]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39 #include "function-abi.h"
40
41 /* Forward declarations */
42 static void set_of_1 (rtx, const_rtx, void *);
43 static bool covers_regno_p (const_rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
45 static int computed_jump_p_1 (const_rtx);
46 static void parms_set (rtx, const_rtx, void *);
47
48 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
52 const_rtx, machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
55 const_rtx, machine_mode,
56 unsigned int);
57 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
58 const_rtx, machine_mode,
59 unsigned int);
60
61 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
62 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
63
64 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
65 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
66 SIGN_EXTEND then while narrowing we also have to enforce the
67 representation and sign-extend the value to mode DESTINATION_REP.
68
69 If the value is already sign-extended to DESTINATION_REP mode we
70 can just switch to DESTINATION mode on it. For each pair of
71 integral modes SOURCE and DESTINATION, when truncating from SOURCE
72 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
73 contains the number of high-order bits in SOURCE that have to be
74 copies of the sign-bit so that we can do this mode-switch to
75 DESTINATION. */
76
77 static unsigned int
78 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
79 \f
80 /* Store X into index I of ARRAY. ARRAY is known to have at least I
81 elements. Return the new base of ARRAY. */
82
83 template <typename T>
84 typename T::value_type *
85 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
86 value_type *base,
87 size_t i, value_type x)
88 {
89 if (base == array.stack)
90 {
91 if (i < LOCAL_ELEMS)
92 {
93 base[i] = x;
94 return base;
95 }
96 gcc_checking_assert (i == LOCAL_ELEMS);
97 /* A previous iteration might also have moved from the stack to the
98 heap, in which case the heap array will already be big enough. */
99 if (vec_safe_length (array.heap) <= i)
100 vec_safe_grow (array.heap, i + 1);
101 base = array.heap->address ();
102 memcpy (base, array.stack, sizeof (array.stack));
103 base[LOCAL_ELEMS] = x;
104 return base;
105 }
106 unsigned int length = array.heap->length ();
107 if (length > i)
108 {
109 gcc_checking_assert (base == array.heap->address ());
110 base[i] = x;
111 return base;
112 }
113 else
114 {
115 gcc_checking_assert (i == length);
116 vec_safe_push (array.heap, x);
117 return array.heap->address ();
118 }
119 }
120
121 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
122 number of elements added to the worklist. */
123
124 template <typename T>
125 size_t
126 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
127 value_type *base,
128 size_t end, rtx_type x)
129 {
130 enum rtx_code code = GET_CODE (x);
131 const char *format = GET_RTX_FORMAT (code);
132 size_t orig_end = end;
133 if (__builtin_expect (INSN_P (x), false))
134 {
135 /* Put the pattern at the top of the queue, since that's what
136 we're likely to want most. It also allows for the SEQUENCE
137 code below. */
138 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
139 if (format[i] == 'e')
140 {
141 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
142 if (__builtin_expect (end < LOCAL_ELEMS, true))
143 base[end++] = subx;
144 else
145 base = add_single_to_queue (array, base, end++, subx);
146 }
147 }
148 else
149 for (int i = 0; format[i]; ++i)
150 if (format[i] == 'e')
151 {
152 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
153 if (__builtin_expect (end < LOCAL_ELEMS, true))
154 base[end++] = subx;
155 else
156 base = add_single_to_queue (array, base, end++, subx);
157 }
158 else if (format[i] == 'E')
159 {
160 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
161 rtx *vec = x->u.fld[i].rt_rtvec->elem;
162 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
163 for (unsigned int j = 0; j < length; j++)
164 base[end++] = T::get_value (vec[j]);
165 else
166 for (unsigned int j = 0; j < length; j++)
167 base = add_single_to_queue (array, base, end++,
168 T::get_value (vec[j]));
169 if (code == SEQUENCE && end == length)
170 /* If the subrtxes of the sequence fill the entire array then
171 we know that no other parts of a containing insn are queued.
172 The caller is therefore iterating over the sequence as a
173 PATTERN (...), so we also want the patterns of the
174 subinstructions. */
175 for (unsigned int j = 0; j < length; j++)
176 {
177 typename T::rtx_type x = T::get_rtx (base[j]);
178 if (INSN_P (x))
179 base[j] = T::get_value (PATTERN (x));
180 }
181 }
182 return end - orig_end;
183 }
184
185 template <typename T>
186 void
187 generic_subrtx_iterator <T>::free_array (array_type &array)
188 {
189 vec_free (array.heap);
190 }
191
192 template <typename T>
193 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
194
195 template class generic_subrtx_iterator <const_rtx_accessor>;
196 template class generic_subrtx_iterator <rtx_var_accessor>;
197 template class generic_subrtx_iterator <rtx_ptr_accessor>;
198
199 /* Return 1 if the value of X is unstable
200 (would be different at a different point in the program).
201 The frame pointer, arg pointer, etc. are considered stable
202 (within one function) and so is anything marked `unchanging'. */
203
204 int
205 rtx_unstable_p (const_rtx x)
206 {
207 const RTX_CODE code = GET_CODE (x);
208 int i;
209 const char *fmt;
210
211 switch (code)
212 {
213 case MEM:
214 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
215
216 case CONST:
217 CASE_CONST_ANY:
218 case SYMBOL_REF:
219 case LABEL_REF:
220 return 0;
221
222 case REG:
223 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
224 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
225 /* The arg pointer varies if it is not a fixed register. */
226 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
227 return 0;
228 /* ??? When call-clobbered, the value is stable modulo the restore
229 that must happen after a call. This currently screws up local-alloc
230 into believing that the restore is not needed. */
231 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
232 return 0;
233 return 1;
234
235 case ASM_OPERANDS:
236 if (MEM_VOLATILE_P (x))
237 return 1;
238
239 /* Fall through. */
240
241 default:
242 break;
243 }
244
245 fmt = GET_RTX_FORMAT (code);
246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
247 if (fmt[i] == 'e')
248 {
249 if (rtx_unstable_p (XEXP (x, i)))
250 return 1;
251 }
252 else if (fmt[i] == 'E')
253 {
254 int j;
255 for (j = 0; j < XVECLEN (x, i); j++)
256 if (rtx_unstable_p (XVECEXP (x, i, j)))
257 return 1;
258 }
259
260 return 0;
261 }
262
263 /* Return 1 if X has a value that can vary even between two
264 executions of the program. 0 means X can be compared reliably
265 against certain constants or near-constants.
266 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
267 zero, we are slightly more conservative.
268 The frame pointer and the arg pointer are considered constant. */
269
270 bool
271 rtx_varies_p (const_rtx x, bool for_alias)
272 {
273 RTX_CODE code;
274 int i;
275 const char *fmt;
276
277 if (!x)
278 return 0;
279
280 code = GET_CODE (x);
281 switch (code)
282 {
283 case MEM:
284 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
285
286 case CONST:
287 CASE_CONST_ANY:
288 case SYMBOL_REF:
289 case LABEL_REF:
290 return 0;
291
292 case REG:
293 /* Note that we have to test for the actual rtx used for the frame
294 and arg pointers and not just the register number in case we have
295 eliminated the frame and/or arg pointer and are using it
296 for pseudos. */
297 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
298 /* The arg pointer varies if it is not a fixed register. */
299 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
300 return 0;
301 if (x == pic_offset_table_rtx
302 /* ??? When call-clobbered, the value is stable modulo the restore
303 that must happen after a call. This currently screws up
304 local-alloc into believing that the restore is not needed, so we
305 must return 0 only if we are called from alias analysis. */
306 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
307 return 0;
308 return 1;
309
310 case LO_SUM:
311 /* The operand 0 of a LO_SUM is considered constant
312 (in fact it is related specifically to operand 1)
313 during alias analysis. */
314 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
315 || rtx_varies_p (XEXP (x, 1), for_alias);
316
317 case ASM_OPERANDS:
318 if (MEM_VOLATILE_P (x))
319 return 1;
320
321 /* Fall through. */
322
323 default:
324 break;
325 }
326
327 fmt = GET_RTX_FORMAT (code);
328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
329 if (fmt[i] == 'e')
330 {
331 if (rtx_varies_p (XEXP (x, i), for_alias))
332 return 1;
333 }
334 else if (fmt[i] == 'E')
335 {
336 int j;
337 for (j = 0; j < XVECLEN (x, i); j++)
338 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
339 return 1;
340 }
341
342 return 0;
343 }
344
345 /* Compute an approximation for the offset between the register
346 FROM and TO for the current function, as it was at the start
347 of the routine. */
348
349 static poly_int64
350 get_initial_register_offset (int from, int to)
351 {
352 static const struct elim_table_t
353 {
354 const int from;
355 const int to;
356 } table[] = ELIMINABLE_REGS;
357 poly_int64 offset1, offset2;
358 unsigned int i, j;
359
360 if (to == from)
361 return 0;
362
363 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
364 is completed, but we need to give at least an estimate for the stack
365 pointer based on the frame size. */
366 if (!epilogue_completed)
367 {
368 offset1 = crtl->outgoing_args_size + get_frame_size ();
369 #if !STACK_GROWS_DOWNWARD
370 offset1 = - offset1;
371 #endif
372 if (to == STACK_POINTER_REGNUM)
373 return offset1;
374 else if (from == STACK_POINTER_REGNUM)
375 return - offset1;
376 else
377 return 0;
378 }
379
380 for (i = 0; i < ARRAY_SIZE (table); i++)
381 if (table[i].from == from)
382 {
383 if (table[i].to == to)
384 {
385 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
386 offset1);
387 return offset1;
388 }
389 for (j = 0; j < ARRAY_SIZE (table); j++)
390 {
391 if (table[j].to == to
392 && table[j].from == table[i].to)
393 {
394 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
395 offset1);
396 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
397 offset2);
398 return offset1 + offset2;
399 }
400 if (table[j].from == to
401 && table[j].to == table[i].to)
402 {
403 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
404 offset1);
405 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
406 offset2);
407 return offset1 - offset2;
408 }
409 }
410 }
411 else if (table[i].to == from)
412 {
413 if (table[i].from == to)
414 {
415 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
416 offset1);
417 return - offset1;
418 }
419 for (j = 0; j < ARRAY_SIZE (table); j++)
420 {
421 if (table[j].to == to
422 && table[j].from == table[i].from)
423 {
424 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
425 offset1);
426 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
427 offset2);
428 return - offset1 + offset2;
429 }
430 if (table[j].from == to
431 && table[j].to == table[i].from)
432 {
433 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
434 offset1);
435 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
436 offset2);
437 return - offset1 - offset2;
438 }
439 }
440 }
441
442 /* If the requested register combination was not found,
443 try a different more simple combination. */
444 if (from == ARG_POINTER_REGNUM)
445 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
446 else if (to == ARG_POINTER_REGNUM)
447 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
448 else if (from == HARD_FRAME_POINTER_REGNUM)
449 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
450 else if (to == HARD_FRAME_POINTER_REGNUM)
451 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
452 else
453 return 0;
454 }
455
456 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
457 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
458 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
459 references on strict alignment machines. */
460
461 static int
462 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
463 machine_mode mode, bool unaligned_mems)
464 {
465 enum rtx_code code = GET_CODE (x);
466 gcc_checking_assert (mode == BLKmode || known_size_p (size));
467 poly_int64 const_x1;
468
469 /* The offset must be a multiple of the mode size if we are considering
470 unaligned memory references on strict alignment machines. */
471 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
472 {
473 poly_int64 actual_offset = offset;
474
475 #ifdef SPARC_STACK_BOUNDARY_HACK
476 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
477 the real alignment of %sp. However, when it does this, the
478 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
479 if (SPARC_STACK_BOUNDARY_HACK
480 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
481 actual_offset -= STACK_POINTER_OFFSET;
482 #endif
483
484 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
485 return 1;
486 }
487
488 switch (code)
489 {
490 case SYMBOL_REF:
491 if (SYMBOL_REF_WEAK (x))
492 return 1;
493 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
494 {
495 tree decl;
496 poly_int64 decl_size;
497
498 if (maybe_lt (offset, 0))
499 return 1;
500 if (!known_size_p (size))
501 return maybe_ne (offset, 0);
502
503 /* If the size of the access or of the symbol is unknown,
504 assume the worst. */
505 decl = SYMBOL_REF_DECL (x);
506
507 /* Else check that the access is in bounds. TODO: restructure
508 expr_size/tree_expr_size/int_expr_size and just use the latter. */
509 if (!decl)
510 decl_size = -1;
511 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
512 {
513 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
514 decl_size = -1;
515 }
516 else if (TREE_CODE (decl) == STRING_CST)
517 decl_size = TREE_STRING_LENGTH (decl);
518 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
519 decl_size = int_size_in_bytes (TREE_TYPE (decl));
520 else
521 decl_size = -1;
522
523 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
524 ? maybe_ne (offset, 0)
525 : !known_subrange_p (offset, size, 0, decl_size));
526 }
527
528 return 0;
529
530 case LABEL_REF:
531 return 0;
532
533 case REG:
534 /* Stack references are assumed not to trap, but we need to deal with
535 nonsensical offsets. */
536 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
537 || x == stack_pointer_rtx
538 /* The arg pointer varies if it is not a fixed register. */
539 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
540 {
541 #ifdef RED_ZONE_SIZE
542 poly_int64 red_zone_size = RED_ZONE_SIZE;
543 #else
544 poly_int64 red_zone_size = 0;
545 #endif
546 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
547 poly_int64 low_bound, high_bound;
548
549 if (!known_size_p (size))
550 return 1;
551
552 if (x == frame_pointer_rtx)
553 {
554 if (FRAME_GROWS_DOWNWARD)
555 {
556 high_bound = targetm.starting_frame_offset ();
557 low_bound = high_bound - get_frame_size ();
558 }
559 else
560 {
561 low_bound = targetm.starting_frame_offset ();
562 high_bound = low_bound + get_frame_size ();
563 }
564 }
565 else if (x == hard_frame_pointer_rtx)
566 {
567 poly_int64 sp_offset
568 = get_initial_register_offset (STACK_POINTER_REGNUM,
569 HARD_FRAME_POINTER_REGNUM);
570 poly_int64 ap_offset
571 = get_initial_register_offset (ARG_POINTER_REGNUM,
572 HARD_FRAME_POINTER_REGNUM);
573
574 #if STACK_GROWS_DOWNWARD
575 low_bound = sp_offset - red_zone_size - stack_boundary;
576 high_bound = ap_offset
577 + FIRST_PARM_OFFSET (current_function_decl)
578 #if !ARGS_GROW_DOWNWARD
579 + crtl->args.size
580 #endif
581 + stack_boundary;
582 #else
583 high_bound = sp_offset + red_zone_size + stack_boundary;
584 low_bound = ap_offset
585 + FIRST_PARM_OFFSET (current_function_decl)
586 #if ARGS_GROW_DOWNWARD
587 - crtl->args.size
588 #endif
589 - stack_boundary;
590 #endif
591 }
592 else if (x == stack_pointer_rtx)
593 {
594 poly_int64 ap_offset
595 = get_initial_register_offset (ARG_POINTER_REGNUM,
596 STACK_POINTER_REGNUM);
597
598 #if STACK_GROWS_DOWNWARD
599 low_bound = - red_zone_size - stack_boundary;
600 high_bound = ap_offset
601 + FIRST_PARM_OFFSET (current_function_decl)
602 #if !ARGS_GROW_DOWNWARD
603 + crtl->args.size
604 #endif
605 + stack_boundary;
606 #else
607 high_bound = red_zone_size + stack_boundary;
608 low_bound = ap_offset
609 + FIRST_PARM_OFFSET (current_function_decl)
610 #if ARGS_GROW_DOWNWARD
611 - crtl->args.size
612 #endif
613 - stack_boundary;
614 #endif
615 }
616 else
617 {
618 /* We assume that accesses are safe to at least the
619 next stack boundary.
620 Examples are varargs and __builtin_return_address. */
621 #if ARGS_GROW_DOWNWARD
622 high_bound = FIRST_PARM_OFFSET (current_function_decl)
623 + stack_boundary;
624 low_bound = FIRST_PARM_OFFSET (current_function_decl)
625 - crtl->args.size - stack_boundary;
626 #else
627 low_bound = FIRST_PARM_OFFSET (current_function_decl)
628 - stack_boundary;
629 high_bound = FIRST_PARM_OFFSET (current_function_decl)
630 + crtl->args.size + stack_boundary;
631 #endif
632 }
633
634 if (known_ge (offset, low_bound)
635 && known_le (offset, high_bound - size))
636 return 0;
637 return 1;
638 }
639 /* All of the virtual frame registers are stack references. */
640 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
641 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
642 return 0;
643 return 1;
644
645 case CONST:
646 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
647 mode, unaligned_mems);
648
649 case PLUS:
650 /* An address is assumed not to trap if:
651 - it is the pic register plus a const unspec without offset. */
652 if (XEXP (x, 0) == pic_offset_table_rtx
653 && GET_CODE (XEXP (x, 1)) == CONST
654 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
655 && known_eq (offset, 0))
656 return 0;
657
658 /* - or it is an address that can't trap plus a constant integer. */
659 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
660 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
661 size, mode, unaligned_mems))
662 return 0;
663
664 return 1;
665
666 case LO_SUM:
667 case PRE_MODIFY:
668 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
669 mode, unaligned_mems);
670
671 case PRE_DEC:
672 case PRE_INC:
673 case POST_DEC:
674 case POST_INC:
675 case POST_MODIFY:
676 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
677 mode, unaligned_mems);
678
679 default:
680 break;
681 }
682
683 /* If it isn't one of the case above, it can cause a trap. */
684 return 1;
685 }
686
687 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
688
689 int
690 rtx_addr_can_trap_p (const_rtx x)
691 {
692 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
693 }
694
695 /* Return true if X contains a MEM subrtx. */
696
697 bool
698 contains_mem_rtx_p (rtx x)
699 {
700 subrtx_iterator::array_type array;
701 FOR_EACH_SUBRTX (iter, array, x, ALL)
702 if (MEM_P (*iter))
703 return true;
704
705 return false;
706 }
707
708 /* Return true if X is an address that is known to not be zero. */
709
710 bool
711 nonzero_address_p (const_rtx x)
712 {
713 const enum rtx_code code = GET_CODE (x);
714
715 switch (code)
716 {
717 case SYMBOL_REF:
718 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
719
720 case LABEL_REF:
721 return true;
722
723 case REG:
724 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
725 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
726 || x == stack_pointer_rtx
727 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
728 return true;
729 /* All of the virtual frame registers are stack references. */
730 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
731 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
732 return true;
733 return false;
734
735 case CONST:
736 return nonzero_address_p (XEXP (x, 0));
737
738 case PLUS:
739 /* Handle PIC references. */
740 if (XEXP (x, 0) == pic_offset_table_rtx
741 && CONSTANT_P (XEXP (x, 1)))
742 return true;
743 return false;
744
745 case PRE_MODIFY:
746 /* Similar to the above; allow positive offsets. Further, since
747 auto-inc is only allowed in memories, the register must be a
748 pointer. */
749 if (CONST_INT_P (XEXP (x, 1))
750 && INTVAL (XEXP (x, 1)) > 0)
751 return true;
752 return nonzero_address_p (XEXP (x, 0));
753
754 case PRE_INC:
755 /* Similarly. Further, the offset is always positive. */
756 return true;
757
758 case PRE_DEC:
759 case POST_DEC:
760 case POST_INC:
761 case POST_MODIFY:
762 return nonzero_address_p (XEXP (x, 0));
763
764 case LO_SUM:
765 return nonzero_address_p (XEXP (x, 1));
766
767 default:
768 break;
769 }
770
771 /* If it isn't one of the case above, might be zero. */
772 return false;
773 }
774
775 /* Return 1 if X refers to a memory location whose address
776 cannot be compared reliably with constant addresses,
777 or if X refers to a BLKmode memory object.
778 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
779 zero, we are slightly more conservative. */
780
781 bool
782 rtx_addr_varies_p (const_rtx x, bool for_alias)
783 {
784 enum rtx_code code;
785 int i;
786 const char *fmt;
787
788 if (x == 0)
789 return 0;
790
791 code = GET_CODE (x);
792 if (code == MEM)
793 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
794
795 fmt = GET_RTX_FORMAT (code);
796 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
797 if (fmt[i] == 'e')
798 {
799 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
800 return 1;
801 }
802 else if (fmt[i] == 'E')
803 {
804 int j;
805 for (j = 0; j < XVECLEN (x, i); j++)
806 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
807 return 1;
808 }
809 return 0;
810 }
811 \f
812 /* Return the CALL in X if there is one. */
813
814 rtx
815 get_call_rtx_from (const rtx_insn *insn)
816 {
817 rtx x = PATTERN (insn);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
825 }
826
827 /* Get the declaration of the function called by INSN. */
828
829 tree
830 get_call_fndecl (const rtx_insn *insn)
831 {
832 rtx note, datum;
833
834 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
835 if (note == NULL_RTX)
836 return NULL_TREE;
837
838 datum = XEXP (note, 0);
839 if (datum != NULL_RTX)
840 return SYMBOL_REF_DECL (datum);
841
842 return NULL_TREE;
843 }
844 \f
845 /* Return the value of the integer term in X, if one is apparent;
846 otherwise return 0.
847 Only obvious integer terms are detected.
848 This is used in cse.c with the `related_value' field. */
849
850 HOST_WIDE_INT
851 get_integer_term (const_rtx x)
852 {
853 if (GET_CODE (x) == CONST)
854 x = XEXP (x, 0);
855
856 if (GET_CODE (x) == MINUS
857 && CONST_INT_P (XEXP (x, 1)))
858 return - INTVAL (XEXP (x, 1));
859 if (GET_CODE (x) == PLUS
860 && CONST_INT_P (XEXP (x, 1)))
861 return INTVAL (XEXP (x, 1));
862 return 0;
863 }
864
865 /* If X is a constant, return the value sans apparent integer term;
866 otherwise return 0.
867 Only obvious integer terms are detected. */
868
869 rtx
870 get_related_value (const_rtx x)
871 {
872 if (GET_CODE (x) != CONST)
873 return 0;
874 x = XEXP (x, 0);
875 if (GET_CODE (x) == PLUS
876 && CONST_INT_P (XEXP (x, 1)))
877 return XEXP (x, 0);
878 else if (GET_CODE (x) == MINUS
879 && CONST_INT_P (XEXP (x, 1)))
880 return XEXP (x, 0);
881 return 0;
882 }
883 \f
884 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
885 to somewhere in the same object or object_block as SYMBOL. */
886
887 bool
888 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
889 {
890 tree decl;
891
892 if (GET_CODE (symbol) != SYMBOL_REF)
893 return false;
894
895 if (offset == 0)
896 return true;
897
898 if (offset > 0)
899 {
900 if (CONSTANT_POOL_ADDRESS_P (symbol)
901 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
902 return true;
903
904 decl = SYMBOL_REF_DECL (symbol);
905 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
906 return true;
907 }
908
909 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
910 && SYMBOL_REF_BLOCK (symbol)
911 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
912 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
913 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
914 return true;
915
916 return false;
917 }
918
919 /* Split X into a base and a constant offset, storing them in *BASE_OUT
920 and *OFFSET_OUT respectively. */
921
922 void
923 split_const (rtx x, rtx *base_out, rtx *offset_out)
924 {
925 if (GET_CODE (x) == CONST)
926 {
927 x = XEXP (x, 0);
928 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
929 {
930 *base_out = XEXP (x, 0);
931 *offset_out = XEXP (x, 1);
932 return;
933 }
934 }
935 *base_out = x;
936 *offset_out = const0_rtx;
937 }
938
939 /* Express integer value X as some value Y plus a polynomial offset,
940 where Y is either const0_rtx, X or something within X (as opposed
941 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
942
943 rtx
944 strip_offset (rtx x, poly_int64_pod *offset_out)
945 {
946 rtx base = const0_rtx;
947 rtx test = x;
948 if (GET_CODE (test) == CONST)
949 test = XEXP (test, 0);
950 if (GET_CODE (test) == PLUS)
951 {
952 base = XEXP (test, 0);
953 test = XEXP (test, 1);
954 }
955 if (poly_int_rtx_p (test, offset_out))
956 return base;
957 *offset_out = 0;
958 return x;
959 }
960
961 /* Return the argument size in REG_ARGS_SIZE note X. */
962
963 poly_int64
964 get_args_size (const_rtx x)
965 {
966 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
967 return rtx_to_poly_int64 (XEXP (x, 0));
968 }
969 \f
970 /* Return the number of places FIND appears within X. If COUNT_DEST is
971 zero, we do not count occurrences inside the destination of a SET. */
972
973 int
974 count_occurrences (const_rtx x, const_rtx find, int count_dest)
975 {
976 int i, j;
977 enum rtx_code code;
978 const char *format_ptr;
979 int count;
980
981 if (x == find)
982 return 1;
983
984 code = GET_CODE (x);
985
986 switch (code)
987 {
988 case REG:
989 CASE_CONST_ANY:
990 case SYMBOL_REF:
991 case CODE_LABEL:
992 case PC:
993 case CC0:
994 return 0;
995
996 case EXPR_LIST:
997 count = count_occurrences (XEXP (x, 0), find, count_dest);
998 if (XEXP (x, 1))
999 count += count_occurrences (XEXP (x, 1), find, count_dest);
1000 return count;
1001
1002 case MEM:
1003 if (MEM_P (find) && rtx_equal_p (x, find))
1004 return 1;
1005 break;
1006
1007 case SET:
1008 if (SET_DEST (x) == find && ! count_dest)
1009 return count_occurrences (SET_SRC (x), find, count_dest);
1010 break;
1011
1012 default:
1013 break;
1014 }
1015
1016 format_ptr = GET_RTX_FORMAT (code);
1017 count = 0;
1018
1019 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1020 {
1021 switch (*format_ptr++)
1022 {
1023 case 'e':
1024 count += count_occurrences (XEXP (x, i), find, count_dest);
1025 break;
1026
1027 case 'E':
1028 for (j = 0; j < XVECLEN (x, i); j++)
1029 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1030 break;
1031 }
1032 }
1033 return count;
1034 }
1035
1036 \f
1037 /* Return TRUE if OP is a register or subreg of a register that
1038 holds an unsigned quantity. Otherwise, return FALSE. */
1039
1040 bool
1041 unsigned_reg_p (rtx op)
1042 {
1043 if (REG_P (op)
1044 && REG_EXPR (op)
1045 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1046 return true;
1047
1048 if (GET_CODE (op) == SUBREG
1049 && SUBREG_PROMOTED_SIGN (op))
1050 return true;
1051
1052 return false;
1053 }
1054
1055 \f
1056 /* Nonzero if register REG appears somewhere within IN.
1057 Also works if REG is not a register; in this case it checks
1058 for a subexpression of IN that is Lisp "equal" to REG. */
1059
1060 int
1061 reg_mentioned_p (const_rtx reg, const_rtx in)
1062 {
1063 const char *fmt;
1064 int i;
1065 enum rtx_code code;
1066
1067 if (in == 0)
1068 return 0;
1069
1070 if (reg == in)
1071 return 1;
1072
1073 if (GET_CODE (in) == LABEL_REF)
1074 return reg == label_ref_label (in);
1075
1076 code = GET_CODE (in);
1077
1078 switch (code)
1079 {
1080 /* Compare registers by number. */
1081 case REG:
1082 return REG_P (reg) && REGNO (in) == REGNO (reg);
1083
1084 /* These codes have no constituent expressions
1085 and are unique. */
1086 case SCRATCH:
1087 case CC0:
1088 case PC:
1089 return 0;
1090
1091 CASE_CONST_ANY:
1092 /* These are kept unique for a given value. */
1093 return 0;
1094
1095 default:
1096 break;
1097 }
1098
1099 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1100 return 1;
1101
1102 fmt = GET_RTX_FORMAT (code);
1103
1104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1105 {
1106 if (fmt[i] == 'E')
1107 {
1108 int j;
1109 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1110 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1111 return 1;
1112 }
1113 else if (fmt[i] == 'e'
1114 && reg_mentioned_p (reg, XEXP (in, i)))
1115 return 1;
1116 }
1117 return 0;
1118 }
1119 \f
1120 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1121 no CODE_LABEL insn. */
1122
1123 int
1124 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1125 {
1126 rtx_insn *p;
1127 if (beg == end)
1128 return 0;
1129 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1130 if (LABEL_P (p))
1131 return 0;
1132 return 1;
1133 }
1134
1135 /* Nonzero if register REG is used in an insn between
1136 FROM_INSN and TO_INSN (exclusive of those two). */
1137
1138 int
1139 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1140 const rtx_insn *to_insn)
1141 {
1142 rtx_insn *insn;
1143
1144 if (from_insn == to_insn)
1145 return 0;
1146
1147 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1148 if (NONDEBUG_INSN_P (insn)
1149 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1150 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1151 return 1;
1152 return 0;
1153 }
1154 \f
1155 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1156 is entirely replaced by a new value and the only use is as a SET_DEST,
1157 we do not consider it a reference. */
1158
1159 int
1160 reg_referenced_p (const_rtx x, const_rtx body)
1161 {
1162 int i;
1163
1164 switch (GET_CODE (body))
1165 {
1166 case SET:
1167 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1168 return 1;
1169
1170 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1171 of a REG that occupies all of the REG, the insn references X if
1172 it is mentioned in the destination. */
1173 if (GET_CODE (SET_DEST (body)) != CC0
1174 && GET_CODE (SET_DEST (body)) != PC
1175 && !REG_P (SET_DEST (body))
1176 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1177 && REG_P (SUBREG_REG (SET_DEST (body)))
1178 && !read_modify_subreg_p (SET_DEST (body)))
1179 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1180 return 1;
1181 return 0;
1182
1183 case ASM_OPERANDS:
1184 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1186 return 1;
1187 return 0;
1188
1189 case CALL:
1190 case USE:
1191 case IF_THEN_ELSE:
1192 return reg_overlap_mentioned_p (x, body);
1193
1194 case TRAP_IF:
1195 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1196
1197 case PREFETCH:
1198 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1199
1200 case UNSPEC:
1201 case UNSPEC_VOLATILE:
1202 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1203 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1204 return 1;
1205 return 0;
1206
1207 case PARALLEL:
1208 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1209 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1210 return 1;
1211 return 0;
1212
1213 case CLOBBER:
1214 if (MEM_P (XEXP (body, 0)))
1215 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1216 return 1;
1217 return 0;
1218
1219 case COND_EXEC:
1220 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1221 return 1;
1222 return reg_referenced_p (x, COND_EXEC_CODE (body));
1223
1224 default:
1225 return 0;
1226 }
1227 }
1228 \f
1229 /* Nonzero if register REG is set or clobbered in an insn between
1230 FROM_INSN and TO_INSN (exclusive of those two). */
1231
1232 int
1233 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1234 const rtx_insn *to_insn)
1235 {
1236 const rtx_insn *insn;
1237
1238 if (from_insn == to_insn)
1239 return 0;
1240
1241 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1242 if (INSN_P (insn) && reg_set_p (reg, insn))
1243 return 1;
1244 return 0;
1245 }
1246
1247 /* Return true if REG is set or clobbered inside INSN. */
1248
1249 int
1250 reg_set_p (const_rtx reg, const_rtx insn)
1251 {
1252 /* After delay slot handling, call and branch insns might be in a
1253 sequence. Check all the elements there. */
1254 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1255 {
1256 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1257 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1258 return true;
1259
1260 return false;
1261 }
1262
1263 /* We can be passed an insn or part of one. If we are passed an insn,
1264 check if a side-effect of the insn clobbers REG. */
1265 if (INSN_P (insn)
1266 && (FIND_REG_INC_NOTE (insn, reg)
1267 || (CALL_P (insn)
1268 && ((REG_P (reg)
1269 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1270 && (insn_callee_abi (as_a<const rtx_insn *> (insn))
1271 .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
1272 || MEM_P (reg)
1273 || find_reg_fusage (insn, CLOBBER, reg)))))
1274 return true;
1275
1276 /* There are no REG_INC notes for SP autoinc. */
1277 if (reg == stack_pointer_rtx && INSN_P (insn))
1278 {
1279 subrtx_var_iterator::array_type array;
1280 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1281 {
1282 rtx mem = *iter;
1283 if (mem
1284 && MEM_P (mem)
1285 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1286 {
1287 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1288 return true;
1289 iter.skip_subrtxes ();
1290 }
1291 }
1292 }
1293
1294 return set_of (reg, insn) != NULL_RTX;
1295 }
1296
1297 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1298 only if none of them are modified between START and END. Return 1 if
1299 X contains a MEM; this routine does use memory aliasing. */
1300
1301 int
1302 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1303 {
1304 const enum rtx_code code = GET_CODE (x);
1305 const char *fmt;
1306 int i, j;
1307 rtx_insn *insn;
1308
1309 if (start == end)
1310 return 0;
1311
1312 switch (code)
1313 {
1314 CASE_CONST_ANY:
1315 case CONST:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 return 0;
1319
1320 case PC:
1321 case CC0:
1322 return 1;
1323
1324 case MEM:
1325 if (modified_between_p (XEXP (x, 0), start, end))
1326 return 1;
1327 if (MEM_READONLY_P (x))
1328 return 0;
1329 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1330 if (memory_modified_in_insn_p (x, insn))
1331 return 1;
1332 return 0;
1333
1334 case REG:
1335 return reg_set_between_p (x, start, end);
1336
1337 default:
1338 break;
1339 }
1340
1341 fmt = GET_RTX_FORMAT (code);
1342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1343 {
1344 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1345 return 1;
1346
1347 else if (fmt[i] == 'E')
1348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1349 if (modified_between_p (XVECEXP (x, i, j), start, end))
1350 return 1;
1351 }
1352
1353 return 0;
1354 }
1355
1356 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1357 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1358 does use memory aliasing. */
1359
1360 int
1361 modified_in_p (const_rtx x, const_rtx insn)
1362 {
1363 const enum rtx_code code = GET_CODE (x);
1364 const char *fmt;
1365 int i, j;
1366
1367 switch (code)
1368 {
1369 CASE_CONST_ANY:
1370 case CONST:
1371 case SYMBOL_REF:
1372 case LABEL_REF:
1373 return 0;
1374
1375 case PC:
1376 case CC0:
1377 return 1;
1378
1379 case MEM:
1380 if (modified_in_p (XEXP (x, 0), insn))
1381 return 1;
1382 if (MEM_READONLY_P (x))
1383 return 0;
1384 if (memory_modified_in_insn_p (x, insn))
1385 return 1;
1386 return 0;
1387
1388 case REG:
1389 return reg_set_p (x, insn);
1390
1391 default:
1392 break;
1393 }
1394
1395 fmt = GET_RTX_FORMAT (code);
1396 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1397 {
1398 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1399 return 1;
1400
1401 else if (fmt[i] == 'E')
1402 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1403 if (modified_in_p (XVECEXP (x, i, j), insn))
1404 return 1;
1405 }
1406
1407 return 0;
1408 }
1409
1410 /* Return true if X is a SUBREG and if storing a value to X would
1411 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1412 target, using a SUBREG to store to one half of a DImode REG would
1413 preserve the other half. */
1414
1415 bool
1416 read_modify_subreg_p (const_rtx x)
1417 {
1418 if (GET_CODE (x) != SUBREG)
1419 return false;
1420 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1421 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1422 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1423 /* The inner and outer modes of a subreg must be ordered, so that we
1424 can tell whether they're paradoxical or partial. */
1425 gcc_checking_assert (ordered_p (isize, osize));
1426 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1427 }
1428 \f
1429 /* Helper function for set_of. */
1430 struct set_of_data
1431 {
1432 const_rtx found;
1433 const_rtx pat;
1434 };
1435
1436 static void
1437 set_of_1 (rtx x, const_rtx pat, void *data1)
1438 {
1439 struct set_of_data *const data = (struct set_of_data *) (data1);
1440 if (rtx_equal_p (x, data->pat)
1441 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1442 data->found = pat;
1443 }
1444
1445 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1446 (either directly or via STRICT_LOW_PART and similar modifiers). */
1447 const_rtx
1448 set_of (const_rtx pat, const_rtx insn)
1449 {
1450 struct set_of_data data;
1451 data.found = NULL_RTX;
1452 data.pat = pat;
1453 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1454 return data.found;
1455 }
1456
1457 /* Add all hard register in X to *PSET. */
1458 void
1459 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1460 {
1461 subrtx_iterator::array_type array;
1462 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1463 {
1464 const_rtx x = *iter;
1465 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1466 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1467 }
1468 }
1469
1470 /* This function, called through note_stores, collects sets and
1471 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1472 by DATA. */
1473 void
1474 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1475 {
1476 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1477 if (REG_P (x) && HARD_REGISTER_P (x))
1478 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1479 }
1480
1481 /* Examine INSN, and compute the set of hard registers written by it.
1482 Store it in *PSET. Should only be called after reload.
1483
1484 IMPLICIT is true if we should include registers that are fully-clobbered
1485 by calls. This should be used with caution, since it doesn't include
1486 partially-clobbered registers. */
1487 void
1488 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1489 {
1490 rtx link;
1491
1492 CLEAR_HARD_REG_SET (*pset);
1493 note_stores (insn, record_hard_reg_sets, pset);
1494 if (CALL_P (insn) && implicit)
1495 *pset |= insn_callee_abi (insn).full_reg_clobbers ();
1496 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1497 if (REG_NOTE_KIND (link) == REG_INC)
1498 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1499 }
1500
1501 /* Like record_hard_reg_sets, but called through note_uses. */
1502 void
1503 record_hard_reg_uses (rtx *px, void *data)
1504 {
1505 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1506 }
1507 \f
1508 /* Given an INSN, return a SET expression if this insn has only a single SET.
1509 It may also have CLOBBERs, USEs, or SET whose output
1510 will not be used, which we ignore. */
1511
1512 rtx
1513 single_set_2 (const rtx_insn *insn, const_rtx pat)
1514 {
1515 rtx set = NULL;
1516 int set_verified = 1;
1517 int i;
1518
1519 if (GET_CODE (pat) == PARALLEL)
1520 {
1521 for (i = 0; i < XVECLEN (pat, 0); i++)
1522 {
1523 rtx sub = XVECEXP (pat, 0, i);
1524 switch (GET_CODE (sub))
1525 {
1526 case USE:
1527 case CLOBBER:
1528 break;
1529
1530 case SET:
1531 /* We can consider insns having multiple sets, where all
1532 but one are dead as single set insns. In common case
1533 only single set is present in the pattern so we want
1534 to avoid checking for REG_UNUSED notes unless necessary.
1535
1536 When we reach set first time, we just expect this is
1537 the single set we are looking for and only when more
1538 sets are found in the insn, we check them. */
1539 if (!set_verified)
1540 {
1541 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1542 && !side_effects_p (set))
1543 set = NULL;
1544 else
1545 set_verified = 1;
1546 }
1547 if (!set)
1548 set = sub, set_verified = 0;
1549 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1550 || side_effects_p (sub))
1551 return NULL_RTX;
1552 break;
1553
1554 default:
1555 return NULL_RTX;
1556 }
1557 }
1558 }
1559 return set;
1560 }
1561
1562 /* Given an INSN, return nonzero if it has more than one SET, else return
1563 zero. */
1564
1565 int
1566 multiple_sets (const_rtx insn)
1567 {
1568 int found;
1569 int i;
1570
1571 /* INSN must be an insn. */
1572 if (! INSN_P (insn))
1573 return 0;
1574
1575 /* Only a PARALLEL can have multiple SETs. */
1576 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1577 {
1578 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1579 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1580 {
1581 /* If we have already found a SET, then return now. */
1582 if (found)
1583 return 1;
1584 else
1585 found = 1;
1586 }
1587 }
1588
1589 /* Either zero or one SET. */
1590 return 0;
1591 }
1592 \f
1593 /* Return nonzero if the destination of SET equals the source
1594 and there are no side effects. */
1595
1596 int
1597 set_noop_p (const_rtx set)
1598 {
1599 rtx src = SET_SRC (set);
1600 rtx dst = SET_DEST (set);
1601
1602 if (dst == pc_rtx && src == pc_rtx)
1603 return 1;
1604
1605 if (MEM_P (dst) && MEM_P (src))
1606 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1607
1608 if (GET_CODE (dst) == ZERO_EXTRACT)
1609 return rtx_equal_p (XEXP (dst, 0), src)
1610 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1611 && !side_effects_p (src);
1612
1613 if (GET_CODE (dst) == STRICT_LOW_PART)
1614 dst = XEXP (dst, 0);
1615
1616 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1617 {
1618 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1619 return 0;
1620 src = SUBREG_REG (src);
1621 dst = SUBREG_REG (dst);
1622 }
1623
1624 /* It is a NOOP if destination overlaps with selected src vector
1625 elements. */
1626 if (GET_CODE (src) == VEC_SELECT
1627 && REG_P (XEXP (src, 0)) && REG_P (dst)
1628 && HARD_REGISTER_P (XEXP (src, 0))
1629 && HARD_REGISTER_P (dst))
1630 {
1631 int i;
1632 rtx par = XEXP (src, 1);
1633 rtx src0 = XEXP (src, 0);
1634 poly_int64 c0;
1635 if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
1636 return 0;
1637 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1638
1639 for (i = 1; i < XVECLEN (par, 0); i++)
1640 {
1641 poly_int64 c0i;
1642 if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
1643 || maybe_ne (c0i, c0 + i))
1644 return 0;
1645 }
1646 return
1647 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1648 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1649 offset, GET_MODE (dst)) == (int) REGNO (dst);
1650 }
1651
1652 return (REG_P (src) && REG_P (dst)
1653 && REGNO (src) == REGNO (dst));
1654 }
1655 \f
1656 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1657 value to itself. */
1658
1659 int
1660 noop_move_p (const rtx_insn *insn)
1661 {
1662 rtx pat = PATTERN (insn);
1663
1664 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1665 return 1;
1666
1667 /* Insns carrying these notes are useful later on. */
1668 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1669 return 0;
1670
1671 /* Check the code to be executed for COND_EXEC. */
1672 if (GET_CODE (pat) == COND_EXEC)
1673 pat = COND_EXEC_CODE (pat);
1674
1675 if (GET_CODE (pat) == SET && set_noop_p (pat))
1676 return 1;
1677
1678 if (GET_CODE (pat) == PARALLEL)
1679 {
1680 int i;
1681 /* If nothing but SETs of registers to themselves,
1682 this insn can also be deleted. */
1683 for (i = 0; i < XVECLEN (pat, 0); i++)
1684 {
1685 rtx tem = XVECEXP (pat, 0, i);
1686
1687 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1688 continue;
1689
1690 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1691 return 0;
1692 }
1693
1694 return 1;
1695 }
1696 return 0;
1697 }
1698 \f
1699
1700 /* Return nonzero if register in range [REGNO, ENDREGNO)
1701 appears either explicitly or implicitly in X
1702 other than being stored into.
1703
1704 References contained within the substructure at LOC do not count.
1705 LOC may be zero, meaning don't ignore anything. */
1706
1707 bool
1708 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1709 rtx *loc)
1710 {
1711 int i;
1712 unsigned int x_regno;
1713 RTX_CODE code;
1714 const char *fmt;
1715
1716 repeat:
1717 /* The contents of a REG_NONNEG note is always zero, so we must come here
1718 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1719 if (x == 0)
1720 return false;
1721
1722 code = GET_CODE (x);
1723
1724 switch (code)
1725 {
1726 case REG:
1727 x_regno = REGNO (x);
1728
1729 /* If we modifying the stack, frame, or argument pointer, it will
1730 clobber a virtual register. In fact, we could be more precise,
1731 but it isn't worth it. */
1732 if ((x_regno == STACK_POINTER_REGNUM
1733 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1734 && x_regno == ARG_POINTER_REGNUM)
1735 || x_regno == FRAME_POINTER_REGNUM)
1736 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1737 return true;
1738
1739 return endregno > x_regno && regno < END_REGNO (x);
1740
1741 case SUBREG:
1742 /* If this is a SUBREG of a hard reg, we can see exactly which
1743 registers are being modified. Otherwise, handle normally. */
1744 if (REG_P (SUBREG_REG (x))
1745 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1746 {
1747 unsigned int inner_regno = subreg_regno (x);
1748 unsigned int inner_endregno
1749 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1750 ? subreg_nregs (x) : 1);
1751
1752 return endregno > inner_regno && regno < inner_endregno;
1753 }
1754 break;
1755
1756 case CLOBBER:
1757 case SET:
1758 if (&SET_DEST (x) != loc
1759 /* Note setting a SUBREG counts as referring to the REG it is in for
1760 a pseudo but not for hard registers since we can
1761 treat each word individually. */
1762 && ((GET_CODE (SET_DEST (x)) == SUBREG
1763 && loc != &SUBREG_REG (SET_DEST (x))
1764 && REG_P (SUBREG_REG (SET_DEST (x)))
1765 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1766 && refers_to_regno_p (regno, endregno,
1767 SUBREG_REG (SET_DEST (x)), loc))
1768 || (!REG_P (SET_DEST (x))
1769 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1770 return true;
1771
1772 if (code == CLOBBER || loc == &SET_SRC (x))
1773 return false;
1774 x = SET_SRC (x);
1775 goto repeat;
1776
1777 default:
1778 break;
1779 }
1780
1781 /* X does not match, so try its subexpressions. */
1782
1783 fmt = GET_RTX_FORMAT (code);
1784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1785 {
1786 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1787 {
1788 if (i == 0)
1789 {
1790 x = XEXP (x, 0);
1791 goto repeat;
1792 }
1793 else
1794 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1795 return true;
1796 }
1797 else if (fmt[i] == 'E')
1798 {
1799 int j;
1800 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1801 if (loc != &XVECEXP (x, i, j)
1802 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1803 return true;
1804 }
1805 }
1806 return false;
1807 }
1808
1809 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1810 we check if any register number in X conflicts with the relevant register
1811 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1812 contains a MEM (we don't bother checking for memory addresses that can't
1813 conflict because we expect this to be a rare case. */
1814
1815 int
1816 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1817 {
1818 unsigned int regno, endregno;
1819
1820 /* If either argument is a constant, then modifying X cannot
1821 affect IN. Here we look at IN, we can profitably combine
1822 CONSTANT_P (x) with the switch statement below. */
1823 if (CONSTANT_P (in))
1824 return 0;
1825
1826 recurse:
1827 switch (GET_CODE (x))
1828 {
1829 case CLOBBER:
1830 case STRICT_LOW_PART:
1831 case ZERO_EXTRACT:
1832 case SIGN_EXTRACT:
1833 /* Overly conservative. */
1834 x = XEXP (x, 0);
1835 goto recurse;
1836
1837 case SUBREG:
1838 regno = REGNO (SUBREG_REG (x));
1839 if (regno < FIRST_PSEUDO_REGISTER)
1840 regno = subreg_regno (x);
1841 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1842 ? subreg_nregs (x) : 1);
1843 goto do_reg;
1844
1845 case REG:
1846 regno = REGNO (x);
1847 endregno = END_REGNO (x);
1848 do_reg:
1849 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1850
1851 case MEM:
1852 {
1853 const char *fmt;
1854 int i;
1855
1856 if (MEM_P (in))
1857 return 1;
1858
1859 fmt = GET_RTX_FORMAT (GET_CODE (in));
1860 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1861 if (fmt[i] == 'e')
1862 {
1863 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1864 return 1;
1865 }
1866 else if (fmt[i] == 'E')
1867 {
1868 int j;
1869 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1870 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1871 return 1;
1872 }
1873
1874 return 0;
1875 }
1876
1877 case SCRATCH:
1878 case PC:
1879 case CC0:
1880 return reg_mentioned_p (x, in);
1881
1882 case PARALLEL:
1883 {
1884 int i;
1885
1886 /* If any register in here refers to it we return true. */
1887 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1888 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1889 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1890 return 1;
1891 return 0;
1892 }
1893
1894 default:
1895 gcc_assert (CONSTANT_P (x));
1896 return 0;
1897 }
1898 }
1899 \f
1900 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1901 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1902 ignored by note_stores, but passed to FUN.
1903
1904 FUN receives three arguments:
1905 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1906 2. the SET or CLOBBER rtx that does the store,
1907 3. the pointer DATA provided to note_stores.
1908
1909 If the item being stored in or clobbered is a SUBREG of a hard register,
1910 the SUBREG will be passed. */
1911
1912 void
1913 note_pattern_stores (const_rtx x,
1914 void (*fun) (rtx, const_rtx, void *), void *data)
1915 {
1916 int i;
1917
1918 if (GET_CODE (x) == COND_EXEC)
1919 x = COND_EXEC_CODE (x);
1920
1921 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1922 {
1923 rtx dest = SET_DEST (x);
1924
1925 while ((GET_CODE (dest) == SUBREG
1926 && (!REG_P (SUBREG_REG (dest))
1927 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1928 || GET_CODE (dest) == ZERO_EXTRACT
1929 || GET_CODE (dest) == STRICT_LOW_PART)
1930 dest = XEXP (dest, 0);
1931
1932 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1933 each of whose first operand is a register. */
1934 if (GET_CODE (dest) == PARALLEL)
1935 {
1936 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1937 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1938 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1939 }
1940 else
1941 (*fun) (dest, x, data);
1942 }
1943
1944 else if (GET_CODE (x) == PARALLEL)
1945 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1946 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1947 }
1948
1949 /* Same, but for an instruction. If the instruction is a call, include
1950 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1951
1952 void
1953 note_stores (const rtx_insn *insn,
1954 void (*fun) (rtx, const_rtx, void *), void *data)
1955 {
1956 if (CALL_P (insn))
1957 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1958 link; link = XEXP (link, 1))
1959 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1960 note_pattern_stores (XEXP (link, 0), fun, data);
1961 note_pattern_stores (PATTERN (insn), fun, data);
1962 }
1963 \f
1964 /* Like notes_stores, but call FUN for each expression that is being
1965 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1966 FUN for each expression, not any interior subexpressions. FUN receives a
1967 pointer to the expression and the DATA passed to this function.
1968
1969 Note that this is not quite the same test as that done in reg_referenced_p
1970 since that considers something as being referenced if it is being
1971 partially set, while we do not. */
1972
1973 void
1974 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1975 {
1976 rtx body = *pbody;
1977 int i;
1978
1979 switch (GET_CODE (body))
1980 {
1981 case COND_EXEC:
1982 (*fun) (&COND_EXEC_TEST (body), data);
1983 note_uses (&COND_EXEC_CODE (body), fun, data);
1984 return;
1985
1986 case PARALLEL:
1987 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1988 note_uses (&XVECEXP (body, 0, i), fun, data);
1989 return;
1990
1991 case SEQUENCE:
1992 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1993 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1994 return;
1995
1996 case USE:
1997 (*fun) (&XEXP (body, 0), data);
1998 return;
1999
2000 case ASM_OPERANDS:
2001 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
2002 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
2003 return;
2004
2005 case TRAP_IF:
2006 (*fun) (&TRAP_CONDITION (body), data);
2007 return;
2008
2009 case PREFETCH:
2010 (*fun) (&XEXP (body, 0), data);
2011 return;
2012
2013 case UNSPEC:
2014 case UNSPEC_VOLATILE:
2015 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2016 (*fun) (&XVECEXP (body, 0, i), data);
2017 return;
2018
2019 case CLOBBER:
2020 if (MEM_P (XEXP (body, 0)))
2021 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2022 return;
2023
2024 case SET:
2025 {
2026 rtx dest = SET_DEST (body);
2027
2028 /* For sets we replace everything in source plus registers in memory
2029 expression in store and operands of a ZERO_EXTRACT. */
2030 (*fun) (&SET_SRC (body), data);
2031
2032 if (GET_CODE (dest) == ZERO_EXTRACT)
2033 {
2034 (*fun) (&XEXP (dest, 1), data);
2035 (*fun) (&XEXP (dest, 2), data);
2036 }
2037
2038 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2039 dest = XEXP (dest, 0);
2040
2041 if (MEM_P (dest))
2042 (*fun) (&XEXP (dest, 0), data);
2043 }
2044 return;
2045
2046 default:
2047 /* All the other possibilities never store. */
2048 (*fun) (pbody, data);
2049 return;
2050 }
2051 }
2052 \f
2053 /* Return nonzero if X's old contents don't survive after INSN.
2054 This will be true if X is (cc0) or if X is a register and
2055 X dies in INSN or because INSN entirely sets X.
2056
2057 "Entirely set" means set directly and not through a SUBREG, or
2058 ZERO_EXTRACT, so no trace of the old contents remains.
2059 Likewise, REG_INC does not count.
2060
2061 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2062 but for this use that makes no difference, since regs don't overlap
2063 during their lifetimes. Therefore, this function may be used
2064 at any time after deaths have been computed.
2065
2066 If REG is a hard reg that occupies multiple machine registers, this
2067 function will only return 1 if each of those registers will be replaced
2068 by INSN. */
2069
2070 int
2071 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2072 {
2073 unsigned int regno, end_regno;
2074 unsigned int i;
2075
2076 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2077 if (GET_CODE (x) == CC0)
2078 return 1;
2079
2080 gcc_assert (REG_P (x));
2081
2082 regno = REGNO (x);
2083 end_regno = END_REGNO (x);
2084 for (i = regno; i < end_regno; i++)
2085 if (! dead_or_set_regno_p (insn, i))
2086 return 0;
2087
2088 return 1;
2089 }
2090
2091 /* Return TRUE iff DEST is a register or subreg of a register, is a
2092 complete rather than read-modify-write destination, and contains
2093 register TEST_REGNO. */
2094
2095 static bool
2096 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2097 {
2098 unsigned int regno, endregno;
2099
2100 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2101 dest = SUBREG_REG (dest);
2102
2103 if (!REG_P (dest))
2104 return false;
2105
2106 regno = REGNO (dest);
2107 endregno = END_REGNO (dest);
2108 return (test_regno >= regno && test_regno < endregno);
2109 }
2110
2111 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2112 any member matches the covers_regno_no_parallel_p criteria. */
2113
2114 static bool
2115 covers_regno_p (const_rtx dest, unsigned int test_regno)
2116 {
2117 if (GET_CODE (dest) == PARALLEL)
2118 {
2119 /* Some targets place small structures in registers for return
2120 values of functions, and those registers are wrapped in
2121 PARALLELs that we may see as the destination of a SET. */
2122 int i;
2123
2124 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2125 {
2126 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2127 if (inner != NULL_RTX
2128 && covers_regno_no_parallel_p (inner, test_regno))
2129 return true;
2130 }
2131
2132 return false;
2133 }
2134 else
2135 return covers_regno_no_parallel_p (dest, test_regno);
2136 }
2137
2138 /* Utility function for dead_or_set_p to check an individual register. */
2139
2140 int
2141 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2142 {
2143 const_rtx pattern;
2144
2145 /* See if there is a death note for something that includes TEST_REGNO. */
2146 if (find_regno_note (insn, REG_DEAD, test_regno))
2147 return 1;
2148
2149 if (CALL_P (insn)
2150 && find_regno_fusage (insn, CLOBBER, test_regno))
2151 return 1;
2152
2153 pattern = PATTERN (insn);
2154
2155 /* If a COND_EXEC is not executed, the value survives. */
2156 if (GET_CODE (pattern) == COND_EXEC)
2157 return 0;
2158
2159 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2160 return covers_regno_p (SET_DEST (pattern), test_regno);
2161 else if (GET_CODE (pattern) == PARALLEL)
2162 {
2163 int i;
2164
2165 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2166 {
2167 rtx body = XVECEXP (pattern, 0, i);
2168
2169 if (GET_CODE (body) == COND_EXEC)
2170 body = COND_EXEC_CODE (body);
2171
2172 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2173 && covers_regno_p (SET_DEST (body), test_regno))
2174 return 1;
2175 }
2176 }
2177
2178 return 0;
2179 }
2180
2181 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2182 If DATUM is nonzero, look for one whose datum is DATUM. */
2183
2184 rtx
2185 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2186 {
2187 rtx link;
2188
2189 gcc_checking_assert (insn);
2190
2191 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2192 if (! INSN_P (insn))
2193 return 0;
2194 if (datum == 0)
2195 {
2196 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2197 if (REG_NOTE_KIND (link) == kind)
2198 return link;
2199 return 0;
2200 }
2201
2202 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2203 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2204 return link;
2205 return 0;
2206 }
2207
2208 /* Return the reg-note of kind KIND in insn INSN which applies to register
2209 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2210 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2211 it might be the case that the note overlaps REGNO. */
2212
2213 rtx
2214 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2215 {
2216 rtx link;
2217
2218 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2219 if (! INSN_P (insn))
2220 return 0;
2221
2222 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2223 if (REG_NOTE_KIND (link) == kind
2224 /* Verify that it is a register, so that scratch and MEM won't cause a
2225 problem here. */
2226 && REG_P (XEXP (link, 0))
2227 && REGNO (XEXP (link, 0)) <= regno
2228 && END_REGNO (XEXP (link, 0)) > regno)
2229 return link;
2230 return 0;
2231 }
2232
2233 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2234 has such a note. */
2235
2236 rtx
2237 find_reg_equal_equiv_note (const_rtx insn)
2238 {
2239 rtx link;
2240
2241 if (!INSN_P (insn))
2242 return 0;
2243
2244 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2245 if (REG_NOTE_KIND (link) == REG_EQUAL
2246 || REG_NOTE_KIND (link) == REG_EQUIV)
2247 {
2248 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2249 insns that have multiple sets. Checking single_set to
2250 make sure of this is not the proper check, as explained
2251 in the comment in set_unique_reg_note.
2252
2253 This should be changed into an assert. */
2254 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2255 return 0;
2256 return link;
2257 }
2258 return NULL;
2259 }
2260
2261 /* Check whether INSN is a single_set whose source is known to be
2262 equivalent to a constant. Return that constant if so, otherwise
2263 return null. */
2264
2265 rtx
2266 find_constant_src (const rtx_insn *insn)
2267 {
2268 rtx note, set, x;
2269
2270 set = single_set (insn);
2271 if (set)
2272 {
2273 x = avoid_constant_pool_reference (SET_SRC (set));
2274 if (CONSTANT_P (x))
2275 return x;
2276 }
2277
2278 note = find_reg_equal_equiv_note (insn);
2279 if (note && CONSTANT_P (XEXP (note, 0)))
2280 return XEXP (note, 0);
2281
2282 return NULL_RTX;
2283 }
2284
2285 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2286 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2287
2288 int
2289 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2290 {
2291 /* If it's not a CALL_INSN, it can't possibly have a
2292 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2293 if (!CALL_P (insn))
2294 return 0;
2295
2296 gcc_assert (datum);
2297
2298 if (!REG_P (datum))
2299 {
2300 rtx link;
2301
2302 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2303 link;
2304 link = XEXP (link, 1))
2305 if (GET_CODE (XEXP (link, 0)) == code
2306 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2307 return 1;
2308 }
2309 else
2310 {
2311 unsigned int regno = REGNO (datum);
2312
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2315
2316 if (regno < FIRST_PSEUDO_REGISTER)
2317 {
2318 unsigned int end_regno = END_REGNO (datum);
2319 unsigned int i;
2320
2321 for (i = regno; i < end_regno; i++)
2322 if (find_regno_fusage (insn, code, i))
2323 return 1;
2324 }
2325 }
2326
2327 return 0;
2328 }
2329
2330 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2331 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2332
2333 int
2334 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2335 {
2336 rtx link;
2337
2338 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2339 to pseudo registers, so don't bother checking. */
2340
2341 if (regno >= FIRST_PSEUDO_REGISTER
2342 || !CALL_P (insn) )
2343 return 0;
2344
2345 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2346 {
2347 rtx op, reg;
2348
2349 if (GET_CODE (op = XEXP (link, 0)) == code
2350 && REG_P (reg = XEXP (op, 0))
2351 && REGNO (reg) <= regno
2352 && END_REGNO (reg) > regno)
2353 return 1;
2354 }
2355
2356 return 0;
2357 }
2358
2359 \f
2360 /* Return true if KIND is an integer REG_NOTE. */
2361
2362 static bool
2363 int_reg_note_p (enum reg_note kind)
2364 {
2365 return kind == REG_BR_PROB;
2366 }
2367
2368 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2369 stored as the pointer to the next register note. */
2370
2371 rtx
2372 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2373 {
2374 rtx note;
2375
2376 gcc_checking_assert (!int_reg_note_p (kind));
2377 switch (kind)
2378 {
2379 case REG_CC_SETTER:
2380 case REG_CC_USER:
2381 case REG_LABEL_TARGET:
2382 case REG_LABEL_OPERAND:
2383 case REG_TM:
2384 /* These types of register notes use an INSN_LIST rather than an
2385 EXPR_LIST, so that copying is done right and dumps look
2386 better. */
2387 note = alloc_INSN_LIST (datum, list);
2388 PUT_REG_NOTE_KIND (note, kind);
2389 break;
2390
2391 default:
2392 note = alloc_EXPR_LIST (kind, datum, list);
2393 break;
2394 }
2395
2396 return note;
2397 }
2398
2399 /* Add register note with kind KIND and datum DATUM to INSN. */
2400
2401 void
2402 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2403 {
2404 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2405 }
2406
2407 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2408
2409 void
2410 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2411 {
2412 gcc_checking_assert (int_reg_note_p (kind));
2413 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2414 datum, REG_NOTES (insn));
2415 }
2416
2417 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2418
2419 void
2420 add_args_size_note (rtx_insn *insn, poly_int64 value)
2421 {
2422 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2423 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2424 }
2425
2426 /* Add a register note like NOTE to INSN. */
2427
2428 void
2429 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2430 {
2431 if (GET_CODE (note) == INT_LIST)
2432 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2433 else
2434 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2435 }
2436
2437 /* Duplicate NOTE and return the copy. */
2438 rtx
2439 duplicate_reg_note (rtx note)
2440 {
2441 reg_note kind = REG_NOTE_KIND (note);
2442
2443 if (GET_CODE (note) == INT_LIST)
2444 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2445 else if (GET_CODE (note) == EXPR_LIST)
2446 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2447 else
2448 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2449 }
2450
2451 /* Remove register note NOTE from the REG_NOTES of INSN. */
2452
2453 void
2454 remove_note (rtx_insn *insn, const_rtx note)
2455 {
2456 rtx link;
2457
2458 if (note == NULL_RTX)
2459 return;
2460
2461 if (REG_NOTES (insn) == note)
2462 REG_NOTES (insn) = XEXP (note, 1);
2463 else
2464 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2465 if (XEXP (link, 1) == note)
2466 {
2467 XEXP (link, 1) = XEXP (note, 1);
2468 break;
2469 }
2470
2471 switch (REG_NOTE_KIND (note))
2472 {
2473 case REG_EQUAL:
2474 case REG_EQUIV:
2475 df_notes_rescan (insn);
2476 break;
2477 default:
2478 break;
2479 }
2480 }
2481
2482 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2483 If NO_RESCAN is false and any notes were removed, call
2484 df_notes_rescan. Return true if any note has been removed. */
2485
2486 bool
2487 remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
2488 {
2489 rtx *loc;
2490 bool ret = false;
2491
2492 loc = &REG_NOTES (insn);
2493 while (*loc)
2494 {
2495 enum reg_note kind = REG_NOTE_KIND (*loc);
2496 if (kind == REG_EQUAL || kind == REG_EQUIV)
2497 {
2498 *loc = XEXP (*loc, 1);
2499 ret = true;
2500 }
2501 else
2502 loc = &XEXP (*loc, 1);
2503 }
2504 if (ret && !no_rescan)
2505 df_notes_rescan (insn);
2506 return ret;
2507 }
2508
2509 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2510
2511 void
2512 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2513 {
2514 df_ref eq_use;
2515
2516 if (!df)
2517 return;
2518
2519 /* This loop is a little tricky. We cannot just go down the chain because
2520 it is being modified by some actions in the loop. So we just iterate
2521 over the head. We plan to drain the list anyway. */
2522 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2523 {
2524 rtx_insn *insn = DF_REF_INSN (eq_use);
2525 rtx note = find_reg_equal_equiv_note (insn);
2526
2527 /* This assert is generally triggered when someone deletes a REG_EQUAL
2528 or REG_EQUIV note by hacking the list manually rather than calling
2529 remove_note. */
2530 gcc_assert (note);
2531
2532 remove_note (insn, note);
2533 }
2534 }
2535
2536 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2537 return 1 if it is found. A simple equality test is used to determine if
2538 NODE matches. */
2539
2540 bool
2541 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2542 {
2543 const_rtx x;
2544
2545 for (x = listp; x; x = XEXP (x, 1))
2546 if (node == XEXP (x, 0))
2547 return true;
2548
2549 return false;
2550 }
2551
2552 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2553 remove that entry from the list if it is found.
2554
2555 A simple equality test is used to determine if NODE matches. */
2556
2557 void
2558 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2559 {
2560 rtx_expr_list *temp = *listp;
2561 rtx_expr_list *prev = NULL;
2562
2563 while (temp)
2564 {
2565 if (node == temp->element ())
2566 {
2567 /* Splice the node out of the list. */
2568 if (prev)
2569 XEXP (prev, 1) = temp->next ();
2570 else
2571 *listp = temp->next ();
2572
2573 return;
2574 }
2575
2576 prev = temp;
2577 temp = temp->next ();
2578 }
2579 }
2580
2581 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2582 remove that entry from the list if it is found.
2583
2584 A simple equality test is used to determine if NODE matches. */
2585
2586 void
2587 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2588 {
2589 rtx_insn_list *temp = *listp;
2590 rtx_insn_list *prev = NULL;
2591
2592 while (temp)
2593 {
2594 if (node == temp->insn ())
2595 {
2596 /* Splice the node out of the list. */
2597 if (prev)
2598 XEXP (prev, 1) = temp->next ();
2599 else
2600 *listp = temp->next ();
2601
2602 return;
2603 }
2604
2605 prev = temp;
2606 temp = temp->next ();
2607 }
2608 }
2609 \f
2610 /* Nonzero if X contains any volatile instructions. These are instructions
2611 which may cause unpredictable machine state instructions, and thus no
2612 instructions or register uses should be moved or combined across them.
2613 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2614
2615 int
2616 volatile_insn_p (const_rtx x)
2617 {
2618 const RTX_CODE code = GET_CODE (x);
2619 switch (code)
2620 {
2621 case LABEL_REF:
2622 case SYMBOL_REF:
2623 case CONST:
2624 CASE_CONST_ANY:
2625 case CC0:
2626 case PC:
2627 case REG:
2628 case SCRATCH:
2629 case CLOBBER:
2630 case ADDR_VEC:
2631 case ADDR_DIFF_VEC:
2632 case CALL:
2633 case MEM:
2634 return 0;
2635
2636 case UNSPEC_VOLATILE:
2637 return 1;
2638
2639 case ASM_INPUT:
2640 case ASM_OPERANDS:
2641 if (MEM_VOLATILE_P (x))
2642 return 1;
2643
2644 default:
2645 break;
2646 }
2647
2648 /* Recursively scan the operands of this expression. */
2649
2650 {
2651 const char *const fmt = GET_RTX_FORMAT (code);
2652 int i;
2653
2654 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2655 {
2656 if (fmt[i] == 'e')
2657 {
2658 if (volatile_insn_p (XEXP (x, i)))
2659 return 1;
2660 }
2661 else if (fmt[i] == 'E')
2662 {
2663 int j;
2664 for (j = 0; j < XVECLEN (x, i); j++)
2665 if (volatile_insn_p (XVECEXP (x, i, j)))
2666 return 1;
2667 }
2668 }
2669 }
2670 return 0;
2671 }
2672
2673 /* Nonzero if X contains any volatile memory references
2674 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2675
2676 int
2677 volatile_refs_p (const_rtx x)
2678 {
2679 const RTX_CODE code = GET_CODE (x);
2680 switch (code)
2681 {
2682 case LABEL_REF:
2683 case SYMBOL_REF:
2684 case CONST:
2685 CASE_CONST_ANY:
2686 case CC0:
2687 case PC:
2688 case REG:
2689 case SCRATCH:
2690 case CLOBBER:
2691 case ADDR_VEC:
2692 case ADDR_DIFF_VEC:
2693 return 0;
2694
2695 case UNSPEC_VOLATILE:
2696 return 1;
2697
2698 case MEM:
2699 case ASM_INPUT:
2700 case ASM_OPERANDS:
2701 if (MEM_VOLATILE_P (x))
2702 return 1;
2703
2704 default:
2705 break;
2706 }
2707
2708 /* Recursively scan the operands of this expression. */
2709
2710 {
2711 const char *const fmt = GET_RTX_FORMAT (code);
2712 int i;
2713
2714 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2715 {
2716 if (fmt[i] == 'e')
2717 {
2718 if (volatile_refs_p (XEXP (x, i)))
2719 return 1;
2720 }
2721 else if (fmt[i] == 'E')
2722 {
2723 int j;
2724 for (j = 0; j < XVECLEN (x, i); j++)
2725 if (volatile_refs_p (XVECEXP (x, i, j)))
2726 return 1;
2727 }
2728 }
2729 }
2730 return 0;
2731 }
2732
2733 /* Similar to above, except that it also rejects register pre- and post-
2734 incrementing. */
2735
2736 int
2737 side_effects_p (const_rtx x)
2738 {
2739 const RTX_CODE code = GET_CODE (x);
2740 switch (code)
2741 {
2742 case LABEL_REF:
2743 case SYMBOL_REF:
2744 case CONST:
2745 CASE_CONST_ANY:
2746 case CC0:
2747 case PC:
2748 case REG:
2749 case SCRATCH:
2750 case ADDR_VEC:
2751 case ADDR_DIFF_VEC:
2752 case VAR_LOCATION:
2753 return 0;
2754
2755 case CLOBBER:
2756 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2757 when some combination can't be done. If we see one, don't think
2758 that we can simplify the expression. */
2759 return (GET_MODE (x) != VOIDmode);
2760
2761 case PRE_INC:
2762 case PRE_DEC:
2763 case POST_INC:
2764 case POST_DEC:
2765 case PRE_MODIFY:
2766 case POST_MODIFY:
2767 case CALL:
2768 case UNSPEC_VOLATILE:
2769 return 1;
2770
2771 case MEM:
2772 case ASM_INPUT:
2773 case ASM_OPERANDS:
2774 if (MEM_VOLATILE_P (x))
2775 return 1;
2776
2777 default:
2778 break;
2779 }
2780
2781 /* Recursively scan the operands of this expression. */
2782
2783 {
2784 const char *fmt = GET_RTX_FORMAT (code);
2785 int i;
2786
2787 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2788 {
2789 if (fmt[i] == 'e')
2790 {
2791 if (side_effects_p (XEXP (x, i)))
2792 return 1;
2793 }
2794 else if (fmt[i] == 'E')
2795 {
2796 int j;
2797 for (j = 0; j < XVECLEN (x, i); j++)
2798 if (side_effects_p (XVECEXP (x, i, j)))
2799 return 1;
2800 }
2801 }
2802 }
2803 return 0;
2804 }
2805 \f
2806 /* Return nonzero if evaluating rtx X might cause a trap.
2807 FLAGS controls how to consider MEMs. A nonzero means the context
2808 of the access may have changed from the original, such that the
2809 address may have become invalid. */
2810
2811 int
2812 may_trap_p_1 (const_rtx x, unsigned flags)
2813 {
2814 int i;
2815 enum rtx_code code;
2816 const char *fmt;
2817
2818 /* We make no distinction currently, but this function is part of
2819 the internal target-hooks ABI so we keep the parameter as
2820 "unsigned flags". */
2821 bool code_changed = flags != 0;
2822
2823 if (x == 0)
2824 return 0;
2825 code = GET_CODE (x);
2826 switch (code)
2827 {
2828 /* Handle these cases quickly. */
2829 CASE_CONST_ANY:
2830 case SYMBOL_REF:
2831 case LABEL_REF:
2832 case CONST:
2833 case PC:
2834 case CC0:
2835 case REG:
2836 case SCRATCH:
2837 return 0;
2838
2839 case UNSPEC:
2840 return targetm.unspec_may_trap_p (x, flags);
2841
2842 case UNSPEC_VOLATILE:
2843 case ASM_INPUT:
2844 case TRAP_IF:
2845 return 1;
2846
2847 case ASM_OPERANDS:
2848 return MEM_VOLATILE_P (x);
2849
2850 /* Memory ref can trap unless it's a static var or a stack slot. */
2851 case MEM:
2852 /* Recognize specific pattern of stack checking probes. */
2853 if (flag_stack_check
2854 && MEM_VOLATILE_P (x)
2855 && XEXP (x, 0) == stack_pointer_rtx)
2856 return 1;
2857 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2858 reference; moving it out of context such as when moving code
2859 when optimizing, might cause its address to become invalid. */
2860 code_changed
2861 || !MEM_NOTRAP_P (x))
2862 {
2863 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2864 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2865 GET_MODE (x), code_changed);
2866 }
2867
2868 return 0;
2869
2870 /* Division by a non-constant might trap. */
2871 case DIV:
2872 case MOD:
2873 case UDIV:
2874 case UMOD:
2875 if (HONOR_SNANS (x))
2876 return 1;
2877 if (FLOAT_MODE_P (GET_MODE (x)))
2878 return flag_trapping_math;
2879 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2880 return 1;
2881 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2882 {
2883 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2884 unsigned int n_elts;
2885 rtx op = XEXP (x, 1);
2886 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2887 {
2888 if (!CONST_VECTOR_DUPLICATE_P (op))
2889 return 1;
2890 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2891 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2892 return 1;
2893 }
2894 else
2895 for (unsigned i = 0; i < n_elts; i++)
2896 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2897 return 1;
2898 }
2899 break;
2900
2901 case EXPR_LIST:
2902 /* An EXPR_LIST is used to represent a function call. This
2903 certainly may trap. */
2904 return 1;
2905
2906 case GE:
2907 case GT:
2908 case LE:
2909 case LT:
2910 case LTGT:
2911 case COMPARE:
2912 /* Some floating point comparisons may trap. */
2913 if (!flag_trapping_math)
2914 break;
2915 /* ??? There is no machine independent way to check for tests that trap
2916 when COMPARE is used, though many targets do make this distinction.
2917 For instance, sparc uses CCFPE for compares which generate exceptions
2918 and CCFP for compares which do not generate exceptions. */
2919 if (HONOR_NANS (x))
2920 return 1;
2921 /* But often the compare has some CC mode, so check operand
2922 modes as well. */
2923 if (HONOR_NANS (XEXP (x, 0))
2924 || HONOR_NANS (XEXP (x, 1)))
2925 return 1;
2926 break;
2927
2928 case EQ:
2929 case NE:
2930 if (HONOR_SNANS (x))
2931 return 1;
2932 /* Often comparison is CC mode, so check operand modes. */
2933 if (HONOR_SNANS (XEXP (x, 0))
2934 || HONOR_SNANS (XEXP (x, 1)))
2935 return 1;
2936 break;
2937
2938 case FIX:
2939 /* Conversion of floating point might trap. */
2940 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2941 return 1;
2942 break;
2943
2944 case NEG:
2945 case ABS:
2946 case SUBREG:
2947 case VEC_MERGE:
2948 case VEC_SELECT:
2949 case VEC_CONCAT:
2950 case VEC_DUPLICATE:
2951 /* These operations don't trap even with floating point. */
2952 break;
2953
2954 default:
2955 /* Any floating arithmetic may trap. */
2956 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2957 return 1;
2958 }
2959
2960 fmt = GET_RTX_FORMAT (code);
2961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2962 {
2963 if (fmt[i] == 'e')
2964 {
2965 if (may_trap_p_1 (XEXP (x, i), flags))
2966 return 1;
2967 }
2968 else if (fmt[i] == 'E')
2969 {
2970 int j;
2971 for (j = 0; j < XVECLEN (x, i); j++)
2972 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2973 return 1;
2974 }
2975 }
2976 return 0;
2977 }
2978
2979 /* Return nonzero if evaluating rtx X might cause a trap. */
2980
2981 int
2982 may_trap_p (const_rtx x)
2983 {
2984 return may_trap_p_1 (x, 0);
2985 }
2986
2987 /* Same as above, but additionally return nonzero if evaluating rtx X might
2988 cause a fault. We define a fault for the purpose of this function as a
2989 erroneous execution condition that cannot be encountered during the normal
2990 execution of a valid program; the typical example is an unaligned memory
2991 access on a strict alignment machine. The compiler guarantees that it
2992 doesn't generate code that will fault from a valid program, but this
2993 guarantee doesn't mean anything for individual instructions. Consider
2994 the following example:
2995
2996 struct S { int d; union { char *cp; int *ip; }; };
2997
2998 int foo(struct S *s)
2999 {
3000 if (s->d == 1)
3001 return *s->ip;
3002 else
3003 return *s->cp;
3004 }
3005
3006 on a strict alignment machine. In a valid program, foo will never be
3007 invoked on a structure for which d is equal to 1 and the underlying
3008 unique field of the union not aligned on a 4-byte boundary, but the
3009 expression *s->ip might cause a fault if considered individually.
3010
3011 At the RTL level, potentially problematic expressions will almost always
3012 verify may_trap_p; for example, the above dereference can be emitted as
3013 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
3014 However, suppose that foo is inlined in a caller that causes s->cp to
3015 point to a local character variable and guarantees that s->d is not set
3016 to 1; foo may have been effectively translated into pseudo-RTL as:
3017
3018 if ((reg:SI) == 1)
3019 (set (reg:SI) (mem:SI (%fp - 7)))
3020 else
3021 (set (reg:QI) (mem:QI (%fp - 7)))
3022
3023 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3024 memory reference to a stack slot, but it will certainly cause a fault
3025 on a strict alignment machine. */
3026
3027 int
3028 may_trap_or_fault_p (const_rtx x)
3029 {
3030 return may_trap_p_1 (x, 1);
3031 }
3032 \f
3033 /* Replace any occurrence of FROM in X with TO. The function does
3034 not enter into CONST_DOUBLE for the replace.
3035
3036 Note that copying is not done so X must not be shared unless all copies
3037 are to be modified.
3038
3039 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3040 those pointer-equal ones. */
3041
3042 rtx
3043 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3044 {
3045 int i, j;
3046 const char *fmt;
3047
3048 if (x == from)
3049 return to;
3050
3051 /* Allow this function to make replacements in EXPR_LISTs. */
3052 if (x == 0)
3053 return 0;
3054
3055 if (all_regs
3056 && REG_P (x)
3057 && REG_P (from)
3058 && REGNO (x) == REGNO (from))
3059 {
3060 gcc_assert (GET_MODE (x) == GET_MODE (from));
3061 return to;
3062 }
3063 else if (GET_CODE (x) == SUBREG)
3064 {
3065 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3066
3067 if (CONST_INT_P (new_rtx))
3068 {
3069 x = simplify_subreg (GET_MODE (x), new_rtx,
3070 GET_MODE (SUBREG_REG (x)),
3071 SUBREG_BYTE (x));
3072 gcc_assert (x);
3073 }
3074 else
3075 SUBREG_REG (x) = new_rtx;
3076
3077 return x;
3078 }
3079 else if (GET_CODE (x) == ZERO_EXTEND)
3080 {
3081 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3082
3083 if (CONST_INT_P (new_rtx))
3084 {
3085 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3086 new_rtx, GET_MODE (XEXP (x, 0)));
3087 gcc_assert (x);
3088 }
3089 else
3090 XEXP (x, 0) = new_rtx;
3091
3092 return x;
3093 }
3094
3095 fmt = GET_RTX_FORMAT (GET_CODE (x));
3096 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3097 {
3098 if (fmt[i] == 'e')
3099 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3100 else if (fmt[i] == 'E')
3101 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3102 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3103 from, to, all_regs);
3104 }
3105
3106 return x;
3107 }
3108 \f
3109 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3110 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3111
3112 void
3113 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3114 {
3115 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3116 rtx x = *loc;
3117 if (JUMP_TABLE_DATA_P (x))
3118 {
3119 x = PATTERN (x);
3120 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3121 int len = GET_NUM_ELEM (vec);
3122 for (int i = 0; i < len; ++i)
3123 {
3124 rtx ref = RTVEC_ELT (vec, i);
3125 if (XEXP (ref, 0) == old_label)
3126 {
3127 XEXP (ref, 0) = new_label;
3128 if (update_label_nuses)
3129 {
3130 ++LABEL_NUSES (new_label);
3131 --LABEL_NUSES (old_label);
3132 }
3133 }
3134 }
3135 return;
3136 }
3137
3138 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3139 field. This is not handled by the iterator because it doesn't
3140 handle unprinted ('0') fields. */
3141 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3142 JUMP_LABEL (x) = new_label;
3143
3144 subrtx_ptr_iterator::array_type array;
3145 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3146 {
3147 rtx *loc = *iter;
3148 if (rtx x = *loc)
3149 {
3150 if (GET_CODE (x) == SYMBOL_REF
3151 && CONSTANT_POOL_ADDRESS_P (x))
3152 {
3153 rtx c = get_pool_constant (x);
3154 if (rtx_referenced_p (old_label, c))
3155 {
3156 /* Create a copy of constant C; replace the label inside
3157 but do not update LABEL_NUSES because uses in constant pool
3158 are not counted. */
3159 rtx new_c = copy_rtx (c);
3160 replace_label (&new_c, old_label, new_label, false);
3161
3162 /* Add the new constant NEW_C to constant pool and replace
3163 the old reference to constant by new reference. */
3164 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3165 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3166 }
3167 }
3168
3169 if ((GET_CODE (x) == LABEL_REF
3170 || GET_CODE (x) == INSN_LIST)
3171 && XEXP (x, 0) == old_label)
3172 {
3173 XEXP (x, 0) = new_label;
3174 if (update_label_nuses)
3175 {
3176 ++LABEL_NUSES (new_label);
3177 --LABEL_NUSES (old_label);
3178 }
3179 }
3180 }
3181 }
3182 }
3183
3184 void
3185 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3186 rtx_insn *new_label, bool update_label_nuses)
3187 {
3188 rtx insn_as_rtx = insn;
3189 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3190 gcc_checking_assert (insn_as_rtx == insn);
3191 }
3192
3193 /* Return true if X is referenced in BODY. */
3194
3195 bool
3196 rtx_referenced_p (const_rtx x, const_rtx body)
3197 {
3198 subrtx_iterator::array_type array;
3199 FOR_EACH_SUBRTX (iter, array, body, ALL)
3200 if (const_rtx y = *iter)
3201 {
3202 /* Check if a label_ref Y refers to label X. */
3203 if (GET_CODE (y) == LABEL_REF
3204 && LABEL_P (x)
3205 && label_ref_label (y) == x)
3206 return true;
3207
3208 if (rtx_equal_p (x, y))
3209 return true;
3210
3211 /* If Y is a reference to pool constant traverse the constant. */
3212 if (GET_CODE (y) == SYMBOL_REF
3213 && CONSTANT_POOL_ADDRESS_P (y))
3214 iter.substitute (get_pool_constant (y));
3215 }
3216 return false;
3217 }
3218
3219 /* If INSN is a tablejump return true and store the label (before jump table) to
3220 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3221
3222 bool
3223 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3224 rtx_jump_table_data **tablep)
3225 {
3226 if (!JUMP_P (insn))
3227 return false;
3228
3229 rtx target = JUMP_LABEL (insn);
3230 if (target == NULL_RTX || ANY_RETURN_P (target))
3231 return false;
3232
3233 rtx_insn *label = as_a<rtx_insn *> (target);
3234 rtx_insn *table = next_insn (label);
3235 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3236 return false;
3237
3238 if (labelp)
3239 *labelp = label;
3240 if (tablep)
3241 *tablep = as_a <rtx_jump_table_data *> (table);
3242 return true;
3243 }
3244
3245 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3246 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3247
3248 rtx
3249 tablejump_casesi_pattern (const rtx_insn *insn)
3250 {
3251 rtx tmp;
3252
3253 if ((tmp = single_set (insn)) != NULL
3254 && SET_DEST (tmp) == pc_rtx
3255 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3256 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3257 return tmp;
3258
3259 return NULL_RTX;
3260 }
3261
3262 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3263 constant that is not in the constant pool and not in the condition
3264 of an IF_THEN_ELSE. */
3265
3266 static int
3267 computed_jump_p_1 (const_rtx x)
3268 {
3269 const enum rtx_code code = GET_CODE (x);
3270 int i, j;
3271 const char *fmt;
3272
3273 switch (code)
3274 {
3275 case LABEL_REF:
3276 case PC:
3277 return 0;
3278
3279 case CONST:
3280 CASE_CONST_ANY:
3281 case SYMBOL_REF:
3282 case REG:
3283 return 1;
3284
3285 case MEM:
3286 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3287 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3288
3289 case IF_THEN_ELSE:
3290 return (computed_jump_p_1 (XEXP (x, 1))
3291 || computed_jump_p_1 (XEXP (x, 2)));
3292
3293 default:
3294 break;
3295 }
3296
3297 fmt = GET_RTX_FORMAT (code);
3298 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3299 {
3300 if (fmt[i] == 'e'
3301 && computed_jump_p_1 (XEXP (x, i)))
3302 return 1;
3303
3304 else if (fmt[i] == 'E')
3305 for (j = 0; j < XVECLEN (x, i); j++)
3306 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3307 return 1;
3308 }
3309
3310 return 0;
3311 }
3312
3313 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3314
3315 Tablejumps and casesi insns are not considered indirect jumps;
3316 we can recognize them by a (use (label_ref)). */
3317
3318 int
3319 computed_jump_p (const rtx_insn *insn)
3320 {
3321 int i;
3322 if (JUMP_P (insn))
3323 {
3324 rtx pat = PATTERN (insn);
3325
3326 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3327 if (JUMP_LABEL (insn) != NULL)
3328 return 0;
3329
3330 if (GET_CODE (pat) == PARALLEL)
3331 {
3332 int len = XVECLEN (pat, 0);
3333 int has_use_labelref = 0;
3334
3335 for (i = len - 1; i >= 0; i--)
3336 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3337 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3338 == LABEL_REF))
3339 {
3340 has_use_labelref = 1;
3341 break;
3342 }
3343
3344 if (! has_use_labelref)
3345 for (i = len - 1; i >= 0; i--)
3346 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3347 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3348 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3349 return 1;
3350 }
3351 else if (GET_CODE (pat) == SET
3352 && SET_DEST (pat) == pc_rtx
3353 && computed_jump_p_1 (SET_SRC (pat)))
3354 return 1;
3355 }
3356 return 0;
3357 }
3358
3359 \f
3360
3361 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3362 the equivalent add insn and pass the result to FN, using DATA as the
3363 final argument. */
3364
3365 static int
3366 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3367 {
3368 rtx x = XEXP (mem, 0);
3369 switch (GET_CODE (x))
3370 {
3371 case PRE_INC:
3372 case POST_INC:
3373 {
3374 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3375 rtx r1 = XEXP (x, 0);
3376 rtx c = gen_int_mode (size, GET_MODE (r1));
3377 return fn (mem, x, r1, r1, c, data);
3378 }
3379
3380 case PRE_DEC:
3381 case POST_DEC:
3382 {
3383 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3384 rtx r1 = XEXP (x, 0);
3385 rtx c = gen_int_mode (-size, GET_MODE (r1));
3386 return fn (mem, x, r1, r1, c, data);
3387 }
3388
3389 case PRE_MODIFY:
3390 case POST_MODIFY:
3391 {
3392 rtx r1 = XEXP (x, 0);
3393 rtx add = XEXP (x, 1);
3394 return fn (mem, x, r1, add, NULL, data);
3395 }
3396
3397 default:
3398 gcc_unreachable ();
3399 }
3400 }
3401
3402 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3403 For each such autoinc operation found, call FN, passing it
3404 the innermost enclosing MEM, the operation itself, the RTX modified
3405 by the operation, two RTXs (the second may be NULL) that, once
3406 added, represent the value to be held by the modified RTX
3407 afterwards, and DATA. FN is to return 0 to continue the
3408 traversal or any other value to have it returned to the caller of
3409 for_each_inc_dec. */
3410
3411 int
3412 for_each_inc_dec (rtx x,
3413 for_each_inc_dec_fn fn,
3414 void *data)
3415 {
3416 subrtx_var_iterator::array_type array;
3417 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3418 {
3419 rtx mem = *iter;
3420 if (mem
3421 && MEM_P (mem)
3422 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3423 {
3424 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3425 if (res != 0)
3426 return res;
3427 iter.skip_subrtxes ();
3428 }
3429 }
3430 return 0;
3431 }
3432
3433 \f
3434 /* Searches X for any reference to REGNO, returning the rtx of the
3435 reference found if any. Otherwise, returns NULL_RTX. */
3436
3437 rtx
3438 regno_use_in (unsigned int regno, rtx x)
3439 {
3440 const char *fmt;
3441 int i, j;
3442 rtx tem;
3443
3444 if (REG_P (x) && REGNO (x) == regno)
3445 return x;
3446
3447 fmt = GET_RTX_FORMAT (GET_CODE (x));
3448 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3449 {
3450 if (fmt[i] == 'e')
3451 {
3452 if ((tem = regno_use_in (regno, XEXP (x, i))))
3453 return tem;
3454 }
3455 else if (fmt[i] == 'E')
3456 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3457 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3458 return tem;
3459 }
3460
3461 return NULL_RTX;
3462 }
3463
3464 /* Return a value indicating whether OP, an operand of a commutative
3465 operation, is preferred as the first or second operand. The more
3466 positive the value, the stronger the preference for being the first
3467 operand. */
3468
3469 int
3470 commutative_operand_precedence (rtx op)
3471 {
3472 enum rtx_code code = GET_CODE (op);
3473
3474 /* Constants always become the second operand. Prefer "nice" constants. */
3475 if (code == CONST_INT)
3476 return -10;
3477 if (code == CONST_WIDE_INT)
3478 return -9;
3479 if (code == CONST_POLY_INT)
3480 return -8;
3481 if (code == CONST_DOUBLE)
3482 return -8;
3483 if (code == CONST_FIXED)
3484 return -8;
3485 op = avoid_constant_pool_reference (op);
3486 code = GET_CODE (op);
3487
3488 switch (GET_RTX_CLASS (code))
3489 {
3490 case RTX_CONST_OBJ:
3491 if (code == CONST_INT)
3492 return -7;
3493 if (code == CONST_WIDE_INT)
3494 return -6;
3495 if (code == CONST_POLY_INT)
3496 return -5;
3497 if (code == CONST_DOUBLE)
3498 return -5;
3499 if (code == CONST_FIXED)
3500 return -5;
3501 return -4;
3502
3503 case RTX_EXTRA:
3504 /* SUBREGs of objects should come second. */
3505 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3506 return -3;
3507 return 0;
3508
3509 case RTX_OBJ:
3510 /* Complex expressions should be the first, so decrease priority
3511 of objects. Prefer pointer objects over non pointer objects. */
3512 if ((REG_P (op) && REG_POINTER (op))
3513 || (MEM_P (op) && MEM_POINTER (op)))
3514 return -1;
3515 return -2;
3516
3517 case RTX_COMM_ARITH:
3518 /* Prefer operands that are themselves commutative to be first.
3519 This helps to make things linear. In particular,
3520 (and (and (reg) (reg)) (not (reg))) is canonical. */
3521 return 4;
3522
3523 case RTX_BIN_ARITH:
3524 /* If only one operand is a binary expression, it will be the first
3525 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3526 is canonical, although it will usually be further simplified. */
3527 return 2;
3528
3529 case RTX_UNARY:
3530 /* Then prefer NEG and NOT. */
3531 if (code == NEG || code == NOT)
3532 return 1;
3533 /* FALLTHRU */
3534
3535 default:
3536 return 0;
3537 }
3538 }
3539
3540 /* Return 1 iff it is necessary to swap operands of commutative operation
3541 in order to canonicalize expression. */
3542
3543 bool
3544 swap_commutative_operands_p (rtx x, rtx y)
3545 {
3546 return (commutative_operand_precedence (x)
3547 < commutative_operand_precedence (y));
3548 }
3549
3550 /* Return 1 if X is an autoincrement side effect and the register is
3551 not the stack pointer. */
3552 int
3553 auto_inc_p (const_rtx x)
3554 {
3555 switch (GET_CODE (x))
3556 {
3557 case PRE_INC:
3558 case POST_INC:
3559 case PRE_DEC:
3560 case POST_DEC:
3561 case PRE_MODIFY:
3562 case POST_MODIFY:
3563 /* There are no REG_INC notes for SP. */
3564 if (XEXP (x, 0) != stack_pointer_rtx)
3565 return 1;
3566 default:
3567 break;
3568 }
3569 return 0;
3570 }
3571
3572 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3573 int
3574 loc_mentioned_in_p (rtx *loc, const_rtx in)
3575 {
3576 enum rtx_code code;
3577 const char *fmt;
3578 int i, j;
3579
3580 if (!in)
3581 return 0;
3582
3583 code = GET_CODE (in);
3584 fmt = GET_RTX_FORMAT (code);
3585 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3586 {
3587 if (fmt[i] == 'e')
3588 {
3589 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3590 return 1;
3591 }
3592 else if (fmt[i] == 'E')
3593 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3594 if (loc == &XVECEXP (in, i, j)
3595 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3596 return 1;
3597 }
3598 return 0;
3599 }
3600
3601 /* Reinterpret a subreg as a bit extraction from an integer and return
3602 the position of the least significant bit of the extracted value.
3603 In other words, if the extraction were performed as a shift right
3604 and mask, return the number of bits to shift right.
3605
3606 The outer value of the subreg has OUTER_BYTES bytes and starts at
3607 byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes. */
3608
3609 poly_uint64
3610 subreg_size_lsb (poly_uint64 outer_bytes,
3611 poly_uint64 inner_bytes,
3612 poly_uint64 subreg_byte)
3613 {
3614 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3615
3616 /* A paradoxical subreg begins at bit position 0. */
3617 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3618 if (maybe_gt (outer_bytes, inner_bytes))
3619 {
3620 gcc_checking_assert (known_eq (subreg_byte, 0U));
3621 return 0;
3622 }
3623
3624 subreg_end = subreg_byte + outer_bytes;
3625 trailing_bytes = inner_bytes - subreg_end;
3626 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3627 byte_pos = trailing_bytes;
3628 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3629 byte_pos = subreg_byte;
3630 else
3631 {
3632 /* When bytes and words have opposite endianness, we must be able
3633 to split offsets into words and bytes at compile time. */
3634 poly_uint64 leading_word_part
3635 = force_align_down (subreg_byte, UNITS_PER_WORD);
3636 poly_uint64 trailing_word_part
3637 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3638 /* If the subreg crosses a word boundary ensure that
3639 it also begins and ends on a word boundary. */
3640 gcc_assert (known_le (subreg_end - leading_word_part,
3641 (unsigned int) UNITS_PER_WORD)
3642 || (known_eq (leading_word_part, subreg_byte)
3643 && known_eq (trailing_word_part, trailing_bytes)));
3644 if (WORDS_BIG_ENDIAN)
3645 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3646 else
3647 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3648 }
3649
3650 return byte_pos * BITS_PER_UNIT;
3651 }
3652
3653 /* Given a subreg X, return the bit offset where the subreg begins
3654 (counting from the least significant bit of the reg). */
3655
3656 poly_uint64
3657 subreg_lsb (const_rtx x)
3658 {
3659 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3660 SUBREG_BYTE (x));
3661 }
3662
3663 /* Return the subreg byte offset for a subreg whose outer value has
3664 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3665 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3666 lsb of the inner value. This is the inverse of the calculation
3667 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3668
3669 poly_uint64
3670 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3671 poly_uint64 lsb_shift)
3672 {
3673 /* A paradoxical subreg begins at bit position 0. */
3674 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3675 if (maybe_gt (outer_bytes, inner_bytes))
3676 {
3677 gcc_checking_assert (known_eq (lsb_shift, 0U));
3678 return 0;
3679 }
3680
3681 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3682 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3683 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3684 return upper_bytes;
3685 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3686 return lower_bytes;
3687 else
3688 {
3689 /* When bytes and words have opposite endianness, we must be able
3690 to split offsets into words and bytes at compile time. */
3691 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3692 UNITS_PER_WORD);
3693 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3694 UNITS_PER_WORD);
3695 if (WORDS_BIG_ENDIAN)
3696 return upper_word_part + (lower_bytes - lower_word_part);
3697 else
3698 return lower_word_part + (upper_bytes - upper_word_part);
3699 }
3700 }
3701
3702 /* Fill in information about a subreg of a hard register.
3703 xregno - A regno of an inner hard subreg_reg (or what will become one).
3704 xmode - The mode of xregno.
3705 offset - The byte offset.
3706 ymode - The mode of a top level SUBREG (or what may become one).
3707 info - Pointer to structure to fill in.
3708
3709 Rather than considering one particular inner register (and thus one
3710 particular "outer" register) in isolation, this function really uses
3711 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3712 function does not check whether adding INFO->offset to XREGNO gives
3713 a valid hard register; even if INFO->offset + XREGNO is out of range,
3714 there might be another register of the same type that is in range.
3715 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3716 the new register, since that can depend on things like whether the final
3717 register number is even or odd. Callers that want to check whether
3718 this particular subreg can be replaced by a simple (reg ...) should
3719 use simplify_subreg_regno. */
3720
3721 void
3722 subreg_get_info (unsigned int xregno, machine_mode xmode,
3723 poly_uint64 offset, machine_mode ymode,
3724 struct subreg_info *info)
3725 {
3726 unsigned int nregs_xmode, nregs_ymode;
3727
3728 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3729
3730 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3731 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3732
3733 bool rknown = false;
3734
3735 /* If the register representation of a non-scalar mode has holes in it,
3736 we expect the scalar units to be concatenated together, with the holes
3737 distributed evenly among the scalar units. Each scalar unit must occupy
3738 at least one register. */
3739 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3740 {
3741 /* As a consequence, we must be dealing with a constant number of
3742 scalars, and thus a constant offset and number of units. */
3743 HOST_WIDE_INT coffset = offset.to_constant ();
3744 HOST_WIDE_INT cysize = ysize.to_constant ();
3745 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3746 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3747 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3748 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3749 gcc_assert (nregs_xmode
3750 == (nunits
3751 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3752 gcc_assert (hard_regno_nregs (xregno, xmode)
3753 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3754
3755 /* You can only ask for a SUBREG of a value with holes in the middle
3756 if you don't cross the holes. (Such a SUBREG should be done by
3757 picking a different register class, or doing it in memory if
3758 necessary.) An example of a value with holes is XCmode on 32-bit
3759 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3760 3 for each part, but in memory it's two 128-bit parts.
3761 Padding is assumed to be at the end (not necessarily the 'high part')
3762 of each unit. */
3763 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3764 && (coffset / GET_MODE_SIZE (xmode_unit)
3765 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3766 {
3767 info->representable_p = false;
3768 rknown = true;
3769 }
3770 }
3771 else
3772 nregs_xmode = hard_regno_nregs (xregno, xmode);
3773
3774 nregs_ymode = hard_regno_nregs (xregno, ymode);
3775
3776 /* Subreg sizes must be ordered, so that we can tell whether they are
3777 partial, paradoxical or complete. */
3778 gcc_checking_assert (ordered_p (xsize, ysize));
3779
3780 /* Paradoxical subregs are otherwise valid. */
3781 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3782 {
3783 info->representable_p = true;
3784 /* If this is a big endian paradoxical subreg, which uses more
3785 actual hard registers than the original register, we must
3786 return a negative offset so that we find the proper highpart
3787 of the register.
3788
3789 We assume that the ordering of registers within a multi-register
3790 value has a consistent endianness: if bytes and register words
3791 have different endianness, the hard registers that make up a
3792 multi-register value must be at least word-sized. */
3793 if (REG_WORDS_BIG_ENDIAN)
3794 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3795 else
3796 info->offset = 0;
3797 info->nregs = nregs_ymode;
3798 return;
3799 }
3800
3801 /* If registers store different numbers of bits in the different
3802 modes, we cannot generally form this subreg. */
3803 poly_uint64 regsize_xmode, regsize_ymode;
3804 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3805 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3806 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3807 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3808 {
3809 if (!rknown
3810 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3811 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3812 {
3813 info->representable_p = false;
3814 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3815 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3816 /* Checked by validate_subreg. We must know at compile time
3817 which inner registers are being accessed. */
3818 gcc_unreachable ();
3819 return;
3820 }
3821 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3822 would go outside of XMODE. */
3823 if (!rknown && maybe_gt (ysize + offset, xsize))
3824 {
3825 info->representable_p = false;
3826 info->nregs = nregs_ymode;
3827 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3828 /* Checked by validate_subreg. We must know at compile time
3829 which inner registers are being accessed. */
3830 gcc_unreachable ();
3831 return;
3832 }
3833 /* Quick exit for the simple and common case of extracting whole
3834 subregisters from a multiregister value. */
3835 /* ??? It would be better to integrate this into the code below,
3836 if we can generalize the concept enough and figure out how
3837 odd-sized modes can coexist with the other weird cases we support. */
3838 HOST_WIDE_INT count;
3839 if (!rknown
3840 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3841 && known_eq (regsize_xmode, regsize_ymode)
3842 && constant_multiple_p (offset, regsize_ymode, &count))
3843 {
3844 info->representable_p = true;
3845 info->nregs = nregs_ymode;
3846 info->offset = count;
3847 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3848 return;
3849 }
3850 }
3851
3852 /* Lowpart subregs are otherwise valid. */
3853 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3854 {
3855 info->representable_p = true;
3856 rknown = true;
3857
3858 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3859 {
3860 info->offset = 0;
3861 info->nregs = nregs_ymode;
3862 return;
3863 }
3864 }
3865
3866 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3867 values there are in (reg:XMODE XREGNO). We can view the register
3868 as consisting of this number of independent "blocks", where each
3869 block occupies NREGS_YMODE registers and contains exactly one
3870 representable YMODE value. */
3871 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3872 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3873
3874 /* Calculate the number of bytes in each block. This must always
3875 be exact, otherwise we don't know how to verify the constraint.
3876 These conditions may be relaxed but subreg_regno_offset would
3877 need to be redesigned. */
3878 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3879
3880 /* Get the number of the first block that contains the subreg and the byte
3881 offset of the subreg from the start of that block. */
3882 unsigned int block_number;
3883 poly_uint64 subblock_offset;
3884 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3885 &subblock_offset))
3886 /* Checked by validate_subreg. We must know at compile time which
3887 inner registers are being accessed. */
3888 gcc_unreachable ();
3889
3890 if (!rknown)
3891 {
3892 /* Only the lowpart of each block is representable. */
3893 info->representable_p
3894 = known_eq (subblock_offset,
3895 subreg_size_lowpart_offset (ysize, bytes_per_block));
3896 rknown = true;
3897 }
3898
3899 /* We assume that the ordering of registers within a multi-register
3900 value has a consistent endianness: if bytes and register words
3901 have different endianness, the hard registers that make up a
3902 multi-register value must be at least word-sized. */
3903 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3904 /* The block number we calculated above followed memory endianness.
3905 Convert it to register endianness by counting back from the end.
3906 (Note that, because of the assumption above, each block must be
3907 at least word-sized.) */
3908 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3909 else
3910 info->offset = block_number * nregs_ymode;
3911 info->nregs = nregs_ymode;
3912 }
3913
3914 /* This function returns the regno offset of a subreg expression.
3915 xregno - A regno of an inner hard subreg_reg (or what will become one).
3916 xmode - The mode of xregno.
3917 offset - The byte offset.
3918 ymode - The mode of a top level SUBREG (or what may become one).
3919 RETURN - The regno offset which would be used. */
3920 unsigned int
3921 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3922 poly_uint64 offset, machine_mode ymode)
3923 {
3924 struct subreg_info info;
3925 subreg_get_info (xregno, xmode, offset, ymode, &info);
3926 return info.offset;
3927 }
3928
3929 /* This function returns true when the offset is representable via
3930 subreg_offset in the given regno.
3931 xregno - A regno of an inner hard subreg_reg (or what will become one).
3932 xmode - The mode of xregno.
3933 offset - The byte offset.
3934 ymode - The mode of a top level SUBREG (or what may become one).
3935 RETURN - Whether the offset is representable. */
3936 bool
3937 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3938 poly_uint64 offset, machine_mode ymode)
3939 {
3940 struct subreg_info info;
3941 subreg_get_info (xregno, xmode, offset, ymode, &info);
3942 return info.representable_p;
3943 }
3944
3945 /* Return the number of a YMODE register to which
3946
3947 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3948
3949 can be simplified. Return -1 if the subreg can't be simplified.
3950
3951 XREGNO is a hard register number. */
3952
3953 int
3954 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3955 poly_uint64 offset, machine_mode ymode)
3956 {
3957 struct subreg_info info;
3958 unsigned int yregno;
3959
3960 /* Give the backend a chance to disallow the mode change. */
3961 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3962 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3963 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
3964 return -1;
3965
3966 /* We shouldn't simplify stack-related registers. */
3967 if ((!reload_completed || frame_pointer_needed)
3968 && xregno == FRAME_POINTER_REGNUM)
3969 return -1;
3970
3971 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3972 && xregno == ARG_POINTER_REGNUM)
3973 return -1;
3974
3975 if (xregno == STACK_POINTER_REGNUM
3976 /* We should convert hard stack register in LRA if it is
3977 possible. */
3978 && ! lra_in_progress)
3979 return -1;
3980
3981 /* Try to get the register offset. */
3982 subreg_get_info (xregno, xmode, offset, ymode, &info);
3983 if (!info.representable_p)
3984 return -1;
3985
3986 /* Make sure that the offsetted register value is in range. */
3987 yregno = xregno + info.offset;
3988 if (!HARD_REGISTER_NUM_P (yregno))
3989 return -1;
3990
3991 /* See whether (reg:YMODE YREGNO) is valid.
3992
3993 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3994 This is a kludge to work around how complex FP arguments are passed
3995 on IA-64 and should be fixed. See PR target/49226. */
3996 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3997 && targetm.hard_regno_mode_ok (xregno, xmode))
3998 return -1;
3999
4000 return (int) yregno;
4001 }
4002
4003 /* Return the final regno that a subreg expression refers to. */
4004 unsigned int
4005 subreg_regno (const_rtx x)
4006 {
4007 unsigned int ret;
4008 rtx subreg = SUBREG_REG (x);
4009 int regno = REGNO (subreg);
4010
4011 ret = regno + subreg_regno_offset (regno,
4012 GET_MODE (subreg),
4013 SUBREG_BYTE (x),
4014 GET_MODE (x));
4015 return ret;
4016
4017 }
4018
4019 /* Return the number of registers that a subreg expression refers
4020 to. */
4021 unsigned int
4022 subreg_nregs (const_rtx x)
4023 {
4024 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4025 }
4026
4027 /* Return the number of registers that a subreg REG with REGNO
4028 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4029 changed so that the regno can be passed in. */
4030
4031 unsigned int
4032 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4033 {
4034 struct subreg_info info;
4035 rtx subreg = SUBREG_REG (x);
4036
4037 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4038 &info);
4039 return info.nregs;
4040 }
4041
4042 struct parms_set_data
4043 {
4044 int nregs;
4045 HARD_REG_SET regs;
4046 };
4047
4048 /* Helper function for noticing stores to parameter registers. */
4049 static void
4050 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4051 {
4052 struct parms_set_data *const d = (struct parms_set_data *) data;
4053 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4054 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4055 {
4056 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4057 d->nregs--;
4058 }
4059 }
4060
4061 /* Look backward for first parameter to be loaded.
4062 Note that loads of all parameters will not necessarily be
4063 found if CSE has eliminated some of them (e.g., an argument
4064 to the outer function is passed down as a parameter).
4065 Do not skip BOUNDARY. */
4066 rtx_insn *
4067 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4068 {
4069 struct parms_set_data parm;
4070 rtx p;
4071 rtx_insn *before, *first_set;
4072
4073 /* Since different machines initialize their parameter registers
4074 in different orders, assume nothing. Collect the set of all
4075 parameter registers. */
4076 CLEAR_HARD_REG_SET (parm.regs);
4077 parm.nregs = 0;
4078 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4079 if (GET_CODE (XEXP (p, 0)) == USE
4080 && REG_P (XEXP (XEXP (p, 0), 0))
4081 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4082 {
4083 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4084
4085 /* We only care about registers which can hold function
4086 arguments. */
4087 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4088 continue;
4089
4090 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4091 parm.nregs++;
4092 }
4093 before = call_insn;
4094 first_set = call_insn;
4095
4096 /* Search backward for the first set of a register in this set. */
4097 while (parm.nregs && before != boundary)
4098 {
4099 before = PREV_INSN (before);
4100
4101 /* It is possible that some loads got CSEed from one call to
4102 another. Stop in that case. */
4103 if (CALL_P (before))
4104 break;
4105
4106 /* Our caller needs either ensure that we will find all sets
4107 (in case code has not been optimized yet), or take care
4108 for possible labels in a way by setting boundary to preceding
4109 CODE_LABEL. */
4110 if (LABEL_P (before))
4111 {
4112 gcc_assert (before == boundary);
4113 break;
4114 }
4115
4116 if (INSN_P (before))
4117 {
4118 int nregs_old = parm.nregs;
4119 note_stores (before, parms_set, &parm);
4120 /* If we found something that did not set a parameter reg,
4121 we're done. Do not keep going, as that might result
4122 in hoisting an insn before the setting of a pseudo
4123 that is used by the hoisted insn. */
4124 if (nregs_old != parm.nregs)
4125 first_set = before;
4126 else
4127 break;
4128 }
4129 }
4130 return first_set;
4131 }
4132
4133 /* Return true if we should avoid inserting code between INSN and preceding
4134 call instruction. */
4135
4136 bool
4137 keep_with_call_p (const rtx_insn *insn)
4138 {
4139 rtx set;
4140
4141 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4142 {
4143 if (REG_P (SET_DEST (set))
4144 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4145 && fixed_regs[REGNO (SET_DEST (set))]
4146 && general_operand (SET_SRC (set), VOIDmode))
4147 return true;
4148 if (REG_P (SET_SRC (set))
4149 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4150 && REG_P (SET_DEST (set))
4151 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4152 return true;
4153 /* There may be a stack pop just after the call and before the store
4154 of the return register. Search for the actual store when deciding
4155 if we can break or not. */
4156 if (SET_DEST (set) == stack_pointer_rtx)
4157 {
4158 /* This CONST_CAST is okay because next_nonnote_insn just
4159 returns its argument and we assign it to a const_rtx
4160 variable. */
4161 const rtx_insn *i2
4162 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4163 if (i2 && keep_with_call_p (i2))
4164 return true;
4165 }
4166 }
4167 return false;
4168 }
4169
4170 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4171 to non-complex jumps. That is, direct unconditional, conditional,
4172 and tablejumps, but not computed jumps or returns. It also does
4173 not apply to the fallthru case of a conditional jump. */
4174
4175 bool
4176 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4177 {
4178 rtx tmp = JUMP_LABEL (jump_insn);
4179 rtx_jump_table_data *table;
4180
4181 if (label == tmp)
4182 return true;
4183
4184 if (tablejump_p (jump_insn, NULL, &table))
4185 {
4186 rtvec vec = table->get_labels ();
4187 int i, veclen = GET_NUM_ELEM (vec);
4188
4189 for (i = 0; i < veclen; ++i)
4190 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4191 return true;
4192 }
4193
4194 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4195 return true;
4196
4197 return false;
4198 }
4199
4200 \f
4201 /* Return an estimate of the cost of computing rtx X.
4202 One use is in cse, to decide which expression to keep in the hash table.
4203 Another is in rtl generation, to pick the cheapest way to multiply.
4204 Other uses like the latter are expected in the future.
4205
4206 X appears as operand OPNO in an expression with code OUTER_CODE.
4207 SPEED specifies whether costs optimized for speed or size should
4208 be returned. */
4209
4210 int
4211 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4212 int opno, bool speed)
4213 {
4214 int i, j;
4215 enum rtx_code code;
4216 const char *fmt;
4217 int total;
4218 int factor;
4219 unsigned mode_size;
4220
4221 if (x == 0)
4222 return 0;
4223
4224 if (GET_CODE (x) == SET)
4225 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4226 the mode for the factor. */
4227 mode = GET_MODE (SET_DEST (x));
4228 else if (GET_MODE (x) != VOIDmode)
4229 mode = GET_MODE (x);
4230
4231 mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
4232
4233 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4234 many insns, taking N times as long. */
4235 factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
4236
4237 /* Compute the default costs of certain things.
4238 Note that targetm.rtx_costs can override the defaults. */
4239
4240 code = GET_CODE (x);
4241 switch (code)
4242 {
4243 case MULT:
4244 /* Multiplication has time-complexity O(N*N), where N is the
4245 number of units (translated from digits) when using
4246 schoolbook long multiplication. */
4247 total = factor * factor * COSTS_N_INSNS (5);
4248 break;
4249 case DIV:
4250 case UDIV:
4251 case MOD:
4252 case UMOD:
4253 /* Similarly, complexity for schoolbook long division. */
4254 total = factor * factor * COSTS_N_INSNS (7);
4255 break;
4256 case USE:
4257 /* Used in combine.c as a marker. */
4258 total = 0;
4259 break;
4260 default:
4261 total = factor * COSTS_N_INSNS (1);
4262 }
4263
4264 switch (code)
4265 {
4266 case REG:
4267 return 0;
4268
4269 case SUBREG:
4270 total = 0;
4271 /* If we can't tie these modes, make this expensive. The larger
4272 the mode, the more expensive it is. */
4273 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4274 return COSTS_N_INSNS (2 + factor);
4275 break;
4276
4277 case TRUNCATE:
4278 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4279 {
4280 total = 0;
4281 break;
4282 }
4283 /* FALLTHRU */
4284 default:
4285 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4286 return total;
4287 break;
4288 }
4289
4290 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4291 which is already in total. */
4292
4293 fmt = GET_RTX_FORMAT (code);
4294 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4295 if (fmt[i] == 'e')
4296 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4297 else if (fmt[i] == 'E')
4298 for (j = 0; j < XVECLEN (x, i); j++)
4299 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4300
4301 return total;
4302 }
4303
4304 /* Fill in the structure C with information about both speed and size rtx
4305 costs for X, which is operand OPNO in an expression with code OUTER. */
4306
4307 void
4308 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4309 struct full_rtx_costs *c)
4310 {
4311 c->speed = rtx_cost (x, mode, outer, opno, true);
4312 c->size = rtx_cost (x, mode, outer, opno, false);
4313 }
4314
4315 \f
4316 /* Return cost of address expression X.
4317 Expect that X is properly formed address reference.
4318
4319 SPEED parameter specify whether costs optimized for speed or size should
4320 be returned. */
4321
4322 int
4323 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4324 {
4325 /* We may be asked for cost of various unusual addresses, such as operands
4326 of push instruction. It is not worthwhile to complicate writing
4327 of the target hook by such cases. */
4328
4329 if (!memory_address_addr_space_p (mode, x, as))
4330 return 1000;
4331
4332 return targetm.address_cost (x, mode, as, speed);
4333 }
4334
4335 /* If the target doesn't override, compute the cost as with arithmetic. */
4336
4337 int
4338 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4339 {
4340 return rtx_cost (x, Pmode, MEM, 0, speed);
4341 }
4342 \f
4343
4344 unsigned HOST_WIDE_INT
4345 nonzero_bits (const_rtx x, machine_mode mode)
4346 {
4347 if (mode == VOIDmode)
4348 mode = GET_MODE (x);
4349 scalar_int_mode int_mode;
4350 if (!is_a <scalar_int_mode> (mode, &int_mode))
4351 return GET_MODE_MASK (mode);
4352 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4353 }
4354
4355 unsigned int
4356 num_sign_bit_copies (const_rtx x, machine_mode mode)
4357 {
4358 if (mode == VOIDmode)
4359 mode = GET_MODE (x);
4360 scalar_int_mode int_mode;
4361 if (!is_a <scalar_int_mode> (mode, &int_mode))
4362 return 1;
4363 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4364 }
4365
4366 /* Return true if nonzero_bits1 might recurse into both operands
4367 of X. */
4368
4369 static inline bool
4370 nonzero_bits_binary_arith_p (const_rtx x)
4371 {
4372 if (!ARITHMETIC_P (x))
4373 return false;
4374 switch (GET_CODE (x))
4375 {
4376 case AND:
4377 case XOR:
4378 case IOR:
4379 case UMIN:
4380 case UMAX:
4381 case SMIN:
4382 case SMAX:
4383 case PLUS:
4384 case MINUS:
4385 case MULT:
4386 case DIV:
4387 case UDIV:
4388 case MOD:
4389 case UMOD:
4390 return true;
4391 default:
4392 return false;
4393 }
4394 }
4395
4396 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4397 It avoids exponential behavior in nonzero_bits1 when X has
4398 identical subexpressions on the first or the second level. */
4399
4400 static unsigned HOST_WIDE_INT
4401 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4402 machine_mode known_mode,
4403 unsigned HOST_WIDE_INT known_ret)
4404 {
4405 if (x == known_x && mode == known_mode)
4406 return known_ret;
4407
4408 /* Try to find identical subexpressions. If found call
4409 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4410 precomputed value for the subexpression as KNOWN_RET. */
4411
4412 if (nonzero_bits_binary_arith_p (x))
4413 {
4414 rtx x0 = XEXP (x, 0);
4415 rtx x1 = XEXP (x, 1);
4416
4417 /* Check the first level. */
4418 if (x0 == x1)
4419 return nonzero_bits1 (x, mode, x0, mode,
4420 cached_nonzero_bits (x0, mode, known_x,
4421 known_mode, known_ret));
4422
4423 /* Check the second level. */
4424 if (nonzero_bits_binary_arith_p (x0)
4425 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4426 return nonzero_bits1 (x, mode, x1, mode,
4427 cached_nonzero_bits (x1, mode, known_x,
4428 known_mode, known_ret));
4429
4430 if (nonzero_bits_binary_arith_p (x1)
4431 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4432 return nonzero_bits1 (x, mode, x0, mode,
4433 cached_nonzero_bits (x0, mode, known_x,
4434 known_mode, known_ret));
4435 }
4436
4437 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4438 }
4439
4440 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4441 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4442 is less useful. We can't allow both, because that results in exponential
4443 run time recursion. There is a nullstone testcase that triggered
4444 this. This macro avoids accidental uses of num_sign_bit_copies. */
4445 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4446
4447 /* Given an expression, X, compute which bits in X can be nonzero.
4448 We don't care about bits outside of those defined in MODE.
4449
4450 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4451 an arithmetic operation, we can do better. */
4452
4453 static unsigned HOST_WIDE_INT
4454 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4455 machine_mode known_mode,
4456 unsigned HOST_WIDE_INT known_ret)
4457 {
4458 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4459 unsigned HOST_WIDE_INT inner_nz;
4460 enum rtx_code code = GET_CODE (x);
4461 machine_mode inner_mode;
4462 unsigned int inner_width;
4463 scalar_int_mode xmode;
4464
4465 unsigned int mode_width = GET_MODE_PRECISION (mode);
4466
4467 if (CONST_INT_P (x))
4468 {
4469 if (SHORT_IMMEDIATES_SIGN_EXTEND
4470 && INTVAL (x) > 0
4471 && mode_width < BITS_PER_WORD
4472 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4473 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4474
4475 return UINTVAL (x);
4476 }
4477
4478 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4479 return nonzero;
4480 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4481
4482 /* If X is wider than MODE, use its mode instead. */
4483 if (xmode_width > mode_width)
4484 {
4485 mode = xmode;
4486 nonzero = GET_MODE_MASK (mode);
4487 mode_width = xmode_width;
4488 }
4489
4490 if (mode_width > HOST_BITS_PER_WIDE_INT)
4491 /* Our only callers in this case look for single bit values. So
4492 just return the mode mask. Those tests will then be false. */
4493 return nonzero;
4494
4495 /* If MODE is wider than X, but both are a single word for both the host
4496 and target machines, we can compute this from which bits of the object
4497 might be nonzero in its own mode, taking into account the fact that, on
4498 CISC machines, accessing an object in a wider mode generally causes the
4499 high-order bits to become undefined, so they are not known to be zero.
4500 We extend this reasoning to RISC machines for operations that might not
4501 operate on the full registers. */
4502 if (mode_width > xmode_width
4503 && xmode_width <= BITS_PER_WORD
4504 && xmode_width <= HOST_BITS_PER_WIDE_INT
4505 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4506 {
4507 nonzero &= cached_nonzero_bits (x, xmode,
4508 known_x, known_mode, known_ret);
4509 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4510 return nonzero;
4511 }
4512
4513 /* Please keep nonzero_bits_binary_arith_p above in sync with
4514 the code in the switch below. */
4515 switch (code)
4516 {
4517 case REG:
4518 #if defined(POINTERS_EXTEND_UNSIGNED)
4519 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4520 all the bits above ptr_mode are known to be zero. */
4521 /* As we do not know which address space the pointer is referring to,
4522 we can do this only if the target does not support different pointer
4523 or address modes depending on the address space. */
4524 if (target_default_pointer_address_modes_p ()
4525 && POINTERS_EXTEND_UNSIGNED
4526 && xmode == Pmode
4527 && REG_POINTER (x)
4528 && !targetm.have_ptr_extend ())
4529 nonzero &= GET_MODE_MASK (ptr_mode);
4530 #endif
4531
4532 /* Include declared information about alignment of pointers. */
4533 /* ??? We don't properly preserve REG_POINTER changes across
4534 pointer-to-integer casts, so we can't trust it except for
4535 things that we know must be pointers. See execute/960116-1.c. */
4536 if ((x == stack_pointer_rtx
4537 || x == frame_pointer_rtx
4538 || x == arg_pointer_rtx)
4539 && REGNO_POINTER_ALIGN (REGNO (x)))
4540 {
4541 unsigned HOST_WIDE_INT alignment
4542 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4543
4544 #ifdef PUSH_ROUNDING
4545 /* If PUSH_ROUNDING is defined, it is possible for the
4546 stack to be momentarily aligned only to that amount,
4547 so we pick the least alignment. */
4548 if (x == stack_pointer_rtx && PUSH_ARGS)
4549 {
4550 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4551 alignment = MIN (known_alignment (rounded_1), alignment);
4552 }
4553 #endif
4554
4555 nonzero &= ~(alignment - 1);
4556 }
4557
4558 {
4559 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4560 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4561 &nonzero_for_hook);
4562
4563 if (new_rtx)
4564 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4565 known_mode, known_ret);
4566
4567 return nonzero_for_hook;
4568 }
4569
4570 case MEM:
4571 /* In many, if not most, RISC machines, reading a byte from memory
4572 zeros the rest of the register. Noticing that fact saves a lot
4573 of extra zero-extends. */
4574 if (load_extend_op (xmode) == ZERO_EXTEND)
4575 nonzero &= GET_MODE_MASK (xmode);
4576 break;
4577
4578 case EQ: case NE:
4579 case UNEQ: case LTGT:
4580 case GT: case GTU: case UNGT:
4581 case LT: case LTU: case UNLT:
4582 case GE: case GEU: case UNGE:
4583 case LE: case LEU: case UNLE:
4584 case UNORDERED: case ORDERED:
4585 /* If this produces an integer result, we know which bits are set.
4586 Code here used to clear bits outside the mode of X, but that is
4587 now done above. */
4588 /* Mind that MODE is the mode the caller wants to look at this
4589 operation in, and not the actual operation mode. We can wind
4590 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4591 that describes the results of a vector compare. */
4592 if (GET_MODE_CLASS (xmode) == MODE_INT
4593 && mode_width <= HOST_BITS_PER_WIDE_INT)
4594 nonzero = STORE_FLAG_VALUE;
4595 break;
4596
4597 case NEG:
4598 #if 0
4599 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4600 and num_sign_bit_copies. */
4601 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4602 nonzero = 1;
4603 #endif
4604
4605 if (xmode_width < mode_width)
4606 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4607 break;
4608
4609 case ABS:
4610 #if 0
4611 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4612 and num_sign_bit_copies. */
4613 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4614 nonzero = 1;
4615 #endif
4616 break;
4617
4618 case TRUNCATE:
4619 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4620 known_x, known_mode, known_ret)
4621 & GET_MODE_MASK (mode));
4622 break;
4623
4624 case ZERO_EXTEND:
4625 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4626 known_x, known_mode, known_ret);
4627 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4628 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4629 break;
4630
4631 case SIGN_EXTEND:
4632 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4633 Otherwise, show all the bits in the outer mode but not the inner
4634 may be nonzero. */
4635 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4636 known_x, known_mode, known_ret);
4637 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4638 {
4639 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4640 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4641 inner_nz |= (GET_MODE_MASK (mode)
4642 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4643 }
4644
4645 nonzero &= inner_nz;
4646 break;
4647
4648 case AND:
4649 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4650 known_x, known_mode, known_ret)
4651 & cached_nonzero_bits (XEXP (x, 1), mode,
4652 known_x, known_mode, known_ret);
4653 break;
4654
4655 case XOR: case IOR:
4656 case UMIN: case UMAX: case SMIN: case SMAX:
4657 {
4658 unsigned HOST_WIDE_INT nonzero0
4659 = cached_nonzero_bits (XEXP (x, 0), mode,
4660 known_x, known_mode, known_ret);
4661
4662 /* Don't call nonzero_bits for the second time if it cannot change
4663 anything. */
4664 if ((nonzero & nonzero0) != nonzero)
4665 nonzero &= nonzero0
4666 | cached_nonzero_bits (XEXP (x, 1), mode,
4667 known_x, known_mode, known_ret);
4668 }
4669 break;
4670
4671 case PLUS: case MINUS:
4672 case MULT:
4673 case DIV: case UDIV:
4674 case MOD: case UMOD:
4675 /* We can apply the rules of arithmetic to compute the number of
4676 high- and low-order zero bits of these operations. We start by
4677 computing the width (position of the highest-order nonzero bit)
4678 and the number of low-order zero bits for each value. */
4679 {
4680 unsigned HOST_WIDE_INT nz0
4681 = cached_nonzero_bits (XEXP (x, 0), mode,
4682 known_x, known_mode, known_ret);
4683 unsigned HOST_WIDE_INT nz1
4684 = cached_nonzero_bits (XEXP (x, 1), mode,
4685 known_x, known_mode, known_ret);
4686 int sign_index = xmode_width - 1;
4687 int width0 = floor_log2 (nz0) + 1;
4688 int width1 = floor_log2 (nz1) + 1;
4689 int low0 = ctz_or_zero (nz0);
4690 int low1 = ctz_or_zero (nz1);
4691 unsigned HOST_WIDE_INT op0_maybe_minusp
4692 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4693 unsigned HOST_WIDE_INT op1_maybe_minusp
4694 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4695 unsigned int result_width = mode_width;
4696 int result_low = 0;
4697
4698 switch (code)
4699 {
4700 case PLUS:
4701 result_width = MAX (width0, width1) + 1;
4702 result_low = MIN (low0, low1);
4703 break;
4704 case MINUS:
4705 result_low = MIN (low0, low1);
4706 break;
4707 case MULT:
4708 result_width = width0 + width1;
4709 result_low = low0 + low1;
4710 break;
4711 case DIV:
4712 if (width1 == 0)
4713 break;
4714 if (!op0_maybe_minusp && !op1_maybe_minusp)
4715 result_width = width0;
4716 break;
4717 case UDIV:
4718 if (width1 == 0)
4719 break;
4720 result_width = width0;
4721 break;
4722 case MOD:
4723 if (width1 == 0)
4724 break;
4725 if (!op0_maybe_minusp && !op1_maybe_minusp)
4726 result_width = MIN (width0, width1);
4727 result_low = MIN (low0, low1);
4728 break;
4729 case UMOD:
4730 if (width1 == 0)
4731 break;
4732 result_width = MIN (width0, width1);
4733 result_low = MIN (low0, low1);
4734 break;
4735 default:
4736 gcc_unreachable ();
4737 }
4738
4739 if (result_width < mode_width)
4740 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4741
4742 if (result_low > 0)
4743 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4744 }
4745 break;
4746
4747 case ZERO_EXTRACT:
4748 if (CONST_INT_P (XEXP (x, 1))
4749 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4750 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4751 break;
4752
4753 case SUBREG:
4754 /* If this is a SUBREG formed for a promoted variable that has
4755 been zero-extended, we know that at least the high-order bits
4756 are zero, though others might be too. */
4757 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4758 nonzero = GET_MODE_MASK (xmode)
4759 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4760 known_x, known_mode, known_ret);
4761
4762 /* If the inner mode is a single word for both the host and target
4763 machines, we can compute this from which bits of the inner
4764 object might be nonzero. */
4765 inner_mode = GET_MODE (SUBREG_REG (x));
4766 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4767 && inner_width <= BITS_PER_WORD
4768 && inner_width <= HOST_BITS_PER_WIDE_INT)
4769 {
4770 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4771 known_x, known_mode, known_ret);
4772
4773 /* On a typical CISC machine, accessing an object in a wider mode
4774 causes the high-order bits to become undefined. So they are
4775 not known to be zero.
4776
4777 On a typical RISC machine, we only have to worry about the way
4778 loads are extended. Otherwise, if we get a reload for the inner
4779 part, it may be loaded from the stack, and then we may lose all
4780 the zero bits that existed before the store to the stack. */
4781 rtx_code extend_op;
4782 if ((!WORD_REGISTER_OPERATIONS
4783 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4784 ? val_signbit_known_set_p (inner_mode, nonzero)
4785 : extend_op != ZERO_EXTEND)
4786 || !MEM_P (SUBREG_REG (x)))
4787 && xmode_width > inner_width)
4788 nonzero
4789 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4790 }
4791 break;
4792
4793 case ASHIFT:
4794 case ASHIFTRT:
4795 case LSHIFTRT:
4796 case ROTATE:
4797 case ROTATERT:
4798 /* The nonzero bits are in two classes: any bits within MODE
4799 that aren't in xmode are always significant. The rest of the
4800 nonzero bits are those that are significant in the operand of
4801 the shift when shifted the appropriate number of bits. This
4802 shows that high-order bits are cleared by the right shift and
4803 low-order bits by left shifts. */
4804 if (CONST_INT_P (XEXP (x, 1))
4805 && INTVAL (XEXP (x, 1)) >= 0
4806 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4807 && INTVAL (XEXP (x, 1)) < xmode_width)
4808 {
4809 int count = INTVAL (XEXP (x, 1));
4810 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4811 unsigned HOST_WIDE_INT op_nonzero
4812 = cached_nonzero_bits (XEXP (x, 0), mode,
4813 known_x, known_mode, known_ret);
4814 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4815 unsigned HOST_WIDE_INT outer = 0;
4816
4817 if (mode_width > xmode_width)
4818 outer = (op_nonzero & nonzero & ~mode_mask);
4819
4820 switch (code)
4821 {
4822 case ASHIFT:
4823 inner <<= count;
4824 break;
4825
4826 case LSHIFTRT:
4827 inner >>= count;
4828 break;
4829
4830 case ASHIFTRT:
4831 inner >>= count;
4832
4833 /* If the sign bit may have been nonzero before the shift, we
4834 need to mark all the places it could have been copied to
4835 by the shift as possibly nonzero. */
4836 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4837 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4838 << (xmode_width - count));
4839 break;
4840
4841 case ROTATE:
4842 inner = (inner << (count % xmode_width)
4843 | (inner >> (xmode_width - (count % xmode_width))))
4844 & mode_mask;
4845 break;
4846
4847 case ROTATERT:
4848 inner = (inner >> (count % xmode_width)
4849 | (inner << (xmode_width - (count % xmode_width))))
4850 & mode_mask;
4851 break;
4852
4853 default:
4854 gcc_unreachable ();
4855 }
4856
4857 nonzero &= (outer | inner);
4858 }
4859 break;
4860
4861 case FFS:
4862 case POPCOUNT:
4863 /* This is at most the number of bits in the mode. */
4864 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4865 break;
4866
4867 case CLZ:
4868 /* If CLZ has a known value at zero, then the nonzero bits are
4869 that value, plus the number of bits in the mode minus one. */
4870 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4871 nonzero
4872 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4873 else
4874 nonzero = -1;
4875 break;
4876
4877 case CTZ:
4878 /* If CTZ has a known value at zero, then the nonzero bits are
4879 that value, plus the number of bits in the mode minus one. */
4880 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4881 nonzero
4882 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4883 else
4884 nonzero = -1;
4885 break;
4886
4887 case CLRSB:
4888 /* This is at most the number of bits in the mode minus 1. */
4889 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4890 break;
4891
4892 case PARITY:
4893 nonzero = 1;
4894 break;
4895
4896 case IF_THEN_ELSE:
4897 {
4898 unsigned HOST_WIDE_INT nonzero_true
4899 = cached_nonzero_bits (XEXP (x, 1), mode,
4900 known_x, known_mode, known_ret);
4901
4902 /* Don't call nonzero_bits for the second time if it cannot change
4903 anything. */
4904 if ((nonzero & nonzero_true) != nonzero)
4905 nonzero &= nonzero_true
4906 | cached_nonzero_bits (XEXP (x, 2), mode,
4907 known_x, known_mode, known_ret);
4908 }
4909 break;
4910
4911 default:
4912 break;
4913 }
4914
4915 return nonzero;
4916 }
4917
4918 /* See the macro definition above. */
4919 #undef cached_num_sign_bit_copies
4920
4921 \f
4922 /* Return true if num_sign_bit_copies1 might recurse into both operands
4923 of X. */
4924
4925 static inline bool
4926 num_sign_bit_copies_binary_arith_p (const_rtx x)
4927 {
4928 if (!ARITHMETIC_P (x))
4929 return false;
4930 switch (GET_CODE (x))
4931 {
4932 case IOR:
4933 case AND:
4934 case XOR:
4935 case SMIN:
4936 case SMAX:
4937 case UMIN:
4938 case UMAX:
4939 case PLUS:
4940 case MINUS:
4941 case MULT:
4942 return true;
4943 default:
4944 return false;
4945 }
4946 }
4947
4948 /* The function cached_num_sign_bit_copies is a wrapper around
4949 num_sign_bit_copies1. It avoids exponential behavior in
4950 num_sign_bit_copies1 when X has identical subexpressions on the
4951 first or the second level. */
4952
4953 static unsigned int
4954 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4955 const_rtx known_x, machine_mode known_mode,
4956 unsigned int known_ret)
4957 {
4958 if (x == known_x && mode == known_mode)
4959 return known_ret;
4960
4961 /* Try to find identical subexpressions. If found call
4962 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4963 the precomputed value for the subexpression as KNOWN_RET. */
4964
4965 if (num_sign_bit_copies_binary_arith_p (x))
4966 {
4967 rtx x0 = XEXP (x, 0);
4968 rtx x1 = XEXP (x, 1);
4969
4970 /* Check the first level. */
4971 if (x0 == x1)
4972 return
4973 num_sign_bit_copies1 (x, mode, x0, mode,
4974 cached_num_sign_bit_copies (x0, mode, known_x,
4975 known_mode,
4976 known_ret));
4977
4978 /* Check the second level. */
4979 if (num_sign_bit_copies_binary_arith_p (x0)
4980 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4981 return
4982 num_sign_bit_copies1 (x, mode, x1, mode,
4983 cached_num_sign_bit_copies (x1, mode, known_x,
4984 known_mode,
4985 known_ret));
4986
4987 if (num_sign_bit_copies_binary_arith_p (x1)
4988 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4989 return
4990 num_sign_bit_copies1 (x, mode, x0, mode,
4991 cached_num_sign_bit_copies (x0, mode, known_x,
4992 known_mode,
4993 known_ret));
4994 }
4995
4996 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4997 }
4998
4999 /* Return the number of bits at the high-order end of X that are known to
5000 be equal to the sign bit. X will be used in mode MODE. The returned
5001 value will always be between 1 and the number of bits in MODE. */
5002
5003 static unsigned int
5004 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5005 machine_mode known_mode,
5006 unsigned int known_ret)
5007 {
5008 enum rtx_code code = GET_CODE (x);
5009 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5010 int num0, num1, result;
5011 unsigned HOST_WIDE_INT nonzero;
5012
5013 if (CONST_INT_P (x))
5014 {
5015 /* If the constant is negative, take its 1's complement and remask.
5016 Then see how many zero bits we have. */
5017 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5018 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5019 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5020 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5021
5022 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5023 }
5024
5025 scalar_int_mode xmode, inner_mode;
5026 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5027 return 1;
5028
5029 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5030
5031 /* For a smaller mode, just ignore the high bits. */
5032 if (bitwidth < xmode_width)
5033 {
5034 num0 = cached_num_sign_bit_copies (x, xmode,
5035 known_x, known_mode, known_ret);
5036 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5037 }
5038
5039 if (bitwidth > xmode_width)
5040 {
5041 /* If this machine does not do all register operations on the entire
5042 register and MODE is wider than the mode of X, we can say nothing
5043 at all about the high-order bits. We extend this reasoning to RISC
5044 machines for operations that might not operate on full registers. */
5045 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5046 return 1;
5047
5048 /* Likewise on machines that do, if the mode of the object is smaller
5049 than a word and loads of that size don't sign extend, we can say
5050 nothing about the high order bits. */
5051 if (xmode_width < BITS_PER_WORD
5052 && load_extend_op (xmode) != SIGN_EXTEND)
5053 return 1;
5054 }
5055
5056 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5057 the code in the switch below. */
5058 switch (code)
5059 {
5060 case REG:
5061
5062 #if defined(POINTERS_EXTEND_UNSIGNED)
5063 /* If pointers extend signed and this is a pointer in Pmode, say that
5064 all the bits above ptr_mode are known to be sign bit copies. */
5065 /* As we do not know which address space the pointer is referring to,
5066 we can do this only if the target does not support different pointer
5067 or address modes depending on the address space. */
5068 if (target_default_pointer_address_modes_p ()
5069 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5070 && mode == Pmode && REG_POINTER (x)
5071 && !targetm.have_ptr_extend ())
5072 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5073 #endif
5074
5075 {
5076 unsigned int copies_for_hook = 1, copies = 1;
5077 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5078 &copies_for_hook);
5079
5080 if (new_rtx)
5081 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5082 known_mode, known_ret);
5083
5084 if (copies > 1 || copies_for_hook > 1)
5085 return MAX (copies, copies_for_hook);
5086
5087 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5088 }
5089 break;
5090
5091 case MEM:
5092 /* Some RISC machines sign-extend all loads of smaller than a word. */
5093 if (load_extend_op (xmode) == SIGN_EXTEND)
5094 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5095 break;
5096
5097 case SUBREG:
5098 /* If this is a SUBREG for a promoted object that is sign-extended
5099 and we are looking at it in a wider mode, we know that at least the
5100 high-order bits are known to be sign bit copies. */
5101
5102 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5103 {
5104 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5105 known_x, known_mode, known_ret);
5106 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5107 }
5108
5109 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5110 {
5111 /* For a smaller object, just ignore the high bits. */
5112 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5113 {
5114 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5115 known_x, known_mode,
5116 known_ret);
5117 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5118 - bitwidth));
5119 }
5120
5121 /* For paradoxical SUBREGs on machines where all register operations
5122 affect the entire register, just look inside. Note that we are
5123 passing MODE to the recursive call, so the number of sign bit
5124 copies will remain relative to that mode, not the inner mode.
5125
5126 This works only if loads sign extend. Otherwise, if we get a
5127 reload for the inner part, it may be loaded from the stack, and
5128 then we lose all sign bit copies that existed before the store
5129 to the stack. */
5130 if (WORD_REGISTER_OPERATIONS
5131 && load_extend_op (inner_mode) == SIGN_EXTEND
5132 && paradoxical_subreg_p (x)
5133 && MEM_P (SUBREG_REG (x)))
5134 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5135 known_x, known_mode, known_ret);
5136 }
5137 break;
5138
5139 case SIGN_EXTRACT:
5140 if (CONST_INT_P (XEXP (x, 1)))
5141 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5142 break;
5143
5144 case SIGN_EXTEND:
5145 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5146 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5147 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5148 known_x, known_mode, known_ret));
5149 break;
5150
5151 case TRUNCATE:
5152 /* For a smaller object, just ignore the high bits. */
5153 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5154 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5155 known_x, known_mode, known_ret);
5156 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5157 - bitwidth)));
5158
5159 case NOT:
5160 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5161 known_x, known_mode, known_ret);
5162
5163 case ROTATE: case ROTATERT:
5164 /* If we are rotating left by a number of bits less than the number
5165 of sign bit copies, we can just subtract that amount from the
5166 number. */
5167 if (CONST_INT_P (XEXP (x, 1))
5168 && INTVAL (XEXP (x, 1)) >= 0
5169 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5170 {
5171 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5172 known_x, known_mode, known_ret);
5173 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5174 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5175 }
5176 break;
5177
5178 case NEG:
5179 /* In general, this subtracts one sign bit copy. But if the value
5180 is known to be positive, the number of sign bit copies is the
5181 same as that of the input. Finally, if the input has just one bit
5182 that might be nonzero, all the bits are copies of the sign bit. */
5183 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5184 known_x, known_mode, known_ret);
5185 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5186 return num0 > 1 ? num0 - 1 : 1;
5187
5188 nonzero = nonzero_bits (XEXP (x, 0), mode);
5189 if (nonzero == 1)
5190 return bitwidth;
5191
5192 if (num0 > 1
5193 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5194 num0--;
5195
5196 return num0;
5197
5198 case IOR: case AND: case XOR:
5199 case SMIN: case SMAX: case UMIN: case UMAX:
5200 /* Logical operations will preserve the number of sign-bit copies.
5201 MIN and MAX operations always return one of the operands. */
5202 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5203 known_x, known_mode, known_ret);
5204 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5205 known_x, known_mode, known_ret);
5206
5207 /* If num1 is clearing some of the top bits then regardless of
5208 the other term, we are guaranteed to have at least that many
5209 high-order zero bits. */
5210 if (code == AND
5211 && num1 > 1
5212 && bitwidth <= HOST_BITS_PER_WIDE_INT
5213 && CONST_INT_P (XEXP (x, 1))
5214 && (UINTVAL (XEXP (x, 1))
5215 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5216 return num1;
5217
5218 /* Similarly for IOR when setting high-order bits. */
5219 if (code == IOR
5220 && num1 > 1
5221 && bitwidth <= HOST_BITS_PER_WIDE_INT
5222 && CONST_INT_P (XEXP (x, 1))
5223 && (UINTVAL (XEXP (x, 1))
5224 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5225 return num1;
5226
5227 return MIN (num0, num1);
5228
5229 case PLUS: case MINUS:
5230 /* For addition and subtraction, we can have a 1-bit carry. However,
5231 if we are subtracting 1 from a positive number, there will not
5232 be such a carry. Furthermore, if the positive number is known to
5233 be 0 or 1, we know the result is either -1 or 0. */
5234
5235 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5236 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5237 {
5238 nonzero = nonzero_bits (XEXP (x, 0), mode);
5239 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5240 return (nonzero == 1 || nonzero == 0 ? bitwidth
5241 : bitwidth - floor_log2 (nonzero) - 1);
5242 }
5243
5244 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5245 known_x, known_mode, known_ret);
5246 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5247 known_x, known_mode, known_ret);
5248 result = MAX (1, MIN (num0, num1) - 1);
5249
5250 return result;
5251
5252 case MULT:
5253 /* The number of bits of the product is the sum of the number of
5254 bits of both terms. However, unless one of the terms if known
5255 to be positive, we must allow for an additional bit since negating
5256 a negative number can remove one sign bit copy. */
5257
5258 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5259 known_x, known_mode, known_ret);
5260 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5261 known_x, known_mode, known_ret);
5262
5263 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5264 if (result > 0
5265 && (bitwidth > HOST_BITS_PER_WIDE_INT
5266 || (((nonzero_bits (XEXP (x, 0), mode)
5267 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5268 && ((nonzero_bits (XEXP (x, 1), mode)
5269 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5270 != 0))))
5271 result--;
5272
5273 return MAX (1, result);
5274
5275 case UDIV:
5276 /* The result must be <= the first operand. If the first operand
5277 has the high bit set, we know nothing about the number of sign
5278 bit copies. */
5279 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5280 return 1;
5281 else if ((nonzero_bits (XEXP (x, 0), mode)
5282 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5283 return 1;
5284 else
5285 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5286 known_x, known_mode, known_ret);
5287
5288 case UMOD:
5289 /* The result must be <= the second operand. If the second operand
5290 has (or just might have) the high bit set, we know nothing about
5291 the number of sign bit copies. */
5292 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5293 return 1;
5294 else if ((nonzero_bits (XEXP (x, 1), mode)
5295 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5296 return 1;
5297 else
5298 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5299 known_x, known_mode, known_ret);
5300
5301 case DIV:
5302 /* Similar to unsigned division, except that we have to worry about
5303 the case where the divisor is negative, in which case we have
5304 to add 1. */
5305 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5306 known_x, known_mode, known_ret);
5307 if (result > 1
5308 && (bitwidth > HOST_BITS_PER_WIDE_INT
5309 || (nonzero_bits (XEXP (x, 1), mode)
5310 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5311 result--;
5312
5313 return result;
5314
5315 case MOD:
5316 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5317 known_x, known_mode, known_ret);
5318 if (result > 1
5319 && (bitwidth > HOST_BITS_PER_WIDE_INT
5320 || (nonzero_bits (XEXP (x, 1), mode)
5321 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5322 result--;
5323
5324 return result;
5325
5326 case ASHIFTRT:
5327 /* Shifts by a constant add to the number of bits equal to the
5328 sign bit. */
5329 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5330 known_x, known_mode, known_ret);
5331 if (CONST_INT_P (XEXP (x, 1))
5332 && INTVAL (XEXP (x, 1)) > 0
5333 && INTVAL (XEXP (x, 1)) < xmode_width)
5334 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5335
5336 return num0;
5337
5338 case ASHIFT:
5339 /* Left shifts destroy copies. */
5340 if (!CONST_INT_P (XEXP (x, 1))
5341 || INTVAL (XEXP (x, 1)) < 0
5342 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5343 || INTVAL (XEXP (x, 1)) >= xmode_width)
5344 return 1;
5345
5346 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5347 known_x, known_mode, known_ret);
5348 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5349
5350 case IF_THEN_ELSE:
5351 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5352 known_x, known_mode, known_ret);
5353 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5354 known_x, known_mode, known_ret);
5355 return MIN (num0, num1);
5356
5357 case EQ: case NE: case GE: case GT: case LE: case LT:
5358 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5359 case GEU: case GTU: case LEU: case LTU:
5360 case UNORDERED: case ORDERED:
5361 /* If the constant is negative, take its 1's complement and remask.
5362 Then see how many zero bits we have. */
5363 nonzero = STORE_FLAG_VALUE;
5364 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5365 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5366 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5367
5368 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5369
5370 default:
5371 break;
5372 }
5373
5374 /* If we haven't been able to figure it out by one of the above rules,
5375 see if some of the high-order bits are known to be zero. If so,
5376 count those bits and return one less than that amount. If we can't
5377 safely compute the mask for this mode, always return BITWIDTH. */
5378
5379 bitwidth = GET_MODE_PRECISION (mode);
5380 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5381 return 1;
5382
5383 nonzero = nonzero_bits (x, mode);
5384 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5385 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5386 }
5387
5388 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5389 zero indicates an instruction pattern without a known cost. */
5390
5391 int
5392 pattern_cost (rtx pat, bool speed)
5393 {
5394 int i, cost;
5395 rtx set;
5396
5397 /* Extract the single set rtx from the instruction pattern. We
5398 can't use single_set since we only have the pattern. We also
5399 consider PARALLELs of a normal set and a single comparison. In
5400 that case we use the cost of the non-comparison SET operation,
5401 which is most-likely to be the real cost of this operation. */
5402 if (GET_CODE (pat) == SET)
5403 set = pat;
5404 else if (GET_CODE (pat) == PARALLEL)
5405 {
5406 set = NULL_RTX;
5407 rtx comparison = NULL_RTX;
5408
5409 for (i = 0; i < XVECLEN (pat, 0); i++)
5410 {
5411 rtx x = XVECEXP (pat, 0, i);
5412 if (GET_CODE (x) == SET)
5413 {
5414 if (GET_CODE (SET_SRC (x)) == COMPARE)
5415 {
5416 if (comparison)
5417 return 0;
5418 comparison = x;
5419 }
5420 else
5421 {
5422 if (set)
5423 return 0;
5424 set = x;
5425 }
5426 }
5427 }
5428
5429 if (!set && comparison)
5430 set = comparison;
5431
5432 if (!set)
5433 return 0;
5434 }
5435 else
5436 return 0;
5437
5438 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5439 return cost > 0 ? cost : COSTS_N_INSNS (1);
5440 }
5441
5442 /* Calculate the cost of a single instruction. A return value of zero
5443 indicates an instruction pattern without a known cost. */
5444
5445 int
5446 insn_cost (rtx_insn *insn, bool speed)
5447 {
5448 if (targetm.insn_cost)
5449 return targetm.insn_cost (insn, speed);
5450
5451 return pattern_cost (PATTERN (insn), speed);
5452 }
5453
5454 /* Returns estimate on cost of computing SEQ. */
5455
5456 unsigned
5457 seq_cost (const rtx_insn *seq, bool speed)
5458 {
5459 unsigned cost = 0;
5460 rtx set;
5461
5462 for (; seq; seq = NEXT_INSN (seq))
5463 {
5464 set = single_set (seq);
5465 if (set)
5466 cost += set_rtx_cost (set, speed);
5467 else if (NONDEBUG_INSN_P (seq))
5468 {
5469 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5470 if (this_cost > 0)
5471 cost += this_cost;
5472 else
5473 cost++;
5474 }
5475 }
5476
5477 return cost;
5478 }
5479
5480 /* Given an insn INSN and condition COND, return the condition in a
5481 canonical form to simplify testing by callers. Specifically:
5482
5483 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5484 (2) Both operands will be machine operands; (cc0) will have been replaced.
5485 (3) If an operand is a constant, it will be the second operand.
5486 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5487 for GE, GEU, and LEU.
5488
5489 If the condition cannot be understood, or is an inequality floating-point
5490 comparison which needs to be reversed, 0 will be returned.
5491
5492 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5493
5494 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5495 insn used in locating the condition was found. If a replacement test
5496 of the condition is desired, it should be placed in front of that
5497 insn and we will be sure that the inputs are still valid.
5498
5499 If WANT_REG is nonzero, we wish the condition to be relative to that
5500 register, if possible. Therefore, do not canonicalize the condition
5501 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5502 to be a compare to a CC mode register.
5503
5504 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5505 and at INSN. */
5506
5507 rtx
5508 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5509 rtx_insn **earliest,
5510 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5511 {
5512 enum rtx_code code;
5513 rtx_insn *prev = insn;
5514 const_rtx set;
5515 rtx tem;
5516 rtx op0, op1;
5517 int reverse_code = 0;
5518 machine_mode mode;
5519 basic_block bb = BLOCK_FOR_INSN (insn);
5520
5521 code = GET_CODE (cond);
5522 mode = GET_MODE (cond);
5523 op0 = XEXP (cond, 0);
5524 op1 = XEXP (cond, 1);
5525
5526 if (reverse)
5527 code = reversed_comparison_code (cond, insn);
5528 if (code == UNKNOWN)
5529 return 0;
5530
5531 if (earliest)
5532 *earliest = insn;
5533
5534 /* If we are comparing a register with zero, see if the register is set
5535 in the previous insn to a COMPARE or a comparison operation. Perform
5536 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5537 in cse.c */
5538
5539 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5540 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5541 && op1 == CONST0_RTX (GET_MODE (op0))
5542 && op0 != want_reg)
5543 {
5544 /* Set nonzero when we find something of interest. */
5545 rtx x = 0;
5546
5547 /* If comparison with cc0, import actual comparison from compare
5548 insn. */
5549 if (op0 == cc0_rtx)
5550 {
5551 if ((prev = prev_nonnote_insn (prev)) == 0
5552 || !NONJUMP_INSN_P (prev)
5553 || (set = single_set (prev)) == 0
5554 || SET_DEST (set) != cc0_rtx)
5555 return 0;
5556
5557 op0 = SET_SRC (set);
5558 op1 = CONST0_RTX (GET_MODE (op0));
5559 if (earliest)
5560 *earliest = prev;
5561 }
5562
5563 /* If this is a COMPARE, pick up the two things being compared. */
5564 if (GET_CODE (op0) == COMPARE)
5565 {
5566 op1 = XEXP (op0, 1);
5567 op0 = XEXP (op0, 0);
5568 continue;
5569 }
5570 else if (!REG_P (op0))
5571 break;
5572
5573 /* Go back to the previous insn. Stop if it is not an INSN. We also
5574 stop if it isn't a single set or if it has a REG_INC note because
5575 we don't want to bother dealing with it. */
5576
5577 prev = prev_nonnote_nondebug_insn (prev);
5578
5579 if (prev == 0
5580 || !NONJUMP_INSN_P (prev)
5581 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5582 /* In cfglayout mode, there do not have to be labels at the
5583 beginning of a block, or jumps at the end, so the previous
5584 conditions would not stop us when we reach bb boundary. */
5585 || BLOCK_FOR_INSN (prev) != bb)
5586 break;
5587
5588 set = set_of (op0, prev);
5589
5590 if (set
5591 && (GET_CODE (set) != SET
5592 || !rtx_equal_p (SET_DEST (set), op0)))
5593 break;
5594
5595 /* If this is setting OP0, get what it sets it to if it looks
5596 relevant. */
5597 if (set)
5598 {
5599 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5600 #ifdef FLOAT_STORE_FLAG_VALUE
5601 REAL_VALUE_TYPE fsfv;
5602 #endif
5603
5604 /* ??? We may not combine comparisons done in a CCmode with
5605 comparisons not done in a CCmode. This is to aid targets
5606 like Alpha that have an IEEE compliant EQ instruction, and
5607 a non-IEEE compliant BEQ instruction. The use of CCmode is
5608 actually artificial, simply to prevent the combination, but
5609 should not affect other platforms.
5610
5611 However, we must allow VOIDmode comparisons to match either
5612 CCmode or non-CCmode comparison, because some ports have
5613 modeless comparisons inside branch patterns.
5614
5615 ??? This mode check should perhaps look more like the mode check
5616 in simplify_comparison in combine. */
5617 if (((GET_MODE_CLASS (mode) == MODE_CC)
5618 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5619 && mode != VOIDmode
5620 && inner_mode != VOIDmode)
5621 break;
5622 if (GET_CODE (SET_SRC (set)) == COMPARE
5623 || (((code == NE
5624 || (code == LT
5625 && val_signbit_known_set_p (inner_mode,
5626 STORE_FLAG_VALUE))
5627 #ifdef FLOAT_STORE_FLAG_VALUE
5628 || (code == LT
5629 && SCALAR_FLOAT_MODE_P (inner_mode)
5630 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5631 REAL_VALUE_NEGATIVE (fsfv)))
5632 #endif
5633 ))
5634 && COMPARISON_P (SET_SRC (set))))
5635 x = SET_SRC (set);
5636 else if (((code == EQ
5637 || (code == GE
5638 && val_signbit_known_set_p (inner_mode,
5639 STORE_FLAG_VALUE))
5640 #ifdef FLOAT_STORE_FLAG_VALUE
5641 || (code == GE
5642 && SCALAR_FLOAT_MODE_P (inner_mode)
5643 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5644 REAL_VALUE_NEGATIVE (fsfv)))
5645 #endif
5646 ))
5647 && COMPARISON_P (SET_SRC (set)))
5648 {
5649 reverse_code = 1;
5650 x = SET_SRC (set);
5651 }
5652 else if ((code == EQ || code == NE)
5653 && GET_CODE (SET_SRC (set)) == XOR)
5654 /* Handle sequences like:
5655
5656 (set op0 (xor X Y))
5657 ...(eq|ne op0 (const_int 0))...
5658
5659 in which case:
5660
5661 (eq op0 (const_int 0)) reduces to (eq X Y)
5662 (ne op0 (const_int 0)) reduces to (ne X Y)
5663
5664 This is the form used by MIPS16, for example. */
5665 x = SET_SRC (set);
5666 else
5667 break;
5668 }
5669
5670 else if (reg_set_p (op0, prev))
5671 /* If this sets OP0, but not directly, we have to give up. */
5672 break;
5673
5674 if (x)
5675 {
5676 /* If the caller is expecting the condition to be valid at INSN,
5677 make sure X doesn't change before INSN. */
5678 if (valid_at_insn_p)
5679 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5680 break;
5681 if (COMPARISON_P (x))
5682 code = GET_CODE (x);
5683 if (reverse_code)
5684 {
5685 code = reversed_comparison_code (x, prev);
5686 if (code == UNKNOWN)
5687 return 0;
5688 reverse_code = 0;
5689 }
5690
5691 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5692 if (earliest)
5693 *earliest = prev;
5694 }
5695 }
5696
5697 /* If constant is first, put it last. */
5698 if (CONSTANT_P (op0))
5699 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5700
5701 /* If OP0 is the result of a comparison, we weren't able to find what
5702 was really being compared, so fail. */
5703 if (!allow_cc_mode
5704 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5705 return 0;
5706
5707 /* Canonicalize any ordered comparison with integers involving equality
5708 if we can do computations in the relevant mode and we do not
5709 overflow. */
5710
5711 scalar_int_mode op0_mode;
5712 if (CONST_INT_P (op1)
5713 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5714 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5715 {
5716 HOST_WIDE_INT const_val = INTVAL (op1);
5717 unsigned HOST_WIDE_INT uconst_val = const_val;
5718 unsigned HOST_WIDE_INT max_val
5719 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5720
5721 switch (code)
5722 {
5723 case LE:
5724 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5725 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5726 break;
5727
5728 /* When cross-compiling, const_val might be sign-extended from
5729 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5730 case GE:
5731 if ((const_val & max_val)
5732 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5733 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5734 break;
5735
5736 case LEU:
5737 if (uconst_val < max_val)
5738 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5739 break;
5740
5741 case GEU:
5742 if (uconst_val != 0)
5743 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5744 break;
5745
5746 default:
5747 break;
5748 }
5749 }
5750
5751 /* Never return CC0; return zero instead. */
5752 if (CC0_P (op0))
5753 return 0;
5754
5755 /* We promised to return a comparison. */
5756 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5757 if (COMPARISON_P (ret))
5758 return ret;
5759 return 0;
5760 }
5761
5762 /* Given a jump insn JUMP, return the condition that will cause it to branch
5763 to its JUMP_LABEL. If the condition cannot be understood, or is an
5764 inequality floating-point comparison which needs to be reversed, 0 will
5765 be returned.
5766
5767 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5768 insn used in locating the condition was found. If a replacement test
5769 of the condition is desired, it should be placed in front of that
5770 insn and we will be sure that the inputs are still valid. If EARLIEST
5771 is null, the returned condition will be valid at INSN.
5772
5773 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5774 compare CC mode register.
5775
5776 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5777
5778 rtx
5779 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5780 int valid_at_insn_p)
5781 {
5782 rtx cond;
5783 int reverse;
5784 rtx set;
5785
5786 /* If this is not a standard conditional jump, we can't parse it. */
5787 if (!JUMP_P (jump)
5788 || ! any_condjump_p (jump))
5789 return 0;
5790 set = pc_set (jump);
5791
5792 cond = XEXP (SET_SRC (set), 0);
5793
5794 /* If this branches to JUMP_LABEL when the condition is false, reverse
5795 the condition. */
5796 reverse
5797 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5798 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5799
5800 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5801 allow_cc_mode, valid_at_insn_p);
5802 }
5803
5804 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5805 TARGET_MODE_REP_EXTENDED.
5806
5807 Note that we assume that the property of
5808 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5809 narrower than mode B. I.e., if A is a mode narrower than B then in
5810 order to be able to operate on it in mode B, mode A needs to
5811 satisfy the requirements set by the representation of mode B. */
5812
5813 static void
5814 init_num_sign_bit_copies_in_rep (void)
5815 {
5816 opt_scalar_int_mode in_mode_iter;
5817 scalar_int_mode mode;
5818
5819 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5820 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5821 {
5822 scalar_int_mode in_mode = in_mode_iter.require ();
5823 scalar_int_mode i;
5824
5825 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5826 extends to the next widest mode. */
5827 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5828 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5829
5830 /* We are in in_mode. Count how many bits outside of mode
5831 have to be copies of the sign-bit. */
5832 FOR_EACH_MODE (i, mode, in_mode)
5833 {
5834 /* This must always exist (for the last iteration it will be
5835 IN_MODE). */
5836 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5837
5838 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5839 /* We can only check sign-bit copies starting from the
5840 top-bit. In order to be able to check the bits we
5841 have already seen we pretend that subsequent bits
5842 have to be sign-bit copies too. */
5843 || num_sign_bit_copies_in_rep [in_mode][mode])
5844 num_sign_bit_copies_in_rep [in_mode][mode]
5845 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5846 }
5847 }
5848 }
5849
5850 /* Suppose that truncation from the machine mode of X to MODE is not a
5851 no-op. See if there is anything special about X so that we can
5852 assume it already contains a truncated value of MODE. */
5853
5854 bool
5855 truncated_to_mode (machine_mode mode, const_rtx x)
5856 {
5857 /* This register has already been used in MODE without explicit
5858 truncation. */
5859 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5860 return true;
5861
5862 /* See if we already satisfy the requirements of MODE. If yes we
5863 can just switch to MODE. */
5864 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5865 && (num_sign_bit_copies (x, GET_MODE (x))
5866 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5867 return true;
5868
5869 return false;
5870 }
5871 \f
5872 /* Return true if RTX code CODE has a single sequence of zero or more
5873 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5874 entry in that case. */
5875
5876 static bool
5877 setup_reg_subrtx_bounds (unsigned int code)
5878 {
5879 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5880 unsigned int i = 0;
5881 for (; format[i] != 'e'; ++i)
5882 {
5883 if (!format[i])
5884 /* No subrtxes. Leave start and count as 0. */
5885 return true;
5886 if (format[i] == 'E' || format[i] == 'V')
5887 return false;
5888 }
5889
5890 /* Record the sequence of 'e's. */
5891 rtx_all_subrtx_bounds[code].start = i;
5892 do
5893 ++i;
5894 while (format[i] == 'e');
5895 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5896 /* rtl-iter.h relies on this. */
5897 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5898
5899 for (; format[i]; ++i)
5900 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5901 return false;
5902
5903 return true;
5904 }
5905
5906 /* Initialize rtx_all_subrtx_bounds. */
5907 void
5908 init_rtlanal (void)
5909 {
5910 int i;
5911 for (i = 0; i < NUM_RTX_CODE; i++)
5912 {
5913 if (!setup_reg_subrtx_bounds (i))
5914 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5915 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5916 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5917 }
5918
5919 init_num_sign_bit_copies_in_rep ();
5920 }
5921 \f
5922 /* Check whether this is a constant pool constant. */
5923 bool
5924 constant_pool_constant_p (rtx x)
5925 {
5926 x = avoid_constant_pool_reference (x);
5927 return CONST_DOUBLE_P (x);
5928 }
5929 \f
5930 /* If M is a bitmask that selects a field of low-order bits within an item but
5931 not the entire word, return the length of the field. Return -1 otherwise.
5932 M is used in machine mode MODE. */
5933
5934 int
5935 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5936 {
5937 if (mode != VOIDmode)
5938 {
5939 if (!HWI_COMPUTABLE_MODE_P (mode))
5940 return -1;
5941 m &= GET_MODE_MASK (mode);
5942 }
5943
5944 return exact_log2 (m + 1);
5945 }
5946
5947 /* Return the mode of MEM's address. */
5948
5949 scalar_int_mode
5950 get_address_mode (rtx mem)
5951 {
5952 machine_mode mode;
5953
5954 gcc_assert (MEM_P (mem));
5955 mode = GET_MODE (XEXP (mem, 0));
5956 if (mode != VOIDmode)
5957 return as_a <scalar_int_mode> (mode);
5958 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5959 }
5960 \f
5961 /* Split up a CONST_DOUBLE or integer constant rtx
5962 into two rtx's for single words,
5963 storing in *FIRST the word that comes first in memory in the target
5964 and in *SECOND the other.
5965
5966 TODO: This function needs to be rewritten to work on any size
5967 integer. */
5968
5969 void
5970 split_double (rtx value, rtx *first, rtx *second)
5971 {
5972 if (CONST_INT_P (value))
5973 {
5974 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5975 {
5976 /* In this case the CONST_INT holds both target words.
5977 Extract the bits from it into two word-sized pieces.
5978 Sign extend each half to HOST_WIDE_INT. */
5979 unsigned HOST_WIDE_INT low, high;
5980 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5981 unsigned bits_per_word = BITS_PER_WORD;
5982
5983 /* Set sign_bit to the most significant bit of a word. */
5984 sign_bit = 1;
5985 sign_bit <<= bits_per_word - 1;
5986
5987 /* Set mask so that all bits of the word are set. We could
5988 have used 1 << BITS_PER_WORD instead of basing the
5989 calculation on sign_bit. However, on machines where
5990 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5991 compiler warning, even though the code would never be
5992 executed. */
5993 mask = sign_bit << 1;
5994 mask--;
5995
5996 /* Set sign_extend as any remaining bits. */
5997 sign_extend = ~mask;
5998
5999 /* Pick the lower word and sign-extend it. */
6000 low = INTVAL (value);
6001 low &= mask;
6002 if (low & sign_bit)
6003 low |= sign_extend;
6004
6005 /* Pick the higher word, shifted to the least significant
6006 bits, and sign-extend it. */
6007 high = INTVAL (value);
6008 high >>= bits_per_word - 1;
6009 high >>= 1;
6010 high &= mask;
6011 if (high & sign_bit)
6012 high |= sign_extend;
6013
6014 /* Store the words in the target machine order. */
6015 if (WORDS_BIG_ENDIAN)
6016 {
6017 *first = GEN_INT (high);
6018 *second = GEN_INT (low);
6019 }
6020 else
6021 {
6022 *first = GEN_INT (low);
6023 *second = GEN_INT (high);
6024 }
6025 }
6026 else
6027 {
6028 /* The rule for using CONST_INT for a wider mode
6029 is that we regard the value as signed.
6030 So sign-extend it. */
6031 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6032 if (WORDS_BIG_ENDIAN)
6033 {
6034 *first = high;
6035 *second = value;
6036 }
6037 else
6038 {
6039 *first = value;
6040 *second = high;
6041 }
6042 }
6043 }
6044 else if (GET_CODE (value) == CONST_WIDE_INT)
6045 {
6046 /* All of this is scary code and needs to be converted to
6047 properly work with any size integer. */
6048 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6049 if (WORDS_BIG_ENDIAN)
6050 {
6051 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6052 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6053 }
6054 else
6055 {
6056 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6057 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6058 }
6059 }
6060 else if (!CONST_DOUBLE_P (value))
6061 {
6062 if (WORDS_BIG_ENDIAN)
6063 {
6064 *first = const0_rtx;
6065 *second = value;
6066 }
6067 else
6068 {
6069 *first = value;
6070 *second = const0_rtx;
6071 }
6072 }
6073 else if (GET_MODE (value) == VOIDmode
6074 /* This is the old way we did CONST_DOUBLE integers. */
6075 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6076 {
6077 /* In an integer, the words are defined as most and least significant.
6078 So order them by the target's convention. */
6079 if (WORDS_BIG_ENDIAN)
6080 {
6081 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6082 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6083 }
6084 else
6085 {
6086 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6087 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6088 }
6089 }
6090 else
6091 {
6092 long l[2];
6093
6094 /* Note, this converts the REAL_VALUE_TYPE to the target's
6095 format, splits up the floating point double and outputs
6096 exactly 32 bits of it into each of l[0] and l[1] --
6097 not necessarily BITS_PER_WORD bits. */
6098 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6099
6100 /* If 32 bits is an entire word for the target, but not for the host,
6101 then sign-extend on the host so that the number will look the same
6102 way on the host that it would on the target. See for instance
6103 simplify_unary_operation. The #if is needed to avoid compiler
6104 warnings. */
6105
6106 #if HOST_BITS_PER_LONG > 32
6107 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6108 {
6109 if (l[0] & ((long) 1 << 31))
6110 l[0] |= ((unsigned long) (-1) << 32);
6111 if (l[1] & ((long) 1 << 31))
6112 l[1] |= ((unsigned long) (-1) << 32);
6113 }
6114 #endif
6115
6116 *first = GEN_INT (l[0]);
6117 *second = GEN_INT (l[1]);
6118 }
6119 }
6120
6121 /* Return true if X is a sign_extract or zero_extract from the least
6122 significant bit. */
6123
6124 static bool
6125 lsb_bitfield_op_p (rtx x)
6126 {
6127 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6128 {
6129 machine_mode mode = GET_MODE (XEXP (x, 0));
6130 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6131 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6132 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6133
6134 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6135 }
6136 return false;
6137 }
6138
6139 /* Strip outer address "mutations" from LOC and return a pointer to the
6140 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6141 stripped expression there.
6142
6143 "Mutations" either convert between modes or apply some kind of
6144 extension, truncation or alignment. */
6145
6146 rtx *
6147 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6148 {
6149 for (;;)
6150 {
6151 enum rtx_code code = GET_CODE (*loc);
6152 if (GET_RTX_CLASS (code) == RTX_UNARY)
6153 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6154 used to convert between pointer sizes. */
6155 loc = &XEXP (*loc, 0);
6156 else if (lsb_bitfield_op_p (*loc))
6157 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6158 acts as a combined truncation and extension. */
6159 loc = &XEXP (*loc, 0);
6160 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6161 /* (and ... (const_int -X)) is used to align to X bytes. */
6162 loc = &XEXP (*loc, 0);
6163 else if (code == SUBREG
6164 && !OBJECT_P (SUBREG_REG (*loc))
6165 && subreg_lowpart_p (*loc))
6166 /* (subreg (operator ...) ...) inside and is used for mode
6167 conversion too. */
6168 loc = &SUBREG_REG (*loc);
6169 else
6170 return loc;
6171 if (outer_code)
6172 *outer_code = code;
6173 }
6174 }
6175
6176 /* Return true if CODE applies some kind of scale. The scaled value is
6177 is the first operand and the scale is the second. */
6178
6179 static bool
6180 binary_scale_code_p (enum rtx_code code)
6181 {
6182 return (code == MULT
6183 || code == ASHIFT
6184 /* Needed by ARM targets. */
6185 || code == ASHIFTRT
6186 || code == LSHIFTRT
6187 || code == ROTATE
6188 || code == ROTATERT);
6189 }
6190
6191 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6192 (see address_info). Return null otherwise. */
6193
6194 static rtx *
6195 get_base_term (rtx *inner)
6196 {
6197 if (GET_CODE (*inner) == LO_SUM)
6198 inner = strip_address_mutations (&XEXP (*inner, 0));
6199 if (REG_P (*inner)
6200 || MEM_P (*inner)
6201 || GET_CODE (*inner) == SUBREG
6202 || GET_CODE (*inner) == SCRATCH)
6203 return inner;
6204 return 0;
6205 }
6206
6207 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6208 (see address_info). Return null otherwise. */
6209
6210 static rtx *
6211 get_index_term (rtx *inner)
6212 {
6213 /* At present, only constant scales are allowed. */
6214 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6215 inner = strip_address_mutations (&XEXP (*inner, 0));
6216 if (REG_P (*inner)
6217 || MEM_P (*inner)
6218 || GET_CODE (*inner) == SUBREG
6219 || GET_CODE (*inner) == SCRATCH)
6220 return inner;
6221 return 0;
6222 }
6223
6224 /* Set the segment part of address INFO to LOC, given that INNER is the
6225 unmutated value. */
6226
6227 static void
6228 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6229 {
6230 gcc_assert (!info->segment);
6231 info->segment = loc;
6232 info->segment_term = inner;
6233 }
6234
6235 /* Set the base part of address INFO to LOC, given that INNER is the
6236 unmutated value. */
6237
6238 static void
6239 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6240 {
6241 gcc_assert (!info->base);
6242 info->base = loc;
6243 info->base_term = inner;
6244 }
6245
6246 /* Set the index part of address INFO to LOC, given that INNER is the
6247 unmutated value. */
6248
6249 static void
6250 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6251 {
6252 gcc_assert (!info->index);
6253 info->index = loc;
6254 info->index_term = inner;
6255 }
6256
6257 /* Set the displacement part of address INFO to LOC, given that INNER
6258 is the constant term. */
6259
6260 static void
6261 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6262 {
6263 gcc_assert (!info->disp);
6264 info->disp = loc;
6265 info->disp_term = inner;
6266 }
6267
6268 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6269 rest of INFO accordingly. */
6270
6271 static void
6272 decompose_incdec_address (struct address_info *info)
6273 {
6274 info->autoinc_p = true;
6275
6276 rtx *base = &XEXP (*info->inner, 0);
6277 set_address_base (info, base, base);
6278 gcc_checking_assert (info->base == info->base_term);
6279
6280 /* These addresses are only valid when the size of the addressed
6281 value is known. */
6282 gcc_checking_assert (info->mode != VOIDmode);
6283 }
6284
6285 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6286 of INFO accordingly. */
6287
6288 static void
6289 decompose_automod_address (struct address_info *info)
6290 {
6291 info->autoinc_p = true;
6292
6293 rtx *base = &XEXP (*info->inner, 0);
6294 set_address_base (info, base, base);
6295 gcc_checking_assert (info->base == info->base_term);
6296
6297 rtx plus = XEXP (*info->inner, 1);
6298 gcc_assert (GET_CODE (plus) == PLUS);
6299
6300 info->base_term2 = &XEXP (plus, 0);
6301 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6302
6303 rtx *step = &XEXP (plus, 1);
6304 rtx *inner_step = strip_address_mutations (step);
6305 if (CONSTANT_P (*inner_step))
6306 set_address_disp (info, step, inner_step);
6307 else
6308 set_address_index (info, step, inner_step);
6309 }
6310
6311 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6312 values in [PTR, END). Return a pointer to the end of the used array. */
6313
6314 static rtx **
6315 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6316 {
6317 rtx x = *loc;
6318 if (GET_CODE (x) == PLUS)
6319 {
6320 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6321 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6322 }
6323 else
6324 {
6325 gcc_assert (ptr != end);
6326 *ptr++ = loc;
6327 }
6328 return ptr;
6329 }
6330
6331 /* Evaluate the likelihood of X being a base or index value, returning
6332 positive if it is likely to be a base, negative if it is likely to be
6333 an index, and 0 if we can't tell. Make the magnitude of the return
6334 value reflect the amount of confidence we have in the answer.
6335
6336 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6337
6338 static int
6339 baseness (rtx x, machine_mode mode, addr_space_t as,
6340 enum rtx_code outer_code, enum rtx_code index_code)
6341 {
6342 /* Believe *_POINTER unless the address shape requires otherwise. */
6343 if (REG_P (x) && REG_POINTER (x))
6344 return 2;
6345 if (MEM_P (x) && MEM_POINTER (x))
6346 return 2;
6347
6348 if (REG_P (x) && HARD_REGISTER_P (x))
6349 {
6350 /* X is a hard register. If it only fits one of the base
6351 or index classes, choose that interpretation. */
6352 int regno = REGNO (x);
6353 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6354 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6355 if (base_p != index_p)
6356 return base_p ? 1 : -1;
6357 }
6358 return 0;
6359 }
6360
6361 /* INFO->INNER describes a normal, non-automodified address.
6362 Fill in the rest of INFO accordingly. */
6363
6364 static void
6365 decompose_normal_address (struct address_info *info)
6366 {
6367 /* Treat the address as the sum of up to four values. */
6368 rtx *ops[4];
6369 size_t n_ops = extract_plus_operands (info->inner, ops,
6370 ops + ARRAY_SIZE (ops)) - ops;
6371
6372 /* If there is more than one component, any base component is in a PLUS. */
6373 if (n_ops > 1)
6374 info->base_outer_code = PLUS;
6375
6376 /* Try to classify each sum operand now. Leave those that could be
6377 either a base or an index in OPS. */
6378 rtx *inner_ops[4];
6379 size_t out = 0;
6380 for (size_t in = 0; in < n_ops; ++in)
6381 {
6382 rtx *loc = ops[in];
6383 rtx *inner = strip_address_mutations (loc);
6384 if (CONSTANT_P (*inner))
6385 set_address_disp (info, loc, inner);
6386 else if (GET_CODE (*inner) == UNSPEC)
6387 set_address_segment (info, loc, inner);
6388 else
6389 {
6390 /* The only other possibilities are a base or an index. */
6391 rtx *base_term = get_base_term (inner);
6392 rtx *index_term = get_index_term (inner);
6393 gcc_assert (base_term || index_term);
6394 if (!base_term)
6395 set_address_index (info, loc, index_term);
6396 else if (!index_term)
6397 set_address_base (info, loc, base_term);
6398 else
6399 {
6400 gcc_assert (base_term == index_term);
6401 ops[out] = loc;
6402 inner_ops[out] = base_term;
6403 ++out;
6404 }
6405 }
6406 }
6407
6408 /* Classify the remaining OPS members as bases and indexes. */
6409 if (out == 1)
6410 {
6411 /* If we haven't seen a base or an index yet, assume that this is
6412 the base. If we were confident that another term was the base
6413 or index, treat the remaining operand as the other kind. */
6414 if (!info->base)
6415 set_address_base (info, ops[0], inner_ops[0]);
6416 else
6417 set_address_index (info, ops[0], inner_ops[0]);
6418 }
6419 else if (out == 2)
6420 {
6421 /* In the event of a tie, assume the base comes first. */
6422 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6423 GET_CODE (*ops[1]))
6424 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6425 GET_CODE (*ops[0])))
6426 {
6427 set_address_base (info, ops[0], inner_ops[0]);
6428 set_address_index (info, ops[1], inner_ops[1]);
6429 }
6430 else
6431 {
6432 set_address_base (info, ops[1], inner_ops[1]);
6433 set_address_index (info, ops[0], inner_ops[0]);
6434 }
6435 }
6436 else
6437 gcc_assert (out == 0);
6438 }
6439
6440 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6441 or VOIDmode if not known. AS is the address space associated with LOC.
6442 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6443
6444 void
6445 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6446 addr_space_t as, enum rtx_code outer_code)
6447 {
6448 memset (info, 0, sizeof (*info));
6449 info->mode = mode;
6450 info->as = as;
6451 info->addr_outer_code = outer_code;
6452 info->outer = loc;
6453 info->inner = strip_address_mutations (loc, &outer_code);
6454 info->base_outer_code = outer_code;
6455 switch (GET_CODE (*info->inner))
6456 {
6457 case PRE_DEC:
6458 case PRE_INC:
6459 case POST_DEC:
6460 case POST_INC:
6461 decompose_incdec_address (info);
6462 break;
6463
6464 case PRE_MODIFY:
6465 case POST_MODIFY:
6466 decompose_automod_address (info);
6467 break;
6468
6469 default:
6470 decompose_normal_address (info);
6471 break;
6472 }
6473 }
6474
6475 /* Describe address operand LOC in INFO. */
6476
6477 void
6478 decompose_lea_address (struct address_info *info, rtx *loc)
6479 {
6480 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6481 }
6482
6483 /* Describe the address of MEM X in INFO. */
6484
6485 void
6486 decompose_mem_address (struct address_info *info, rtx x)
6487 {
6488 gcc_assert (MEM_P (x));
6489 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6490 MEM_ADDR_SPACE (x), MEM);
6491 }
6492
6493 /* Update INFO after a change to the address it describes. */
6494
6495 void
6496 update_address (struct address_info *info)
6497 {
6498 decompose_address (info, info->outer, info->mode, info->as,
6499 info->addr_outer_code);
6500 }
6501
6502 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6503 more complicated than that. */
6504
6505 HOST_WIDE_INT
6506 get_index_scale (const struct address_info *info)
6507 {
6508 rtx index = *info->index;
6509 if (GET_CODE (index) == MULT
6510 && CONST_INT_P (XEXP (index, 1))
6511 && info->index_term == &XEXP (index, 0))
6512 return INTVAL (XEXP (index, 1));
6513
6514 if (GET_CODE (index) == ASHIFT
6515 && CONST_INT_P (XEXP (index, 1))
6516 && info->index_term == &XEXP (index, 0))
6517 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6518
6519 if (info->index == info->index_term)
6520 return 1;
6521
6522 return 0;
6523 }
6524
6525 /* Return the "index code" of INFO, in the form required by
6526 ok_for_base_p_1. */
6527
6528 enum rtx_code
6529 get_index_code (const struct address_info *info)
6530 {
6531 if (info->index)
6532 return GET_CODE (*info->index);
6533
6534 if (info->disp)
6535 return GET_CODE (*info->disp);
6536
6537 return SCRATCH;
6538 }
6539
6540 /* Return true if RTL X contains a SYMBOL_REF. */
6541
6542 bool
6543 contains_symbol_ref_p (const_rtx x)
6544 {
6545 subrtx_iterator::array_type array;
6546 FOR_EACH_SUBRTX (iter, array, x, ALL)
6547 if (SYMBOL_REF_P (*iter))
6548 return true;
6549
6550 return false;
6551 }
6552
6553 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6554
6555 bool
6556 contains_symbolic_reference_p (const_rtx x)
6557 {
6558 subrtx_iterator::array_type array;
6559 FOR_EACH_SUBRTX (iter, array, x, ALL)
6560 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6561 return true;
6562
6563 return false;
6564 }
6565
6566 /* Return true if RTL X contains a constant pool address. */
6567
6568 bool
6569 contains_constant_pool_address_p (const_rtx x)
6570 {
6571 subrtx_iterator::array_type array;
6572 FOR_EACH_SUBRTX (iter, array, x, ALL)
6573 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6574 return true;
6575
6576 return false;
6577 }
6578
6579
6580 /* Return true if X contains a thread-local symbol. */
6581
6582 bool
6583 tls_referenced_p (const_rtx x)
6584 {
6585 if (!targetm.have_tls)
6586 return false;
6587
6588 subrtx_iterator::array_type array;
6589 FOR_EACH_SUBRTX (iter, array, x, ALL)
6590 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6591 return true;
6592 return false;
6593 }
6594
6595 /* Process recursively X of INSN and add REG_INC notes if necessary. */
6596 void
6597 add_auto_inc_notes (rtx_insn *insn, rtx x)
6598 {
6599 enum rtx_code code = GET_CODE (x);
6600 const char *fmt;
6601 int i, j;
6602
6603 if (code == MEM && auto_inc_p (XEXP (x, 0)))
6604 {
6605 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
6606 return;
6607 }
6608
6609 /* Scan all X sub-expressions. */
6610 fmt = GET_RTX_FORMAT (code);
6611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6612 {
6613 if (fmt[i] == 'e')
6614 add_auto_inc_notes (insn, XEXP (x, i));
6615 else if (fmt[i] == 'E')
6616 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6617 add_auto_inc_notes (insn, XVECEXP (x, i, j));
6618 }
6619 }