]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stmt.c
Update copyright years.
[thirdparty/gcc.git] / gcc / stmt.c
1 /* Expands front end tree to back end RTL for GCC
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles the generation of rtl code from tree structure
21 above the level of expressions, using subroutines in exp*.c and emit-rtl.c.
22 The functions whose names start with `expand_' are called by the
23 expander to generate RTL instructions for various kinds of constructs. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29
30 #include "rtl.h"
31 #include "hard-reg-set.h"
32 #include "tree.h"
33 #include "varasm.h"
34 #include "stor-layout.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "except.h"
38 #include "hashtab.h"
39 #include "hash-set.h"
40 #include "vec.h"
41 #include "machmode.h"
42 #include "input.h"
43 #include "function.h"
44 #include "insn-config.h"
45 #include "expr.h"
46 #include "libfuncs.h"
47 #include "recog.h"
48 #include "diagnostic-core.h"
49 #include "output.h"
50 #include "langhooks.h"
51 #include "predict.h"
52 #include "insn-codes.h"
53 #include "optabs.h"
54 #include "target.h"
55 #include "cfganal.h"
56 #include "basic-block.h"
57 #include "tree-ssa-alias.h"
58 #include "internal-fn.h"
59 #include "gimple-expr.h"
60 #include "is-a.h"
61 #include "gimple.h"
62 #include "regs.h"
63 #include "alloc-pool.h"
64 #include "pretty-print.h"
65 #include "params.h"
66 #include "dumpfile.h"
67 #include "builtins.h"
68
69 \f
70 /* Functions and data structures for expanding case statements. */
71
72 /* Case label structure, used to hold info on labels within case
73 statements. We handle "range" labels; for a single-value label
74 as in C, the high and low limits are the same.
75
76 We start with a vector of case nodes sorted in ascending order, and
77 the default label as the last element in the vector. Before expanding
78 to RTL, we transform this vector into a list linked via the RIGHT
79 fields in the case_node struct. Nodes with higher case values are
80 later in the list.
81
82 Switch statements can be output in three forms. A branch table is
83 used if there are more than a few labels and the labels are dense
84 within the range between the smallest and largest case value. If a
85 branch table is used, no further manipulations are done with the case
86 node chain.
87
88 The alternative to the use of a branch table is to generate a series
89 of compare and jump insns. When that is done, we use the LEFT, RIGHT,
90 and PARENT fields to hold a binary tree. Initially the tree is
91 totally unbalanced, with everything on the right. We balance the tree
92 with nodes on the left having lower case values than the parent
93 and nodes on the right having higher values. We then output the tree
94 in order.
95
96 For very small, suitable switch statements, we can generate a series
97 of simple bit test and branches instead. */
98
99 struct case_node
100 {
101 struct case_node *left; /* Left son in binary tree */
102 struct case_node *right; /* Right son in binary tree; also node chain */
103 struct case_node *parent; /* Parent of node in binary tree */
104 tree low; /* Lowest index value for this label */
105 tree high; /* Highest index value for this label */
106 tree code_label; /* Label to jump to when node matches */
107 int prob; /* Probability of taking this case. */
108 /* Probability of reaching subtree rooted at this node */
109 int subtree_prob;
110 };
111
112 typedef struct case_node case_node;
113 typedef struct case_node *case_node_ptr;
114
115 extern basic_block label_to_block_fn (struct function *, tree);
116 \f
117 static bool check_unique_operand_names (tree, tree, tree);
118 static char *resolve_operand_name_1 (char *, tree, tree, tree);
119 static void balance_case_nodes (case_node_ptr *, case_node_ptr);
120 static int node_has_low_bound (case_node_ptr, tree);
121 static int node_has_high_bound (case_node_ptr, tree);
122 static int node_is_bounded (case_node_ptr, tree);
123 static void emit_case_nodes (rtx, case_node_ptr, rtx, int, tree);
124 \f
125 /* Return the rtx-label that corresponds to a LABEL_DECL,
126 creating it if necessary. */
127
128 rtx
129 label_rtx (tree label)
130 {
131 gcc_assert (TREE_CODE (label) == LABEL_DECL);
132
133 if (!DECL_RTL_SET_P (label))
134 {
135 rtx_code_label *r = gen_label_rtx ();
136 SET_DECL_RTL (label, r);
137 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
138 LABEL_PRESERVE_P (r) = 1;
139 }
140
141 return DECL_RTL (label);
142 }
143
144 /* As above, but also put it on the forced-reference list of the
145 function that contains it. */
146 rtx
147 force_label_rtx (tree label)
148 {
149 rtx_insn *ref = as_a <rtx_insn *> (label_rtx (label));
150 tree function = decl_function_context (label);
151
152 gcc_assert (function);
153
154 forced_labels = gen_rtx_INSN_LIST (VOIDmode, ref, forced_labels);
155 return ref;
156 }
157
158 /* Add an unconditional jump to LABEL as the next sequential instruction. */
159
160 void
161 emit_jump (rtx label)
162 {
163 do_pending_stack_adjust ();
164 emit_jump_insn (gen_jump (label));
165 emit_barrier ();
166 }
167 \f
168 /* Handle goto statements and the labels that they can go to. */
169
170 /* Specify the location in the RTL code of a label LABEL,
171 which is a LABEL_DECL tree node.
172
173 This is used for the kind of label that the user can jump to with a
174 goto statement, and for alternatives of a switch or case statement.
175 RTL labels generated for loops and conditionals don't go through here;
176 they are generated directly at the RTL level, by other functions below.
177
178 Note that this has nothing to do with defining label *names*.
179 Languages vary in how they do that and what that even means. */
180
181 void
182 expand_label (tree label)
183 {
184 rtx_insn *label_r = as_a <rtx_insn *> (label_rtx (label));
185
186 do_pending_stack_adjust ();
187 emit_label (label_r);
188 if (DECL_NAME (label))
189 LABEL_NAME (DECL_RTL (label)) = IDENTIFIER_POINTER (DECL_NAME (label));
190
191 if (DECL_NONLOCAL (label))
192 {
193 expand_builtin_setjmp_receiver (NULL);
194 nonlocal_goto_handler_labels
195 = gen_rtx_INSN_LIST (VOIDmode, label_r,
196 nonlocal_goto_handler_labels);
197 }
198
199 if (FORCED_LABEL (label))
200 forced_labels = gen_rtx_INSN_LIST (VOIDmode, label_r, forced_labels);
201
202 if (DECL_NONLOCAL (label) || FORCED_LABEL (label))
203 maybe_set_first_label_num (label_r);
204 }
205 \f
206 /* Parse the output constraint pointed to by *CONSTRAINT_P. It is the
207 OPERAND_NUMth output operand, indexed from zero. There are NINPUTS
208 inputs and NOUTPUTS outputs to this extended-asm. Upon return,
209 *ALLOWS_MEM will be TRUE iff the constraint allows the use of a
210 memory operand. Similarly, *ALLOWS_REG will be TRUE iff the
211 constraint allows the use of a register operand. And, *IS_INOUT
212 will be true if the operand is read-write, i.e., if it is used as
213 an input as well as an output. If *CONSTRAINT_P is not in
214 canonical form, it will be made canonical. (Note that `+' will be
215 replaced with `=' as part of this process.)
216
217 Returns TRUE if all went well; FALSE if an error occurred. */
218
219 bool
220 parse_output_constraint (const char **constraint_p, int operand_num,
221 int ninputs, int noutputs, bool *allows_mem,
222 bool *allows_reg, bool *is_inout)
223 {
224 const char *constraint = *constraint_p;
225 const char *p;
226
227 /* Assume the constraint doesn't allow the use of either a register
228 or memory. */
229 *allows_mem = false;
230 *allows_reg = false;
231
232 /* Allow the `=' or `+' to not be at the beginning of the string,
233 since it wasn't explicitly documented that way, and there is a
234 large body of code that puts it last. Swap the character to
235 the front, so as not to uglify any place else. */
236 p = strchr (constraint, '=');
237 if (!p)
238 p = strchr (constraint, '+');
239
240 /* If the string doesn't contain an `=', issue an error
241 message. */
242 if (!p)
243 {
244 error ("output operand constraint lacks %<=%>");
245 return false;
246 }
247
248 /* If the constraint begins with `+', then the operand is both read
249 from and written to. */
250 *is_inout = (*p == '+');
251
252 /* Canonicalize the output constraint so that it begins with `='. */
253 if (p != constraint || *is_inout)
254 {
255 char *buf;
256 size_t c_len = strlen (constraint);
257
258 if (p != constraint)
259 warning (0, "output constraint %qc for operand %d "
260 "is not at the beginning",
261 *p, operand_num);
262
263 /* Make a copy of the constraint. */
264 buf = XALLOCAVEC (char, c_len + 1);
265 strcpy (buf, constraint);
266 /* Swap the first character and the `=' or `+'. */
267 buf[p - constraint] = buf[0];
268 /* Make sure the first character is an `='. (Until we do this,
269 it might be a `+'.) */
270 buf[0] = '=';
271 /* Replace the constraint with the canonicalized string. */
272 *constraint_p = ggc_alloc_string (buf, c_len);
273 constraint = *constraint_p;
274 }
275
276 /* Loop through the constraint string. */
277 for (p = constraint + 1; *p; p += CONSTRAINT_LEN (*p, p))
278 switch (*p)
279 {
280 case '+':
281 case '=':
282 error ("operand constraint contains incorrectly positioned "
283 "%<+%> or %<=%>");
284 return false;
285
286 case '%':
287 if (operand_num + 1 == ninputs + noutputs)
288 {
289 error ("%<%%%> constraint used with last operand");
290 return false;
291 }
292 break;
293
294 case '?': case '!': case '*': case '&': case '#':
295 case 'E': case 'F': case 'G': case 'H':
296 case 's': case 'i': case 'n':
297 case 'I': case 'J': case 'K': case 'L': case 'M':
298 case 'N': case 'O': case 'P': case ',':
299 break;
300
301 case '0': case '1': case '2': case '3': case '4':
302 case '5': case '6': case '7': case '8': case '9':
303 case '[':
304 error ("matching constraint not valid in output operand");
305 return false;
306
307 case '<': case '>':
308 /* ??? Before flow, auto inc/dec insns are not supposed to exist,
309 excepting those that expand_call created. So match memory
310 and hope. */
311 *allows_mem = true;
312 break;
313
314 case 'g': case 'X':
315 *allows_reg = true;
316 *allows_mem = true;
317 break;
318
319 default:
320 if (!ISALPHA (*p))
321 break;
322 enum constraint_num cn = lookup_constraint (p);
323 if (reg_class_for_constraint (cn) != NO_REGS
324 || insn_extra_address_constraint (cn))
325 *allows_reg = true;
326 else if (insn_extra_memory_constraint (cn))
327 *allows_mem = true;
328 else
329 {
330 /* Otherwise we can't assume anything about the nature of
331 the constraint except that it isn't purely registers.
332 Treat it like "g" and hope for the best. */
333 *allows_reg = true;
334 *allows_mem = true;
335 }
336 break;
337 }
338
339 return true;
340 }
341
342 /* Similar, but for input constraints. */
343
344 bool
345 parse_input_constraint (const char **constraint_p, int input_num,
346 int ninputs, int noutputs, int ninout,
347 const char * const * constraints,
348 bool *allows_mem, bool *allows_reg)
349 {
350 const char *constraint = *constraint_p;
351 const char *orig_constraint = constraint;
352 size_t c_len = strlen (constraint);
353 size_t j;
354 bool saw_match = false;
355
356 /* Assume the constraint doesn't allow the use of either
357 a register or memory. */
358 *allows_mem = false;
359 *allows_reg = false;
360
361 /* Make sure constraint has neither `=', `+', nor '&'. */
362
363 for (j = 0; j < c_len; j += CONSTRAINT_LEN (constraint[j], constraint+j))
364 switch (constraint[j])
365 {
366 case '+': case '=': case '&':
367 if (constraint == orig_constraint)
368 {
369 error ("input operand constraint contains %qc", constraint[j]);
370 return false;
371 }
372 break;
373
374 case '%':
375 if (constraint == orig_constraint
376 && input_num + 1 == ninputs - ninout)
377 {
378 error ("%<%%%> constraint used with last operand");
379 return false;
380 }
381 break;
382
383 case '<': case '>':
384 case '?': case '!': case '*': case '#':
385 case 'E': case 'F': case 'G': case 'H':
386 case 's': case 'i': case 'n':
387 case 'I': case 'J': case 'K': case 'L': case 'M':
388 case 'N': case 'O': case 'P': case ',':
389 break;
390
391 /* Whether or not a numeric constraint allows a register is
392 decided by the matching constraint, and so there is no need
393 to do anything special with them. We must handle them in
394 the default case, so that we don't unnecessarily force
395 operands to memory. */
396 case '0': case '1': case '2': case '3': case '4':
397 case '5': case '6': case '7': case '8': case '9':
398 {
399 char *end;
400 unsigned long match;
401
402 saw_match = true;
403
404 match = strtoul (constraint + j, &end, 10);
405 if (match >= (unsigned long) noutputs)
406 {
407 error ("matching constraint references invalid operand number");
408 return false;
409 }
410
411 /* Try and find the real constraint for this dup. Only do this
412 if the matching constraint is the only alternative. */
413 if (*end == '\0'
414 && (j == 0 || (j == 1 && constraint[0] == '%')))
415 {
416 constraint = constraints[match];
417 *constraint_p = constraint;
418 c_len = strlen (constraint);
419 j = 0;
420 /* ??? At the end of the loop, we will skip the first part of
421 the matched constraint. This assumes not only that the
422 other constraint is an output constraint, but also that
423 the '=' or '+' come first. */
424 break;
425 }
426 else
427 j = end - constraint;
428 /* Anticipate increment at end of loop. */
429 j--;
430 }
431 /* Fall through. */
432
433 case 'g': case 'X':
434 *allows_reg = true;
435 *allows_mem = true;
436 break;
437
438 default:
439 if (! ISALPHA (constraint[j]))
440 {
441 error ("invalid punctuation %qc in constraint", constraint[j]);
442 return false;
443 }
444 enum constraint_num cn = lookup_constraint (constraint + j);
445 if (reg_class_for_constraint (cn) != NO_REGS
446 || insn_extra_address_constraint (cn))
447 *allows_reg = true;
448 else if (insn_extra_memory_constraint (cn))
449 *allows_mem = true;
450 else
451 {
452 /* Otherwise we can't assume anything about the nature of
453 the constraint except that it isn't purely registers.
454 Treat it like "g" and hope for the best. */
455 *allows_reg = true;
456 *allows_mem = true;
457 }
458 break;
459 }
460
461 if (saw_match && !*allows_reg)
462 warning (0, "matching constraint does not allow a register");
463
464 return true;
465 }
466
467 /* Return DECL iff there's an overlap between *REGS and DECL, where DECL
468 can be an asm-declared register. Called via walk_tree. */
469
470 static tree
471 decl_overlaps_hard_reg_set_p (tree *declp, int *walk_subtrees ATTRIBUTE_UNUSED,
472 void *data)
473 {
474 tree decl = *declp;
475 const HARD_REG_SET *const regs = (const HARD_REG_SET *) data;
476
477 if (TREE_CODE (decl) == VAR_DECL)
478 {
479 if (DECL_HARD_REGISTER (decl)
480 && REG_P (DECL_RTL (decl))
481 && REGNO (DECL_RTL (decl)) < FIRST_PSEUDO_REGISTER)
482 {
483 rtx reg = DECL_RTL (decl);
484
485 if (overlaps_hard_reg_set_p (*regs, GET_MODE (reg), REGNO (reg)))
486 return decl;
487 }
488 walk_subtrees = 0;
489 }
490 else if (TYPE_P (decl) || TREE_CODE (decl) == PARM_DECL)
491 walk_subtrees = 0;
492 return NULL_TREE;
493 }
494
495 /* If there is an overlap between *REGS and DECL, return the first overlap
496 found. */
497 tree
498 tree_overlaps_hard_reg_set (tree decl, HARD_REG_SET *regs)
499 {
500 return walk_tree (&decl, decl_overlaps_hard_reg_set_p, regs, NULL);
501 }
502
503
504 /* A subroutine of expand_asm_operands. Check that all operand names
505 are unique. Return true if so. We rely on the fact that these names
506 are identifiers, and so have been canonicalized by get_identifier,
507 so all we need are pointer comparisons. */
508
509 static bool
510 check_unique_operand_names (tree outputs, tree inputs, tree labels)
511 {
512 tree i, j, i_name = NULL_TREE;
513
514 for (i = outputs; i ; i = TREE_CHAIN (i))
515 {
516 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
517 if (! i_name)
518 continue;
519
520 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
521 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
522 goto failure;
523 }
524
525 for (i = inputs; i ; i = TREE_CHAIN (i))
526 {
527 i_name = TREE_PURPOSE (TREE_PURPOSE (i));
528 if (! i_name)
529 continue;
530
531 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
532 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
533 goto failure;
534 for (j = outputs; j ; j = TREE_CHAIN (j))
535 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
536 goto failure;
537 }
538
539 for (i = labels; i ; i = TREE_CHAIN (i))
540 {
541 i_name = TREE_PURPOSE (i);
542 if (! i_name)
543 continue;
544
545 for (j = TREE_CHAIN (i); j ; j = TREE_CHAIN (j))
546 if (simple_cst_equal (i_name, TREE_PURPOSE (j)))
547 goto failure;
548 for (j = inputs; j ; j = TREE_CHAIN (j))
549 if (simple_cst_equal (i_name, TREE_PURPOSE (TREE_PURPOSE (j))))
550 goto failure;
551 }
552
553 return true;
554
555 failure:
556 error ("duplicate asm operand name %qs", TREE_STRING_POINTER (i_name));
557 return false;
558 }
559
560 /* A subroutine of expand_asm_operands. Resolve the names of the operands
561 in *POUTPUTS and *PINPUTS to numbers, and replace the name expansions in
562 STRING and in the constraints to those numbers. */
563
564 tree
565 resolve_asm_operand_names (tree string, tree outputs, tree inputs, tree labels)
566 {
567 char *buffer;
568 char *p;
569 const char *c;
570 tree t;
571
572 check_unique_operand_names (outputs, inputs, labels);
573
574 /* Substitute [<name>] in input constraint strings. There should be no
575 named operands in output constraints. */
576 for (t = inputs; t ; t = TREE_CHAIN (t))
577 {
578 c = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (t)));
579 if (strchr (c, '[') != NULL)
580 {
581 p = buffer = xstrdup (c);
582 while ((p = strchr (p, '[')) != NULL)
583 p = resolve_operand_name_1 (p, outputs, inputs, NULL);
584 TREE_VALUE (TREE_PURPOSE (t))
585 = build_string (strlen (buffer), buffer);
586 free (buffer);
587 }
588 }
589
590 /* Now check for any needed substitutions in the template. */
591 c = TREE_STRING_POINTER (string);
592 while ((c = strchr (c, '%')) != NULL)
593 {
594 if (c[1] == '[')
595 break;
596 else if (ISALPHA (c[1]) && c[2] == '[')
597 break;
598 else
599 {
600 c += 1 + (c[1] == '%');
601 continue;
602 }
603 }
604
605 if (c)
606 {
607 /* OK, we need to make a copy so we can perform the substitutions.
608 Assume that we will not need extra space--we get to remove '['
609 and ']', which means we cannot have a problem until we have more
610 than 999 operands. */
611 buffer = xstrdup (TREE_STRING_POINTER (string));
612 p = buffer + (c - TREE_STRING_POINTER (string));
613
614 while ((p = strchr (p, '%')) != NULL)
615 {
616 if (p[1] == '[')
617 p += 1;
618 else if (ISALPHA (p[1]) && p[2] == '[')
619 p += 2;
620 else
621 {
622 p += 1 + (p[1] == '%');
623 continue;
624 }
625
626 p = resolve_operand_name_1 (p, outputs, inputs, labels);
627 }
628
629 string = build_string (strlen (buffer), buffer);
630 free (buffer);
631 }
632
633 return string;
634 }
635
636 /* A subroutine of resolve_operand_names. P points to the '[' for a
637 potential named operand of the form [<name>]. In place, replace
638 the name and brackets with a number. Return a pointer to the
639 balance of the string after substitution. */
640
641 static char *
642 resolve_operand_name_1 (char *p, tree outputs, tree inputs, tree labels)
643 {
644 char *q;
645 int op;
646 tree t;
647
648 /* Collect the operand name. */
649 q = strchr (++p, ']');
650 if (!q)
651 {
652 error ("missing close brace for named operand");
653 return strchr (p, '\0');
654 }
655 *q = '\0';
656
657 /* Resolve the name to a number. */
658 for (op = 0, t = outputs; t ; t = TREE_CHAIN (t), op++)
659 {
660 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
661 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
662 goto found;
663 }
664 for (t = inputs; t ; t = TREE_CHAIN (t), op++)
665 {
666 tree name = TREE_PURPOSE (TREE_PURPOSE (t));
667 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
668 goto found;
669 }
670 for (t = labels; t ; t = TREE_CHAIN (t), op++)
671 {
672 tree name = TREE_PURPOSE (t);
673 if (name && strcmp (TREE_STRING_POINTER (name), p) == 0)
674 goto found;
675 }
676
677 error ("undefined named operand %qs", identifier_to_locale (p));
678 op = 0;
679
680 found:
681 /* Replace the name with the number. Unfortunately, not all libraries
682 get the return value of sprintf correct, so search for the end of the
683 generated string by hand. */
684 sprintf (--p, "%d", op);
685 p = strchr (p, '\0');
686
687 /* Verify the no extra buffer space assumption. */
688 gcc_assert (p <= q);
689
690 /* Shift the rest of the buffer down to fill the gap. */
691 memmove (p, q + 1, strlen (q + 1) + 1);
692
693 return p;
694 }
695 \f
696
697 /* Generate RTL to return directly from the current function.
698 (That is, we bypass any return value.) */
699
700 void
701 expand_naked_return (void)
702 {
703 rtx end_label;
704
705 clear_pending_stack_adjust ();
706 do_pending_stack_adjust ();
707
708 end_label = naked_return_label;
709 if (end_label == 0)
710 end_label = naked_return_label = gen_label_rtx ();
711
712 emit_jump (end_label);
713 }
714
715 /* Generate code to jump to LABEL if OP0 and OP1 are equal in mode MODE. PROB
716 is the probability of jumping to LABEL. */
717 static void
718 do_jump_if_equal (machine_mode mode, rtx op0, rtx op1, rtx label,
719 int unsignedp, int prob)
720 {
721 gcc_assert (prob <= REG_BR_PROB_BASE);
722 do_compare_rtx_and_jump (op0, op1, EQ, unsignedp, mode,
723 NULL_RTX, NULL_RTX, label, prob);
724 }
725 \f
726 /* Do the insertion of a case label into case_list. The labels are
727 fed to us in descending order from the sorted vector of case labels used
728 in the tree part of the middle end. So the list we construct is
729 sorted in ascending order.
730
731 LABEL is the case label to be inserted. LOW and HIGH are the bounds
732 against which the index is compared to jump to LABEL and PROB is the
733 estimated probability LABEL is reached from the switch statement. */
734
735 static struct case_node *
736 add_case_node (struct case_node *head, tree low, tree high,
737 tree label, int prob, alloc_pool case_node_pool)
738 {
739 struct case_node *r;
740
741 gcc_checking_assert (low);
742 gcc_checking_assert (high && (TREE_TYPE (low) == TREE_TYPE (high)));
743
744 /* Add this label to the chain. */
745 r = (struct case_node *) pool_alloc (case_node_pool);
746 r->low = low;
747 r->high = high;
748 r->code_label = label;
749 r->parent = r->left = NULL;
750 r->prob = prob;
751 r->subtree_prob = prob;
752 r->right = head;
753 return r;
754 }
755 \f
756 /* Dump ROOT, a list or tree of case nodes, to file. */
757
758 static void
759 dump_case_nodes (FILE *f, struct case_node *root,
760 int indent_step, int indent_level)
761 {
762 if (root == 0)
763 return;
764 indent_level++;
765
766 dump_case_nodes (f, root->left, indent_step, indent_level);
767
768 fputs (";; ", f);
769 fprintf (f, "%*s", indent_step * indent_level, "");
770 print_dec (root->low, f, TYPE_SIGN (TREE_TYPE (root->low)));
771 if (!tree_int_cst_equal (root->low, root->high))
772 {
773 fprintf (f, " ... ");
774 print_dec (root->high, f, TYPE_SIGN (TREE_TYPE (root->high)));
775 }
776 fputs ("\n", f);
777
778 dump_case_nodes (f, root->right, indent_step, indent_level);
779 }
780 \f
781 #ifndef HAVE_casesi
782 #define HAVE_casesi 0
783 #endif
784
785 #ifndef HAVE_tablejump
786 #define HAVE_tablejump 0
787 #endif
788
789 /* Return the smallest number of different values for which it is best to use a
790 jump-table instead of a tree of conditional branches. */
791
792 static unsigned int
793 case_values_threshold (void)
794 {
795 unsigned int threshold = PARAM_VALUE (PARAM_CASE_VALUES_THRESHOLD);
796
797 if (threshold == 0)
798 threshold = targetm.case_values_threshold ();
799
800 return threshold;
801 }
802
803 /* Return true if a switch should be expanded as a decision tree.
804 RANGE is the difference between highest and lowest case.
805 UNIQ is number of unique case node targets, not counting the default case.
806 COUNT is the number of comparisons needed, not counting the default case. */
807
808 static bool
809 expand_switch_as_decision_tree_p (tree range,
810 unsigned int uniq ATTRIBUTE_UNUSED,
811 unsigned int count)
812 {
813 int max_ratio;
814
815 /* If neither casesi or tablejump is available, or flag_jump_tables
816 over-ruled us, we really have no choice. */
817 if (!HAVE_casesi && !HAVE_tablejump)
818 return true;
819 if (!flag_jump_tables)
820 return true;
821 #ifndef ASM_OUTPUT_ADDR_DIFF_ELT
822 if (flag_pic)
823 return true;
824 #endif
825
826 /* If the switch is relatively small such that the cost of one
827 indirect jump on the target are higher than the cost of a
828 decision tree, go with the decision tree.
829
830 If range of values is much bigger than number of values,
831 or if it is too large to represent in a HOST_WIDE_INT,
832 make a sequence of conditional branches instead of a dispatch.
833
834 The definition of "much bigger" depends on whether we are
835 optimizing for size or for speed. If the former, the maximum
836 ratio range/count = 3, because this was found to be the optimal
837 ratio for size on i686-pc-linux-gnu, see PR11823. The ratio
838 10 is much older, and was probably selected after an extensive
839 benchmarking investigation on numerous platforms. Or maybe it
840 just made sense to someone at some point in the history of GCC,
841 who knows... */
842 max_ratio = optimize_insn_for_size_p () ? 3 : 10;
843 if (count < case_values_threshold ()
844 || ! tree_fits_uhwi_p (range)
845 || compare_tree_int (range, max_ratio * count) > 0)
846 return true;
847
848 return false;
849 }
850
851 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
852 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
853 DEFAULT_PROB is the estimated probability that it jumps to
854 DEFAULT_LABEL.
855
856 We generate a binary decision tree to select the appropriate target
857 code. This is done as follows:
858
859 If the index is a short or char that we do not have
860 an insn to handle comparisons directly, convert it to
861 a full integer now, rather than letting each comparison
862 generate the conversion.
863
864 Load the index into a register.
865
866 The list of cases is rearranged into a binary tree,
867 nearly optimal assuming equal probability for each case.
868
869 The tree is transformed into RTL, eliminating redundant
870 test conditions at the same time.
871
872 If program flow could reach the end of the decision tree
873 an unconditional jump to the default code is emitted.
874
875 The above process is unaware of the CFG. The caller has to fix up
876 the CFG itself. This is done in cfgexpand.c. */
877
878 static void
879 emit_case_decision_tree (tree index_expr, tree index_type,
880 struct case_node *case_list, rtx default_label,
881 int default_prob)
882 {
883 rtx index = expand_normal (index_expr);
884
885 if (GET_MODE_CLASS (GET_MODE (index)) == MODE_INT
886 && ! have_insn_for (COMPARE, GET_MODE (index)))
887 {
888 int unsignedp = TYPE_UNSIGNED (index_type);
889 machine_mode wider_mode;
890 for (wider_mode = GET_MODE (index); wider_mode != VOIDmode;
891 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
892 if (have_insn_for (COMPARE, wider_mode))
893 {
894 index = convert_to_mode (wider_mode, index, unsignedp);
895 break;
896 }
897 }
898
899 do_pending_stack_adjust ();
900
901 if (MEM_P (index))
902 {
903 index = copy_to_reg (index);
904 if (TREE_CODE (index_expr) == SSA_NAME)
905 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (index_expr), index);
906 }
907
908 balance_case_nodes (&case_list, NULL);
909
910 if (dump_file && (dump_flags & TDF_DETAILS))
911 {
912 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
913 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
914 dump_case_nodes (dump_file, case_list, indent_step, 0);
915 }
916
917 emit_case_nodes (index, case_list, default_label, default_prob, index_type);
918 if (default_label)
919 emit_jump (default_label);
920 }
921
922 /* Return the sum of probabilities of outgoing edges of basic block BB. */
923
924 static int
925 get_outgoing_edge_probs (basic_block bb)
926 {
927 edge e;
928 edge_iterator ei;
929 int prob_sum = 0;
930 if (!bb)
931 return 0;
932 FOR_EACH_EDGE (e, ei, bb->succs)
933 prob_sum += e->probability;
934 return prob_sum;
935 }
936
937 /* Computes the conditional probability of jumping to a target if the branch
938 instruction is executed.
939 TARGET_PROB is the estimated probability of jumping to a target relative
940 to some basic block BB.
941 BASE_PROB is the probability of reaching the branch instruction relative
942 to the same basic block BB. */
943
944 static inline int
945 conditional_probability (int target_prob, int base_prob)
946 {
947 if (base_prob > 0)
948 {
949 gcc_assert (target_prob >= 0);
950 gcc_assert (target_prob <= base_prob);
951 return GCOV_COMPUTE_SCALE (target_prob, base_prob);
952 }
953 return -1;
954 }
955
956 /* Generate a dispatch tabler, switching on INDEX_EXPR and jumping to
957 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
958 MINVAL, MAXVAL, and RANGE are the extrema and range of the case
959 labels in CASE_LIST. STMT_BB is the basic block containing the statement.
960
961 First, a jump insn is emitted. First we try "casesi". If that
962 fails, try "tablejump". A target *must* have one of them (or both).
963
964 Then, a table with the target labels is emitted.
965
966 The process is unaware of the CFG. The caller has to fix up
967 the CFG itself. This is done in cfgexpand.c. */
968
969 static void
970 emit_case_dispatch_table (tree index_expr, tree index_type,
971 struct case_node *case_list, rtx default_label,
972 tree minval, tree maxval, tree range,
973 basic_block stmt_bb)
974 {
975 int i, ncases;
976 struct case_node *n;
977 rtx *labelvec;
978 rtx fallback_label = label_rtx (case_list->code_label);
979 rtx_code_label *table_label = gen_label_rtx ();
980 bool has_gaps = false;
981 edge default_edge = stmt_bb ? EDGE_SUCC (stmt_bb, 0) : NULL;
982 int default_prob = default_edge ? default_edge->probability : 0;
983 int base = get_outgoing_edge_probs (stmt_bb);
984 bool try_with_tablejump = false;
985
986 int new_default_prob = conditional_probability (default_prob,
987 base);
988
989 if (! try_casesi (index_type, index_expr, minval, range,
990 table_label, default_label, fallback_label,
991 new_default_prob))
992 {
993 /* Index jumptables from zero for suitable values of minval to avoid
994 a subtraction. For the rationale see:
995 "http://gcc.gnu.org/ml/gcc-patches/2001-10/msg01234.html". */
996 if (optimize_insn_for_speed_p ()
997 && compare_tree_int (minval, 0) > 0
998 && compare_tree_int (minval, 3) < 0)
999 {
1000 minval = build_int_cst (index_type, 0);
1001 range = maxval;
1002 has_gaps = true;
1003 }
1004 try_with_tablejump = true;
1005 }
1006
1007 /* Get table of labels to jump to, in order of case index. */
1008
1009 ncases = tree_to_shwi (range) + 1;
1010 labelvec = XALLOCAVEC (rtx, ncases);
1011 memset (labelvec, 0, ncases * sizeof (rtx));
1012
1013 for (n = case_list; n; n = n->right)
1014 {
1015 /* Compute the low and high bounds relative to the minimum
1016 value since that should fit in a HOST_WIDE_INT while the
1017 actual values may not. */
1018 HOST_WIDE_INT i_low
1019 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1020 n->low, minval));
1021 HOST_WIDE_INT i_high
1022 = tree_to_uhwi (fold_build2 (MINUS_EXPR, index_type,
1023 n->high, minval));
1024 HOST_WIDE_INT i;
1025
1026 for (i = i_low; i <= i_high; i ++)
1027 labelvec[i]
1028 = gen_rtx_LABEL_REF (Pmode, label_rtx (n->code_label));
1029 }
1030
1031 /* Fill in the gaps with the default. We may have gaps at
1032 the beginning if we tried to avoid the minval subtraction,
1033 so substitute some label even if the default label was
1034 deemed unreachable. */
1035 if (!default_label)
1036 default_label = fallback_label;
1037 for (i = 0; i < ncases; i++)
1038 if (labelvec[i] == 0)
1039 {
1040 has_gaps = true;
1041 labelvec[i] = gen_rtx_LABEL_REF (Pmode, default_label);
1042 }
1043
1044 if (has_gaps)
1045 {
1046 /* There is at least one entry in the jump table that jumps
1047 to default label. The default label can either be reached
1048 through the indirect jump or the direct conditional jump
1049 before that. Split the probability of reaching the
1050 default label among these two jumps. */
1051 new_default_prob = conditional_probability (default_prob/2,
1052 base);
1053 default_prob /= 2;
1054 base -= default_prob;
1055 }
1056 else
1057 {
1058 base -= default_prob;
1059 default_prob = 0;
1060 }
1061
1062 if (default_edge)
1063 default_edge->probability = default_prob;
1064
1065 /* We have altered the probability of the default edge. So the probabilities
1066 of all other edges need to be adjusted so that it sums up to
1067 REG_BR_PROB_BASE. */
1068 if (base)
1069 {
1070 edge e;
1071 edge_iterator ei;
1072 FOR_EACH_EDGE (e, ei, stmt_bb->succs)
1073 e->probability = GCOV_COMPUTE_SCALE (e->probability, base);
1074 }
1075
1076 if (try_with_tablejump)
1077 {
1078 bool ok = try_tablejump (index_type, index_expr, minval, range,
1079 table_label, default_label, new_default_prob);
1080 gcc_assert (ok);
1081 }
1082 /* Output the table. */
1083 emit_label (table_label);
1084
1085 if (CASE_VECTOR_PC_RELATIVE || flag_pic)
1086 emit_jump_table_data (gen_rtx_ADDR_DIFF_VEC (CASE_VECTOR_MODE,
1087 gen_rtx_LABEL_REF (Pmode,
1088 table_label),
1089 gen_rtvec_v (ncases, labelvec),
1090 const0_rtx, const0_rtx));
1091 else
1092 emit_jump_table_data (gen_rtx_ADDR_VEC (CASE_VECTOR_MODE,
1093 gen_rtvec_v (ncases, labelvec)));
1094
1095 /* Record no drop-through after the table. */
1096 emit_barrier ();
1097 }
1098
1099 /* Reset the aux field of all outgoing edges of basic block BB. */
1100
1101 static inline void
1102 reset_out_edges_aux (basic_block bb)
1103 {
1104 edge e;
1105 edge_iterator ei;
1106 FOR_EACH_EDGE (e, ei, bb->succs)
1107 e->aux = (void *)0;
1108 }
1109
1110 /* Compute the number of case labels that correspond to each outgoing edge of
1111 STMT. Record this information in the aux field of the edge. */
1112
1113 static inline void
1114 compute_cases_per_edge (gswitch *stmt)
1115 {
1116 basic_block bb = gimple_bb (stmt);
1117 reset_out_edges_aux (bb);
1118 int ncases = gimple_switch_num_labels (stmt);
1119 for (int i = ncases - 1; i >= 1; --i)
1120 {
1121 tree elt = gimple_switch_label (stmt, i);
1122 tree lab = CASE_LABEL (elt);
1123 basic_block case_bb = label_to_block_fn (cfun, lab);
1124 edge case_edge = find_edge (bb, case_bb);
1125 case_edge->aux = (void *)((intptr_t)(case_edge->aux) + 1);
1126 }
1127 }
1128
1129 /* Terminate a case (Pascal/Ada) or switch (C) statement
1130 in which ORIG_INDEX is the expression to be tested.
1131 If ORIG_TYPE is not NULL, it is the original ORIG_INDEX
1132 type as given in the source before any compiler conversions.
1133 Generate the code to test it and jump to the right place. */
1134
1135 void
1136 expand_case (gswitch *stmt)
1137 {
1138 tree minval = NULL_TREE, maxval = NULL_TREE, range = NULL_TREE;
1139 rtx default_label = NULL_RTX;
1140 unsigned int count, uniq;
1141 int i;
1142 int ncases = gimple_switch_num_labels (stmt);
1143 tree index_expr = gimple_switch_index (stmt);
1144 tree index_type = TREE_TYPE (index_expr);
1145 tree elt;
1146 basic_block bb = gimple_bb (stmt);
1147
1148 /* A list of case labels; it is first built as a list and it may then
1149 be rearranged into a nearly balanced binary tree. */
1150 struct case_node *case_list = 0;
1151
1152 /* A pool for case nodes. */
1153 alloc_pool case_node_pool;
1154
1155 /* An ERROR_MARK occurs for various reasons including invalid data type.
1156 ??? Can this still happen, with GIMPLE and all? */
1157 if (index_type == error_mark_node)
1158 return;
1159
1160 /* cleanup_tree_cfg removes all SWITCH_EXPR with their index
1161 expressions being INTEGER_CST. */
1162 gcc_assert (TREE_CODE (index_expr) != INTEGER_CST);
1163
1164 case_node_pool = create_alloc_pool ("struct case_node pool",
1165 sizeof (struct case_node),
1166 100);
1167
1168 do_pending_stack_adjust ();
1169
1170 /* Find the default case target label. */
1171 default_label = label_rtx (CASE_LABEL (gimple_switch_default_label (stmt)));
1172 edge default_edge = EDGE_SUCC (bb, 0);
1173 int default_prob = default_edge->probability;
1174
1175 /* Get upper and lower bounds of case values. */
1176 elt = gimple_switch_label (stmt, 1);
1177 minval = fold_convert (index_type, CASE_LOW (elt));
1178 elt = gimple_switch_label (stmt, ncases - 1);
1179 if (CASE_HIGH (elt))
1180 maxval = fold_convert (index_type, CASE_HIGH (elt));
1181 else
1182 maxval = fold_convert (index_type, CASE_LOW (elt));
1183
1184 /* Compute span of values. */
1185 range = fold_build2 (MINUS_EXPR, index_type, maxval, minval);
1186
1187 /* Listify the labels queue and gather some numbers to decide
1188 how to expand this switch(). */
1189 uniq = 0;
1190 count = 0;
1191 hash_set<tree> seen_labels;
1192 compute_cases_per_edge (stmt);
1193
1194 for (i = ncases - 1; i >= 1; --i)
1195 {
1196 elt = gimple_switch_label (stmt, i);
1197 tree low = CASE_LOW (elt);
1198 gcc_assert (low);
1199 tree high = CASE_HIGH (elt);
1200 gcc_assert (! high || tree_int_cst_lt (low, high));
1201 tree lab = CASE_LABEL (elt);
1202
1203 /* Count the elements.
1204 A range counts double, since it requires two compares. */
1205 count++;
1206 if (high)
1207 count++;
1208
1209 /* If we have not seen this label yet, then increase the
1210 number of unique case node targets seen. */
1211 if (!seen_labels.add (lab))
1212 uniq++;
1213
1214 /* The bounds on the case range, LOW and HIGH, have to be converted
1215 to case's index type TYPE. Note that the original type of the
1216 case index in the source code is usually "lost" during
1217 gimplification due to type promotion, but the case labels retain the
1218 original type. Make sure to drop overflow flags. */
1219 low = fold_convert (index_type, low);
1220 if (TREE_OVERFLOW (low))
1221 low = wide_int_to_tree (index_type, low);
1222
1223 /* The canonical from of a case label in GIMPLE is that a simple case
1224 has an empty CASE_HIGH. For the casesi and tablejump expanders,
1225 the back ends want simple cases to have high == low. */
1226 if (! high)
1227 high = low;
1228 high = fold_convert (index_type, high);
1229 if (TREE_OVERFLOW (high))
1230 high = wide_int_to_tree (index_type, high);
1231
1232 basic_block case_bb = label_to_block_fn (cfun, lab);
1233 edge case_edge = find_edge (bb, case_bb);
1234 case_list = add_case_node (
1235 case_list, low, high, lab,
1236 case_edge->probability / (intptr_t)(case_edge->aux),
1237 case_node_pool);
1238 }
1239 reset_out_edges_aux (bb);
1240
1241 /* cleanup_tree_cfg removes all SWITCH_EXPR with a single
1242 destination, such as one with a default case only.
1243 It also removes cases that are out of range for the switch
1244 type, so we should never get a zero here. */
1245 gcc_assert (count > 0);
1246
1247 rtx_insn *before_case = get_last_insn ();
1248
1249 /* Decide how to expand this switch.
1250 The two options at this point are a dispatch table (casesi or
1251 tablejump) or a decision tree. */
1252
1253 if (expand_switch_as_decision_tree_p (range, uniq, count))
1254 emit_case_decision_tree (index_expr, index_type,
1255 case_list, default_label,
1256 default_prob);
1257 else
1258 emit_case_dispatch_table (index_expr, index_type,
1259 case_list, default_label,
1260 minval, maxval, range, bb);
1261
1262 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1263
1264 free_temp_slots ();
1265 free_alloc_pool (case_node_pool);
1266 }
1267
1268 /* Expand the dispatch to a short decrement chain if there are few cases
1269 to dispatch to. Likewise if neither casesi nor tablejump is available,
1270 or if flag_jump_tables is set. Otherwise, expand as a casesi or a
1271 tablejump. The index mode is always the mode of integer_type_node.
1272 Trap if no case matches the index.
1273
1274 DISPATCH_INDEX is the index expression to switch on. It should be a
1275 memory or register operand.
1276
1277 DISPATCH_TABLE is a set of case labels. The set should be sorted in
1278 ascending order, be contiguous, starting with value 0, and contain only
1279 single-valued case labels. */
1280
1281 void
1282 expand_sjlj_dispatch_table (rtx dispatch_index,
1283 vec<tree> dispatch_table)
1284 {
1285 tree index_type = integer_type_node;
1286 machine_mode index_mode = TYPE_MODE (index_type);
1287
1288 int ncases = dispatch_table.length ();
1289
1290 do_pending_stack_adjust ();
1291 rtx_insn *before_case = get_last_insn ();
1292
1293 /* Expand as a decrement-chain if there are 5 or fewer dispatch
1294 labels. This covers more than 98% of the cases in libjava,
1295 and seems to be a reasonable compromise between the "old way"
1296 of expanding as a decision tree or dispatch table vs. the "new
1297 way" with decrement chain or dispatch table. */
1298 if (dispatch_table.length () <= 5
1299 || (!HAVE_casesi && !HAVE_tablejump)
1300 || !flag_jump_tables)
1301 {
1302 /* Expand the dispatch as a decrement chain:
1303
1304 "switch(index) {case 0: do_0; case 1: do_1; ...; case N: do_N;}"
1305
1306 ==>
1307
1308 if (index == 0) do_0; else index--;
1309 if (index == 0) do_1; else index--;
1310 ...
1311 if (index == 0) do_N; else index--;
1312
1313 This is more efficient than a dispatch table on most machines.
1314 The last "index--" is redundant but the code is trivially dead
1315 and will be cleaned up by later passes. */
1316 rtx index = copy_to_mode_reg (index_mode, dispatch_index);
1317 rtx zero = CONST0_RTX (index_mode);
1318 for (int i = 0; i < ncases; i++)
1319 {
1320 tree elt = dispatch_table[i];
1321 rtx lab = label_rtx (CASE_LABEL (elt));
1322 do_jump_if_equal (index_mode, index, zero, lab, 0, -1);
1323 force_expand_binop (index_mode, sub_optab,
1324 index, CONST1_RTX (index_mode),
1325 index, 0, OPTAB_DIRECT);
1326 }
1327 }
1328 else
1329 {
1330 /* Similar to expand_case, but much simpler. */
1331 struct case_node *case_list = 0;
1332 alloc_pool case_node_pool = create_alloc_pool ("struct sjlj_case pool",
1333 sizeof (struct case_node),
1334 ncases);
1335 tree index_expr = make_tree (index_type, dispatch_index);
1336 tree minval = build_int_cst (index_type, 0);
1337 tree maxval = CASE_LOW (dispatch_table.last ());
1338 tree range = maxval;
1339 rtx_code_label *default_label = gen_label_rtx ();
1340
1341 for (int i = ncases - 1; i >= 0; --i)
1342 {
1343 tree elt = dispatch_table[i];
1344 tree low = CASE_LOW (elt);
1345 tree lab = CASE_LABEL (elt);
1346 case_list = add_case_node (case_list, low, low, lab, 0, case_node_pool);
1347 }
1348
1349 emit_case_dispatch_table (index_expr, index_type,
1350 case_list, default_label,
1351 minval, maxval, range,
1352 BLOCK_FOR_INSN (before_case));
1353 emit_label (default_label);
1354 free_alloc_pool (case_node_pool);
1355 }
1356
1357 /* Dispatching something not handled? Trap! */
1358 expand_builtin_trap ();
1359
1360 reorder_insns (NEXT_INSN (before_case), get_last_insn (), before_case);
1361
1362 free_temp_slots ();
1363 }
1364
1365 \f
1366 /* Take an ordered list of case nodes
1367 and transform them into a near optimal binary tree,
1368 on the assumption that any target code selection value is as
1369 likely as any other.
1370
1371 The transformation is performed by splitting the ordered
1372 list into two equal sections plus a pivot. The parts are
1373 then attached to the pivot as left and right branches. Each
1374 branch is then transformed recursively. */
1375
1376 static void
1377 balance_case_nodes (case_node_ptr *head, case_node_ptr parent)
1378 {
1379 case_node_ptr np;
1380
1381 np = *head;
1382 if (np)
1383 {
1384 int i = 0;
1385 int ranges = 0;
1386 case_node_ptr *npp;
1387 case_node_ptr left;
1388
1389 /* Count the number of entries on branch. Also count the ranges. */
1390
1391 while (np)
1392 {
1393 if (!tree_int_cst_equal (np->low, np->high))
1394 ranges++;
1395
1396 i++;
1397 np = np->right;
1398 }
1399
1400 if (i > 2)
1401 {
1402 /* Split this list if it is long enough for that to help. */
1403 npp = head;
1404 left = *npp;
1405
1406 /* If there are just three nodes, split at the middle one. */
1407 if (i == 3)
1408 npp = &(*npp)->right;
1409 else
1410 {
1411 /* Find the place in the list that bisects the list's total cost,
1412 where ranges count as 2.
1413 Here I gets half the total cost. */
1414 i = (i + ranges + 1) / 2;
1415 while (1)
1416 {
1417 /* Skip nodes while their cost does not reach that amount. */
1418 if (!tree_int_cst_equal ((*npp)->low, (*npp)->high))
1419 i--;
1420 i--;
1421 if (i <= 0)
1422 break;
1423 npp = &(*npp)->right;
1424 }
1425 }
1426 *head = np = *npp;
1427 *npp = 0;
1428 np->parent = parent;
1429 np->left = left;
1430
1431 /* Optimize each of the two split parts. */
1432 balance_case_nodes (&np->left, np);
1433 balance_case_nodes (&np->right, np);
1434 np->subtree_prob = np->prob;
1435 np->subtree_prob += np->left->subtree_prob;
1436 np->subtree_prob += np->right->subtree_prob;
1437 }
1438 else
1439 {
1440 /* Else leave this branch as one level,
1441 but fill in `parent' fields. */
1442 np = *head;
1443 np->parent = parent;
1444 np->subtree_prob = np->prob;
1445 for (; np->right; np = np->right)
1446 {
1447 np->right->parent = np;
1448 (*head)->subtree_prob += np->right->subtree_prob;
1449 }
1450 }
1451 }
1452 }
1453 \f
1454 /* Search the parent sections of the case node tree
1455 to see if a test for the lower bound of NODE would be redundant.
1456 INDEX_TYPE is the type of the index expression.
1457
1458 The instructions to generate the case decision tree are
1459 output in the same order as nodes are processed so it is
1460 known that if a parent node checks the range of the current
1461 node minus one that the current node is bounded at its lower
1462 span. Thus the test would be redundant. */
1463
1464 static int
1465 node_has_low_bound (case_node_ptr node, tree index_type)
1466 {
1467 tree low_minus_one;
1468 case_node_ptr pnode;
1469
1470 /* If the lower bound of this node is the lowest value in the index type,
1471 we need not test it. */
1472
1473 if (tree_int_cst_equal (node->low, TYPE_MIN_VALUE (index_type)))
1474 return 1;
1475
1476 /* If this node has a left branch, the value at the left must be less
1477 than that at this node, so it cannot be bounded at the bottom and
1478 we need not bother testing any further. */
1479
1480 if (node->left)
1481 return 0;
1482
1483 low_minus_one = fold_build2 (MINUS_EXPR, TREE_TYPE (node->low),
1484 node->low,
1485 build_int_cst (TREE_TYPE (node->low), 1));
1486
1487 /* If the subtraction above overflowed, we can't verify anything.
1488 Otherwise, look for a parent that tests our value - 1. */
1489
1490 if (! tree_int_cst_lt (low_minus_one, node->low))
1491 return 0;
1492
1493 for (pnode = node->parent; pnode; pnode = pnode->parent)
1494 if (tree_int_cst_equal (low_minus_one, pnode->high))
1495 return 1;
1496
1497 return 0;
1498 }
1499
1500 /* Search the parent sections of the case node tree
1501 to see if a test for the upper bound of NODE would be redundant.
1502 INDEX_TYPE is the type of the index expression.
1503
1504 The instructions to generate the case decision tree are
1505 output in the same order as nodes are processed so it is
1506 known that if a parent node checks the range of the current
1507 node plus one that the current node is bounded at its upper
1508 span. Thus the test would be redundant. */
1509
1510 static int
1511 node_has_high_bound (case_node_ptr node, tree index_type)
1512 {
1513 tree high_plus_one;
1514 case_node_ptr pnode;
1515
1516 /* If there is no upper bound, obviously no test is needed. */
1517
1518 if (TYPE_MAX_VALUE (index_type) == NULL)
1519 return 1;
1520
1521 /* If the upper bound of this node is the highest value in the type
1522 of the index expression, we need not test against it. */
1523
1524 if (tree_int_cst_equal (node->high, TYPE_MAX_VALUE (index_type)))
1525 return 1;
1526
1527 /* If this node has a right branch, the value at the right must be greater
1528 than that at this node, so it cannot be bounded at the top and
1529 we need not bother testing any further. */
1530
1531 if (node->right)
1532 return 0;
1533
1534 high_plus_one = fold_build2 (PLUS_EXPR, TREE_TYPE (node->high),
1535 node->high,
1536 build_int_cst (TREE_TYPE (node->high), 1));
1537
1538 /* If the addition above overflowed, we can't verify anything.
1539 Otherwise, look for a parent that tests our value + 1. */
1540
1541 if (! tree_int_cst_lt (node->high, high_plus_one))
1542 return 0;
1543
1544 for (pnode = node->parent; pnode; pnode = pnode->parent)
1545 if (tree_int_cst_equal (high_plus_one, pnode->low))
1546 return 1;
1547
1548 return 0;
1549 }
1550
1551 /* Search the parent sections of the
1552 case node tree to see if both tests for the upper and lower
1553 bounds of NODE would be redundant. */
1554
1555 static int
1556 node_is_bounded (case_node_ptr node, tree index_type)
1557 {
1558 return (node_has_low_bound (node, index_type)
1559 && node_has_high_bound (node, index_type));
1560 }
1561 \f
1562
1563 /* Emit step-by-step code to select a case for the value of INDEX.
1564 The thus generated decision tree follows the form of the
1565 case-node binary tree NODE, whose nodes represent test conditions.
1566 INDEX_TYPE is the type of the index of the switch.
1567
1568 Care is taken to prune redundant tests from the decision tree
1569 by detecting any boundary conditions already checked by
1570 emitted rtx. (See node_has_high_bound, node_has_low_bound
1571 and node_is_bounded, above.)
1572
1573 Where the test conditions can be shown to be redundant we emit
1574 an unconditional jump to the target code. As a further
1575 optimization, the subordinates of a tree node are examined to
1576 check for bounded nodes. In this case conditional and/or
1577 unconditional jumps as a result of the boundary check for the
1578 current node are arranged to target the subordinates associated
1579 code for out of bound conditions on the current node.
1580
1581 We can assume that when control reaches the code generated here,
1582 the index value has already been compared with the parents
1583 of this node, and determined to be on the same side of each parent
1584 as this node is. Thus, if this node tests for the value 51,
1585 and a parent tested for 52, we don't need to consider
1586 the possibility of a value greater than 51. If another parent
1587 tests for the value 50, then this node need not test anything. */
1588
1589 static void
1590 emit_case_nodes (rtx index, case_node_ptr node, rtx default_label,
1591 int default_prob, tree index_type)
1592 {
1593 /* If INDEX has an unsigned type, we must make unsigned branches. */
1594 int unsignedp = TYPE_UNSIGNED (index_type);
1595 int probability;
1596 int prob = node->prob, subtree_prob = node->subtree_prob;
1597 machine_mode mode = GET_MODE (index);
1598 machine_mode imode = TYPE_MODE (index_type);
1599
1600 /* Handle indices detected as constant during RTL expansion. */
1601 if (mode == VOIDmode)
1602 mode = imode;
1603
1604 /* See if our parents have already tested everything for us.
1605 If they have, emit an unconditional jump for this node. */
1606 if (node_is_bounded (node, index_type))
1607 emit_jump (label_rtx (node->code_label));
1608
1609 else if (tree_int_cst_equal (node->low, node->high))
1610 {
1611 probability = conditional_probability (prob, subtree_prob + default_prob);
1612 /* Node is single valued. First see if the index expression matches
1613 this node and then check our children, if any. */
1614 do_jump_if_equal (mode, index,
1615 convert_modes (mode, imode,
1616 expand_normal (node->low),
1617 unsignedp),
1618 label_rtx (node->code_label), unsignedp, probability);
1619 /* Since this case is taken at this point, reduce its weight from
1620 subtree_weight. */
1621 subtree_prob -= prob;
1622 if (node->right != 0 && node->left != 0)
1623 {
1624 /* This node has children on both sides.
1625 Dispatch to one side or the other
1626 by comparing the index value with this node's value.
1627 If one subtree is bounded, check that one first,
1628 so we can avoid real branches in the tree. */
1629
1630 if (node_is_bounded (node->right, index_type))
1631 {
1632 probability = conditional_probability (
1633 node->right->prob,
1634 subtree_prob + default_prob);
1635 emit_cmp_and_jump_insns (index,
1636 convert_modes
1637 (mode, imode,
1638 expand_normal (node->high),
1639 unsignedp),
1640 GT, NULL_RTX, mode, unsignedp,
1641 label_rtx (node->right->code_label),
1642 probability);
1643 emit_case_nodes (index, node->left, default_label, default_prob,
1644 index_type);
1645 }
1646
1647 else if (node_is_bounded (node->left, index_type))
1648 {
1649 probability = conditional_probability (
1650 node->left->prob,
1651 subtree_prob + default_prob);
1652 emit_cmp_and_jump_insns (index,
1653 convert_modes
1654 (mode, imode,
1655 expand_normal (node->high),
1656 unsignedp),
1657 LT, NULL_RTX, mode, unsignedp,
1658 label_rtx (node->left->code_label),
1659 probability);
1660 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1661 }
1662
1663 /* If both children are single-valued cases with no
1664 children, finish up all the work. This way, we can save
1665 one ordered comparison. */
1666 else if (tree_int_cst_equal (node->right->low, node->right->high)
1667 && node->right->left == 0
1668 && node->right->right == 0
1669 && tree_int_cst_equal (node->left->low, node->left->high)
1670 && node->left->left == 0
1671 && node->left->right == 0)
1672 {
1673 /* Neither node is bounded. First distinguish the two sides;
1674 then emit the code for one side at a time. */
1675
1676 /* See if the value matches what the right hand side
1677 wants. */
1678 probability = conditional_probability (
1679 node->right->prob,
1680 subtree_prob + default_prob);
1681 do_jump_if_equal (mode, index,
1682 convert_modes (mode, imode,
1683 expand_normal (node->right->low),
1684 unsignedp),
1685 label_rtx (node->right->code_label),
1686 unsignedp, probability);
1687
1688 /* See if the value matches what the left hand side
1689 wants. */
1690 probability = conditional_probability (
1691 node->left->prob,
1692 subtree_prob + default_prob);
1693 do_jump_if_equal (mode, index,
1694 convert_modes (mode, imode,
1695 expand_normal (node->left->low),
1696 unsignedp),
1697 label_rtx (node->left->code_label),
1698 unsignedp, probability);
1699 }
1700
1701 else
1702 {
1703 /* Neither node is bounded. First distinguish the two sides;
1704 then emit the code for one side at a time. */
1705
1706 tree test_label
1707 = build_decl (curr_insn_location (),
1708 LABEL_DECL, NULL_TREE, NULL_TREE);
1709
1710 /* The default label could be reached either through the right
1711 subtree or the left subtree. Divide the probability
1712 equally. */
1713 probability = conditional_probability (
1714 node->right->subtree_prob + default_prob/2,
1715 subtree_prob + default_prob);
1716 /* See if the value is on the right. */
1717 emit_cmp_and_jump_insns (index,
1718 convert_modes
1719 (mode, imode,
1720 expand_normal (node->high),
1721 unsignedp),
1722 GT, NULL_RTX, mode, unsignedp,
1723 label_rtx (test_label),
1724 probability);
1725 default_prob /= 2;
1726
1727 /* Value must be on the left.
1728 Handle the left-hand subtree. */
1729 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1730 /* If left-hand subtree does nothing,
1731 go to default. */
1732 if (default_label)
1733 emit_jump (default_label);
1734
1735 /* Code branches here for the right-hand subtree. */
1736 expand_label (test_label);
1737 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1738 }
1739 }
1740
1741 else if (node->right != 0 && node->left == 0)
1742 {
1743 /* Here we have a right child but no left so we issue a conditional
1744 branch to default and process the right child.
1745
1746 Omit the conditional branch to default if the right child
1747 does not have any children and is single valued; it would
1748 cost too much space to save so little time. */
1749
1750 if (node->right->right || node->right->left
1751 || !tree_int_cst_equal (node->right->low, node->right->high))
1752 {
1753 if (!node_has_low_bound (node, index_type))
1754 {
1755 probability = conditional_probability (
1756 default_prob/2,
1757 subtree_prob + default_prob);
1758 emit_cmp_and_jump_insns (index,
1759 convert_modes
1760 (mode, imode,
1761 expand_normal (node->high),
1762 unsignedp),
1763 LT, NULL_RTX, mode, unsignedp,
1764 default_label,
1765 probability);
1766 default_prob /= 2;
1767 }
1768
1769 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1770 }
1771 else
1772 {
1773 probability = conditional_probability (
1774 node->right->subtree_prob,
1775 subtree_prob + default_prob);
1776 /* We cannot process node->right normally
1777 since we haven't ruled out the numbers less than
1778 this node's value. So handle node->right explicitly. */
1779 do_jump_if_equal (mode, index,
1780 convert_modes
1781 (mode, imode,
1782 expand_normal (node->right->low),
1783 unsignedp),
1784 label_rtx (node->right->code_label), unsignedp, probability);
1785 }
1786 }
1787
1788 else if (node->right == 0 && node->left != 0)
1789 {
1790 /* Just one subtree, on the left. */
1791 if (node->left->left || node->left->right
1792 || !tree_int_cst_equal (node->left->low, node->left->high))
1793 {
1794 if (!node_has_high_bound (node, index_type))
1795 {
1796 probability = conditional_probability (
1797 default_prob/2,
1798 subtree_prob + default_prob);
1799 emit_cmp_and_jump_insns (index,
1800 convert_modes
1801 (mode, imode,
1802 expand_normal (node->high),
1803 unsignedp),
1804 GT, NULL_RTX, mode, unsignedp,
1805 default_label,
1806 probability);
1807 default_prob /= 2;
1808 }
1809
1810 emit_case_nodes (index, node->left, default_label,
1811 default_prob, index_type);
1812 }
1813 else
1814 {
1815 probability = conditional_probability (
1816 node->left->subtree_prob,
1817 subtree_prob + default_prob);
1818 /* We cannot process node->left normally
1819 since we haven't ruled out the numbers less than
1820 this node's value. So handle node->left explicitly. */
1821 do_jump_if_equal (mode, index,
1822 convert_modes
1823 (mode, imode,
1824 expand_normal (node->left->low),
1825 unsignedp),
1826 label_rtx (node->left->code_label), unsignedp, probability);
1827 }
1828 }
1829 }
1830 else
1831 {
1832 /* Node is a range. These cases are very similar to those for a single
1833 value, except that we do not start by testing whether this node
1834 is the one to branch to. */
1835
1836 if (node->right != 0 && node->left != 0)
1837 {
1838 /* Node has subtrees on both sides.
1839 If the right-hand subtree is bounded,
1840 test for it first, since we can go straight there.
1841 Otherwise, we need to make a branch in the control structure,
1842 then handle the two subtrees. */
1843 tree test_label = 0;
1844
1845 if (node_is_bounded (node->right, index_type))
1846 {
1847 /* Right hand node is fully bounded so we can eliminate any
1848 testing and branch directly to the target code. */
1849 probability = conditional_probability (
1850 node->right->subtree_prob,
1851 subtree_prob + default_prob);
1852 emit_cmp_and_jump_insns (index,
1853 convert_modes
1854 (mode, imode,
1855 expand_normal (node->high),
1856 unsignedp),
1857 GT, NULL_RTX, mode, unsignedp,
1858 label_rtx (node->right->code_label),
1859 probability);
1860 }
1861 else
1862 {
1863 /* Right hand node requires testing.
1864 Branch to a label where we will handle it later. */
1865
1866 test_label = build_decl (curr_insn_location (),
1867 LABEL_DECL, NULL_TREE, NULL_TREE);
1868 probability = conditional_probability (
1869 node->right->subtree_prob + default_prob/2,
1870 subtree_prob + default_prob);
1871 emit_cmp_and_jump_insns (index,
1872 convert_modes
1873 (mode, imode,
1874 expand_normal (node->high),
1875 unsignedp),
1876 GT, NULL_RTX, mode, unsignedp,
1877 label_rtx (test_label),
1878 probability);
1879 default_prob /= 2;
1880 }
1881
1882 /* Value belongs to this node or to the left-hand subtree. */
1883
1884 probability = conditional_probability (
1885 prob,
1886 subtree_prob + default_prob);
1887 emit_cmp_and_jump_insns (index,
1888 convert_modes
1889 (mode, imode,
1890 expand_normal (node->low),
1891 unsignedp),
1892 GE, NULL_RTX, mode, unsignedp,
1893 label_rtx (node->code_label),
1894 probability);
1895
1896 /* Handle the left-hand subtree. */
1897 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1898
1899 /* If right node had to be handled later, do that now. */
1900
1901 if (test_label)
1902 {
1903 /* If the left-hand subtree fell through,
1904 don't let it fall into the right-hand subtree. */
1905 if (default_label)
1906 emit_jump (default_label);
1907
1908 expand_label (test_label);
1909 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1910 }
1911 }
1912
1913 else if (node->right != 0 && node->left == 0)
1914 {
1915 /* Deal with values to the left of this node,
1916 if they are possible. */
1917 if (!node_has_low_bound (node, index_type))
1918 {
1919 probability = conditional_probability (
1920 default_prob/2,
1921 subtree_prob + default_prob);
1922 emit_cmp_and_jump_insns (index,
1923 convert_modes
1924 (mode, imode,
1925 expand_normal (node->low),
1926 unsignedp),
1927 LT, NULL_RTX, mode, unsignedp,
1928 default_label,
1929 probability);
1930 default_prob /= 2;
1931 }
1932
1933 /* Value belongs to this node or to the right-hand subtree. */
1934
1935 probability = conditional_probability (
1936 prob,
1937 subtree_prob + default_prob);
1938 emit_cmp_and_jump_insns (index,
1939 convert_modes
1940 (mode, imode,
1941 expand_normal (node->high),
1942 unsignedp),
1943 LE, NULL_RTX, mode, unsignedp,
1944 label_rtx (node->code_label),
1945 probability);
1946
1947 emit_case_nodes (index, node->right, default_label, default_prob, index_type);
1948 }
1949
1950 else if (node->right == 0 && node->left != 0)
1951 {
1952 /* Deal with values to the right of this node,
1953 if they are possible. */
1954 if (!node_has_high_bound (node, index_type))
1955 {
1956 probability = conditional_probability (
1957 default_prob/2,
1958 subtree_prob + default_prob);
1959 emit_cmp_and_jump_insns (index,
1960 convert_modes
1961 (mode, imode,
1962 expand_normal (node->high),
1963 unsignedp),
1964 GT, NULL_RTX, mode, unsignedp,
1965 default_label,
1966 probability);
1967 default_prob /= 2;
1968 }
1969
1970 /* Value belongs to this node or to the left-hand subtree. */
1971
1972 probability = conditional_probability (
1973 prob,
1974 subtree_prob + default_prob);
1975 emit_cmp_and_jump_insns (index,
1976 convert_modes
1977 (mode, imode,
1978 expand_normal (node->low),
1979 unsignedp),
1980 GE, NULL_RTX, mode, unsignedp,
1981 label_rtx (node->code_label),
1982 probability);
1983
1984 emit_case_nodes (index, node->left, default_label, default_prob, index_type);
1985 }
1986
1987 else
1988 {
1989 /* Node has no children so we check low and high bounds to remove
1990 redundant tests. Only one of the bounds can exist,
1991 since otherwise this node is bounded--a case tested already. */
1992 int high_bound = node_has_high_bound (node, index_type);
1993 int low_bound = node_has_low_bound (node, index_type);
1994
1995 if (!high_bound && low_bound)
1996 {
1997 probability = conditional_probability (
1998 default_prob,
1999 subtree_prob + default_prob);
2000 emit_cmp_and_jump_insns (index,
2001 convert_modes
2002 (mode, imode,
2003 expand_normal (node->high),
2004 unsignedp),
2005 GT, NULL_RTX, mode, unsignedp,
2006 default_label,
2007 probability);
2008 }
2009
2010 else if (!low_bound && high_bound)
2011 {
2012 probability = conditional_probability (
2013 default_prob,
2014 subtree_prob + default_prob);
2015 emit_cmp_and_jump_insns (index,
2016 convert_modes
2017 (mode, imode,
2018 expand_normal (node->low),
2019 unsignedp),
2020 LT, NULL_RTX, mode, unsignedp,
2021 default_label,
2022 probability);
2023 }
2024 else if (!low_bound && !high_bound)
2025 {
2026 /* Widen LOW and HIGH to the same width as INDEX. */
2027 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
2028 tree low = build1 (CONVERT_EXPR, type, node->low);
2029 tree high = build1 (CONVERT_EXPR, type, node->high);
2030 rtx low_rtx, new_index, new_bound;
2031
2032 /* Instead of doing two branches, emit one unsigned branch for
2033 (index-low) > (high-low). */
2034 low_rtx = expand_expr (low, NULL_RTX, mode, EXPAND_NORMAL);
2035 new_index = expand_simple_binop (mode, MINUS, index, low_rtx,
2036 NULL_RTX, unsignedp,
2037 OPTAB_WIDEN);
2038 new_bound = expand_expr (fold_build2 (MINUS_EXPR, type,
2039 high, low),
2040 NULL_RTX, mode, EXPAND_NORMAL);
2041
2042 probability = conditional_probability (
2043 default_prob,
2044 subtree_prob + default_prob);
2045 emit_cmp_and_jump_insns (new_index, new_bound, GT, NULL_RTX,
2046 mode, 1, default_label, probability);
2047 }
2048
2049 emit_jump (label_rtx (node->code_label));
2050 }
2051 }
2052 }