]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/rtlanal.c
2019-01-09 Sandra Loosemore <sandra@codesourcery.com>
[thirdparty/gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39
40 /* Forward declarations */
41 static void set_of_1 (rtx, const_rtx, void *);
42 static bool covers_regno_p (const_rtx, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
44 static int computed_jump_p_1 (const_rtx);
45 static void parms_set (rtx, const_rtx, void *);
46
47 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
48 const_rtx, machine_mode,
49 unsigned HOST_WIDE_INT);
50 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
51 const_rtx, machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
54 const_rtx, machine_mode,
55 unsigned int);
56 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
57 const_rtx, machine_mode,
58 unsigned int);
59
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
67
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
75
76 static unsigned int
77 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
78 \f
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
81
82 template <typename T>
83 typename T::value_type *
84 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
87 {
88 if (base == array.stack)
89 {
90 if (i < LOCAL_ELEMS)
91 {
92 base[i] = x;
93 return base;
94 }
95 gcc_checking_assert (i == LOCAL_ELEMS);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
104 }
105 unsigned int length = array.heap->length ();
106 if (length > i)
107 {
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
111 }
112 else
113 {
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
117 }
118 }
119
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
122
123 template <typename T>
124 size_t
125 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
128 {
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
131 size_t orig_end = end;
132 if (__builtin_expect (INSN_P (x), false))
133 {
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
139 {
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
145 }
146 }
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
150 {
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
156 }
157 else if (format[i] == 'E')
158 {
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
175 {
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
179 }
180 }
181 return end - orig_end;
182 }
183
184 template <typename T>
185 void
186 generic_subrtx_iterator <T>::free_array (array_type &array)
187 {
188 vec_free (array.heap);
189 }
190
191 template <typename T>
192 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193
194 template class generic_subrtx_iterator <const_rtx_accessor>;
195 template class generic_subrtx_iterator <rtx_var_accessor>;
196 template class generic_subrtx_iterator <rtx_ptr_accessor>;
197
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
202
203 int
204 rtx_unstable_p (const_rtx x)
205 {
206 const RTX_CODE code = GET_CODE (x);
207 int i;
208 const char *fmt;
209
210 switch (code)
211 {
212 case MEM:
213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
214
215 case CONST:
216 CASE_CONST_ANY:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
220
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
226 return 0;
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
231 return 0;
232 return 1;
233
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
237
238 /* Fall through. */
239
240 default:
241 break;
242 }
243
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
247 {
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
250 }
251 else if (fmt[i] == 'E')
252 {
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
268
269 bool
270 rtx_varies_p (const_rtx x, bool for_alias)
271 {
272 RTX_CODE code;
273 int i;
274 const char *fmt;
275
276 if (!x)
277 return 0;
278
279 code = GET_CODE (x);
280 switch (code)
281 {
282 case MEM:
283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
284
285 case CONST:
286 CASE_CONST_ANY:
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
290
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
299 return 0;
300 if (x == pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
306 return 0;
307 return 1;
308
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
315
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
319
320 /* Fall through. */
321
322 default:
323 break;
324 }
325
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
329 {
330 if (rtx_varies_p (XEXP (x, i), for_alias))
331 return 1;
332 }
333 else if (fmt[i] == 'E')
334 {
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
338 return 1;
339 }
340
341 return 0;
342 }
343
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
347
348 static poly_int64
349 get_initial_register_offset (int from, int to)
350 {
351 static const struct elim_table_t
352 {
353 const int from;
354 const int to;
355 } table[] = ELIMINABLE_REGS;
356 poly_int64 offset1, offset2;
357 unsigned int i, j;
358
359 if (to == from)
360 return 0;
361
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
363 before the reload pass. We need to give at least
364 an estimation for the resulting frame size. */
365 if (! reload_completed)
366 {
367 offset1 = crtl->outgoing_args_size + get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
369 offset1 = - offset1;
370 #endif
371 if (to == STACK_POINTER_REGNUM)
372 return offset1;
373 else if (from == STACK_POINTER_REGNUM)
374 return - offset1;
375 else
376 return 0;
377 }
378
379 for (i = 0; i < ARRAY_SIZE (table); i++)
380 if (table[i].from == from)
381 {
382 if (table[i].to == to)
383 {
384 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
385 offset1);
386 return offset1;
387 }
388 for (j = 0; j < ARRAY_SIZE (table); j++)
389 {
390 if (table[j].to == to
391 && table[j].from == table[i].to)
392 {
393 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
394 offset1);
395 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
396 offset2);
397 return offset1 + offset2;
398 }
399 if (table[j].from == to
400 && table[j].to == table[i].to)
401 {
402 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
403 offset1);
404 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
405 offset2);
406 return offset1 - offset2;
407 }
408 }
409 }
410 else if (table[i].to == from)
411 {
412 if (table[i].from == to)
413 {
414 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
415 offset1);
416 return - offset1;
417 }
418 for (j = 0; j < ARRAY_SIZE (table); j++)
419 {
420 if (table[j].to == to
421 && table[j].from == table[i].from)
422 {
423 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
424 offset1);
425 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
426 offset2);
427 return - offset1 + offset2;
428 }
429 if (table[j].from == to
430 && table[j].to == table[i].from)
431 {
432 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
433 offset1);
434 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
435 offset2);
436 return - offset1 - offset2;
437 }
438 }
439 }
440
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
445 else if (to == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
447 else if (from == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
449 else if (to == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
451 else
452 return 0;
453 }
454
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
459
460 static int
461 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
462 machine_mode mode, bool unaligned_mems)
463 {
464 enum rtx_code code = GET_CODE (x);
465 gcc_checking_assert (mode == BLKmode || known_size_p (size));
466 poly_int64 const_x1;
467
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
471 {
472 poly_int64 actual_offset = offset;
473
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
480 actual_offset -= STACK_POINTER_OFFSET;
481 #endif
482
483 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
484 return 1;
485 }
486
487 switch (code)
488 {
489 case SYMBOL_REF:
490 if (SYMBOL_REF_WEAK (x))
491 return 1;
492 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
493 {
494 tree decl;
495 poly_int64 decl_size;
496
497 if (maybe_lt (offset, 0))
498 return 1;
499 if (!known_size_p (size))
500 return maybe_ne (offset, 0);
501
502 /* If the size of the access or of the symbol is unknown,
503 assume the worst. */
504 decl = SYMBOL_REF_DECL (x);
505
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 if (!decl)
509 decl_size = -1;
510 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
511 {
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
513 decl_size = -1;
514 }
515 else if (TREE_CODE (decl) == STRING_CST)
516 decl_size = TREE_STRING_LENGTH (decl);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
518 decl_size = int_size_in_bytes (TREE_TYPE (decl));
519 else
520 decl_size = -1;
521
522 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
523 ? maybe_ne (offset, 0)
524 : maybe_gt (offset + size, decl_size));
525 }
526
527 return 0;
528
529 case LABEL_REF:
530 return 0;
531
532 case REG:
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
536 || x == stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
539 {
540 #ifdef RED_ZONE_SIZE
541 poly_int64 red_zone_size = RED_ZONE_SIZE;
542 #else
543 poly_int64 red_zone_size = 0;
544 #endif
545 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
546 poly_int64 low_bound, high_bound;
547
548 if (!known_size_p (size))
549 return 1;
550
551 if (x == frame_pointer_rtx)
552 {
553 if (FRAME_GROWS_DOWNWARD)
554 {
555 high_bound = targetm.starting_frame_offset ();
556 low_bound = high_bound - get_frame_size ();
557 }
558 else
559 {
560 low_bound = targetm.starting_frame_offset ();
561 high_bound = low_bound + get_frame_size ();
562 }
563 }
564 else if (x == hard_frame_pointer_rtx)
565 {
566 poly_int64 sp_offset
567 = get_initial_register_offset (STACK_POINTER_REGNUM,
568 HARD_FRAME_POINTER_REGNUM);
569 poly_int64 ap_offset
570 = get_initial_register_offset (ARG_POINTER_REGNUM,
571 HARD_FRAME_POINTER_REGNUM);
572
573 #if STACK_GROWS_DOWNWARD
574 low_bound = sp_offset - red_zone_size - stack_boundary;
575 high_bound = ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl)
577 #if !ARGS_GROW_DOWNWARD
578 + crtl->args.size
579 #endif
580 + stack_boundary;
581 #else
582 high_bound = sp_offset + red_zone_size + stack_boundary;
583 low_bound = ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl)
585 #if ARGS_GROW_DOWNWARD
586 - crtl->args.size
587 #endif
588 - stack_boundary;
589 #endif
590 }
591 else if (x == stack_pointer_rtx)
592 {
593 poly_int64 ap_offset
594 = get_initial_register_offset (ARG_POINTER_REGNUM,
595 STACK_POINTER_REGNUM);
596
597 #if STACK_GROWS_DOWNWARD
598 low_bound = - red_zone_size - stack_boundary;
599 high_bound = ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl)
601 #if !ARGS_GROW_DOWNWARD
602 + crtl->args.size
603 #endif
604 + stack_boundary;
605 #else
606 high_bound = red_zone_size + stack_boundary;
607 low_bound = ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl)
609 #if ARGS_GROW_DOWNWARD
610 - crtl->args.size
611 #endif
612 - stack_boundary;
613 #endif
614 }
615 else
616 {
617 /* We assume that accesses are safe to at least the
618 next stack boundary.
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound = FIRST_PARM_OFFSET (current_function_decl)
622 + stack_boundary;
623 low_bound = FIRST_PARM_OFFSET (current_function_decl)
624 - crtl->args.size - stack_boundary;
625 #else
626 low_bound = FIRST_PARM_OFFSET (current_function_decl)
627 - stack_boundary;
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + crtl->args.size + stack_boundary;
630 #endif
631 }
632
633 if (known_ge (offset, low_bound)
634 && known_le (offset, high_bound - size))
635 return 0;
636 return 1;
637 }
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return 0;
642 return 1;
643
644 case CONST:
645 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
646 mode, unaligned_mems);
647
648 case PLUS:
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
654 && known_eq (offset, 0))
655 return 0;
656
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
659 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
660 size, mode, unaligned_mems))
661 return 0;
662
663 return 1;
664
665 case LO_SUM:
666 case PRE_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
668 mode, unaligned_mems);
669
670 case PRE_DEC:
671 case PRE_INC:
672 case POST_DEC:
673 case POST_INC:
674 case POST_MODIFY:
675 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
676 mode, unaligned_mems);
677
678 default:
679 break;
680 }
681
682 /* If it isn't one of the case above, it can cause a trap. */
683 return 1;
684 }
685
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
687
688 int
689 rtx_addr_can_trap_p (const_rtx x)
690 {
691 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
692 }
693
694 /* Return true if X contains a MEM subrtx. */
695
696 bool
697 contains_mem_rtx_p (rtx x)
698 {
699 subrtx_iterator::array_type array;
700 FOR_EACH_SUBRTX (iter, array, x, ALL)
701 if (MEM_P (*iter))
702 return true;
703
704 return false;
705 }
706
707 /* Return true if X is an address that is known to not be zero. */
708
709 bool
710 nonzero_address_p (const_rtx x)
711 {
712 const enum rtx_code code = GET_CODE (x);
713
714 switch (code)
715 {
716 case SYMBOL_REF:
717 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
718
719 case LABEL_REF:
720 return true;
721
722 case REG:
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
725 || x == stack_pointer_rtx
726 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
727 return true;
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
731 return true;
732 return false;
733
734 case CONST:
735 return nonzero_address_p (XEXP (x, 0));
736
737 case PLUS:
738 /* Handle PIC references. */
739 if (XEXP (x, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x, 1)))
741 return true;
742 return false;
743
744 case PRE_MODIFY:
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
747 pointer. */
748 if (CONST_INT_P (XEXP (x, 1))
749 && INTVAL (XEXP (x, 1)) > 0)
750 return true;
751 return nonzero_address_p (XEXP (x, 0));
752
753 case PRE_INC:
754 /* Similarly. Further, the offset is always positive. */
755 return true;
756
757 case PRE_DEC:
758 case POST_DEC:
759 case POST_INC:
760 case POST_MODIFY:
761 return nonzero_address_p (XEXP (x, 0));
762
763 case LO_SUM:
764 return nonzero_address_p (XEXP (x, 1));
765
766 default:
767 break;
768 }
769
770 /* If it isn't one of the case above, might be zero. */
771 return false;
772 }
773
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
779
780 bool
781 rtx_addr_varies_p (const_rtx x, bool for_alias)
782 {
783 enum rtx_code code;
784 int i;
785 const char *fmt;
786
787 if (x == 0)
788 return 0;
789
790 code = GET_CODE (x);
791 if (code == MEM)
792 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
793
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 if (fmt[i] == 'e')
797 {
798 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
799 return 1;
800 }
801 else if (fmt[i] == 'E')
802 {
803 int j;
804 for (j = 0; j < XVECLEN (x, i); j++)
805 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
806 return 1;
807 }
808 return 0;
809 }
810 \f
811 /* Return the CALL in X if there is one. */
812
813 rtx
814 get_call_rtx_from (rtx x)
815 {
816 if (INSN_P (x))
817 x = PATTERN (x);
818 if (GET_CODE (x) == PARALLEL)
819 x = XVECEXP (x, 0, 0);
820 if (GET_CODE (x) == SET)
821 x = SET_SRC (x);
822 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
823 return x;
824 return NULL_RTX;
825 }
826 \f
827 /* Return the value of the integer term in X, if one is apparent;
828 otherwise return 0.
829 Only obvious integer terms are detected.
830 This is used in cse.c with the `related_value' field. */
831
832 HOST_WIDE_INT
833 get_integer_term (const_rtx x)
834 {
835 if (GET_CODE (x) == CONST)
836 x = XEXP (x, 0);
837
838 if (GET_CODE (x) == MINUS
839 && CONST_INT_P (XEXP (x, 1)))
840 return - INTVAL (XEXP (x, 1));
841 if (GET_CODE (x) == PLUS
842 && CONST_INT_P (XEXP (x, 1)))
843 return INTVAL (XEXP (x, 1));
844 return 0;
845 }
846
847 /* If X is a constant, return the value sans apparent integer term;
848 otherwise return 0.
849 Only obvious integer terms are detected. */
850
851 rtx
852 get_related_value (const_rtx x)
853 {
854 if (GET_CODE (x) != CONST)
855 return 0;
856 x = XEXP (x, 0);
857 if (GET_CODE (x) == PLUS
858 && CONST_INT_P (XEXP (x, 1)))
859 return XEXP (x, 0);
860 else if (GET_CODE (x) == MINUS
861 && CONST_INT_P (XEXP (x, 1)))
862 return XEXP (x, 0);
863 return 0;
864 }
865 \f
866 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
867 to somewhere in the same object or object_block as SYMBOL. */
868
869 bool
870 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
871 {
872 tree decl;
873
874 if (GET_CODE (symbol) != SYMBOL_REF)
875 return false;
876
877 if (offset == 0)
878 return true;
879
880 if (offset > 0)
881 {
882 if (CONSTANT_POOL_ADDRESS_P (symbol)
883 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
884 return true;
885
886 decl = SYMBOL_REF_DECL (symbol);
887 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
888 return true;
889 }
890
891 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
892 && SYMBOL_REF_BLOCK (symbol)
893 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
894 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
895 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
896 return true;
897
898 return false;
899 }
900
901 /* Split X into a base and a constant offset, storing them in *BASE_OUT
902 and *OFFSET_OUT respectively. */
903
904 void
905 split_const (rtx x, rtx *base_out, rtx *offset_out)
906 {
907 if (GET_CODE (x) == CONST)
908 {
909 x = XEXP (x, 0);
910 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
911 {
912 *base_out = XEXP (x, 0);
913 *offset_out = XEXP (x, 1);
914 return;
915 }
916 }
917 *base_out = x;
918 *offset_out = const0_rtx;
919 }
920
921 /* Express integer value X as some value Y plus a polynomial offset,
922 where Y is either const0_rtx, X or something within X (as opposed
923 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
924
925 rtx
926 strip_offset (rtx x, poly_int64_pod *offset_out)
927 {
928 rtx base = const0_rtx;
929 rtx test = x;
930 if (GET_CODE (test) == CONST)
931 test = XEXP (test, 0);
932 if (GET_CODE (test) == PLUS)
933 {
934 base = XEXP (test, 0);
935 test = XEXP (test, 1);
936 }
937 if (poly_int_rtx_p (test, offset_out))
938 return base;
939 *offset_out = 0;
940 return x;
941 }
942
943 /* Return the argument size in REG_ARGS_SIZE note X. */
944
945 poly_int64
946 get_args_size (const_rtx x)
947 {
948 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
949 return rtx_to_poly_int64 (XEXP (x, 0));
950 }
951 \f
952 /* Return the number of places FIND appears within X. If COUNT_DEST is
953 zero, we do not count occurrences inside the destination of a SET. */
954
955 int
956 count_occurrences (const_rtx x, const_rtx find, int count_dest)
957 {
958 int i, j;
959 enum rtx_code code;
960 const char *format_ptr;
961 int count;
962
963 if (x == find)
964 return 1;
965
966 code = GET_CODE (x);
967
968 switch (code)
969 {
970 case REG:
971 CASE_CONST_ANY:
972 case SYMBOL_REF:
973 case CODE_LABEL:
974 case PC:
975 case CC0:
976 return 0;
977
978 case EXPR_LIST:
979 count = count_occurrences (XEXP (x, 0), find, count_dest);
980 if (XEXP (x, 1))
981 count += count_occurrences (XEXP (x, 1), find, count_dest);
982 return count;
983
984 case MEM:
985 if (MEM_P (find) && rtx_equal_p (x, find))
986 return 1;
987 break;
988
989 case SET:
990 if (SET_DEST (x) == find && ! count_dest)
991 return count_occurrences (SET_SRC (x), find, count_dest);
992 break;
993
994 default:
995 break;
996 }
997
998 format_ptr = GET_RTX_FORMAT (code);
999 count = 0;
1000
1001 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1002 {
1003 switch (*format_ptr++)
1004 {
1005 case 'e':
1006 count += count_occurrences (XEXP (x, i), find, count_dest);
1007 break;
1008
1009 case 'E':
1010 for (j = 0; j < XVECLEN (x, i); j++)
1011 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1012 break;
1013 }
1014 }
1015 return count;
1016 }
1017
1018 \f
1019 /* Return TRUE if OP is a register or subreg of a register that
1020 holds an unsigned quantity. Otherwise, return FALSE. */
1021
1022 bool
1023 unsigned_reg_p (rtx op)
1024 {
1025 if (REG_P (op)
1026 && REG_EXPR (op)
1027 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1028 return true;
1029
1030 if (GET_CODE (op) == SUBREG
1031 && SUBREG_PROMOTED_SIGN (op))
1032 return true;
1033
1034 return false;
1035 }
1036
1037 \f
1038 /* Nonzero if register REG appears somewhere within IN.
1039 Also works if REG is not a register; in this case it checks
1040 for a subexpression of IN that is Lisp "equal" to REG. */
1041
1042 int
1043 reg_mentioned_p (const_rtx reg, const_rtx in)
1044 {
1045 const char *fmt;
1046 int i;
1047 enum rtx_code code;
1048
1049 if (in == 0)
1050 return 0;
1051
1052 if (reg == in)
1053 return 1;
1054
1055 if (GET_CODE (in) == LABEL_REF)
1056 return reg == label_ref_label (in);
1057
1058 code = GET_CODE (in);
1059
1060 switch (code)
1061 {
1062 /* Compare registers by number. */
1063 case REG:
1064 return REG_P (reg) && REGNO (in) == REGNO (reg);
1065
1066 /* These codes have no constituent expressions
1067 and are unique. */
1068 case SCRATCH:
1069 case CC0:
1070 case PC:
1071 return 0;
1072
1073 CASE_CONST_ANY:
1074 /* These are kept unique for a given value. */
1075 return 0;
1076
1077 default:
1078 break;
1079 }
1080
1081 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1082 return 1;
1083
1084 fmt = GET_RTX_FORMAT (code);
1085
1086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1087 {
1088 if (fmt[i] == 'E')
1089 {
1090 int j;
1091 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1092 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1093 return 1;
1094 }
1095 else if (fmt[i] == 'e'
1096 && reg_mentioned_p (reg, XEXP (in, i)))
1097 return 1;
1098 }
1099 return 0;
1100 }
1101 \f
1102 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1103 no CODE_LABEL insn. */
1104
1105 int
1106 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1107 {
1108 rtx_insn *p;
1109 if (beg == end)
1110 return 0;
1111 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1112 if (LABEL_P (p))
1113 return 0;
1114 return 1;
1115 }
1116
1117 /* Nonzero if register REG is used in an insn between
1118 FROM_INSN and TO_INSN (exclusive of those two). */
1119
1120 int
1121 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1122 const rtx_insn *to_insn)
1123 {
1124 rtx_insn *insn;
1125
1126 if (from_insn == to_insn)
1127 return 0;
1128
1129 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1130 if (NONDEBUG_INSN_P (insn)
1131 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1132 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1133 return 1;
1134 return 0;
1135 }
1136 \f
1137 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1138 is entirely replaced by a new value and the only use is as a SET_DEST,
1139 we do not consider it a reference. */
1140
1141 int
1142 reg_referenced_p (const_rtx x, const_rtx body)
1143 {
1144 int i;
1145
1146 switch (GET_CODE (body))
1147 {
1148 case SET:
1149 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1150 return 1;
1151
1152 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1153 of a REG that occupies all of the REG, the insn references X if
1154 it is mentioned in the destination. */
1155 if (GET_CODE (SET_DEST (body)) != CC0
1156 && GET_CODE (SET_DEST (body)) != PC
1157 && !REG_P (SET_DEST (body))
1158 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1159 && REG_P (SUBREG_REG (SET_DEST (body)))
1160 && !read_modify_subreg_p (SET_DEST (body)))
1161 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1162 return 1;
1163 return 0;
1164
1165 case ASM_OPERANDS:
1166 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1167 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1168 return 1;
1169 return 0;
1170
1171 case CALL:
1172 case USE:
1173 case IF_THEN_ELSE:
1174 return reg_overlap_mentioned_p (x, body);
1175
1176 case TRAP_IF:
1177 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1178
1179 case PREFETCH:
1180 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1181
1182 case UNSPEC:
1183 case UNSPEC_VOLATILE:
1184 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1185 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1186 return 1;
1187 return 0;
1188
1189 case PARALLEL:
1190 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1191 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1192 return 1;
1193 return 0;
1194
1195 case CLOBBER:
1196 if (MEM_P (XEXP (body, 0)))
1197 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1198 return 1;
1199 return 0;
1200
1201 case CLOBBER_HIGH:
1202 gcc_assert (REG_P (XEXP (body, 0)));
1203 return 0;
1204
1205 case COND_EXEC:
1206 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1207 return 1;
1208 return reg_referenced_p (x, COND_EXEC_CODE (body));
1209
1210 default:
1211 return 0;
1212 }
1213 }
1214 \f
1215 /* Nonzero if register REG is set or clobbered in an insn between
1216 FROM_INSN and TO_INSN (exclusive of those two). */
1217
1218 int
1219 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1220 const rtx_insn *to_insn)
1221 {
1222 const rtx_insn *insn;
1223
1224 if (from_insn == to_insn)
1225 return 0;
1226
1227 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1228 if (INSN_P (insn) && reg_set_p (reg, insn))
1229 return 1;
1230 return 0;
1231 }
1232
1233 /* Return true if REG is set or clobbered inside INSN. */
1234
1235 int
1236 reg_set_p (const_rtx reg, const_rtx insn)
1237 {
1238 /* After delay slot handling, call and branch insns might be in a
1239 sequence. Check all the elements there. */
1240 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1241 {
1242 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1243 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1244 return true;
1245
1246 return false;
1247 }
1248
1249 /* We can be passed an insn or part of one. If we are passed an insn,
1250 check if a side-effect of the insn clobbers REG. */
1251 if (INSN_P (insn)
1252 && (FIND_REG_INC_NOTE (insn, reg)
1253 || (CALL_P (insn)
1254 && ((REG_P (reg)
1255 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1256 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1257 GET_MODE (reg), REGNO (reg)))
1258 || MEM_P (reg)
1259 || find_reg_fusage (insn, CLOBBER, reg)))))
1260 return true;
1261
1262 /* There are no REG_INC notes for SP autoinc. */
1263 if (reg == stack_pointer_rtx && INSN_P (insn))
1264 {
1265 subrtx_var_iterator::array_type array;
1266 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1267 {
1268 rtx mem = *iter;
1269 if (mem
1270 && MEM_P (mem)
1271 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1272 {
1273 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1274 return true;
1275 iter.skip_subrtxes ();
1276 }
1277 }
1278 }
1279
1280 return set_of (reg, insn) != NULL_RTX;
1281 }
1282
1283 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1284 only if none of them are modified between START and END. Return 1 if
1285 X contains a MEM; this routine does use memory aliasing. */
1286
1287 int
1288 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1289 {
1290 const enum rtx_code code = GET_CODE (x);
1291 const char *fmt;
1292 int i, j;
1293 rtx_insn *insn;
1294
1295 if (start == end)
1296 return 0;
1297
1298 switch (code)
1299 {
1300 CASE_CONST_ANY:
1301 case CONST:
1302 case SYMBOL_REF:
1303 case LABEL_REF:
1304 return 0;
1305
1306 case PC:
1307 case CC0:
1308 return 1;
1309
1310 case MEM:
1311 if (modified_between_p (XEXP (x, 0), start, end))
1312 return 1;
1313 if (MEM_READONLY_P (x))
1314 return 0;
1315 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1316 if (memory_modified_in_insn_p (x, insn))
1317 return 1;
1318 return 0;
1319
1320 case REG:
1321 return reg_set_between_p (x, start, end);
1322
1323 default:
1324 break;
1325 }
1326
1327 fmt = GET_RTX_FORMAT (code);
1328 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1329 {
1330 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1331 return 1;
1332
1333 else if (fmt[i] == 'E')
1334 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1335 if (modified_between_p (XVECEXP (x, i, j), start, end))
1336 return 1;
1337 }
1338
1339 return 0;
1340 }
1341
1342 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1343 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1344 does use memory aliasing. */
1345
1346 int
1347 modified_in_p (const_rtx x, const_rtx insn)
1348 {
1349 const enum rtx_code code = GET_CODE (x);
1350 const char *fmt;
1351 int i, j;
1352
1353 switch (code)
1354 {
1355 CASE_CONST_ANY:
1356 case CONST:
1357 case SYMBOL_REF:
1358 case LABEL_REF:
1359 return 0;
1360
1361 case PC:
1362 case CC0:
1363 return 1;
1364
1365 case MEM:
1366 if (modified_in_p (XEXP (x, 0), insn))
1367 return 1;
1368 if (MEM_READONLY_P (x))
1369 return 0;
1370 if (memory_modified_in_insn_p (x, insn))
1371 return 1;
1372 return 0;
1373
1374 case REG:
1375 return reg_set_p (x, insn);
1376
1377 default:
1378 break;
1379 }
1380
1381 fmt = GET_RTX_FORMAT (code);
1382 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1383 {
1384 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1385 return 1;
1386
1387 else if (fmt[i] == 'E')
1388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1389 if (modified_in_p (XVECEXP (x, i, j), insn))
1390 return 1;
1391 }
1392
1393 return 0;
1394 }
1395
1396 /* Return true if X is a SUBREG and if storing a value to X would
1397 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1398 target, using a SUBREG to store to one half of a DImode REG would
1399 preserve the other half. */
1400
1401 bool
1402 read_modify_subreg_p (const_rtx x)
1403 {
1404 if (GET_CODE (x) != SUBREG)
1405 return false;
1406 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1407 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1408 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1409 /* The inner and outer modes of a subreg must be ordered, so that we
1410 can tell whether they're paradoxical or partial. */
1411 gcc_checking_assert (ordered_p (isize, osize));
1412 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1413 }
1414 \f
1415 /* Helper function for set_of. */
1416 struct set_of_data
1417 {
1418 const_rtx found;
1419 const_rtx pat;
1420 };
1421
1422 static void
1423 set_of_1 (rtx x, const_rtx pat, void *data1)
1424 {
1425 struct set_of_data *const data = (struct set_of_data *) (data1);
1426 if (rtx_equal_p (x, data->pat)
1427 || (GET_CODE (pat) == CLOBBER_HIGH
1428 && REGNO(data->pat) == REGNO(XEXP (pat, 0))
1429 && reg_is_clobbered_by_clobber_high (data->pat, XEXP (pat, 0)))
1430 || (GET_CODE (pat) != CLOBBER_HIGH && !MEM_P (x)
1431 && reg_overlap_mentioned_p (data->pat, x)))
1432 data->found = pat;
1433 }
1434
1435 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1436 (either directly or via STRICT_LOW_PART and similar modifiers). */
1437 const_rtx
1438 set_of (const_rtx pat, const_rtx insn)
1439 {
1440 struct set_of_data data;
1441 data.found = NULL_RTX;
1442 data.pat = pat;
1443 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1444 return data.found;
1445 }
1446
1447 /* Add all hard register in X to *PSET. */
1448 void
1449 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1450 {
1451 subrtx_iterator::array_type array;
1452 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1453 {
1454 const_rtx x = *iter;
1455 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1456 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1457 }
1458 }
1459
1460 /* This function, called through note_stores, collects sets and
1461 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1462 by DATA. */
1463 void
1464 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1465 {
1466 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1467 if (REG_P (x) && HARD_REGISTER_P (x))
1468 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1469 }
1470
1471 /* Examine INSN, and compute the set of hard registers written by it.
1472 Store it in *PSET. Should only be called after reload. */
1473 void
1474 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1475 {
1476 rtx link;
1477
1478 CLEAR_HARD_REG_SET (*pset);
1479 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1480 if (CALL_P (insn))
1481 {
1482 if (implicit)
1483 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1484
1485 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1486 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1487 }
1488 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1489 if (REG_NOTE_KIND (link) == REG_INC)
1490 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1491 }
1492
1493 /* Like record_hard_reg_sets, but called through note_uses. */
1494 void
1495 record_hard_reg_uses (rtx *px, void *data)
1496 {
1497 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1498 }
1499 \f
1500 /* Given an INSN, return a SET expression if this insn has only a single SET.
1501 It may also have CLOBBERs, USEs, or SET whose output
1502 will not be used, which we ignore. */
1503
1504 rtx
1505 single_set_2 (const rtx_insn *insn, const_rtx pat)
1506 {
1507 rtx set = NULL;
1508 int set_verified = 1;
1509 int i;
1510
1511 if (GET_CODE (pat) == PARALLEL)
1512 {
1513 for (i = 0; i < XVECLEN (pat, 0); i++)
1514 {
1515 rtx sub = XVECEXP (pat, 0, i);
1516 switch (GET_CODE (sub))
1517 {
1518 case USE:
1519 case CLOBBER:
1520 case CLOBBER_HIGH:
1521 break;
1522
1523 case SET:
1524 /* We can consider insns having multiple sets, where all
1525 but one are dead as single set insns. In common case
1526 only single set is present in the pattern so we want
1527 to avoid checking for REG_UNUSED notes unless necessary.
1528
1529 When we reach set first time, we just expect this is
1530 the single set we are looking for and only when more
1531 sets are found in the insn, we check them. */
1532 if (!set_verified)
1533 {
1534 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1535 && !side_effects_p (set))
1536 set = NULL;
1537 else
1538 set_verified = 1;
1539 }
1540 if (!set)
1541 set = sub, set_verified = 0;
1542 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1543 || side_effects_p (sub))
1544 return NULL_RTX;
1545 break;
1546
1547 default:
1548 return NULL_RTX;
1549 }
1550 }
1551 }
1552 return set;
1553 }
1554
1555 /* Given an INSN, return nonzero if it has more than one SET, else return
1556 zero. */
1557
1558 int
1559 multiple_sets (const_rtx insn)
1560 {
1561 int found;
1562 int i;
1563
1564 /* INSN must be an insn. */
1565 if (! INSN_P (insn))
1566 return 0;
1567
1568 /* Only a PARALLEL can have multiple SETs. */
1569 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1570 {
1571 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1572 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1573 {
1574 /* If we have already found a SET, then return now. */
1575 if (found)
1576 return 1;
1577 else
1578 found = 1;
1579 }
1580 }
1581
1582 /* Either zero or one SET. */
1583 return 0;
1584 }
1585 \f
1586 /* Return nonzero if the destination of SET equals the source
1587 and there are no side effects. */
1588
1589 int
1590 set_noop_p (const_rtx set)
1591 {
1592 rtx src = SET_SRC (set);
1593 rtx dst = SET_DEST (set);
1594
1595 if (dst == pc_rtx && src == pc_rtx)
1596 return 1;
1597
1598 if (MEM_P (dst) && MEM_P (src))
1599 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1600
1601 if (GET_CODE (dst) == ZERO_EXTRACT)
1602 return rtx_equal_p (XEXP (dst, 0), src)
1603 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1604 && !side_effects_p (src);
1605
1606 if (GET_CODE (dst) == STRICT_LOW_PART)
1607 dst = XEXP (dst, 0);
1608
1609 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1610 {
1611 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1612 return 0;
1613 src = SUBREG_REG (src);
1614 dst = SUBREG_REG (dst);
1615 }
1616
1617 /* It is a NOOP if destination overlaps with selected src vector
1618 elements. */
1619 if (GET_CODE (src) == VEC_SELECT
1620 && REG_P (XEXP (src, 0)) && REG_P (dst)
1621 && HARD_REGISTER_P (XEXP (src, 0))
1622 && HARD_REGISTER_P (dst))
1623 {
1624 int i;
1625 rtx par = XEXP (src, 1);
1626 rtx src0 = XEXP (src, 0);
1627 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1628 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1629
1630 for (i = 1; i < XVECLEN (par, 0); i++)
1631 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1632 return 0;
1633 return
1634 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1635 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1636 offset, GET_MODE (dst)) == (int) REGNO (dst);
1637 }
1638
1639 return (REG_P (src) && REG_P (dst)
1640 && REGNO (src) == REGNO (dst));
1641 }
1642 \f
1643 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1644 value to itself. */
1645
1646 int
1647 noop_move_p (const rtx_insn *insn)
1648 {
1649 rtx pat = PATTERN (insn);
1650
1651 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1652 return 1;
1653
1654 /* Insns carrying these notes are useful later on. */
1655 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1656 return 0;
1657
1658 /* Check the code to be executed for COND_EXEC. */
1659 if (GET_CODE (pat) == COND_EXEC)
1660 pat = COND_EXEC_CODE (pat);
1661
1662 if (GET_CODE (pat) == SET && set_noop_p (pat))
1663 return 1;
1664
1665 if (GET_CODE (pat) == PARALLEL)
1666 {
1667 int i;
1668 /* If nothing but SETs of registers to themselves,
1669 this insn can also be deleted. */
1670 for (i = 0; i < XVECLEN (pat, 0); i++)
1671 {
1672 rtx tem = XVECEXP (pat, 0, i);
1673
1674 if (GET_CODE (tem) == USE
1675 || GET_CODE (tem) == CLOBBER
1676 || GET_CODE (tem) == CLOBBER_HIGH)
1677 continue;
1678
1679 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1680 return 0;
1681 }
1682
1683 return 1;
1684 }
1685 return 0;
1686 }
1687 \f
1688
1689 /* Return nonzero if register in range [REGNO, ENDREGNO)
1690 appears either explicitly or implicitly in X
1691 other than being stored into.
1692
1693 References contained within the substructure at LOC do not count.
1694 LOC may be zero, meaning don't ignore anything. */
1695
1696 bool
1697 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1698 rtx *loc)
1699 {
1700 int i;
1701 unsigned int x_regno;
1702 RTX_CODE code;
1703 const char *fmt;
1704
1705 repeat:
1706 /* The contents of a REG_NONNEG note is always zero, so we must come here
1707 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1708 if (x == 0)
1709 return false;
1710
1711 code = GET_CODE (x);
1712
1713 switch (code)
1714 {
1715 case REG:
1716 x_regno = REGNO (x);
1717
1718 /* If we modifying the stack, frame, or argument pointer, it will
1719 clobber a virtual register. In fact, we could be more precise,
1720 but it isn't worth it. */
1721 if ((x_regno == STACK_POINTER_REGNUM
1722 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1723 && x_regno == ARG_POINTER_REGNUM)
1724 || x_regno == FRAME_POINTER_REGNUM)
1725 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1726 return true;
1727
1728 return endregno > x_regno && regno < END_REGNO (x);
1729
1730 case SUBREG:
1731 /* If this is a SUBREG of a hard reg, we can see exactly which
1732 registers are being modified. Otherwise, handle normally. */
1733 if (REG_P (SUBREG_REG (x))
1734 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1735 {
1736 unsigned int inner_regno = subreg_regno (x);
1737 unsigned int inner_endregno
1738 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1739 ? subreg_nregs (x) : 1);
1740
1741 return endregno > inner_regno && regno < inner_endregno;
1742 }
1743 break;
1744
1745 case CLOBBER:
1746 case SET:
1747 if (&SET_DEST (x) != loc
1748 /* Note setting a SUBREG counts as referring to the REG it is in for
1749 a pseudo but not for hard registers since we can
1750 treat each word individually. */
1751 && ((GET_CODE (SET_DEST (x)) == SUBREG
1752 && loc != &SUBREG_REG (SET_DEST (x))
1753 && REG_P (SUBREG_REG (SET_DEST (x)))
1754 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1755 && refers_to_regno_p (regno, endregno,
1756 SUBREG_REG (SET_DEST (x)), loc))
1757 || (!REG_P (SET_DEST (x))
1758 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1759 return true;
1760
1761 if (code == CLOBBER || loc == &SET_SRC (x))
1762 return false;
1763 x = SET_SRC (x);
1764 goto repeat;
1765
1766 default:
1767 break;
1768 }
1769
1770 /* X does not match, so try its subexpressions. */
1771
1772 fmt = GET_RTX_FORMAT (code);
1773 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1774 {
1775 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1776 {
1777 if (i == 0)
1778 {
1779 x = XEXP (x, 0);
1780 goto repeat;
1781 }
1782 else
1783 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1784 return true;
1785 }
1786 else if (fmt[i] == 'E')
1787 {
1788 int j;
1789 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1790 if (loc != &XVECEXP (x, i, j)
1791 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1792 return true;
1793 }
1794 }
1795 return false;
1796 }
1797
1798 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1799 we check if any register number in X conflicts with the relevant register
1800 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1801 contains a MEM (we don't bother checking for memory addresses that can't
1802 conflict because we expect this to be a rare case. */
1803
1804 int
1805 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1806 {
1807 unsigned int regno, endregno;
1808
1809 /* If either argument is a constant, then modifying X cannot
1810 affect IN. Here we look at IN, we can profitably combine
1811 CONSTANT_P (x) with the switch statement below. */
1812 if (CONSTANT_P (in))
1813 return 0;
1814
1815 recurse:
1816 switch (GET_CODE (x))
1817 {
1818 case CLOBBER:
1819 case STRICT_LOW_PART:
1820 case ZERO_EXTRACT:
1821 case SIGN_EXTRACT:
1822 /* Overly conservative. */
1823 x = XEXP (x, 0);
1824 goto recurse;
1825
1826 case SUBREG:
1827 regno = REGNO (SUBREG_REG (x));
1828 if (regno < FIRST_PSEUDO_REGISTER)
1829 regno = subreg_regno (x);
1830 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1831 ? subreg_nregs (x) : 1);
1832 goto do_reg;
1833
1834 case REG:
1835 regno = REGNO (x);
1836 endregno = END_REGNO (x);
1837 do_reg:
1838 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1839
1840 case MEM:
1841 {
1842 const char *fmt;
1843 int i;
1844
1845 if (MEM_P (in))
1846 return 1;
1847
1848 fmt = GET_RTX_FORMAT (GET_CODE (in));
1849 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1850 if (fmt[i] == 'e')
1851 {
1852 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1853 return 1;
1854 }
1855 else if (fmt[i] == 'E')
1856 {
1857 int j;
1858 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1859 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1860 return 1;
1861 }
1862
1863 return 0;
1864 }
1865
1866 case SCRATCH:
1867 case PC:
1868 case CC0:
1869 return reg_mentioned_p (x, in);
1870
1871 case PARALLEL:
1872 {
1873 int i;
1874
1875 /* If any register in here refers to it we return true. */
1876 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1877 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1878 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1879 return 1;
1880 return 0;
1881 }
1882
1883 default:
1884 gcc_assert (CONSTANT_P (x));
1885 return 0;
1886 }
1887 }
1888 \f
1889 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1890 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1891 ignored by note_stores, but passed to FUN.
1892
1893 FUN receives three arguments:
1894 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1895 2. the SET or CLOBBER rtx that does the store,
1896 3. the pointer DATA provided to note_stores.
1897
1898 If the item being stored in or clobbered is a SUBREG of a hard register,
1899 the SUBREG will be passed. */
1900
1901 void
1902 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1903 {
1904 int i;
1905
1906 if (GET_CODE (x) == COND_EXEC)
1907 x = COND_EXEC_CODE (x);
1908
1909 if (GET_CODE (x) == SET
1910 || GET_CODE (x) == CLOBBER
1911 || GET_CODE (x) == CLOBBER_HIGH)
1912 {
1913 rtx dest = SET_DEST (x);
1914
1915 while ((GET_CODE (dest) == SUBREG
1916 && (!REG_P (SUBREG_REG (dest))
1917 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1918 || GET_CODE (dest) == ZERO_EXTRACT
1919 || GET_CODE (dest) == STRICT_LOW_PART)
1920 dest = XEXP (dest, 0);
1921
1922 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1923 each of whose first operand is a register. */
1924 if (GET_CODE (dest) == PARALLEL)
1925 {
1926 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1927 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1928 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1929 }
1930 else
1931 (*fun) (dest, x, data);
1932 }
1933
1934 else if (GET_CODE (x) == PARALLEL)
1935 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1936 note_stores (XVECEXP (x, 0, i), fun, data);
1937 }
1938 \f
1939 /* Like notes_stores, but call FUN for each expression that is being
1940 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1941 FUN for each expression, not any interior subexpressions. FUN receives a
1942 pointer to the expression and the DATA passed to this function.
1943
1944 Note that this is not quite the same test as that done in reg_referenced_p
1945 since that considers something as being referenced if it is being
1946 partially set, while we do not. */
1947
1948 void
1949 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1950 {
1951 rtx body = *pbody;
1952 int i;
1953
1954 switch (GET_CODE (body))
1955 {
1956 case COND_EXEC:
1957 (*fun) (&COND_EXEC_TEST (body), data);
1958 note_uses (&COND_EXEC_CODE (body), fun, data);
1959 return;
1960
1961 case PARALLEL:
1962 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1963 note_uses (&XVECEXP (body, 0, i), fun, data);
1964 return;
1965
1966 case SEQUENCE:
1967 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1968 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1969 return;
1970
1971 case USE:
1972 (*fun) (&XEXP (body, 0), data);
1973 return;
1974
1975 case ASM_OPERANDS:
1976 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1977 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1978 return;
1979
1980 case TRAP_IF:
1981 (*fun) (&TRAP_CONDITION (body), data);
1982 return;
1983
1984 case PREFETCH:
1985 (*fun) (&XEXP (body, 0), data);
1986 return;
1987
1988 case UNSPEC:
1989 case UNSPEC_VOLATILE:
1990 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1991 (*fun) (&XVECEXP (body, 0, i), data);
1992 return;
1993
1994 case CLOBBER:
1995 if (MEM_P (XEXP (body, 0)))
1996 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1997 return;
1998
1999 case SET:
2000 {
2001 rtx dest = SET_DEST (body);
2002
2003 /* For sets we replace everything in source plus registers in memory
2004 expression in store and operands of a ZERO_EXTRACT. */
2005 (*fun) (&SET_SRC (body), data);
2006
2007 if (GET_CODE (dest) == ZERO_EXTRACT)
2008 {
2009 (*fun) (&XEXP (dest, 1), data);
2010 (*fun) (&XEXP (dest, 2), data);
2011 }
2012
2013 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2014 dest = XEXP (dest, 0);
2015
2016 if (MEM_P (dest))
2017 (*fun) (&XEXP (dest, 0), data);
2018 }
2019 return;
2020
2021 default:
2022 /* All the other possibilities never store. */
2023 (*fun) (pbody, data);
2024 return;
2025 }
2026 }
2027 \f
2028 /* Return nonzero if X's old contents don't survive after INSN.
2029 This will be true if X is (cc0) or if X is a register and
2030 X dies in INSN or because INSN entirely sets X.
2031
2032 "Entirely set" means set directly and not through a SUBREG, or
2033 ZERO_EXTRACT, so no trace of the old contents remains.
2034 Likewise, REG_INC does not count.
2035
2036 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2037 but for this use that makes no difference, since regs don't overlap
2038 during their lifetimes. Therefore, this function may be used
2039 at any time after deaths have been computed.
2040
2041 If REG is a hard reg that occupies multiple machine registers, this
2042 function will only return 1 if each of those registers will be replaced
2043 by INSN. */
2044
2045 int
2046 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2047 {
2048 unsigned int regno, end_regno;
2049 unsigned int i;
2050
2051 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2052 if (GET_CODE (x) == CC0)
2053 return 1;
2054
2055 gcc_assert (REG_P (x));
2056
2057 regno = REGNO (x);
2058 end_regno = END_REGNO (x);
2059 for (i = regno; i < end_regno; i++)
2060 if (! dead_or_set_regno_p (insn, i))
2061 return 0;
2062
2063 return 1;
2064 }
2065
2066 /* Return TRUE iff DEST is a register or subreg of a register, is a
2067 complete rather than read-modify-write destination, and contains
2068 register TEST_REGNO. */
2069
2070 static bool
2071 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2072 {
2073 unsigned int regno, endregno;
2074
2075 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2076 dest = SUBREG_REG (dest);
2077
2078 if (!REG_P (dest))
2079 return false;
2080
2081 regno = REGNO (dest);
2082 endregno = END_REGNO (dest);
2083 return (test_regno >= regno && test_regno < endregno);
2084 }
2085
2086 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2087 any member matches the covers_regno_no_parallel_p criteria. */
2088
2089 static bool
2090 covers_regno_p (const_rtx dest, unsigned int test_regno)
2091 {
2092 if (GET_CODE (dest) == PARALLEL)
2093 {
2094 /* Some targets place small structures in registers for return
2095 values of functions, and those registers are wrapped in
2096 PARALLELs that we may see as the destination of a SET. */
2097 int i;
2098
2099 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2100 {
2101 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2102 if (inner != NULL_RTX
2103 && covers_regno_no_parallel_p (inner, test_regno))
2104 return true;
2105 }
2106
2107 return false;
2108 }
2109 else
2110 return covers_regno_no_parallel_p (dest, test_regno);
2111 }
2112
2113 /* Utility function for dead_or_set_p to check an individual register. */
2114
2115 int
2116 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2117 {
2118 const_rtx pattern;
2119
2120 /* See if there is a death note for something that includes TEST_REGNO. */
2121 if (find_regno_note (insn, REG_DEAD, test_regno))
2122 return 1;
2123
2124 if (CALL_P (insn)
2125 && find_regno_fusage (insn, CLOBBER, test_regno))
2126 return 1;
2127
2128 pattern = PATTERN (insn);
2129
2130 /* If a COND_EXEC is not executed, the value survives. */
2131 if (GET_CODE (pattern) == COND_EXEC)
2132 return 0;
2133
2134 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2135 return covers_regno_p (SET_DEST (pattern), test_regno);
2136 else if (GET_CODE (pattern) == PARALLEL)
2137 {
2138 int i;
2139
2140 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2141 {
2142 rtx body = XVECEXP (pattern, 0, i);
2143
2144 if (GET_CODE (body) == COND_EXEC)
2145 body = COND_EXEC_CODE (body);
2146
2147 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2148 && covers_regno_p (SET_DEST (body), test_regno))
2149 return 1;
2150 }
2151 }
2152
2153 return 0;
2154 }
2155
2156 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2157 If DATUM is nonzero, look for one whose datum is DATUM. */
2158
2159 rtx
2160 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2161 {
2162 rtx link;
2163
2164 gcc_checking_assert (insn);
2165
2166 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2167 if (! INSN_P (insn))
2168 return 0;
2169 if (datum == 0)
2170 {
2171 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2172 if (REG_NOTE_KIND (link) == kind)
2173 return link;
2174 return 0;
2175 }
2176
2177 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2178 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2179 return link;
2180 return 0;
2181 }
2182
2183 /* Return the reg-note of kind KIND in insn INSN which applies to register
2184 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2185 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2186 it might be the case that the note overlaps REGNO. */
2187
2188 rtx
2189 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2190 {
2191 rtx link;
2192
2193 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2194 if (! INSN_P (insn))
2195 return 0;
2196
2197 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2198 if (REG_NOTE_KIND (link) == kind
2199 /* Verify that it is a register, so that scratch and MEM won't cause a
2200 problem here. */
2201 && REG_P (XEXP (link, 0))
2202 && REGNO (XEXP (link, 0)) <= regno
2203 && END_REGNO (XEXP (link, 0)) > regno)
2204 return link;
2205 return 0;
2206 }
2207
2208 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2209 has such a note. */
2210
2211 rtx
2212 find_reg_equal_equiv_note (const_rtx insn)
2213 {
2214 rtx link;
2215
2216 if (!INSN_P (insn))
2217 return 0;
2218
2219 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2220 if (REG_NOTE_KIND (link) == REG_EQUAL
2221 || REG_NOTE_KIND (link) == REG_EQUIV)
2222 {
2223 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2224 insns that have multiple sets. Checking single_set to
2225 make sure of this is not the proper check, as explained
2226 in the comment in set_unique_reg_note.
2227
2228 This should be changed into an assert. */
2229 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2230 return 0;
2231 return link;
2232 }
2233 return NULL;
2234 }
2235
2236 /* Check whether INSN is a single_set whose source is known to be
2237 equivalent to a constant. Return that constant if so, otherwise
2238 return null. */
2239
2240 rtx
2241 find_constant_src (const rtx_insn *insn)
2242 {
2243 rtx note, set, x;
2244
2245 set = single_set (insn);
2246 if (set)
2247 {
2248 x = avoid_constant_pool_reference (SET_SRC (set));
2249 if (CONSTANT_P (x))
2250 return x;
2251 }
2252
2253 note = find_reg_equal_equiv_note (insn);
2254 if (note && CONSTANT_P (XEXP (note, 0)))
2255 return XEXP (note, 0);
2256
2257 return NULL_RTX;
2258 }
2259
2260 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2261 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2262
2263 int
2264 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2265 {
2266 /* If it's not a CALL_INSN, it can't possibly have a
2267 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2268 if (!CALL_P (insn))
2269 return 0;
2270
2271 gcc_assert (datum);
2272
2273 if (!REG_P (datum))
2274 {
2275 rtx link;
2276
2277 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2278 link;
2279 link = XEXP (link, 1))
2280 if (GET_CODE (XEXP (link, 0)) == code
2281 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2282 return 1;
2283 }
2284 else
2285 {
2286 unsigned int regno = REGNO (datum);
2287
2288 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2289 to pseudo registers, so don't bother checking. */
2290
2291 if (regno < FIRST_PSEUDO_REGISTER)
2292 {
2293 unsigned int end_regno = END_REGNO (datum);
2294 unsigned int i;
2295
2296 for (i = regno; i < end_regno; i++)
2297 if (find_regno_fusage (insn, code, i))
2298 return 1;
2299 }
2300 }
2301
2302 return 0;
2303 }
2304
2305 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2306 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2307
2308 int
2309 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2310 {
2311 rtx link;
2312
2313 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2314 to pseudo registers, so don't bother checking. */
2315
2316 if (regno >= FIRST_PSEUDO_REGISTER
2317 || !CALL_P (insn) )
2318 return 0;
2319
2320 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2321 {
2322 rtx op, reg;
2323
2324 if (GET_CODE (op = XEXP (link, 0)) == code
2325 && REG_P (reg = XEXP (op, 0))
2326 && REGNO (reg) <= regno
2327 && END_REGNO (reg) > regno)
2328 return 1;
2329 }
2330
2331 return 0;
2332 }
2333
2334 \f
2335 /* Return true if KIND is an integer REG_NOTE. */
2336
2337 static bool
2338 int_reg_note_p (enum reg_note kind)
2339 {
2340 return kind == REG_BR_PROB;
2341 }
2342
2343 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2344 stored as the pointer to the next register note. */
2345
2346 rtx
2347 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2348 {
2349 rtx note;
2350
2351 gcc_checking_assert (!int_reg_note_p (kind));
2352 switch (kind)
2353 {
2354 case REG_CC_SETTER:
2355 case REG_CC_USER:
2356 case REG_LABEL_TARGET:
2357 case REG_LABEL_OPERAND:
2358 case REG_TM:
2359 /* These types of register notes use an INSN_LIST rather than an
2360 EXPR_LIST, so that copying is done right and dumps look
2361 better. */
2362 note = alloc_INSN_LIST (datum, list);
2363 PUT_REG_NOTE_KIND (note, kind);
2364 break;
2365
2366 default:
2367 note = alloc_EXPR_LIST (kind, datum, list);
2368 break;
2369 }
2370
2371 return note;
2372 }
2373
2374 /* Add register note with kind KIND and datum DATUM to INSN. */
2375
2376 void
2377 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2378 {
2379 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2380 }
2381
2382 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2383
2384 void
2385 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2386 {
2387 gcc_checking_assert (int_reg_note_p (kind));
2388 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2389 datum, REG_NOTES (insn));
2390 }
2391
2392 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2393
2394 void
2395 add_args_size_note (rtx_insn *insn, poly_int64 value)
2396 {
2397 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2398 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2399 }
2400
2401 /* Add a register note like NOTE to INSN. */
2402
2403 void
2404 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2405 {
2406 if (GET_CODE (note) == INT_LIST)
2407 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2408 else
2409 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2410 }
2411
2412 /* Duplicate NOTE and return the copy. */
2413 rtx
2414 duplicate_reg_note (rtx note)
2415 {
2416 reg_note kind = REG_NOTE_KIND (note);
2417
2418 if (GET_CODE (note) == INT_LIST)
2419 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2420 else if (GET_CODE (note) == EXPR_LIST)
2421 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2422 else
2423 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2424 }
2425
2426 /* Remove register note NOTE from the REG_NOTES of INSN. */
2427
2428 void
2429 remove_note (rtx_insn *insn, const_rtx note)
2430 {
2431 rtx link;
2432
2433 if (note == NULL_RTX)
2434 return;
2435
2436 if (REG_NOTES (insn) == note)
2437 REG_NOTES (insn) = XEXP (note, 1);
2438 else
2439 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2440 if (XEXP (link, 1) == note)
2441 {
2442 XEXP (link, 1) = XEXP (note, 1);
2443 break;
2444 }
2445
2446 switch (REG_NOTE_KIND (note))
2447 {
2448 case REG_EQUAL:
2449 case REG_EQUIV:
2450 df_notes_rescan (insn);
2451 break;
2452 default:
2453 break;
2454 }
2455 }
2456
2457 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2458 Return true if any note has been removed. */
2459
2460 bool
2461 remove_reg_equal_equiv_notes (rtx_insn *insn)
2462 {
2463 rtx *loc;
2464 bool ret = false;
2465
2466 loc = &REG_NOTES (insn);
2467 while (*loc)
2468 {
2469 enum reg_note kind = REG_NOTE_KIND (*loc);
2470 if (kind == REG_EQUAL || kind == REG_EQUIV)
2471 {
2472 *loc = XEXP (*loc, 1);
2473 ret = true;
2474 }
2475 else
2476 loc = &XEXP (*loc, 1);
2477 }
2478 return ret;
2479 }
2480
2481 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2482
2483 void
2484 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2485 {
2486 df_ref eq_use;
2487
2488 if (!df)
2489 return;
2490
2491 /* This loop is a little tricky. We cannot just go down the chain because
2492 it is being modified by some actions in the loop. So we just iterate
2493 over the head. We plan to drain the list anyway. */
2494 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2495 {
2496 rtx_insn *insn = DF_REF_INSN (eq_use);
2497 rtx note = find_reg_equal_equiv_note (insn);
2498
2499 /* This assert is generally triggered when someone deletes a REG_EQUAL
2500 or REG_EQUIV note by hacking the list manually rather than calling
2501 remove_note. */
2502 gcc_assert (note);
2503
2504 remove_note (insn, note);
2505 }
2506 }
2507
2508 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2509 return 1 if it is found. A simple equality test is used to determine if
2510 NODE matches. */
2511
2512 bool
2513 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2514 {
2515 const_rtx x;
2516
2517 for (x = listp; x; x = XEXP (x, 1))
2518 if (node == XEXP (x, 0))
2519 return true;
2520
2521 return false;
2522 }
2523
2524 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2525 remove that entry from the list if it is found.
2526
2527 A simple equality test is used to determine if NODE matches. */
2528
2529 void
2530 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2531 {
2532 rtx_expr_list *temp = *listp;
2533 rtx_expr_list *prev = NULL;
2534
2535 while (temp)
2536 {
2537 if (node == temp->element ())
2538 {
2539 /* Splice the node out of the list. */
2540 if (prev)
2541 XEXP (prev, 1) = temp->next ();
2542 else
2543 *listp = temp->next ();
2544
2545 return;
2546 }
2547
2548 prev = temp;
2549 temp = temp->next ();
2550 }
2551 }
2552
2553 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2554 remove that entry from the list if it is found.
2555
2556 A simple equality test is used to determine if NODE matches. */
2557
2558 void
2559 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2560 {
2561 rtx_insn_list *temp = *listp;
2562 rtx_insn_list *prev = NULL;
2563
2564 while (temp)
2565 {
2566 if (node == temp->insn ())
2567 {
2568 /* Splice the node out of the list. */
2569 if (prev)
2570 XEXP (prev, 1) = temp->next ();
2571 else
2572 *listp = temp->next ();
2573
2574 return;
2575 }
2576
2577 prev = temp;
2578 temp = temp->next ();
2579 }
2580 }
2581 \f
2582 /* Nonzero if X contains any volatile instructions. These are instructions
2583 which may cause unpredictable machine state instructions, and thus no
2584 instructions or register uses should be moved or combined across them.
2585 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2586
2587 int
2588 volatile_insn_p (const_rtx x)
2589 {
2590 const RTX_CODE code = GET_CODE (x);
2591 switch (code)
2592 {
2593 case LABEL_REF:
2594 case SYMBOL_REF:
2595 case CONST:
2596 CASE_CONST_ANY:
2597 case CC0:
2598 case PC:
2599 case REG:
2600 case SCRATCH:
2601 case CLOBBER:
2602 case ADDR_VEC:
2603 case ADDR_DIFF_VEC:
2604 case CALL:
2605 case MEM:
2606 return 0;
2607
2608 case UNSPEC_VOLATILE:
2609 return 1;
2610
2611 case ASM_INPUT:
2612 case ASM_OPERANDS:
2613 if (MEM_VOLATILE_P (x))
2614 return 1;
2615
2616 default:
2617 break;
2618 }
2619
2620 /* Recursively scan the operands of this expression. */
2621
2622 {
2623 const char *const fmt = GET_RTX_FORMAT (code);
2624 int i;
2625
2626 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2627 {
2628 if (fmt[i] == 'e')
2629 {
2630 if (volatile_insn_p (XEXP (x, i)))
2631 return 1;
2632 }
2633 else if (fmt[i] == 'E')
2634 {
2635 int j;
2636 for (j = 0; j < XVECLEN (x, i); j++)
2637 if (volatile_insn_p (XVECEXP (x, i, j)))
2638 return 1;
2639 }
2640 }
2641 }
2642 return 0;
2643 }
2644
2645 /* Nonzero if X contains any volatile memory references
2646 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2647
2648 int
2649 volatile_refs_p (const_rtx x)
2650 {
2651 const RTX_CODE code = GET_CODE (x);
2652 switch (code)
2653 {
2654 case LABEL_REF:
2655 case SYMBOL_REF:
2656 case CONST:
2657 CASE_CONST_ANY:
2658 case CC0:
2659 case PC:
2660 case REG:
2661 case SCRATCH:
2662 case CLOBBER:
2663 case ADDR_VEC:
2664 case ADDR_DIFF_VEC:
2665 return 0;
2666
2667 case UNSPEC_VOLATILE:
2668 return 1;
2669
2670 case MEM:
2671 case ASM_INPUT:
2672 case ASM_OPERANDS:
2673 if (MEM_VOLATILE_P (x))
2674 return 1;
2675
2676 default:
2677 break;
2678 }
2679
2680 /* Recursively scan the operands of this expression. */
2681
2682 {
2683 const char *const fmt = GET_RTX_FORMAT (code);
2684 int i;
2685
2686 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2687 {
2688 if (fmt[i] == 'e')
2689 {
2690 if (volatile_refs_p (XEXP (x, i)))
2691 return 1;
2692 }
2693 else if (fmt[i] == 'E')
2694 {
2695 int j;
2696 for (j = 0; j < XVECLEN (x, i); j++)
2697 if (volatile_refs_p (XVECEXP (x, i, j)))
2698 return 1;
2699 }
2700 }
2701 }
2702 return 0;
2703 }
2704
2705 /* Similar to above, except that it also rejects register pre- and post-
2706 incrementing. */
2707
2708 int
2709 side_effects_p (const_rtx x)
2710 {
2711 const RTX_CODE code = GET_CODE (x);
2712 switch (code)
2713 {
2714 case LABEL_REF:
2715 case SYMBOL_REF:
2716 case CONST:
2717 CASE_CONST_ANY:
2718 case CC0:
2719 case PC:
2720 case REG:
2721 case SCRATCH:
2722 case ADDR_VEC:
2723 case ADDR_DIFF_VEC:
2724 case VAR_LOCATION:
2725 return 0;
2726
2727 case CLOBBER:
2728 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2729 when some combination can't be done. If we see one, don't think
2730 that we can simplify the expression. */
2731 return (GET_MODE (x) != VOIDmode);
2732
2733 case PRE_INC:
2734 case PRE_DEC:
2735 case POST_INC:
2736 case POST_DEC:
2737 case PRE_MODIFY:
2738 case POST_MODIFY:
2739 case CALL:
2740 case UNSPEC_VOLATILE:
2741 return 1;
2742
2743 case MEM:
2744 case ASM_INPUT:
2745 case ASM_OPERANDS:
2746 if (MEM_VOLATILE_P (x))
2747 return 1;
2748
2749 default:
2750 break;
2751 }
2752
2753 /* Recursively scan the operands of this expression. */
2754
2755 {
2756 const char *fmt = GET_RTX_FORMAT (code);
2757 int i;
2758
2759 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2760 {
2761 if (fmt[i] == 'e')
2762 {
2763 if (side_effects_p (XEXP (x, i)))
2764 return 1;
2765 }
2766 else if (fmt[i] == 'E')
2767 {
2768 int j;
2769 for (j = 0; j < XVECLEN (x, i); j++)
2770 if (side_effects_p (XVECEXP (x, i, j)))
2771 return 1;
2772 }
2773 }
2774 }
2775 return 0;
2776 }
2777 \f
2778 /* Return nonzero if evaluating rtx X might cause a trap.
2779 FLAGS controls how to consider MEMs. A nonzero means the context
2780 of the access may have changed from the original, such that the
2781 address may have become invalid. */
2782
2783 int
2784 may_trap_p_1 (const_rtx x, unsigned flags)
2785 {
2786 int i;
2787 enum rtx_code code;
2788 const char *fmt;
2789
2790 /* We make no distinction currently, but this function is part of
2791 the internal target-hooks ABI so we keep the parameter as
2792 "unsigned flags". */
2793 bool code_changed = flags != 0;
2794
2795 if (x == 0)
2796 return 0;
2797 code = GET_CODE (x);
2798 switch (code)
2799 {
2800 /* Handle these cases quickly. */
2801 CASE_CONST_ANY:
2802 case SYMBOL_REF:
2803 case LABEL_REF:
2804 case CONST:
2805 case PC:
2806 case CC0:
2807 case REG:
2808 case SCRATCH:
2809 return 0;
2810
2811 case UNSPEC:
2812 return targetm.unspec_may_trap_p (x, flags);
2813
2814 case UNSPEC_VOLATILE:
2815 case ASM_INPUT:
2816 case TRAP_IF:
2817 return 1;
2818
2819 case ASM_OPERANDS:
2820 return MEM_VOLATILE_P (x);
2821
2822 /* Memory ref can trap unless it's a static var or a stack slot. */
2823 case MEM:
2824 /* Recognize specific pattern of stack checking probes. */
2825 if (flag_stack_check
2826 && MEM_VOLATILE_P (x)
2827 && XEXP (x, 0) == stack_pointer_rtx)
2828 return 1;
2829 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2830 reference; moving it out of context such as when moving code
2831 when optimizing, might cause its address to become invalid. */
2832 code_changed
2833 || !MEM_NOTRAP_P (x))
2834 {
2835 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2836 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2837 GET_MODE (x), code_changed);
2838 }
2839
2840 return 0;
2841
2842 /* Division by a non-constant might trap. */
2843 case DIV:
2844 case MOD:
2845 case UDIV:
2846 case UMOD:
2847 if (HONOR_SNANS (x))
2848 return 1;
2849 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2850 return flag_trapping_math;
2851 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2852 return 1;
2853 break;
2854
2855 case EXPR_LIST:
2856 /* An EXPR_LIST is used to represent a function call. This
2857 certainly may trap. */
2858 return 1;
2859
2860 case GE:
2861 case GT:
2862 case LE:
2863 case LT:
2864 case LTGT:
2865 case COMPARE:
2866 /* Some floating point comparisons may trap. */
2867 if (!flag_trapping_math)
2868 break;
2869 /* ??? There is no machine independent way to check for tests that trap
2870 when COMPARE is used, though many targets do make this distinction.
2871 For instance, sparc uses CCFPE for compares which generate exceptions
2872 and CCFP for compares which do not generate exceptions. */
2873 if (HONOR_NANS (x))
2874 return 1;
2875 /* But often the compare has some CC mode, so check operand
2876 modes as well. */
2877 if (HONOR_NANS (XEXP (x, 0))
2878 || HONOR_NANS (XEXP (x, 1)))
2879 return 1;
2880 break;
2881
2882 case EQ:
2883 case NE:
2884 if (HONOR_SNANS (x))
2885 return 1;
2886 /* Often comparison is CC mode, so check operand modes. */
2887 if (HONOR_SNANS (XEXP (x, 0))
2888 || HONOR_SNANS (XEXP (x, 1)))
2889 return 1;
2890 break;
2891
2892 case FIX:
2893 /* Conversion of floating point might trap. */
2894 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2895 return 1;
2896 break;
2897
2898 case NEG:
2899 case ABS:
2900 case SUBREG:
2901 /* These operations don't trap even with floating point. */
2902 break;
2903
2904 default:
2905 /* Any floating arithmetic may trap. */
2906 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2907 return 1;
2908 }
2909
2910 fmt = GET_RTX_FORMAT (code);
2911 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2912 {
2913 if (fmt[i] == 'e')
2914 {
2915 if (may_trap_p_1 (XEXP (x, i), flags))
2916 return 1;
2917 }
2918 else if (fmt[i] == 'E')
2919 {
2920 int j;
2921 for (j = 0; j < XVECLEN (x, i); j++)
2922 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2923 return 1;
2924 }
2925 }
2926 return 0;
2927 }
2928
2929 /* Return nonzero if evaluating rtx X might cause a trap. */
2930
2931 int
2932 may_trap_p (const_rtx x)
2933 {
2934 return may_trap_p_1 (x, 0);
2935 }
2936
2937 /* Same as above, but additionally return nonzero if evaluating rtx X might
2938 cause a fault. We define a fault for the purpose of this function as a
2939 erroneous execution condition that cannot be encountered during the normal
2940 execution of a valid program; the typical example is an unaligned memory
2941 access on a strict alignment machine. The compiler guarantees that it
2942 doesn't generate code that will fault from a valid program, but this
2943 guarantee doesn't mean anything for individual instructions. Consider
2944 the following example:
2945
2946 struct S { int d; union { char *cp; int *ip; }; };
2947
2948 int foo(struct S *s)
2949 {
2950 if (s->d == 1)
2951 return *s->ip;
2952 else
2953 return *s->cp;
2954 }
2955
2956 on a strict alignment machine. In a valid program, foo will never be
2957 invoked on a structure for which d is equal to 1 and the underlying
2958 unique field of the union not aligned on a 4-byte boundary, but the
2959 expression *s->ip might cause a fault if considered individually.
2960
2961 At the RTL level, potentially problematic expressions will almost always
2962 verify may_trap_p; for example, the above dereference can be emitted as
2963 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2964 However, suppose that foo is inlined in a caller that causes s->cp to
2965 point to a local character variable and guarantees that s->d is not set
2966 to 1; foo may have been effectively translated into pseudo-RTL as:
2967
2968 if ((reg:SI) == 1)
2969 (set (reg:SI) (mem:SI (%fp - 7)))
2970 else
2971 (set (reg:QI) (mem:QI (%fp - 7)))
2972
2973 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2974 memory reference to a stack slot, but it will certainly cause a fault
2975 on a strict alignment machine. */
2976
2977 int
2978 may_trap_or_fault_p (const_rtx x)
2979 {
2980 return may_trap_p_1 (x, 1);
2981 }
2982 \f
2983 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2984 i.e., an inequality. */
2985
2986 int
2987 inequality_comparisons_p (const_rtx x)
2988 {
2989 const char *fmt;
2990 int len, i;
2991 const enum rtx_code code = GET_CODE (x);
2992
2993 switch (code)
2994 {
2995 case REG:
2996 case SCRATCH:
2997 case PC:
2998 case CC0:
2999 CASE_CONST_ANY:
3000 case CONST:
3001 case LABEL_REF:
3002 case SYMBOL_REF:
3003 return 0;
3004
3005 case LT:
3006 case LTU:
3007 case GT:
3008 case GTU:
3009 case LE:
3010 case LEU:
3011 case GE:
3012 case GEU:
3013 return 1;
3014
3015 default:
3016 break;
3017 }
3018
3019 len = GET_RTX_LENGTH (code);
3020 fmt = GET_RTX_FORMAT (code);
3021
3022 for (i = 0; i < len; i++)
3023 {
3024 if (fmt[i] == 'e')
3025 {
3026 if (inequality_comparisons_p (XEXP (x, i)))
3027 return 1;
3028 }
3029 else if (fmt[i] == 'E')
3030 {
3031 int j;
3032 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3033 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3034 return 1;
3035 }
3036 }
3037
3038 return 0;
3039 }
3040 \f
3041 /* Replace any occurrence of FROM in X with TO. The function does
3042 not enter into CONST_DOUBLE for the replace.
3043
3044 Note that copying is not done so X must not be shared unless all copies
3045 are to be modified.
3046
3047 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3048 those pointer-equal ones. */
3049
3050 rtx
3051 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3052 {
3053 int i, j;
3054 const char *fmt;
3055
3056 if (x == from)
3057 return to;
3058
3059 /* Allow this function to make replacements in EXPR_LISTs. */
3060 if (x == 0)
3061 return 0;
3062
3063 if (all_regs
3064 && REG_P (x)
3065 && REG_P (from)
3066 && REGNO (x) == REGNO (from))
3067 {
3068 gcc_assert (GET_MODE (x) == GET_MODE (from));
3069 return to;
3070 }
3071 else if (GET_CODE (x) == SUBREG)
3072 {
3073 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3074
3075 if (CONST_INT_P (new_rtx))
3076 {
3077 x = simplify_subreg (GET_MODE (x), new_rtx,
3078 GET_MODE (SUBREG_REG (x)),
3079 SUBREG_BYTE (x));
3080 gcc_assert (x);
3081 }
3082 else
3083 SUBREG_REG (x) = new_rtx;
3084
3085 return x;
3086 }
3087 else if (GET_CODE (x) == ZERO_EXTEND)
3088 {
3089 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3090
3091 if (CONST_INT_P (new_rtx))
3092 {
3093 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3094 new_rtx, GET_MODE (XEXP (x, 0)));
3095 gcc_assert (x);
3096 }
3097 else
3098 XEXP (x, 0) = new_rtx;
3099
3100 return x;
3101 }
3102
3103 fmt = GET_RTX_FORMAT (GET_CODE (x));
3104 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3105 {
3106 if (fmt[i] == 'e')
3107 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3108 else if (fmt[i] == 'E')
3109 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3110 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3111 from, to, all_regs);
3112 }
3113
3114 return x;
3115 }
3116 \f
3117 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3118 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3119
3120 void
3121 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3122 {
3123 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3124 rtx x = *loc;
3125 if (JUMP_TABLE_DATA_P (x))
3126 {
3127 x = PATTERN (x);
3128 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3129 int len = GET_NUM_ELEM (vec);
3130 for (int i = 0; i < len; ++i)
3131 {
3132 rtx ref = RTVEC_ELT (vec, i);
3133 if (XEXP (ref, 0) == old_label)
3134 {
3135 XEXP (ref, 0) = new_label;
3136 if (update_label_nuses)
3137 {
3138 ++LABEL_NUSES (new_label);
3139 --LABEL_NUSES (old_label);
3140 }
3141 }
3142 }
3143 return;
3144 }
3145
3146 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3147 field. This is not handled by the iterator because it doesn't
3148 handle unprinted ('0') fields. */
3149 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3150 JUMP_LABEL (x) = new_label;
3151
3152 subrtx_ptr_iterator::array_type array;
3153 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3154 {
3155 rtx *loc = *iter;
3156 if (rtx x = *loc)
3157 {
3158 if (GET_CODE (x) == SYMBOL_REF
3159 && CONSTANT_POOL_ADDRESS_P (x))
3160 {
3161 rtx c = get_pool_constant (x);
3162 if (rtx_referenced_p (old_label, c))
3163 {
3164 /* Create a copy of constant C; replace the label inside
3165 but do not update LABEL_NUSES because uses in constant pool
3166 are not counted. */
3167 rtx new_c = copy_rtx (c);
3168 replace_label (&new_c, old_label, new_label, false);
3169
3170 /* Add the new constant NEW_C to constant pool and replace
3171 the old reference to constant by new reference. */
3172 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3173 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3174 }
3175 }
3176
3177 if ((GET_CODE (x) == LABEL_REF
3178 || GET_CODE (x) == INSN_LIST)
3179 && XEXP (x, 0) == old_label)
3180 {
3181 XEXP (x, 0) = new_label;
3182 if (update_label_nuses)
3183 {
3184 ++LABEL_NUSES (new_label);
3185 --LABEL_NUSES (old_label);
3186 }
3187 }
3188 }
3189 }
3190 }
3191
3192 void
3193 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3194 rtx_insn *new_label, bool update_label_nuses)
3195 {
3196 rtx insn_as_rtx = insn;
3197 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3198 gcc_checking_assert (insn_as_rtx == insn);
3199 }
3200
3201 /* Return true if X is referenced in BODY. */
3202
3203 bool
3204 rtx_referenced_p (const_rtx x, const_rtx body)
3205 {
3206 subrtx_iterator::array_type array;
3207 FOR_EACH_SUBRTX (iter, array, body, ALL)
3208 if (const_rtx y = *iter)
3209 {
3210 /* Check if a label_ref Y refers to label X. */
3211 if (GET_CODE (y) == LABEL_REF
3212 && LABEL_P (x)
3213 && label_ref_label (y) == x)
3214 return true;
3215
3216 if (rtx_equal_p (x, y))
3217 return true;
3218
3219 /* If Y is a reference to pool constant traverse the constant. */
3220 if (GET_CODE (y) == SYMBOL_REF
3221 && CONSTANT_POOL_ADDRESS_P (y))
3222 iter.substitute (get_pool_constant (y));
3223 }
3224 return false;
3225 }
3226
3227 /* If INSN is a tablejump return true and store the label (before jump table) to
3228 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3229
3230 bool
3231 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3232 rtx_jump_table_data **tablep)
3233 {
3234 if (!JUMP_P (insn))
3235 return false;
3236
3237 rtx target = JUMP_LABEL (insn);
3238 if (target == NULL_RTX || ANY_RETURN_P (target))
3239 return false;
3240
3241 rtx_insn *label = as_a<rtx_insn *> (target);
3242 rtx_insn *table = next_insn (label);
3243 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3244 return false;
3245
3246 if (labelp)
3247 *labelp = label;
3248 if (tablep)
3249 *tablep = as_a <rtx_jump_table_data *> (table);
3250 return true;
3251 }
3252
3253 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3254 constant that is not in the constant pool and not in the condition
3255 of an IF_THEN_ELSE. */
3256
3257 static int
3258 computed_jump_p_1 (const_rtx x)
3259 {
3260 const enum rtx_code code = GET_CODE (x);
3261 int i, j;
3262 const char *fmt;
3263
3264 switch (code)
3265 {
3266 case LABEL_REF:
3267 case PC:
3268 return 0;
3269
3270 case CONST:
3271 CASE_CONST_ANY:
3272 case SYMBOL_REF:
3273 case REG:
3274 return 1;
3275
3276 case MEM:
3277 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3278 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3279
3280 case IF_THEN_ELSE:
3281 return (computed_jump_p_1 (XEXP (x, 1))
3282 || computed_jump_p_1 (XEXP (x, 2)));
3283
3284 default:
3285 break;
3286 }
3287
3288 fmt = GET_RTX_FORMAT (code);
3289 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3290 {
3291 if (fmt[i] == 'e'
3292 && computed_jump_p_1 (XEXP (x, i)))
3293 return 1;
3294
3295 else if (fmt[i] == 'E')
3296 for (j = 0; j < XVECLEN (x, i); j++)
3297 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3298 return 1;
3299 }
3300
3301 return 0;
3302 }
3303
3304 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3305
3306 Tablejumps and casesi insns are not considered indirect jumps;
3307 we can recognize them by a (use (label_ref)). */
3308
3309 int
3310 computed_jump_p (const rtx_insn *insn)
3311 {
3312 int i;
3313 if (JUMP_P (insn))
3314 {
3315 rtx pat = PATTERN (insn);
3316
3317 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3318 if (JUMP_LABEL (insn) != NULL)
3319 return 0;
3320
3321 if (GET_CODE (pat) == PARALLEL)
3322 {
3323 int len = XVECLEN (pat, 0);
3324 int has_use_labelref = 0;
3325
3326 for (i = len - 1; i >= 0; i--)
3327 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3328 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3329 == LABEL_REF))
3330 {
3331 has_use_labelref = 1;
3332 break;
3333 }
3334
3335 if (! has_use_labelref)
3336 for (i = len - 1; i >= 0; i--)
3337 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3338 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3339 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3340 return 1;
3341 }
3342 else if (GET_CODE (pat) == SET
3343 && SET_DEST (pat) == pc_rtx
3344 && computed_jump_p_1 (SET_SRC (pat)))
3345 return 1;
3346 }
3347 return 0;
3348 }
3349
3350 \f
3351
3352 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3353 the equivalent add insn and pass the result to FN, using DATA as the
3354 final argument. */
3355
3356 static int
3357 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3358 {
3359 rtx x = XEXP (mem, 0);
3360 switch (GET_CODE (x))
3361 {
3362 case PRE_INC:
3363 case POST_INC:
3364 {
3365 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3366 rtx r1 = XEXP (x, 0);
3367 rtx c = gen_int_mode (size, GET_MODE (r1));
3368 return fn (mem, x, r1, r1, c, data);
3369 }
3370
3371 case PRE_DEC:
3372 case POST_DEC:
3373 {
3374 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3375 rtx r1 = XEXP (x, 0);
3376 rtx c = gen_int_mode (-size, GET_MODE (r1));
3377 return fn (mem, x, r1, r1, c, data);
3378 }
3379
3380 case PRE_MODIFY:
3381 case POST_MODIFY:
3382 {
3383 rtx r1 = XEXP (x, 0);
3384 rtx add = XEXP (x, 1);
3385 return fn (mem, x, r1, add, NULL, data);
3386 }
3387
3388 default:
3389 gcc_unreachable ();
3390 }
3391 }
3392
3393 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3394 For each such autoinc operation found, call FN, passing it
3395 the innermost enclosing MEM, the operation itself, the RTX modified
3396 by the operation, two RTXs (the second may be NULL) that, once
3397 added, represent the value to be held by the modified RTX
3398 afterwards, and DATA. FN is to return 0 to continue the
3399 traversal or any other value to have it returned to the caller of
3400 for_each_inc_dec. */
3401
3402 int
3403 for_each_inc_dec (rtx x,
3404 for_each_inc_dec_fn fn,
3405 void *data)
3406 {
3407 subrtx_var_iterator::array_type array;
3408 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3409 {
3410 rtx mem = *iter;
3411 if (mem
3412 && MEM_P (mem)
3413 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3414 {
3415 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3416 if (res != 0)
3417 return res;
3418 iter.skip_subrtxes ();
3419 }
3420 }
3421 return 0;
3422 }
3423
3424 \f
3425 /* Searches X for any reference to REGNO, returning the rtx of the
3426 reference found if any. Otherwise, returns NULL_RTX. */
3427
3428 rtx
3429 regno_use_in (unsigned int regno, rtx x)
3430 {
3431 const char *fmt;
3432 int i, j;
3433 rtx tem;
3434
3435 if (REG_P (x) && REGNO (x) == regno)
3436 return x;
3437
3438 fmt = GET_RTX_FORMAT (GET_CODE (x));
3439 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3440 {
3441 if (fmt[i] == 'e')
3442 {
3443 if ((tem = regno_use_in (regno, XEXP (x, i))))
3444 return tem;
3445 }
3446 else if (fmt[i] == 'E')
3447 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3448 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3449 return tem;
3450 }
3451
3452 return NULL_RTX;
3453 }
3454
3455 /* Return a value indicating whether OP, an operand of a commutative
3456 operation, is preferred as the first or second operand. The more
3457 positive the value, the stronger the preference for being the first
3458 operand. */
3459
3460 int
3461 commutative_operand_precedence (rtx op)
3462 {
3463 enum rtx_code code = GET_CODE (op);
3464
3465 /* Constants always become the second operand. Prefer "nice" constants. */
3466 if (code == CONST_INT)
3467 return -10;
3468 if (code == CONST_WIDE_INT)
3469 return -9;
3470 if (code == CONST_POLY_INT)
3471 return -8;
3472 if (code == CONST_DOUBLE)
3473 return -8;
3474 if (code == CONST_FIXED)
3475 return -8;
3476 op = avoid_constant_pool_reference (op);
3477 code = GET_CODE (op);
3478
3479 switch (GET_RTX_CLASS (code))
3480 {
3481 case RTX_CONST_OBJ:
3482 if (code == CONST_INT)
3483 return -7;
3484 if (code == CONST_WIDE_INT)
3485 return -6;
3486 if (code == CONST_POLY_INT)
3487 return -5;
3488 if (code == CONST_DOUBLE)
3489 return -5;
3490 if (code == CONST_FIXED)
3491 return -5;
3492 return -4;
3493
3494 case RTX_EXTRA:
3495 /* SUBREGs of objects should come second. */
3496 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3497 return -3;
3498 return 0;
3499
3500 case RTX_OBJ:
3501 /* Complex expressions should be the first, so decrease priority
3502 of objects. Prefer pointer objects over non pointer objects. */
3503 if ((REG_P (op) && REG_POINTER (op))
3504 || (MEM_P (op) && MEM_POINTER (op)))
3505 return -1;
3506 return -2;
3507
3508 case RTX_COMM_ARITH:
3509 /* Prefer operands that are themselves commutative to be first.
3510 This helps to make things linear. In particular,
3511 (and (and (reg) (reg)) (not (reg))) is canonical. */
3512 return 4;
3513
3514 case RTX_BIN_ARITH:
3515 /* If only one operand is a binary expression, it will be the first
3516 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3517 is canonical, although it will usually be further simplified. */
3518 return 2;
3519
3520 case RTX_UNARY:
3521 /* Then prefer NEG and NOT. */
3522 if (code == NEG || code == NOT)
3523 return 1;
3524 /* FALLTHRU */
3525
3526 default:
3527 return 0;
3528 }
3529 }
3530
3531 /* Return 1 iff it is necessary to swap operands of commutative operation
3532 in order to canonicalize expression. */
3533
3534 bool
3535 swap_commutative_operands_p (rtx x, rtx y)
3536 {
3537 return (commutative_operand_precedence (x)
3538 < commutative_operand_precedence (y));
3539 }
3540
3541 /* Return 1 if X is an autoincrement side effect and the register is
3542 not the stack pointer. */
3543 int
3544 auto_inc_p (const_rtx x)
3545 {
3546 switch (GET_CODE (x))
3547 {
3548 case PRE_INC:
3549 case POST_INC:
3550 case PRE_DEC:
3551 case POST_DEC:
3552 case PRE_MODIFY:
3553 case POST_MODIFY:
3554 /* There are no REG_INC notes for SP. */
3555 if (XEXP (x, 0) != stack_pointer_rtx)
3556 return 1;
3557 default:
3558 break;
3559 }
3560 return 0;
3561 }
3562
3563 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3564 int
3565 loc_mentioned_in_p (rtx *loc, const_rtx in)
3566 {
3567 enum rtx_code code;
3568 const char *fmt;
3569 int i, j;
3570
3571 if (!in)
3572 return 0;
3573
3574 code = GET_CODE (in);
3575 fmt = GET_RTX_FORMAT (code);
3576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3577 {
3578 if (fmt[i] == 'e')
3579 {
3580 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3581 return 1;
3582 }
3583 else if (fmt[i] == 'E')
3584 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3585 if (loc == &XVECEXP (in, i, j)
3586 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3587 return 1;
3588 }
3589 return 0;
3590 }
3591
3592 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3593 and SUBREG_BYTE, return the bit offset where the subreg begins
3594 (counting from the least significant bit of the operand). */
3595
3596 poly_uint64
3597 subreg_lsb_1 (machine_mode outer_mode,
3598 machine_mode inner_mode,
3599 poly_uint64 subreg_byte)
3600 {
3601 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3602
3603 /* A paradoxical subreg begins at bit position 0. */
3604 if (paradoxical_subreg_p (outer_mode, inner_mode))
3605 return 0;
3606
3607 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3608 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3609 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3610 byte_pos = trailing_bytes;
3611 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3612 byte_pos = subreg_byte;
3613 else
3614 {
3615 /* When bytes and words have opposite endianness, we must be able
3616 to split offsets into words and bytes at compile time. */
3617 poly_uint64 leading_word_part
3618 = force_align_down (subreg_byte, UNITS_PER_WORD);
3619 poly_uint64 trailing_word_part
3620 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3621 /* If the subreg crosses a word boundary ensure that
3622 it also begins and ends on a word boundary. */
3623 gcc_assert (known_le (subreg_end - leading_word_part,
3624 (unsigned int) UNITS_PER_WORD)
3625 || (known_eq (leading_word_part, subreg_byte)
3626 && known_eq (trailing_word_part, trailing_bytes)));
3627 if (WORDS_BIG_ENDIAN)
3628 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3629 else
3630 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3631 }
3632
3633 return byte_pos * BITS_PER_UNIT;
3634 }
3635
3636 /* Given a subreg X, return the bit offset where the subreg begins
3637 (counting from the least significant bit of the reg). */
3638
3639 poly_uint64
3640 subreg_lsb (const_rtx x)
3641 {
3642 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3643 SUBREG_BYTE (x));
3644 }
3645
3646 /* Return the subreg byte offset for a subreg whose outer value has
3647 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3648 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3649 lsb of the inner value. This is the inverse of the calculation
3650 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3651
3652 poly_uint64
3653 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3654 poly_uint64 lsb_shift)
3655 {
3656 /* A paradoxical subreg begins at bit position 0. */
3657 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3658 if (maybe_gt (outer_bytes, inner_bytes))
3659 {
3660 gcc_checking_assert (known_eq (lsb_shift, 0U));
3661 return 0;
3662 }
3663
3664 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3665 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3666 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3667 return upper_bytes;
3668 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3669 return lower_bytes;
3670 else
3671 {
3672 /* When bytes and words have opposite endianness, we must be able
3673 to split offsets into words and bytes at compile time. */
3674 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3675 UNITS_PER_WORD);
3676 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3677 UNITS_PER_WORD);
3678 if (WORDS_BIG_ENDIAN)
3679 return upper_word_part + (lower_bytes - lower_word_part);
3680 else
3681 return lower_word_part + (upper_bytes - upper_word_part);
3682 }
3683 }
3684
3685 /* Fill in information about a subreg of a hard register.
3686 xregno - A regno of an inner hard subreg_reg (or what will become one).
3687 xmode - The mode of xregno.
3688 offset - The byte offset.
3689 ymode - The mode of a top level SUBREG (or what may become one).
3690 info - Pointer to structure to fill in.
3691
3692 Rather than considering one particular inner register (and thus one
3693 particular "outer" register) in isolation, this function really uses
3694 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3695 function does not check whether adding INFO->offset to XREGNO gives
3696 a valid hard register; even if INFO->offset + XREGNO is out of range,
3697 there might be another register of the same type that is in range.
3698 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3699 the new register, since that can depend on things like whether the final
3700 register number is even or odd. Callers that want to check whether
3701 this particular subreg can be replaced by a simple (reg ...) should
3702 use simplify_subreg_regno. */
3703
3704 void
3705 subreg_get_info (unsigned int xregno, machine_mode xmode,
3706 poly_uint64 offset, machine_mode ymode,
3707 struct subreg_info *info)
3708 {
3709 unsigned int nregs_xmode, nregs_ymode;
3710
3711 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3712
3713 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3714 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3715
3716 bool rknown = false;
3717
3718 /* If the register representation of a non-scalar mode has holes in it,
3719 we expect the scalar units to be concatenated together, with the holes
3720 distributed evenly among the scalar units. Each scalar unit must occupy
3721 at least one register. */
3722 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3723 {
3724 /* As a consequence, we must be dealing with a constant number of
3725 scalars, and thus a constant offset and number of units. */
3726 HOST_WIDE_INT coffset = offset.to_constant ();
3727 HOST_WIDE_INT cysize = ysize.to_constant ();
3728 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3729 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3730 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3731 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3732 gcc_assert (nregs_xmode
3733 == (nunits
3734 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3735 gcc_assert (hard_regno_nregs (xregno, xmode)
3736 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3737
3738 /* You can only ask for a SUBREG of a value with holes in the middle
3739 if you don't cross the holes. (Such a SUBREG should be done by
3740 picking a different register class, or doing it in memory if
3741 necessary.) An example of a value with holes is XCmode on 32-bit
3742 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3743 3 for each part, but in memory it's two 128-bit parts.
3744 Padding is assumed to be at the end (not necessarily the 'high part')
3745 of each unit. */
3746 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3747 && (coffset / GET_MODE_SIZE (xmode_unit)
3748 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3749 {
3750 info->representable_p = false;
3751 rknown = true;
3752 }
3753 }
3754 else
3755 nregs_xmode = hard_regno_nregs (xregno, xmode);
3756
3757 nregs_ymode = hard_regno_nregs (xregno, ymode);
3758
3759 /* Subreg sizes must be ordered, so that we can tell whether they are
3760 partial, paradoxical or complete. */
3761 gcc_checking_assert (ordered_p (xsize, ysize));
3762
3763 /* Paradoxical subregs are otherwise valid. */
3764 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3765 {
3766 info->representable_p = true;
3767 /* If this is a big endian paradoxical subreg, which uses more
3768 actual hard registers than the original register, we must
3769 return a negative offset so that we find the proper highpart
3770 of the register.
3771
3772 We assume that the ordering of registers within a multi-register
3773 value has a consistent endianness: if bytes and register words
3774 have different endianness, the hard registers that make up a
3775 multi-register value must be at least word-sized. */
3776 if (REG_WORDS_BIG_ENDIAN)
3777 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3778 else
3779 info->offset = 0;
3780 info->nregs = nregs_ymode;
3781 return;
3782 }
3783
3784 /* If registers store different numbers of bits in the different
3785 modes, we cannot generally form this subreg. */
3786 poly_uint64 regsize_xmode, regsize_ymode;
3787 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3788 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3789 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3790 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3791 {
3792 if (!rknown
3793 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3794 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3795 {
3796 info->representable_p = false;
3797 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3798 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3799 /* Checked by validate_subreg. We must know at compile time
3800 which inner registers are being accessed. */
3801 gcc_unreachable ();
3802 return;
3803 }
3804 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3805 would go outside of XMODE. */
3806 if (!rknown && maybe_gt (ysize + offset, xsize))
3807 {
3808 info->representable_p = false;
3809 info->nregs = nregs_ymode;
3810 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3811 /* Checked by validate_subreg. We must know at compile time
3812 which inner registers are being accessed. */
3813 gcc_unreachable ();
3814 return;
3815 }
3816 /* Quick exit for the simple and common case of extracting whole
3817 subregisters from a multiregister value. */
3818 /* ??? It would be better to integrate this into the code below,
3819 if we can generalize the concept enough and figure out how
3820 odd-sized modes can coexist with the other weird cases we support. */
3821 HOST_WIDE_INT count;
3822 if (!rknown
3823 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3824 && known_eq (regsize_xmode, regsize_ymode)
3825 && constant_multiple_p (offset, regsize_ymode, &count))
3826 {
3827 info->representable_p = true;
3828 info->nregs = nregs_ymode;
3829 info->offset = count;
3830 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3831 return;
3832 }
3833 }
3834
3835 /* Lowpart subregs are otherwise valid. */
3836 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3837 {
3838 info->representable_p = true;
3839 rknown = true;
3840
3841 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3842 {
3843 info->offset = 0;
3844 info->nregs = nregs_ymode;
3845 return;
3846 }
3847 }
3848
3849 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3850 values there are in (reg:XMODE XREGNO). We can view the register
3851 as consisting of this number of independent "blocks", where each
3852 block occupies NREGS_YMODE registers and contains exactly one
3853 representable YMODE value. */
3854 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3855 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3856
3857 /* Calculate the number of bytes in each block. This must always
3858 be exact, otherwise we don't know how to verify the constraint.
3859 These conditions may be relaxed but subreg_regno_offset would
3860 need to be redesigned. */
3861 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3862
3863 /* Get the number of the first block that contains the subreg and the byte
3864 offset of the subreg from the start of that block. */
3865 unsigned int block_number;
3866 poly_uint64 subblock_offset;
3867 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3868 &subblock_offset))
3869 /* Checked by validate_subreg. We must know at compile time which
3870 inner registers are being accessed. */
3871 gcc_unreachable ();
3872
3873 if (!rknown)
3874 {
3875 /* Only the lowpart of each block is representable. */
3876 info->representable_p
3877 = known_eq (subblock_offset,
3878 subreg_size_lowpart_offset (ysize, bytes_per_block));
3879 rknown = true;
3880 }
3881
3882 /* We assume that the ordering of registers within a multi-register
3883 value has a consistent endianness: if bytes and register words
3884 have different endianness, the hard registers that make up a
3885 multi-register value must be at least word-sized. */
3886 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3887 /* The block number we calculated above followed memory endianness.
3888 Convert it to register endianness by counting back from the end.
3889 (Note that, because of the assumption above, each block must be
3890 at least word-sized.) */
3891 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3892 else
3893 info->offset = block_number * nregs_ymode;
3894 info->nregs = nregs_ymode;
3895 }
3896
3897 /* This function returns the regno offset of a subreg expression.
3898 xregno - A regno of an inner hard subreg_reg (or what will become one).
3899 xmode - The mode of xregno.
3900 offset - The byte offset.
3901 ymode - The mode of a top level SUBREG (or what may become one).
3902 RETURN - The regno offset which would be used. */
3903 unsigned int
3904 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3905 poly_uint64 offset, machine_mode ymode)
3906 {
3907 struct subreg_info info;
3908 subreg_get_info (xregno, xmode, offset, ymode, &info);
3909 return info.offset;
3910 }
3911
3912 /* This function returns true when the offset is representable via
3913 subreg_offset in the given regno.
3914 xregno - A regno of an inner hard subreg_reg (or what will become one).
3915 xmode - The mode of xregno.
3916 offset - The byte offset.
3917 ymode - The mode of a top level SUBREG (or what may become one).
3918 RETURN - Whether the offset is representable. */
3919 bool
3920 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3921 poly_uint64 offset, machine_mode ymode)
3922 {
3923 struct subreg_info info;
3924 subreg_get_info (xregno, xmode, offset, ymode, &info);
3925 return info.representable_p;
3926 }
3927
3928 /* Return the number of a YMODE register to which
3929
3930 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3931
3932 can be simplified. Return -1 if the subreg can't be simplified.
3933
3934 XREGNO is a hard register number. */
3935
3936 int
3937 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3938 poly_uint64 offset, machine_mode ymode)
3939 {
3940 struct subreg_info info;
3941 unsigned int yregno;
3942
3943 /* Give the backend a chance to disallow the mode change. */
3944 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3945 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3946 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3947 /* We can use mode change in LRA for some transformations. */
3948 && ! lra_in_progress)
3949 return -1;
3950
3951 /* We shouldn't simplify stack-related registers. */
3952 if ((!reload_completed || frame_pointer_needed)
3953 && xregno == FRAME_POINTER_REGNUM)
3954 return -1;
3955
3956 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3957 && xregno == ARG_POINTER_REGNUM)
3958 return -1;
3959
3960 if (xregno == STACK_POINTER_REGNUM
3961 /* We should convert hard stack register in LRA if it is
3962 possible. */
3963 && ! lra_in_progress)
3964 return -1;
3965
3966 /* Try to get the register offset. */
3967 subreg_get_info (xregno, xmode, offset, ymode, &info);
3968 if (!info.representable_p)
3969 return -1;
3970
3971 /* Make sure that the offsetted register value is in range. */
3972 yregno = xregno + info.offset;
3973 if (!HARD_REGISTER_NUM_P (yregno))
3974 return -1;
3975
3976 /* See whether (reg:YMODE YREGNO) is valid.
3977
3978 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3979 This is a kludge to work around how complex FP arguments are passed
3980 on IA-64 and should be fixed. See PR target/49226. */
3981 if (!targetm.hard_regno_mode_ok (yregno, ymode)
3982 && targetm.hard_regno_mode_ok (xregno, xmode))
3983 return -1;
3984
3985 return (int) yregno;
3986 }
3987
3988 /* Return the final regno that a subreg expression refers to. */
3989 unsigned int
3990 subreg_regno (const_rtx x)
3991 {
3992 unsigned int ret;
3993 rtx subreg = SUBREG_REG (x);
3994 int regno = REGNO (subreg);
3995
3996 ret = regno + subreg_regno_offset (regno,
3997 GET_MODE (subreg),
3998 SUBREG_BYTE (x),
3999 GET_MODE (x));
4000 return ret;
4001
4002 }
4003
4004 /* Return the number of registers that a subreg expression refers
4005 to. */
4006 unsigned int
4007 subreg_nregs (const_rtx x)
4008 {
4009 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4010 }
4011
4012 /* Return the number of registers that a subreg REG with REGNO
4013 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4014 changed so that the regno can be passed in. */
4015
4016 unsigned int
4017 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4018 {
4019 struct subreg_info info;
4020 rtx subreg = SUBREG_REG (x);
4021
4022 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4023 &info);
4024 return info.nregs;
4025 }
4026
4027 struct parms_set_data
4028 {
4029 int nregs;
4030 HARD_REG_SET regs;
4031 };
4032
4033 /* Helper function for noticing stores to parameter registers. */
4034 static void
4035 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4036 {
4037 struct parms_set_data *const d = (struct parms_set_data *) data;
4038 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4039 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4040 {
4041 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4042 d->nregs--;
4043 }
4044 }
4045
4046 /* Look backward for first parameter to be loaded.
4047 Note that loads of all parameters will not necessarily be
4048 found if CSE has eliminated some of them (e.g., an argument
4049 to the outer function is passed down as a parameter).
4050 Do not skip BOUNDARY. */
4051 rtx_insn *
4052 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4053 {
4054 struct parms_set_data parm;
4055 rtx p;
4056 rtx_insn *before, *first_set;
4057
4058 /* Since different machines initialize their parameter registers
4059 in different orders, assume nothing. Collect the set of all
4060 parameter registers. */
4061 CLEAR_HARD_REG_SET (parm.regs);
4062 parm.nregs = 0;
4063 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4064 if (GET_CODE (XEXP (p, 0)) == USE
4065 && REG_P (XEXP (XEXP (p, 0), 0))
4066 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4067 {
4068 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4069
4070 /* We only care about registers which can hold function
4071 arguments. */
4072 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4073 continue;
4074
4075 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4076 parm.nregs++;
4077 }
4078 before = call_insn;
4079 first_set = call_insn;
4080
4081 /* Search backward for the first set of a register in this set. */
4082 while (parm.nregs && before != boundary)
4083 {
4084 before = PREV_INSN (before);
4085
4086 /* It is possible that some loads got CSEed from one call to
4087 another. Stop in that case. */
4088 if (CALL_P (before))
4089 break;
4090
4091 /* Our caller needs either ensure that we will find all sets
4092 (in case code has not been optimized yet), or take care
4093 for possible labels in a way by setting boundary to preceding
4094 CODE_LABEL. */
4095 if (LABEL_P (before))
4096 {
4097 gcc_assert (before == boundary);
4098 break;
4099 }
4100
4101 if (INSN_P (before))
4102 {
4103 int nregs_old = parm.nregs;
4104 note_stores (PATTERN (before), parms_set, &parm);
4105 /* If we found something that did not set a parameter reg,
4106 we're done. Do not keep going, as that might result
4107 in hoisting an insn before the setting of a pseudo
4108 that is used by the hoisted insn. */
4109 if (nregs_old != parm.nregs)
4110 first_set = before;
4111 else
4112 break;
4113 }
4114 }
4115 return first_set;
4116 }
4117
4118 /* Return true if we should avoid inserting code between INSN and preceding
4119 call instruction. */
4120
4121 bool
4122 keep_with_call_p (const rtx_insn *insn)
4123 {
4124 rtx set;
4125
4126 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4127 {
4128 if (REG_P (SET_DEST (set))
4129 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4130 && fixed_regs[REGNO (SET_DEST (set))]
4131 && general_operand (SET_SRC (set), VOIDmode))
4132 return true;
4133 if (REG_P (SET_SRC (set))
4134 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4135 && REG_P (SET_DEST (set))
4136 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4137 return true;
4138 /* There may be a stack pop just after the call and before the store
4139 of the return register. Search for the actual store when deciding
4140 if we can break or not. */
4141 if (SET_DEST (set) == stack_pointer_rtx)
4142 {
4143 /* This CONST_CAST is okay because next_nonnote_insn just
4144 returns its argument and we assign it to a const_rtx
4145 variable. */
4146 const rtx_insn *i2
4147 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4148 if (i2 && keep_with_call_p (i2))
4149 return true;
4150 }
4151 }
4152 return false;
4153 }
4154
4155 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4156 to non-complex jumps. That is, direct unconditional, conditional,
4157 and tablejumps, but not computed jumps or returns. It also does
4158 not apply to the fallthru case of a conditional jump. */
4159
4160 bool
4161 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4162 {
4163 rtx tmp = JUMP_LABEL (jump_insn);
4164 rtx_jump_table_data *table;
4165
4166 if (label == tmp)
4167 return true;
4168
4169 if (tablejump_p (jump_insn, NULL, &table))
4170 {
4171 rtvec vec = table->get_labels ();
4172 int i, veclen = GET_NUM_ELEM (vec);
4173
4174 for (i = 0; i < veclen; ++i)
4175 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4176 return true;
4177 }
4178
4179 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4180 return true;
4181
4182 return false;
4183 }
4184
4185 \f
4186 /* Return an estimate of the cost of computing rtx X.
4187 One use is in cse, to decide which expression to keep in the hash table.
4188 Another is in rtl generation, to pick the cheapest way to multiply.
4189 Other uses like the latter are expected in the future.
4190
4191 X appears as operand OPNO in an expression with code OUTER_CODE.
4192 SPEED specifies whether costs optimized for speed or size should
4193 be returned. */
4194
4195 int
4196 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4197 int opno, bool speed)
4198 {
4199 int i, j;
4200 enum rtx_code code;
4201 const char *fmt;
4202 int total;
4203 int factor;
4204
4205 if (x == 0)
4206 return 0;
4207
4208 if (GET_MODE (x) != VOIDmode)
4209 mode = GET_MODE (x);
4210
4211 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4212 many insns, taking N times as long. */
4213 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4214 if (factor == 0)
4215 factor = 1;
4216
4217 /* Compute the default costs of certain things.
4218 Note that targetm.rtx_costs can override the defaults. */
4219
4220 code = GET_CODE (x);
4221 switch (code)
4222 {
4223 case MULT:
4224 /* Multiplication has time-complexity O(N*N), where N is the
4225 number of units (translated from digits) when using
4226 schoolbook long multiplication. */
4227 total = factor * factor * COSTS_N_INSNS (5);
4228 break;
4229 case DIV:
4230 case UDIV:
4231 case MOD:
4232 case UMOD:
4233 /* Similarly, complexity for schoolbook long division. */
4234 total = factor * factor * COSTS_N_INSNS (7);
4235 break;
4236 case USE:
4237 /* Used in combine.c as a marker. */
4238 total = 0;
4239 break;
4240 case SET:
4241 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4242 the mode for the factor. */
4243 mode = GET_MODE (SET_DEST (x));
4244 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4245 if (factor == 0)
4246 factor = 1;
4247 /* FALLTHRU */
4248 default:
4249 total = factor * COSTS_N_INSNS (1);
4250 }
4251
4252 switch (code)
4253 {
4254 case REG:
4255 return 0;
4256
4257 case SUBREG:
4258 total = 0;
4259 /* If we can't tie these modes, make this expensive. The larger
4260 the mode, the more expensive it is. */
4261 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4262 return COSTS_N_INSNS (2 + factor);
4263 break;
4264
4265 case TRUNCATE:
4266 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4267 {
4268 total = 0;
4269 break;
4270 }
4271 /* FALLTHRU */
4272 default:
4273 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4274 return total;
4275 break;
4276 }
4277
4278 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4279 which is already in total. */
4280
4281 fmt = GET_RTX_FORMAT (code);
4282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4283 if (fmt[i] == 'e')
4284 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4285 else if (fmt[i] == 'E')
4286 for (j = 0; j < XVECLEN (x, i); j++)
4287 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4288
4289 return total;
4290 }
4291
4292 /* Fill in the structure C with information about both speed and size rtx
4293 costs for X, which is operand OPNO in an expression with code OUTER. */
4294
4295 void
4296 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4297 struct full_rtx_costs *c)
4298 {
4299 c->speed = rtx_cost (x, mode, outer, opno, true);
4300 c->size = rtx_cost (x, mode, outer, opno, false);
4301 }
4302
4303 \f
4304 /* Return cost of address expression X.
4305 Expect that X is properly formed address reference.
4306
4307 SPEED parameter specify whether costs optimized for speed or size should
4308 be returned. */
4309
4310 int
4311 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4312 {
4313 /* We may be asked for cost of various unusual addresses, such as operands
4314 of push instruction. It is not worthwhile to complicate writing
4315 of the target hook by such cases. */
4316
4317 if (!memory_address_addr_space_p (mode, x, as))
4318 return 1000;
4319
4320 return targetm.address_cost (x, mode, as, speed);
4321 }
4322
4323 /* If the target doesn't override, compute the cost as with arithmetic. */
4324
4325 int
4326 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4327 {
4328 return rtx_cost (x, Pmode, MEM, 0, speed);
4329 }
4330 \f
4331
4332 unsigned HOST_WIDE_INT
4333 nonzero_bits (const_rtx x, machine_mode mode)
4334 {
4335 if (mode == VOIDmode)
4336 mode = GET_MODE (x);
4337 scalar_int_mode int_mode;
4338 if (!is_a <scalar_int_mode> (mode, &int_mode))
4339 return GET_MODE_MASK (mode);
4340 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4341 }
4342
4343 unsigned int
4344 num_sign_bit_copies (const_rtx x, machine_mode mode)
4345 {
4346 if (mode == VOIDmode)
4347 mode = GET_MODE (x);
4348 scalar_int_mode int_mode;
4349 if (!is_a <scalar_int_mode> (mode, &int_mode))
4350 return 1;
4351 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4352 }
4353
4354 /* Return true if nonzero_bits1 might recurse into both operands
4355 of X. */
4356
4357 static inline bool
4358 nonzero_bits_binary_arith_p (const_rtx x)
4359 {
4360 if (!ARITHMETIC_P (x))
4361 return false;
4362 switch (GET_CODE (x))
4363 {
4364 case AND:
4365 case XOR:
4366 case IOR:
4367 case UMIN:
4368 case UMAX:
4369 case SMIN:
4370 case SMAX:
4371 case PLUS:
4372 case MINUS:
4373 case MULT:
4374 case DIV:
4375 case UDIV:
4376 case MOD:
4377 case UMOD:
4378 return true;
4379 default:
4380 return false;
4381 }
4382 }
4383
4384 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4385 It avoids exponential behavior in nonzero_bits1 when X has
4386 identical subexpressions on the first or the second level. */
4387
4388 static unsigned HOST_WIDE_INT
4389 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4390 machine_mode known_mode,
4391 unsigned HOST_WIDE_INT known_ret)
4392 {
4393 if (x == known_x && mode == known_mode)
4394 return known_ret;
4395
4396 /* Try to find identical subexpressions. If found call
4397 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4398 precomputed value for the subexpression as KNOWN_RET. */
4399
4400 if (nonzero_bits_binary_arith_p (x))
4401 {
4402 rtx x0 = XEXP (x, 0);
4403 rtx x1 = XEXP (x, 1);
4404
4405 /* Check the first level. */
4406 if (x0 == x1)
4407 return nonzero_bits1 (x, mode, x0, mode,
4408 cached_nonzero_bits (x0, mode, known_x,
4409 known_mode, known_ret));
4410
4411 /* Check the second level. */
4412 if (nonzero_bits_binary_arith_p (x0)
4413 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4414 return nonzero_bits1 (x, mode, x1, mode,
4415 cached_nonzero_bits (x1, mode, known_x,
4416 known_mode, known_ret));
4417
4418 if (nonzero_bits_binary_arith_p (x1)
4419 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4420 return nonzero_bits1 (x, mode, x0, mode,
4421 cached_nonzero_bits (x0, mode, known_x,
4422 known_mode, known_ret));
4423 }
4424
4425 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4426 }
4427
4428 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4429 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4430 is less useful. We can't allow both, because that results in exponential
4431 run time recursion. There is a nullstone testcase that triggered
4432 this. This macro avoids accidental uses of num_sign_bit_copies. */
4433 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4434
4435 /* Given an expression, X, compute which bits in X can be nonzero.
4436 We don't care about bits outside of those defined in MODE.
4437
4438 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4439 an arithmetic operation, we can do better. */
4440
4441 static unsigned HOST_WIDE_INT
4442 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4443 machine_mode known_mode,
4444 unsigned HOST_WIDE_INT known_ret)
4445 {
4446 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4447 unsigned HOST_WIDE_INT inner_nz;
4448 enum rtx_code code = GET_CODE (x);
4449 machine_mode inner_mode;
4450 unsigned int inner_width;
4451 scalar_int_mode xmode;
4452
4453 unsigned int mode_width = GET_MODE_PRECISION (mode);
4454
4455 if (CONST_INT_P (x))
4456 {
4457 if (SHORT_IMMEDIATES_SIGN_EXTEND
4458 && INTVAL (x) > 0
4459 && mode_width < BITS_PER_WORD
4460 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4461 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4462
4463 return UINTVAL (x);
4464 }
4465
4466 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4467 return nonzero;
4468 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4469
4470 /* If X is wider than MODE, use its mode instead. */
4471 if (xmode_width > mode_width)
4472 {
4473 mode = xmode;
4474 nonzero = GET_MODE_MASK (mode);
4475 mode_width = xmode_width;
4476 }
4477
4478 if (mode_width > HOST_BITS_PER_WIDE_INT)
4479 /* Our only callers in this case look for single bit values. So
4480 just return the mode mask. Those tests will then be false. */
4481 return nonzero;
4482
4483 /* If MODE is wider than X, but both are a single word for both the host
4484 and target machines, we can compute this from which bits of the object
4485 might be nonzero in its own mode, taking into account the fact that, on
4486 CISC machines, accessing an object in a wider mode generally causes the
4487 high-order bits to become undefined, so they are not known to be zero.
4488 We extend this reasoning to RISC machines for operations that might not
4489 operate on the full registers. */
4490 if (mode_width > xmode_width
4491 && xmode_width <= BITS_PER_WORD
4492 && xmode_width <= HOST_BITS_PER_WIDE_INT
4493 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4494 {
4495 nonzero &= cached_nonzero_bits (x, xmode,
4496 known_x, known_mode, known_ret);
4497 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4498 return nonzero;
4499 }
4500
4501 /* Please keep nonzero_bits_binary_arith_p above in sync with
4502 the code in the switch below. */
4503 switch (code)
4504 {
4505 case REG:
4506 #if defined(POINTERS_EXTEND_UNSIGNED)
4507 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4508 all the bits above ptr_mode are known to be zero. */
4509 /* As we do not know which address space the pointer is referring to,
4510 we can do this only if the target does not support different pointer
4511 or address modes depending on the address space. */
4512 if (target_default_pointer_address_modes_p ()
4513 && POINTERS_EXTEND_UNSIGNED
4514 && xmode == Pmode
4515 && REG_POINTER (x)
4516 && !targetm.have_ptr_extend ())
4517 nonzero &= GET_MODE_MASK (ptr_mode);
4518 #endif
4519
4520 /* Include declared information about alignment of pointers. */
4521 /* ??? We don't properly preserve REG_POINTER changes across
4522 pointer-to-integer casts, so we can't trust it except for
4523 things that we know must be pointers. See execute/960116-1.c. */
4524 if ((x == stack_pointer_rtx
4525 || x == frame_pointer_rtx
4526 || x == arg_pointer_rtx)
4527 && REGNO_POINTER_ALIGN (REGNO (x)))
4528 {
4529 unsigned HOST_WIDE_INT alignment
4530 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4531
4532 #ifdef PUSH_ROUNDING
4533 /* If PUSH_ROUNDING is defined, it is possible for the
4534 stack to be momentarily aligned only to that amount,
4535 so we pick the least alignment. */
4536 if (x == stack_pointer_rtx && PUSH_ARGS)
4537 {
4538 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4539 alignment = MIN (known_alignment (rounded_1), alignment);
4540 }
4541 #endif
4542
4543 nonzero &= ~(alignment - 1);
4544 }
4545
4546 {
4547 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4548 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4549 &nonzero_for_hook);
4550
4551 if (new_rtx)
4552 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4553 known_mode, known_ret);
4554
4555 return nonzero_for_hook;
4556 }
4557
4558 case MEM:
4559 /* In many, if not most, RISC machines, reading a byte from memory
4560 zeros the rest of the register. Noticing that fact saves a lot
4561 of extra zero-extends. */
4562 if (load_extend_op (xmode) == ZERO_EXTEND)
4563 nonzero &= GET_MODE_MASK (xmode);
4564 break;
4565
4566 case EQ: case NE:
4567 case UNEQ: case LTGT:
4568 case GT: case GTU: case UNGT:
4569 case LT: case LTU: case UNLT:
4570 case GE: case GEU: case UNGE:
4571 case LE: case LEU: case UNLE:
4572 case UNORDERED: case ORDERED:
4573 /* If this produces an integer result, we know which bits are set.
4574 Code here used to clear bits outside the mode of X, but that is
4575 now done above. */
4576 /* Mind that MODE is the mode the caller wants to look at this
4577 operation in, and not the actual operation mode. We can wind
4578 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4579 that describes the results of a vector compare. */
4580 if (GET_MODE_CLASS (xmode) == MODE_INT
4581 && mode_width <= HOST_BITS_PER_WIDE_INT)
4582 nonzero = STORE_FLAG_VALUE;
4583 break;
4584
4585 case NEG:
4586 #if 0
4587 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4588 and num_sign_bit_copies. */
4589 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4590 nonzero = 1;
4591 #endif
4592
4593 if (xmode_width < mode_width)
4594 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4595 break;
4596
4597 case ABS:
4598 #if 0
4599 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4600 and num_sign_bit_copies. */
4601 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4602 nonzero = 1;
4603 #endif
4604 break;
4605
4606 case TRUNCATE:
4607 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4608 known_x, known_mode, known_ret)
4609 & GET_MODE_MASK (mode));
4610 break;
4611
4612 case ZERO_EXTEND:
4613 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4614 known_x, known_mode, known_ret);
4615 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4616 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4617 break;
4618
4619 case SIGN_EXTEND:
4620 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4621 Otherwise, show all the bits in the outer mode but not the inner
4622 may be nonzero. */
4623 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4624 known_x, known_mode, known_ret);
4625 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4626 {
4627 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4628 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4629 inner_nz |= (GET_MODE_MASK (mode)
4630 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4631 }
4632
4633 nonzero &= inner_nz;
4634 break;
4635
4636 case AND:
4637 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4638 known_x, known_mode, known_ret)
4639 & cached_nonzero_bits (XEXP (x, 1), mode,
4640 known_x, known_mode, known_ret);
4641 break;
4642
4643 case XOR: case IOR:
4644 case UMIN: case UMAX: case SMIN: case SMAX:
4645 {
4646 unsigned HOST_WIDE_INT nonzero0
4647 = cached_nonzero_bits (XEXP (x, 0), mode,
4648 known_x, known_mode, known_ret);
4649
4650 /* Don't call nonzero_bits for the second time if it cannot change
4651 anything. */
4652 if ((nonzero & nonzero0) != nonzero)
4653 nonzero &= nonzero0
4654 | cached_nonzero_bits (XEXP (x, 1), mode,
4655 known_x, known_mode, known_ret);
4656 }
4657 break;
4658
4659 case PLUS: case MINUS:
4660 case MULT:
4661 case DIV: case UDIV:
4662 case MOD: case UMOD:
4663 /* We can apply the rules of arithmetic to compute the number of
4664 high- and low-order zero bits of these operations. We start by
4665 computing the width (position of the highest-order nonzero bit)
4666 and the number of low-order zero bits for each value. */
4667 {
4668 unsigned HOST_WIDE_INT nz0
4669 = cached_nonzero_bits (XEXP (x, 0), mode,
4670 known_x, known_mode, known_ret);
4671 unsigned HOST_WIDE_INT nz1
4672 = cached_nonzero_bits (XEXP (x, 1), mode,
4673 known_x, known_mode, known_ret);
4674 int sign_index = xmode_width - 1;
4675 int width0 = floor_log2 (nz0) + 1;
4676 int width1 = floor_log2 (nz1) + 1;
4677 int low0 = ctz_or_zero (nz0);
4678 int low1 = ctz_or_zero (nz1);
4679 unsigned HOST_WIDE_INT op0_maybe_minusp
4680 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4681 unsigned HOST_WIDE_INT op1_maybe_minusp
4682 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4683 unsigned int result_width = mode_width;
4684 int result_low = 0;
4685
4686 switch (code)
4687 {
4688 case PLUS:
4689 result_width = MAX (width0, width1) + 1;
4690 result_low = MIN (low0, low1);
4691 break;
4692 case MINUS:
4693 result_low = MIN (low0, low1);
4694 break;
4695 case MULT:
4696 result_width = width0 + width1;
4697 result_low = low0 + low1;
4698 break;
4699 case DIV:
4700 if (width1 == 0)
4701 break;
4702 if (!op0_maybe_minusp && !op1_maybe_minusp)
4703 result_width = width0;
4704 break;
4705 case UDIV:
4706 if (width1 == 0)
4707 break;
4708 result_width = width0;
4709 break;
4710 case MOD:
4711 if (width1 == 0)
4712 break;
4713 if (!op0_maybe_minusp && !op1_maybe_minusp)
4714 result_width = MIN (width0, width1);
4715 result_low = MIN (low0, low1);
4716 break;
4717 case UMOD:
4718 if (width1 == 0)
4719 break;
4720 result_width = MIN (width0, width1);
4721 result_low = MIN (low0, low1);
4722 break;
4723 default:
4724 gcc_unreachable ();
4725 }
4726
4727 if (result_width < mode_width)
4728 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4729
4730 if (result_low > 0)
4731 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4732 }
4733 break;
4734
4735 case ZERO_EXTRACT:
4736 if (CONST_INT_P (XEXP (x, 1))
4737 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4738 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4739 break;
4740
4741 case SUBREG:
4742 /* If this is a SUBREG formed for a promoted variable that has
4743 been zero-extended, we know that at least the high-order bits
4744 are zero, though others might be too. */
4745 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4746 nonzero = GET_MODE_MASK (xmode)
4747 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4748 known_x, known_mode, known_ret);
4749
4750 /* If the inner mode is a single word for both the host and target
4751 machines, we can compute this from which bits of the inner
4752 object might be nonzero. */
4753 inner_mode = GET_MODE (SUBREG_REG (x));
4754 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4755 && inner_width <= BITS_PER_WORD
4756 && inner_width <= HOST_BITS_PER_WIDE_INT)
4757 {
4758 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4759 known_x, known_mode, known_ret);
4760
4761 /* On a typical CISC machine, accessing an object in a wider mode
4762 causes the high-order bits to become undefined. So they are
4763 not known to be zero.
4764
4765 On a typical RISC machine, we only have to worry about the way
4766 loads are extended. Otherwise, if we get a reload for the inner
4767 part, it may be loaded from the stack, and then we may lose all
4768 the zero bits that existed before the store to the stack. */
4769 rtx_code extend_op;
4770 if ((!WORD_REGISTER_OPERATIONS
4771 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4772 ? val_signbit_known_set_p (inner_mode, nonzero)
4773 : extend_op != ZERO_EXTEND)
4774 || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
4775 && xmode_width > inner_width)
4776 nonzero
4777 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4778 }
4779 break;
4780
4781 case ASHIFT:
4782 case ASHIFTRT:
4783 case LSHIFTRT:
4784 case ROTATE:
4785 case ROTATERT:
4786 /* The nonzero bits are in two classes: any bits within MODE
4787 that aren't in xmode are always significant. The rest of the
4788 nonzero bits are those that are significant in the operand of
4789 the shift when shifted the appropriate number of bits. This
4790 shows that high-order bits are cleared by the right shift and
4791 low-order bits by left shifts. */
4792 if (CONST_INT_P (XEXP (x, 1))
4793 && INTVAL (XEXP (x, 1)) >= 0
4794 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4795 && INTVAL (XEXP (x, 1)) < xmode_width)
4796 {
4797 int count = INTVAL (XEXP (x, 1));
4798 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4799 unsigned HOST_WIDE_INT op_nonzero
4800 = cached_nonzero_bits (XEXP (x, 0), mode,
4801 known_x, known_mode, known_ret);
4802 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4803 unsigned HOST_WIDE_INT outer = 0;
4804
4805 if (mode_width > xmode_width)
4806 outer = (op_nonzero & nonzero & ~mode_mask);
4807
4808 switch (code)
4809 {
4810 case ASHIFT:
4811 inner <<= count;
4812 break;
4813
4814 case LSHIFTRT:
4815 inner >>= count;
4816 break;
4817
4818 case ASHIFTRT:
4819 inner >>= count;
4820
4821 /* If the sign bit may have been nonzero before the shift, we
4822 need to mark all the places it could have been copied to
4823 by the shift as possibly nonzero. */
4824 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4825 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4826 << (xmode_width - count));
4827 break;
4828
4829 case ROTATE:
4830 inner = (inner << (count % xmode_width)
4831 | (inner >> (xmode_width - (count % xmode_width))))
4832 & mode_mask;
4833 break;
4834
4835 case ROTATERT:
4836 inner = (inner >> (count % xmode_width)
4837 | (inner << (xmode_width - (count % xmode_width))))
4838 & mode_mask;
4839 break;
4840
4841 default:
4842 gcc_unreachable ();
4843 }
4844
4845 nonzero &= (outer | inner);
4846 }
4847 break;
4848
4849 case FFS:
4850 case POPCOUNT:
4851 /* This is at most the number of bits in the mode. */
4852 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4853 break;
4854
4855 case CLZ:
4856 /* If CLZ has a known value at zero, then the nonzero bits are
4857 that value, plus the number of bits in the mode minus one. */
4858 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4859 nonzero
4860 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4861 else
4862 nonzero = -1;
4863 break;
4864
4865 case CTZ:
4866 /* If CTZ has a known value at zero, then the nonzero bits are
4867 that value, plus the number of bits in the mode minus one. */
4868 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4869 nonzero
4870 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4871 else
4872 nonzero = -1;
4873 break;
4874
4875 case CLRSB:
4876 /* This is at most the number of bits in the mode minus 1. */
4877 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4878 break;
4879
4880 case PARITY:
4881 nonzero = 1;
4882 break;
4883
4884 case IF_THEN_ELSE:
4885 {
4886 unsigned HOST_WIDE_INT nonzero_true
4887 = cached_nonzero_bits (XEXP (x, 1), mode,
4888 known_x, known_mode, known_ret);
4889
4890 /* Don't call nonzero_bits for the second time if it cannot change
4891 anything. */
4892 if ((nonzero & nonzero_true) != nonzero)
4893 nonzero &= nonzero_true
4894 | cached_nonzero_bits (XEXP (x, 2), mode,
4895 known_x, known_mode, known_ret);
4896 }
4897 break;
4898
4899 default:
4900 break;
4901 }
4902
4903 return nonzero;
4904 }
4905
4906 /* See the macro definition above. */
4907 #undef cached_num_sign_bit_copies
4908
4909 \f
4910 /* Return true if num_sign_bit_copies1 might recurse into both operands
4911 of X. */
4912
4913 static inline bool
4914 num_sign_bit_copies_binary_arith_p (const_rtx x)
4915 {
4916 if (!ARITHMETIC_P (x))
4917 return false;
4918 switch (GET_CODE (x))
4919 {
4920 case IOR:
4921 case AND:
4922 case XOR:
4923 case SMIN:
4924 case SMAX:
4925 case UMIN:
4926 case UMAX:
4927 case PLUS:
4928 case MINUS:
4929 case MULT:
4930 return true;
4931 default:
4932 return false;
4933 }
4934 }
4935
4936 /* The function cached_num_sign_bit_copies is a wrapper around
4937 num_sign_bit_copies1. It avoids exponential behavior in
4938 num_sign_bit_copies1 when X has identical subexpressions on the
4939 first or the second level. */
4940
4941 static unsigned int
4942 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4943 const_rtx known_x, machine_mode known_mode,
4944 unsigned int known_ret)
4945 {
4946 if (x == known_x && mode == known_mode)
4947 return known_ret;
4948
4949 /* Try to find identical subexpressions. If found call
4950 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4951 the precomputed value for the subexpression as KNOWN_RET. */
4952
4953 if (num_sign_bit_copies_binary_arith_p (x))
4954 {
4955 rtx x0 = XEXP (x, 0);
4956 rtx x1 = XEXP (x, 1);
4957
4958 /* Check the first level. */
4959 if (x0 == x1)
4960 return
4961 num_sign_bit_copies1 (x, mode, x0, mode,
4962 cached_num_sign_bit_copies (x0, mode, known_x,
4963 known_mode,
4964 known_ret));
4965
4966 /* Check the second level. */
4967 if (num_sign_bit_copies_binary_arith_p (x0)
4968 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4969 return
4970 num_sign_bit_copies1 (x, mode, x1, mode,
4971 cached_num_sign_bit_copies (x1, mode, known_x,
4972 known_mode,
4973 known_ret));
4974
4975 if (num_sign_bit_copies_binary_arith_p (x1)
4976 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4977 return
4978 num_sign_bit_copies1 (x, mode, x0, mode,
4979 cached_num_sign_bit_copies (x0, mode, known_x,
4980 known_mode,
4981 known_ret));
4982 }
4983
4984 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4985 }
4986
4987 /* Return the number of bits at the high-order end of X that are known to
4988 be equal to the sign bit. X will be used in mode MODE. The returned
4989 value will always be between 1 and the number of bits in MODE. */
4990
4991 static unsigned int
4992 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4993 machine_mode known_mode,
4994 unsigned int known_ret)
4995 {
4996 enum rtx_code code = GET_CODE (x);
4997 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4998 int num0, num1, result;
4999 unsigned HOST_WIDE_INT nonzero;
5000
5001 if (CONST_INT_P (x))
5002 {
5003 /* If the constant is negative, take its 1's complement and remask.
5004 Then see how many zero bits we have. */
5005 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5006 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5007 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5008 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5009
5010 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5011 }
5012
5013 scalar_int_mode xmode, inner_mode;
5014 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5015 return 1;
5016
5017 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5018
5019 /* For a smaller mode, just ignore the high bits. */
5020 if (bitwidth < xmode_width)
5021 {
5022 num0 = cached_num_sign_bit_copies (x, xmode,
5023 known_x, known_mode, known_ret);
5024 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5025 }
5026
5027 if (bitwidth > xmode_width)
5028 {
5029 /* If this machine does not do all register operations on the entire
5030 register and MODE is wider than the mode of X, we can say nothing
5031 at all about the high-order bits. We extend this reasoning to RISC
5032 machines for operations that might not operate on full registers. */
5033 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5034 return 1;
5035
5036 /* Likewise on machines that do, if the mode of the object is smaller
5037 than a word and loads of that size don't sign extend, we can say
5038 nothing about the high order bits. */
5039 if (xmode_width < BITS_PER_WORD
5040 && load_extend_op (xmode) != SIGN_EXTEND)
5041 return 1;
5042 }
5043
5044 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5045 the code in the switch below. */
5046 switch (code)
5047 {
5048 case REG:
5049
5050 #if defined(POINTERS_EXTEND_UNSIGNED)
5051 /* If pointers extend signed and this is a pointer in Pmode, say that
5052 all the bits above ptr_mode are known to be sign bit copies. */
5053 /* As we do not know which address space the pointer is referring to,
5054 we can do this only if the target does not support different pointer
5055 or address modes depending on the address space. */
5056 if (target_default_pointer_address_modes_p ()
5057 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5058 && mode == Pmode && REG_POINTER (x)
5059 && !targetm.have_ptr_extend ())
5060 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5061 #endif
5062
5063 {
5064 unsigned int copies_for_hook = 1, copies = 1;
5065 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5066 &copies_for_hook);
5067
5068 if (new_rtx)
5069 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5070 known_mode, known_ret);
5071
5072 if (copies > 1 || copies_for_hook > 1)
5073 return MAX (copies, copies_for_hook);
5074
5075 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5076 }
5077 break;
5078
5079 case MEM:
5080 /* Some RISC machines sign-extend all loads of smaller than a word. */
5081 if (load_extend_op (xmode) == SIGN_EXTEND)
5082 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5083 break;
5084
5085 case SUBREG:
5086 /* If this is a SUBREG for a promoted object that is sign-extended
5087 and we are looking at it in a wider mode, we know that at least the
5088 high-order bits are known to be sign bit copies. */
5089
5090 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5091 {
5092 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5093 known_x, known_mode, known_ret);
5094 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5095 }
5096
5097 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5098 {
5099 /* For a smaller object, just ignore the high bits. */
5100 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5101 {
5102 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5103 known_x, known_mode,
5104 known_ret);
5105 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5106 - bitwidth));
5107 }
5108
5109 /* For paradoxical SUBREGs on machines where all register operations
5110 affect the entire register, just look inside. Note that we are
5111 passing MODE to the recursive call, so the number of sign bit
5112 copies will remain relative to that mode, not the inner mode.
5113
5114 This works only if loads sign extend. Otherwise, if we get a
5115 reload for the inner part, it may be loaded from the stack, and
5116 then we lose all sign bit copies that existed before the store
5117 to the stack. */
5118 if (WORD_REGISTER_OPERATIONS
5119 && load_extend_op (inner_mode) == SIGN_EXTEND
5120 && paradoxical_subreg_p (x)
5121 && MEM_P (SUBREG_REG (x)))
5122 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5123 known_x, known_mode, known_ret);
5124 }
5125 break;
5126
5127 case SIGN_EXTRACT:
5128 if (CONST_INT_P (XEXP (x, 1)))
5129 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5130 break;
5131
5132 case SIGN_EXTEND:
5133 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5134 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5135 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5136 known_x, known_mode, known_ret));
5137 break;
5138
5139 case TRUNCATE:
5140 /* For a smaller object, just ignore the high bits. */
5141 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5142 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5143 known_x, known_mode, known_ret);
5144 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5145 - bitwidth)));
5146
5147 case NOT:
5148 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5149 known_x, known_mode, known_ret);
5150
5151 case ROTATE: case ROTATERT:
5152 /* If we are rotating left by a number of bits less than the number
5153 of sign bit copies, we can just subtract that amount from the
5154 number. */
5155 if (CONST_INT_P (XEXP (x, 1))
5156 && INTVAL (XEXP (x, 1)) >= 0
5157 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5158 {
5159 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5160 known_x, known_mode, known_ret);
5161 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5162 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5163 }
5164 break;
5165
5166 case NEG:
5167 /* In general, this subtracts one sign bit copy. But if the value
5168 is known to be positive, the number of sign bit copies is the
5169 same as that of the input. Finally, if the input has just one bit
5170 that might be nonzero, all the bits are copies of the sign bit. */
5171 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5172 known_x, known_mode, known_ret);
5173 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5174 return num0 > 1 ? num0 - 1 : 1;
5175
5176 nonzero = nonzero_bits (XEXP (x, 0), mode);
5177 if (nonzero == 1)
5178 return bitwidth;
5179
5180 if (num0 > 1
5181 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5182 num0--;
5183
5184 return num0;
5185
5186 case IOR: case AND: case XOR:
5187 case SMIN: case SMAX: case UMIN: case UMAX:
5188 /* Logical operations will preserve the number of sign-bit copies.
5189 MIN and MAX operations always return one of the operands. */
5190 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5191 known_x, known_mode, known_ret);
5192 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5193 known_x, known_mode, known_ret);
5194
5195 /* If num1 is clearing some of the top bits then regardless of
5196 the other term, we are guaranteed to have at least that many
5197 high-order zero bits. */
5198 if (code == AND
5199 && num1 > 1
5200 && bitwidth <= HOST_BITS_PER_WIDE_INT
5201 && CONST_INT_P (XEXP (x, 1))
5202 && (UINTVAL (XEXP (x, 1))
5203 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5204 return num1;
5205
5206 /* Similarly for IOR when setting high-order bits. */
5207 if (code == IOR
5208 && num1 > 1
5209 && bitwidth <= HOST_BITS_PER_WIDE_INT
5210 && CONST_INT_P (XEXP (x, 1))
5211 && (UINTVAL (XEXP (x, 1))
5212 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5213 return num1;
5214
5215 return MIN (num0, num1);
5216
5217 case PLUS: case MINUS:
5218 /* For addition and subtraction, we can have a 1-bit carry. However,
5219 if we are subtracting 1 from a positive number, there will not
5220 be such a carry. Furthermore, if the positive number is known to
5221 be 0 or 1, we know the result is either -1 or 0. */
5222
5223 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5224 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5225 {
5226 nonzero = nonzero_bits (XEXP (x, 0), mode);
5227 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5228 return (nonzero == 1 || nonzero == 0 ? bitwidth
5229 : bitwidth - floor_log2 (nonzero) - 1);
5230 }
5231
5232 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5233 known_x, known_mode, known_ret);
5234 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5235 known_x, known_mode, known_ret);
5236 result = MAX (1, MIN (num0, num1) - 1);
5237
5238 return result;
5239
5240 case MULT:
5241 /* The number of bits of the product is the sum of the number of
5242 bits of both terms. However, unless one of the terms if known
5243 to be positive, we must allow for an additional bit since negating
5244 a negative number can remove one sign bit copy. */
5245
5246 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5247 known_x, known_mode, known_ret);
5248 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5249 known_x, known_mode, known_ret);
5250
5251 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5252 if (result > 0
5253 && (bitwidth > HOST_BITS_PER_WIDE_INT
5254 || (((nonzero_bits (XEXP (x, 0), mode)
5255 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5256 && ((nonzero_bits (XEXP (x, 1), mode)
5257 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5258 != 0))))
5259 result--;
5260
5261 return MAX (1, result);
5262
5263 case UDIV:
5264 /* The result must be <= the first operand. If the first operand
5265 has the high bit set, we know nothing about the number of sign
5266 bit copies. */
5267 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5268 return 1;
5269 else if ((nonzero_bits (XEXP (x, 0), mode)
5270 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5271 return 1;
5272 else
5273 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5274 known_x, known_mode, known_ret);
5275
5276 case UMOD:
5277 /* The result must be <= the second operand. If the second operand
5278 has (or just might have) the high bit set, we know nothing about
5279 the number of sign bit copies. */
5280 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5281 return 1;
5282 else if ((nonzero_bits (XEXP (x, 1), mode)
5283 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5284 return 1;
5285 else
5286 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5287 known_x, known_mode, known_ret);
5288
5289 case DIV:
5290 /* Similar to unsigned division, except that we have to worry about
5291 the case where the divisor is negative, in which case we have
5292 to add 1. */
5293 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5294 known_x, known_mode, known_ret);
5295 if (result > 1
5296 && (bitwidth > HOST_BITS_PER_WIDE_INT
5297 || (nonzero_bits (XEXP (x, 1), mode)
5298 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5299 result--;
5300
5301 return result;
5302
5303 case MOD:
5304 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5305 known_x, known_mode, known_ret);
5306 if (result > 1
5307 && (bitwidth > HOST_BITS_PER_WIDE_INT
5308 || (nonzero_bits (XEXP (x, 1), mode)
5309 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5310 result--;
5311
5312 return result;
5313
5314 case ASHIFTRT:
5315 /* Shifts by a constant add to the number of bits equal to the
5316 sign bit. */
5317 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5318 known_x, known_mode, known_ret);
5319 if (CONST_INT_P (XEXP (x, 1))
5320 && INTVAL (XEXP (x, 1)) > 0
5321 && INTVAL (XEXP (x, 1)) < xmode_width)
5322 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5323
5324 return num0;
5325
5326 case ASHIFT:
5327 /* Left shifts destroy copies. */
5328 if (!CONST_INT_P (XEXP (x, 1))
5329 || INTVAL (XEXP (x, 1)) < 0
5330 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5331 || INTVAL (XEXP (x, 1)) >= xmode_width)
5332 return 1;
5333
5334 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5335 known_x, known_mode, known_ret);
5336 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5337
5338 case IF_THEN_ELSE:
5339 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5340 known_x, known_mode, known_ret);
5341 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5342 known_x, known_mode, known_ret);
5343 return MIN (num0, num1);
5344
5345 case EQ: case NE: case GE: case GT: case LE: case LT:
5346 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5347 case GEU: case GTU: case LEU: case LTU:
5348 case UNORDERED: case ORDERED:
5349 /* If the constant is negative, take its 1's complement and remask.
5350 Then see how many zero bits we have. */
5351 nonzero = STORE_FLAG_VALUE;
5352 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5353 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5354 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5355
5356 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5357
5358 default:
5359 break;
5360 }
5361
5362 /* If we haven't been able to figure it out by one of the above rules,
5363 see if some of the high-order bits are known to be zero. If so,
5364 count those bits and return one less than that amount. If we can't
5365 safely compute the mask for this mode, always return BITWIDTH. */
5366
5367 bitwidth = GET_MODE_PRECISION (mode);
5368 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5369 return 1;
5370
5371 nonzero = nonzero_bits (x, mode);
5372 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5373 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5374 }
5375
5376 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5377 zero indicates an instruction pattern without a known cost. */
5378
5379 int
5380 pattern_cost (rtx pat, bool speed)
5381 {
5382 int i, cost;
5383 rtx set;
5384
5385 /* Extract the single set rtx from the instruction pattern. We
5386 can't use single_set since we only have the pattern. We also
5387 consider PARALLELs of a normal set and a single comparison. In
5388 that case we use the cost of the non-comparison SET operation,
5389 which is most-likely to be the real cost of this operation. */
5390 if (GET_CODE (pat) == SET)
5391 set = pat;
5392 else if (GET_CODE (pat) == PARALLEL)
5393 {
5394 set = NULL_RTX;
5395 rtx comparison = NULL_RTX;
5396
5397 for (i = 0; i < XVECLEN (pat, 0); i++)
5398 {
5399 rtx x = XVECEXP (pat, 0, i);
5400 if (GET_CODE (x) == SET)
5401 {
5402 if (GET_CODE (SET_SRC (x)) == COMPARE)
5403 {
5404 if (comparison)
5405 return 0;
5406 comparison = x;
5407 }
5408 else
5409 {
5410 if (set)
5411 return 0;
5412 set = x;
5413 }
5414 }
5415 }
5416
5417 if (!set && comparison)
5418 set = comparison;
5419
5420 if (!set)
5421 return 0;
5422 }
5423 else
5424 return 0;
5425
5426 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5427 return cost > 0 ? cost : COSTS_N_INSNS (1);
5428 }
5429
5430 /* Calculate the cost of a single instruction. A return value of zero
5431 indicates an instruction pattern without a known cost. */
5432
5433 int
5434 insn_cost (rtx_insn *insn, bool speed)
5435 {
5436 if (targetm.insn_cost)
5437 return targetm.insn_cost (insn, speed);
5438
5439 return pattern_cost (PATTERN (insn), speed);
5440 }
5441
5442 /* Returns estimate on cost of computing SEQ. */
5443
5444 unsigned
5445 seq_cost (const rtx_insn *seq, bool speed)
5446 {
5447 unsigned cost = 0;
5448 rtx set;
5449
5450 for (; seq; seq = NEXT_INSN (seq))
5451 {
5452 set = single_set (seq);
5453 if (set)
5454 cost += set_rtx_cost (set, speed);
5455 else if (NONDEBUG_INSN_P (seq))
5456 {
5457 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5458 if (this_cost > 0)
5459 cost += this_cost;
5460 else
5461 cost++;
5462 }
5463 }
5464
5465 return cost;
5466 }
5467
5468 /* Given an insn INSN and condition COND, return the condition in a
5469 canonical form to simplify testing by callers. Specifically:
5470
5471 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5472 (2) Both operands will be machine operands; (cc0) will have been replaced.
5473 (3) If an operand is a constant, it will be the second operand.
5474 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5475 for GE, GEU, and LEU.
5476
5477 If the condition cannot be understood, or is an inequality floating-point
5478 comparison which needs to be reversed, 0 will be returned.
5479
5480 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5481
5482 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5483 insn used in locating the condition was found. If a replacement test
5484 of the condition is desired, it should be placed in front of that
5485 insn and we will be sure that the inputs are still valid.
5486
5487 If WANT_REG is nonzero, we wish the condition to be relative to that
5488 register, if possible. Therefore, do not canonicalize the condition
5489 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5490 to be a compare to a CC mode register.
5491
5492 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5493 and at INSN. */
5494
5495 rtx
5496 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5497 rtx_insn **earliest,
5498 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5499 {
5500 enum rtx_code code;
5501 rtx_insn *prev = insn;
5502 const_rtx set;
5503 rtx tem;
5504 rtx op0, op1;
5505 int reverse_code = 0;
5506 machine_mode mode;
5507 basic_block bb = BLOCK_FOR_INSN (insn);
5508
5509 code = GET_CODE (cond);
5510 mode = GET_MODE (cond);
5511 op0 = XEXP (cond, 0);
5512 op1 = XEXP (cond, 1);
5513
5514 if (reverse)
5515 code = reversed_comparison_code (cond, insn);
5516 if (code == UNKNOWN)
5517 return 0;
5518
5519 if (earliest)
5520 *earliest = insn;
5521
5522 /* If we are comparing a register with zero, see if the register is set
5523 in the previous insn to a COMPARE or a comparison operation. Perform
5524 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5525 in cse.c */
5526
5527 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5528 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5529 && op1 == CONST0_RTX (GET_MODE (op0))
5530 && op0 != want_reg)
5531 {
5532 /* Set nonzero when we find something of interest. */
5533 rtx x = 0;
5534
5535 /* If comparison with cc0, import actual comparison from compare
5536 insn. */
5537 if (op0 == cc0_rtx)
5538 {
5539 if ((prev = prev_nonnote_insn (prev)) == 0
5540 || !NONJUMP_INSN_P (prev)
5541 || (set = single_set (prev)) == 0
5542 || SET_DEST (set) != cc0_rtx)
5543 return 0;
5544
5545 op0 = SET_SRC (set);
5546 op1 = CONST0_RTX (GET_MODE (op0));
5547 if (earliest)
5548 *earliest = prev;
5549 }
5550
5551 /* If this is a COMPARE, pick up the two things being compared. */
5552 if (GET_CODE (op0) == COMPARE)
5553 {
5554 op1 = XEXP (op0, 1);
5555 op0 = XEXP (op0, 0);
5556 continue;
5557 }
5558 else if (!REG_P (op0))
5559 break;
5560
5561 /* Go back to the previous insn. Stop if it is not an INSN. We also
5562 stop if it isn't a single set or if it has a REG_INC note because
5563 we don't want to bother dealing with it. */
5564
5565 prev = prev_nonnote_nondebug_insn (prev);
5566
5567 if (prev == 0
5568 || !NONJUMP_INSN_P (prev)
5569 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5570 /* In cfglayout mode, there do not have to be labels at the
5571 beginning of a block, or jumps at the end, so the previous
5572 conditions would not stop us when we reach bb boundary. */
5573 || BLOCK_FOR_INSN (prev) != bb)
5574 break;
5575
5576 set = set_of (op0, prev);
5577
5578 if (set
5579 && (GET_CODE (set) != SET
5580 || !rtx_equal_p (SET_DEST (set), op0)))
5581 break;
5582
5583 /* If this is setting OP0, get what it sets it to if it looks
5584 relevant. */
5585 if (set)
5586 {
5587 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5588 #ifdef FLOAT_STORE_FLAG_VALUE
5589 REAL_VALUE_TYPE fsfv;
5590 #endif
5591
5592 /* ??? We may not combine comparisons done in a CCmode with
5593 comparisons not done in a CCmode. This is to aid targets
5594 like Alpha that have an IEEE compliant EQ instruction, and
5595 a non-IEEE compliant BEQ instruction. The use of CCmode is
5596 actually artificial, simply to prevent the combination, but
5597 should not affect other platforms.
5598
5599 However, we must allow VOIDmode comparisons to match either
5600 CCmode or non-CCmode comparison, because some ports have
5601 modeless comparisons inside branch patterns.
5602
5603 ??? This mode check should perhaps look more like the mode check
5604 in simplify_comparison in combine. */
5605 if (((GET_MODE_CLASS (mode) == MODE_CC)
5606 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5607 && mode != VOIDmode
5608 && inner_mode != VOIDmode)
5609 break;
5610 if (GET_CODE (SET_SRC (set)) == COMPARE
5611 || (((code == NE
5612 || (code == LT
5613 && val_signbit_known_set_p (inner_mode,
5614 STORE_FLAG_VALUE))
5615 #ifdef FLOAT_STORE_FLAG_VALUE
5616 || (code == LT
5617 && SCALAR_FLOAT_MODE_P (inner_mode)
5618 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5619 REAL_VALUE_NEGATIVE (fsfv)))
5620 #endif
5621 ))
5622 && COMPARISON_P (SET_SRC (set))))
5623 x = SET_SRC (set);
5624 else if (((code == EQ
5625 || (code == GE
5626 && val_signbit_known_set_p (inner_mode,
5627 STORE_FLAG_VALUE))
5628 #ifdef FLOAT_STORE_FLAG_VALUE
5629 || (code == GE
5630 && SCALAR_FLOAT_MODE_P (inner_mode)
5631 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5632 REAL_VALUE_NEGATIVE (fsfv)))
5633 #endif
5634 ))
5635 && COMPARISON_P (SET_SRC (set)))
5636 {
5637 reverse_code = 1;
5638 x = SET_SRC (set);
5639 }
5640 else if ((code == EQ || code == NE)
5641 && GET_CODE (SET_SRC (set)) == XOR)
5642 /* Handle sequences like:
5643
5644 (set op0 (xor X Y))
5645 ...(eq|ne op0 (const_int 0))...
5646
5647 in which case:
5648
5649 (eq op0 (const_int 0)) reduces to (eq X Y)
5650 (ne op0 (const_int 0)) reduces to (ne X Y)
5651
5652 This is the form used by MIPS16, for example. */
5653 x = SET_SRC (set);
5654 else
5655 break;
5656 }
5657
5658 else if (reg_set_p (op0, prev))
5659 /* If this sets OP0, but not directly, we have to give up. */
5660 break;
5661
5662 if (x)
5663 {
5664 /* If the caller is expecting the condition to be valid at INSN,
5665 make sure X doesn't change before INSN. */
5666 if (valid_at_insn_p)
5667 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5668 break;
5669 if (COMPARISON_P (x))
5670 code = GET_CODE (x);
5671 if (reverse_code)
5672 {
5673 code = reversed_comparison_code (x, prev);
5674 if (code == UNKNOWN)
5675 return 0;
5676 reverse_code = 0;
5677 }
5678
5679 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5680 if (earliest)
5681 *earliest = prev;
5682 }
5683 }
5684
5685 /* If constant is first, put it last. */
5686 if (CONSTANT_P (op0))
5687 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5688
5689 /* If OP0 is the result of a comparison, we weren't able to find what
5690 was really being compared, so fail. */
5691 if (!allow_cc_mode
5692 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5693 return 0;
5694
5695 /* Canonicalize any ordered comparison with integers involving equality
5696 if we can do computations in the relevant mode and we do not
5697 overflow. */
5698
5699 scalar_int_mode op0_mode;
5700 if (CONST_INT_P (op1)
5701 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5702 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5703 {
5704 HOST_WIDE_INT const_val = INTVAL (op1);
5705 unsigned HOST_WIDE_INT uconst_val = const_val;
5706 unsigned HOST_WIDE_INT max_val
5707 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5708
5709 switch (code)
5710 {
5711 case LE:
5712 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5713 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5714 break;
5715
5716 /* When cross-compiling, const_val might be sign-extended from
5717 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5718 case GE:
5719 if ((const_val & max_val)
5720 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5721 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5722 break;
5723
5724 case LEU:
5725 if (uconst_val < max_val)
5726 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5727 break;
5728
5729 case GEU:
5730 if (uconst_val != 0)
5731 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5732 break;
5733
5734 default:
5735 break;
5736 }
5737 }
5738
5739 /* Never return CC0; return zero instead. */
5740 if (CC0_P (op0))
5741 return 0;
5742
5743 /* We promised to return a comparison. */
5744 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5745 if (COMPARISON_P (ret))
5746 return ret;
5747 return 0;
5748 }
5749
5750 /* Given a jump insn JUMP, return the condition that will cause it to branch
5751 to its JUMP_LABEL. If the condition cannot be understood, or is an
5752 inequality floating-point comparison which needs to be reversed, 0 will
5753 be returned.
5754
5755 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5756 insn used in locating the condition was found. If a replacement test
5757 of the condition is desired, it should be placed in front of that
5758 insn and we will be sure that the inputs are still valid. If EARLIEST
5759 is null, the returned condition will be valid at INSN.
5760
5761 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5762 compare CC mode register.
5763
5764 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5765
5766 rtx
5767 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5768 int valid_at_insn_p)
5769 {
5770 rtx cond;
5771 int reverse;
5772 rtx set;
5773
5774 /* If this is not a standard conditional jump, we can't parse it. */
5775 if (!JUMP_P (jump)
5776 || ! any_condjump_p (jump))
5777 return 0;
5778 set = pc_set (jump);
5779
5780 cond = XEXP (SET_SRC (set), 0);
5781
5782 /* If this branches to JUMP_LABEL when the condition is false, reverse
5783 the condition. */
5784 reverse
5785 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5786 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5787
5788 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5789 allow_cc_mode, valid_at_insn_p);
5790 }
5791
5792 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5793 TARGET_MODE_REP_EXTENDED.
5794
5795 Note that we assume that the property of
5796 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5797 narrower than mode B. I.e., if A is a mode narrower than B then in
5798 order to be able to operate on it in mode B, mode A needs to
5799 satisfy the requirements set by the representation of mode B. */
5800
5801 static void
5802 init_num_sign_bit_copies_in_rep (void)
5803 {
5804 opt_scalar_int_mode in_mode_iter;
5805 scalar_int_mode mode;
5806
5807 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5808 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5809 {
5810 scalar_int_mode in_mode = in_mode_iter.require ();
5811 scalar_int_mode i;
5812
5813 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5814 extends to the next widest mode. */
5815 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5816 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5817
5818 /* We are in in_mode. Count how many bits outside of mode
5819 have to be copies of the sign-bit. */
5820 FOR_EACH_MODE (i, mode, in_mode)
5821 {
5822 /* This must always exist (for the last iteration it will be
5823 IN_MODE). */
5824 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5825
5826 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5827 /* We can only check sign-bit copies starting from the
5828 top-bit. In order to be able to check the bits we
5829 have already seen we pretend that subsequent bits
5830 have to be sign-bit copies too. */
5831 || num_sign_bit_copies_in_rep [in_mode][mode])
5832 num_sign_bit_copies_in_rep [in_mode][mode]
5833 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5834 }
5835 }
5836 }
5837
5838 /* Suppose that truncation from the machine mode of X to MODE is not a
5839 no-op. See if there is anything special about X so that we can
5840 assume it already contains a truncated value of MODE. */
5841
5842 bool
5843 truncated_to_mode (machine_mode mode, const_rtx x)
5844 {
5845 /* This register has already been used in MODE without explicit
5846 truncation. */
5847 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5848 return true;
5849
5850 /* See if we already satisfy the requirements of MODE. If yes we
5851 can just switch to MODE. */
5852 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5853 && (num_sign_bit_copies (x, GET_MODE (x))
5854 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5855 return true;
5856
5857 return false;
5858 }
5859 \f
5860 /* Return true if RTX code CODE has a single sequence of zero or more
5861 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5862 entry in that case. */
5863
5864 static bool
5865 setup_reg_subrtx_bounds (unsigned int code)
5866 {
5867 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5868 unsigned int i = 0;
5869 for (; format[i] != 'e'; ++i)
5870 {
5871 if (!format[i])
5872 /* No subrtxes. Leave start and count as 0. */
5873 return true;
5874 if (format[i] == 'E' || format[i] == 'V')
5875 return false;
5876 }
5877
5878 /* Record the sequence of 'e's. */
5879 rtx_all_subrtx_bounds[code].start = i;
5880 do
5881 ++i;
5882 while (format[i] == 'e');
5883 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5884 /* rtl-iter.h relies on this. */
5885 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5886
5887 for (; format[i]; ++i)
5888 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5889 return false;
5890
5891 return true;
5892 }
5893
5894 /* Initialize rtx_all_subrtx_bounds. */
5895 void
5896 init_rtlanal (void)
5897 {
5898 int i;
5899 for (i = 0; i < NUM_RTX_CODE; i++)
5900 {
5901 if (!setup_reg_subrtx_bounds (i))
5902 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5903 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5904 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5905 }
5906
5907 init_num_sign_bit_copies_in_rep ();
5908 }
5909 \f
5910 /* Check whether this is a constant pool constant. */
5911 bool
5912 constant_pool_constant_p (rtx x)
5913 {
5914 x = avoid_constant_pool_reference (x);
5915 return CONST_DOUBLE_P (x);
5916 }
5917 \f
5918 /* If M is a bitmask that selects a field of low-order bits within an item but
5919 not the entire word, return the length of the field. Return -1 otherwise.
5920 M is used in machine mode MODE. */
5921
5922 int
5923 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5924 {
5925 if (mode != VOIDmode)
5926 {
5927 if (!HWI_COMPUTABLE_MODE_P (mode))
5928 return -1;
5929 m &= GET_MODE_MASK (mode);
5930 }
5931
5932 return exact_log2 (m + 1);
5933 }
5934
5935 /* Return the mode of MEM's address. */
5936
5937 scalar_int_mode
5938 get_address_mode (rtx mem)
5939 {
5940 machine_mode mode;
5941
5942 gcc_assert (MEM_P (mem));
5943 mode = GET_MODE (XEXP (mem, 0));
5944 if (mode != VOIDmode)
5945 return as_a <scalar_int_mode> (mode);
5946 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5947 }
5948 \f
5949 /* Split up a CONST_DOUBLE or integer constant rtx
5950 into two rtx's for single words,
5951 storing in *FIRST the word that comes first in memory in the target
5952 and in *SECOND the other.
5953
5954 TODO: This function needs to be rewritten to work on any size
5955 integer. */
5956
5957 void
5958 split_double (rtx value, rtx *first, rtx *second)
5959 {
5960 if (CONST_INT_P (value))
5961 {
5962 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5963 {
5964 /* In this case the CONST_INT holds both target words.
5965 Extract the bits from it into two word-sized pieces.
5966 Sign extend each half to HOST_WIDE_INT. */
5967 unsigned HOST_WIDE_INT low, high;
5968 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5969 unsigned bits_per_word = BITS_PER_WORD;
5970
5971 /* Set sign_bit to the most significant bit of a word. */
5972 sign_bit = 1;
5973 sign_bit <<= bits_per_word - 1;
5974
5975 /* Set mask so that all bits of the word are set. We could
5976 have used 1 << BITS_PER_WORD instead of basing the
5977 calculation on sign_bit. However, on machines where
5978 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5979 compiler warning, even though the code would never be
5980 executed. */
5981 mask = sign_bit << 1;
5982 mask--;
5983
5984 /* Set sign_extend as any remaining bits. */
5985 sign_extend = ~mask;
5986
5987 /* Pick the lower word and sign-extend it. */
5988 low = INTVAL (value);
5989 low &= mask;
5990 if (low & sign_bit)
5991 low |= sign_extend;
5992
5993 /* Pick the higher word, shifted to the least significant
5994 bits, and sign-extend it. */
5995 high = INTVAL (value);
5996 high >>= bits_per_word - 1;
5997 high >>= 1;
5998 high &= mask;
5999 if (high & sign_bit)
6000 high |= sign_extend;
6001
6002 /* Store the words in the target machine order. */
6003 if (WORDS_BIG_ENDIAN)
6004 {
6005 *first = GEN_INT (high);
6006 *second = GEN_INT (low);
6007 }
6008 else
6009 {
6010 *first = GEN_INT (low);
6011 *second = GEN_INT (high);
6012 }
6013 }
6014 else
6015 {
6016 /* The rule for using CONST_INT for a wider mode
6017 is that we regard the value as signed.
6018 So sign-extend it. */
6019 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6020 if (WORDS_BIG_ENDIAN)
6021 {
6022 *first = high;
6023 *second = value;
6024 }
6025 else
6026 {
6027 *first = value;
6028 *second = high;
6029 }
6030 }
6031 }
6032 else if (GET_CODE (value) == CONST_WIDE_INT)
6033 {
6034 /* All of this is scary code and needs to be converted to
6035 properly work with any size integer. */
6036 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6037 if (WORDS_BIG_ENDIAN)
6038 {
6039 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6040 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6041 }
6042 else
6043 {
6044 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6045 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6046 }
6047 }
6048 else if (!CONST_DOUBLE_P (value))
6049 {
6050 if (WORDS_BIG_ENDIAN)
6051 {
6052 *first = const0_rtx;
6053 *second = value;
6054 }
6055 else
6056 {
6057 *first = value;
6058 *second = const0_rtx;
6059 }
6060 }
6061 else if (GET_MODE (value) == VOIDmode
6062 /* This is the old way we did CONST_DOUBLE integers. */
6063 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6064 {
6065 /* In an integer, the words are defined as most and least significant.
6066 So order them by the target's convention. */
6067 if (WORDS_BIG_ENDIAN)
6068 {
6069 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6070 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6071 }
6072 else
6073 {
6074 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6075 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6076 }
6077 }
6078 else
6079 {
6080 long l[2];
6081
6082 /* Note, this converts the REAL_VALUE_TYPE to the target's
6083 format, splits up the floating point double and outputs
6084 exactly 32 bits of it into each of l[0] and l[1] --
6085 not necessarily BITS_PER_WORD bits. */
6086 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6087
6088 /* If 32 bits is an entire word for the target, but not for the host,
6089 then sign-extend on the host so that the number will look the same
6090 way on the host that it would on the target. See for instance
6091 simplify_unary_operation. The #if is needed to avoid compiler
6092 warnings. */
6093
6094 #if HOST_BITS_PER_LONG > 32
6095 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6096 {
6097 if (l[0] & ((long) 1 << 31))
6098 l[0] |= ((unsigned long) (-1) << 32);
6099 if (l[1] & ((long) 1 << 31))
6100 l[1] |= ((unsigned long) (-1) << 32);
6101 }
6102 #endif
6103
6104 *first = GEN_INT (l[0]);
6105 *second = GEN_INT (l[1]);
6106 }
6107 }
6108
6109 /* Return true if X is a sign_extract or zero_extract from the least
6110 significant bit. */
6111
6112 static bool
6113 lsb_bitfield_op_p (rtx x)
6114 {
6115 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6116 {
6117 machine_mode mode = GET_MODE (XEXP (x, 0));
6118 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6119 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6120 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6121
6122 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6123 }
6124 return false;
6125 }
6126
6127 /* Strip outer address "mutations" from LOC and return a pointer to the
6128 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6129 stripped expression there.
6130
6131 "Mutations" either convert between modes or apply some kind of
6132 extension, truncation or alignment. */
6133
6134 rtx *
6135 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6136 {
6137 for (;;)
6138 {
6139 enum rtx_code code = GET_CODE (*loc);
6140 if (GET_RTX_CLASS (code) == RTX_UNARY)
6141 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6142 used to convert between pointer sizes. */
6143 loc = &XEXP (*loc, 0);
6144 else if (lsb_bitfield_op_p (*loc))
6145 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6146 acts as a combined truncation and extension. */
6147 loc = &XEXP (*loc, 0);
6148 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6149 /* (and ... (const_int -X)) is used to align to X bytes. */
6150 loc = &XEXP (*loc, 0);
6151 else if (code == SUBREG
6152 && !OBJECT_P (SUBREG_REG (*loc))
6153 && subreg_lowpart_p (*loc))
6154 /* (subreg (operator ...) ...) inside and is used for mode
6155 conversion too. */
6156 loc = &SUBREG_REG (*loc);
6157 else
6158 return loc;
6159 if (outer_code)
6160 *outer_code = code;
6161 }
6162 }
6163
6164 /* Return true if CODE applies some kind of scale. The scaled value is
6165 is the first operand and the scale is the second. */
6166
6167 static bool
6168 binary_scale_code_p (enum rtx_code code)
6169 {
6170 return (code == MULT
6171 || code == ASHIFT
6172 /* Needed by ARM targets. */
6173 || code == ASHIFTRT
6174 || code == LSHIFTRT
6175 || code == ROTATE
6176 || code == ROTATERT);
6177 }
6178
6179 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6180 (see address_info). Return null otherwise. */
6181
6182 static rtx *
6183 get_base_term (rtx *inner)
6184 {
6185 if (GET_CODE (*inner) == LO_SUM)
6186 inner = strip_address_mutations (&XEXP (*inner, 0));
6187 if (REG_P (*inner)
6188 || MEM_P (*inner)
6189 || GET_CODE (*inner) == SUBREG
6190 || GET_CODE (*inner) == SCRATCH)
6191 return inner;
6192 return 0;
6193 }
6194
6195 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6196 (see address_info). Return null otherwise. */
6197
6198 static rtx *
6199 get_index_term (rtx *inner)
6200 {
6201 /* At present, only constant scales are allowed. */
6202 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6203 inner = strip_address_mutations (&XEXP (*inner, 0));
6204 if (REG_P (*inner)
6205 || MEM_P (*inner)
6206 || GET_CODE (*inner) == SUBREG
6207 || GET_CODE (*inner) == SCRATCH)
6208 return inner;
6209 return 0;
6210 }
6211
6212 /* Set the segment part of address INFO to LOC, given that INNER is the
6213 unmutated value. */
6214
6215 static void
6216 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6217 {
6218 gcc_assert (!info->segment);
6219 info->segment = loc;
6220 info->segment_term = inner;
6221 }
6222
6223 /* Set the base part of address INFO to LOC, given that INNER is the
6224 unmutated value. */
6225
6226 static void
6227 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6228 {
6229 gcc_assert (!info->base);
6230 info->base = loc;
6231 info->base_term = inner;
6232 }
6233
6234 /* Set the index part of address INFO to LOC, given that INNER is the
6235 unmutated value. */
6236
6237 static void
6238 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6239 {
6240 gcc_assert (!info->index);
6241 info->index = loc;
6242 info->index_term = inner;
6243 }
6244
6245 /* Set the displacement part of address INFO to LOC, given that INNER
6246 is the constant term. */
6247
6248 static void
6249 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6250 {
6251 gcc_assert (!info->disp);
6252 info->disp = loc;
6253 info->disp_term = inner;
6254 }
6255
6256 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6257 rest of INFO accordingly. */
6258
6259 static void
6260 decompose_incdec_address (struct address_info *info)
6261 {
6262 info->autoinc_p = true;
6263
6264 rtx *base = &XEXP (*info->inner, 0);
6265 set_address_base (info, base, base);
6266 gcc_checking_assert (info->base == info->base_term);
6267
6268 /* These addresses are only valid when the size of the addressed
6269 value is known. */
6270 gcc_checking_assert (info->mode != VOIDmode);
6271 }
6272
6273 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6274 of INFO accordingly. */
6275
6276 static void
6277 decompose_automod_address (struct address_info *info)
6278 {
6279 info->autoinc_p = true;
6280
6281 rtx *base = &XEXP (*info->inner, 0);
6282 set_address_base (info, base, base);
6283 gcc_checking_assert (info->base == info->base_term);
6284
6285 rtx plus = XEXP (*info->inner, 1);
6286 gcc_assert (GET_CODE (plus) == PLUS);
6287
6288 info->base_term2 = &XEXP (plus, 0);
6289 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6290
6291 rtx *step = &XEXP (plus, 1);
6292 rtx *inner_step = strip_address_mutations (step);
6293 if (CONSTANT_P (*inner_step))
6294 set_address_disp (info, step, inner_step);
6295 else
6296 set_address_index (info, step, inner_step);
6297 }
6298
6299 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6300 values in [PTR, END). Return a pointer to the end of the used array. */
6301
6302 static rtx **
6303 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6304 {
6305 rtx x = *loc;
6306 if (GET_CODE (x) == PLUS)
6307 {
6308 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6309 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6310 }
6311 else
6312 {
6313 gcc_assert (ptr != end);
6314 *ptr++ = loc;
6315 }
6316 return ptr;
6317 }
6318
6319 /* Evaluate the likelihood of X being a base or index value, returning
6320 positive if it is likely to be a base, negative if it is likely to be
6321 an index, and 0 if we can't tell. Make the magnitude of the return
6322 value reflect the amount of confidence we have in the answer.
6323
6324 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6325
6326 static int
6327 baseness (rtx x, machine_mode mode, addr_space_t as,
6328 enum rtx_code outer_code, enum rtx_code index_code)
6329 {
6330 /* Believe *_POINTER unless the address shape requires otherwise. */
6331 if (REG_P (x) && REG_POINTER (x))
6332 return 2;
6333 if (MEM_P (x) && MEM_POINTER (x))
6334 return 2;
6335
6336 if (REG_P (x) && HARD_REGISTER_P (x))
6337 {
6338 /* X is a hard register. If it only fits one of the base
6339 or index classes, choose that interpretation. */
6340 int regno = REGNO (x);
6341 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6342 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6343 if (base_p != index_p)
6344 return base_p ? 1 : -1;
6345 }
6346 return 0;
6347 }
6348
6349 /* INFO->INNER describes a normal, non-automodified address.
6350 Fill in the rest of INFO accordingly. */
6351
6352 static void
6353 decompose_normal_address (struct address_info *info)
6354 {
6355 /* Treat the address as the sum of up to four values. */
6356 rtx *ops[4];
6357 size_t n_ops = extract_plus_operands (info->inner, ops,
6358 ops + ARRAY_SIZE (ops)) - ops;
6359
6360 /* If there is more than one component, any base component is in a PLUS. */
6361 if (n_ops > 1)
6362 info->base_outer_code = PLUS;
6363
6364 /* Try to classify each sum operand now. Leave those that could be
6365 either a base or an index in OPS. */
6366 rtx *inner_ops[4];
6367 size_t out = 0;
6368 for (size_t in = 0; in < n_ops; ++in)
6369 {
6370 rtx *loc = ops[in];
6371 rtx *inner = strip_address_mutations (loc);
6372 if (CONSTANT_P (*inner))
6373 set_address_disp (info, loc, inner);
6374 else if (GET_CODE (*inner) == UNSPEC)
6375 set_address_segment (info, loc, inner);
6376 else
6377 {
6378 /* The only other possibilities are a base or an index. */
6379 rtx *base_term = get_base_term (inner);
6380 rtx *index_term = get_index_term (inner);
6381 gcc_assert (base_term || index_term);
6382 if (!base_term)
6383 set_address_index (info, loc, index_term);
6384 else if (!index_term)
6385 set_address_base (info, loc, base_term);
6386 else
6387 {
6388 gcc_assert (base_term == index_term);
6389 ops[out] = loc;
6390 inner_ops[out] = base_term;
6391 ++out;
6392 }
6393 }
6394 }
6395
6396 /* Classify the remaining OPS members as bases and indexes. */
6397 if (out == 1)
6398 {
6399 /* If we haven't seen a base or an index yet, assume that this is
6400 the base. If we were confident that another term was the base
6401 or index, treat the remaining operand as the other kind. */
6402 if (!info->base)
6403 set_address_base (info, ops[0], inner_ops[0]);
6404 else
6405 set_address_index (info, ops[0], inner_ops[0]);
6406 }
6407 else if (out == 2)
6408 {
6409 /* In the event of a tie, assume the base comes first. */
6410 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6411 GET_CODE (*ops[1]))
6412 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6413 GET_CODE (*ops[0])))
6414 {
6415 set_address_base (info, ops[0], inner_ops[0]);
6416 set_address_index (info, ops[1], inner_ops[1]);
6417 }
6418 else
6419 {
6420 set_address_base (info, ops[1], inner_ops[1]);
6421 set_address_index (info, ops[0], inner_ops[0]);
6422 }
6423 }
6424 else
6425 gcc_assert (out == 0);
6426 }
6427
6428 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6429 or VOIDmode if not known. AS is the address space associated with LOC.
6430 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6431
6432 void
6433 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6434 addr_space_t as, enum rtx_code outer_code)
6435 {
6436 memset (info, 0, sizeof (*info));
6437 info->mode = mode;
6438 info->as = as;
6439 info->addr_outer_code = outer_code;
6440 info->outer = loc;
6441 info->inner = strip_address_mutations (loc, &outer_code);
6442 info->base_outer_code = outer_code;
6443 switch (GET_CODE (*info->inner))
6444 {
6445 case PRE_DEC:
6446 case PRE_INC:
6447 case POST_DEC:
6448 case POST_INC:
6449 decompose_incdec_address (info);
6450 break;
6451
6452 case PRE_MODIFY:
6453 case POST_MODIFY:
6454 decompose_automod_address (info);
6455 break;
6456
6457 default:
6458 decompose_normal_address (info);
6459 break;
6460 }
6461 }
6462
6463 /* Describe address operand LOC in INFO. */
6464
6465 void
6466 decompose_lea_address (struct address_info *info, rtx *loc)
6467 {
6468 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6469 }
6470
6471 /* Describe the address of MEM X in INFO. */
6472
6473 void
6474 decompose_mem_address (struct address_info *info, rtx x)
6475 {
6476 gcc_assert (MEM_P (x));
6477 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6478 MEM_ADDR_SPACE (x), MEM);
6479 }
6480
6481 /* Update INFO after a change to the address it describes. */
6482
6483 void
6484 update_address (struct address_info *info)
6485 {
6486 decompose_address (info, info->outer, info->mode, info->as,
6487 info->addr_outer_code);
6488 }
6489
6490 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6491 more complicated than that. */
6492
6493 HOST_WIDE_INT
6494 get_index_scale (const struct address_info *info)
6495 {
6496 rtx index = *info->index;
6497 if (GET_CODE (index) == MULT
6498 && CONST_INT_P (XEXP (index, 1))
6499 && info->index_term == &XEXP (index, 0))
6500 return INTVAL (XEXP (index, 1));
6501
6502 if (GET_CODE (index) == ASHIFT
6503 && CONST_INT_P (XEXP (index, 1))
6504 && info->index_term == &XEXP (index, 0))
6505 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6506
6507 if (info->index == info->index_term)
6508 return 1;
6509
6510 return 0;
6511 }
6512
6513 /* Return the "index code" of INFO, in the form required by
6514 ok_for_base_p_1. */
6515
6516 enum rtx_code
6517 get_index_code (const struct address_info *info)
6518 {
6519 if (info->index)
6520 return GET_CODE (*info->index);
6521
6522 if (info->disp)
6523 return GET_CODE (*info->disp);
6524
6525 return SCRATCH;
6526 }
6527
6528 /* Return true if RTL X contains a SYMBOL_REF. */
6529
6530 bool
6531 contains_symbol_ref_p (const_rtx x)
6532 {
6533 subrtx_iterator::array_type array;
6534 FOR_EACH_SUBRTX (iter, array, x, ALL)
6535 if (SYMBOL_REF_P (*iter))
6536 return true;
6537
6538 return false;
6539 }
6540
6541 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6542
6543 bool
6544 contains_symbolic_reference_p (const_rtx x)
6545 {
6546 subrtx_iterator::array_type array;
6547 FOR_EACH_SUBRTX (iter, array, x, ALL)
6548 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6549 return true;
6550
6551 return false;
6552 }
6553
6554 /* Return true if RTL X contains a constant pool address. */
6555
6556 bool
6557 contains_constant_pool_address_p (const_rtx x)
6558 {
6559 subrtx_iterator::array_type array;
6560 FOR_EACH_SUBRTX (iter, array, x, ALL)
6561 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6562 return true;
6563
6564 return false;
6565 }
6566
6567
6568 /* Return true if X contains a thread-local symbol. */
6569
6570 bool
6571 tls_referenced_p (const_rtx x)
6572 {
6573 if (!targetm.have_tls)
6574 return false;
6575
6576 subrtx_iterator::array_type array;
6577 FOR_EACH_SUBRTX (iter, array, x, ALL)
6578 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6579 return true;
6580 return false;
6581 }
6582
6583 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6584 clobber_high operand in CLOBBER_HIGH_OP. */
6585
6586 bool
6587 reg_is_clobbered_by_clobber_high (unsigned int regno, machine_mode reg_mode,
6588 const_rtx clobber_high_op)
6589 {
6590 unsigned int clobber_regno = REGNO (clobber_high_op);
6591 machine_mode clobber_mode = GET_MODE (clobber_high_op);
6592 unsigned char regno_nregs = hard_regno_nregs (regno, reg_mode);
6593
6594 /* Clobber high should always span exactly one register. */
6595 gcc_assert (REG_NREGS (clobber_high_op) == 1);
6596
6597 /* Clobber high needs to match with one of the registers in X. */
6598 if (clobber_regno < regno || clobber_regno >= regno + regno_nregs)
6599 return false;
6600
6601 gcc_assert (reg_mode != BLKmode && clobber_mode != BLKmode);
6602
6603 if (reg_mode == VOIDmode)
6604 return clobber_mode != VOIDmode;
6605
6606 /* Clobber high will clobber if its size might be greater than the size of
6607 register regno. */
6608 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode), regno_nregs),
6609 GET_MODE_SIZE (clobber_mode));
6610 }