn auto-increments or auto-decrements
6822 either regno or valueno, return 0 now.
6823 If GOAL is a memory ref and its address is not constant,
6824 and this insn P increments a register used in GOAL, return 0. */
6825 {
6826 rtx link;
6827
6828 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6829 if (REG_NOTE_KIND (link) == REG_INC
6830 && GET_CODE (XEXP (link, 0)) == REG)
6831 {
6832 int incno = REGNO (XEXP (link, 0));
6833 if (incno < regno + nregs && incno >= regno)
6834 return 0;
6835 if (incno < valueno + valuenregs && incno >= valueno)
6836 return 0;
6837 if (goal_mem_addr_varies
6838 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6839 goal))
6840 return 0;
6841 }
6842 }
6843 #endif
6844 }
6845 }
6846 }
6847 \f
6848 /* Find a place where INCED appears in an increment or decrement operator
6849 within X, and return the amount INCED is incremented or decremented by.
6850 The value is always positive. */
6851
6852 static int
6853 find_inc_amount (rtx x, rtx inced)
6854 {
6855 enum rtx_code code = GET_CODE (x);
6856 const char *fmt;
6857 int i;
6858
6859 if (code == MEM)
6860 {
6861 rtx addr = XEXP (x, 0);
6862 if ((GET_CODE (addr) == PRE_DEC
6863 || GET_CODE (addr) == POST_DEC
6864 || GET_CODE (addr) == PRE_INC
6865 || GET_CODE (addr) == POST_INC)
6866 && XEXP (addr, 0) == inced)
6867 return GET_MODE_SIZE (GET_MODE (x));
6868 else if ((GET_CODE (addr) == PRE_MODIFY
6869 || GET_CODE (addr) == POST_MODIFY)
6870 && GET_CODE (XEXP (addr, 1)) == PLUS
6871 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6872 && XEXP (addr, 0) == inced
6873 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6874 {
6875 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6876 return i < 0 ? -i : i;
6877 }
6878 }
6879
6880 fmt = GET_RTX_FORMAT (code);
6881 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6882 {
6883 if (fmt[i] == 'e')
6884 {
6885 int tem = find_inc_amount (XEXP (x, i), inced);
6886 if (tem != 0)
6887 return tem;
6888 }
6889 if (fmt[i] == 'E')
6890 {
6891 int j;
6892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6893 {
6894 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6895 if (tem != 0)
6896 return tem;
6897 }
6898 }
6899 }
6900
6901 return 0;
6902 }
6903 \f
6904 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6905 If SETS is nonzero, also consider SETs. */
6906
6907 int
6908 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6909 int sets)
6910 {
6911 unsigned int nregs = hard_regno_nregs[regno][mode];
6912 unsigned int endregno = regno + nregs;
6913
6914 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6915 || (sets && GET_CODE (PATTERN (insn)) == SET))
6916 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6917 {
6918 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6919
6920 return test >= regno && test < endregno;
6921 }
6922
6923 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6924 {
6925 int i = XVECLEN (PATTERN (insn), 0) - 1;
6926
6927 for (; i >= 0; i--)
6928 {
6929 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6930 if ((GET_CODE (elt) == CLOBBER
6931 || (sets && GET_CODE (PATTERN (insn)) == SET))
6932 && GET_CODE (XEXP (elt, 0)) == REG)
6933 {
6934 unsigned int test = REGNO (XEXP (elt, 0));
6935
6936 if (test >= regno && test < endregno)
6937 return 1;
6938 }
6939 }
6940 }
6941
6942 return 0;
6943 }
6944
6945 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6946 rtx
6947 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6948 {
6949 int regno;
6950
6951 if (GET_MODE (reloadreg) == mode)
6952 return reloadreg;
6953
6954 regno = REGNO (reloadreg);
6955
6956 if (WORDS_BIG_ENDIAN)
6957 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6958 - (int) hard_regno_nregs[regno][mode];
6959
6960 return gen_rtx_REG (mode, regno);
6961 }
6962
6963 static const char *const reload_when_needed_name[] =
6964 {
6965 "RELOAD_FOR_INPUT",
6966 "RELOAD_FOR_OUTPUT",
6967 "RELOAD_FOR_INSN",
6968 "RELOAD_FOR_INPUT_ADDRESS",
6969 "RELOAD_FOR_INPADDR_ADDRESS",
6970 "RELOAD_FOR_OUTPUT_ADDRESS",
6971 "RELOAD_FOR_OUTADDR_ADDRESS",
6972 "RELOAD_FOR_OPERAND_ADDRESS",
6973 "RELOAD_FOR_OPADDR_ADDR",
6974 "RELOAD_OTHER",
6975 "RELOAD_FOR_OTHER_ADDRESS"
6976 };
6977
6978 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6979
6980 /* These functions are used to print the variables set by 'find_reloads' */
6981
6982 void
6983 debug_reload_to_stream (FILE *f)
6984 {
6985 int r;
6986 const char *prefix;
6987
6988 if (! f)
6989 f = stderr;
6990 for (r = 0; r < n_reloads; r++)
6991 {
6992 fprintf (f, "Reload %d: ", r);
6993
6994 if (rld[r].in != 0)
6995 {
6996 fprintf (f, "reload_in (%s) = ",
6997 GET_MODE_NAME (rld[r].inmode));
6998 print_inline_rtx (f, rld[r].in, 24);
6999 fprintf (f, "\n\t");
7000 }
7001
7002 if (rld[r].out != 0)
7003 {
7004 fprintf (f, "reload_out (%s) = ",
7005 GET_MODE_NAME (rld[r].outmode));
7006 print_inline_rtx (f, rld[r].out, 24);
7007 fprintf (f, "\n\t");
7008 }
7009
7010 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7011
7012 fprintf (f, "%s (opnum = %d)",
7013 reload_when_needed_name[(int) rld[r].when_needed],
7014 rld[r].opnum);
7015
7016 if (rld[r].optional)
7017 fprintf (f, ", optional");
7018
7019 if (rld[r].nongroup)
7020 fprintf (f, ", nongroup");
7021
7022 if (rld[r].inc != 0)
7023 fprintf (f, ", inc by %d", rld[r].inc);
7024
7025 if (rld[r].nocombine)
7026 fprintf (f, ", can't combine");
7027
7028 if (rld[r].secondary_p)
7029 fprintf (f, ", secondary_reload_p");
7030
7031 if (rld[r].in_reg != 0)
7032 {
7033 fprintf (f, "\n\treload_in_reg: ");
7034 print_inline_rtx (f, rld[r].in_reg, 24);
7035 }
7036
7037 if (rld[r].out_reg != 0)
7038 {
7039 fprintf (f, "\n\treload_out_reg: ");
7040 print_inline_rtx (f, rld[r].out_reg, 24);
7041 }
7042
7043 if (rld[r].reg_rtx != 0)
7044 {
7045 fprintf (f, "\n\treload_reg_rtx: ");
7046 print_inline_rtx (f, rld[r].reg_rtx, 24);
7047 }
7048
7049 prefix = "\n\t";
7050 if (rld[r].secondary_in_reload != -1)
7051 {
7052 fprintf (f, "%ssecondary_in_reload = %d",
7053 prefix, rld[r].secondary_in_reload);
7054 prefix = ", ";
7055 }
7056
7057 if (rld[r].secondary_out_reload != -1)
7058 fprintf (f, "%ssecondary_out_reload = %d\n",
7059 prefix, rld[r].secondary_out_reload);
7060
7061 prefix = "\n\t";
7062 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7063 {
7064 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7065 insn_data[rld[r].secondary_in_icode].name);
7066 prefix = ", ";
7067 }
7068
7069 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7070 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7071 insn_data[rld[r].secondary_out_icode].name);
7072
7073 fprintf (f, "\n");
7074 }
7075 }
7076
7077 void
7078 debug_reload (void)
7079 {
7080 debug_reload_to_stream (stderr);
7081 }