]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
[Ada] Fix documentation for GNAT.Command_Line.Exit_From_Command_Line
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static poly_uint64_pod spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 class insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static class insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 poly_int64_pod initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 poly_int64_pod offset; /* Current offset between the two regs. */
270 poly_int64_pod previous_offset; /* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static poly_int64_pod (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (class insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (class insn_chain *, int);
342 static void find_reload_regs (class insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (class insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (class insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (class insn_chain *, rtx *);
390 static void choose_reload_regs (class insn_chain *);
391 static void emit_input_reload_insns (class insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (class insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (class insn_chain *, struct reload *, int);
396 static void do_output_reload (class insn_chain *, struct reload *, int);
397 static void emit_reload_insns (class insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, poly_int64);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static class insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 class insn_chain *
474 new_insn_chain (void)
475 {
476 class insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, class insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
800
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
805
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
810
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
816
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
818
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
821
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
825
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
829
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
834
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
837
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847
848 maybe_fix_stack_asms ();
849
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
852
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
855
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 {
863 int from = ep->from;
864 int can_eliminate = 0;
865 do
866 {
867 can_eliminate |= ep->can_eliminate;
868 ep++;
869 }
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
873 }
874
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877
878 finish_spills (global);
879
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
884
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
888 {
889 int something_changed;
890 poly_int64 starting_frame_size;
891
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
894
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
897
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
902
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
905
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
912
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
918
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
921
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
924 {
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
927
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 if (maybe_ne (starting_frame_size, 0) && crtl->stack_alignment_needed)
959 {
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
969 }
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled
972 || maybe_ne (starting_frame_size, get_frame_size ()))
973 {
974 if (update_eliminables_and_spill ())
975 finish_spills (0);
976 continue;
977 }
978
979 if (caller_save_needed)
980 {
981 save_call_clobbered_regs ();
982 /* That might have allocated new insn_chain structures. */
983 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
984 }
985
986 calculate_needs_all_insns (global);
987
988 if (! ira_conflicts_p)
989 /* Don't do it for IRA. We need this info because we don't
990 change live_throughout and dead_or_set for chains when IRA
991 is used. */
992 CLEAR_REG_SET (&spilled_pseudos);
993
994 something_changed = 0;
995
996 /* If we allocated any new memory locations, make another pass
997 since it might have changed elimination offsets. */
998 if (something_was_spilled
999 || maybe_ne (starting_frame_size, get_frame_size ()))
1000 something_changed = 1;
1001
1002 /* Even if the frame size remained the same, we might still have
1003 changed elimination offsets, e.g. if find_reloads called
1004 force_const_mem requiring the back end to allocate a constant
1005 pool base register that needs to be saved on the stack. */
1006 else if (!verify_initial_elim_offsets ())
1007 something_changed = 1;
1008
1009 if (update_eliminables_and_spill ())
1010 {
1011 finish_spills (0);
1012 something_changed = 1;
1013 }
1014 else
1015 {
1016 select_reload_regs ();
1017 if (failure)
1018 goto failed;
1019 if (insns_need_reload)
1020 something_changed |= finish_spills (global);
1021 }
1022
1023 if (! something_changed)
1024 break;
1025
1026 if (caller_save_needed)
1027 delete_caller_save_insns ();
1028
1029 obstack_free (&reload_obstack, reload_firstobj);
1030 }
1031
1032 /* If global-alloc was run, notify it of any register eliminations we have
1033 done. */
1034 if (global)
1035 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1036 if (ep->can_eliminate)
1037 mark_elimination (ep->from, ep->to);
1038
1039 remove_init_insns ();
1040
1041 /* Use the reload registers where necessary
1042 by generating move instructions to move the must-be-register
1043 values into or out of the reload registers. */
1044
1045 if (insns_need_reload != 0 || something_needs_elimination
1046 || something_needs_operands_changed)
1047 {
1048 poly_int64 old_frame_size = get_frame_size ();
1049
1050 reload_as_needed (global);
1051
1052 gcc_assert (known_eq (old_frame_size, get_frame_size ()));
1053
1054 gcc_assert (verify_initial_elim_offsets ());
1055 }
1056
1057 /* If we were able to eliminate the frame pointer, show that it is no
1058 longer live at the start of any basic block. If it ls live by
1059 virtue of being in a pseudo, that pseudo will be marked live
1060 and hence the frame pointer will be known to be live via that
1061 pseudo. */
1062
1063 if (! frame_pointer_needed)
1064 FOR_EACH_BB_FN (bb, cfun)
1065 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1066
1067 /* Come here (with failure set nonzero) if we can't get enough spill
1068 regs. */
1069 failed:
1070
1071 CLEAR_REG_SET (&changed_allocation_pseudos);
1072 CLEAR_REG_SET (&spilled_pseudos);
1073 reload_in_progress = 0;
1074
1075 /* Now eliminate all pseudo regs by modifying them into
1076 their equivalent memory references.
1077 The REG-rtx's for the pseudos are modified in place,
1078 so all insns that used to refer to them now refer to memory.
1079
1080 For a reg that has a reg_equiv_address, all those insns
1081 were changed by reloading so that no insns refer to it any longer;
1082 but the DECL_RTL of a variable decl may refer to it,
1083 and if so this causes the debugging info to mention the variable. */
1084
1085 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1086 {
1087 rtx addr = 0;
1088
1089 if (reg_equiv_mem (i))
1090 addr = XEXP (reg_equiv_mem (i), 0);
1091
1092 if (reg_equiv_address (i))
1093 addr = reg_equiv_address (i);
1094
1095 if (addr)
1096 {
1097 if (reg_renumber[i] < 0)
1098 {
1099 rtx reg = regno_reg_rtx[i];
1100
1101 REG_USERVAR_P (reg) = 0;
1102 PUT_CODE (reg, MEM);
1103 XEXP (reg, 0) = addr;
1104 if (reg_equiv_memory_loc (i))
1105 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1106 else
1107 MEM_ATTRS (reg) = 0;
1108 MEM_NOTRAP_P (reg) = 1;
1109 }
1110 else if (reg_equiv_mem (i))
1111 XEXP (reg_equiv_mem (i), 0) = addr;
1112 }
1113
1114 /* We don't want complex addressing modes in debug insns
1115 if simpler ones will do, so delegitimize equivalences
1116 in debug insns. */
1117 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1118 {
1119 rtx reg = regno_reg_rtx[i];
1120 rtx equiv = 0;
1121 df_ref use, next;
1122
1123 if (reg_equiv_constant (i))
1124 equiv = reg_equiv_constant (i);
1125 else if (reg_equiv_invariant (i))
1126 equiv = reg_equiv_invariant (i);
1127 else if (reg && MEM_P (reg))
1128 equiv = targetm.delegitimize_address (reg);
1129 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1130 equiv = reg;
1131
1132 if (equiv == reg)
1133 continue;
1134
1135 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1136 {
1137 insn = DF_REF_INSN (use);
1138
1139 /* Make sure the next ref is for a different instruction,
1140 so that we're not affected by the rescan. */
1141 next = DF_REF_NEXT_REG (use);
1142 while (next && DF_REF_INSN (next) == insn)
1143 next = DF_REF_NEXT_REG (next);
1144
1145 if (DEBUG_BIND_INSN_P (insn))
1146 {
1147 if (!equiv)
1148 {
1149 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1150 df_insn_rescan_debug_internal (insn);
1151 }
1152 else
1153 INSN_VAR_LOCATION_LOC (insn)
1154 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1155 reg, equiv);
1156 }
1157 }
1158 }
1159 }
1160
1161 /* We must set reload_completed now since the cleanup_subreg_operands call
1162 below will re-recognize each insn and reload may have generated insns
1163 which are only valid during and after reload. */
1164 reload_completed = 1;
1165
1166 /* Make a pass over all the insns and delete all USEs which we inserted
1167 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1168 notes. Delete all CLOBBER insns, except those that refer to the return
1169 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1170 from misarranging variable-array code, and simplify (subreg (reg))
1171 operands. Strip and regenerate REG_INC notes that may have been moved
1172 around. */
1173
1174 for (insn = first; insn; insn = NEXT_INSN (insn))
1175 if (INSN_P (insn))
1176 {
1177 rtx *pnote;
1178
1179 if (CALL_P (insn))
1180 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1181 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1182
1183 if ((GET_CODE (PATTERN (insn)) == USE
1184 /* We mark with QImode USEs introduced by reload itself. */
1185 && (GET_MODE (insn) == QImode
1186 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1187 || (GET_CODE (PATTERN (insn)) == CLOBBER
1188 && (!MEM_P (XEXP (PATTERN (insn), 0))
1189 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1190 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1191 && XEXP (XEXP (PATTERN (insn), 0), 0)
1192 != stack_pointer_rtx))
1193 && (!REG_P (XEXP (PATTERN (insn), 0))
1194 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1195 {
1196 delete_insn (insn);
1197 continue;
1198 }
1199
1200 /* Some CLOBBERs may survive until here and still reference unassigned
1201 pseudos with const equivalent, which may in turn cause ICE in later
1202 passes if the reference remains in place. */
1203 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1204 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1205 VOIDmode, PATTERN (insn));
1206
1207 /* Discard obvious no-ops, even without -O. This optimization
1208 is fast and doesn't interfere with debugging. */
1209 if (NONJUMP_INSN_P (insn)
1210 && GET_CODE (PATTERN (insn)) == SET
1211 && REG_P (SET_SRC (PATTERN (insn)))
1212 && REG_P (SET_DEST (PATTERN (insn)))
1213 && (REGNO (SET_SRC (PATTERN (insn)))
1214 == REGNO (SET_DEST (PATTERN (insn)))))
1215 {
1216 delete_insn (insn);
1217 continue;
1218 }
1219
1220 pnote = &REG_NOTES (insn);
1221 while (*pnote != 0)
1222 {
1223 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1224 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1225 || REG_NOTE_KIND (*pnote) == REG_INC)
1226 *pnote = XEXP (*pnote, 1);
1227 else
1228 pnote = &XEXP (*pnote, 1);
1229 }
1230
1231 if (AUTO_INC_DEC)
1232 add_auto_inc_notes (insn, PATTERN (insn));
1233
1234 /* Simplify (subreg (reg)) if it appears as an operand. */
1235 cleanup_subreg_operands (insn);
1236
1237 /* Clean up invalid ASMs so that they don't confuse later passes.
1238 See PR 21299. */
1239 if (asm_noperands (PATTERN (insn)) >= 0)
1240 {
1241 extract_insn (insn);
1242 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1243 {
1244 error_for_asm (insn,
1245 "%<asm%> operand has impossible constraints");
1246 delete_insn (insn);
1247 continue;
1248 }
1249 }
1250 }
1251
1252 free (temp_pseudo_reg_arr);
1253
1254 /* Indicate that we no longer have known memory locations or constants. */
1255 free_reg_equiv ();
1256
1257 free (reg_max_ref_mode);
1258 free (reg_old_renumber);
1259 free (pseudo_previous_regs);
1260 free (pseudo_forbidden_regs);
1261
1262 CLEAR_HARD_REG_SET (used_spill_regs);
1263 for (i = 0; i < n_spills; i++)
1264 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1265
1266 /* Free all the insn_chain structures at once. */
1267 obstack_free (&reload_obstack, reload_startobj);
1268 unused_insn_chains = 0;
1269
1270 inserted = fixup_abnormal_edges ();
1271
1272 /* We've possibly turned single trapping insn into multiple ones. */
1273 if (cfun->can_throw_non_call_exceptions)
1274 {
1275 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1276 bitmap_ones (blocks);
1277 find_many_sub_basic_blocks (blocks);
1278 }
1279
1280 if (inserted)
1281 commit_edge_insertions ();
1282
1283 /* Replacing pseudos with their memory equivalents might have
1284 created shared rtx. Subsequent passes would get confused
1285 by this, so unshare everything here. */
1286 unshare_all_rtl_again (first);
1287
1288 #ifdef STACK_BOUNDARY
1289 /* init_emit has set the alignment of the hard frame pointer
1290 to STACK_BOUNDARY. It is very likely no longer valid if
1291 the hard frame pointer was used for register allocation. */
1292 if (!frame_pointer_needed)
1293 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1294 #endif
1295
1296 substitute_stack.release ();
1297
1298 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1299
1300 reload_completed = !failure;
1301
1302 return need_dce;
1303 }
1304
1305 /* Yet another special case. Unfortunately, reg-stack forces people to
1306 write incorrect clobbers in asm statements. These clobbers must not
1307 cause the register to appear in bad_spill_regs, otherwise we'll call
1308 fatal_insn later. We clear the corresponding regnos in the live
1309 register sets to avoid this.
1310 The whole thing is rather sick, I'm afraid. */
1311
1312 static void
1313 maybe_fix_stack_asms (void)
1314 {
1315 #ifdef STACK_REGS
1316 const char *constraints[MAX_RECOG_OPERANDS];
1317 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1318 class insn_chain *chain;
1319
1320 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1321 {
1322 int i, noperands;
1323 HARD_REG_SET clobbered, allowed;
1324 rtx pat;
1325
1326 if (! INSN_P (chain->insn)
1327 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1328 continue;
1329 pat = PATTERN (chain->insn);
1330 if (GET_CODE (pat) != PARALLEL)
1331 continue;
1332
1333 CLEAR_HARD_REG_SET (clobbered);
1334 CLEAR_HARD_REG_SET (allowed);
1335
1336 /* First, make a mask of all stack regs that are clobbered. */
1337 for (i = 0; i < XVECLEN (pat, 0); i++)
1338 {
1339 rtx t = XVECEXP (pat, 0, i);
1340 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1341 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 /* CLOBBER_HIGH is only supported for LRA. */
1343 gcc_assert (GET_CODE (t) != CLOBBER_HIGH);
1344 }
1345
1346 /* Get the operand values and constraints out of the insn. */
1347 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1348 constraints, operand_mode, NULL);
1349
1350 /* For every operand, see what registers are allowed. */
1351 for (i = 0; i < noperands; i++)
1352 {
1353 const char *p = constraints[i];
1354 /* For every alternative, we compute the class of registers allowed
1355 for reloading in CLS, and merge its contents into the reg set
1356 ALLOWED. */
1357 int cls = (int) NO_REGS;
1358
1359 for (;;)
1360 {
1361 char c = *p;
1362
1363 if (c == '\0' || c == ',' || c == '#')
1364 {
1365 /* End of one alternative - mark the regs in the current
1366 class, and reset the class. */
1367 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1368 cls = NO_REGS;
1369 p++;
1370 if (c == '#')
1371 do {
1372 c = *p++;
1373 } while (c != '\0' && c != ',');
1374 if (c == '\0')
1375 break;
1376 continue;
1377 }
1378
1379 switch (c)
1380 {
1381 case 'g':
1382 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1383 break;
1384
1385 default:
1386 enum constraint_num cn = lookup_constraint (p);
1387 if (insn_extra_address_constraint (cn))
1388 cls = (int) reg_class_subunion[cls]
1389 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1390 ADDRESS, SCRATCH)];
1391 else
1392 cls = (int) reg_class_subunion[cls]
1393 [reg_class_for_constraint (cn)];
1394 break;
1395 }
1396 p += CONSTRAINT_LEN (c, p);
1397 }
1398 }
1399 /* Those of the registers which are clobbered, but allowed by the
1400 constraints, must be usable as reload registers. So clear them
1401 out of the life information. */
1402 AND_HARD_REG_SET (allowed, clobbered);
1403 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1404 if (TEST_HARD_REG_BIT (allowed, i))
1405 {
1406 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1407 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1408 }
1409 }
1410
1411 #endif
1412 }
1413 \f
1414 /* Copy the global variables n_reloads and rld into the corresponding elts
1415 of CHAIN. */
1416 static void
1417 copy_reloads (class insn_chain *chain)
1418 {
1419 chain->n_reloads = n_reloads;
1420 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1421 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1422 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1423 }
1424
1425 /* Walk the chain of insns, and determine for each whether it needs reloads
1426 and/or eliminations. Build the corresponding insns_need_reload list, and
1427 set something_needs_elimination as appropriate. */
1428 static void
1429 calculate_needs_all_insns (int global)
1430 {
1431 class insn_chain **pprev_reload = &insns_need_reload;
1432 class insn_chain *chain, *next = 0;
1433
1434 something_needs_elimination = 0;
1435
1436 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1437 for (chain = reload_insn_chain; chain != 0; chain = next)
1438 {
1439 rtx_insn *insn = chain->insn;
1440
1441 next = chain->next;
1442
1443 /* Clear out the shortcuts. */
1444 chain->n_reloads = 0;
1445 chain->need_elim = 0;
1446 chain->need_reload = 0;
1447 chain->need_operand_change = 0;
1448
1449 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1450 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1451 what effects this has on the known offsets at labels. */
1452
1453 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1454 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1455 set_label_offsets (insn, insn, 0);
1456
1457 if (INSN_P (insn))
1458 {
1459 rtx old_body = PATTERN (insn);
1460 int old_code = INSN_CODE (insn);
1461 rtx old_notes = REG_NOTES (insn);
1462 int did_elimination = 0;
1463 int operands_changed = 0;
1464
1465 /* Skip insns that only set an equivalence. */
1466 if (will_delete_init_insn_p (insn))
1467 continue;
1468
1469 /* If needed, eliminate any eliminable registers. */
1470 if (num_eliminable || num_eliminable_invariants)
1471 did_elimination = eliminate_regs_in_insn (insn, 0);
1472
1473 /* Analyze the instruction. */
1474 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1475 global, spill_reg_order);
1476
1477 /* If a no-op set needs more than one reload, this is likely
1478 to be something that needs input address reloads. We
1479 can't get rid of this cleanly later, and it is of no use
1480 anyway, so discard it now.
1481 We only do this when expensive_optimizations is enabled,
1482 since this complements reload inheritance / output
1483 reload deletion, and it can make debugging harder. */
1484 if (flag_expensive_optimizations && n_reloads > 1)
1485 {
1486 rtx set = single_set (insn);
1487 if (set
1488 &&
1489 ((SET_SRC (set) == SET_DEST (set)
1490 && REG_P (SET_SRC (set))
1491 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1492 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1493 && reg_renumber[REGNO (SET_SRC (set))] < 0
1494 && reg_renumber[REGNO (SET_DEST (set))] < 0
1495 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1496 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1497 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1498 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1499 {
1500 if (ira_conflicts_p)
1501 /* Inform IRA about the insn deletion. */
1502 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1503 REGNO (SET_SRC (set)));
1504 delete_insn (insn);
1505 /* Delete it from the reload chain. */
1506 if (chain->prev)
1507 chain->prev->next = next;
1508 else
1509 reload_insn_chain = next;
1510 if (next)
1511 next->prev = chain->prev;
1512 chain->next = unused_insn_chains;
1513 unused_insn_chains = chain;
1514 continue;
1515 }
1516 }
1517 if (num_eliminable)
1518 update_eliminable_offsets ();
1519
1520 /* Remember for later shortcuts which insns had any reloads or
1521 register eliminations. */
1522 chain->need_elim = did_elimination;
1523 chain->need_reload = n_reloads > 0;
1524 chain->need_operand_change = operands_changed;
1525
1526 /* Discard any register replacements done. */
1527 if (did_elimination)
1528 {
1529 obstack_free (&reload_obstack, reload_insn_firstobj);
1530 PATTERN (insn) = old_body;
1531 INSN_CODE (insn) = old_code;
1532 REG_NOTES (insn) = old_notes;
1533 something_needs_elimination = 1;
1534 }
1535
1536 something_needs_operands_changed |= operands_changed;
1537
1538 if (n_reloads != 0)
1539 {
1540 copy_reloads (chain);
1541 *pprev_reload = chain;
1542 pprev_reload = &chain->next_need_reload;
1543 }
1544 }
1545 }
1546 *pprev_reload = 0;
1547 }
1548 \f
1549 /* This function is called from the register allocator to set up estimates
1550 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1551 an invariant. The structure is similar to calculate_needs_all_insns. */
1552
1553 void
1554 calculate_elim_costs_all_insns (void)
1555 {
1556 int *reg_equiv_init_cost;
1557 basic_block bb;
1558 int i;
1559
1560 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1561 init_elim_table ();
1562 init_eliminable_invariants (get_insns (), false);
1563
1564 set_initial_elim_offsets ();
1565 set_initial_label_offsets ();
1566
1567 FOR_EACH_BB_FN (bb, cfun)
1568 {
1569 rtx_insn *insn;
1570 elim_bb = bb;
1571
1572 FOR_BB_INSNS (bb, insn)
1573 {
1574 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1575 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1576 what effects this has on the known offsets at labels. */
1577
1578 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1579 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1580 set_label_offsets (insn, insn, 0);
1581
1582 if (INSN_P (insn))
1583 {
1584 rtx set = single_set (insn);
1585
1586 /* Skip insns that only set an equivalence. */
1587 if (set && REG_P (SET_DEST (set))
1588 && reg_renumber[REGNO (SET_DEST (set))] < 0
1589 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1590 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1591 {
1592 unsigned regno = REGNO (SET_DEST (set));
1593 rtx_insn_list *init = reg_equiv_init (regno);
1594 if (init)
1595 {
1596 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1597 false, true);
1598 machine_mode mode = GET_MODE (SET_DEST (set));
1599 int cost = set_src_cost (t, mode,
1600 optimize_bb_for_speed_p (bb));
1601 int freq = REG_FREQ_FROM_BB (bb);
1602
1603 reg_equiv_init_cost[regno] = cost * freq;
1604 continue;
1605 }
1606 }
1607 /* If needed, eliminate any eliminable registers. */
1608 if (num_eliminable || num_eliminable_invariants)
1609 elimination_costs_in_insn (insn);
1610
1611 if (num_eliminable)
1612 update_eliminable_offsets ();
1613 }
1614 }
1615 }
1616 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1617 {
1618 if (reg_equiv_invariant (i))
1619 {
1620 if (reg_equiv_init (i))
1621 {
1622 int cost = reg_equiv_init_cost[i];
1623 if (dump_file)
1624 fprintf (dump_file,
1625 "Reg %d has equivalence, initial gains %d\n", i, cost);
1626 if (cost != 0)
1627 ira_adjust_equiv_reg_cost (i, cost);
1628 }
1629 else
1630 {
1631 if (dump_file)
1632 fprintf (dump_file,
1633 "Reg %d had equivalence, but can't be eliminated\n",
1634 i);
1635 ira_adjust_equiv_reg_cost (i, 0);
1636 }
1637 }
1638 }
1639
1640 free (reg_equiv_init_cost);
1641 free (offsets_known_at);
1642 free (offsets_at);
1643 offsets_at = NULL;
1644 offsets_known_at = NULL;
1645 }
1646 \f
1647 /* Comparison function for qsort to decide which of two reloads
1648 should be handled first. *P1 and *P2 are the reload numbers. */
1649
1650 static int
1651 reload_reg_class_lower (const void *r1p, const void *r2p)
1652 {
1653 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1654 int t;
1655
1656 /* Consider required reloads before optional ones. */
1657 t = rld[r1].optional - rld[r2].optional;
1658 if (t != 0)
1659 return t;
1660
1661 /* Count all solitary classes before non-solitary ones. */
1662 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1663 - (reg_class_size[(int) rld[r1].rclass] == 1));
1664 if (t != 0)
1665 return t;
1666
1667 /* Aside from solitaires, consider all multi-reg groups first. */
1668 t = rld[r2].nregs - rld[r1].nregs;
1669 if (t != 0)
1670 return t;
1671
1672 /* Consider reloads in order of increasing reg-class number. */
1673 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1674 if (t != 0)
1675 return t;
1676
1677 /* If reloads are equally urgent, sort by reload number,
1678 so that the results of qsort leave nothing to chance. */
1679 return r1 - r2;
1680 }
1681 \f
1682 /* The cost of spilling each hard reg. */
1683 static int spill_cost[FIRST_PSEUDO_REGISTER];
1684
1685 /* When spilling multiple hard registers, we use SPILL_COST for the first
1686 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1687 only the first hard reg for a multi-reg pseudo. */
1688 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1689
1690 /* Map of hard regno to pseudo regno currently occupying the hard
1691 reg. */
1692 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1693
1694 /* Update the spill cost arrays, considering that pseudo REG is live. */
1695
1696 static void
1697 count_pseudo (int reg)
1698 {
1699 int freq = REG_FREQ (reg);
1700 int r = reg_renumber[reg];
1701 int nregs;
1702
1703 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1704 if (ira_conflicts_p && r < 0)
1705 return;
1706
1707 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1708 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1709 return;
1710
1711 SET_REGNO_REG_SET (&pseudos_counted, reg);
1712
1713 gcc_assert (r >= 0);
1714
1715 spill_add_cost[r] += freq;
1716 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1717 while (nregs-- > 0)
1718 {
1719 hard_regno_to_pseudo_regno[r + nregs] = reg;
1720 spill_cost[r + nregs] += freq;
1721 }
1722 }
1723
1724 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1725 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1726
1727 static void
1728 order_regs_for_reload (class insn_chain *chain)
1729 {
1730 unsigned i;
1731 HARD_REG_SET used_by_pseudos;
1732 HARD_REG_SET used_by_pseudos2;
1733 reg_set_iterator rsi;
1734
1735 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1736
1737 memset (spill_cost, 0, sizeof spill_cost);
1738 memset (spill_add_cost, 0, sizeof spill_add_cost);
1739 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1740 hard_regno_to_pseudo_regno[i] = -1;
1741
1742 /* Count number of uses of each hard reg by pseudo regs allocated to it
1743 and then order them by decreasing use. First exclude hard registers
1744 that are live in or across this insn. */
1745
1746 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1747 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1748 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1749 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1750
1751 /* Now find out which pseudos are allocated to it, and update
1752 hard_reg_n_uses. */
1753 CLEAR_REG_SET (&pseudos_counted);
1754
1755 EXECUTE_IF_SET_IN_REG_SET
1756 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1757 {
1758 count_pseudo (i);
1759 }
1760 EXECUTE_IF_SET_IN_REG_SET
1761 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1762 {
1763 count_pseudo (i);
1764 }
1765 CLEAR_REG_SET (&pseudos_counted);
1766 }
1767 \f
1768 /* Vector of reload-numbers showing the order in which the reloads should
1769 be processed. */
1770 static short reload_order[MAX_RELOADS];
1771
1772 /* This is used to keep track of the spill regs used in one insn. */
1773 static HARD_REG_SET used_spill_regs_local;
1774
1775 /* We decided to spill hard register SPILLED, which has a size of
1776 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1777 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1778 update SPILL_COST/SPILL_ADD_COST. */
1779
1780 static void
1781 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1782 {
1783 int freq = REG_FREQ (reg);
1784 int r = reg_renumber[reg];
1785 int nregs;
1786
1787 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1788 if (ira_conflicts_p && r < 0)
1789 return;
1790
1791 gcc_assert (r >= 0);
1792
1793 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1794
1795 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1796 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1797 return;
1798
1799 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1800
1801 spill_add_cost[r] -= freq;
1802 while (nregs-- > 0)
1803 {
1804 hard_regno_to_pseudo_regno[r + nregs] = -1;
1805 spill_cost[r + nregs] -= freq;
1806 }
1807 }
1808
1809 /* Find reload register to use for reload number ORDER. */
1810
1811 static int
1812 find_reg (class insn_chain *chain, int order)
1813 {
1814 int rnum = reload_order[order];
1815 struct reload *rl = rld + rnum;
1816 int best_cost = INT_MAX;
1817 int best_reg = -1;
1818 unsigned int i, j, n;
1819 int k;
1820 HARD_REG_SET not_usable;
1821 HARD_REG_SET used_by_other_reload;
1822 reg_set_iterator rsi;
1823 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1824 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1825
1826 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1827 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1828 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1829
1830 CLEAR_HARD_REG_SET (used_by_other_reload);
1831 for (k = 0; k < order; k++)
1832 {
1833 int other = reload_order[k];
1834
1835 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1836 for (j = 0; j < rld[other].nregs; j++)
1837 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1838 }
1839
1840 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1841 {
1842 #ifdef REG_ALLOC_ORDER
1843 unsigned int regno = reg_alloc_order[i];
1844 #else
1845 unsigned int regno = i;
1846 #endif
1847
1848 if (! TEST_HARD_REG_BIT (not_usable, regno)
1849 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1850 && targetm.hard_regno_mode_ok (regno, rl->mode))
1851 {
1852 int this_cost = spill_cost[regno];
1853 int ok = 1;
1854 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1855
1856 for (j = 1; j < this_nregs; j++)
1857 {
1858 this_cost += spill_add_cost[regno + j];
1859 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1860 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1861 ok = 0;
1862 }
1863 if (! ok)
1864 continue;
1865
1866 if (ira_conflicts_p)
1867 {
1868 /* Ask IRA to find a better pseudo-register for
1869 spilling. */
1870 for (n = j = 0; j < this_nregs; j++)
1871 {
1872 int r = hard_regno_to_pseudo_regno[regno + j];
1873
1874 if (r < 0)
1875 continue;
1876 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1877 regno_pseudo_regs[n++] = r;
1878 }
1879 regno_pseudo_regs[n++] = -1;
1880 if (best_reg < 0
1881 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1882 best_regno_pseudo_regs,
1883 rl->in, rl->out,
1884 chain->insn))
1885 {
1886 best_reg = regno;
1887 for (j = 0;; j++)
1888 {
1889 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1890 if (regno_pseudo_regs[j] < 0)
1891 break;
1892 }
1893 }
1894 continue;
1895 }
1896
1897 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1898 this_cost--;
1899 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1900 this_cost--;
1901 if (this_cost < best_cost
1902 /* Among registers with equal cost, prefer caller-saved ones, or
1903 use REG_ALLOC_ORDER if it is defined. */
1904 || (this_cost == best_cost
1905 #ifdef REG_ALLOC_ORDER
1906 && (inv_reg_alloc_order[regno]
1907 < inv_reg_alloc_order[best_reg])
1908 #else
1909 && call_used_regs[regno]
1910 && ! call_used_regs[best_reg]
1911 #endif
1912 ))
1913 {
1914 best_reg = regno;
1915 best_cost = this_cost;
1916 }
1917 }
1918 }
1919 if (best_reg == -1)
1920 return 0;
1921
1922 if (dump_file)
1923 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1924
1925 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1926 rl->regno = best_reg;
1927
1928 EXECUTE_IF_SET_IN_REG_SET
1929 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1930 {
1931 count_spilled_pseudo (best_reg, rl->nregs, j);
1932 }
1933
1934 EXECUTE_IF_SET_IN_REG_SET
1935 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1936 {
1937 count_spilled_pseudo (best_reg, rl->nregs, j);
1938 }
1939
1940 for (i = 0; i < rl->nregs; i++)
1941 {
1942 gcc_assert (spill_cost[best_reg + i] == 0);
1943 gcc_assert (spill_add_cost[best_reg + i] == 0);
1944 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1945 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1946 }
1947 return 1;
1948 }
1949
1950 /* Find more reload regs to satisfy the remaining need of an insn, which
1951 is given by CHAIN.
1952 Do it by ascending class number, since otherwise a reg
1953 might be spilled for a big class and might fail to count
1954 for a smaller class even though it belongs to that class. */
1955
1956 static void
1957 find_reload_regs (class insn_chain *chain)
1958 {
1959 int i;
1960
1961 /* In order to be certain of getting the registers we need,
1962 we must sort the reloads into order of increasing register class.
1963 Then our grabbing of reload registers will parallel the process
1964 that provided the reload registers. */
1965 for (i = 0; i < chain->n_reloads; i++)
1966 {
1967 /* Show whether this reload already has a hard reg. */
1968 if (chain->rld[i].reg_rtx)
1969 {
1970 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1971 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1972 }
1973 else
1974 chain->rld[i].regno = -1;
1975 reload_order[i] = i;
1976 }
1977
1978 n_reloads = chain->n_reloads;
1979 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1980
1981 CLEAR_HARD_REG_SET (used_spill_regs_local);
1982
1983 if (dump_file)
1984 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1985
1986 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1987
1988 /* Compute the order of preference for hard registers to spill. */
1989
1990 order_regs_for_reload (chain);
1991
1992 for (i = 0; i < n_reloads; i++)
1993 {
1994 int r = reload_order[i];
1995
1996 /* Ignore reloads that got marked inoperative. */
1997 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1998 && ! rld[r].optional
1999 && rld[r].regno == -1)
2000 if (! find_reg (chain, i))
2001 {
2002 if (dump_file)
2003 fprintf (dump_file, "reload failure for reload %d\n", r);
2004 spill_failure (chain->insn, rld[r].rclass);
2005 failure = 1;
2006 return;
2007 }
2008 }
2009
2010 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2011 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2012
2013 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2014 }
2015
2016 static void
2017 select_reload_regs (void)
2018 {
2019 class insn_chain *chain;
2020
2021 /* Try to satisfy the needs for each insn. */
2022 for (chain = insns_need_reload; chain != 0;
2023 chain = chain->next_need_reload)
2024 find_reload_regs (chain);
2025 }
2026 \f
2027 /* Delete all insns that were inserted by emit_caller_save_insns during
2028 this iteration. */
2029 static void
2030 delete_caller_save_insns (void)
2031 {
2032 class insn_chain *c = reload_insn_chain;
2033
2034 while (c != 0)
2035 {
2036 while (c != 0 && c->is_caller_save_insn)
2037 {
2038 class insn_chain *next = c->next;
2039 rtx_insn *insn = c->insn;
2040
2041 if (c == reload_insn_chain)
2042 reload_insn_chain = next;
2043 delete_insn (insn);
2044
2045 if (next)
2046 next->prev = c->prev;
2047 if (c->prev)
2048 c->prev->next = next;
2049 c->next = unused_insn_chains;
2050 unused_insn_chains = c;
2051 c = next;
2052 }
2053 if (c != 0)
2054 c = c->next;
2055 }
2056 }
2057 \f
2058 /* Handle the failure to find a register to spill.
2059 INSN should be one of the insns which needed this particular spill reg. */
2060
2061 static void
2062 spill_failure (rtx_insn *insn, enum reg_class rclass)
2063 {
2064 if (asm_noperands (PATTERN (insn)) >= 0)
2065 error_for_asm (insn, "cannot find a register in class %qs while "
2066 "reloading %<asm%>",
2067 reg_class_names[rclass]);
2068 else
2069 {
2070 error ("unable to find a register to spill in class %qs",
2071 reg_class_names[rclass]);
2072
2073 if (dump_file)
2074 {
2075 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2076 debug_reload_to_stream (dump_file);
2077 }
2078 fatal_insn ("this is the insn:", insn);
2079 }
2080 }
2081 \f
2082 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2083 data that is dead in INSN. */
2084
2085 static void
2086 delete_dead_insn (rtx_insn *insn)
2087 {
2088 rtx_insn *prev = prev_active_insn (insn);
2089 rtx prev_dest;
2090
2091 /* If the previous insn sets a register that dies in our insn make
2092 a note that we want to run DCE immediately after reload.
2093
2094 We used to delete the previous insn & recurse, but that's wrong for
2095 block local equivalences. Instead of trying to figure out the exact
2096 circumstances where we can delete the potentially dead insns, just
2097 let DCE do the job. */
2098 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2099 && GET_CODE (PATTERN (prev)) == SET
2100 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2101 && reg_mentioned_p (prev_dest, PATTERN (insn))
2102 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2103 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2104 need_dce = 1;
2105
2106 SET_INSN_DELETED (insn);
2107 }
2108
2109 /* Modify the home of pseudo-reg I.
2110 The new home is present in reg_renumber[I].
2111
2112 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2113 or it may be -1, meaning there is none or it is not relevant.
2114 This is used so that all pseudos spilled from a given hard reg
2115 can share one stack slot. */
2116
2117 static void
2118 alter_reg (int i, int from_reg, bool dont_share_p)
2119 {
2120 /* When outputting an inline function, this can happen
2121 for a reg that isn't actually used. */
2122 if (regno_reg_rtx[i] == 0)
2123 return;
2124
2125 /* If the reg got changed to a MEM at rtl-generation time,
2126 ignore it. */
2127 if (!REG_P (regno_reg_rtx[i]))
2128 return;
2129
2130 /* Modify the reg-rtx to contain the new hard reg
2131 number or else to contain its pseudo reg number. */
2132 SET_REGNO (regno_reg_rtx[i],
2133 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2134
2135 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2136 allocate a stack slot for it. */
2137
2138 if (reg_renumber[i] < 0
2139 && REG_N_REFS (i) > 0
2140 && reg_equiv_constant (i) == 0
2141 && (reg_equiv_invariant (i) == 0
2142 || reg_equiv_init (i) == 0)
2143 && reg_equiv_memory_loc (i) == 0)
2144 {
2145 rtx x = NULL_RTX;
2146 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2147 poly_uint64 inherent_size = GET_MODE_SIZE (mode);
2148 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2149 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2150 poly_uint64 total_size = GET_MODE_SIZE (wider_mode);
2151 /* ??? Seems strange to derive the minimum alignment from the size,
2152 but that's the traditional behavior. For polynomial-size modes,
2153 the natural extension is to use the minimum possible size. */
2154 unsigned int min_align
2155 = constant_lower_bound (GET_MODE_BITSIZE (reg_max_ref_mode[i]));
2156 poly_int64 adjust = 0;
2157
2158 something_was_spilled = true;
2159
2160 if (ira_conflicts_p)
2161 {
2162 /* Mark the spill for IRA. */
2163 SET_REGNO_REG_SET (&spilled_pseudos, i);
2164 if (!dont_share_p)
2165 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2166 }
2167
2168 if (x)
2169 ;
2170
2171 /* Each pseudo reg has an inherent size which comes from its own mode,
2172 and a total size which provides room for paradoxical subregs
2173 which refer to the pseudo reg in wider modes.
2174
2175 We can use a slot already allocated if it provides both
2176 enough inherent space and enough total space.
2177 Otherwise, we allocate a new slot, making sure that it has no less
2178 inherent space, and no less total space, then the previous slot. */
2179 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2180 {
2181 rtx stack_slot;
2182
2183 /* The sizes are taken from a subreg operation, which guarantees
2184 that they're ordered. */
2185 gcc_checking_assert (ordered_p (total_size, inherent_size));
2186
2187 /* No known place to spill from => no slot to reuse. */
2188 x = assign_stack_local (mode, total_size,
2189 min_align > inherent_align
2190 || maybe_gt (total_size, inherent_size)
2191 ? -1 : 0);
2192
2193 stack_slot = x;
2194
2195 /* Cancel the big-endian correction done in assign_stack_local.
2196 Get the address of the beginning of the slot. This is so we
2197 can do a big-endian correction unconditionally below. */
2198 if (BYTES_BIG_ENDIAN)
2199 {
2200 adjust = inherent_size - total_size;
2201 if (maybe_ne (adjust, 0))
2202 {
2203 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2204 machine_mode mem_mode
2205 = int_mode_for_size (total_bits, 1).else_blk ();
2206 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2207 }
2208 }
2209
2210 if (! dont_share_p && ira_conflicts_p)
2211 /* Inform IRA about allocation a new stack slot. */
2212 ira_mark_new_stack_slot (stack_slot, i, total_size);
2213 }
2214
2215 /* Reuse a stack slot if possible. */
2216 else if (spill_stack_slot[from_reg] != 0
2217 && known_ge (spill_stack_slot_width[from_reg], total_size)
2218 && known_ge (GET_MODE_SIZE
2219 (GET_MODE (spill_stack_slot[from_reg])),
2220 inherent_size)
2221 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2222 x = spill_stack_slot[from_reg];
2223
2224 /* Allocate a bigger slot. */
2225 else
2226 {
2227 /* Compute maximum size needed, both for inherent size
2228 and for total size. */
2229 rtx stack_slot;
2230
2231 if (spill_stack_slot[from_reg])
2232 {
2233 if (partial_subreg_p (mode,
2234 GET_MODE (spill_stack_slot[from_reg])))
2235 mode = GET_MODE (spill_stack_slot[from_reg]);
2236 total_size = ordered_max (total_size,
2237 spill_stack_slot_width[from_reg]);
2238 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2239 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2240 }
2241
2242 /* The sizes are taken from a subreg operation, which guarantees
2243 that they're ordered. */
2244 gcc_checking_assert (ordered_p (total_size, inherent_size));
2245
2246 /* Make a slot with that size. */
2247 x = assign_stack_local (mode, total_size,
2248 min_align > inherent_align
2249 || maybe_gt (total_size, inherent_size)
2250 ? -1 : 0);
2251 stack_slot = x;
2252
2253 /* Cancel the big-endian correction done in assign_stack_local.
2254 Get the address of the beginning of the slot. This is so we
2255 can do a big-endian correction unconditionally below. */
2256 if (BYTES_BIG_ENDIAN)
2257 {
2258 adjust = GET_MODE_SIZE (mode) - total_size;
2259 if (maybe_ne (adjust, 0))
2260 {
2261 poly_uint64 total_bits = total_size * BITS_PER_UNIT;
2262 machine_mode mem_mode
2263 = int_mode_for_size (total_bits, 1).else_blk ();
2264 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2265 }
2266 }
2267
2268 spill_stack_slot[from_reg] = stack_slot;
2269 spill_stack_slot_width[from_reg] = total_size;
2270 }
2271
2272 /* On a big endian machine, the "address" of the slot
2273 is the address of the low part that fits its inherent mode. */
2274 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2275
2276 /* If we have any adjustment to make, or if the stack slot is the
2277 wrong mode, make a new stack slot. */
2278 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2279
2280 /* Set all of the memory attributes as appropriate for a spill. */
2281 set_mem_attrs_for_spill (x);
2282
2283 /* Save the stack slot for later. */
2284 reg_equiv_memory_loc (i) = x;
2285 }
2286 }
2287
2288 /* Mark the slots in regs_ever_live for the hard regs used by
2289 pseudo-reg number REGNO, accessed in MODE. */
2290
2291 static void
2292 mark_home_live_1 (int regno, machine_mode mode)
2293 {
2294 int i, lim;
2295
2296 i = reg_renumber[regno];
2297 if (i < 0)
2298 return;
2299 lim = end_hard_regno (mode, i);
2300 while (i < lim)
2301 df_set_regs_ever_live (i++, true);
2302 }
2303
2304 /* Mark the slots in regs_ever_live for the hard regs
2305 used by pseudo-reg number REGNO. */
2306
2307 void
2308 mark_home_live (int regno)
2309 {
2310 if (reg_renumber[regno] >= 0)
2311 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2312 }
2313 \f
2314 /* This function handles the tracking of elimination offsets around branches.
2315
2316 X is a piece of RTL being scanned.
2317
2318 INSN is the insn that it came from, if any.
2319
2320 INITIAL_P is nonzero if we are to set the offset to be the initial
2321 offset and zero if we are setting the offset of the label to be the
2322 current offset. */
2323
2324 static void
2325 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2326 {
2327 enum rtx_code code = GET_CODE (x);
2328 rtx tem;
2329 unsigned int i;
2330 struct elim_table *p;
2331
2332 switch (code)
2333 {
2334 case LABEL_REF:
2335 if (LABEL_REF_NONLOCAL_P (x))
2336 return;
2337
2338 x = label_ref_label (x);
2339
2340 /* fall through */
2341
2342 case CODE_LABEL:
2343 /* If we know nothing about this label, set the desired offsets. Note
2344 that this sets the offset at a label to be the offset before a label
2345 if we don't know anything about the label. This is not correct for
2346 the label after a BARRIER, but is the best guess we can make. If
2347 we guessed wrong, we will suppress an elimination that might have
2348 been possible had we been able to guess correctly. */
2349
2350 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2351 {
2352 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2353 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2354 = (initial_p ? reg_eliminate[i].initial_offset
2355 : reg_eliminate[i].offset);
2356 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2357 }
2358
2359 /* Otherwise, if this is the definition of a label and it is
2360 preceded by a BARRIER, set our offsets to the known offset of
2361 that label. */
2362
2363 else if (x == insn
2364 && (tem = prev_nonnote_insn (insn)) != 0
2365 && BARRIER_P (tem))
2366 set_offsets_for_label (insn);
2367 else
2368 /* If neither of the above cases is true, compare each offset
2369 with those previously recorded and suppress any eliminations
2370 where the offsets disagree. */
2371
2372 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2373 if (maybe_ne (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i],
2374 (initial_p ? reg_eliminate[i].initial_offset
2375 : reg_eliminate[i].offset)))
2376 reg_eliminate[i].can_eliminate = 0;
2377
2378 return;
2379
2380 case JUMP_TABLE_DATA:
2381 set_label_offsets (PATTERN (insn), insn, initial_p);
2382 return;
2383
2384 case JUMP_INSN:
2385 set_label_offsets (PATTERN (insn), insn, initial_p);
2386
2387 /* fall through */
2388
2389 case INSN:
2390 case CALL_INSN:
2391 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2392 to indirectly and hence must have all eliminations at their
2393 initial offsets. */
2394 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2395 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2396 set_label_offsets (XEXP (tem, 0), insn, 1);
2397 return;
2398
2399 case PARALLEL:
2400 case ADDR_VEC:
2401 case ADDR_DIFF_VEC:
2402 /* Each of the labels in the parallel or address vector must be
2403 at their initial offsets. We want the first field for PARALLEL
2404 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2405
2406 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2407 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2408 insn, initial_p);
2409 return;
2410
2411 case SET:
2412 /* We only care about setting PC. If the source is not RETURN,
2413 IF_THEN_ELSE, or a label, disable any eliminations not at
2414 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2415 isn't one of those possibilities. For branches to a label,
2416 call ourselves recursively.
2417
2418 Note that this can disable elimination unnecessarily when we have
2419 a non-local goto since it will look like a non-constant jump to
2420 someplace in the current function. This isn't a significant
2421 problem since such jumps will normally be when all elimination
2422 pairs are back to their initial offsets. */
2423
2424 if (SET_DEST (x) != pc_rtx)
2425 return;
2426
2427 switch (GET_CODE (SET_SRC (x)))
2428 {
2429 case PC:
2430 case RETURN:
2431 return;
2432
2433 case LABEL_REF:
2434 set_label_offsets (SET_SRC (x), insn, initial_p);
2435 return;
2436
2437 case IF_THEN_ELSE:
2438 tem = XEXP (SET_SRC (x), 1);
2439 if (GET_CODE (tem) == LABEL_REF)
2440 set_label_offsets (label_ref_label (tem), insn, initial_p);
2441 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2442 break;
2443
2444 tem = XEXP (SET_SRC (x), 2);
2445 if (GET_CODE (tem) == LABEL_REF)
2446 set_label_offsets (label_ref_label (tem), insn, initial_p);
2447 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2448 break;
2449 return;
2450
2451 default:
2452 break;
2453 }
2454
2455 /* If we reach here, all eliminations must be at their initial
2456 offset because we are doing a jump to a variable address. */
2457 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2458 if (maybe_ne (p->offset, p->initial_offset))
2459 p->can_eliminate = 0;
2460 break;
2461
2462 default:
2463 break;
2464 }
2465 }
2466 \f
2467 /* This function examines every reg that occurs in X and adjusts the
2468 costs for its elimination which are gathered by IRA. INSN is the
2469 insn in which X occurs. We do not recurse into MEM expressions. */
2470
2471 static void
2472 note_reg_elim_costly (const_rtx x, rtx insn)
2473 {
2474 subrtx_iterator::array_type array;
2475 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2476 {
2477 const_rtx x = *iter;
2478 if (MEM_P (x))
2479 iter.skip_subrtxes ();
2480 else if (REG_P (x)
2481 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2482 && reg_equiv_init (REGNO (x))
2483 && reg_equiv_invariant (REGNO (x)))
2484 {
2485 rtx t = reg_equiv_invariant (REGNO (x));
2486 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2487 int cost = set_src_cost (new_rtx, Pmode,
2488 optimize_bb_for_speed_p (elim_bb));
2489 int freq = REG_FREQ_FROM_BB (elim_bb);
2490
2491 if (cost != 0)
2492 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2493 }
2494 }
2495 }
2496
2497 /* Scan X and replace any eliminable registers (such as fp) with a
2498 replacement (such as sp), plus an offset.
2499
2500 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2501 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2502 MEM, we are allowed to replace a sum of a register and the constant zero
2503 with the register, which we cannot do outside a MEM. In addition, we need
2504 to record the fact that a register is referenced outside a MEM.
2505
2506 If INSN is an insn, it is the insn containing X. If we replace a REG
2507 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2508 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2509 the REG is being modified.
2510
2511 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2512 That's used when we eliminate in expressions stored in notes.
2513 This means, do not set ref_outside_mem even if the reference
2514 is outside of MEMs.
2515
2516 If FOR_COSTS is true, we are being called before reload in order to
2517 estimate the costs of keeping registers with an equivalence unallocated.
2518
2519 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2520 replacements done assuming all offsets are at their initial values. If
2521 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2522 encounter, return the actual location so that find_reloads will do
2523 the proper thing. */
2524
2525 static rtx
2526 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2527 bool may_use_invariant, bool for_costs)
2528 {
2529 enum rtx_code code = GET_CODE (x);
2530 struct elim_table *ep;
2531 int regno;
2532 rtx new_rtx;
2533 int i, j;
2534 const char *fmt;
2535 int copied = 0;
2536
2537 if (! current_function_decl)
2538 return x;
2539
2540 switch (code)
2541 {
2542 CASE_CONST_ANY:
2543 case CONST:
2544 case SYMBOL_REF:
2545 case CODE_LABEL:
2546 case PC:
2547 case CC0:
2548 case ASM_INPUT:
2549 case ADDR_VEC:
2550 case ADDR_DIFF_VEC:
2551 case RETURN:
2552 return x;
2553
2554 case REG:
2555 regno = REGNO (x);
2556
2557 /* First handle the case where we encounter a bare register that
2558 is eliminable. Replace it with a PLUS. */
2559 if (regno < FIRST_PSEUDO_REGISTER)
2560 {
2561 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2562 ep++)
2563 if (ep->from_rtx == x && ep->can_eliminate)
2564 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2565
2566 }
2567 else if (reg_renumber && reg_renumber[regno] < 0
2568 && reg_equivs
2569 && reg_equiv_invariant (regno))
2570 {
2571 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2572 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2573 mem_mode, insn, true, for_costs);
2574 /* There exists at least one use of REGNO that cannot be
2575 eliminated. Prevent the defining insn from being deleted. */
2576 reg_equiv_init (regno) = NULL;
2577 if (!for_costs)
2578 alter_reg (regno, -1, true);
2579 }
2580 return x;
2581
2582 /* You might think handling MINUS in a manner similar to PLUS is a
2583 good idea. It is not. It has been tried multiple times and every
2584 time the change has had to have been reverted.
2585
2586 Other parts of reload know a PLUS is special (gen_reload for example)
2587 and require special code to handle code a reloaded PLUS operand.
2588
2589 Also consider backends where the flags register is clobbered by a
2590 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2591 lea instruction comes to mind). If we try to reload a MINUS, we
2592 may kill the flags register that was holding a useful value.
2593
2594 So, please before trying to handle MINUS, consider reload as a
2595 whole instead of this little section as well as the backend issues. */
2596 case PLUS:
2597 /* If this is the sum of an eliminable register and a constant, rework
2598 the sum. */
2599 if (REG_P (XEXP (x, 0))
2600 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2601 && CONSTANT_P (XEXP (x, 1)))
2602 {
2603 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2604 ep++)
2605 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2606 {
2607 /* The only time we want to replace a PLUS with a REG (this
2608 occurs when the constant operand of the PLUS is the negative
2609 of the offset) is when we are inside a MEM. We won't want
2610 to do so at other times because that would change the
2611 structure of the insn in a way that reload can't handle.
2612 We special-case the commonest situation in
2613 eliminate_regs_in_insn, so just replace a PLUS with a
2614 PLUS here, unless inside a MEM. */
2615 if (mem_mode != 0
2616 && CONST_INT_P (XEXP (x, 1))
2617 && known_eq (INTVAL (XEXP (x, 1)), -ep->previous_offset))
2618 return ep->to_rtx;
2619 else
2620 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2621 plus_constant (Pmode, XEXP (x, 1),
2622 ep->previous_offset));
2623 }
2624
2625 /* If the register is not eliminable, we are done since the other
2626 operand is a constant. */
2627 return x;
2628 }
2629
2630 /* If this is part of an address, we want to bring any constant to the
2631 outermost PLUS. We will do this by doing register replacement in
2632 our operands and seeing if a constant shows up in one of them.
2633
2634 Note that there is no risk of modifying the structure of the insn,
2635 since we only get called for its operands, thus we are either
2636 modifying the address inside a MEM, or something like an address
2637 operand of a load-address insn. */
2638
2639 {
2640 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2641 for_costs);
2642 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2643 for_costs);
2644
2645 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2646 {
2647 /* If one side is a PLUS and the other side is a pseudo that
2648 didn't get a hard register but has a reg_equiv_constant,
2649 we must replace the constant here since it may no longer
2650 be in the position of any operand. */
2651 if (GET_CODE (new0) == PLUS && REG_P (new1)
2652 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2653 && reg_renumber[REGNO (new1)] < 0
2654 && reg_equivs
2655 && reg_equiv_constant (REGNO (new1)) != 0)
2656 new1 = reg_equiv_constant (REGNO (new1));
2657 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2658 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2659 && reg_renumber[REGNO (new0)] < 0
2660 && reg_equiv_constant (REGNO (new0)) != 0)
2661 new0 = reg_equiv_constant (REGNO (new0));
2662
2663 new_rtx = form_sum (GET_MODE (x), new0, new1);
2664
2665 /* As above, if we are not inside a MEM we do not want to
2666 turn a PLUS into something else. We might try to do so here
2667 for an addition of 0 if we aren't optimizing. */
2668 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2669 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2670 else
2671 return new_rtx;
2672 }
2673 }
2674 return x;
2675
2676 case MULT:
2677 /* If this is the product of an eliminable register and a
2678 constant, apply the distribute law and move the constant out
2679 so that we have (plus (mult ..) ..). This is needed in order
2680 to keep load-address insns valid. This case is pathological.
2681 We ignore the possibility of overflow here. */
2682 if (REG_P (XEXP (x, 0))
2683 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2684 && CONST_INT_P (XEXP (x, 1)))
2685 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2686 ep++)
2687 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2688 {
2689 if (! mem_mode
2690 /* Refs inside notes or in DEBUG_INSNs don't count for
2691 this purpose. */
2692 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2693 || GET_CODE (insn) == INSN_LIST
2694 || DEBUG_INSN_P (insn))))
2695 ep->ref_outside_mem = 1;
2696
2697 return
2698 plus_constant (Pmode,
2699 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2700 ep->previous_offset * INTVAL (XEXP (x, 1)));
2701 }
2702
2703 /* fall through */
2704
2705 case CALL:
2706 case COMPARE:
2707 /* See comments before PLUS about handling MINUS. */
2708 case MINUS:
2709 case DIV: case UDIV:
2710 case MOD: case UMOD:
2711 case AND: case IOR: case XOR:
2712 case ROTATERT: case ROTATE:
2713 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2714 case NE: case EQ:
2715 case GE: case GT: case GEU: case GTU:
2716 case LE: case LT: case LEU: case LTU:
2717 {
2718 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2719 for_costs);
2720 rtx new1 = XEXP (x, 1)
2721 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2722 for_costs) : 0;
2723
2724 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2725 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2726 }
2727 return x;
2728
2729 case EXPR_LIST:
2730 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2731 if (XEXP (x, 0))
2732 {
2733 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2734 for_costs);
2735 if (new_rtx != XEXP (x, 0))
2736 {
2737 /* If this is a REG_DEAD note, it is not valid anymore.
2738 Using the eliminated version could result in creating a
2739 REG_DEAD note for the stack or frame pointer. */
2740 if (REG_NOTE_KIND (x) == REG_DEAD)
2741 return (XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2743 for_costs)
2744 : NULL_RTX);
2745
2746 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2747 }
2748 }
2749
2750 /* fall through */
2751
2752 case INSN_LIST:
2753 case INT_LIST:
2754 /* Now do eliminations in the rest of the chain. If this was
2755 an EXPR_LIST, this might result in allocating more memory than is
2756 strictly needed, but it simplifies the code. */
2757 if (XEXP (x, 1))
2758 {
2759 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2760 for_costs);
2761 if (new_rtx != XEXP (x, 1))
2762 return
2763 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2764 }
2765 return x;
2766
2767 case PRE_INC:
2768 case POST_INC:
2769 case PRE_DEC:
2770 case POST_DEC:
2771 /* We do not support elimination of a register that is modified.
2772 elimination_effects has already make sure that this does not
2773 happen. */
2774 return x;
2775
2776 case PRE_MODIFY:
2777 case POST_MODIFY:
2778 /* We do not support elimination of a register that is modified.
2779 elimination_effects has already make sure that this does not
2780 happen. The only remaining case we need to consider here is
2781 that the increment value may be an eliminable register. */
2782 if (GET_CODE (XEXP (x, 1)) == PLUS
2783 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2784 {
2785 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2786 insn, true, for_costs);
2787
2788 if (new_rtx != XEXP (XEXP (x, 1), 1))
2789 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2790 gen_rtx_PLUS (GET_MODE (x),
2791 XEXP (x, 0), new_rtx));
2792 }
2793 return x;
2794
2795 case STRICT_LOW_PART:
2796 case NEG: case NOT:
2797 case SIGN_EXTEND: case ZERO_EXTEND:
2798 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2799 case FLOAT: case FIX:
2800 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2801 case ABS:
2802 case SQRT:
2803 case FFS:
2804 case CLZ:
2805 case CTZ:
2806 case POPCOUNT:
2807 case PARITY:
2808 case BSWAP:
2809 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2810 for_costs);
2811 if (new_rtx != XEXP (x, 0))
2812 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2813 return x;
2814
2815 case SUBREG:
2816 /* Similar to above processing, but preserve SUBREG_BYTE.
2817 Convert (subreg (mem)) to (mem) if not paradoxical.
2818 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2819 pseudo didn't get a hard reg, we must replace this with the
2820 eliminated version of the memory location because push_reload
2821 may do the replacement in certain circumstances. */
2822 if (REG_P (SUBREG_REG (x))
2823 && !paradoxical_subreg_p (x)
2824 && reg_equivs
2825 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2826 {
2827 new_rtx = SUBREG_REG (x);
2828 }
2829 else
2830 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2831
2832 if (new_rtx != SUBREG_REG (x))
2833 {
2834 poly_int64 x_size = GET_MODE_SIZE (GET_MODE (x));
2835 poly_int64 new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2836
2837 if (MEM_P (new_rtx)
2838 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2839 /* On RISC machines, combine can create rtl of the form
2840 (set (subreg:m1 (reg:m2 R) 0) ...)
2841 where m1 < m2, and expects something interesting to
2842 happen to the entire word. Moreover, it will use the
2843 (reg:m2 R) later, expecting all bits to be preserved.
2844 So if the number of words is the same, preserve the
2845 subreg so that push_reload can see it. */
2846 && !(WORD_REGISTER_OPERATIONS
2847 && known_equal_after_align_down (x_size - 1,
2848 new_size - 1,
2849 UNITS_PER_WORD)))
2850 || known_eq (x_size, new_size))
2851 )
2852 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2853 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2854 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2855 else
2856 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2857 }
2858
2859 return x;
2860
2861 case MEM:
2862 /* Our only special processing is to pass the mode of the MEM to our
2863 recursive call and copy the flags. While we are here, handle this
2864 case more efficiently. */
2865
2866 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2867 for_costs);
2868 if (for_costs
2869 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2870 && !memory_address_p (GET_MODE (x), new_rtx))
2871 note_reg_elim_costly (XEXP (x, 0), insn);
2872
2873 return replace_equiv_address_nv (x, new_rtx);
2874
2875 case USE:
2876 /* Handle insn_list USE that a call to a pure function may generate. */
2877 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2878 for_costs);
2879 if (new_rtx != XEXP (x, 0))
2880 return gen_rtx_USE (GET_MODE (x), new_rtx);
2881 return x;
2882
2883 case CLOBBER:
2884 case CLOBBER_HIGH:
2885 case ASM_OPERANDS:
2886 gcc_assert (insn && DEBUG_INSN_P (insn));
2887 break;
2888
2889 case SET:
2890 gcc_unreachable ();
2891
2892 default:
2893 break;
2894 }
2895
2896 /* Process each of our operands recursively. If any have changed, make a
2897 copy of the rtx. */
2898 fmt = GET_RTX_FORMAT (code);
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2900 {
2901 if (*fmt == 'e')
2902 {
2903 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2904 for_costs);
2905 if (new_rtx != XEXP (x, i) && ! copied)
2906 {
2907 x = shallow_copy_rtx (x);
2908 copied = 1;
2909 }
2910 XEXP (x, i) = new_rtx;
2911 }
2912 else if (*fmt == 'E')
2913 {
2914 int copied_vec = 0;
2915 for (j = 0; j < XVECLEN (x, i); j++)
2916 {
2917 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2918 for_costs);
2919 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2920 {
2921 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2922 XVEC (x, i)->elem);
2923 if (! copied)
2924 {
2925 x = shallow_copy_rtx (x);
2926 copied = 1;
2927 }
2928 XVEC (x, i) = new_v;
2929 copied_vec = 1;
2930 }
2931 XVECEXP (x, i, j) = new_rtx;
2932 }
2933 }
2934 }
2935
2936 return x;
2937 }
2938
2939 rtx
2940 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2941 {
2942 if (reg_eliminate == NULL)
2943 {
2944 gcc_assert (targetm.no_register_allocation);
2945 return x;
2946 }
2947 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2948 }
2949
2950 /* Scan rtx X for modifications of elimination target registers. Update
2951 the table of eliminables to reflect the changed state. MEM_MODE is
2952 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2953
2954 static void
2955 elimination_effects (rtx x, machine_mode mem_mode)
2956 {
2957 enum rtx_code code = GET_CODE (x);
2958 struct elim_table *ep;
2959 int regno;
2960 int i, j;
2961 const char *fmt;
2962
2963 switch (code)
2964 {
2965 CASE_CONST_ANY:
2966 case CONST:
2967 case SYMBOL_REF:
2968 case CODE_LABEL:
2969 case PC:
2970 case CC0:
2971 case ASM_INPUT:
2972 case ADDR_VEC:
2973 case ADDR_DIFF_VEC:
2974 case RETURN:
2975 return;
2976
2977 case REG:
2978 regno = REGNO (x);
2979
2980 /* First handle the case where we encounter a bare register that
2981 is eliminable. Replace it with a PLUS. */
2982 if (regno < FIRST_PSEUDO_REGISTER)
2983 {
2984 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2985 ep++)
2986 if (ep->from_rtx == x && ep->can_eliminate)
2987 {
2988 if (! mem_mode)
2989 ep->ref_outside_mem = 1;
2990 return;
2991 }
2992
2993 }
2994 else if (reg_renumber[regno] < 0
2995 && reg_equivs
2996 && reg_equiv_constant (regno)
2997 && ! function_invariant_p (reg_equiv_constant (regno)))
2998 elimination_effects (reg_equiv_constant (regno), mem_mode);
2999 return;
3000
3001 case PRE_INC:
3002 case POST_INC:
3003 case PRE_DEC:
3004 case POST_DEC:
3005 case POST_MODIFY:
3006 case PRE_MODIFY:
3007 /* If we modify the source of an elimination rule, disable it. */
3008 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3009 if (ep->from_rtx == XEXP (x, 0))
3010 ep->can_eliminate = 0;
3011
3012 /* If we modify the target of an elimination rule by adding a constant,
3013 update its offset. If we modify the target in any other way, we'll
3014 have to disable the rule as well. */
3015 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3016 if (ep->to_rtx == XEXP (x, 0))
3017 {
3018 poly_int64 size = GET_MODE_SIZE (mem_mode);
3019
3020 /* If more bytes than MEM_MODE are pushed, account for them. */
3021 #ifdef PUSH_ROUNDING
3022 if (ep->to_rtx == stack_pointer_rtx)
3023 size = PUSH_ROUNDING (size);
3024 #endif
3025 if (code == PRE_DEC || code == POST_DEC)
3026 ep->offset += size;
3027 else if (code == PRE_INC || code == POST_INC)
3028 ep->offset -= size;
3029 else if (code == PRE_MODIFY || code == POST_MODIFY)
3030 {
3031 if (GET_CODE (XEXP (x, 1)) == PLUS
3032 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3033 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3034 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3035 else
3036 ep->can_eliminate = 0;
3037 }
3038 }
3039
3040 /* These two aren't unary operators. */
3041 if (code == POST_MODIFY || code == PRE_MODIFY)
3042 break;
3043
3044 /* Fall through to generic unary operation case. */
3045 gcc_fallthrough ();
3046 case STRICT_LOW_PART:
3047 case NEG: case NOT:
3048 case SIGN_EXTEND: case ZERO_EXTEND:
3049 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3050 case FLOAT: case FIX:
3051 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3052 case ABS:
3053 case SQRT:
3054 case FFS:
3055 case CLZ:
3056 case CTZ:
3057 case POPCOUNT:
3058 case PARITY:
3059 case BSWAP:
3060 elimination_effects (XEXP (x, 0), mem_mode);
3061 return;
3062
3063 case SUBREG:
3064 if (REG_P (SUBREG_REG (x))
3065 && !paradoxical_subreg_p (x)
3066 && reg_equivs
3067 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3068 return;
3069
3070 elimination_effects (SUBREG_REG (x), mem_mode);
3071 return;
3072
3073 case USE:
3074 /* If using a register that is the source of an eliminate we still
3075 think can be performed, note it cannot be performed since we don't
3076 know how this register is used. */
3077 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3078 if (ep->from_rtx == XEXP (x, 0))
3079 ep->can_eliminate = 0;
3080
3081 elimination_effects (XEXP (x, 0), mem_mode);
3082 return;
3083
3084 case CLOBBER:
3085 /* If clobbering a register that is the replacement register for an
3086 elimination we still think can be performed, note that it cannot
3087 be performed. Otherwise, we need not be concerned about it. */
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3089 if (ep->to_rtx == XEXP (x, 0))
3090 ep->can_eliminate = 0;
3091
3092 elimination_effects (XEXP (x, 0), mem_mode);
3093 return;
3094
3095 case CLOBBER_HIGH:
3096 /* CLOBBER_HIGH is only supported for LRA. */
3097 return;
3098
3099 case SET:
3100 /* Check for setting a register that we know about. */
3101 if (REG_P (SET_DEST (x)))
3102 {
3103 /* See if this is setting the replacement register for an
3104 elimination.
3105
3106 If DEST is the hard frame pointer, we do nothing because we
3107 assume that all assignments to the frame pointer are for
3108 non-local gotos and are being done at a time when they are valid
3109 and do not disturb anything else. Some machines want to
3110 eliminate a fake argument pointer (or even a fake frame pointer)
3111 with either the real frame or the stack pointer. Assignments to
3112 the hard frame pointer must not prevent this elimination. */
3113
3114 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3115 ep++)
3116 if (ep->to_rtx == SET_DEST (x)
3117 && SET_DEST (x) != hard_frame_pointer_rtx)
3118 {
3119 /* If it is being incremented, adjust the offset. Otherwise,
3120 this elimination can't be done. */
3121 rtx src = SET_SRC (x);
3122
3123 if (GET_CODE (src) == PLUS
3124 && XEXP (src, 0) == SET_DEST (x)
3125 && CONST_INT_P (XEXP (src, 1)))
3126 ep->offset -= INTVAL (XEXP (src, 1));
3127 else
3128 ep->can_eliminate = 0;
3129 }
3130 }
3131
3132 elimination_effects (SET_DEST (x), VOIDmode);
3133 elimination_effects (SET_SRC (x), VOIDmode);
3134 return;
3135
3136 case MEM:
3137 /* Our only special processing is to pass the mode of the MEM to our
3138 recursive call. */
3139 elimination_effects (XEXP (x, 0), GET_MODE (x));
3140 return;
3141
3142 default:
3143 break;
3144 }
3145
3146 fmt = GET_RTX_FORMAT (code);
3147 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3148 {
3149 if (*fmt == 'e')
3150 elimination_effects (XEXP (x, i), mem_mode);
3151 else if (*fmt == 'E')
3152 for (j = 0; j < XVECLEN (x, i); j++)
3153 elimination_effects (XVECEXP (x, i, j), mem_mode);
3154 }
3155 }
3156
3157 /* Descend through rtx X and verify that no references to eliminable registers
3158 remain. If any do remain, mark the involved register as not
3159 eliminable. */
3160
3161 static void
3162 check_eliminable_occurrences (rtx x)
3163 {
3164 const char *fmt;
3165 int i;
3166 enum rtx_code code;
3167
3168 if (x == 0)
3169 return;
3170
3171 code = GET_CODE (x);
3172
3173 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3174 {
3175 struct elim_table *ep;
3176
3177 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3178 if (ep->from_rtx == x)
3179 ep->can_eliminate = 0;
3180 return;
3181 }
3182
3183 fmt = GET_RTX_FORMAT (code);
3184 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3185 {
3186 if (*fmt == 'e')
3187 check_eliminable_occurrences (XEXP (x, i));
3188 else if (*fmt == 'E')
3189 {
3190 int j;
3191 for (j = 0; j < XVECLEN (x, i); j++)
3192 check_eliminable_occurrences (XVECEXP (x, i, j));
3193 }
3194 }
3195 }
3196 \f
3197 /* Scan INSN and eliminate all eliminable registers in it.
3198
3199 If REPLACE is nonzero, do the replacement destructively. Also
3200 delete the insn as dead it if it is setting an eliminable register.
3201
3202 If REPLACE is zero, do all our allocations in reload_obstack.
3203
3204 If no eliminations were done and this insn doesn't require any elimination
3205 processing (these are not identical conditions: it might be updating sp,
3206 but not referencing fp; this needs to be seen during reload_as_needed so
3207 that the offset between fp and sp can be taken into consideration), zero
3208 is returned. Otherwise, 1 is returned. */
3209
3210 static int
3211 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3212 {
3213 int icode = recog_memoized (insn);
3214 rtx old_body = PATTERN (insn);
3215 int insn_is_asm = asm_noperands (old_body) >= 0;
3216 rtx old_set = single_set (insn);
3217 rtx new_body;
3218 int val = 0;
3219 int i;
3220 rtx substed_operand[MAX_RECOG_OPERANDS];
3221 rtx orig_operand[MAX_RECOG_OPERANDS];
3222 struct elim_table *ep;
3223 rtx plus_src, plus_cst_src;
3224
3225 if (! insn_is_asm && icode < 0)
3226 {
3227 gcc_assert (DEBUG_INSN_P (insn)
3228 || GET_CODE (PATTERN (insn)) == USE
3229 || GET_CODE (PATTERN (insn)) == CLOBBER
3230 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3231 if (DEBUG_BIND_INSN_P (insn))
3232 INSN_VAR_LOCATION_LOC (insn)
3233 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3234 return 0;
3235 }
3236
3237 /* We allow one special case which happens to work on all machines we
3238 currently support: a single set with the source or a REG_EQUAL
3239 note being a PLUS of an eliminable register and a constant. */
3240 plus_src = plus_cst_src = 0;
3241 if (old_set && REG_P (SET_DEST (old_set)))
3242 {
3243 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3244 plus_src = SET_SRC (old_set);
3245 /* First see if the source is of the form (plus (...) CST). */
3246 if (plus_src
3247 && CONST_INT_P (XEXP (plus_src, 1)))
3248 plus_cst_src = plus_src;
3249 else if (REG_P (SET_SRC (old_set))
3250 || plus_src)
3251 {
3252 /* Otherwise, see if we have a REG_EQUAL note of the form
3253 (plus (...) CST). */
3254 rtx links;
3255 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3256 {
3257 if ((REG_NOTE_KIND (links) == REG_EQUAL
3258 || REG_NOTE_KIND (links) == REG_EQUIV)
3259 && GET_CODE (XEXP (links, 0)) == PLUS
3260 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3261 {
3262 plus_cst_src = XEXP (links, 0);
3263 break;
3264 }
3265 }
3266 }
3267
3268 /* Check that the first operand of the PLUS is a hard reg or
3269 the lowpart subreg of one. */
3270 if (plus_cst_src)
3271 {
3272 rtx reg = XEXP (plus_cst_src, 0);
3273 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3274 reg = SUBREG_REG (reg);
3275
3276 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3277 plus_cst_src = 0;
3278 }
3279 }
3280 if (plus_cst_src)
3281 {
3282 rtx reg = XEXP (plus_cst_src, 0);
3283 poly_int64 offset = INTVAL (XEXP (plus_cst_src, 1));
3284
3285 if (GET_CODE (reg) == SUBREG)
3286 reg = SUBREG_REG (reg);
3287
3288 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3289 if (ep->from_rtx == reg && ep->can_eliminate)
3290 {
3291 rtx to_rtx = ep->to_rtx;
3292 offset += ep->offset;
3293 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3294
3295 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3296 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3297 to_rtx);
3298 /* If we have a nonzero offset, and the source is already
3299 a simple REG, the following transformation would
3300 increase the cost of the insn by replacing a simple REG
3301 with (plus (reg sp) CST). So try only when we already
3302 had a PLUS before. */
3303 if (known_eq (offset, 0) || plus_src)
3304 {
3305 rtx new_src = plus_constant (GET_MODE (to_rtx),
3306 to_rtx, offset);
3307
3308 new_body = old_body;
3309 if (! replace)
3310 {
3311 new_body = copy_insn (old_body);
3312 if (REG_NOTES (insn))
3313 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3314 }
3315 PATTERN (insn) = new_body;
3316 old_set = single_set (insn);
3317
3318 /* First see if this insn remains valid when we make the
3319 change. If not, try to replace the whole pattern with
3320 a simple set (this may help if the original insn was a
3321 PARALLEL that was only recognized as single_set due to
3322 REG_UNUSED notes). If this isn't valid either, keep
3323 the INSN_CODE the same and let reload fix it up. */
3324 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3325 {
3326 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3327
3328 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3329 SET_SRC (old_set) = new_src;
3330 }
3331 }
3332 else
3333 break;
3334
3335 val = 1;
3336 /* This can't have an effect on elimination offsets, so skip right
3337 to the end. */
3338 goto done;
3339 }
3340 }
3341
3342 /* Determine the effects of this insn on elimination offsets. */
3343 elimination_effects (old_body, VOIDmode);
3344
3345 /* Eliminate all eliminable registers occurring in operands that
3346 can be handled by reload. */
3347 extract_insn (insn);
3348 for (i = 0; i < recog_data.n_operands; i++)
3349 {
3350 orig_operand[i] = recog_data.operand[i];
3351 substed_operand[i] = recog_data.operand[i];
3352
3353 /* For an asm statement, every operand is eliminable. */
3354 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3355 {
3356 bool is_set_src, in_plus;
3357
3358 /* Check for setting a register that we know about. */
3359 if (recog_data.operand_type[i] != OP_IN
3360 && REG_P (orig_operand[i]))
3361 {
3362 /* If we are assigning to a register that can be eliminated, it
3363 must be as part of a PARALLEL, since the code above handles
3364 single SETs. We must indicate that we can no longer
3365 eliminate this reg. */
3366 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3367 ep++)
3368 if (ep->from_rtx == orig_operand[i])
3369 ep->can_eliminate = 0;
3370 }
3371
3372 /* Companion to the above plus substitution, we can allow
3373 invariants as the source of a plain move. */
3374 is_set_src = false;
3375 if (old_set
3376 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3377 is_set_src = true;
3378 in_plus = false;
3379 if (plus_src
3380 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3381 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3382 in_plus = true;
3383
3384 substed_operand[i]
3385 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3386 replace ? insn : NULL_RTX,
3387 is_set_src || in_plus, false);
3388 if (substed_operand[i] != orig_operand[i])
3389 val = 1;
3390 /* Terminate the search in check_eliminable_occurrences at
3391 this point. */
3392 *recog_data.operand_loc[i] = 0;
3393
3394 /* If an output operand changed from a REG to a MEM and INSN is an
3395 insn, write a CLOBBER insn. */
3396 if (recog_data.operand_type[i] != OP_IN
3397 && REG_P (orig_operand[i])
3398 && MEM_P (substed_operand[i])
3399 && replace)
3400 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3401 }
3402 }
3403
3404 for (i = 0; i < recog_data.n_dups; i++)
3405 *recog_data.dup_loc[i]
3406 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3407
3408 /* If any eliminable remain, they aren't eliminable anymore. */
3409 check_eliminable_occurrences (old_body);
3410
3411 /* Substitute the operands; the new values are in the substed_operand
3412 array. */
3413 for (i = 0; i < recog_data.n_operands; i++)
3414 *recog_data.operand_loc[i] = substed_operand[i];
3415 for (i = 0; i < recog_data.n_dups; i++)
3416 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3417
3418 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3419 re-recognize the insn. We do this in case we had a simple addition
3420 but now can do this as a load-address. This saves an insn in this
3421 common case.
3422 If re-recognition fails, the old insn code number will still be used,
3423 and some register operands may have changed into PLUS expressions.
3424 These will be handled by find_reloads by loading them into a register
3425 again. */
3426
3427 if (val)
3428 {
3429 /* If we aren't replacing things permanently and we changed something,
3430 make another copy to ensure that all the RTL is new. Otherwise
3431 things can go wrong if find_reload swaps commutative operands
3432 and one is inside RTL that has been copied while the other is not. */
3433 new_body = old_body;
3434 if (! replace)
3435 {
3436 new_body = copy_insn (old_body);
3437 if (REG_NOTES (insn))
3438 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3439 }
3440 PATTERN (insn) = new_body;
3441
3442 /* If we had a move insn but now we don't, rerecognize it. This will
3443 cause spurious re-recognition if the old move had a PARALLEL since
3444 the new one still will, but we can't call single_set without
3445 having put NEW_BODY into the insn and the re-recognition won't
3446 hurt in this rare case. */
3447 /* ??? Why this huge if statement - why don't we just rerecognize the
3448 thing always? */
3449 if (! insn_is_asm
3450 && old_set != 0
3451 && ((REG_P (SET_SRC (old_set))
3452 && (GET_CODE (new_body) != SET
3453 || !REG_P (SET_SRC (new_body))))
3454 /* If this was a load from or store to memory, compare
3455 the MEM in recog_data.operand to the one in the insn.
3456 If they are not equal, then rerecognize the insn. */
3457 || (old_set != 0
3458 && ((MEM_P (SET_SRC (old_set))
3459 && SET_SRC (old_set) != recog_data.operand[1])
3460 || (MEM_P (SET_DEST (old_set))
3461 && SET_DEST (old_set) != recog_data.operand[0])))
3462 /* If this was an add insn before, rerecognize. */
3463 || GET_CODE (SET_SRC (old_set)) == PLUS))
3464 {
3465 int new_icode = recog (PATTERN (insn), insn, 0);
3466 if (new_icode >= 0)
3467 INSN_CODE (insn) = new_icode;
3468 }
3469 }
3470
3471 /* Restore the old body. If there were any changes to it, we made a copy
3472 of it while the changes were still in place, so we'll correctly return
3473 a modified insn below. */
3474 if (! replace)
3475 {
3476 /* Restore the old body. */
3477 for (i = 0; i < recog_data.n_operands; i++)
3478 /* Restoring a top-level match_parallel would clobber the new_body
3479 we installed in the insn. */
3480 if (recog_data.operand_loc[i] != &PATTERN (insn))
3481 *recog_data.operand_loc[i] = orig_operand[i];
3482 for (i = 0; i < recog_data.n_dups; i++)
3483 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3484 }
3485
3486 /* Update all elimination pairs to reflect the status after the current
3487 insn. The changes we make were determined by the earlier call to
3488 elimination_effects.
3489
3490 We also detect cases where register elimination cannot be done,
3491 namely, if a register would be both changed and referenced outside a MEM
3492 in the resulting insn since such an insn is often undefined and, even if
3493 not, we cannot know what meaning will be given to it. Note that it is
3494 valid to have a register used in an address in an insn that changes it
3495 (presumably with a pre- or post-increment or decrement).
3496
3497 If anything changes, return nonzero. */
3498
3499 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3500 {
3501 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3502 ep->can_eliminate = 0;
3503
3504 ep->ref_outside_mem = 0;
3505
3506 if (maybe_ne (ep->previous_offset, ep->offset))
3507 val = 1;
3508 }
3509
3510 done:
3511 /* If we changed something, perform elimination in REG_NOTES. This is
3512 needed even when REPLACE is zero because a REG_DEAD note might refer
3513 to a register that we eliminate and could cause a different number
3514 of spill registers to be needed in the final reload pass than in
3515 the pre-passes. */
3516 if (val && REG_NOTES (insn) != 0)
3517 REG_NOTES (insn)
3518 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3519 false);
3520
3521 return val;
3522 }
3523
3524 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3525 register allocator. INSN is the instruction we need to examine, we perform
3526 eliminations in its operands and record cases where eliminating a reg with
3527 an invariant equivalence would add extra cost. */
3528
3529 #pragma GCC diagnostic push
3530 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3531 static void
3532 elimination_costs_in_insn (rtx_insn *insn)
3533 {
3534 int icode = recog_memoized (insn);
3535 rtx old_body = PATTERN (insn);
3536 int insn_is_asm = asm_noperands (old_body) >= 0;
3537 rtx old_set = single_set (insn);
3538 int i;
3539 rtx orig_operand[MAX_RECOG_OPERANDS];
3540 rtx orig_dup[MAX_RECOG_OPERANDS];
3541 struct elim_table *ep;
3542 rtx plus_src, plus_cst_src;
3543 bool sets_reg_p;
3544
3545 if (! insn_is_asm && icode < 0)
3546 {
3547 gcc_assert (DEBUG_INSN_P (insn)
3548 || GET_CODE (PATTERN (insn)) == USE
3549 || GET_CODE (PATTERN (insn)) == CLOBBER
3550 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3551 return;
3552 }
3553
3554 if (old_set != 0 && REG_P (SET_DEST (old_set))
3555 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3556 {
3557 /* Check for setting an eliminable register. */
3558 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3559 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3560 return;
3561 }
3562
3563 /* We allow one special case which happens to work on all machines we
3564 currently support: a single set with the source or a REG_EQUAL
3565 note being a PLUS of an eliminable register and a constant. */
3566 plus_src = plus_cst_src = 0;
3567 sets_reg_p = false;
3568 if (old_set && REG_P (SET_DEST (old_set)))
3569 {
3570 sets_reg_p = true;
3571 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3572 plus_src = SET_SRC (old_set);
3573 /* First see if the source is of the form (plus (...) CST). */
3574 if (plus_src
3575 && CONST_INT_P (XEXP (plus_src, 1)))
3576 plus_cst_src = plus_src;
3577 else if (REG_P (SET_SRC (old_set))
3578 || plus_src)
3579 {
3580 /* Otherwise, see if we have a REG_EQUAL note of the form
3581 (plus (...) CST). */
3582 rtx links;
3583 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3584 {
3585 if ((REG_NOTE_KIND (links) == REG_EQUAL
3586 || REG_NOTE_KIND (links) == REG_EQUIV)
3587 && GET_CODE (XEXP (links, 0)) == PLUS
3588 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3589 {
3590 plus_cst_src = XEXP (links, 0);
3591 break;
3592 }
3593 }
3594 }
3595 }
3596
3597 /* Determine the effects of this insn on elimination offsets. */
3598 elimination_effects (old_body, VOIDmode);
3599
3600 /* Eliminate all eliminable registers occurring in operands that
3601 can be handled by reload. */
3602 extract_insn (insn);
3603 int n_dups = recog_data.n_dups;
3604 for (i = 0; i < n_dups; i++)
3605 orig_dup[i] = *recog_data.dup_loc[i];
3606
3607 int n_operands = recog_data.n_operands;
3608 for (i = 0; i < n_operands; i++)
3609 {
3610 orig_operand[i] = recog_data.operand[i];
3611
3612 /* For an asm statement, every operand is eliminable. */
3613 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3614 {
3615 bool is_set_src, in_plus;
3616
3617 /* Check for setting a register that we know about. */
3618 if (recog_data.operand_type[i] != OP_IN
3619 && REG_P (orig_operand[i]))
3620 {
3621 /* If we are assigning to a register that can be eliminated, it
3622 must be as part of a PARALLEL, since the code above handles
3623 single SETs. We must indicate that we can no longer
3624 eliminate this reg. */
3625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3626 ep++)
3627 if (ep->from_rtx == orig_operand[i])
3628 ep->can_eliminate = 0;
3629 }
3630
3631 /* Companion to the above plus substitution, we can allow
3632 invariants as the source of a plain move. */
3633 is_set_src = false;
3634 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3635 is_set_src = true;
3636 if (is_set_src && !sets_reg_p)
3637 note_reg_elim_costly (SET_SRC (old_set), insn);
3638 in_plus = false;
3639 if (plus_src && sets_reg_p
3640 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3641 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3642 in_plus = true;
3643
3644 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3645 NULL_RTX,
3646 is_set_src || in_plus, true);
3647 /* Terminate the search in check_eliminable_occurrences at
3648 this point. */
3649 *recog_data.operand_loc[i] = 0;
3650 }
3651 }
3652
3653 for (i = 0; i < n_dups; i++)
3654 *recog_data.dup_loc[i]
3655 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3656
3657 /* If any eliminable remain, they aren't eliminable anymore. */
3658 check_eliminable_occurrences (old_body);
3659
3660 /* Restore the old body. */
3661 for (i = 0; i < n_operands; i++)
3662 *recog_data.operand_loc[i] = orig_operand[i];
3663 for (i = 0; i < n_dups; i++)
3664 *recog_data.dup_loc[i] = orig_dup[i];
3665
3666 /* Update all elimination pairs to reflect the status after the current
3667 insn. The changes we make were determined by the earlier call to
3668 elimination_effects. */
3669
3670 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3671 {
3672 if (maybe_ne (ep->previous_offset, ep->offset) && ep->ref_outside_mem)
3673 ep->can_eliminate = 0;
3674
3675 ep->ref_outside_mem = 0;
3676 }
3677
3678 return;
3679 }
3680 #pragma GCC diagnostic pop
3681
3682 /* Loop through all elimination pairs.
3683 Recalculate the number not at initial offset.
3684
3685 Compute the maximum offset (minimum offset if the stack does not
3686 grow downward) for each elimination pair. */
3687
3688 static void
3689 update_eliminable_offsets (void)
3690 {
3691 struct elim_table *ep;
3692
3693 num_not_at_initial_offset = 0;
3694 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3695 {
3696 ep->previous_offset = ep->offset;
3697 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3698 num_not_at_initial_offset++;
3699 }
3700 }
3701
3702 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3703 replacement we currently believe is valid, mark it as not eliminable if X
3704 modifies DEST in any way other than by adding a constant integer to it.
3705
3706 If DEST is the frame pointer, we do nothing because we assume that
3707 all assignments to the hard frame pointer are nonlocal gotos and are being
3708 done at a time when they are valid and do not disturb anything else.
3709 Some machines want to eliminate a fake argument pointer with either the
3710 frame or stack pointer. Assignments to the hard frame pointer must not
3711 prevent this elimination.
3712
3713 Called via note_stores from reload before starting its passes to scan
3714 the insns of the function. */
3715
3716 static void
3717 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3718 {
3719 unsigned int i;
3720
3721 /* A SUBREG of a hard register here is just changing its mode. We should
3722 not see a SUBREG of an eliminable hard register, but check just in
3723 case. */
3724 if (GET_CODE (dest) == SUBREG)
3725 dest = SUBREG_REG (dest);
3726
3727 if (dest == hard_frame_pointer_rtx)
3728 return;
3729
3730 /* CLOBBER_HIGH is only supported for LRA. */
3731 gcc_assert (GET_CODE (x) != CLOBBER_HIGH);
3732
3733 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3734 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3735 && (GET_CODE (x) != SET
3736 || GET_CODE (SET_SRC (x)) != PLUS
3737 || XEXP (SET_SRC (x), 0) != dest
3738 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3739 {
3740 reg_eliminate[i].can_eliminate_previous
3741 = reg_eliminate[i].can_eliminate = 0;
3742 num_eliminable--;
3743 }
3744 }
3745
3746 /* Verify that the initial elimination offsets did not change since the
3747 last call to set_initial_elim_offsets. This is used to catch cases
3748 where something illegal happened during reload_as_needed that could
3749 cause incorrect code to be generated if we did not check for it. */
3750
3751 static bool
3752 verify_initial_elim_offsets (void)
3753 {
3754 poly_int64 t;
3755 struct elim_table *ep;
3756
3757 if (!num_eliminable)
3758 return true;
3759
3760 targetm.compute_frame_layout ();
3761 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3762 {
3763 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3764 if (maybe_ne (t, ep->initial_offset))
3765 return false;
3766 }
3767
3768 return true;
3769 }
3770
3771 /* Reset all offsets on eliminable registers to their initial values. */
3772
3773 static void
3774 set_initial_elim_offsets (void)
3775 {
3776 struct elim_table *ep = reg_eliminate;
3777
3778 targetm.compute_frame_layout ();
3779 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3780 {
3781 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3782 ep->previous_offset = ep->offset = ep->initial_offset;
3783 }
3784
3785 num_not_at_initial_offset = 0;
3786 }
3787
3788 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3789
3790 static void
3791 set_initial_eh_label_offset (rtx label)
3792 {
3793 set_label_offsets (label, NULL, 1);
3794 }
3795
3796 /* Initialize the known label offsets.
3797 Set a known offset for each forced label to be at the initial offset
3798 of each elimination. We do this because we assume that all
3799 computed jumps occur from a location where each elimination is
3800 at its initial offset.
3801 For all other labels, show that we don't know the offsets. */
3802
3803 static void
3804 set_initial_label_offsets (void)
3805 {
3806 memset (offsets_known_at, 0, num_labels);
3807
3808 unsigned int i;
3809 rtx_insn *insn;
3810 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3811 set_label_offsets (insn, NULL, 1);
3812
3813 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3814 if (x->insn ())
3815 set_label_offsets (x->insn (), NULL, 1);
3816
3817 for_each_eh_label (set_initial_eh_label_offset);
3818 }
3819
3820 /* Set all elimination offsets to the known values for the code label given
3821 by INSN. */
3822
3823 static void
3824 set_offsets_for_label (rtx_insn *insn)
3825 {
3826 unsigned int i;
3827 int label_nr = CODE_LABEL_NUMBER (insn);
3828 struct elim_table *ep;
3829
3830 num_not_at_initial_offset = 0;
3831 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3832 {
3833 ep->offset = ep->previous_offset
3834 = offsets_at[label_nr - first_label_num][i];
3835 if (ep->can_eliminate && maybe_ne (ep->offset, ep->initial_offset))
3836 num_not_at_initial_offset++;
3837 }
3838 }
3839
3840 /* See if anything that happened changes which eliminations are valid.
3841 For example, on the SPARC, whether or not the frame pointer can
3842 be eliminated can depend on what registers have been used. We need
3843 not check some conditions again (such as flag_omit_frame_pointer)
3844 since they can't have changed. */
3845
3846 static void
3847 update_eliminables (HARD_REG_SET *pset)
3848 {
3849 int previous_frame_pointer_needed = frame_pointer_needed;
3850 struct elim_table *ep;
3851
3852 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3853 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3854 && targetm.frame_pointer_required ())
3855 || ! targetm.can_eliminate (ep->from, ep->to)
3856 )
3857 ep->can_eliminate = 0;
3858
3859 /* Look for the case where we have discovered that we can't replace
3860 register A with register B and that means that we will now be
3861 trying to replace register A with register C. This means we can
3862 no longer replace register C with register B and we need to disable
3863 such an elimination, if it exists. This occurs often with A == ap,
3864 B == sp, and C == fp. */
3865
3866 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3867 {
3868 struct elim_table *op;
3869 int new_to = -1;
3870
3871 if (! ep->can_eliminate && ep->can_eliminate_previous)
3872 {
3873 /* Find the current elimination for ep->from, if there is a
3874 new one. */
3875 for (op = reg_eliminate;
3876 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3877 if (op->from == ep->from && op->can_eliminate)
3878 {
3879 new_to = op->to;
3880 break;
3881 }
3882
3883 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3884 disable it. */
3885 for (op = reg_eliminate;
3886 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3887 if (op->from == new_to && op->to == ep->to)
3888 op->can_eliminate = 0;
3889 }
3890 }
3891
3892 /* See if any registers that we thought we could eliminate the previous
3893 time are no longer eliminable. If so, something has changed and we
3894 must spill the register. Also, recompute the number of eliminable
3895 registers and see if the frame pointer is needed; it is if there is
3896 no elimination of the frame pointer that we can perform. */
3897
3898 frame_pointer_needed = 1;
3899 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3900 {
3901 if (ep->can_eliminate
3902 && ep->from == FRAME_POINTER_REGNUM
3903 && ep->to != HARD_FRAME_POINTER_REGNUM
3904 && (! SUPPORTS_STACK_ALIGNMENT
3905 || ! crtl->stack_realign_needed))
3906 frame_pointer_needed = 0;
3907
3908 if (! ep->can_eliminate && ep->can_eliminate_previous)
3909 {
3910 ep->can_eliminate_previous = 0;
3911 SET_HARD_REG_BIT (*pset, ep->from);
3912 num_eliminable--;
3913 }
3914 }
3915
3916 /* If we didn't need a frame pointer last time, but we do now, spill
3917 the hard frame pointer. */
3918 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3919 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3920 }
3921
3922 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3923 Return true iff a register was spilled. */
3924
3925 static bool
3926 update_eliminables_and_spill (void)
3927 {
3928 int i;
3929 bool did_spill = false;
3930 HARD_REG_SET to_spill;
3931 CLEAR_HARD_REG_SET (to_spill);
3932 update_eliminables (&to_spill);
3933 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3934
3935 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3936 if (TEST_HARD_REG_BIT (to_spill, i))
3937 {
3938 spill_hard_reg (i, 1);
3939 did_spill = true;
3940
3941 /* Regardless of the state of spills, if we previously had
3942 a register that we thought we could eliminate, but now
3943 cannot eliminate, we must run another pass.
3944
3945 Consider pseudos which have an entry in reg_equiv_* which
3946 reference an eliminable register. We must make another pass
3947 to update reg_equiv_* so that we do not substitute in the
3948 old value from when we thought the elimination could be
3949 performed. */
3950 }
3951 return did_spill;
3952 }
3953
3954 /* Return true if X is used as the target register of an elimination. */
3955
3956 bool
3957 elimination_target_reg_p (rtx x)
3958 {
3959 struct elim_table *ep;
3960
3961 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if (ep->to_rtx == x && ep->can_eliminate)
3963 return true;
3964
3965 return false;
3966 }
3967
3968 /* Initialize the table of registers to eliminate.
3969 Pre-condition: global flag frame_pointer_needed has been set before
3970 calling this function. */
3971
3972 static void
3973 init_elim_table (void)
3974 {
3975 struct elim_table *ep;
3976 const struct elim_table_1 *ep1;
3977
3978 if (!reg_eliminate)
3979 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
3980
3981 num_eliminable = 0;
3982
3983 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3984 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3985 {
3986 ep->from = ep1->from;
3987 ep->to = ep1->to;
3988 ep->can_eliminate = ep->can_eliminate_previous
3989 = (targetm.can_eliminate (ep->from, ep->to)
3990 && ! (ep->to == STACK_POINTER_REGNUM
3991 && frame_pointer_needed
3992 && (! SUPPORTS_STACK_ALIGNMENT
3993 || ! stack_realign_fp)));
3994 }
3995
3996 /* Count the number of eliminable registers and build the FROM and TO
3997 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3998 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3999 We depend on this. */
4000 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4001 {
4002 num_eliminable += ep->can_eliminate;
4003 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4004 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4005 }
4006 }
4007
4008 /* Find all the pseudo registers that didn't get hard regs
4009 but do have known equivalent constants or memory slots.
4010 These include parameters (known equivalent to parameter slots)
4011 and cse'd or loop-moved constant memory addresses.
4012
4013 Record constant equivalents in reg_equiv_constant
4014 so they will be substituted by find_reloads.
4015 Record memory equivalents in reg_mem_equiv so they can
4016 be substituted eventually by altering the REG-rtx's. */
4017
4018 static void
4019 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4020 {
4021 int i;
4022 rtx_insn *insn;
4023
4024 grow_reg_equivs ();
4025 if (do_subregs)
4026 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4027 else
4028 reg_max_ref_mode = NULL;
4029
4030 num_eliminable_invariants = 0;
4031
4032 first_label_num = get_first_label_num ();
4033 num_labels = max_label_num () - first_label_num;
4034
4035 /* Allocate the tables used to store offset information at labels. */
4036 offsets_known_at = XNEWVEC (char, num_labels);
4037 offsets_at = (poly_int64_pod (*)[NUM_ELIMINABLE_REGS])
4038 xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (poly_int64));
4039
4040 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4041 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4042 find largest such for each pseudo. FIRST is the head of the insn
4043 list. */
4044
4045 for (insn = first; insn; insn = NEXT_INSN (insn))
4046 {
4047 rtx set = single_set (insn);
4048
4049 /* We may introduce USEs that we want to remove at the end, so
4050 we'll mark them with QImode. Make sure there are no
4051 previously-marked insns left by say regmove. */
4052 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4053 && GET_MODE (insn) != VOIDmode)
4054 PUT_MODE (insn, VOIDmode);
4055
4056 if (do_subregs && NONDEBUG_INSN_P (insn))
4057 scan_paradoxical_subregs (PATTERN (insn));
4058
4059 if (set != 0 && REG_P (SET_DEST (set)))
4060 {
4061 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4062 rtx x;
4063
4064 if (! note)
4065 continue;
4066
4067 i = REGNO (SET_DEST (set));
4068 x = XEXP (note, 0);
4069
4070 if (i <= LAST_VIRTUAL_REGISTER)
4071 continue;
4072
4073 /* If flag_pic and we have constant, verify it's legitimate. */
4074 if (!CONSTANT_P (x)
4075 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4076 {
4077 /* It can happen that a REG_EQUIV note contains a MEM
4078 that is not a legitimate memory operand. As later
4079 stages of reload assume that all addresses found
4080 in the reg_equiv_* arrays were originally legitimate,
4081 we ignore such REG_EQUIV notes. */
4082 if (memory_operand (x, VOIDmode))
4083 {
4084 /* Always unshare the equivalence, so we can
4085 substitute into this insn without touching the
4086 equivalence. */
4087 reg_equiv_memory_loc (i) = copy_rtx (x);
4088 }
4089 else if (function_invariant_p (x))
4090 {
4091 machine_mode mode;
4092
4093 mode = GET_MODE (SET_DEST (set));
4094 if (GET_CODE (x) == PLUS)
4095 {
4096 /* This is PLUS of frame pointer and a constant,
4097 and might be shared. Unshare it. */
4098 reg_equiv_invariant (i) = copy_rtx (x);
4099 num_eliminable_invariants++;
4100 }
4101 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4102 {
4103 reg_equiv_invariant (i) = x;
4104 num_eliminable_invariants++;
4105 }
4106 else if (targetm.legitimate_constant_p (mode, x))
4107 reg_equiv_constant (i) = x;
4108 else
4109 {
4110 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4111 if (! reg_equiv_memory_loc (i))
4112 reg_equiv_init (i) = NULL;
4113 }
4114 }
4115 else
4116 {
4117 reg_equiv_init (i) = NULL;
4118 continue;
4119 }
4120 }
4121 else
4122 reg_equiv_init (i) = NULL;
4123 }
4124 }
4125
4126 if (dump_file)
4127 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4128 if (reg_equiv_init (i))
4129 {
4130 fprintf (dump_file, "init_insns for %u: ", i);
4131 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4132 fprintf (dump_file, "\n");
4133 }
4134 }
4135
4136 /* Indicate that we no longer have known memory locations or constants.
4137 Free all data involved in tracking these. */
4138
4139 static void
4140 free_reg_equiv (void)
4141 {
4142 int i;
4143
4144 free (offsets_known_at);
4145 free (offsets_at);
4146 offsets_at = 0;
4147 offsets_known_at = 0;
4148
4149 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4150 if (reg_equiv_alt_mem_list (i))
4151 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4152 vec_free (reg_equivs);
4153 }
4154 \f
4155 /* Kick all pseudos out of hard register REGNO.
4156
4157 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4158 because we found we can't eliminate some register. In the case, no pseudos
4159 are allowed to be in the register, even if they are only in a block that
4160 doesn't require spill registers, unlike the case when we are spilling this
4161 hard reg to produce another spill register.
4162
4163 Return nonzero if any pseudos needed to be kicked out. */
4164
4165 static void
4166 spill_hard_reg (unsigned int regno, int cant_eliminate)
4167 {
4168 int i;
4169
4170 if (cant_eliminate)
4171 {
4172 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4173 df_set_regs_ever_live (regno, true);
4174 }
4175
4176 /* Spill every pseudo reg that was allocated to this reg
4177 or to something that overlaps this reg. */
4178
4179 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4180 if (reg_renumber[i] >= 0
4181 && (unsigned int) reg_renumber[i] <= regno
4182 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4183 SET_REGNO_REG_SET (&spilled_pseudos, i);
4184 }
4185
4186 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4187 insns that need reloads, this function is used to actually spill pseudo
4188 registers and try to reallocate them. It also sets up the spill_regs
4189 array for use by choose_reload_regs.
4190
4191 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4192 that we displace from hard registers. */
4193
4194 static int
4195 finish_spills (int global)
4196 {
4197 class insn_chain *chain;
4198 int something_changed = 0;
4199 unsigned i;
4200 reg_set_iterator rsi;
4201
4202 /* Build the spill_regs array for the function. */
4203 /* If there are some registers still to eliminate and one of the spill regs
4204 wasn't ever used before, additional stack space may have to be
4205 allocated to store this register. Thus, we may have changed the offset
4206 between the stack and frame pointers, so mark that something has changed.
4207
4208 One might think that we need only set VAL to 1 if this is a call-used
4209 register. However, the set of registers that must be saved by the
4210 prologue is not identical to the call-used set. For example, the
4211 register used by the call insn for the return PC is a call-used register,
4212 but must be saved by the prologue. */
4213
4214 n_spills = 0;
4215 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4216 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4217 {
4218 spill_reg_order[i] = n_spills;
4219 spill_regs[n_spills++] = i;
4220 if (num_eliminable && ! df_regs_ever_live_p (i))
4221 something_changed = 1;
4222 df_set_regs_ever_live (i, true);
4223 }
4224 else
4225 spill_reg_order[i] = -1;
4226
4227 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4228 if (reg_renumber[i] >= 0)
4229 {
4230 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4231 /* Mark it as no longer having a hard register home. */
4232 reg_renumber[i] = -1;
4233 if (ira_conflicts_p)
4234 /* Inform IRA about the change. */
4235 ira_mark_allocation_change (i);
4236 /* We will need to scan everything again. */
4237 something_changed = 1;
4238 }
4239
4240 /* Retry global register allocation if possible. */
4241 if (global && ira_conflicts_p)
4242 {
4243 unsigned int n;
4244
4245 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4246 /* For every insn that needs reloads, set the registers used as spill
4247 regs in pseudo_forbidden_regs for every pseudo live across the
4248 insn. */
4249 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4250 {
4251 EXECUTE_IF_SET_IN_REG_SET
4252 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4253 {
4254 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4255 chain->used_spill_regs);
4256 }
4257 EXECUTE_IF_SET_IN_REG_SET
4258 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4259 {
4260 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4261 chain->used_spill_regs);
4262 }
4263 }
4264
4265 /* Retry allocating the pseudos spilled in IRA and the
4266 reload. For each reg, merge the various reg sets that
4267 indicate which hard regs can't be used, and call
4268 ira_reassign_pseudos. */
4269 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4270 if (reg_old_renumber[i] != reg_renumber[i])
4271 {
4272 if (reg_renumber[i] < 0)
4273 temp_pseudo_reg_arr[n++] = i;
4274 else
4275 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4276 }
4277 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4278 bad_spill_regs_global,
4279 pseudo_forbidden_regs, pseudo_previous_regs,
4280 &spilled_pseudos))
4281 something_changed = 1;
4282 }
4283 /* Fix up the register information in the insn chain.
4284 This involves deleting those of the spilled pseudos which did not get
4285 a new hard register home from the live_{before,after} sets. */
4286 for (chain = reload_insn_chain; chain; chain = chain->next)
4287 {
4288 HARD_REG_SET used_by_pseudos;
4289 HARD_REG_SET used_by_pseudos2;
4290
4291 if (! ira_conflicts_p)
4292 {
4293 /* Don't do it for IRA because IRA and the reload still can
4294 assign hard registers to the spilled pseudos on next
4295 reload iterations. */
4296 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4297 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4298 }
4299 /* Mark any unallocated hard regs as available for spills. That
4300 makes inheritance work somewhat better. */
4301 if (chain->need_reload)
4302 {
4303 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4304 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4305 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4306
4307 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4308 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4309 /* Value of chain->used_spill_regs from previous iteration
4310 may be not included in the value calculated here because
4311 of possible removing caller-saves insns (see function
4312 delete_caller_save_insns. */
4313 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4314 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4315 }
4316 }
4317
4318 CLEAR_REG_SET (&changed_allocation_pseudos);
4319 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4320 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4321 {
4322 int regno = reg_renumber[i];
4323 if (reg_old_renumber[i] == regno)
4324 continue;
4325
4326 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4327
4328 alter_reg (i, reg_old_renumber[i], false);
4329 reg_old_renumber[i] = regno;
4330 if (dump_file)
4331 {
4332 if (regno == -1)
4333 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4334 else
4335 fprintf (dump_file, " Register %d now in %d.\n\n",
4336 i, reg_renumber[i]);
4337 }
4338 }
4339
4340 return something_changed;
4341 }
4342 \f
4343 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4344
4345 static void
4346 scan_paradoxical_subregs (rtx x)
4347 {
4348 int i;
4349 const char *fmt;
4350 enum rtx_code code = GET_CODE (x);
4351
4352 switch (code)
4353 {
4354 case REG:
4355 case CONST:
4356 case SYMBOL_REF:
4357 case LABEL_REF:
4358 CASE_CONST_ANY:
4359 case CC0:
4360 case PC:
4361 case USE:
4362 case CLOBBER:
4363 case CLOBBER_HIGH:
4364 return;
4365
4366 case SUBREG:
4367 if (REG_P (SUBREG_REG (x)))
4368 {
4369 unsigned int regno = REGNO (SUBREG_REG (x));
4370 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4371 {
4372 reg_max_ref_mode[regno] = GET_MODE (x);
4373 mark_home_live_1 (regno, GET_MODE (x));
4374 }
4375 }
4376 return;
4377
4378 default:
4379 break;
4380 }
4381
4382 fmt = GET_RTX_FORMAT (code);
4383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4384 {
4385 if (fmt[i] == 'e')
4386 scan_paradoxical_subregs (XEXP (x, i));
4387 else if (fmt[i] == 'E')
4388 {
4389 int j;
4390 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4391 scan_paradoxical_subregs (XVECEXP (x, i, j));
4392 }
4393 }
4394 }
4395
4396 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4397 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4398 and apply the corresponding narrowing subreg to *OTHER_PTR.
4399 Return true if the operands were changed, false otherwise. */
4400
4401 static bool
4402 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4403 {
4404 rtx op, inner, other, tem;
4405
4406 op = *op_ptr;
4407 if (!paradoxical_subreg_p (op))
4408 return false;
4409 inner = SUBREG_REG (op);
4410
4411 other = *other_ptr;
4412 tem = gen_lowpart_common (GET_MODE (inner), other);
4413 if (!tem)
4414 return false;
4415
4416 /* If the lowpart operation turned a hard register into a subreg,
4417 rather than simplifying it to another hard register, then the
4418 mode change cannot be properly represented. For example, OTHER
4419 might be valid in its current mode, but not in the new one. */
4420 if (GET_CODE (tem) == SUBREG
4421 && REG_P (other)
4422 && HARD_REGISTER_P (other))
4423 return false;
4424
4425 *op_ptr = inner;
4426 *other_ptr = tem;
4427 return true;
4428 }
4429 \f
4430 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4431 examine all of the reload insns between PREV and NEXT exclusive, and
4432 annotate all that may trap. */
4433
4434 static void
4435 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4436 {
4437 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4438 if (note == NULL)
4439 return;
4440 if (!insn_could_throw_p (insn))
4441 remove_note (insn, note);
4442 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4443 }
4444
4445 /* Reload pseudo-registers into hard regs around each insn as needed.
4446 Additional register load insns are output before the insn that needs it
4447 and perhaps store insns after insns that modify the reloaded pseudo reg.
4448
4449 reg_last_reload_reg and reg_reloaded_contents keep track of
4450 which registers are already available in reload registers.
4451 We update these for the reloads that we perform,
4452 as the insns are scanned. */
4453
4454 static void
4455 reload_as_needed (int live_known)
4456 {
4457 class insn_chain *chain;
4458 #if AUTO_INC_DEC
4459 int i;
4460 #endif
4461 rtx_note *marker;
4462
4463 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4464 memset (spill_reg_store, 0, sizeof spill_reg_store);
4465 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4466 INIT_REG_SET (&reg_has_output_reload);
4467 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4468 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4469
4470 set_initial_elim_offsets ();
4471
4472 /* Generate a marker insn that we will move around. */
4473 marker = emit_note (NOTE_INSN_DELETED);
4474 unlink_insn_chain (marker, marker);
4475
4476 for (chain = reload_insn_chain; chain; chain = chain->next)
4477 {
4478 rtx_insn *prev = 0;
4479 rtx_insn *insn = chain->insn;
4480 rtx_insn *old_next = NEXT_INSN (insn);
4481 #if AUTO_INC_DEC
4482 rtx_insn *old_prev = PREV_INSN (insn);
4483 #endif
4484
4485 if (will_delete_init_insn_p (insn))
4486 continue;
4487
4488 /* If we pass a label, copy the offsets from the label information
4489 into the current offsets of each elimination. */
4490 if (LABEL_P (insn))
4491 set_offsets_for_label (insn);
4492
4493 else if (INSN_P (insn))
4494 {
4495 regset_head regs_to_forget;
4496 INIT_REG_SET (&regs_to_forget);
4497 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4498
4499 /* If this is a USE and CLOBBER of a MEM, ensure that any
4500 references to eliminable registers have been removed. */
4501
4502 if ((GET_CODE (PATTERN (insn)) == USE
4503 || GET_CODE (PATTERN (insn)) == CLOBBER)
4504 && MEM_P (XEXP (PATTERN (insn), 0)))
4505 XEXP (XEXP (PATTERN (insn), 0), 0)
4506 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4507 GET_MODE (XEXP (PATTERN (insn), 0)),
4508 NULL_RTX);
4509
4510 /* If we need to do register elimination processing, do so.
4511 This might delete the insn, in which case we are done. */
4512 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4513 {
4514 eliminate_regs_in_insn (insn, 1);
4515 if (NOTE_P (insn))
4516 {
4517 update_eliminable_offsets ();
4518 CLEAR_REG_SET (&regs_to_forget);
4519 continue;
4520 }
4521 }
4522
4523 /* If need_elim is nonzero but need_reload is zero, one might think
4524 that we could simply set n_reloads to 0. However, find_reloads
4525 could have done some manipulation of the insn (such as swapping
4526 commutative operands), and these manipulations are lost during
4527 the first pass for every insn that needs register elimination.
4528 So the actions of find_reloads must be redone here. */
4529
4530 if (! chain->need_elim && ! chain->need_reload
4531 && ! chain->need_operand_change)
4532 n_reloads = 0;
4533 /* First find the pseudo regs that must be reloaded for this insn.
4534 This info is returned in the tables reload_... (see reload.h).
4535 Also modify the body of INSN by substituting RELOAD
4536 rtx's for those pseudo regs. */
4537 else
4538 {
4539 CLEAR_REG_SET (&reg_has_output_reload);
4540 CLEAR_HARD_REG_SET (reg_is_output_reload);
4541
4542 find_reloads (insn, 1, spill_indirect_levels, live_known,
4543 spill_reg_order);
4544 }
4545
4546 if (n_reloads > 0)
4547 {
4548 rtx_insn *next = NEXT_INSN (insn);
4549
4550 /* ??? PREV can get deleted by reload inheritance.
4551 Work around this by emitting a marker note. */
4552 prev = PREV_INSN (insn);
4553 reorder_insns_nobb (marker, marker, prev);
4554
4555 /* Now compute which reload regs to reload them into. Perhaps
4556 reusing reload regs from previous insns, or else output
4557 load insns to reload them. Maybe output store insns too.
4558 Record the choices of reload reg in reload_reg_rtx. */
4559 choose_reload_regs (chain);
4560
4561 /* Generate the insns to reload operands into or out of
4562 their reload regs. */
4563 emit_reload_insns (chain);
4564
4565 /* Substitute the chosen reload regs from reload_reg_rtx
4566 into the insn's body (or perhaps into the bodies of other
4567 load and store insn that we just made for reloading
4568 and that we moved the structure into). */
4569 subst_reloads (insn);
4570
4571 prev = PREV_INSN (marker);
4572 unlink_insn_chain (marker, marker);
4573
4574 /* Adjust the exception region notes for loads and stores. */
4575 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4576 fixup_eh_region_note (insn, prev, next);
4577
4578 /* Adjust the location of REG_ARGS_SIZE. */
4579 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4580 if (p)
4581 {
4582 remove_note (insn, p);
4583 fixup_args_size_notes (prev, PREV_INSN (next),
4584 get_args_size (p));
4585 }
4586
4587 /* If this was an ASM, make sure that all the reload insns
4588 we have generated are valid. If not, give an error
4589 and delete them. */
4590 if (asm_noperands (PATTERN (insn)) >= 0)
4591 for (rtx_insn *p = NEXT_INSN (prev);
4592 p != next;
4593 p = NEXT_INSN (p))
4594 if (p != insn && INSN_P (p)
4595 && GET_CODE (PATTERN (p)) != USE
4596 && (recog_memoized (p) < 0
4597 || (extract_insn (p),
4598 !(constrain_operands (1,
4599 get_enabled_alternatives (p))))))
4600 {
4601 error_for_asm (insn,
4602 "%<asm%> operand requires "
4603 "impossible reload");
4604 delete_insn (p);
4605 }
4606 }
4607
4608 if (num_eliminable && chain->need_elim)
4609 update_eliminable_offsets ();
4610
4611 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4612 is no longer validly lying around to save a future reload.
4613 Note that this does not detect pseudos that were reloaded
4614 for this insn in order to be stored in
4615 (obeying register constraints). That is correct; such reload
4616 registers ARE still valid. */
4617 forget_marked_reloads (&regs_to_forget);
4618 CLEAR_REG_SET (&regs_to_forget);
4619
4620 /* There may have been CLOBBER insns placed after INSN. So scan
4621 between INSN and NEXT and use them to forget old reloads. */
4622 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4623 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4624 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4625
4626 #if AUTO_INC_DEC
4627 /* Likewise for regs altered by auto-increment in this insn.
4628 REG_INC notes have been changed by reloading:
4629 find_reloads_address_1 records substitutions for them,
4630 which have been performed by subst_reloads above. */
4631 for (i = n_reloads - 1; i >= 0; i--)
4632 {
4633 rtx in_reg = rld[i].in_reg;
4634 if (in_reg)
4635 {
4636 enum rtx_code code = GET_CODE (in_reg);
4637 /* PRE_INC / PRE_DEC will have the reload register ending up
4638 with the same value as the stack slot, but that doesn't
4639 hold true for POST_INC / POST_DEC. Either we have to
4640 convert the memory access to a true POST_INC / POST_DEC,
4641 or we can't use the reload register for inheritance. */
4642 if ((code == POST_INC || code == POST_DEC)
4643 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4644 REGNO (rld[i].reg_rtx))
4645 /* Make sure it is the inc/dec pseudo, and not
4646 some other (e.g. output operand) pseudo. */
4647 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4648 == REGNO (XEXP (in_reg, 0))))
4649
4650 {
4651 rtx reload_reg = rld[i].reg_rtx;
4652 machine_mode mode = GET_MODE (reload_reg);
4653 int n = 0;
4654 rtx_insn *p;
4655
4656 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4657 {
4658 /* We really want to ignore REG_INC notes here, so
4659 use PATTERN (p) as argument to reg_set_p . */
4660 if (reg_set_p (reload_reg, PATTERN (p)))
4661 break;
4662 n = count_occurrences (PATTERN (p), reload_reg, 0);
4663 if (! n)
4664 continue;
4665 if (n == 1)
4666 {
4667 rtx replace_reg
4668 = gen_rtx_fmt_e (code, mode, reload_reg);
4669
4670 validate_replace_rtx_group (reload_reg,
4671 replace_reg, p);
4672 n = verify_changes (0);
4673
4674 /* We must also verify that the constraints
4675 are met after the replacement. Make sure
4676 extract_insn is only called for an insn
4677 where the replacements were found to be
4678 valid so far. */
4679 if (n)
4680 {
4681 extract_insn (p);
4682 n = constrain_operands (1,
4683 get_enabled_alternatives (p));
4684 }
4685
4686 /* If the constraints were not met, then
4687 undo the replacement, else confirm it. */
4688 if (!n)
4689 cancel_changes (0);
4690 else
4691 confirm_change_group ();
4692 }
4693 break;
4694 }
4695 if (n == 1)
4696 {
4697 add_reg_note (p, REG_INC, reload_reg);
4698 /* Mark this as having an output reload so that the
4699 REG_INC processing code below won't invalidate
4700 the reload for inheritance. */
4701 SET_HARD_REG_BIT (reg_is_output_reload,
4702 REGNO (reload_reg));
4703 SET_REGNO_REG_SET (&reg_has_output_reload,
4704 REGNO (XEXP (in_reg, 0)));
4705 }
4706 else
4707 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4708 NULL);
4709 }
4710 else if ((code == PRE_INC || code == PRE_DEC)
4711 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4712 REGNO (rld[i].reg_rtx))
4713 /* Make sure it is the inc/dec pseudo, and not
4714 some other (e.g. output operand) pseudo. */
4715 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4716 == REGNO (XEXP (in_reg, 0))))
4717 {
4718 SET_HARD_REG_BIT (reg_is_output_reload,
4719 REGNO (rld[i].reg_rtx));
4720 SET_REGNO_REG_SET (&reg_has_output_reload,
4721 REGNO (XEXP (in_reg, 0)));
4722 }
4723 else if (code == PRE_INC || code == PRE_DEC
4724 || code == POST_INC || code == POST_DEC)
4725 {
4726 int in_regno = REGNO (XEXP (in_reg, 0));
4727
4728 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4729 {
4730 int in_hard_regno;
4731 bool forget_p = true;
4732
4733 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4734 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4735 in_hard_regno))
4736 {
4737 for (rtx_insn *x = (old_prev ?
4738 NEXT_INSN (old_prev) : insn);
4739 x != old_next;
4740 x = NEXT_INSN (x))
4741 if (x == reg_reloaded_insn[in_hard_regno])
4742 {
4743 forget_p = false;
4744 break;
4745 }
4746 }
4747 /* If for some reasons, we didn't set up
4748 reg_last_reload_reg in this insn,
4749 invalidate inheritance from previous
4750 insns for the incremented/decremented
4751 register. Such registers will be not in
4752 reg_has_output_reload. Invalidate it
4753 also if the corresponding element in
4754 reg_reloaded_insn is also
4755 invalidated. */
4756 if (forget_p)
4757 forget_old_reloads_1 (XEXP (in_reg, 0),
4758 NULL_RTX, NULL);
4759 }
4760 }
4761 }
4762 }
4763 /* If a pseudo that got a hard register is auto-incremented,
4764 we must purge records of copying it into pseudos without
4765 hard registers. */
4766 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4767 if (REG_NOTE_KIND (x) == REG_INC)
4768 {
4769 /* See if this pseudo reg was reloaded in this insn.
4770 If so, its last-reload info is still valid
4771 because it is based on this insn's reload. */
4772 for (i = 0; i < n_reloads; i++)
4773 if (rld[i].out == XEXP (x, 0))
4774 break;
4775
4776 if (i == n_reloads)
4777 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4778 }
4779 #endif
4780 }
4781 /* A reload reg's contents are unknown after a label. */
4782 if (LABEL_P (insn))
4783 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4784
4785 /* Don't assume a reload reg is still good after a call insn
4786 if it is a call-used reg, or if it contains a value that will
4787 be partially clobbered by the call. */
4788 else if (CALL_P (insn))
4789 {
4790 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4791 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4792
4793 /* If this is a call to a setjmp-type function, we must not
4794 reuse any reload reg contents across the call; that will
4795 just be clobbered by other uses of the register in later
4796 code, before the longjmp. */
4797 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4798 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4799 }
4800 }
4801
4802 /* Clean up. */
4803 free (reg_last_reload_reg);
4804 CLEAR_REG_SET (&reg_has_output_reload);
4805 }
4806
4807 /* Discard all record of any value reloaded from X,
4808 or reloaded in X from someplace else;
4809 unless X is an output reload reg of the current insn.
4810
4811 X may be a hard reg (the reload reg)
4812 or it may be a pseudo reg that was reloaded from.
4813
4814 When DATA is non-NULL just mark the registers in regset
4815 to be forgotten later. */
4816
4817 static void
4818 forget_old_reloads_1 (rtx x, const_rtx setter,
4819 void *data)
4820 {
4821 unsigned int regno;
4822 unsigned int nr;
4823 regset regs = (regset) data;
4824
4825 /* note_stores does give us subregs of hard regs,
4826 subreg_regno_offset requires a hard reg. */
4827 while (GET_CODE (x) == SUBREG)
4828 {
4829 /* We ignore the subreg offset when calculating the regno,
4830 because we are using the entire underlying hard register
4831 below. */
4832 x = SUBREG_REG (x);
4833 }
4834
4835 if (!REG_P (x))
4836 return;
4837
4838 /* CLOBBER_HIGH is only supported for LRA. */
4839 gcc_assert (setter == NULL_RTX || GET_CODE (setter) != CLOBBER_HIGH);
4840
4841 regno = REGNO (x);
4842
4843 if (regno >= FIRST_PSEUDO_REGISTER)
4844 nr = 1;
4845 else
4846 {
4847 unsigned int i;
4848
4849 nr = REG_NREGS (x);
4850 /* Storing into a spilled-reg invalidates its contents.
4851 This can happen if a block-local pseudo is allocated to that reg
4852 and it wasn't spilled because this block's total need is 0.
4853 Then some insn might have an optional reload and use this reg. */
4854 if (!regs)
4855 for (i = 0; i < nr; i++)
4856 /* But don't do this if the reg actually serves as an output
4857 reload reg in the current instruction. */
4858 if (n_reloads == 0
4859 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4860 {
4861 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4862 spill_reg_store[regno + i] = 0;
4863 }
4864 }
4865
4866 if (regs)
4867 while (nr-- > 0)
4868 SET_REGNO_REG_SET (regs, regno + nr);
4869 else
4870 {
4871 /* Since value of X has changed,
4872 forget any value previously copied from it. */
4873
4874 while (nr-- > 0)
4875 /* But don't forget a copy if this is the output reload
4876 that establishes the copy's validity. */
4877 if (n_reloads == 0
4878 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4879 reg_last_reload_reg[regno + nr] = 0;
4880 }
4881 }
4882
4883 /* Forget the reloads marked in regset by previous function. */
4884 static void
4885 forget_marked_reloads (regset regs)
4886 {
4887 unsigned int reg;
4888 reg_set_iterator rsi;
4889 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4890 {
4891 if (reg < FIRST_PSEUDO_REGISTER
4892 /* But don't do this if the reg actually serves as an output
4893 reload reg in the current instruction. */
4894 && (n_reloads == 0
4895 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4896 {
4897 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4898 spill_reg_store[reg] = 0;
4899 }
4900 if (n_reloads == 0
4901 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4902 reg_last_reload_reg[reg] = 0;
4903 }
4904 }
4905 \f
4906 /* The following HARD_REG_SETs indicate when each hard register is
4907 used for a reload of various parts of the current insn. */
4908
4909 /* If reg is unavailable for all reloads. */
4910 static HARD_REG_SET reload_reg_unavailable;
4911 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4912 static HARD_REG_SET reload_reg_used;
4913 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4914 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4915 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4916 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4917 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4918 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4919 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4920 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4921 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4922 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4923 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4924 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4925 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4926 static HARD_REG_SET reload_reg_used_in_op_addr;
4927 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4928 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4929 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4930 static HARD_REG_SET reload_reg_used_in_insn;
4931 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4932 static HARD_REG_SET reload_reg_used_in_other_addr;
4933
4934 /* If reg is in use as a reload reg for any sort of reload. */
4935 static HARD_REG_SET reload_reg_used_at_all;
4936
4937 /* If reg is use as an inherited reload. We just mark the first register
4938 in the group. */
4939 static HARD_REG_SET reload_reg_used_for_inherit;
4940
4941 /* Records which hard regs are used in any way, either as explicit use or
4942 by being allocated to a pseudo during any point of the current insn. */
4943 static HARD_REG_SET reg_used_in_insn;
4944
4945 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4946 TYPE. MODE is used to indicate how many consecutive regs are
4947 actually used. */
4948
4949 static void
4950 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4951 machine_mode mode)
4952 {
4953 switch (type)
4954 {
4955 case RELOAD_OTHER:
4956 add_to_hard_reg_set (&reload_reg_used, mode, regno);
4957 break;
4958
4959 case RELOAD_FOR_INPUT_ADDRESS:
4960 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
4961 break;
4962
4963 case RELOAD_FOR_INPADDR_ADDRESS:
4964 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
4965 break;
4966
4967 case RELOAD_FOR_OUTPUT_ADDRESS:
4968 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
4969 break;
4970
4971 case RELOAD_FOR_OUTADDR_ADDRESS:
4972 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
4973 break;
4974
4975 case RELOAD_FOR_OPERAND_ADDRESS:
4976 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
4977 break;
4978
4979 case RELOAD_FOR_OPADDR_ADDR:
4980 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
4981 break;
4982
4983 case RELOAD_FOR_OTHER_ADDRESS:
4984 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
4985 break;
4986
4987 case RELOAD_FOR_INPUT:
4988 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
4989 break;
4990
4991 case RELOAD_FOR_OUTPUT:
4992 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
4993 break;
4994
4995 case RELOAD_FOR_INSN:
4996 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
4997 break;
4998 }
4999
5000 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5001 }
5002
5003 /* Similarly, but show REGNO is no longer in use for a reload. */
5004
5005 static void
5006 clear_reload_reg_in_use (unsigned int regno, int opnum,
5007 enum reload_type type, machine_mode mode)
5008 {
5009 unsigned int nregs = hard_regno_nregs (regno, mode);
5010 unsigned int start_regno, end_regno, r;
5011 int i;
5012 /* A complication is that for some reload types, inheritance might
5013 allow multiple reloads of the same types to share a reload register.
5014 We set check_opnum if we have to check only reloads with the same
5015 operand number, and check_any if we have to check all reloads. */
5016 int check_opnum = 0;
5017 int check_any = 0;
5018 HARD_REG_SET *used_in_set;
5019
5020 switch (type)
5021 {
5022 case RELOAD_OTHER:
5023 used_in_set = &reload_reg_used;
5024 break;
5025
5026 case RELOAD_FOR_INPUT_ADDRESS:
5027 used_in_set = &reload_reg_used_in_input_addr[opnum];
5028 break;
5029
5030 case RELOAD_FOR_INPADDR_ADDRESS:
5031 check_opnum = 1;
5032 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5033 break;
5034
5035 case RELOAD_FOR_OUTPUT_ADDRESS:
5036 used_in_set = &reload_reg_used_in_output_addr[opnum];
5037 break;
5038
5039 case RELOAD_FOR_OUTADDR_ADDRESS:
5040 check_opnum = 1;
5041 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5042 break;
5043
5044 case RELOAD_FOR_OPERAND_ADDRESS:
5045 used_in_set = &reload_reg_used_in_op_addr;
5046 break;
5047
5048 case RELOAD_FOR_OPADDR_ADDR:
5049 check_any = 1;
5050 used_in_set = &reload_reg_used_in_op_addr_reload;
5051 break;
5052
5053 case RELOAD_FOR_OTHER_ADDRESS:
5054 used_in_set = &reload_reg_used_in_other_addr;
5055 check_any = 1;
5056 break;
5057
5058 case RELOAD_FOR_INPUT:
5059 used_in_set = &reload_reg_used_in_input[opnum];
5060 break;
5061
5062 case RELOAD_FOR_OUTPUT:
5063 used_in_set = &reload_reg_used_in_output[opnum];
5064 break;
5065
5066 case RELOAD_FOR_INSN:
5067 used_in_set = &reload_reg_used_in_insn;
5068 break;
5069 default:
5070 gcc_unreachable ();
5071 }
5072 /* We resolve conflicts with remaining reloads of the same type by
5073 excluding the intervals of reload registers by them from the
5074 interval of freed reload registers. Since we only keep track of
5075 one set of interval bounds, we might have to exclude somewhat
5076 more than what would be necessary if we used a HARD_REG_SET here.
5077 But this should only happen very infrequently, so there should
5078 be no reason to worry about it. */
5079
5080 start_regno = regno;
5081 end_regno = regno + nregs;
5082 if (check_opnum || check_any)
5083 {
5084 for (i = n_reloads - 1; i >= 0; i--)
5085 {
5086 if (rld[i].when_needed == type
5087 && (check_any || rld[i].opnum == opnum)
5088 && rld[i].reg_rtx)
5089 {
5090 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5091 unsigned int conflict_end
5092 = end_hard_regno (rld[i].mode, conflict_start);
5093
5094 /* If there is an overlap with the first to-be-freed register,
5095 adjust the interval start. */
5096 if (conflict_start <= start_regno && conflict_end > start_regno)
5097 start_regno = conflict_end;
5098 /* Otherwise, if there is a conflict with one of the other
5099 to-be-freed registers, adjust the interval end. */
5100 if (conflict_start > start_regno && conflict_start < end_regno)
5101 end_regno = conflict_start;
5102 }
5103 }
5104 }
5105
5106 for (r = start_regno; r < end_regno; r++)
5107 CLEAR_HARD_REG_BIT (*used_in_set, r);
5108 }
5109
5110 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5111 specified by OPNUM and TYPE. */
5112
5113 static int
5114 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5115 {
5116 int i;
5117
5118 /* In use for a RELOAD_OTHER means it's not available for anything. */
5119 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5120 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5121 return 0;
5122
5123 switch (type)
5124 {
5125 case RELOAD_OTHER:
5126 /* In use for anything means we can't use it for RELOAD_OTHER. */
5127 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5128 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5129 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5130 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5131 return 0;
5132
5133 for (i = 0; i < reload_n_operands; i++)
5134 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5135 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5136 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5137 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5138 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5139 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5140 return 0;
5141
5142 return 1;
5143
5144 case RELOAD_FOR_INPUT:
5145 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5146 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5147 return 0;
5148
5149 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5150 return 0;
5151
5152 /* If it is used for some other input, can't use it. */
5153 for (i = 0; i < reload_n_operands; i++)
5154 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5155 return 0;
5156
5157 /* If it is used in a later operand's address, can't use it. */
5158 for (i = opnum + 1; i < reload_n_operands; i++)
5159 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5160 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5161 return 0;
5162
5163 return 1;
5164
5165 case RELOAD_FOR_INPUT_ADDRESS:
5166 /* Can't use a register if it is used for an input address for this
5167 operand or used as an input in an earlier one. */
5168 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5169 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5170 return 0;
5171
5172 for (i = 0; i < opnum; i++)
5173 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5174 return 0;
5175
5176 return 1;
5177
5178 case RELOAD_FOR_INPADDR_ADDRESS:
5179 /* Can't use a register if it is used for an input address
5180 for this operand or used as an input in an earlier
5181 one. */
5182 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5183 return 0;
5184
5185 for (i = 0; i < opnum; i++)
5186 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5187 return 0;
5188
5189 return 1;
5190
5191 case RELOAD_FOR_OUTPUT_ADDRESS:
5192 /* Can't use a register if it is used for an output address for this
5193 operand or used as an output in this or a later operand. Note
5194 that multiple output operands are emitted in reverse order, so
5195 the conflicting ones are those with lower indices. */
5196 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5197 return 0;
5198
5199 for (i = 0; i <= opnum; i++)
5200 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5201 return 0;
5202
5203 return 1;
5204
5205 case RELOAD_FOR_OUTADDR_ADDRESS:
5206 /* Can't use a register if it is used for an output address
5207 for this operand or used as an output in this or a
5208 later operand. Note that multiple output operands are
5209 emitted in reverse order, so the conflicting ones are
5210 those with lower indices. */
5211 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5212 return 0;
5213
5214 for (i = 0; i <= opnum; i++)
5215 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5216 return 0;
5217
5218 return 1;
5219
5220 case RELOAD_FOR_OPERAND_ADDRESS:
5221 for (i = 0; i < reload_n_operands; i++)
5222 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5223 return 0;
5224
5225 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5226 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5227
5228 case RELOAD_FOR_OPADDR_ADDR:
5229 for (i = 0; i < reload_n_operands; i++)
5230 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5231 return 0;
5232
5233 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5234
5235 case RELOAD_FOR_OUTPUT:
5236 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5237 outputs, or an operand address for this or an earlier output.
5238 Note that multiple output operands are emitted in reverse order,
5239 so the conflicting ones are those with higher indices. */
5240 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5241 return 0;
5242
5243 for (i = 0; i < reload_n_operands; i++)
5244 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5245 return 0;
5246
5247 for (i = opnum; i < reload_n_operands; i++)
5248 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5249 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5250 return 0;
5251
5252 return 1;
5253
5254 case RELOAD_FOR_INSN:
5255 for (i = 0; i < reload_n_operands; i++)
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5257 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5258 return 0;
5259
5260 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5261 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5262
5263 case RELOAD_FOR_OTHER_ADDRESS:
5264 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5265
5266 default:
5267 gcc_unreachable ();
5268 }
5269 }
5270
5271 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5272 the number RELOADNUM, is still available in REGNO at the end of the insn.
5273
5274 We can assume that the reload reg was already tested for availability
5275 at the time it is needed, and we should not check this again,
5276 in case the reg has already been marked in use. */
5277
5278 static int
5279 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5280 {
5281 int opnum = rld[reloadnum].opnum;
5282 enum reload_type type = rld[reloadnum].when_needed;
5283 int i;
5284
5285 /* See if there is a reload with the same type for this operand, using
5286 the same register. This case is not handled by the code below. */
5287 for (i = reloadnum + 1; i < n_reloads; i++)
5288 {
5289 rtx reg;
5290
5291 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5292 continue;
5293 reg = rld[i].reg_rtx;
5294 if (reg == NULL_RTX)
5295 continue;
5296 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5297 return 0;
5298 }
5299
5300 switch (type)
5301 {
5302 case RELOAD_OTHER:
5303 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5304 its value must reach the end. */
5305 return 1;
5306
5307 /* If this use is for part of the insn,
5308 its value reaches if no subsequent part uses the same register.
5309 Just like the above function, don't try to do this with lots
5310 of fallthroughs. */
5311
5312 case RELOAD_FOR_OTHER_ADDRESS:
5313 /* Here we check for everything else, since these don't conflict
5314 with anything else and everything comes later. */
5315
5316 for (i = 0; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5318 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5319 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5320 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5321 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5322 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5323 return 0;
5324
5325 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5326 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5327 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5328 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5329
5330 case RELOAD_FOR_INPUT_ADDRESS:
5331 case RELOAD_FOR_INPADDR_ADDRESS:
5332 /* Similar, except that we check only for this and subsequent inputs
5333 and the address of only subsequent inputs and we do not need
5334 to check for RELOAD_OTHER objects since they are known not to
5335 conflict. */
5336
5337 for (i = opnum; i < reload_n_operands; i++)
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5339 return 0;
5340
5341 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5342 could be killed if the register is also used by reload with type
5343 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5344 if (type == RELOAD_FOR_INPADDR_ADDRESS
5345 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5346 return 0;
5347
5348 for (i = opnum + 1; i < reload_n_operands; i++)
5349 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5350 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5351 return 0;
5352
5353 for (i = 0; i < reload_n_operands; i++)
5354 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5355 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5356 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5357 return 0;
5358
5359 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5360 return 0;
5361
5362 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5363 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5364 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5365
5366 case RELOAD_FOR_INPUT:
5367 /* Similar to input address, except we start at the next operand for
5368 both input and input address and we do not check for
5369 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5370 would conflict. */
5371
5372 for (i = opnum + 1; i < reload_n_operands; i++)
5373 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5374 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5375 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5376 return 0;
5377
5378 /* ... fall through ... */
5379
5380 case RELOAD_FOR_OPERAND_ADDRESS:
5381 /* Check outputs and their addresses. */
5382
5383 for (i = 0; i < reload_n_operands; i++)
5384 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5385 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5386 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5387 return 0;
5388
5389 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5390
5391 case RELOAD_FOR_OPADDR_ADDR:
5392 for (i = 0; i < reload_n_operands; i++)
5393 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5394 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5395 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5396 return 0;
5397
5398 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5399 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5400 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5401
5402 case RELOAD_FOR_INSN:
5403 /* These conflict with other outputs with RELOAD_OTHER. So
5404 we need only check for output addresses. */
5405
5406 opnum = reload_n_operands;
5407
5408 /* fall through */
5409
5410 case RELOAD_FOR_OUTPUT:
5411 case RELOAD_FOR_OUTPUT_ADDRESS:
5412 case RELOAD_FOR_OUTADDR_ADDRESS:
5413 /* We already know these can't conflict with a later output. So the
5414 only thing to check are later output addresses.
5415 Note that multiple output operands are emitted in reverse order,
5416 so the conflicting ones are those with lower indices. */
5417 for (i = 0; i < opnum; i++)
5418 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5419 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5420 return 0;
5421
5422 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5423 could be killed if the register is also used by reload with type
5424 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5425 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5426 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5427 return 0;
5428
5429 return 1;
5430
5431 default:
5432 gcc_unreachable ();
5433 }
5434 }
5435
5436 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5437 every register in REG. */
5438
5439 static bool
5440 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5441 {
5442 unsigned int i;
5443
5444 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5445 if (!reload_reg_reaches_end_p (i, reloadnum))
5446 return false;
5447 return true;
5448 }
5449 \f
5450
5451 /* Returns whether R1 and R2 are uniquely chained: the value of one
5452 is used by the other, and that value is not used by any other
5453 reload for this insn. This is used to partially undo the decision
5454 made in find_reloads when in the case of multiple
5455 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5456 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5457 reloads. This code tries to avoid the conflict created by that
5458 change. It might be cleaner to explicitly keep track of which
5459 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5460 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5461 this after the fact. */
5462 static bool
5463 reloads_unique_chain_p (int r1, int r2)
5464 {
5465 int i;
5466
5467 /* We only check input reloads. */
5468 if (! rld[r1].in || ! rld[r2].in)
5469 return false;
5470
5471 /* Avoid anything with output reloads. */
5472 if (rld[r1].out || rld[r2].out)
5473 return false;
5474
5475 /* "chained" means one reload is a component of the other reload,
5476 not the same as the other reload. */
5477 if (rld[r1].opnum != rld[r2].opnum
5478 || rtx_equal_p (rld[r1].in, rld[r2].in)
5479 || rld[r1].optional || rld[r2].optional
5480 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5481 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5482 return false;
5483
5484 /* The following loop assumes that r1 is the reload that feeds r2. */
5485 if (r1 > r2)
5486 std::swap (r1, r2);
5487
5488 for (i = 0; i < n_reloads; i ++)
5489 /* Look for input reloads that aren't our two */
5490 if (i != r1 && i != r2 && rld[i].in)
5491 {
5492 /* If our reload is mentioned at all, it isn't a simple chain. */
5493 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5494 return false;
5495 }
5496 return true;
5497 }
5498
5499 /* The recursive function change all occurrences of WHAT in *WHERE
5500 to REPL. */
5501 static void
5502 substitute (rtx *where, const_rtx what, rtx repl)
5503 {
5504 const char *fmt;
5505 int i;
5506 enum rtx_code code;
5507
5508 if (*where == 0)
5509 return;
5510
5511 if (*where == what || rtx_equal_p (*where, what))
5512 {
5513 /* Record the location of the changed rtx. */
5514 substitute_stack.safe_push (where);
5515 *where = repl;
5516 return;
5517 }
5518
5519 code = GET_CODE (*where);
5520 fmt = GET_RTX_FORMAT (code);
5521 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5522 {
5523 if (fmt[i] == 'E')
5524 {
5525 int j;
5526
5527 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5528 substitute (&XVECEXP (*where, i, j), what, repl);
5529 }
5530 else if (fmt[i] == 'e')
5531 substitute (&XEXP (*where, i), what, repl);
5532 }
5533 }
5534
5535 /* The function returns TRUE if chain of reload R1 and R2 (in any
5536 order) can be evaluated without usage of intermediate register for
5537 the reload containing another reload. It is important to see
5538 gen_reload to understand what the function is trying to do. As an
5539 example, let us have reload chain
5540
5541 r2: const
5542 r1: <something> + const
5543
5544 and reload R2 got reload reg HR. The function returns true if
5545 there is a correct insn HR = HR + <something>. Otherwise,
5546 gen_reload will use intermediate register (and this is the reload
5547 reg for R1) to reload <something>.
5548
5549 We need this function to find a conflict for chain reloads. In our
5550 example, if HR = HR + <something> is incorrect insn, then we cannot
5551 use HR as a reload register for R2. If we do use it then we get a
5552 wrong code:
5553
5554 HR = const
5555 HR = <something>
5556 HR = HR + HR
5557
5558 */
5559 static bool
5560 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5561 {
5562 /* Assume other cases in gen_reload are not possible for
5563 chain reloads or do need an intermediate hard registers. */
5564 bool result = true;
5565 int regno, code;
5566 rtx out, in;
5567 rtx_insn *insn;
5568 rtx_insn *last = get_last_insn ();
5569
5570 /* Make r2 a component of r1. */
5571 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5572 std::swap (r1, r2);
5573
5574 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5575 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5576 gcc_assert (regno >= 0);
5577 out = gen_rtx_REG (rld[r1].mode, regno);
5578 in = rld[r1].in;
5579 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5580
5581 /* If IN is a paradoxical SUBREG, remove it and try to put the
5582 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5583 strip_paradoxical_subreg (&in, &out);
5584
5585 if (GET_CODE (in) == PLUS
5586 && (REG_P (XEXP (in, 0))
5587 || GET_CODE (XEXP (in, 0)) == SUBREG
5588 || MEM_P (XEXP (in, 0)))
5589 && (REG_P (XEXP (in, 1))
5590 || GET_CODE (XEXP (in, 1)) == SUBREG
5591 || CONSTANT_P (XEXP (in, 1))
5592 || MEM_P (XEXP (in, 1))))
5593 {
5594 insn = emit_insn (gen_rtx_SET (out, in));
5595 code = recog_memoized (insn);
5596 result = false;
5597
5598 if (code >= 0)
5599 {
5600 extract_insn (insn);
5601 /* We want constrain operands to treat this insn strictly in
5602 its validity determination, i.e., the way it would after
5603 reload has completed. */
5604 result = constrain_operands (1, get_enabled_alternatives (insn));
5605 }
5606
5607 delete_insns_since (last);
5608 }
5609
5610 /* Restore the original value at each changed address within R1. */
5611 while (!substitute_stack.is_empty ())
5612 {
5613 rtx *where = substitute_stack.pop ();
5614 *where = rld[r2].in;
5615 }
5616
5617 return result;
5618 }
5619
5620 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5621 Return 0 otherwise.
5622
5623 This function uses the same algorithm as reload_reg_free_p above. */
5624
5625 static int
5626 reloads_conflict (int r1, int r2)
5627 {
5628 enum reload_type r1_type = rld[r1].when_needed;
5629 enum reload_type r2_type = rld[r2].when_needed;
5630 int r1_opnum = rld[r1].opnum;
5631 int r2_opnum = rld[r2].opnum;
5632
5633 /* RELOAD_OTHER conflicts with everything. */
5634 if (r2_type == RELOAD_OTHER)
5635 return 1;
5636
5637 /* Otherwise, check conflicts differently for each type. */
5638
5639 switch (r1_type)
5640 {
5641 case RELOAD_FOR_INPUT:
5642 return (r2_type == RELOAD_FOR_INSN
5643 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5644 || r2_type == RELOAD_FOR_OPADDR_ADDR
5645 || r2_type == RELOAD_FOR_INPUT
5646 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5647 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5648 && r2_opnum > r1_opnum));
5649
5650 case RELOAD_FOR_INPUT_ADDRESS:
5651 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5652 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5653
5654 case RELOAD_FOR_INPADDR_ADDRESS:
5655 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5656 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5657
5658 case RELOAD_FOR_OUTPUT_ADDRESS:
5659 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5660 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5661
5662 case RELOAD_FOR_OUTADDR_ADDRESS:
5663 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5664 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5665
5666 case RELOAD_FOR_OPERAND_ADDRESS:
5667 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5668 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5669 && (!reloads_unique_chain_p (r1, r2)
5670 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5671
5672 case RELOAD_FOR_OPADDR_ADDR:
5673 return (r2_type == RELOAD_FOR_INPUT
5674 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5675
5676 case RELOAD_FOR_OUTPUT:
5677 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5678 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5679 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5680 && r2_opnum >= r1_opnum));
5681
5682 case RELOAD_FOR_INSN:
5683 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5684 || r2_type == RELOAD_FOR_INSN
5685 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5686
5687 case RELOAD_FOR_OTHER_ADDRESS:
5688 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5689
5690 case RELOAD_OTHER:
5691 return 1;
5692
5693 default:
5694 gcc_unreachable ();
5695 }
5696 }
5697 \f
5698 /* Indexed by reload number, 1 if incoming value
5699 inherited from previous insns. */
5700 static char reload_inherited[MAX_RELOADS];
5701
5702 /* For an inherited reload, this is the insn the reload was inherited from,
5703 if we know it. Otherwise, this is 0. */
5704 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5705
5706 /* If nonzero, this is a place to get the value of the reload,
5707 rather than using reload_in. */
5708 static rtx reload_override_in[MAX_RELOADS];
5709
5710 /* For each reload, the hard register number of the register used,
5711 or -1 if we did not need a register for this reload. */
5712 static int reload_spill_index[MAX_RELOADS];
5713
5714 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5715 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5716
5717 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5718 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5719
5720 /* Subroutine of free_for_value_p, used to check a single register.
5721 START_REGNO is the starting regno of the full reload register
5722 (possibly comprising multiple hard registers) that we are considering. */
5723
5724 static int
5725 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5726 enum reload_type type, rtx value, rtx out,
5727 int reloadnum, int ignore_address_reloads)
5728 {
5729 int time1;
5730 /* Set if we see an input reload that must not share its reload register
5731 with any new earlyclobber, but might otherwise share the reload
5732 register with an output or input-output reload. */
5733 int check_earlyclobber = 0;
5734 int i;
5735 int copy = 0;
5736
5737 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5738 return 0;
5739
5740 if (out == const0_rtx)
5741 {
5742 copy = 1;
5743 out = NULL_RTX;
5744 }
5745
5746 /* We use some pseudo 'time' value to check if the lifetimes of the
5747 new register use would overlap with the one of a previous reload
5748 that is not read-only or uses a different value.
5749 The 'time' used doesn't have to be linear in any shape or form, just
5750 monotonic.
5751 Some reload types use different 'buckets' for each operand.
5752 So there are MAX_RECOG_OPERANDS different time values for each
5753 such reload type.
5754 We compute TIME1 as the time when the register for the prospective
5755 new reload ceases to be live, and TIME2 for each existing
5756 reload as the time when that the reload register of that reload
5757 becomes live.
5758 Where there is little to be gained by exact lifetime calculations,
5759 we just make conservative assumptions, i.e. a longer lifetime;
5760 this is done in the 'default:' cases. */
5761 switch (type)
5762 {
5763 case RELOAD_FOR_OTHER_ADDRESS:
5764 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5765 time1 = copy ? 0 : 1;
5766 break;
5767 case RELOAD_OTHER:
5768 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5769 break;
5770 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5771 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5772 respectively, to the time values for these, we get distinct time
5773 values. To get distinct time values for each operand, we have to
5774 multiply opnum by at least three. We round that up to four because
5775 multiply by four is often cheaper. */
5776 case RELOAD_FOR_INPADDR_ADDRESS:
5777 time1 = opnum * 4 + 2;
5778 break;
5779 case RELOAD_FOR_INPUT_ADDRESS:
5780 time1 = opnum * 4 + 3;
5781 break;
5782 case RELOAD_FOR_INPUT:
5783 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5784 executes (inclusive). */
5785 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5786 break;
5787 case RELOAD_FOR_OPADDR_ADDR:
5788 /* opnum * 4 + 4
5789 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5790 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5791 break;
5792 case RELOAD_FOR_OPERAND_ADDRESS:
5793 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5794 is executed. */
5795 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5796 break;
5797 case RELOAD_FOR_OUTADDR_ADDRESS:
5798 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5799 break;
5800 case RELOAD_FOR_OUTPUT_ADDRESS:
5801 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5802 break;
5803 default:
5804 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5805 }
5806
5807 for (i = 0; i < n_reloads; i++)
5808 {
5809 rtx reg = rld[i].reg_rtx;
5810 if (reg && REG_P (reg)
5811 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5812 && i != reloadnum)
5813 {
5814 rtx other_input = rld[i].in;
5815
5816 /* If the other reload loads the same input value, that
5817 will not cause a conflict only if it's loading it into
5818 the same register. */
5819 if (true_regnum (reg) != start_regno)
5820 other_input = NULL_RTX;
5821 if (! other_input || ! rtx_equal_p (other_input, value)
5822 || rld[i].out || out)
5823 {
5824 int time2;
5825 switch (rld[i].when_needed)
5826 {
5827 case RELOAD_FOR_OTHER_ADDRESS:
5828 time2 = 0;
5829 break;
5830 case RELOAD_FOR_INPADDR_ADDRESS:
5831 /* find_reloads makes sure that a
5832 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5833 by at most one - the first -
5834 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5835 address reload is inherited, the address address reload
5836 goes away, so we can ignore this conflict. */
5837 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5838 && ignore_address_reloads
5839 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5840 Then the address address is still needed to store
5841 back the new address. */
5842 && ! rld[reloadnum].out)
5843 continue;
5844 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5845 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5846 reloads go away. */
5847 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5848 && ignore_address_reloads
5849 /* Unless we are reloading an auto_inc expression. */
5850 && ! rld[reloadnum].out)
5851 continue;
5852 time2 = rld[i].opnum * 4 + 2;
5853 break;
5854 case RELOAD_FOR_INPUT_ADDRESS:
5855 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5856 && ignore_address_reloads
5857 && ! rld[reloadnum].out)
5858 continue;
5859 time2 = rld[i].opnum * 4 + 3;
5860 break;
5861 case RELOAD_FOR_INPUT:
5862 time2 = rld[i].opnum * 4 + 4;
5863 check_earlyclobber = 1;
5864 break;
5865 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5866 == MAX_RECOG_OPERAND * 4 */
5867 case RELOAD_FOR_OPADDR_ADDR:
5868 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5869 && ignore_address_reloads
5870 && ! rld[reloadnum].out)
5871 continue;
5872 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5873 break;
5874 case RELOAD_FOR_OPERAND_ADDRESS:
5875 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5876 check_earlyclobber = 1;
5877 break;
5878 case RELOAD_FOR_INSN:
5879 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5880 break;
5881 case RELOAD_FOR_OUTPUT:
5882 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5883 instruction is executed. */
5884 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5885 break;
5886 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5887 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5888 value. */
5889 case RELOAD_FOR_OUTADDR_ADDRESS:
5890 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5891 && ignore_address_reloads
5892 && ! rld[reloadnum].out)
5893 continue;
5894 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5895 break;
5896 case RELOAD_FOR_OUTPUT_ADDRESS:
5897 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5898 break;
5899 case RELOAD_OTHER:
5900 /* If there is no conflict in the input part, handle this
5901 like an output reload. */
5902 if (! rld[i].in || rtx_equal_p (other_input, value))
5903 {
5904 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5905 /* Earlyclobbered outputs must conflict with inputs. */
5906 if (earlyclobber_operand_p (rld[i].out))
5907 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5908
5909 break;
5910 }
5911 time2 = 1;
5912 /* RELOAD_OTHER might be live beyond instruction execution,
5913 but this is not obvious when we set time2 = 1. So check
5914 here if there might be a problem with the new reload
5915 clobbering the register used by the RELOAD_OTHER. */
5916 if (out)
5917 return 0;
5918 break;
5919 default:
5920 return 0;
5921 }
5922 if ((time1 >= time2
5923 && (! rld[i].in || rld[i].out
5924 || ! rtx_equal_p (other_input, value)))
5925 || (out && rld[reloadnum].out_reg
5926 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5927 return 0;
5928 }
5929 }
5930 }
5931
5932 /* Earlyclobbered outputs must conflict with inputs. */
5933 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5934 return 0;
5935
5936 return 1;
5937 }
5938
5939 /* Return 1 if the value in reload reg REGNO, as used by a reload
5940 needed for the part of the insn specified by OPNUM and TYPE,
5941 may be used to load VALUE into it.
5942
5943 MODE is the mode in which the register is used, this is needed to
5944 determine how many hard regs to test.
5945
5946 Other read-only reloads with the same value do not conflict
5947 unless OUT is nonzero and these other reloads have to live while
5948 output reloads live.
5949 If OUT is CONST0_RTX, this is a special case: it means that the
5950 test should not be for using register REGNO as reload register, but
5951 for copying from register REGNO into the reload register.
5952
5953 RELOADNUM is the number of the reload we want to load this value for;
5954 a reload does not conflict with itself.
5955
5956 When IGNORE_ADDRESS_RELOADS is set, we cannot have conflicts with
5957 reloads that load an address for the very reload we are considering.
5958
5959 The caller has to make sure that there is no conflict with the return
5960 register. */
5961
5962 static int
5963 free_for_value_p (int regno, machine_mode mode, int opnum,
5964 enum reload_type type, rtx value, rtx out, int reloadnum,
5965 int ignore_address_reloads)
5966 {
5967 int nregs = hard_regno_nregs (regno, mode);
5968 while (nregs-- > 0)
5969 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5970 value, out, reloadnum,
5971 ignore_address_reloads))
5972 return 0;
5973 return 1;
5974 }
5975
5976 /* Return nonzero if the rtx X is invariant over the current function. */
5977 /* ??? Actually, the places where we use this expect exactly what is
5978 tested here, and not everything that is function invariant. In
5979 particular, the frame pointer and arg pointer are special cased;
5980 pic_offset_table_rtx is not, and we must not spill these things to
5981 memory. */
5982
5983 int
5984 function_invariant_p (const_rtx x)
5985 {
5986 if (CONSTANT_P (x))
5987 return 1;
5988 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5989 return 1;
5990 if (GET_CODE (x) == PLUS
5991 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5992 && GET_CODE (XEXP (x, 1)) == CONST_INT)
5993 return 1;
5994 return 0;
5995 }
5996
5997 /* Determine whether the reload reg X overlaps any rtx'es used for
5998 overriding inheritance. Return nonzero if so. */
5999
6000 static int
6001 conflicts_with_override (rtx x)
6002 {
6003 int i;
6004 for (i = 0; i < n_reloads; i++)
6005 if (reload_override_in[i]
6006 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6007 return 1;
6008 return 0;
6009 }
6010 \f
6011 /* Give an error message saying we failed to find a reload for INSN,
6012 and clear out reload R. */
6013 static void
6014 failed_reload (rtx_insn *insn, int r)
6015 {
6016 if (asm_noperands (PATTERN (insn)) < 0)
6017 /* It's the compiler's fault. */
6018 fatal_insn ("could not find a spill register", insn);
6019
6020 /* It's the user's fault; the operand's mode and constraint
6021 don't match. Disable this reload so we don't crash in final. */
6022 error_for_asm (insn,
6023 "%<asm%> operand constraint incompatible with operand size");
6024 rld[r].in = 0;
6025 rld[r].out = 0;
6026 rld[r].reg_rtx = 0;
6027 rld[r].optional = 1;
6028 rld[r].secondary_p = 1;
6029 }
6030
6031 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6032 for reload R. If it's valid, get an rtx for it. Return nonzero if
6033 successful. */
6034 static int
6035 set_reload_reg (int i, int r)
6036 {
6037 int regno;
6038 rtx reg = spill_reg_rtx[i];
6039
6040 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6041 spill_reg_rtx[i] = reg
6042 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6043
6044 regno = true_regnum (reg);
6045
6046 /* Detect when the reload reg can't hold the reload mode.
6047 This used to be one `if', but Sequent compiler can't handle that. */
6048 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6049 {
6050 machine_mode test_mode = VOIDmode;
6051 if (rld[r].in)
6052 test_mode = GET_MODE (rld[r].in);
6053 /* If rld[r].in has VOIDmode, it means we will load it
6054 in whatever mode the reload reg has: to wit, rld[r].mode.
6055 We have already tested that for validity. */
6056 /* Aside from that, we need to test that the expressions
6057 to reload from or into have modes which are valid for this
6058 reload register. Otherwise the reload insns would be invalid. */
6059 if (! (rld[r].in != 0 && test_mode != VOIDmode
6060 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6061 if (! (rld[r].out != 0
6062 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6063 {
6064 /* The reg is OK. */
6065 last_spill_reg = i;
6066
6067 /* Mark as in use for this insn the reload regs we use
6068 for this. */
6069 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6070 rld[r].when_needed, rld[r].mode);
6071
6072 rld[r].reg_rtx = reg;
6073 reload_spill_index[r] = spill_regs[i];
6074 return 1;
6075 }
6076 }
6077 return 0;
6078 }
6079
6080 /* Find a spill register to use as a reload register for reload R.
6081 LAST_RELOAD is nonzero if this is the last reload for the insn being
6082 processed.
6083
6084 Set rld[R].reg_rtx to the register allocated.
6085
6086 We return 1 if successful, or 0 if we couldn't find a spill reg and
6087 we didn't change anything. */
6088
6089 static int
6090 allocate_reload_reg (class insn_chain *chain ATTRIBUTE_UNUSED, int r,
6091 int last_reload)
6092 {
6093 int i, pass, count;
6094
6095 /* If we put this reload ahead, thinking it is a group,
6096 then insist on finding a group. Otherwise we can grab a
6097 reg that some other reload needs.
6098 (That can happen when we have a 68000 DATA_OR_FP_REG
6099 which is a group of data regs or one fp reg.)
6100 We need not be so restrictive if there are no more reloads
6101 for this insn.
6102
6103 ??? Really it would be nicer to have smarter handling
6104 for that kind of reg class, where a problem like this is normal.
6105 Perhaps those classes should be avoided for reloading
6106 by use of more alternatives. */
6107
6108 int force_group = rld[r].nregs > 1 && ! last_reload;
6109
6110 /* If we want a single register and haven't yet found one,
6111 take any reg in the right class and not in use.
6112 If we want a consecutive group, here is where we look for it.
6113
6114 We use three passes so we can first look for reload regs to
6115 reuse, which are already in use for other reloads in this insn,
6116 and only then use additional registers which are not "bad", then
6117 finally any register.
6118
6119 I think that maximizing reuse is needed to make sure we don't
6120 run out of reload regs. Suppose we have three reloads, and
6121 reloads A and B can share regs. These need two regs.
6122 Suppose A and B are given different regs.
6123 That leaves none for C. */
6124 for (pass = 0; pass < 3; pass++)
6125 {
6126 /* I is the index in spill_regs.
6127 We advance it round-robin between insns to use all spill regs
6128 equally, so that inherited reloads have a chance
6129 of leapfrogging each other. */
6130
6131 i = last_spill_reg;
6132
6133 for (count = 0; count < n_spills; count++)
6134 {
6135 int rclass = (int) rld[r].rclass;
6136 int regnum;
6137
6138 i++;
6139 if (i >= n_spills)
6140 i -= n_spills;
6141 regnum = spill_regs[i];
6142
6143 if ((reload_reg_free_p (regnum, rld[r].opnum,
6144 rld[r].when_needed)
6145 || (rld[r].in
6146 /* We check reload_reg_used to make sure we
6147 don't clobber the return register. */
6148 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6149 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6150 rld[r].when_needed, rld[r].in,
6151 rld[r].out, r, 1)))
6152 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6153 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6154 /* Look first for regs to share, then for unshared. But
6155 don't share regs used for inherited reloads; they are
6156 the ones we want to preserve. */
6157 && (pass
6158 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6159 regnum)
6160 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6161 regnum))))
6162 {
6163 int nr = hard_regno_nregs (regnum, rld[r].mode);
6164
6165 /* During the second pass we want to avoid reload registers
6166 which are "bad" for this reload. */
6167 if (pass == 1
6168 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6169 continue;
6170
6171 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6172 (on 68000) got us two FP regs. If NR is 1,
6173 we would reject both of them. */
6174 if (force_group)
6175 nr = rld[r].nregs;
6176 /* If we need only one reg, we have already won. */
6177 if (nr == 1)
6178 {
6179 /* But reject a single reg if we demand a group. */
6180 if (force_group)
6181 continue;
6182 break;
6183 }
6184 /* Otherwise check that as many consecutive regs as we need
6185 are available here. */
6186 while (nr > 1)
6187 {
6188 int regno = regnum + nr - 1;
6189 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6190 && spill_reg_order[regno] >= 0
6191 && reload_reg_free_p (regno, rld[r].opnum,
6192 rld[r].when_needed)))
6193 break;
6194 nr--;
6195 }
6196 if (nr == 1)
6197 break;
6198 }
6199 }
6200
6201 /* If we found something on the current pass, omit later passes. */
6202 if (count < n_spills)
6203 break;
6204 }
6205
6206 /* We should have found a spill register by now. */
6207 if (count >= n_spills)
6208 return 0;
6209
6210 /* I is the index in SPILL_REG_RTX of the reload register we are to
6211 allocate. Get an rtx for it and find its register number. */
6212
6213 return set_reload_reg (i, r);
6214 }
6215 \f
6216 /* Initialize all the tables needed to allocate reload registers.
6217 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6218 is the array we use to restore the reg_rtx field for every reload. */
6219
6220 static void
6221 choose_reload_regs_init (class insn_chain *chain, rtx *save_reload_reg_rtx)
6222 {
6223 int i;
6224
6225 for (i = 0; i < n_reloads; i++)
6226 rld[i].reg_rtx = save_reload_reg_rtx[i];
6227
6228 memset (reload_inherited, 0, MAX_RELOADS);
6229 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6230 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6231
6232 CLEAR_HARD_REG_SET (reload_reg_used);
6233 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6234 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6235 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6236 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6237 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6238
6239 CLEAR_HARD_REG_SET (reg_used_in_insn);
6240 {
6241 HARD_REG_SET tmp;
6242 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6243 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6244 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6245 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6246 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6247 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6248 }
6249
6250 for (i = 0; i < reload_n_operands; i++)
6251 {
6252 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6253 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6254 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6255 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6256 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6257 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6258 }
6259
6260 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6261
6262 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6263
6264 for (i = 0; i < n_reloads; i++)
6265 /* If we have already decided to use a certain register,
6266 don't use it in another way. */
6267 if (rld[i].reg_rtx)
6268 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6269 rld[i].when_needed, rld[i].mode);
6270 }
6271
6272 /* If X is not a subreg, return it unmodified. If it is a subreg,
6273 look up whether we made a replacement for the SUBREG_REG. Return
6274 either the replacement or the SUBREG_REG. */
6275
6276 static rtx
6277 replaced_subreg (rtx x)
6278 {
6279 if (GET_CODE (x) == SUBREG)
6280 return find_replacement (&SUBREG_REG (x));
6281 return x;
6282 }
6283
6284 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6285 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6286 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6287 otherwise it is NULL. */
6288
6289 static poly_int64
6290 compute_reload_subreg_offset (machine_mode outermode,
6291 rtx subreg,
6292 machine_mode innermode)
6293 {
6294 poly_int64 outer_offset;
6295 machine_mode middlemode;
6296
6297 if (!subreg)
6298 return subreg_lowpart_offset (outermode, innermode);
6299
6300 outer_offset = SUBREG_BYTE (subreg);
6301 middlemode = GET_MODE (SUBREG_REG (subreg));
6302
6303 /* If SUBREG is paradoxical then return the normal lowpart offset
6304 for OUTERMODE and INNERMODE. Our caller has already checked
6305 that OUTERMODE fits in INNERMODE. */
6306 if (paradoxical_subreg_p (outermode, middlemode))
6307 return subreg_lowpart_offset (outermode, innermode);
6308
6309 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6310 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6311 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6312 }
6313
6314 /* Assign hard reg targets for the pseudo-registers we must reload
6315 into hard regs for this insn.
6316 Also output the instructions to copy them in and out of the hard regs.
6317
6318 For machines with register classes, we are responsible for
6319 finding a reload reg in the proper class. */
6320
6321 static void
6322 choose_reload_regs (class insn_chain *chain)
6323 {
6324 rtx_insn *insn = chain->insn;
6325 int i, j;
6326 unsigned int max_group_size = 1;
6327 enum reg_class group_class = NO_REGS;
6328 int pass, win, inheritance;
6329
6330 rtx save_reload_reg_rtx[MAX_RELOADS];
6331
6332 /* In order to be certain of getting the registers we need,
6333 we must sort the reloads into order of increasing register class.
6334 Then our grabbing of reload registers will parallel the process
6335 that provided the reload registers.
6336
6337 Also note whether any of the reloads wants a consecutive group of regs.
6338 If so, record the maximum size of the group desired and what
6339 register class contains all the groups needed by this insn. */
6340
6341 for (j = 0; j < n_reloads; j++)
6342 {
6343 reload_order[j] = j;
6344 if (rld[j].reg_rtx != NULL_RTX)
6345 {
6346 gcc_assert (REG_P (rld[j].reg_rtx)
6347 && HARD_REGISTER_P (rld[j].reg_rtx));
6348 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6349 }
6350 else
6351 reload_spill_index[j] = -1;
6352
6353 if (rld[j].nregs > 1)
6354 {
6355 max_group_size = MAX (rld[j].nregs, max_group_size);
6356 group_class
6357 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6358 }
6359
6360 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6361 }
6362
6363 if (n_reloads > 1)
6364 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6365
6366 /* If -O, try first with inheritance, then turning it off.
6367 If not -O, don't do inheritance.
6368 Using inheritance when not optimizing leads to paradoxes
6369 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6370 because one side of the comparison might be inherited. */
6371 win = 0;
6372 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6373 {
6374 choose_reload_regs_init (chain, save_reload_reg_rtx);
6375
6376 /* Process the reloads in order of preference just found.
6377 Beyond this point, subregs can be found in reload_reg_rtx.
6378
6379 This used to look for an existing reloaded home for all of the
6380 reloads, and only then perform any new reloads. But that could lose
6381 if the reloads were done out of reg-class order because a later
6382 reload with a looser constraint might have an old home in a register
6383 needed by an earlier reload with a tighter constraint.
6384
6385 To solve this, we make two passes over the reloads, in the order
6386 described above. In the first pass we try to inherit a reload
6387 from a previous insn. If there is a later reload that needs a
6388 class that is a proper subset of the class being processed, we must
6389 also allocate a spill register during the first pass.
6390
6391 Then make a second pass over the reloads to allocate any reloads
6392 that haven't been given registers yet. */
6393
6394 for (j = 0; j < n_reloads; j++)
6395 {
6396 int r = reload_order[j];
6397 rtx search_equiv = NULL_RTX;
6398
6399 /* Ignore reloads that got marked inoperative. */
6400 if (rld[r].out == 0 && rld[r].in == 0
6401 && ! rld[r].secondary_p)
6402 continue;
6403
6404 /* If find_reloads chose to use reload_in or reload_out as a reload
6405 register, we don't need to chose one. Otherwise, try even if it
6406 found one since we might save an insn if we find the value lying
6407 around.
6408 Try also when reload_in is a pseudo without a hard reg. */
6409 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6410 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6411 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6412 && !MEM_P (rld[r].in)
6413 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6414 continue;
6415
6416 #if 0 /* No longer needed for correct operation.
6417 It might give better code, or might not; worth an experiment? */
6418 /* If this is an optional reload, we can't inherit from earlier insns
6419 until we are sure that any non-optional reloads have been allocated.
6420 The following code takes advantage of the fact that optional reloads
6421 are at the end of reload_order. */
6422 if (rld[r].optional != 0)
6423 for (i = 0; i < j; i++)
6424 if ((rld[reload_order[i]].out != 0
6425 || rld[reload_order[i]].in != 0
6426 || rld[reload_order[i]].secondary_p)
6427 && ! rld[reload_order[i]].optional
6428 && rld[reload_order[i]].reg_rtx == 0)
6429 allocate_reload_reg (chain, reload_order[i], 0);
6430 #endif
6431
6432 /* First see if this pseudo is already available as reloaded
6433 for a previous insn. We cannot try to inherit for reloads
6434 that are smaller than the maximum number of registers needed
6435 for groups unless the register we would allocate cannot be used
6436 for the groups.
6437
6438 We could check here to see if this is a secondary reload for
6439 an object that is already in a register of the desired class.
6440 This would avoid the need for the secondary reload register.
6441 But this is complex because we can't easily determine what
6442 objects might want to be loaded via this reload. So let a
6443 register be allocated here. In `emit_reload_insns' we suppress
6444 one of the loads in the case described above. */
6445
6446 if (inheritance)
6447 {
6448 poly_int64 byte = 0;
6449 int regno = -1;
6450 machine_mode mode = VOIDmode;
6451 rtx subreg = NULL_RTX;
6452
6453 if (rld[r].in == 0)
6454 ;
6455 else if (REG_P (rld[r].in))
6456 {
6457 regno = REGNO (rld[r].in);
6458 mode = GET_MODE (rld[r].in);
6459 }
6460 else if (REG_P (rld[r].in_reg))
6461 {
6462 regno = REGNO (rld[r].in_reg);
6463 mode = GET_MODE (rld[r].in_reg);
6464 }
6465 else if (GET_CODE (rld[r].in_reg) == SUBREG
6466 && REG_P (SUBREG_REG (rld[r].in_reg)))
6467 {
6468 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6469 if (regno < FIRST_PSEUDO_REGISTER)
6470 regno = subreg_regno (rld[r].in_reg);
6471 else
6472 {
6473 subreg = rld[r].in_reg;
6474 byte = SUBREG_BYTE (subreg);
6475 }
6476 mode = GET_MODE (rld[r].in_reg);
6477 }
6478 #if AUTO_INC_DEC
6479 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6480 && REG_P (XEXP (rld[r].in_reg, 0)))
6481 {
6482 regno = REGNO (XEXP (rld[r].in_reg, 0));
6483 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6484 rld[r].out = rld[r].in;
6485 }
6486 #endif
6487 #if 0
6488 /* This won't work, since REGNO can be a pseudo reg number.
6489 Also, it takes much more hair to keep track of all the things
6490 that can invalidate an inherited reload of part of a pseudoreg. */
6491 else if (GET_CODE (rld[r].in) == SUBREG
6492 && REG_P (SUBREG_REG (rld[r].in)))
6493 regno = subreg_regno (rld[r].in);
6494 #endif
6495
6496 if (regno >= 0
6497 && reg_last_reload_reg[regno] != 0
6498 && (known_ge
6499 (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno])),
6500 GET_MODE_SIZE (mode) + byte))
6501 /* Verify that the register it's in can be used in
6502 mode MODE. */
6503 && (REG_CAN_CHANGE_MODE_P
6504 (REGNO (reg_last_reload_reg[regno]),
6505 GET_MODE (reg_last_reload_reg[regno]),
6506 mode)))
6507 {
6508 enum reg_class rclass = rld[r].rclass, last_class;
6509 rtx last_reg = reg_last_reload_reg[regno];
6510
6511 i = REGNO (last_reg);
6512 byte = compute_reload_subreg_offset (mode,
6513 subreg,
6514 GET_MODE (last_reg));
6515 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6516 last_class = REGNO_REG_CLASS (i);
6517
6518 if (reg_reloaded_contents[i] == regno
6519 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6520 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6521 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6522 /* Even if we can't use this register as a reload
6523 register, we might use it for reload_override_in,
6524 if copying it to the desired class is cheap
6525 enough. */
6526 || ((register_move_cost (mode, last_class, rclass)
6527 < memory_move_cost (mode, rclass, true))
6528 && (secondary_reload_class (1, rclass, mode,
6529 last_reg)
6530 == NO_REGS)
6531 && !(targetm.secondary_memory_needed
6532 (mode, last_class, rclass))))
6533 && (rld[r].nregs == max_group_size
6534 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6535 i))
6536 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6537 rld[r].when_needed, rld[r].in,
6538 const0_rtx, r, 1))
6539 {
6540 /* If a group is needed, verify that all the subsequent
6541 registers still have their values intact. */
6542 int nr = hard_regno_nregs (i, rld[r].mode);
6543 int k;
6544
6545 for (k = 1; k < nr; k++)
6546 if (reg_reloaded_contents[i + k] != regno
6547 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6548 break;
6549
6550 if (k == nr)
6551 {
6552 int i1;
6553 int bad_for_class;
6554
6555 last_reg = (GET_MODE (last_reg) == mode
6556 ? last_reg : gen_rtx_REG (mode, i));
6557
6558 bad_for_class = 0;
6559 for (k = 0; k < nr; k++)
6560 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6561 i+k);
6562
6563 /* We found a register that contains the
6564 value we need. If this register is the
6565 same as an `earlyclobber' operand of the
6566 current insn, just mark it as a place to
6567 reload from since we can't use it as the
6568 reload register itself. */
6569
6570 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6571 if (reg_overlap_mentioned_for_reload_p
6572 (reg_last_reload_reg[regno],
6573 reload_earlyclobbers[i1]))
6574 break;
6575
6576 if (i1 != n_earlyclobbers
6577 || ! (free_for_value_p (i, rld[r].mode,
6578 rld[r].opnum,
6579 rld[r].when_needed, rld[r].in,
6580 rld[r].out, r, 1))
6581 /* Don't use it if we'd clobber a pseudo reg. */
6582 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6583 && rld[r].out
6584 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6585 /* Don't clobber the frame pointer. */
6586 || (i == HARD_FRAME_POINTER_REGNUM
6587 && frame_pointer_needed
6588 && rld[r].out)
6589 /* Don't really use the inherited spill reg
6590 if we need it wider than we've got it. */
6591 || paradoxical_subreg_p (rld[r].mode, mode)
6592 || bad_for_class
6593
6594 /* If find_reloads chose reload_out as reload
6595 register, stay with it - that leaves the
6596 inherited register for subsequent reloads. */
6597 || (rld[r].out && rld[r].reg_rtx
6598 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6599 {
6600 if (! rld[r].optional)
6601 {
6602 reload_override_in[r] = last_reg;
6603 reload_inheritance_insn[r]
6604 = reg_reloaded_insn[i];
6605 }
6606 }
6607 else
6608 {
6609 int k;
6610 /* We can use this as a reload reg. */
6611 /* Mark the register as in use for this part of
6612 the insn. */
6613 mark_reload_reg_in_use (i,
6614 rld[r].opnum,
6615 rld[r].when_needed,
6616 rld[r].mode);
6617 rld[r].reg_rtx = last_reg;
6618 reload_inherited[r] = 1;
6619 reload_inheritance_insn[r]
6620 = reg_reloaded_insn[i];
6621 reload_spill_index[r] = i;
6622 for (k = 0; k < nr; k++)
6623 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6624 i + k);
6625 }
6626 }
6627 }
6628 }
6629 }
6630
6631 /* Here's another way to see if the value is already lying around. */
6632 if (inheritance
6633 && rld[r].in != 0
6634 && ! reload_inherited[r]
6635 && rld[r].out == 0
6636 && (CONSTANT_P (rld[r].in)
6637 || GET_CODE (rld[r].in) == PLUS
6638 || REG_P (rld[r].in)
6639 || MEM_P (rld[r].in))
6640 && (rld[r].nregs == max_group_size
6641 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6642 search_equiv = rld[r].in;
6643
6644 if (search_equiv)
6645 {
6646 rtx equiv
6647 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6648 -1, NULL, 0, rld[r].mode);
6649 int regno = 0;
6650
6651 if (equiv != 0)
6652 {
6653 if (REG_P (equiv))
6654 regno = REGNO (equiv);
6655 else
6656 {
6657 /* This must be a SUBREG of a hard register.
6658 Make a new REG since this might be used in an
6659 address and not all machines support SUBREGs
6660 there. */
6661 gcc_assert (GET_CODE (equiv) == SUBREG);
6662 regno = subreg_regno (equiv);
6663 equiv = gen_rtx_REG (rld[r].mode, regno);
6664 /* If we choose EQUIV as the reload register, but the
6665 loop below decides to cancel the inheritance, we'll
6666 end up reloading EQUIV in rld[r].mode, not the mode
6667 it had originally. That isn't safe when EQUIV isn't
6668 available as a spill register since its value might
6669 still be live at this point. */
6670 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6671 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6672 equiv = 0;
6673 }
6674 }
6675
6676 /* If we found a spill reg, reject it unless it is free
6677 and of the desired class. */
6678 if (equiv != 0)
6679 {
6680 int regs_used = 0;
6681 int bad_for_class = 0;
6682 int max_regno = regno + rld[r].nregs;
6683
6684 for (i = regno; i < max_regno; i++)
6685 {
6686 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6687 i);
6688 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6689 i);
6690 }
6691
6692 if ((regs_used
6693 && ! free_for_value_p (regno, rld[r].mode,
6694 rld[r].opnum, rld[r].when_needed,
6695 rld[r].in, rld[r].out, r, 1))
6696 || bad_for_class)
6697 equiv = 0;
6698 }
6699
6700 if (equiv != 0
6701 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6702 equiv = 0;
6703
6704 /* We found a register that contains the value we need.
6705 If this register is the same as an `earlyclobber' operand
6706 of the current insn, just mark it as a place to reload from
6707 since we can't use it as the reload register itself. */
6708
6709 if (equiv != 0)
6710 for (i = 0; i < n_earlyclobbers; i++)
6711 if (reg_overlap_mentioned_for_reload_p (equiv,
6712 reload_earlyclobbers[i]))
6713 {
6714 if (! rld[r].optional)
6715 reload_override_in[r] = equiv;
6716 equiv = 0;
6717 break;
6718 }
6719
6720 /* If the equiv register we have found is explicitly clobbered
6721 in the current insn, it depends on the reload type if we
6722 can use it, use it for reload_override_in, or not at all.
6723 In particular, we then can't use EQUIV for a
6724 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6725
6726 if (equiv != 0)
6727 {
6728 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6729 switch (rld[r].when_needed)
6730 {
6731 case RELOAD_FOR_OTHER_ADDRESS:
6732 case RELOAD_FOR_INPADDR_ADDRESS:
6733 case RELOAD_FOR_INPUT_ADDRESS:
6734 case RELOAD_FOR_OPADDR_ADDR:
6735 break;
6736 case RELOAD_OTHER:
6737 case RELOAD_FOR_INPUT:
6738 case RELOAD_FOR_OPERAND_ADDRESS:
6739 if (! rld[r].optional)
6740 reload_override_in[r] = equiv;
6741 /* Fall through. */
6742 default:
6743 equiv = 0;
6744 break;
6745 }
6746 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6747 switch (rld[r].when_needed)
6748 {
6749 case RELOAD_FOR_OTHER_ADDRESS:
6750 case RELOAD_FOR_INPADDR_ADDRESS:
6751 case RELOAD_FOR_INPUT_ADDRESS:
6752 case RELOAD_FOR_OPADDR_ADDR:
6753 case RELOAD_FOR_OPERAND_ADDRESS:
6754 case RELOAD_FOR_INPUT:
6755 break;
6756 case RELOAD_OTHER:
6757 if (! rld[r].optional)
6758 reload_override_in[r] = equiv;
6759 /* Fall through. */
6760 default:
6761 equiv = 0;
6762 break;
6763 }
6764 }
6765
6766 /* If we found an equivalent reg, say no code need be generated
6767 to load it, and use it as our reload reg. */
6768 if (equiv != 0
6769 && (regno != HARD_FRAME_POINTER_REGNUM
6770 || !frame_pointer_needed))
6771 {
6772 int nr = hard_regno_nregs (regno, rld[r].mode);
6773 int k;
6774 rld[r].reg_rtx = equiv;
6775 reload_spill_index[r] = regno;
6776 reload_inherited[r] = 1;
6777
6778 /* If reg_reloaded_valid is not set for this register,
6779 there might be a stale spill_reg_store lying around.
6780 We must clear it, since otherwise emit_reload_insns
6781 might delete the store. */
6782 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6783 spill_reg_store[regno] = NULL;
6784 /* If any of the hard registers in EQUIV are spill
6785 registers, mark them as in use for this insn. */
6786 for (k = 0; k < nr; k++)
6787 {
6788 i = spill_reg_order[regno + k];
6789 if (i >= 0)
6790 {
6791 mark_reload_reg_in_use (regno, rld[r].opnum,
6792 rld[r].when_needed,
6793 rld[r].mode);
6794 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6795 regno + k);
6796 }
6797 }
6798 }
6799 }
6800
6801 /* If we found a register to use already, or if this is an optional
6802 reload, we are done. */
6803 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6804 continue;
6805
6806 #if 0
6807 /* No longer needed for correct operation. Might or might
6808 not give better code on the average. Want to experiment? */
6809
6810 /* See if there is a later reload that has a class different from our
6811 class that intersects our class or that requires less register
6812 than our reload. If so, we must allocate a register to this
6813 reload now, since that reload might inherit a previous reload
6814 and take the only available register in our class. Don't do this
6815 for optional reloads since they will force all previous reloads
6816 to be allocated. Also don't do this for reloads that have been
6817 turned off. */
6818
6819 for (i = j + 1; i < n_reloads; i++)
6820 {
6821 int s = reload_order[i];
6822
6823 if ((rld[s].in == 0 && rld[s].out == 0
6824 && ! rld[s].secondary_p)
6825 || rld[s].optional)
6826 continue;
6827
6828 if ((rld[s].rclass != rld[r].rclass
6829 && reg_classes_intersect_p (rld[r].rclass,
6830 rld[s].rclass))
6831 || rld[s].nregs < rld[r].nregs)
6832 break;
6833 }
6834
6835 if (i == n_reloads)
6836 continue;
6837
6838 allocate_reload_reg (chain, r, j == n_reloads - 1);
6839 #endif
6840 }
6841
6842 /* Now allocate reload registers for anything non-optional that
6843 didn't get one yet. */
6844 for (j = 0; j < n_reloads; j++)
6845 {
6846 int r = reload_order[j];
6847
6848 /* Ignore reloads that got marked inoperative. */
6849 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6850 continue;
6851
6852 /* Skip reloads that already have a register allocated or are
6853 optional. */
6854 if (rld[r].reg_rtx != 0 || rld[r].optional)
6855 continue;
6856
6857 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6858 break;
6859 }
6860
6861 /* If that loop got all the way, we have won. */
6862 if (j == n_reloads)
6863 {
6864 win = 1;
6865 break;
6866 }
6867
6868 /* Loop around and try without any inheritance. */
6869 }
6870
6871 if (! win)
6872 {
6873 /* First undo everything done by the failed attempt
6874 to allocate with inheritance. */
6875 choose_reload_regs_init (chain, save_reload_reg_rtx);
6876
6877 /* Some sanity tests to verify that the reloads found in the first
6878 pass are identical to the ones we have now. */
6879 gcc_assert (chain->n_reloads == n_reloads);
6880
6881 for (i = 0; i < n_reloads; i++)
6882 {
6883 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6884 continue;
6885 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6886 for (j = 0; j < n_spills; j++)
6887 if (spill_regs[j] == chain->rld[i].regno)
6888 if (! set_reload_reg (j, i))
6889 failed_reload (chain->insn, i);
6890 }
6891 }
6892
6893 /* If we thought we could inherit a reload, because it seemed that
6894 nothing else wanted the same reload register earlier in the insn,
6895 verify that assumption, now that all reloads have been assigned.
6896 Likewise for reloads where reload_override_in has been set. */
6897
6898 /* If doing expensive optimizations, do one preliminary pass that doesn't
6899 cancel any inheritance, but removes reloads that have been needed only
6900 for reloads that we know can be inherited. */
6901 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6902 {
6903 for (j = 0; j < n_reloads; j++)
6904 {
6905 int r = reload_order[j];
6906 rtx check_reg;
6907 rtx tem;
6908 if (reload_inherited[r] && rld[r].reg_rtx)
6909 check_reg = rld[r].reg_rtx;
6910 else if (reload_override_in[r]
6911 && (REG_P (reload_override_in[r])
6912 || GET_CODE (reload_override_in[r]) == SUBREG))
6913 check_reg = reload_override_in[r];
6914 else
6915 continue;
6916 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6917 rld[r].opnum, rld[r].when_needed, rld[r].in,
6918 (reload_inherited[r]
6919 ? rld[r].out : const0_rtx),
6920 r, 1))
6921 {
6922 if (pass)
6923 continue;
6924 reload_inherited[r] = 0;
6925 reload_override_in[r] = 0;
6926 }
6927 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6928 reload_override_in, then we do not need its related
6929 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6930 likewise for other reload types.
6931 We handle this by removing a reload when its only replacement
6932 is mentioned in reload_in of the reload we are going to inherit.
6933 A special case are auto_inc expressions; even if the input is
6934 inherited, we still need the address for the output. We can
6935 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6936 If we succeeded removing some reload and we are doing a preliminary
6937 pass just to remove such reloads, make another pass, since the
6938 removal of one reload might allow us to inherit another one. */
6939 else if (rld[r].in
6940 && rld[r].out != rld[r].in
6941 && remove_address_replacements (rld[r].in))
6942 {
6943 if (pass)
6944 pass = 2;
6945 }
6946 /* If we needed a memory location for the reload, we also have to
6947 remove its related reloads. */
6948 else if (rld[r].in
6949 && rld[r].out != rld[r].in
6950 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
6951 && REGNO (tem) < FIRST_PSEUDO_REGISTER
6952 && (targetm.secondary_memory_needed
6953 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
6954 rld[r].rclass))
6955 && remove_address_replacements
6956 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
6957 rld[r].when_needed)))
6958 {
6959 if (pass)
6960 pass = 2;
6961 }
6962 }
6963 }
6964
6965 /* Now that reload_override_in is known valid,
6966 actually override reload_in. */
6967 for (j = 0; j < n_reloads; j++)
6968 if (reload_override_in[j])
6969 rld[j].in = reload_override_in[j];
6970
6971 /* If this reload won't be done because it has been canceled or is
6972 optional and not inherited, clear reload_reg_rtx so other
6973 routines (such as subst_reloads) don't get confused. */
6974 for (j = 0; j < n_reloads; j++)
6975 if (rld[j].reg_rtx != 0
6976 && ((rld[j].optional && ! reload_inherited[j])
6977 || (rld[j].in == 0 && rld[j].out == 0
6978 && ! rld[j].secondary_p)))
6979 {
6980 int regno = true_regnum (rld[j].reg_rtx);
6981
6982 if (spill_reg_order[regno] >= 0)
6983 clear_reload_reg_in_use (regno, rld[j].opnum,
6984 rld[j].when_needed, rld[j].mode);
6985 rld[j].reg_rtx = 0;
6986 reload_spill_index[j] = -1;
6987 }
6988
6989 /* Record which pseudos and which spill regs have output reloads. */
6990 for (j = 0; j < n_reloads; j++)
6991 {
6992 int r = reload_order[j];
6993
6994 i = reload_spill_index[r];
6995
6996 /* I is nonneg if this reload uses a register.
6997 If rld[r].reg_rtx is 0, this is an optional reload
6998 that we opted to ignore. */
6999 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7000 && rld[r].reg_rtx != 0)
7001 {
7002 int nregno = REGNO (rld[r].out_reg);
7003 int nr = 1;
7004
7005 if (nregno < FIRST_PSEUDO_REGISTER)
7006 nr = hard_regno_nregs (nregno, rld[r].mode);
7007
7008 while (--nr >= 0)
7009 SET_REGNO_REG_SET (&reg_has_output_reload,
7010 nregno + nr);
7011
7012 if (i >= 0)
7013 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7014
7015 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7016 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7017 || rld[r].when_needed == RELOAD_FOR_INSN);
7018 }
7019 }
7020 }
7021
7022 /* Deallocate the reload register for reload R. This is called from
7023 remove_address_replacements. */
7024
7025 void
7026 deallocate_reload_reg (int r)
7027 {
7028 int regno;
7029
7030 if (! rld[r].reg_rtx)
7031 return;
7032 regno = true_regnum (rld[r].reg_rtx);
7033 rld[r].reg_rtx = 0;
7034 if (spill_reg_order[regno] >= 0)
7035 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7036 rld[r].mode);
7037 reload_spill_index[r] = -1;
7038 }
7039 \f
7040 /* These arrays are filled by emit_reload_insns and its subroutines. */
7041 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7042 static rtx_insn *other_input_address_reload_insns = 0;
7043 static rtx_insn *other_input_reload_insns = 0;
7044 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7045 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7046 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7047 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7048 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7049 static rtx_insn *operand_reload_insns = 0;
7050 static rtx_insn *other_operand_reload_insns = 0;
7051 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7052
7053 /* Values to be put in spill_reg_store are put here first. Instructions
7054 must only be placed here if the associated reload register reaches
7055 the end of the instruction's reload sequence. */
7056 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7057 static HARD_REG_SET reg_reloaded_died;
7058
7059 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7060 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7061 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7062 adjusted register, and return true. Otherwise, return false. */
7063 static bool
7064 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7065 enum reg_class new_class,
7066 machine_mode new_mode)
7067
7068 {
7069 rtx reg;
7070
7071 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7072 {
7073 unsigned regno = REGNO (reg);
7074
7075 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7076 continue;
7077 if (GET_MODE (reg) != new_mode)
7078 {
7079 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7080 continue;
7081 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7082 continue;
7083 reg = reload_adjust_reg_for_mode (reg, new_mode);
7084 }
7085 *reload_reg = reg;
7086 return true;
7087 }
7088 return false;
7089 }
7090
7091 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7092 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7093 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7094 adjusted register, and return true. Otherwise, return false. */
7095 static bool
7096 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7097 enum insn_code icode)
7098
7099 {
7100 enum reg_class new_class = scratch_reload_class (icode);
7101 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7102
7103 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7104 new_class, new_mode);
7105 }
7106
7107 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7108 has the number J. OLD contains the value to be used as input. */
7109
7110 static void
7111 emit_input_reload_insns (class insn_chain *chain, struct reload *rl,
7112 rtx old, int j)
7113 {
7114 rtx_insn *insn = chain->insn;
7115 rtx reloadreg;
7116 rtx oldequiv_reg = 0;
7117 rtx oldequiv = 0;
7118 int special = 0;
7119 machine_mode mode;
7120 rtx_insn **where;
7121
7122 /* delete_output_reload is only invoked properly if old contains
7123 the original pseudo register. Since this is replaced with a
7124 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7125 find the pseudo in RELOAD_IN_REG. This is also used to
7126 determine whether a secondary reload is needed. */
7127 if (reload_override_in[j]
7128 && (REG_P (rl->in_reg)
7129 || (GET_CODE (rl->in_reg) == SUBREG
7130 && REG_P (SUBREG_REG (rl->in_reg)))))
7131 {
7132 oldequiv = old;
7133 old = rl->in_reg;
7134 }
7135 if (oldequiv == 0)
7136 oldequiv = old;
7137 else if (REG_P (oldequiv))
7138 oldequiv_reg = oldequiv;
7139 else if (GET_CODE (oldequiv) == SUBREG)
7140 oldequiv_reg = SUBREG_REG (oldequiv);
7141
7142 reloadreg = reload_reg_rtx_for_input[j];
7143 mode = GET_MODE (reloadreg);
7144
7145 /* If we are reloading from a register that was recently stored in
7146 with an output-reload, see if we can prove there was
7147 actually no need to store the old value in it. */
7148
7149 if (optimize && REG_P (oldequiv)
7150 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7151 && spill_reg_store[REGNO (oldequiv)]
7152 && REG_P (old)
7153 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7154 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7155 rl->out_reg)))
7156 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7157
7158 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7159 OLDEQUIV. */
7160
7161 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7162 oldequiv = SUBREG_REG (oldequiv);
7163 if (GET_MODE (oldequiv) != VOIDmode
7164 && mode != GET_MODE (oldequiv))
7165 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7166
7167 /* Switch to the right place to emit the reload insns. */
7168 switch (rl->when_needed)
7169 {
7170 case RELOAD_OTHER:
7171 where = &other_input_reload_insns;
7172 break;
7173 case RELOAD_FOR_INPUT:
7174 where = &input_reload_insns[rl->opnum];
7175 break;
7176 case RELOAD_FOR_INPUT_ADDRESS:
7177 where = &input_address_reload_insns[rl->opnum];
7178 break;
7179 case RELOAD_FOR_INPADDR_ADDRESS:
7180 where = &inpaddr_address_reload_insns[rl->opnum];
7181 break;
7182 case RELOAD_FOR_OUTPUT_ADDRESS:
7183 where = &output_address_reload_insns[rl->opnum];
7184 break;
7185 case RELOAD_FOR_OUTADDR_ADDRESS:
7186 where = &outaddr_address_reload_insns[rl->opnum];
7187 break;
7188 case RELOAD_FOR_OPERAND_ADDRESS:
7189 where = &operand_reload_insns;
7190 break;
7191 case RELOAD_FOR_OPADDR_ADDR:
7192 where = &other_operand_reload_insns;
7193 break;
7194 case RELOAD_FOR_OTHER_ADDRESS:
7195 where = &other_input_address_reload_insns;
7196 break;
7197 default:
7198 gcc_unreachable ();
7199 }
7200
7201 push_to_sequence (*where);
7202
7203 /* Auto-increment addresses must be reloaded in a special way. */
7204 if (rl->out && ! rl->out_reg)
7205 {
7206 /* We are not going to bother supporting the case where a
7207 incremented register can't be copied directly from
7208 OLDEQUIV since this seems highly unlikely. */
7209 gcc_assert (rl->secondary_in_reload < 0);
7210
7211 if (reload_inherited[j])
7212 oldequiv = reloadreg;
7213
7214 old = XEXP (rl->in_reg, 0);
7215
7216 /* Prevent normal processing of this reload. */
7217 special = 1;
7218 /* Output a special code sequence for this case. */
7219 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7220 }
7221
7222 /* If we are reloading a pseudo-register that was set by the previous
7223 insn, see if we can get rid of that pseudo-register entirely
7224 by redirecting the previous insn into our reload register. */
7225
7226 else if (optimize && REG_P (old)
7227 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7228 && dead_or_set_p (insn, old)
7229 /* This is unsafe if some other reload
7230 uses the same reg first. */
7231 && ! conflicts_with_override (reloadreg)
7232 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7233 rl->when_needed, old, rl->out, j, 0))
7234 {
7235 rtx_insn *temp = PREV_INSN (insn);
7236 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7237 temp = PREV_INSN (temp);
7238 if (temp
7239 && NONJUMP_INSN_P (temp)
7240 && GET_CODE (PATTERN (temp)) == SET
7241 && SET_DEST (PATTERN (temp)) == old
7242 /* Make sure we can access insn_operand_constraint. */
7243 && asm_noperands (PATTERN (temp)) < 0
7244 /* This is unsafe if operand occurs more than once in current
7245 insn. Perhaps some occurrences aren't reloaded. */
7246 && count_occurrences (PATTERN (insn), old, 0) == 1)
7247 {
7248 rtx old = SET_DEST (PATTERN (temp));
7249 /* Store into the reload register instead of the pseudo. */
7250 SET_DEST (PATTERN (temp)) = reloadreg;
7251
7252 /* Verify that resulting insn is valid.
7253
7254 Note that we have replaced the destination of TEMP with
7255 RELOADREG. If TEMP references RELOADREG within an
7256 autoincrement addressing mode, then the resulting insn
7257 is ill-formed and we must reject this optimization. */
7258 extract_insn (temp);
7259 if (constrain_operands (1, get_enabled_alternatives (temp))
7260 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7261 {
7262 /* If the previous insn is an output reload, the source is
7263 a reload register, and its spill_reg_store entry will
7264 contain the previous destination. This is now
7265 invalid. */
7266 if (REG_P (SET_SRC (PATTERN (temp)))
7267 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7268 {
7269 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7270 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7271 }
7272
7273 /* If these are the only uses of the pseudo reg,
7274 pretend for GDB it lives in the reload reg we used. */
7275 if (REG_N_DEATHS (REGNO (old)) == 1
7276 && REG_N_SETS (REGNO (old)) == 1)
7277 {
7278 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7279 if (ira_conflicts_p)
7280 /* Inform IRA about the change. */
7281 ira_mark_allocation_change (REGNO (old));
7282 alter_reg (REGNO (old), -1, false);
7283 }
7284 special = 1;
7285
7286 /* Adjust any debug insns between temp and insn. */
7287 while ((temp = NEXT_INSN (temp)) != insn)
7288 if (DEBUG_BIND_INSN_P (temp))
7289 INSN_VAR_LOCATION_LOC (temp)
7290 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7291 old, reloadreg);
7292 else
7293 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7294 }
7295 else
7296 {
7297 SET_DEST (PATTERN (temp)) = old;
7298 }
7299 }
7300 }
7301
7302 /* We can't do that, so output an insn to load RELOADREG. */
7303
7304 /* If we have a secondary reload, pick up the secondary register
7305 and icode, if any. If OLDEQUIV and OLD are different or
7306 if this is an in-out reload, recompute whether or not we
7307 still need a secondary register and what the icode should
7308 be. If we still need a secondary register and the class or
7309 icode is different, go back to reloading from OLD if using
7310 OLDEQUIV means that we got the wrong type of register. We
7311 cannot have different class or icode due to an in-out reload
7312 because we don't make such reloads when both the input and
7313 output need secondary reload registers. */
7314
7315 if (! special && rl->secondary_in_reload >= 0)
7316 {
7317 rtx second_reload_reg = 0;
7318 rtx third_reload_reg = 0;
7319 int secondary_reload = rl->secondary_in_reload;
7320 rtx real_oldequiv = oldequiv;
7321 rtx real_old = old;
7322 rtx tmp;
7323 enum insn_code icode;
7324 enum insn_code tertiary_icode = CODE_FOR_nothing;
7325
7326 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7327 and similarly for OLD.
7328 See comments in get_secondary_reload in reload.c. */
7329 /* If it is a pseudo that cannot be replaced with its
7330 equivalent MEM, we must fall back to reload_in, which
7331 will have all the necessary substitutions registered.
7332 Likewise for a pseudo that can't be replaced with its
7333 equivalent constant.
7334
7335 Take extra care for subregs of such pseudos. Note that
7336 we cannot use reg_equiv_mem in this case because it is
7337 not in the right mode. */
7338
7339 tmp = oldequiv;
7340 if (GET_CODE (tmp) == SUBREG)
7341 tmp = SUBREG_REG (tmp);
7342 if (REG_P (tmp)
7343 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7344 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7345 || reg_equiv_constant (REGNO (tmp)) != 0))
7346 {
7347 if (! reg_equiv_mem (REGNO (tmp))
7348 || num_not_at_initial_offset
7349 || GET_CODE (oldequiv) == SUBREG)
7350 real_oldequiv = rl->in;
7351 else
7352 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7353 }
7354
7355 tmp = old;
7356 if (GET_CODE (tmp) == SUBREG)
7357 tmp = SUBREG_REG (tmp);
7358 if (REG_P (tmp)
7359 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7360 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7361 || reg_equiv_constant (REGNO (tmp)) != 0))
7362 {
7363 if (! reg_equiv_mem (REGNO (tmp))
7364 || num_not_at_initial_offset
7365 || GET_CODE (old) == SUBREG)
7366 real_old = rl->in;
7367 else
7368 real_old = reg_equiv_mem (REGNO (tmp));
7369 }
7370
7371 second_reload_reg = rld[secondary_reload].reg_rtx;
7372 if (rld[secondary_reload].secondary_in_reload >= 0)
7373 {
7374 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7375
7376 third_reload_reg = rld[tertiary_reload].reg_rtx;
7377 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7378 /* We'd have to add more code for quartary reloads. */
7379 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7380 }
7381 icode = rl->secondary_in_icode;
7382
7383 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7384 || (rl->in != 0 && rl->out != 0))
7385 {
7386 secondary_reload_info sri, sri2;
7387 enum reg_class new_class, new_t_class;
7388
7389 sri.icode = CODE_FOR_nothing;
7390 sri.prev_sri = NULL;
7391 new_class
7392 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7393 rl->rclass, mode,
7394 &sri);
7395
7396 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7397 second_reload_reg = 0;
7398 else if (new_class == NO_REGS)
7399 {
7400 if (reload_adjust_reg_for_icode (&second_reload_reg,
7401 third_reload_reg,
7402 (enum insn_code) sri.icode))
7403 {
7404 icode = (enum insn_code) sri.icode;
7405 third_reload_reg = 0;
7406 }
7407 else
7408 {
7409 oldequiv = old;
7410 real_oldequiv = real_old;
7411 }
7412 }
7413 else if (sri.icode != CODE_FOR_nothing)
7414 /* We currently lack a way to express this in reloads. */
7415 gcc_unreachable ();
7416 else
7417 {
7418 sri2.icode = CODE_FOR_nothing;
7419 sri2.prev_sri = &sri;
7420 new_t_class
7421 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7422 new_class, mode,
7423 &sri);
7424 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7425 {
7426 if (reload_adjust_reg_for_temp (&second_reload_reg,
7427 third_reload_reg,
7428 new_class, mode))
7429 {
7430 third_reload_reg = 0;
7431 tertiary_icode = (enum insn_code) sri2.icode;
7432 }
7433 else
7434 {
7435 oldequiv = old;
7436 real_oldequiv = real_old;
7437 }
7438 }
7439 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7440 {
7441 rtx intermediate = second_reload_reg;
7442
7443 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7444 new_class, mode)
7445 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7446 ((enum insn_code)
7447 sri2.icode)))
7448 {
7449 second_reload_reg = intermediate;
7450 tertiary_icode = (enum insn_code) sri2.icode;
7451 }
7452 else
7453 {
7454 oldequiv = old;
7455 real_oldequiv = real_old;
7456 }
7457 }
7458 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7459 {
7460 rtx intermediate = second_reload_reg;
7461
7462 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7463 new_class, mode)
7464 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7465 new_t_class, mode))
7466 {
7467 second_reload_reg = intermediate;
7468 tertiary_icode = (enum insn_code) sri2.icode;
7469 }
7470 else
7471 {
7472 oldequiv = old;
7473 real_oldequiv = real_old;
7474 }
7475 }
7476 else
7477 {
7478 /* This could be handled more intelligently too. */
7479 oldequiv = old;
7480 real_oldequiv = real_old;
7481 }
7482 }
7483 }
7484
7485 /* If we still need a secondary reload register, check
7486 to see if it is being used as a scratch or intermediate
7487 register and generate code appropriately. If we need
7488 a scratch register, use REAL_OLDEQUIV since the form of
7489 the insn may depend on the actual address if it is
7490 a MEM. */
7491
7492 if (second_reload_reg)
7493 {
7494 if (icode != CODE_FOR_nothing)
7495 {
7496 /* We'd have to add extra code to handle this case. */
7497 gcc_assert (!third_reload_reg);
7498
7499 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7500 second_reload_reg));
7501 special = 1;
7502 }
7503 else
7504 {
7505 /* See if we need a scratch register to load the
7506 intermediate register (a tertiary reload). */
7507 if (tertiary_icode != CODE_FOR_nothing)
7508 {
7509 emit_insn ((GEN_FCN (tertiary_icode)
7510 (second_reload_reg, real_oldequiv,
7511 third_reload_reg)));
7512 }
7513 else if (third_reload_reg)
7514 {
7515 gen_reload (third_reload_reg, real_oldequiv,
7516 rl->opnum,
7517 rl->when_needed);
7518 gen_reload (second_reload_reg, third_reload_reg,
7519 rl->opnum,
7520 rl->when_needed);
7521 }
7522 else
7523 gen_reload (second_reload_reg, real_oldequiv,
7524 rl->opnum,
7525 rl->when_needed);
7526
7527 oldequiv = second_reload_reg;
7528 }
7529 }
7530 }
7531
7532 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7533 {
7534 rtx real_oldequiv = oldequiv;
7535
7536 if ((REG_P (oldequiv)
7537 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7538 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7539 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7540 || (GET_CODE (oldequiv) == SUBREG
7541 && REG_P (SUBREG_REG (oldequiv))
7542 && (REGNO (SUBREG_REG (oldequiv))
7543 >= FIRST_PSEUDO_REGISTER)
7544 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7545 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7546 || (CONSTANT_P (oldequiv)
7547 && (targetm.preferred_reload_class (oldequiv,
7548 REGNO_REG_CLASS (REGNO (reloadreg)))
7549 == NO_REGS)))
7550 real_oldequiv = rl->in;
7551 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7552 rl->when_needed);
7553 }
7554
7555 if (cfun->can_throw_non_call_exceptions)
7556 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7557
7558 /* End this sequence. */
7559 *where = get_insns ();
7560 end_sequence ();
7561
7562 /* Update reload_override_in so that delete_address_reloads_1
7563 can see the actual register usage. */
7564 if (oldequiv_reg)
7565 reload_override_in[j] = oldequiv;
7566 }
7567
7568 /* Generate insns to for the output reload RL, which is for the insn described
7569 by CHAIN and has the number J. */
7570 static void
7571 emit_output_reload_insns (class insn_chain *chain, struct reload *rl,
7572 int j)
7573 {
7574 rtx reloadreg;
7575 rtx_insn *insn = chain->insn;
7576 int special = 0;
7577 rtx old = rl->out;
7578 machine_mode mode;
7579 rtx_insn *p;
7580 rtx rl_reg_rtx;
7581
7582 if (rl->when_needed == RELOAD_OTHER)
7583 start_sequence ();
7584 else
7585 push_to_sequence (output_reload_insns[rl->opnum]);
7586
7587 rl_reg_rtx = reload_reg_rtx_for_output[j];
7588 mode = GET_MODE (rl_reg_rtx);
7589
7590 reloadreg = rl_reg_rtx;
7591
7592 /* If we need two reload regs, set RELOADREG to the intermediate
7593 one, since it will be stored into OLD. We might need a secondary
7594 register only for an input reload, so check again here. */
7595
7596 if (rl->secondary_out_reload >= 0)
7597 {
7598 rtx real_old = old;
7599 int secondary_reload = rl->secondary_out_reload;
7600 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7601
7602 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7603 && reg_equiv_mem (REGNO (old)) != 0)
7604 real_old = reg_equiv_mem (REGNO (old));
7605
7606 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7607 {
7608 rtx second_reloadreg = reloadreg;
7609 reloadreg = rld[secondary_reload].reg_rtx;
7610
7611 /* See if RELOADREG is to be used as a scratch register
7612 or as an intermediate register. */
7613 if (rl->secondary_out_icode != CODE_FOR_nothing)
7614 {
7615 /* We'd have to add extra code to handle this case. */
7616 gcc_assert (tertiary_reload < 0);
7617
7618 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7619 (real_old, second_reloadreg, reloadreg)));
7620 special = 1;
7621 }
7622 else
7623 {
7624 /* See if we need both a scratch and intermediate reload
7625 register. */
7626
7627 enum insn_code tertiary_icode
7628 = rld[secondary_reload].secondary_out_icode;
7629
7630 /* We'd have to add more code for quartary reloads. */
7631 gcc_assert (tertiary_reload < 0
7632 || rld[tertiary_reload].secondary_out_reload < 0);
7633
7634 if (GET_MODE (reloadreg) != mode)
7635 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7636
7637 if (tertiary_icode != CODE_FOR_nothing)
7638 {
7639 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7640
7641 /* Copy primary reload reg to secondary reload reg.
7642 (Note that these have been swapped above, then
7643 secondary reload reg to OLD using our insn.) */
7644
7645 /* If REAL_OLD is a paradoxical SUBREG, remove it
7646 and try to put the opposite SUBREG on
7647 RELOADREG. */
7648 strip_paradoxical_subreg (&real_old, &reloadreg);
7649
7650 gen_reload (reloadreg, second_reloadreg,
7651 rl->opnum, rl->when_needed);
7652 emit_insn ((GEN_FCN (tertiary_icode)
7653 (real_old, reloadreg, third_reloadreg)));
7654 special = 1;
7655 }
7656
7657 else
7658 {
7659 /* Copy between the reload regs here and then to
7660 OUT later. */
7661
7662 gen_reload (reloadreg, second_reloadreg,
7663 rl->opnum, rl->when_needed);
7664 if (tertiary_reload >= 0)
7665 {
7666 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7667
7668 gen_reload (third_reloadreg, reloadreg,
7669 rl->opnum, rl->when_needed);
7670 reloadreg = third_reloadreg;
7671 }
7672 }
7673 }
7674 }
7675 }
7676
7677 /* Output the last reload insn. */
7678 if (! special)
7679 {
7680 rtx set;
7681
7682 /* Don't output the last reload if OLD is not the dest of
7683 INSN and is in the src and is clobbered by INSN. */
7684 if (! flag_expensive_optimizations
7685 || !REG_P (old)
7686 || !(set = single_set (insn))
7687 || rtx_equal_p (old, SET_DEST (set))
7688 || !reg_mentioned_p (old, SET_SRC (set))
7689 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7690 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7691 gen_reload (old, reloadreg, rl->opnum,
7692 rl->when_needed);
7693 }
7694
7695 /* Look at all insns we emitted, just to be safe. */
7696 for (p = get_insns (); p; p = NEXT_INSN (p))
7697 if (INSN_P (p))
7698 {
7699 rtx pat = PATTERN (p);
7700
7701 /* If this output reload doesn't come from a spill reg,
7702 clear any memory of reloaded copies of the pseudo reg.
7703 If this output reload comes from a spill reg,
7704 reg_has_output_reload will make this do nothing. */
7705 note_stores (pat, forget_old_reloads_1, NULL);
7706
7707 if (reg_mentioned_p (rl_reg_rtx, pat))
7708 {
7709 rtx set = single_set (insn);
7710 if (reload_spill_index[j] < 0
7711 && set
7712 && SET_SRC (set) == rl_reg_rtx)
7713 {
7714 int src = REGNO (SET_SRC (set));
7715
7716 reload_spill_index[j] = src;
7717 SET_HARD_REG_BIT (reg_is_output_reload, src);
7718 if (find_regno_note (insn, REG_DEAD, src))
7719 SET_HARD_REG_BIT (reg_reloaded_died, src);
7720 }
7721 if (HARD_REGISTER_P (rl_reg_rtx))
7722 {
7723 int s = rl->secondary_out_reload;
7724 set = single_set (p);
7725 /* If this reload copies only to the secondary reload
7726 register, the secondary reload does the actual
7727 store. */
7728 if (s >= 0 && set == NULL_RTX)
7729 /* We can't tell what function the secondary reload
7730 has and where the actual store to the pseudo is
7731 made; leave new_spill_reg_store alone. */
7732 ;
7733 else if (s >= 0
7734 && SET_SRC (set) == rl_reg_rtx
7735 && SET_DEST (set) == rld[s].reg_rtx)
7736 {
7737 /* Usually the next instruction will be the
7738 secondary reload insn; if we can confirm
7739 that it is, setting new_spill_reg_store to
7740 that insn will allow an extra optimization. */
7741 rtx s_reg = rld[s].reg_rtx;
7742 rtx_insn *next = NEXT_INSN (p);
7743 rld[s].out = rl->out;
7744 rld[s].out_reg = rl->out_reg;
7745 set = single_set (next);
7746 if (set && SET_SRC (set) == s_reg
7747 && reload_reg_rtx_reaches_end_p (s_reg, s))
7748 {
7749 SET_HARD_REG_BIT (reg_is_output_reload,
7750 REGNO (s_reg));
7751 new_spill_reg_store[REGNO (s_reg)] = next;
7752 }
7753 }
7754 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7755 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7756 }
7757 }
7758 }
7759
7760 if (rl->when_needed == RELOAD_OTHER)
7761 {
7762 emit_insn (other_output_reload_insns[rl->opnum]);
7763 other_output_reload_insns[rl->opnum] = get_insns ();
7764 }
7765 else
7766 output_reload_insns[rl->opnum] = get_insns ();
7767
7768 if (cfun->can_throw_non_call_exceptions)
7769 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7770
7771 end_sequence ();
7772 }
7773
7774 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7775 and has the number J. */
7776 static void
7777 do_input_reload (class insn_chain *chain, struct reload *rl, int j)
7778 {
7779 rtx_insn *insn = chain->insn;
7780 rtx old = (rl->in && MEM_P (rl->in)
7781 ? rl->in_reg : rl->in);
7782 rtx reg_rtx = rl->reg_rtx;
7783
7784 if (old && reg_rtx)
7785 {
7786 machine_mode mode;
7787
7788 /* Determine the mode to reload in.
7789 This is very tricky because we have three to choose from.
7790 There is the mode the insn operand wants (rl->inmode).
7791 There is the mode of the reload register RELOADREG.
7792 There is the intrinsic mode of the operand, which we could find
7793 by stripping some SUBREGs.
7794 It turns out that RELOADREG's mode is irrelevant:
7795 we can change that arbitrarily.
7796
7797 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7798 then the reload reg may not support QImode moves, so use SImode.
7799 If foo is in memory due to spilling a pseudo reg, this is safe,
7800 because the QImode value is in the least significant part of a
7801 slot big enough for a SImode. If foo is some other sort of
7802 memory reference, then it is impossible to reload this case,
7803 so previous passes had better make sure this never happens.
7804
7805 Then consider a one-word union which has SImode and one of its
7806 members is a float, being fetched as (SUBREG:SF union:SI).
7807 We must fetch that as SFmode because we could be loading into
7808 a float-only register. In this case OLD's mode is correct.
7809
7810 Consider an immediate integer: it has VOIDmode. Here we need
7811 to get a mode from something else.
7812
7813 In some cases, there is a fourth mode, the operand's
7814 containing mode. If the insn specifies a containing mode for
7815 this operand, it overrides all others.
7816
7817 I am not sure whether the algorithm here is always right,
7818 but it does the right things in those cases. */
7819
7820 mode = GET_MODE (old);
7821 if (mode == VOIDmode)
7822 mode = rl->inmode;
7823
7824 /* We cannot use gen_lowpart_common since it can do the wrong thing
7825 when REG_RTX has a multi-word mode. Note that REG_RTX must
7826 always be a REG here. */
7827 if (GET_MODE (reg_rtx) != mode)
7828 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7829 }
7830 reload_reg_rtx_for_input[j] = reg_rtx;
7831
7832 if (old != 0
7833 /* AUTO_INC reloads need to be handled even if inherited. We got an
7834 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7835 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7836 && ! rtx_equal_p (reg_rtx, old)
7837 && reg_rtx != 0)
7838 emit_input_reload_insns (chain, rld + j, old, j);
7839
7840 /* When inheriting a wider reload, we have a MEM in rl->in,
7841 e.g. inheriting a SImode output reload for
7842 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7843 if (optimize && reload_inherited[j] && rl->in
7844 && MEM_P (rl->in)
7845 && MEM_P (rl->in_reg)
7846 && reload_spill_index[j] >= 0
7847 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7848 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7849
7850 /* If we are reloading a register that was recently stored in with an
7851 output-reload, see if we can prove there was
7852 actually no need to store the old value in it. */
7853
7854 if (optimize
7855 && (reload_inherited[j] || reload_override_in[j])
7856 && reg_rtx
7857 && REG_P (reg_rtx)
7858 && spill_reg_store[REGNO (reg_rtx)] != 0
7859 #if 0
7860 /* There doesn't seem to be any reason to restrict this to pseudos
7861 and doing so loses in the case where we are copying from a
7862 register of the wrong class. */
7863 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7864 #endif
7865 /* The insn might have already some references to stackslots
7866 replaced by MEMs, while reload_out_reg still names the
7867 original pseudo. */
7868 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7869 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7870 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7871 }
7872
7873 /* Do output reloading for reload RL, which is for the insn described by
7874 CHAIN and has the number J.
7875 ??? At some point we need to support handling output reloads of
7876 JUMP_INSNs or insns that set cc0. */
7877 static void
7878 do_output_reload (class insn_chain *chain, struct reload *rl, int j)
7879 {
7880 rtx note, old;
7881 rtx_insn *insn = chain->insn;
7882 /* If this is an output reload that stores something that is
7883 not loaded in this same reload, see if we can eliminate a previous
7884 store. */
7885 rtx pseudo = rl->out_reg;
7886 rtx reg_rtx = rl->reg_rtx;
7887
7888 if (rl->out && reg_rtx)
7889 {
7890 machine_mode mode;
7891
7892 /* Determine the mode to reload in.
7893 See comments above (for input reloading). */
7894 mode = GET_MODE (rl->out);
7895 if (mode == VOIDmode)
7896 {
7897 /* VOIDmode should never happen for an output. */
7898 if (asm_noperands (PATTERN (insn)) < 0)
7899 /* It's the compiler's fault. */
7900 fatal_insn ("VOIDmode on an output", insn);
7901 error_for_asm (insn, "output operand is constant in %<asm%>");
7902 /* Prevent crash--use something we know is valid. */
7903 mode = word_mode;
7904 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7905 }
7906 if (GET_MODE (reg_rtx) != mode)
7907 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7908 }
7909 reload_reg_rtx_for_output[j] = reg_rtx;
7910
7911 if (pseudo
7912 && optimize
7913 && REG_P (pseudo)
7914 && ! rtx_equal_p (rl->in_reg, pseudo)
7915 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7916 && reg_last_reload_reg[REGNO (pseudo)])
7917 {
7918 int pseudo_no = REGNO (pseudo);
7919 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7920
7921 /* We don't need to test full validity of last_regno for
7922 inherit here; we only want to know if the store actually
7923 matches the pseudo. */
7924 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7925 && reg_reloaded_contents[last_regno] == pseudo_no
7926 && spill_reg_store[last_regno]
7927 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7928 delete_output_reload (insn, j, last_regno, reg_rtx);
7929 }
7930
7931 old = rl->out_reg;
7932 if (old == 0
7933 || reg_rtx == 0
7934 || rtx_equal_p (old, reg_rtx))
7935 return;
7936
7937 /* An output operand that dies right away does need a reload,
7938 but need not be copied from it. Show the new location in the
7939 REG_UNUSED note. */
7940 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
7941 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
7942 {
7943 XEXP (note, 0) = reg_rtx;
7944 return;
7945 }
7946 /* Likewise for a SUBREG of an operand that dies. */
7947 else if (GET_CODE (old) == SUBREG
7948 && REG_P (SUBREG_REG (old))
7949 && (note = find_reg_note (insn, REG_UNUSED,
7950 SUBREG_REG (old))) != 0)
7951 {
7952 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
7953 return;
7954 }
7955 else if (GET_CODE (old) == SCRATCH)
7956 /* If we aren't optimizing, there won't be a REG_UNUSED note,
7957 but we don't want to make an output reload. */
7958 return;
7959
7960 /* If is a JUMP_INSN, we can't support output reloads yet. */
7961 gcc_assert (NONJUMP_INSN_P (insn));
7962
7963 emit_output_reload_insns (chain, rld + j, j);
7964 }
7965
7966 /* A reload copies values of MODE from register SRC to register DEST.
7967 Return true if it can be treated for inheritance purposes like a
7968 group of reloads, each one reloading a single hard register. The
7969 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
7970 occupy the same number of hard registers. */
7971
7972 static bool
7973 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
7974 int src ATTRIBUTE_UNUSED,
7975 machine_mode mode ATTRIBUTE_UNUSED)
7976 {
7977 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
7978 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
7979 }
7980
7981 /* Output insns to reload values in and out of the chosen reload regs. */
7982
7983 static void
7984 emit_reload_insns (class insn_chain *chain)
7985 {
7986 rtx_insn *insn = chain->insn;
7987
7988 int j;
7989
7990 CLEAR_HARD_REG_SET (reg_reloaded_died);
7991
7992 for (j = 0; j < reload_n_operands; j++)
7993 input_reload_insns[j] = input_address_reload_insns[j]
7994 = inpaddr_address_reload_insns[j]
7995 = output_reload_insns[j] = output_address_reload_insns[j]
7996 = outaddr_address_reload_insns[j]
7997 = other_output_reload_insns[j] = 0;
7998 other_input_address_reload_insns = 0;
7999 other_input_reload_insns = 0;
8000 operand_reload_insns = 0;
8001 other_operand_reload_insns = 0;
8002
8003 /* Dump reloads into the dump file. */
8004 if (dump_file)
8005 {
8006 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8007 debug_reload_to_stream (dump_file);
8008 }
8009
8010 for (j = 0; j < n_reloads; j++)
8011 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8012 {
8013 unsigned int i;
8014
8015 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8016 new_spill_reg_store[i] = 0;
8017 }
8018
8019 /* Now output the instructions to copy the data into and out of the
8020 reload registers. Do these in the order that the reloads were reported,
8021 since reloads of base and index registers precede reloads of operands
8022 and the operands may need the base and index registers reloaded. */
8023
8024 for (j = 0; j < n_reloads; j++)
8025 {
8026 do_input_reload (chain, rld + j, j);
8027 do_output_reload (chain, rld + j, j);
8028 }
8029
8030 /* Now write all the insns we made for reloads in the order expected by
8031 the allocation functions. Prior to the insn being reloaded, we write
8032 the following reloads:
8033
8034 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8035
8036 RELOAD_OTHER reloads.
8037
8038 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8039 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8040 RELOAD_FOR_INPUT reload for the operand.
8041
8042 RELOAD_FOR_OPADDR_ADDRS reloads.
8043
8044 RELOAD_FOR_OPERAND_ADDRESS reloads.
8045
8046 After the insn being reloaded, we write the following:
8047
8048 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8049 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8050 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8051 reloads for the operand. The RELOAD_OTHER output reloads are
8052 output in descending order by reload number. */
8053
8054 emit_insn_before (other_input_address_reload_insns, insn);
8055 emit_insn_before (other_input_reload_insns, insn);
8056
8057 for (j = 0; j < reload_n_operands; j++)
8058 {
8059 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8060 emit_insn_before (input_address_reload_insns[j], insn);
8061 emit_insn_before (input_reload_insns[j], insn);
8062 }
8063
8064 emit_insn_before (other_operand_reload_insns, insn);
8065 emit_insn_before (operand_reload_insns, insn);
8066
8067 for (j = 0; j < reload_n_operands; j++)
8068 {
8069 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8070 x = emit_insn_after (output_address_reload_insns[j], x);
8071 x = emit_insn_after (output_reload_insns[j], x);
8072 emit_insn_after (other_output_reload_insns[j], x);
8073 }
8074
8075 /* For all the spill regs newly reloaded in this instruction,
8076 record what they were reloaded from, so subsequent instructions
8077 can inherit the reloads.
8078
8079 Update spill_reg_store for the reloads of this insn.
8080 Copy the elements that were updated in the loop above. */
8081
8082 for (j = 0; j < n_reloads; j++)
8083 {
8084 int r = reload_order[j];
8085 int i = reload_spill_index[r];
8086
8087 /* If this is a non-inherited input reload from a pseudo, we must
8088 clear any memory of a previous store to the same pseudo. Only do
8089 something if there will not be an output reload for the pseudo
8090 being reloaded. */
8091 if (rld[r].in_reg != 0
8092 && ! (reload_inherited[r] || reload_override_in[r]))
8093 {
8094 rtx reg = rld[r].in_reg;
8095
8096 if (GET_CODE (reg) == SUBREG)
8097 reg = SUBREG_REG (reg);
8098
8099 if (REG_P (reg)
8100 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8101 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8102 {
8103 int nregno = REGNO (reg);
8104
8105 if (reg_last_reload_reg[nregno])
8106 {
8107 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8108
8109 if (reg_reloaded_contents[last_regno] == nregno)
8110 spill_reg_store[last_regno] = 0;
8111 }
8112 }
8113 }
8114
8115 /* I is nonneg if this reload used a register.
8116 If rld[r].reg_rtx is 0, this is an optional reload
8117 that we opted to ignore. */
8118
8119 if (i >= 0 && rld[r].reg_rtx != 0)
8120 {
8121 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8122 int k;
8123
8124 /* For a multi register reload, we need to check if all or part
8125 of the value lives to the end. */
8126 for (k = 0; k < nr; k++)
8127 if (reload_reg_reaches_end_p (i + k, r))
8128 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8129
8130 /* Maybe the spill reg contains a copy of reload_out. */
8131 if (rld[r].out != 0
8132 && (REG_P (rld[r].out)
8133 || (rld[r].out_reg
8134 ? REG_P (rld[r].out_reg)
8135 /* The reload value is an auto-modification of
8136 some kind. For PRE_INC, POST_INC, PRE_DEC
8137 and POST_DEC, we record an equivalence
8138 between the reload register and the operand
8139 on the optimistic assumption that we can make
8140 the equivalence hold. reload_as_needed must
8141 then either make it hold or invalidate the
8142 equivalence.
8143
8144 PRE_MODIFY and POST_MODIFY addresses are reloaded
8145 somewhat differently, and allowing them here leads
8146 to problems. */
8147 : (GET_CODE (rld[r].out) != POST_MODIFY
8148 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8149 {
8150 rtx reg;
8151
8152 reg = reload_reg_rtx_for_output[r];
8153 if (reload_reg_rtx_reaches_end_p (reg, r))
8154 {
8155 machine_mode mode = GET_MODE (reg);
8156 int regno = REGNO (reg);
8157 int nregs = REG_NREGS (reg);
8158 rtx out = (REG_P (rld[r].out)
8159 ? rld[r].out
8160 : rld[r].out_reg
8161 ? rld[r].out_reg
8162 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8163 int out_regno = REGNO (out);
8164 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8165 : hard_regno_nregs (out_regno, mode));
8166 bool piecemeal;
8167
8168 spill_reg_store[regno] = new_spill_reg_store[regno];
8169 spill_reg_stored_to[regno] = out;
8170 reg_last_reload_reg[out_regno] = reg;
8171
8172 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8173 && nregs == out_nregs
8174 && inherit_piecemeal_p (out_regno, regno, mode));
8175
8176 /* If OUT_REGNO is a hard register, it may occupy more than
8177 one register. If it does, say what is in the
8178 rest of the registers assuming that both registers
8179 agree on how many words the object takes. If not,
8180 invalidate the subsequent registers. */
8181
8182 if (HARD_REGISTER_NUM_P (out_regno))
8183 for (k = 1; k < out_nregs; k++)
8184 reg_last_reload_reg[out_regno + k]
8185 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8186
8187 /* Now do the inverse operation. */
8188 for (k = 0; k < nregs; k++)
8189 {
8190 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8191 reg_reloaded_contents[regno + k]
8192 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8193 ? out_regno
8194 : out_regno + k);
8195 reg_reloaded_insn[regno + k] = insn;
8196 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8197 if (targetm.hard_regno_call_part_clobbered (NULL,
8198 regno + k,
8199 mode))
8200 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8201 regno + k);
8202 else
8203 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8204 regno + k);
8205 }
8206 }
8207 }
8208 /* Maybe the spill reg contains a copy of reload_in. Only do
8209 something if there will not be an output reload for
8210 the register being reloaded. */
8211 else if (rld[r].out_reg == 0
8212 && rld[r].in != 0
8213 && ((REG_P (rld[r].in)
8214 && !HARD_REGISTER_P (rld[r].in)
8215 && !REGNO_REG_SET_P (&reg_has_output_reload,
8216 REGNO (rld[r].in)))
8217 || (REG_P (rld[r].in_reg)
8218 && !REGNO_REG_SET_P (&reg_has_output_reload,
8219 REGNO (rld[r].in_reg))))
8220 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8221 {
8222 rtx reg;
8223
8224 reg = reload_reg_rtx_for_input[r];
8225 if (reload_reg_rtx_reaches_end_p (reg, r))
8226 {
8227 machine_mode mode;
8228 int regno;
8229 int nregs;
8230 int in_regno;
8231 int in_nregs;
8232 rtx in;
8233 bool piecemeal;
8234
8235 mode = GET_MODE (reg);
8236 regno = REGNO (reg);
8237 nregs = REG_NREGS (reg);
8238 if (REG_P (rld[r].in)
8239 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8240 in = rld[r].in;
8241 else if (REG_P (rld[r].in_reg))
8242 in = rld[r].in_reg;
8243 else
8244 in = XEXP (rld[r].in_reg, 0);
8245 in_regno = REGNO (in);
8246
8247 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8248 : hard_regno_nregs (in_regno, mode));
8249
8250 reg_last_reload_reg[in_regno] = reg;
8251
8252 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8253 && nregs == in_nregs
8254 && inherit_piecemeal_p (regno, in_regno, mode));
8255
8256 if (HARD_REGISTER_NUM_P (in_regno))
8257 for (k = 1; k < in_nregs; k++)
8258 reg_last_reload_reg[in_regno + k]
8259 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8260
8261 /* Unless we inherited this reload, show we haven't
8262 recently done a store.
8263 Previous stores of inherited auto_inc expressions
8264 also have to be discarded. */
8265 if (! reload_inherited[r]
8266 || (rld[r].out && ! rld[r].out_reg))
8267 spill_reg_store[regno] = 0;
8268
8269 for (k = 0; k < nregs; k++)
8270 {
8271 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8272 reg_reloaded_contents[regno + k]
8273 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8274 ? in_regno
8275 : in_regno + k);
8276 reg_reloaded_insn[regno + k] = insn;
8277 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8278 if (targetm.hard_regno_call_part_clobbered (NULL,
8279 regno + k,
8280 mode))
8281 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8282 regno + k);
8283 else
8284 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8285 regno + k);
8286 }
8287 }
8288 }
8289 }
8290
8291 /* The following if-statement was #if 0'd in 1.34 (or before...).
8292 It's reenabled in 1.35 because supposedly nothing else
8293 deals with this problem. */
8294
8295 /* If a register gets output-reloaded from a non-spill register,
8296 that invalidates any previous reloaded copy of it.
8297 But forget_old_reloads_1 won't get to see it, because
8298 it thinks only about the original insn. So invalidate it here.
8299 Also do the same thing for RELOAD_OTHER constraints where the
8300 output is discarded. */
8301 if (i < 0
8302 && ((rld[r].out != 0
8303 && (REG_P (rld[r].out)
8304 || (MEM_P (rld[r].out)
8305 && REG_P (rld[r].out_reg))))
8306 || (rld[r].out == 0 && rld[r].out_reg
8307 && REG_P (rld[r].out_reg))))
8308 {
8309 rtx out = ((rld[r].out && REG_P (rld[r].out))
8310 ? rld[r].out : rld[r].out_reg);
8311 int out_regno = REGNO (out);
8312 machine_mode mode = GET_MODE (out);
8313
8314 /* REG_RTX is now set or clobbered by the main instruction.
8315 As the comment above explains, forget_old_reloads_1 only
8316 sees the original instruction, and there is no guarantee
8317 that the original instruction also clobbered REG_RTX.
8318 For example, if find_reloads sees that the input side of
8319 a matched operand pair dies in this instruction, it may
8320 use the input register as the reload register.
8321
8322 Calling forget_old_reloads_1 is a waste of effort if
8323 REG_RTX is also the output register.
8324
8325 If we know that REG_RTX holds the value of a pseudo
8326 register, the code after the call will record that fact. */
8327 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8328 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8329
8330 if (!HARD_REGISTER_NUM_P (out_regno))
8331 {
8332 rtx src_reg;
8333 rtx_insn *store_insn = NULL;
8334
8335 reg_last_reload_reg[out_regno] = 0;
8336
8337 /* If we can find a hard register that is stored, record
8338 the storing insn so that we may delete this insn with
8339 delete_output_reload. */
8340 src_reg = reload_reg_rtx_for_output[r];
8341
8342 if (src_reg)
8343 {
8344 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8345 store_insn = new_spill_reg_store[REGNO (src_reg)];
8346 else
8347 src_reg = NULL_RTX;
8348 }
8349 else
8350 {
8351 /* If this is an optional reload, try to find the
8352 source reg from an input reload. */
8353 rtx set = single_set (insn);
8354 if (set && SET_DEST (set) == rld[r].out)
8355 {
8356 int k;
8357
8358 src_reg = SET_SRC (set);
8359 store_insn = insn;
8360 for (k = 0; k < n_reloads; k++)
8361 {
8362 if (rld[k].in == src_reg)
8363 {
8364 src_reg = reload_reg_rtx_for_input[k];
8365 break;
8366 }
8367 }
8368 }
8369 }
8370 if (src_reg && REG_P (src_reg)
8371 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8372 {
8373 int src_regno, src_nregs, k;
8374 rtx note;
8375
8376 gcc_assert (GET_MODE (src_reg) == mode);
8377 src_regno = REGNO (src_reg);
8378 src_nregs = hard_regno_nregs (src_regno, mode);
8379 /* The place where to find a death note varies with
8380 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8381 necessarily checked exactly in the code that moves
8382 notes, so just check both locations. */
8383 note = find_regno_note (insn, REG_DEAD, src_regno);
8384 if (! note && store_insn)
8385 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8386 for (k = 0; k < src_nregs; k++)
8387 {
8388 spill_reg_store[src_regno + k] = store_insn;
8389 spill_reg_stored_to[src_regno + k] = out;
8390 reg_reloaded_contents[src_regno + k] = out_regno;
8391 reg_reloaded_insn[src_regno + k] = store_insn;
8392 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8393 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8394 if (targetm.hard_regno_call_part_clobbered
8395 (NULL, src_regno + k, mode))
8396 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8397 src_regno + k);
8398 else
8399 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8400 src_regno + k);
8401 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8402 if (note)
8403 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8404 else
8405 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8406 }
8407 reg_last_reload_reg[out_regno] = src_reg;
8408 /* We have to set reg_has_output_reload here, or else
8409 forget_old_reloads_1 will clear reg_last_reload_reg
8410 right away. */
8411 SET_REGNO_REG_SET (&reg_has_output_reload,
8412 out_regno);
8413 }
8414 }
8415 else
8416 {
8417 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8418
8419 for (k = 0; k < out_nregs; k++)
8420 reg_last_reload_reg[out_regno + k] = 0;
8421 }
8422 }
8423 }
8424 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8425 }
8426 \f
8427 /* Go through the motions to emit INSN and test if it is strictly valid.
8428 Return the emitted insn if valid, else return NULL. */
8429
8430 static rtx_insn *
8431 emit_insn_if_valid_for_reload (rtx pat)
8432 {
8433 rtx_insn *last = get_last_insn ();
8434 int code;
8435
8436 rtx_insn *insn = emit_insn (pat);
8437 code = recog_memoized (insn);
8438
8439 if (code >= 0)
8440 {
8441 extract_insn (insn);
8442 /* We want constrain operands to treat this insn strictly in its
8443 validity determination, i.e., the way it would after reload has
8444 completed. */
8445 if (constrain_operands (1, get_enabled_alternatives (insn)))
8446 return insn;
8447 }
8448
8449 delete_insns_since (last);
8450 return NULL;
8451 }
8452
8453 /* Emit code to perform a reload from IN (which may be a reload register) to
8454 OUT (which may also be a reload register). IN or OUT is from operand
8455 OPNUM with reload type TYPE.
8456
8457 Returns first insn emitted. */
8458
8459 static rtx_insn *
8460 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8461 {
8462 rtx_insn *last = get_last_insn ();
8463 rtx_insn *tem;
8464 rtx tem1, tem2;
8465
8466 /* If IN is a paradoxical SUBREG, remove it and try to put the
8467 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8468 if (!strip_paradoxical_subreg (&in, &out))
8469 strip_paradoxical_subreg (&out, &in);
8470
8471 /* How to do this reload can get quite tricky. Normally, we are being
8472 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8473 register that didn't get a hard register. In that case we can just
8474 call emit_move_insn.
8475
8476 We can also be asked to reload a PLUS that adds a register or a MEM to
8477 another register, constant or MEM. This can occur during frame pointer
8478 elimination and while reloading addresses. This case is handled by
8479 trying to emit a single insn to perform the add. If it is not valid,
8480 we use a two insn sequence.
8481
8482 Or we can be asked to reload an unary operand that was a fragment of
8483 an addressing mode, into a register. If it isn't recognized as-is,
8484 we try making the unop operand and the reload-register the same:
8485 (set reg:X (unop:X expr:Y))
8486 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8487
8488 Finally, we could be called to handle an 'o' constraint by putting
8489 an address into a register. In that case, we first try to do this
8490 with a named pattern of "reload_load_address". If no such pattern
8491 exists, we just emit a SET insn and hope for the best (it will normally
8492 be valid on machines that use 'o').
8493
8494 This entire process is made complex because reload will never
8495 process the insns we generate here and so we must ensure that
8496 they will fit their constraints and also by the fact that parts of
8497 IN might be being reloaded separately and replaced with spill registers.
8498 Because of this, we are, in some sense, just guessing the right approach
8499 here. The one listed above seems to work.
8500
8501 ??? At some point, this whole thing needs to be rethought. */
8502
8503 if (GET_CODE (in) == PLUS
8504 && (REG_P (XEXP (in, 0))
8505 || GET_CODE (XEXP (in, 0)) == SUBREG
8506 || MEM_P (XEXP (in, 0)))
8507 && (REG_P (XEXP (in, 1))
8508 || GET_CODE (XEXP (in, 1)) == SUBREG
8509 || CONSTANT_P (XEXP (in, 1))
8510 || MEM_P (XEXP (in, 1))))
8511 {
8512 /* We need to compute the sum of a register or a MEM and another
8513 register, constant, or MEM, and put it into the reload
8514 register. The best possible way of doing this is if the machine
8515 has a three-operand ADD insn that accepts the required operands.
8516
8517 The simplest approach is to try to generate such an insn and see if it
8518 is recognized and matches its constraints. If so, it can be used.
8519
8520 It might be better not to actually emit the insn unless it is valid,
8521 but we need to pass the insn as an operand to `recog' and
8522 `extract_insn' and it is simpler to emit and then delete the insn if
8523 not valid than to dummy things up. */
8524
8525 rtx op0, op1, tem;
8526 rtx_insn *insn;
8527 enum insn_code code;
8528
8529 op0 = find_replacement (&XEXP (in, 0));
8530 op1 = find_replacement (&XEXP (in, 1));
8531
8532 /* Since constraint checking is strict, commutativity won't be
8533 checked, so we need to do that here to avoid spurious failure
8534 if the add instruction is two-address and the second operand
8535 of the add is the same as the reload reg, which is frequently
8536 the case. If the insn would be A = B + A, rearrange it so
8537 it will be A = A + B as constrain_operands expects. */
8538
8539 if (REG_P (XEXP (in, 1))
8540 && REGNO (out) == REGNO (XEXP (in, 1)))
8541 tem = op0, op0 = op1, op1 = tem;
8542
8543 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8544 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8545
8546 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8547 if (insn)
8548 return insn;
8549
8550 /* If that failed, we must use a conservative two-insn sequence.
8551
8552 Use a move to copy one operand into the reload register. Prefer
8553 to reload a constant, MEM or pseudo since the move patterns can
8554 handle an arbitrary operand. If OP1 is not a constant, MEM or
8555 pseudo and OP1 is not a valid operand for an add instruction, then
8556 reload OP1.
8557
8558 After reloading one of the operands into the reload register, add
8559 the reload register to the output register.
8560
8561 If there is another way to do this for a specific machine, a
8562 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8563 we emit below. */
8564
8565 code = optab_handler (add_optab, GET_MODE (out));
8566
8567 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8568 || (REG_P (op1)
8569 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8570 || (code != CODE_FOR_nothing
8571 && !insn_operand_matches (code, 2, op1)))
8572 tem = op0, op0 = op1, op1 = tem;
8573
8574 gen_reload (out, op0, opnum, type);
8575
8576 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8577 This fixes a problem on the 32K where the stack pointer cannot
8578 be used as an operand of an add insn. */
8579
8580 if (rtx_equal_p (op0, op1))
8581 op1 = out;
8582
8583 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8584 if (insn)
8585 {
8586 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8587 set_dst_reg_note (insn, REG_EQUIV, in, out);
8588 return insn;
8589 }
8590
8591 /* If that failed, copy the address register to the reload register.
8592 Then add the constant to the reload register. */
8593
8594 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8595 gen_reload (out, op1, opnum, type);
8596 insn = emit_insn (gen_add2_insn (out, op0));
8597 set_dst_reg_note (insn, REG_EQUIV, in, out);
8598 }
8599
8600 /* If we need a memory location to do the move, do it that way. */
8601 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8602 (REG_P (tem1) && REG_P (tem2)))
8603 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8604 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8605 && targetm.secondary_memory_needed (GET_MODE (out),
8606 REGNO_REG_CLASS (REGNO (tem1)),
8607 REGNO_REG_CLASS (REGNO (tem2))))
8608 {
8609 /* Get the memory to use and rewrite both registers to its mode. */
8610 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8611
8612 if (GET_MODE (loc) != GET_MODE (out))
8613 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8614
8615 if (GET_MODE (loc) != GET_MODE (in))
8616 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8617
8618 gen_reload (loc, in, opnum, type);
8619 gen_reload (out, loc, opnum, type);
8620 }
8621 else if (REG_P (out) && UNARY_P (in))
8622 {
8623 rtx op1;
8624 rtx out_moded;
8625 rtx_insn *set;
8626
8627 op1 = find_replacement (&XEXP (in, 0));
8628 if (op1 != XEXP (in, 0))
8629 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8630
8631 /* First, try a plain SET. */
8632 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8633 if (set)
8634 return set;
8635
8636 /* If that failed, move the inner operand to the reload
8637 register, and try the same unop with the inner expression
8638 replaced with the reload register. */
8639
8640 if (GET_MODE (op1) != GET_MODE (out))
8641 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8642 else
8643 out_moded = out;
8644
8645 gen_reload (out_moded, op1, opnum, type);
8646
8647 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8648 out_moded));
8649 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8650 if (insn)
8651 {
8652 set_unique_reg_note (insn, REG_EQUIV, in);
8653 return insn;
8654 }
8655
8656 fatal_insn ("failure trying to reload:", set);
8657 }
8658 /* If IN is a simple operand, use gen_move_insn. */
8659 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8660 {
8661 tem = emit_insn (gen_move_insn (out, in));
8662 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8663 mark_jump_label (in, tem, 0);
8664 }
8665
8666 else if (targetm.have_reload_load_address ())
8667 emit_insn (targetm.gen_reload_load_address (out, in));
8668
8669 /* Otherwise, just write (set OUT IN) and hope for the best. */
8670 else
8671 emit_insn (gen_rtx_SET (out, in));
8672
8673 /* Return the first insn emitted.
8674 We cannot just return get_last_insn, because there may have
8675 been multiple instructions emitted. Also note that gen_move_insn may
8676 emit more than one insn itself, so we cannot assume that there is one
8677 insn emitted per emit_insn_before call. */
8678
8679 return last ? NEXT_INSN (last) : get_insns ();
8680 }
8681 \f
8682 /* Delete a previously made output-reload whose result we now believe
8683 is not needed. First we double-check.
8684
8685 INSN is the insn now being processed.
8686 LAST_RELOAD_REG is the hard register number for which we want to delete
8687 the last output reload.
8688 J is the reload-number that originally used REG. The caller has made
8689 certain that reload J doesn't use REG any longer for input.
8690 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8691
8692 static void
8693 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8694 rtx new_reload_reg)
8695 {
8696 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8697 rtx reg = spill_reg_stored_to[last_reload_reg];
8698 int k;
8699 int n_occurrences;
8700 int n_inherited = 0;
8701 rtx substed;
8702 unsigned regno;
8703 int nregs;
8704
8705 /* It is possible that this reload has been only used to set another reload
8706 we eliminated earlier and thus deleted this instruction too. */
8707 if (output_reload_insn->deleted ())
8708 return;
8709
8710 /* Get the raw pseudo-register referred to. */
8711
8712 while (GET_CODE (reg) == SUBREG)
8713 reg = SUBREG_REG (reg);
8714 substed = reg_equiv_memory_loc (REGNO (reg));
8715
8716 /* This is unsafe if the operand occurs more often in the current
8717 insn than it is inherited. */
8718 for (k = n_reloads - 1; k >= 0; k--)
8719 {
8720 rtx reg2 = rld[k].in;
8721 if (! reg2)
8722 continue;
8723 if (MEM_P (reg2) || reload_override_in[k])
8724 reg2 = rld[k].in_reg;
8725
8726 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8727 reg2 = XEXP (rld[k].in_reg, 0);
8728
8729 while (GET_CODE (reg2) == SUBREG)
8730 reg2 = SUBREG_REG (reg2);
8731 if (rtx_equal_p (reg2, reg))
8732 {
8733 if (reload_inherited[k] || reload_override_in[k] || k == j)
8734 n_inherited++;
8735 else
8736 return;
8737 }
8738 }
8739 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8740 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8741 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8742 reg, 0);
8743 if (substed)
8744 n_occurrences += count_occurrences (PATTERN (insn),
8745 eliminate_regs (substed, VOIDmode,
8746 NULL_RTX), 0);
8747 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8748 {
8749 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8750 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8751 }
8752 if (n_occurrences > n_inherited)
8753 return;
8754
8755 regno = REGNO (reg);
8756 nregs = REG_NREGS (reg);
8757
8758 /* If the pseudo-reg we are reloading is no longer referenced
8759 anywhere between the store into it and here,
8760 and we're within the same basic block, then the value can only
8761 pass through the reload reg and end up here.
8762 Otherwise, give up--return. */
8763 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8764 i1 != insn; i1 = NEXT_INSN (i1))
8765 {
8766 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8767 return;
8768 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8769 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8770 {
8771 /* If this is USE in front of INSN, we only have to check that
8772 there are no more references than accounted for by inheritance. */
8773 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8774 {
8775 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8776 i1 = NEXT_INSN (i1);
8777 }
8778 if (n_occurrences <= n_inherited && i1 == insn)
8779 break;
8780 return;
8781 }
8782 }
8783
8784 /* We will be deleting the insn. Remove the spill reg information. */
8785 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8786 {
8787 spill_reg_store[last_reload_reg + k] = 0;
8788 spill_reg_stored_to[last_reload_reg + k] = 0;
8789 }
8790
8791 /* The caller has already checked that REG dies or is set in INSN.
8792 It has also checked that we are optimizing, and thus some
8793 inaccuracies in the debugging information are acceptable.
8794 So we could just delete output_reload_insn. But in some cases
8795 we can improve the debugging information without sacrificing
8796 optimization - maybe even improving the code: See if the pseudo
8797 reg has been completely replaced with reload regs. If so, delete
8798 the store insn and forget we had a stack slot for the pseudo. */
8799 if (rld[j].out != rld[j].in
8800 && REG_N_DEATHS (REGNO (reg)) == 1
8801 && REG_N_SETS (REGNO (reg)) == 1
8802 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8803 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8804 {
8805 rtx_insn *i2;
8806
8807 /* We know that it was used only between here and the beginning of
8808 the current basic block. (We also know that the last use before
8809 INSN was the output reload we are thinking of deleting, but never
8810 mind that.) Search that range; see if any ref remains. */
8811 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8812 {
8813 rtx set = single_set (i2);
8814
8815 /* Uses which just store in the pseudo don't count,
8816 since if they are the only uses, they are dead. */
8817 if (set != 0 && SET_DEST (set) == reg)
8818 continue;
8819 if (LABEL_P (i2) || JUMP_P (i2))
8820 break;
8821 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8822 && reg_mentioned_p (reg, PATTERN (i2)))
8823 {
8824 /* Some other ref remains; just delete the output reload we
8825 know to be dead. */
8826 delete_address_reloads (output_reload_insn, insn);
8827 delete_insn (output_reload_insn);
8828 return;
8829 }
8830 }
8831
8832 /* Delete the now-dead stores into this pseudo. Note that this
8833 loop also takes care of deleting output_reload_insn. */
8834 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8835 {
8836 rtx set = single_set (i2);
8837
8838 if (set != 0 && SET_DEST (set) == reg)
8839 {
8840 delete_address_reloads (i2, insn);
8841 delete_insn (i2);
8842 }
8843 if (LABEL_P (i2) || JUMP_P (i2))
8844 break;
8845 }
8846
8847 /* For the debugging info, say the pseudo lives in this reload reg. */
8848 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8849 if (ira_conflicts_p)
8850 /* Inform IRA about the change. */
8851 ira_mark_allocation_change (REGNO (reg));
8852 alter_reg (REGNO (reg), -1, false);
8853 }
8854 else
8855 {
8856 delete_address_reloads (output_reload_insn, insn);
8857 delete_insn (output_reload_insn);
8858 }
8859 }
8860
8861 /* We are going to delete DEAD_INSN. Recursively delete loads of
8862 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8863 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8864 static void
8865 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8866 {
8867 rtx set = single_set (dead_insn);
8868 rtx set2, dst;
8869 rtx_insn *prev, *next;
8870 if (set)
8871 {
8872 rtx dst = SET_DEST (set);
8873 if (MEM_P (dst))
8874 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8875 }
8876 /* If we deleted the store from a reloaded post_{in,de}c expression,
8877 we can delete the matching adds. */
8878 prev = PREV_INSN (dead_insn);
8879 next = NEXT_INSN (dead_insn);
8880 if (! prev || ! next)
8881 return;
8882 set = single_set (next);
8883 set2 = single_set (prev);
8884 if (! set || ! set2
8885 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8886 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8887 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8888 return;
8889 dst = SET_DEST (set);
8890 if (! rtx_equal_p (dst, SET_DEST (set2))
8891 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8892 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8893 || (INTVAL (XEXP (SET_SRC (set), 1))
8894 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8895 return;
8896 delete_related_insns (prev);
8897 delete_related_insns (next);
8898 }
8899
8900 /* Subfunction of delete_address_reloads: process registers found in X. */
8901 static void
8902 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8903 {
8904 rtx_insn *prev, *i2;
8905 rtx set, dst;
8906 int i, j;
8907 enum rtx_code code = GET_CODE (x);
8908
8909 if (code != REG)
8910 {
8911 const char *fmt = GET_RTX_FORMAT (code);
8912 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8913 {
8914 if (fmt[i] == 'e')
8915 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8916 else if (fmt[i] == 'E')
8917 {
8918 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8919 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8920 current_insn);
8921 }
8922 }
8923 return;
8924 }
8925
8926 if (spill_reg_order[REGNO (x)] < 0)
8927 return;
8928
8929 /* Scan backwards for the insn that sets x. This might be a way back due
8930 to inheritance. */
8931 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8932 {
8933 code = GET_CODE (prev);
8934 if (code == CODE_LABEL || code == JUMP_INSN)
8935 return;
8936 if (!INSN_P (prev))
8937 continue;
8938 if (reg_set_p (x, PATTERN (prev)))
8939 break;
8940 if (reg_referenced_p (x, PATTERN (prev)))
8941 return;
8942 }
8943 if (! prev || INSN_UID (prev) < reload_first_uid)
8944 return;
8945 /* Check that PREV only sets the reload register. */
8946 set = single_set (prev);
8947 if (! set)
8948 return;
8949 dst = SET_DEST (set);
8950 if (!REG_P (dst)
8951 || ! rtx_equal_p (dst, x))
8952 return;
8953 if (! reg_set_p (dst, PATTERN (dead_insn)))
8954 {
8955 /* Check if DST was used in a later insn -
8956 it might have been inherited. */
8957 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
8958 {
8959 if (LABEL_P (i2))
8960 break;
8961 if (! INSN_P (i2))
8962 continue;
8963 if (reg_referenced_p (dst, PATTERN (i2)))
8964 {
8965 /* If there is a reference to the register in the current insn,
8966 it might be loaded in a non-inherited reload. If no other
8967 reload uses it, that means the register is set before
8968 referenced. */
8969 if (i2 == current_insn)
8970 {
8971 for (j = n_reloads - 1; j >= 0; j--)
8972 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8973 || reload_override_in[j] == dst)
8974 return;
8975 for (j = n_reloads - 1; j >= 0; j--)
8976 if (rld[j].in && rld[j].reg_rtx == dst)
8977 break;
8978 if (j >= 0)
8979 break;
8980 }
8981 return;
8982 }
8983 if (JUMP_P (i2))
8984 break;
8985 /* If DST is still live at CURRENT_INSN, check if it is used for
8986 any reload. Note that even if CURRENT_INSN sets DST, we still
8987 have to check the reloads. */
8988 if (i2 == current_insn)
8989 {
8990 for (j = n_reloads - 1; j >= 0; j--)
8991 if ((rld[j].reg_rtx == dst && reload_inherited[j])
8992 || reload_override_in[j] == dst)
8993 return;
8994 /* ??? We can't finish the loop here, because dst might be
8995 allocated to a pseudo in this block if no reload in this
8996 block needs any of the classes containing DST - see
8997 spill_hard_reg. There is no easy way to tell this, so we
8998 have to scan till the end of the basic block. */
8999 }
9000 if (reg_set_p (dst, PATTERN (i2)))
9001 break;
9002 }
9003 }
9004 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9005 reg_reloaded_contents[REGNO (dst)] = -1;
9006 delete_insn (prev);
9007 }
9008 \f
9009 /* Output reload-insns to reload VALUE into RELOADREG.
9010 VALUE is an autoincrement or autodecrement RTX whose operand
9011 is a register or memory location;
9012 so reloading involves incrementing that location.
9013 IN is either identical to VALUE, or some cheaper place to reload from.
9014
9015 INC_AMOUNT is the number to increment or decrement by (always positive).
9016 This cannot be deduced from VALUE. */
9017
9018 static void
9019 inc_for_reload (rtx reloadreg, rtx in, rtx value, poly_int64 inc_amount)
9020 {
9021 /* REG or MEM to be copied and incremented. */
9022 rtx incloc = find_replacement (&XEXP (value, 0));
9023 /* Nonzero if increment after copying. */
9024 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9025 || GET_CODE (value) == POST_MODIFY);
9026 rtx_insn *last;
9027 rtx inc;
9028 rtx_insn *add_insn;
9029 int code;
9030 rtx real_in = in == value ? incloc : in;
9031
9032 /* No hard register is equivalent to this register after
9033 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9034 we could inc/dec that register as well (maybe even using it for
9035 the source), but I'm not sure it's worth worrying about. */
9036 if (REG_P (incloc))
9037 reg_last_reload_reg[REGNO (incloc)] = 0;
9038
9039 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9040 {
9041 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9042 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9043 }
9044 else
9045 {
9046 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9047 inc_amount = -inc_amount;
9048
9049 inc = gen_int_mode (inc_amount, Pmode);
9050 }
9051
9052 /* If this is post-increment, first copy the location to the reload reg. */
9053 if (post && real_in != reloadreg)
9054 emit_insn (gen_move_insn (reloadreg, real_in));
9055
9056 if (in == value)
9057 {
9058 /* See if we can directly increment INCLOC. Use a method similar to
9059 that in gen_reload. */
9060
9061 last = get_last_insn ();
9062 add_insn = emit_insn (gen_rtx_SET (incloc,
9063 gen_rtx_PLUS (GET_MODE (incloc),
9064 incloc, inc)));
9065
9066 code = recog_memoized (add_insn);
9067 if (code >= 0)
9068 {
9069 extract_insn (add_insn);
9070 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9071 {
9072 /* If this is a pre-increment and we have incremented the value
9073 where it lives, copy the incremented value to RELOADREG to
9074 be used as an address. */
9075
9076 if (! post)
9077 emit_insn (gen_move_insn (reloadreg, incloc));
9078 return;
9079 }
9080 }
9081 delete_insns_since (last);
9082 }
9083
9084 /* If couldn't do the increment directly, must increment in RELOADREG.
9085 The way we do this depends on whether this is pre- or post-increment.
9086 For pre-increment, copy INCLOC to the reload register, increment it
9087 there, then save back. */
9088
9089 if (! post)
9090 {
9091 if (in != reloadreg)
9092 emit_insn (gen_move_insn (reloadreg, real_in));
9093 emit_insn (gen_add2_insn (reloadreg, inc));
9094 emit_insn (gen_move_insn (incloc, reloadreg));
9095 }
9096 else
9097 {
9098 /* Postincrement.
9099 Because this might be a jump insn or a compare, and because RELOADREG
9100 may not be available after the insn in an input reload, we must do
9101 the incrementation before the insn being reloaded for.
9102
9103 We have already copied IN to RELOADREG. Increment the copy in
9104 RELOADREG, save that back, then decrement RELOADREG so it has
9105 the original value. */
9106
9107 emit_insn (gen_add2_insn (reloadreg, inc));
9108 emit_insn (gen_move_insn (incloc, reloadreg));
9109 if (CONST_INT_P (inc))
9110 emit_insn (gen_add2_insn (reloadreg,
9111 gen_int_mode (-INTVAL (inc),
9112 GET_MODE (reloadreg))));
9113 else
9114 emit_insn (gen_sub2_insn (reloadreg, inc));
9115 }
9116 }
9117 \f
9118 static void
9119 add_auto_inc_notes (rtx_insn *insn, rtx x)
9120 {
9121 enum rtx_code code = GET_CODE (x);
9122 const char *fmt;
9123 int i, j;
9124
9125 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9126 {
9127 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9128 return;
9129 }
9130
9131 /* Scan all the operand sub-expressions. */
9132 fmt = GET_RTX_FORMAT (code);
9133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9134 {
9135 if (fmt[i] == 'e')
9136 add_auto_inc_notes (insn, XEXP (x, i));
9137 else if (fmt[i] == 'E')
9138 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9139 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9140 }
9141 }