]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stor-layout.c
sh.c: Do not include algorithm.
[thirdparty/gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "vec.h"
36 #include "machmode.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "diagnostic-core.h"
42 #include "target.h"
43 #include "langhooks.h"
44 #include "regs.h"
45 #include "params.h"
46 #include "hash-map.h"
47 #include "is-a.h"
48 #include "plugin-api.h"
49 #include "ipa-ref.h"
50 #include "cgraph.h"
51 #include "tree-inline.h"
52 #include "tree-dump.h"
53 #include "gimplify.h"
54
55 /* Data type for the expressions representing sizes of data types.
56 It is the first integer type laid out. */
57 tree sizetype_tab[(int) stk_type_kind_last];
58
59 /* If nonzero, this is an upper limit on alignment of structure fields.
60 The value is measured in bits. */
61 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
62
63 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
64 in the address spaces' address_mode, not pointer_mode. Set only by
65 internal_reference_types called only by a front end. */
66 static int reference_types_internal = 0;
67
68 static tree self_referential_size (tree);
69 static void finalize_record_size (record_layout_info);
70 static void finalize_type_size (tree);
71 static void place_union_field (record_layout_info, tree);
72 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
73 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
74 HOST_WIDE_INT, tree);
75 #endif
76 extern void debug_rli (record_layout_info);
77 \f
78 /* Show that REFERENCE_TYPES are internal and should use address_mode.
79 Called only by front end. */
80
81 void
82 internal_reference_types (void)
83 {
84 reference_types_internal = 1;
85 }
86
87 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
88 to serve as the actual size-expression for a type or decl. */
89
90 tree
91 variable_size (tree size)
92 {
93 /* Obviously. */
94 if (TREE_CONSTANT (size))
95 return size;
96
97 /* If the size is self-referential, we can't make a SAVE_EXPR (see
98 save_expr for the rationale). But we can do something else. */
99 if (CONTAINS_PLACEHOLDER_P (size))
100 return self_referential_size (size);
101
102 /* If we are in the global binding level, we can't make a SAVE_EXPR
103 since it may end up being shared across functions, so it is up
104 to the front-end to deal with this case. */
105 if (lang_hooks.decls.global_bindings_p ())
106 return size;
107
108 return save_expr (size);
109 }
110
111 /* An array of functions used for self-referential size computation. */
112 static GTY(()) vec<tree, va_gc> *size_functions;
113
114 /* Similar to copy_tree_r but do not copy component references involving
115 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
116 and substituted in substitute_in_expr. */
117
118 static tree
119 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
120 {
121 enum tree_code code = TREE_CODE (*tp);
122
123 /* Stop at types, decls, constants like copy_tree_r. */
124 if (TREE_CODE_CLASS (code) == tcc_type
125 || TREE_CODE_CLASS (code) == tcc_declaration
126 || TREE_CODE_CLASS (code) == tcc_constant)
127 {
128 *walk_subtrees = 0;
129 return NULL_TREE;
130 }
131
132 /* This is the pattern built in ada/make_aligning_type. */
133 else if (code == ADDR_EXPR
134 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
135 {
136 *walk_subtrees = 0;
137 return NULL_TREE;
138 }
139
140 /* Default case: the component reference. */
141 else if (code == COMPONENT_REF)
142 {
143 tree inner;
144 for (inner = TREE_OPERAND (*tp, 0);
145 REFERENCE_CLASS_P (inner);
146 inner = TREE_OPERAND (inner, 0))
147 ;
148
149 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
150 {
151 *walk_subtrees = 0;
152 return NULL_TREE;
153 }
154 }
155
156 /* We're not supposed to have them in self-referential size trees
157 because we wouldn't properly control when they are evaluated.
158 However, not creating superfluous SAVE_EXPRs requires accurate
159 tracking of readonly-ness all the way down to here, which we
160 cannot always guarantee in practice. So punt in this case. */
161 else if (code == SAVE_EXPR)
162 return error_mark_node;
163
164 else if (code == STATEMENT_LIST)
165 gcc_unreachable ();
166
167 return copy_tree_r (tp, walk_subtrees, data);
168 }
169
170 /* Given a SIZE expression that is self-referential, return an equivalent
171 expression to serve as the actual size expression for a type. */
172
173 static tree
174 self_referential_size (tree size)
175 {
176 static unsigned HOST_WIDE_INT fnno = 0;
177 vec<tree> self_refs = vNULL;
178 tree param_type_list = NULL, param_decl_list = NULL;
179 tree t, ref, return_type, fntype, fnname, fndecl;
180 unsigned int i;
181 char buf[128];
182 vec<tree, va_gc> *args = NULL;
183
184 /* Do not factor out simple operations. */
185 t = skip_simple_constant_arithmetic (size);
186 if (TREE_CODE (t) == CALL_EXPR)
187 return size;
188
189 /* Collect the list of self-references in the expression. */
190 find_placeholder_in_expr (size, &self_refs);
191 gcc_assert (self_refs.length () > 0);
192
193 /* Obtain a private copy of the expression. */
194 t = size;
195 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
196 return size;
197 size = t;
198
199 /* Build the parameter and argument lists in parallel; also
200 substitute the former for the latter in the expression. */
201 vec_alloc (args, self_refs.length ());
202 FOR_EACH_VEC_ELT (self_refs, i, ref)
203 {
204 tree subst, param_name, param_type, param_decl;
205
206 if (DECL_P (ref))
207 {
208 /* We shouldn't have true variables here. */
209 gcc_assert (TREE_READONLY (ref));
210 subst = ref;
211 }
212 /* This is the pattern built in ada/make_aligning_type. */
213 else if (TREE_CODE (ref) == ADDR_EXPR)
214 subst = ref;
215 /* Default case: the component reference. */
216 else
217 subst = TREE_OPERAND (ref, 1);
218
219 sprintf (buf, "p%d", i);
220 param_name = get_identifier (buf);
221 param_type = TREE_TYPE (ref);
222 param_decl
223 = build_decl (input_location, PARM_DECL, param_name, param_type);
224 DECL_ARG_TYPE (param_decl) = param_type;
225 DECL_ARTIFICIAL (param_decl) = 1;
226 TREE_READONLY (param_decl) = 1;
227
228 size = substitute_in_expr (size, subst, param_decl);
229
230 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
231 param_decl_list = chainon (param_decl, param_decl_list);
232 args->quick_push (ref);
233 }
234
235 self_refs.release ();
236
237 /* Append 'void' to indicate that the number of parameters is fixed. */
238 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
239
240 /* The 3 lists have been created in reverse order. */
241 param_type_list = nreverse (param_type_list);
242 param_decl_list = nreverse (param_decl_list);
243
244 /* Build the function type. */
245 return_type = TREE_TYPE (size);
246 fntype = build_function_type (return_type, param_type_list);
247
248 /* Build the function declaration. */
249 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
250 fnname = get_file_function_name (buf);
251 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
252 for (t = param_decl_list; t; t = DECL_CHAIN (t))
253 DECL_CONTEXT (t) = fndecl;
254 DECL_ARGUMENTS (fndecl) = param_decl_list;
255 DECL_RESULT (fndecl)
256 = build_decl (input_location, RESULT_DECL, 0, return_type);
257 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
258
259 /* The function has been created by the compiler and we don't
260 want to emit debug info for it. */
261 DECL_ARTIFICIAL (fndecl) = 1;
262 DECL_IGNORED_P (fndecl) = 1;
263
264 /* It is supposed to be "const" and never throw. */
265 TREE_READONLY (fndecl) = 1;
266 TREE_NOTHROW (fndecl) = 1;
267
268 /* We want it to be inlined when this is deemed profitable, as
269 well as discarded if every call has been integrated. */
270 DECL_DECLARED_INLINE_P (fndecl) = 1;
271
272 /* It is made up of a unique return statement. */
273 DECL_INITIAL (fndecl) = make_node (BLOCK);
274 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
275 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
276 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
277 TREE_STATIC (fndecl) = 1;
278
279 /* Put it onto the list of size functions. */
280 vec_safe_push (size_functions, fndecl);
281
282 /* Replace the original expression with a call to the size function. */
283 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
284 }
285
286 /* Take, queue and compile all the size functions. It is essential that
287 the size functions be gimplified at the very end of the compilation
288 in order to guarantee transparent handling of self-referential sizes.
289 Otherwise the GENERIC inliner would not be able to inline them back
290 at each of their call sites, thus creating artificial non-constant
291 size expressions which would trigger nasty problems later on. */
292
293 void
294 finalize_size_functions (void)
295 {
296 unsigned int i;
297 tree fndecl;
298
299 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
300 {
301 allocate_struct_function (fndecl, false);
302 set_cfun (NULL);
303 dump_function (TDI_original, fndecl);
304 gimplify_function_tree (fndecl);
305 dump_function (TDI_generic, fndecl);
306 cgraph_node::finalize_function (fndecl, false);
307 }
308
309 vec_free (size_functions);
310 }
311 \f
312 /* Return the machine mode to use for a nonscalar of SIZE bits. The
313 mode must be in class MCLASS, and have exactly that many value bits;
314 it may have padding as well. If LIMIT is nonzero, modes of wider
315 than MAX_FIXED_MODE_SIZE will not be used. */
316
317 machine_mode
318 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
319 {
320 machine_mode mode;
321 int i;
322
323 if (limit && size > MAX_FIXED_MODE_SIZE)
324 return BLKmode;
325
326 /* Get the first mode which has this size, in the specified class. */
327 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
328 mode = GET_MODE_WIDER_MODE (mode))
329 if (GET_MODE_PRECISION (mode) == size)
330 return mode;
331
332 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
333 for (i = 0; i < NUM_INT_N_ENTS; i ++)
334 if (int_n_data[i].bitsize == size
335 && int_n_enabled_p[i])
336 return int_n_data[i].m;
337
338 return BLKmode;
339 }
340
341 /* Similar, except passed a tree node. */
342
343 machine_mode
344 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
345 {
346 unsigned HOST_WIDE_INT uhwi;
347 unsigned int ui;
348
349 if (!tree_fits_uhwi_p (size))
350 return BLKmode;
351 uhwi = tree_to_uhwi (size);
352 ui = uhwi;
353 if (uhwi != ui)
354 return BLKmode;
355 return mode_for_size (ui, mclass, limit);
356 }
357
358 /* Similar, but never return BLKmode; return the narrowest mode that
359 contains at least the requested number of value bits. */
360
361 machine_mode
362 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
363 {
364 machine_mode mode = VOIDmode;
365 int i;
366
367 /* Get the first mode which has at least this size, in the
368 specified class. */
369 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
370 mode = GET_MODE_WIDER_MODE (mode))
371 if (GET_MODE_PRECISION (mode) >= size)
372 break;
373
374 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
375 for (i = 0; i < NUM_INT_N_ENTS; i ++)
376 if (int_n_data[i].bitsize >= size
377 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
378 && int_n_enabled_p[i])
379 mode = int_n_data[i].m;
380
381 if (mode == VOIDmode)
382 gcc_unreachable ();
383
384 return mode;
385 }
386
387 /* Find an integer mode of the exact same size, or BLKmode on failure. */
388
389 machine_mode
390 int_mode_for_mode (machine_mode mode)
391 {
392 switch (GET_MODE_CLASS (mode))
393 {
394 case MODE_INT:
395 case MODE_PARTIAL_INT:
396 break;
397
398 case MODE_COMPLEX_INT:
399 case MODE_COMPLEX_FLOAT:
400 case MODE_FLOAT:
401 case MODE_DECIMAL_FLOAT:
402 case MODE_VECTOR_INT:
403 case MODE_VECTOR_FLOAT:
404 case MODE_FRACT:
405 case MODE_ACCUM:
406 case MODE_UFRACT:
407 case MODE_UACCUM:
408 case MODE_VECTOR_FRACT:
409 case MODE_VECTOR_ACCUM:
410 case MODE_VECTOR_UFRACT:
411 case MODE_VECTOR_UACCUM:
412 case MODE_POINTER_BOUNDS:
413 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
414 break;
415
416 case MODE_RANDOM:
417 if (mode == BLKmode)
418 break;
419
420 /* ... fall through ... */
421
422 case MODE_CC:
423 default:
424 gcc_unreachable ();
425 }
426
427 return mode;
428 }
429
430 /* Find a mode that can be used for efficient bitwise operations on MODE.
431 Return BLKmode if no such mode exists. */
432
433 machine_mode
434 bitwise_mode_for_mode (machine_mode mode)
435 {
436 /* Quick exit if we already have a suitable mode. */
437 unsigned int bitsize = GET_MODE_BITSIZE (mode);
438 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
439 return mode;
440
441 /* Reuse the sanity checks from int_mode_for_mode. */
442 gcc_checking_assert ((int_mode_for_mode (mode), true));
443
444 /* Try to replace complex modes with complex modes. In general we
445 expect both components to be processed independently, so we only
446 care whether there is a register for the inner mode. */
447 if (COMPLEX_MODE_P (mode))
448 {
449 machine_mode trial = mode;
450 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
451 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
452 if (trial != BLKmode
453 && have_regs_of_mode[GET_MODE_INNER (trial)])
454 return trial;
455 }
456
457 /* Try to replace vector modes with vector modes. Also try using vector
458 modes if an integer mode would be too big. */
459 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
460 {
461 machine_mode trial = mode;
462 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
463 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
464 if (trial != BLKmode
465 && have_regs_of_mode[trial]
466 && targetm.vector_mode_supported_p (trial))
467 return trial;
468 }
469
470 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
471 return mode_for_size (bitsize, MODE_INT, true);
472 }
473
474 /* Find a type that can be used for efficient bitwise operations on MODE.
475 Return null if no such mode exists. */
476
477 tree
478 bitwise_type_for_mode (machine_mode mode)
479 {
480 mode = bitwise_mode_for_mode (mode);
481 if (mode == BLKmode)
482 return NULL_TREE;
483
484 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
485 tree inner_type = build_nonstandard_integer_type (inner_size, true);
486
487 if (VECTOR_MODE_P (mode))
488 return build_vector_type_for_mode (inner_type, mode);
489
490 if (COMPLEX_MODE_P (mode))
491 return build_complex_type (inner_type);
492
493 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
494 return inner_type;
495 }
496
497 /* Find a mode that is suitable for representing a vector with
498 NUNITS elements of mode INNERMODE. Returns BLKmode if there
499 is no suitable mode. */
500
501 machine_mode
502 mode_for_vector (machine_mode innermode, unsigned nunits)
503 {
504 machine_mode mode;
505
506 /* First, look for a supported vector type. */
507 if (SCALAR_FLOAT_MODE_P (innermode))
508 mode = MIN_MODE_VECTOR_FLOAT;
509 else if (SCALAR_FRACT_MODE_P (innermode))
510 mode = MIN_MODE_VECTOR_FRACT;
511 else if (SCALAR_UFRACT_MODE_P (innermode))
512 mode = MIN_MODE_VECTOR_UFRACT;
513 else if (SCALAR_ACCUM_MODE_P (innermode))
514 mode = MIN_MODE_VECTOR_ACCUM;
515 else if (SCALAR_UACCUM_MODE_P (innermode))
516 mode = MIN_MODE_VECTOR_UACCUM;
517 else
518 mode = MIN_MODE_VECTOR_INT;
519
520 /* Do not check vector_mode_supported_p here. We'll do that
521 later in vector_type_mode. */
522 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
523 if (GET_MODE_NUNITS (mode) == nunits
524 && GET_MODE_INNER (mode) == innermode)
525 break;
526
527 /* For integers, try mapping it to a same-sized scalar mode. */
528 if (mode == VOIDmode
529 && GET_MODE_CLASS (innermode) == MODE_INT)
530 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
531 MODE_INT, 0);
532
533 if (mode == VOIDmode
534 || (GET_MODE_CLASS (mode) == MODE_INT
535 && !have_regs_of_mode[mode]))
536 return BLKmode;
537
538 return mode;
539 }
540
541 /* Return the alignment of MODE. This will be bounded by 1 and
542 BIGGEST_ALIGNMENT. */
543
544 unsigned int
545 get_mode_alignment (machine_mode mode)
546 {
547 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
548 }
549
550 /* Return the precision of the mode, or for a complex or vector mode the
551 precision of the mode of its elements. */
552
553 unsigned int
554 element_precision (machine_mode mode)
555 {
556 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
557 mode = GET_MODE_INNER (mode);
558
559 return GET_MODE_PRECISION (mode);
560 }
561
562 /* Return the natural mode of an array, given that it is SIZE bytes in
563 total and has elements of type ELEM_TYPE. */
564
565 static machine_mode
566 mode_for_array (tree elem_type, tree size)
567 {
568 tree elem_size;
569 unsigned HOST_WIDE_INT int_size, int_elem_size;
570 bool limit_p;
571
572 /* One-element arrays get the component type's mode. */
573 elem_size = TYPE_SIZE (elem_type);
574 if (simple_cst_equal (size, elem_size))
575 return TYPE_MODE (elem_type);
576
577 limit_p = true;
578 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
579 {
580 int_size = tree_to_uhwi (size);
581 int_elem_size = tree_to_uhwi (elem_size);
582 if (int_elem_size > 0
583 && int_size % int_elem_size == 0
584 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
585 int_size / int_elem_size))
586 limit_p = false;
587 }
588 return mode_for_size_tree (size, MODE_INT, limit_p);
589 }
590 \f
591 /* Subroutine of layout_decl: Force alignment required for the data type.
592 But if the decl itself wants greater alignment, don't override that. */
593
594 static inline void
595 do_type_align (tree type, tree decl)
596 {
597 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
598 {
599 DECL_ALIGN (decl) = TYPE_ALIGN (type);
600 if (TREE_CODE (decl) == FIELD_DECL)
601 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
602 }
603 }
604
605 /* Set the size, mode and alignment of a ..._DECL node.
606 TYPE_DECL does need this for C++.
607 Note that LABEL_DECL and CONST_DECL nodes do not need this,
608 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
609 Don't call layout_decl for them.
610
611 KNOWN_ALIGN is the amount of alignment we can assume this
612 decl has with no special effort. It is relevant only for FIELD_DECLs
613 and depends on the previous fields.
614 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
615 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
616 the record will be aligned to suit. */
617
618 void
619 layout_decl (tree decl, unsigned int known_align)
620 {
621 tree type = TREE_TYPE (decl);
622 enum tree_code code = TREE_CODE (decl);
623 rtx rtl = NULL_RTX;
624 location_t loc = DECL_SOURCE_LOCATION (decl);
625
626 if (code == CONST_DECL)
627 return;
628
629 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
630 || code == TYPE_DECL ||code == FIELD_DECL);
631
632 rtl = DECL_RTL_IF_SET (decl);
633
634 if (type == error_mark_node)
635 type = void_type_node;
636
637 /* Usually the size and mode come from the data type without change,
638 however, the front-end may set the explicit width of the field, so its
639 size may not be the same as the size of its type. This happens with
640 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
641 also happens with other fields. For example, the C++ front-end creates
642 zero-sized fields corresponding to empty base classes, and depends on
643 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
644 size in bytes from the size in bits. If we have already set the mode,
645 don't set it again since we can be called twice for FIELD_DECLs. */
646
647 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
648 if (DECL_MODE (decl) == VOIDmode)
649 DECL_MODE (decl) = TYPE_MODE (type);
650
651 if (DECL_SIZE (decl) == 0)
652 {
653 DECL_SIZE (decl) = TYPE_SIZE (type);
654 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
655 }
656 else if (DECL_SIZE_UNIT (decl) == 0)
657 DECL_SIZE_UNIT (decl)
658 = fold_convert_loc (loc, sizetype,
659 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
660 bitsize_unit_node));
661
662 if (code != FIELD_DECL)
663 /* For non-fields, update the alignment from the type. */
664 do_type_align (type, decl);
665 else
666 /* For fields, it's a bit more complicated... */
667 {
668 bool old_user_align = DECL_USER_ALIGN (decl);
669 bool zero_bitfield = false;
670 bool packed_p = DECL_PACKED (decl);
671 unsigned int mfa;
672
673 if (DECL_BIT_FIELD (decl))
674 {
675 DECL_BIT_FIELD_TYPE (decl) = type;
676
677 /* A zero-length bit-field affects the alignment of the next
678 field. In essence such bit-fields are not influenced by
679 any packing due to #pragma pack or attribute packed. */
680 if (integer_zerop (DECL_SIZE (decl))
681 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
682 {
683 zero_bitfield = true;
684 packed_p = false;
685 #ifdef PCC_BITFIELD_TYPE_MATTERS
686 if (PCC_BITFIELD_TYPE_MATTERS)
687 do_type_align (type, decl);
688 else
689 #endif
690 {
691 #ifdef EMPTY_FIELD_BOUNDARY
692 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
693 {
694 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
695 DECL_USER_ALIGN (decl) = 0;
696 }
697 #endif
698 }
699 }
700
701 /* See if we can use an ordinary integer mode for a bit-field.
702 Conditions are: a fixed size that is correct for another mode,
703 occupying a complete byte or bytes on proper boundary. */
704 if (TYPE_SIZE (type) != 0
705 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
706 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
707 {
708 machine_mode xmode
709 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
710 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
711
712 if (xmode != BLKmode
713 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
714 && (known_align == 0 || known_align >= xalign))
715 {
716 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
717 DECL_MODE (decl) = xmode;
718 DECL_BIT_FIELD (decl) = 0;
719 }
720 }
721
722 /* Turn off DECL_BIT_FIELD if we won't need it set. */
723 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
724 && known_align >= TYPE_ALIGN (type)
725 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
726 DECL_BIT_FIELD (decl) = 0;
727 }
728 else if (packed_p && DECL_USER_ALIGN (decl))
729 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
730 round up; we'll reduce it again below. We want packing to
731 supersede USER_ALIGN inherited from the type, but defer to
732 alignment explicitly specified on the field decl. */;
733 else
734 do_type_align (type, decl);
735
736 /* If the field is packed and not explicitly aligned, give it the
737 minimum alignment. Note that do_type_align may set
738 DECL_USER_ALIGN, so we need to check old_user_align instead. */
739 if (packed_p
740 && !old_user_align)
741 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
742
743 if (! packed_p && ! DECL_USER_ALIGN (decl))
744 {
745 /* Some targets (i.e. i386, VMS) limit struct field alignment
746 to a lower boundary than alignment of variables unless
747 it was overridden by attribute aligned. */
748 #ifdef BIGGEST_FIELD_ALIGNMENT
749 DECL_ALIGN (decl)
750 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
751 #endif
752 #ifdef ADJUST_FIELD_ALIGN
753 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
754 #endif
755 }
756
757 if (zero_bitfield)
758 mfa = initial_max_fld_align * BITS_PER_UNIT;
759 else
760 mfa = maximum_field_alignment;
761 /* Should this be controlled by DECL_USER_ALIGN, too? */
762 if (mfa != 0)
763 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
764 }
765
766 /* Evaluate nonconstant size only once, either now or as soon as safe. */
767 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
768 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
769 if (DECL_SIZE_UNIT (decl) != 0
770 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
771 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
772
773 /* If requested, warn about definitions of large data objects. */
774 if (warn_larger_than
775 && (code == VAR_DECL || code == PARM_DECL)
776 && ! DECL_EXTERNAL (decl))
777 {
778 tree size = DECL_SIZE_UNIT (decl);
779
780 if (size != 0 && TREE_CODE (size) == INTEGER_CST
781 && compare_tree_int (size, larger_than_size) > 0)
782 {
783 int size_as_int = TREE_INT_CST_LOW (size);
784
785 if (compare_tree_int (size, size_as_int) == 0)
786 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
787 else
788 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
789 decl, larger_than_size);
790 }
791 }
792
793 /* If the RTL was already set, update its mode and mem attributes. */
794 if (rtl)
795 {
796 PUT_MODE (rtl, DECL_MODE (decl));
797 SET_DECL_RTL (decl, 0);
798 set_mem_attributes (rtl, decl, 1);
799 SET_DECL_RTL (decl, rtl);
800 }
801 }
802
803 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
804 a previous call to layout_decl and calls it again. */
805
806 void
807 relayout_decl (tree decl)
808 {
809 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
810 DECL_MODE (decl) = VOIDmode;
811 if (!DECL_USER_ALIGN (decl))
812 DECL_ALIGN (decl) = 0;
813 SET_DECL_RTL (decl, 0);
814
815 layout_decl (decl, 0);
816 }
817 \f
818 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
819 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
820 is to be passed to all other layout functions for this record. It is the
821 responsibility of the caller to call `free' for the storage returned.
822 Note that garbage collection is not permitted until we finish laying
823 out the record. */
824
825 record_layout_info
826 start_record_layout (tree t)
827 {
828 record_layout_info rli = XNEW (struct record_layout_info_s);
829
830 rli->t = t;
831
832 /* If the type has a minimum specified alignment (via an attribute
833 declaration, for example) use it -- otherwise, start with a
834 one-byte alignment. */
835 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
836 rli->unpacked_align = rli->record_align;
837 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
838
839 #ifdef STRUCTURE_SIZE_BOUNDARY
840 /* Packed structures don't need to have minimum size. */
841 if (! TYPE_PACKED (t))
842 {
843 unsigned tmp;
844
845 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
846 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
847 if (maximum_field_alignment != 0)
848 tmp = MIN (tmp, maximum_field_alignment);
849 rli->record_align = MAX (rli->record_align, tmp);
850 }
851 #endif
852
853 rli->offset = size_zero_node;
854 rli->bitpos = bitsize_zero_node;
855 rli->prev_field = 0;
856 rli->pending_statics = 0;
857 rli->packed_maybe_necessary = 0;
858 rli->remaining_in_alignment = 0;
859
860 return rli;
861 }
862
863 /* Return the combined bit position for the byte offset OFFSET and the
864 bit position BITPOS.
865
866 These functions operate on byte and bit positions present in FIELD_DECLs
867 and assume that these expressions result in no (intermediate) overflow.
868 This assumption is necessary to fold the expressions as much as possible,
869 so as to avoid creating artificially variable-sized types in languages
870 supporting variable-sized types like Ada. */
871
872 tree
873 bit_from_pos (tree offset, tree bitpos)
874 {
875 if (TREE_CODE (offset) == PLUS_EXPR)
876 offset = size_binop (PLUS_EXPR,
877 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
878 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
879 else
880 offset = fold_convert (bitsizetype, offset);
881 return size_binop (PLUS_EXPR, bitpos,
882 size_binop (MULT_EXPR, offset, bitsize_unit_node));
883 }
884
885 /* Return the combined truncated byte position for the byte offset OFFSET and
886 the bit position BITPOS. */
887
888 tree
889 byte_from_pos (tree offset, tree bitpos)
890 {
891 tree bytepos;
892 if (TREE_CODE (bitpos) == MULT_EXPR
893 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
894 bytepos = TREE_OPERAND (bitpos, 0);
895 else
896 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
897 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
898 }
899
900 /* Split the bit position POS into a byte offset *POFFSET and a bit
901 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
902
903 void
904 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
905 tree pos)
906 {
907 tree toff_align = bitsize_int (off_align);
908 if (TREE_CODE (pos) == MULT_EXPR
909 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
910 {
911 *poffset = size_binop (MULT_EXPR,
912 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
913 size_int (off_align / BITS_PER_UNIT));
914 *pbitpos = bitsize_zero_node;
915 }
916 else
917 {
918 *poffset = size_binop (MULT_EXPR,
919 fold_convert (sizetype,
920 size_binop (FLOOR_DIV_EXPR, pos,
921 toff_align)),
922 size_int (off_align / BITS_PER_UNIT));
923 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
924 }
925 }
926
927 /* Given a pointer to bit and byte offsets and an offset alignment,
928 normalize the offsets so they are within the alignment. */
929
930 void
931 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
932 {
933 /* If the bit position is now larger than it should be, adjust it
934 downwards. */
935 if (compare_tree_int (*pbitpos, off_align) >= 0)
936 {
937 tree offset, bitpos;
938 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
939 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
940 *pbitpos = bitpos;
941 }
942 }
943
944 /* Print debugging information about the information in RLI. */
945
946 DEBUG_FUNCTION void
947 debug_rli (record_layout_info rli)
948 {
949 print_node_brief (stderr, "type", rli->t, 0);
950 print_node_brief (stderr, "\noffset", rli->offset, 0);
951 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
952
953 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
954 rli->record_align, rli->unpacked_align,
955 rli->offset_align);
956
957 /* The ms_struct code is the only that uses this. */
958 if (targetm.ms_bitfield_layout_p (rli->t))
959 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
960
961 if (rli->packed_maybe_necessary)
962 fprintf (stderr, "packed may be necessary\n");
963
964 if (!vec_safe_is_empty (rli->pending_statics))
965 {
966 fprintf (stderr, "pending statics:\n");
967 debug_vec_tree (rli->pending_statics);
968 }
969 }
970
971 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
972 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
973
974 void
975 normalize_rli (record_layout_info rli)
976 {
977 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
978 }
979
980 /* Returns the size in bytes allocated so far. */
981
982 tree
983 rli_size_unit_so_far (record_layout_info rli)
984 {
985 return byte_from_pos (rli->offset, rli->bitpos);
986 }
987
988 /* Returns the size in bits allocated so far. */
989
990 tree
991 rli_size_so_far (record_layout_info rli)
992 {
993 return bit_from_pos (rli->offset, rli->bitpos);
994 }
995
996 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
997 the next available location within the record is given by KNOWN_ALIGN.
998 Update the variable alignment fields in RLI, and return the alignment
999 to give the FIELD. */
1000
1001 unsigned int
1002 update_alignment_for_field (record_layout_info rli, tree field,
1003 unsigned int known_align)
1004 {
1005 /* The alignment required for FIELD. */
1006 unsigned int desired_align;
1007 /* The type of this field. */
1008 tree type = TREE_TYPE (field);
1009 /* True if the field was explicitly aligned by the user. */
1010 bool user_align;
1011 bool is_bitfield;
1012
1013 /* Do not attempt to align an ERROR_MARK node */
1014 if (TREE_CODE (type) == ERROR_MARK)
1015 return 0;
1016
1017 /* Lay out the field so we know what alignment it needs. */
1018 layout_decl (field, known_align);
1019 desired_align = DECL_ALIGN (field);
1020 user_align = DECL_USER_ALIGN (field);
1021
1022 is_bitfield = (type != error_mark_node
1023 && DECL_BIT_FIELD_TYPE (field)
1024 && ! integer_zerop (TYPE_SIZE (type)));
1025
1026 /* Record must have at least as much alignment as any field.
1027 Otherwise, the alignment of the field within the record is
1028 meaningless. */
1029 if (targetm.ms_bitfield_layout_p (rli->t))
1030 {
1031 /* Here, the alignment of the underlying type of a bitfield can
1032 affect the alignment of a record; even a zero-sized field
1033 can do this. The alignment should be to the alignment of
1034 the type, except that for zero-size bitfields this only
1035 applies if there was an immediately prior, nonzero-size
1036 bitfield. (That's the way it is, experimentally.) */
1037 if ((!is_bitfield && !DECL_PACKED (field))
1038 || ((DECL_SIZE (field) == NULL_TREE
1039 || !integer_zerop (DECL_SIZE (field)))
1040 ? !DECL_PACKED (field)
1041 : (rli->prev_field
1042 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1043 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1044 {
1045 unsigned int type_align = TYPE_ALIGN (type);
1046 type_align = MAX (type_align, desired_align);
1047 if (maximum_field_alignment != 0)
1048 type_align = MIN (type_align, maximum_field_alignment);
1049 rli->record_align = MAX (rli->record_align, type_align);
1050 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1051 }
1052 }
1053 #ifdef PCC_BITFIELD_TYPE_MATTERS
1054 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1055 {
1056 /* Named bit-fields cause the entire structure to have the
1057 alignment implied by their type. Some targets also apply the same
1058 rules to unnamed bitfields. */
1059 if (DECL_NAME (field) != 0
1060 || targetm.align_anon_bitfield ())
1061 {
1062 unsigned int type_align = TYPE_ALIGN (type);
1063
1064 #ifdef ADJUST_FIELD_ALIGN
1065 if (! TYPE_USER_ALIGN (type))
1066 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1067 #endif
1068
1069 /* Targets might chose to handle unnamed and hence possibly
1070 zero-width bitfield. Those are not influenced by #pragmas
1071 or packed attributes. */
1072 if (integer_zerop (DECL_SIZE (field)))
1073 {
1074 if (initial_max_fld_align)
1075 type_align = MIN (type_align,
1076 initial_max_fld_align * BITS_PER_UNIT);
1077 }
1078 else if (maximum_field_alignment != 0)
1079 type_align = MIN (type_align, maximum_field_alignment);
1080 else if (DECL_PACKED (field))
1081 type_align = MIN (type_align, BITS_PER_UNIT);
1082
1083 /* The alignment of the record is increased to the maximum
1084 of the current alignment, the alignment indicated on the
1085 field (i.e., the alignment specified by an __aligned__
1086 attribute), and the alignment indicated by the type of
1087 the field. */
1088 rli->record_align = MAX (rli->record_align, desired_align);
1089 rli->record_align = MAX (rli->record_align, type_align);
1090
1091 if (warn_packed)
1092 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1093 user_align |= TYPE_USER_ALIGN (type);
1094 }
1095 }
1096 #endif
1097 else
1098 {
1099 rli->record_align = MAX (rli->record_align, desired_align);
1100 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1101 }
1102
1103 TYPE_USER_ALIGN (rli->t) |= user_align;
1104
1105 return desired_align;
1106 }
1107
1108 /* Called from place_field to handle unions. */
1109
1110 static void
1111 place_union_field (record_layout_info rli, tree field)
1112 {
1113 update_alignment_for_field (rli, field, /*known_align=*/0);
1114
1115 DECL_FIELD_OFFSET (field) = size_zero_node;
1116 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1117 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1118
1119 /* If this is an ERROR_MARK return *after* having set the
1120 field at the start of the union. This helps when parsing
1121 invalid fields. */
1122 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1123 return;
1124
1125 /* We assume the union's size will be a multiple of a byte so we don't
1126 bother with BITPOS. */
1127 if (TREE_CODE (rli->t) == UNION_TYPE)
1128 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1129 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1130 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1131 DECL_SIZE_UNIT (field), rli->offset);
1132 }
1133
1134 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1135 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1136 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1137 units of alignment than the underlying TYPE. */
1138 static int
1139 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1140 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1141 {
1142 /* Note that the calculation of OFFSET might overflow; we calculate it so
1143 that we still get the right result as long as ALIGN is a power of two. */
1144 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1145
1146 offset = offset % align;
1147 return ((offset + size + align - 1) / align
1148 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1149 }
1150 #endif
1151
1152 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1153 is a FIELD_DECL to be added after those fields already present in
1154 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1155 callers that desire that behavior must manually perform that step.) */
1156
1157 void
1158 place_field (record_layout_info rli, tree field)
1159 {
1160 /* The alignment required for FIELD. */
1161 unsigned int desired_align;
1162 /* The alignment FIELD would have if we just dropped it into the
1163 record as it presently stands. */
1164 unsigned int known_align;
1165 unsigned int actual_align;
1166 /* The type of this field. */
1167 tree type = TREE_TYPE (field);
1168
1169 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1170
1171 /* If FIELD is static, then treat it like a separate variable, not
1172 really like a structure field. If it is a FUNCTION_DECL, it's a
1173 method. In both cases, all we do is lay out the decl, and we do
1174 it *after* the record is laid out. */
1175 if (TREE_CODE (field) == VAR_DECL)
1176 {
1177 vec_safe_push (rli->pending_statics, field);
1178 return;
1179 }
1180
1181 /* Enumerators and enum types which are local to this class need not
1182 be laid out. Likewise for initialized constant fields. */
1183 else if (TREE_CODE (field) != FIELD_DECL)
1184 return;
1185
1186 /* Unions are laid out very differently than records, so split
1187 that code off to another function. */
1188 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1189 {
1190 place_union_field (rli, field);
1191 return;
1192 }
1193
1194 else if (TREE_CODE (type) == ERROR_MARK)
1195 {
1196 /* Place this field at the current allocation position, so we
1197 maintain monotonicity. */
1198 DECL_FIELD_OFFSET (field) = rli->offset;
1199 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1200 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1201 return;
1202 }
1203
1204 /* Work out the known alignment so far. Note that A & (-A) is the
1205 value of the least-significant bit in A that is one. */
1206 if (! integer_zerop (rli->bitpos))
1207 known_align = (tree_to_uhwi (rli->bitpos)
1208 & - tree_to_uhwi (rli->bitpos));
1209 else if (integer_zerop (rli->offset))
1210 known_align = 0;
1211 else if (tree_fits_uhwi_p (rli->offset))
1212 known_align = (BITS_PER_UNIT
1213 * (tree_to_uhwi (rli->offset)
1214 & - tree_to_uhwi (rli->offset)));
1215 else
1216 known_align = rli->offset_align;
1217
1218 desired_align = update_alignment_for_field (rli, field, known_align);
1219 if (known_align == 0)
1220 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1221
1222 if (warn_packed && DECL_PACKED (field))
1223 {
1224 if (known_align >= TYPE_ALIGN (type))
1225 {
1226 if (TYPE_ALIGN (type) > desired_align)
1227 {
1228 if (STRICT_ALIGNMENT)
1229 warning (OPT_Wattributes, "packed attribute causes "
1230 "inefficient alignment for %q+D", field);
1231 /* Don't warn if DECL_PACKED was set by the type. */
1232 else if (!TYPE_PACKED (rli->t))
1233 warning (OPT_Wattributes, "packed attribute is "
1234 "unnecessary for %q+D", field);
1235 }
1236 }
1237 else
1238 rli->packed_maybe_necessary = 1;
1239 }
1240
1241 /* Does this field automatically have alignment it needs by virtue
1242 of the fields that precede it and the record's own alignment? */
1243 if (known_align < desired_align)
1244 {
1245 /* No, we need to skip space before this field.
1246 Bump the cumulative size to multiple of field alignment. */
1247
1248 if (!targetm.ms_bitfield_layout_p (rli->t)
1249 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1250 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1251
1252 /* If the alignment is still within offset_align, just align
1253 the bit position. */
1254 if (desired_align < rli->offset_align)
1255 rli->bitpos = round_up (rli->bitpos, desired_align);
1256 else
1257 {
1258 /* First adjust OFFSET by the partial bits, then align. */
1259 rli->offset
1260 = size_binop (PLUS_EXPR, rli->offset,
1261 fold_convert (sizetype,
1262 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1263 bitsize_unit_node)));
1264 rli->bitpos = bitsize_zero_node;
1265
1266 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1267 }
1268
1269 if (! TREE_CONSTANT (rli->offset))
1270 rli->offset_align = desired_align;
1271 if (targetm.ms_bitfield_layout_p (rli->t))
1272 rli->prev_field = NULL;
1273 }
1274
1275 /* Handle compatibility with PCC. Note that if the record has any
1276 variable-sized fields, we need not worry about compatibility. */
1277 #ifdef PCC_BITFIELD_TYPE_MATTERS
1278 if (PCC_BITFIELD_TYPE_MATTERS
1279 && ! targetm.ms_bitfield_layout_p (rli->t)
1280 && TREE_CODE (field) == FIELD_DECL
1281 && type != error_mark_node
1282 && DECL_BIT_FIELD (field)
1283 && (! DECL_PACKED (field)
1284 /* Enter for these packed fields only to issue a warning. */
1285 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1286 && maximum_field_alignment == 0
1287 && ! integer_zerop (DECL_SIZE (field))
1288 && tree_fits_uhwi_p (DECL_SIZE (field))
1289 && tree_fits_uhwi_p (rli->offset)
1290 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1291 {
1292 unsigned int type_align = TYPE_ALIGN (type);
1293 tree dsize = DECL_SIZE (field);
1294 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1295 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1296 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1297
1298 #ifdef ADJUST_FIELD_ALIGN
1299 if (! TYPE_USER_ALIGN (type))
1300 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1301 #endif
1302
1303 /* A bit field may not span more units of alignment of its type
1304 than its type itself. Advance to next boundary if necessary. */
1305 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1306 {
1307 if (DECL_PACKED (field))
1308 {
1309 if (warn_packed_bitfield_compat == 1)
1310 inform
1311 (input_location,
1312 "offset of packed bit-field %qD has changed in GCC 4.4",
1313 field);
1314 }
1315 else
1316 rli->bitpos = round_up (rli->bitpos, type_align);
1317 }
1318
1319 if (! DECL_PACKED (field))
1320 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1321 }
1322 #endif
1323
1324 #ifdef BITFIELD_NBYTES_LIMITED
1325 if (BITFIELD_NBYTES_LIMITED
1326 && ! targetm.ms_bitfield_layout_p (rli->t)
1327 && TREE_CODE (field) == FIELD_DECL
1328 && type != error_mark_node
1329 && DECL_BIT_FIELD_TYPE (field)
1330 && ! DECL_PACKED (field)
1331 && ! integer_zerop (DECL_SIZE (field))
1332 && tree_fits_uhwi_p (DECL_SIZE (field))
1333 && tree_fits_uhwi_p (rli->offset)
1334 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1335 {
1336 unsigned int type_align = TYPE_ALIGN (type);
1337 tree dsize = DECL_SIZE (field);
1338 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1339 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1340 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1341
1342 #ifdef ADJUST_FIELD_ALIGN
1343 if (! TYPE_USER_ALIGN (type))
1344 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1345 #endif
1346
1347 if (maximum_field_alignment != 0)
1348 type_align = MIN (type_align, maximum_field_alignment);
1349 /* ??? This test is opposite the test in the containing if
1350 statement, so this code is unreachable currently. */
1351 else if (DECL_PACKED (field))
1352 type_align = MIN (type_align, BITS_PER_UNIT);
1353
1354 /* A bit field may not span the unit of alignment of its type.
1355 Advance to next boundary if necessary. */
1356 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1357 rli->bitpos = round_up (rli->bitpos, type_align);
1358
1359 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1360 }
1361 #endif
1362
1363 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1364 A subtlety:
1365 When a bit field is inserted into a packed record, the whole
1366 size of the underlying type is used by one or more same-size
1367 adjacent bitfields. (That is, if its long:3, 32 bits is
1368 used in the record, and any additional adjacent long bitfields are
1369 packed into the same chunk of 32 bits. However, if the size
1370 changes, a new field of that size is allocated.) In an unpacked
1371 record, this is the same as using alignment, but not equivalent
1372 when packing.
1373
1374 Note: for compatibility, we use the type size, not the type alignment
1375 to determine alignment, since that matches the documentation */
1376
1377 if (targetm.ms_bitfield_layout_p (rli->t))
1378 {
1379 tree prev_saved = rli->prev_field;
1380 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1381
1382 /* This is a bitfield if it exists. */
1383 if (rli->prev_field)
1384 {
1385 /* If both are bitfields, nonzero, and the same size, this is
1386 the middle of a run. Zero declared size fields are special
1387 and handled as "end of run". (Note: it's nonzero declared
1388 size, but equal type sizes!) (Since we know that both
1389 the current and previous fields are bitfields by the
1390 time we check it, DECL_SIZE must be present for both.) */
1391 if (DECL_BIT_FIELD_TYPE (field)
1392 && !integer_zerop (DECL_SIZE (field))
1393 && !integer_zerop (DECL_SIZE (rli->prev_field))
1394 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1395 && tree_fits_uhwi_p (TYPE_SIZE (type))
1396 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1397 {
1398 /* We're in the middle of a run of equal type size fields; make
1399 sure we realign if we run out of bits. (Not decl size,
1400 type size!) */
1401 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1402
1403 if (rli->remaining_in_alignment < bitsize)
1404 {
1405 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1406
1407 /* out of bits; bump up to next 'word'. */
1408 rli->bitpos
1409 = size_binop (PLUS_EXPR, rli->bitpos,
1410 bitsize_int (rli->remaining_in_alignment));
1411 rli->prev_field = field;
1412 if (typesize < bitsize)
1413 rli->remaining_in_alignment = 0;
1414 else
1415 rli->remaining_in_alignment = typesize - bitsize;
1416 }
1417 else
1418 rli->remaining_in_alignment -= bitsize;
1419 }
1420 else
1421 {
1422 /* End of a run: if leaving a run of bitfields of the same type
1423 size, we have to "use up" the rest of the bits of the type
1424 size.
1425
1426 Compute the new position as the sum of the size for the prior
1427 type and where we first started working on that type.
1428 Note: since the beginning of the field was aligned then
1429 of course the end will be too. No round needed. */
1430
1431 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1432 {
1433 rli->bitpos
1434 = size_binop (PLUS_EXPR, rli->bitpos,
1435 bitsize_int (rli->remaining_in_alignment));
1436 }
1437 else
1438 /* We "use up" size zero fields; the code below should behave
1439 as if the prior field was not a bitfield. */
1440 prev_saved = NULL;
1441
1442 /* Cause a new bitfield to be captured, either this time (if
1443 currently a bitfield) or next time we see one. */
1444 if (!DECL_BIT_FIELD_TYPE (field)
1445 || integer_zerop (DECL_SIZE (field)))
1446 rli->prev_field = NULL;
1447 }
1448
1449 normalize_rli (rli);
1450 }
1451
1452 /* If we're starting a new run of same type size bitfields
1453 (or a run of non-bitfields), set up the "first of the run"
1454 fields.
1455
1456 That is, if the current field is not a bitfield, or if there
1457 was a prior bitfield the type sizes differ, or if there wasn't
1458 a prior bitfield the size of the current field is nonzero.
1459
1460 Note: we must be sure to test ONLY the type size if there was
1461 a prior bitfield and ONLY for the current field being zero if
1462 there wasn't. */
1463
1464 if (!DECL_BIT_FIELD_TYPE (field)
1465 || (prev_saved != NULL
1466 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1467 : !integer_zerop (DECL_SIZE (field)) ))
1468 {
1469 /* Never smaller than a byte for compatibility. */
1470 unsigned int type_align = BITS_PER_UNIT;
1471
1472 /* (When not a bitfield), we could be seeing a flex array (with
1473 no DECL_SIZE). Since we won't be using remaining_in_alignment
1474 until we see a bitfield (and come by here again) we just skip
1475 calculating it. */
1476 if (DECL_SIZE (field) != NULL
1477 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1478 && tree_fits_uhwi_p (DECL_SIZE (field)))
1479 {
1480 unsigned HOST_WIDE_INT bitsize
1481 = tree_to_uhwi (DECL_SIZE (field));
1482 unsigned HOST_WIDE_INT typesize
1483 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1484
1485 if (typesize < bitsize)
1486 rli->remaining_in_alignment = 0;
1487 else
1488 rli->remaining_in_alignment = typesize - bitsize;
1489 }
1490
1491 /* Now align (conventionally) for the new type. */
1492 type_align = TYPE_ALIGN (TREE_TYPE (field));
1493
1494 if (maximum_field_alignment != 0)
1495 type_align = MIN (type_align, maximum_field_alignment);
1496
1497 rli->bitpos = round_up (rli->bitpos, type_align);
1498
1499 /* If we really aligned, don't allow subsequent bitfields
1500 to undo that. */
1501 rli->prev_field = NULL;
1502 }
1503 }
1504
1505 /* Offset so far becomes the position of this field after normalizing. */
1506 normalize_rli (rli);
1507 DECL_FIELD_OFFSET (field) = rli->offset;
1508 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1509 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1510
1511 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1512 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1513 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1514
1515 /* If this field ended up more aligned than we thought it would be (we
1516 approximate this by seeing if its position changed), lay out the field
1517 again; perhaps we can use an integral mode for it now. */
1518 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1519 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1520 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1521 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1522 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1523 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1524 actual_align = (BITS_PER_UNIT
1525 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1526 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1527 else
1528 actual_align = DECL_OFFSET_ALIGN (field);
1529 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1530 store / extract bit field operations will check the alignment of the
1531 record against the mode of bit fields. */
1532
1533 if (known_align != actual_align)
1534 layout_decl (field, actual_align);
1535
1536 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1537 rli->prev_field = field;
1538
1539 /* Now add size of this field to the size of the record. If the size is
1540 not constant, treat the field as being a multiple of bytes and just
1541 adjust the offset, resetting the bit position. Otherwise, apportion the
1542 size amongst the bit position and offset. First handle the case of an
1543 unspecified size, which can happen when we have an invalid nested struct
1544 definition, such as struct j { struct j { int i; } }. The error message
1545 is printed in finish_struct. */
1546 if (DECL_SIZE (field) == 0)
1547 /* Do nothing. */;
1548 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1549 || TREE_OVERFLOW (DECL_SIZE (field)))
1550 {
1551 rli->offset
1552 = size_binop (PLUS_EXPR, rli->offset,
1553 fold_convert (sizetype,
1554 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1555 bitsize_unit_node)));
1556 rli->offset
1557 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1558 rli->bitpos = bitsize_zero_node;
1559 rli->offset_align = MIN (rli->offset_align, desired_align);
1560 }
1561 else if (targetm.ms_bitfield_layout_p (rli->t))
1562 {
1563 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1564
1565 /* If we ended a bitfield before the full length of the type then
1566 pad the struct out to the full length of the last type. */
1567 if ((DECL_CHAIN (field) == NULL
1568 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1569 && DECL_BIT_FIELD_TYPE (field)
1570 && !integer_zerop (DECL_SIZE (field)))
1571 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1572 bitsize_int (rli->remaining_in_alignment));
1573
1574 normalize_rli (rli);
1575 }
1576 else
1577 {
1578 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1579 normalize_rli (rli);
1580 }
1581 }
1582
1583 /* Assuming that all the fields have been laid out, this function uses
1584 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1585 indicated by RLI. */
1586
1587 static void
1588 finalize_record_size (record_layout_info rli)
1589 {
1590 tree unpadded_size, unpadded_size_unit;
1591
1592 /* Now we want just byte and bit offsets, so set the offset alignment
1593 to be a byte and then normalize. */
1594 rli->offset_align = BITS_PER_UNIT;
1595 normalize_rli (rli);
1596
1597 /* Determine the desired alignment. */
1598 #ifdef ROUND_TYPE_ALIGN
1599 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1600 rli->record_align);
1601 #else
1602 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1603 #endif
1604
1605 /* Compute the size so far. Be sure to allow for extra bits in the
1606 size in bytes. We have guaranteed above that it will be no more
1607 than a single byte. */
1608 unpadded_size = rli_size_so_far (rli);
1609 unpadded_size_unit = rli_size_unit_so_far (rli);
1610 if (! integer_zerop (rli->bitpos))
1611 unpadded_size_unit
1612 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1613
1614 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1615 && !TREE_OVERFLOW (unpadded_size_unit)
1616 && !valid_constant_size_p (unpadded_size_unit))
1617 error ("type %qT is too large", rli->t);
1618
1619 /* Round the size up to be a multiple of the required alignment. */
1620 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1621 TYPE_SIZE_UNIT (rli->t)
1622 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1623
1624 if (TREE_CONSTANT (unpadded_size)
1625 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1626 && input_location != BUILTINS_LOCATION)
1627 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1628
1629 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1630 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1631 && TREE_CONSTANT (unpadded_size))
1632 {
1633 tree unpacked_size;
1634
1635 #ifdef ROUND_TYPE_ALIGN
1636 rli->unpacked_align
1637 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1638 #else
1639 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1640 #endif
1641
1642 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1643 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1644 {
1645 if (TYPE_NAME (rli->t))
1646 {
1647 tree name;
1648
1649 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1650 name = TYPE_NAME (rli->t);
1651 else
1652 name = DECL_NAME (TYPE_NAME (rli->t));
1653
1654 if (STRICT_ALIGNMENT)
1655 warning (OPT_Wpacked, "packed attribute causes inefficient "
1656 "alignment for %qE", name);
1657 else
1658 warning (OPT_Wpacked,
1659 "packed attribute is unnecessary for %qE", name);
1660 }
1661 else
1662 {
1663 if (STRICT_ALIGNMENT)
1664 warning (OPT_Wpacked,
1665 "packed attribute causes inefficient alignment");
1666 else
1667 warning (OPT_Wpacked, "packed attribute is unnecessary");
1668 }
1669 }
1670 }
1671 }
1672
1673 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1674
1675 void
1676 compute_record_mode (tree type)
1677 {
1678 tree field;
1679 machine_mode mode = VOIDmode;
1680
1681 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1682 However, if possible, we use a mode that fits in a register
1683 instead, in order to allow for better optimization down the
1684 line. */
1685 SET_TYPE_MODE (type, BLKmode);
1686
1687 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1688 return;
1689
1690 /* A record which has any BLKmode members must itself be
1691 BLKmode; it can't go in a register. Unless the member is
1692 BLKmode only because it isn't aligned. */
1693 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1694 {
1695 if (TREE_CODE (field) != FIELD_DECL)
1696 continue;
1697
1698 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1699 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1700 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1701 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1702 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1703 || ! tree_fits_uhwi_p (bit_position (field))
1704 || DECL_SIZE (field) == 0
1705 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1706 return;
1707
1708 /* If this field is the whole struct, remember its mode so
1709 that, say, we can put a double in a class into a DF
1710 register instead of forcing it to live in the stack. */
1711 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1712 mode = DECL_MODE (field);
1713
1714 /* With some targets, it is sub-optimal to access an aligned
1715 BLKmode structure as a scalar. */
1716 if (targetm.member_type_forces_blk (field, mode))
1717 return;
1718 }
1719
1720 /* If we only have one real field; use its mode if that mode's size
1721 matches the type's size. This only applies to RECORD_TYPE. This
1722 does not apply to unions. */
1723 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1724 && tree_fits_uhwi_p (TYPE_SIZE (type))
1725 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1726 SET_TYPE_MODE (type, mode);
1727 else
1728 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1729
1730 /* If structure's known alignment is less than what the scalar
1731 mode would need, and it matters, then stick with BLKmode. */
1732 if (TYPE_MODE (type) != BLKmode
1733 && STRICT_ALIGNMENT
1734 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1735 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1736 {
1737 /* If this is the only reason this type is BLKmode, then
1738 don't force containing types to be BLKmode. */
1739 TYPE_NO_FORCE_BLK (type) = 1;
1740 SET_TYPE_MODE (type, BLKmode);
1741 }
1742 }
1743
1744 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1745 out. */
1746
1747 static void
1748 finalize_type_size (tree type)
1749 {
1750 /* Normally, use the alignment corresponding to the mode chosen.
1751 However, where strict alignment is not required, avoid
1752 over-aligning structures, since most compilers do not do this
1753 alignment. */
1754
1755 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1756 && (STRICT_ALIGNMENT
1757 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1758 && TREE_CODE (type) != QUAL_UNION_TYPE
1759 && TREE_CODE (type) != ARRAY_TYPE)))
1760 {
1761 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1762
1763 /* Don't override a larger alignment requirement coming from a user
1764 alignment of one of the fields. */
1765 if (mode_align >= TYPE_ALIGN (type))
1766 {
1767 TYPE_ALIGN (type) = mode_align;
1768 TYPE_USER_ALIGN (type) = 0;
1769 }
1770 }
1771
1772 /* Do machine-dependent extra alignment. */
1773 #ifdef ROUND_TYPE_ALIGN
1774 TYPE_ALIGN (type)
1775 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1776 #endif
1777
1778 /* If we failed to find a simple way to calculate the unit size
1779 of the type, find it by division. */
1780 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1781 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1782 result will fit in sizetype. We will get more efficient code using
1783 sizetype, so we force a conversion. */
1784 TYPE_SIZE_UNIT (type)
1785 = fold_convert (sizetype,
1786 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1787 bitsize_unit_node));
1788
1789 if (TYPE_SIZE (type) != 0)
1790 {
1791 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1792 TYPE_SIZE_UNIT (type)
1793 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1794 }
1795
1796 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1797 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1798 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1799 if (TYPE_SIZE_UNIT (type) != 0
1800 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1801 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1802
1803 /* Also layout any other variants of the type. */
1804 if (TYPE_NEXT_VARIANT (type)
1805 || type != TYPE_MAIN_VARIANT (type))
1806 {
1807 tree variant;
1808 /* Record layout info of this variant. */
1809 tree size = TYPE_SIZE (type);
1810 tree size_unit = TYPE_SIZE_UNIT (type);
1811 unsigned int align = TYPE_ALIGN (type);
1812 unsigned int precision = TYPE_PRECISION (type);
1813 unsigned int user_align = TYPE_USER_ALIGN (type);
1814 machine_mode mode = TYPE_MODE (type);
1815
1816 /* Copy it into all variants. */
1817 for (variant = TYPE_MAIN_VARIANT (type);
1818 variant != 0;
1819 variant = TYPE_NEXT_VARIANT (variant))
1820 {
1821 TYPE_SIZE (variant) = size;
1822 TYPE_SIZE_UNIT (variant) = size_unit;
1823 TYPE_ALIGN (variant) = align;
1824 TYPE_PRECISION (variant) = precision;
1825 TYPE_USER_ALIGN (variant) = user_align;
1826 SET_TYPE_MODE (variant, mode);
1827 }
1828 }
1829 }
1830
1831 /* Return a new underlying object for a bitfield started with FIELD. */
1832
1833 static tree
1834 start_bitfield_representative (tree field)
1835 {
1836 tree repr = make_node (FIELD_DECL);
1837 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1838 /* Force the representative to begin at a BITS_PER_UNIT aligned
1839 boundary - C++ may use tail-padding of a base object to
1840 continue packing bits so the bitfield region does not start
1841 at bit zero (see g++.dg/abi/bitfield5.C for example).
1842 Unallocated bits may happen for other reasons as well,
1843 for example Ada which allows explicit bit-granular structure layout. */
1844 DECL_FIELD_BIT_OFFSET (repr)
1845 = size_binop (BIT_AND_EXPR,
1846 DECL_FIELD_BIT_OFFSET (field),
1847 bitsize_int (~(BITS_PER_UNIT - 1)));
1848 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1849 DECL_SIZE (repr) = DECL_SIZE (field);
1850 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1851 DECL_PACKED (repr) = DECL_PACKED (field);
1852 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1853 return repr;
1854 }
1855
1856 /* Finish up a bitfield group that was started by creating the underlying
1857 object REPR with the last field in the bitfield group FIELD. */
1858
1859 static void
1860 finish_bitfield_representative (tree repr, tree field)
1861 {
1862 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1863 machine_mode mode;
1864 tree nextf, size;
1865
1866 size = size_diffop (DECL_FIELD_OFFSET (field),
1867 DECL_FIELD_OFFSET (repr));
1868 while (TREE_CODE (size) == COMPOUND_EXPR)
1869 size = TREE_OPERAND (size, 1);
1870 gcc_assert (tree_fits_uhwi_p (size));
1871 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1872 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1873 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1874 + tree_to_uhwi (DECL_SIZE (field)));
1875
1876 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1877 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1878
1879 /* Now nothing tells us how to pad out bitsize ... */
1880 nextf = DECL_CHAIN (field);
1881 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1882 nextf = DECL_CHAIN (nextf);
1883 if (nextf)
1884 {
1885 tree maxsize;
1886 /* If there was an error, the field may be not laid out
1887 correctly. Don't bother to do anything. */
1888 if (TREE_TYPE (nextf) == error_mark_node)
1889 return;
1890 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1891 DECL_FIELD_OFFSET (repr));
1892 if (tree_fits_uhwi_p (maxsize))
1893 {
1894 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1895 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1896 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1897 /* If the group ends within a bitfield nextf does not need to be
1898 aligned to BITS_PER_UNIT. Thus round up. */
1899 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1900 }
1901 else
1902 maxbitsize = bitsize;
1903 }
1904 else
1905 {
1906 /* ??? If you consider that tail-padding of this struct might be
1907 re-used when deriving from it we cannot really do the following
1908 and thus need to set maxsize to bitsize? Also we cannot
1909 generally rely on maxsize to fold to an integer constant, so
1910 use bitsize as fallback for this case. */
1911 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1912 DECL_FIELD_OFFSET (repr));
1913 if (tree_fits_uhwi_p (maxsize))
1914 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1915 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1916 else
1917 maxbitsize = bitsize;
1918 }
1919
1920 /* Only if we don't artificially break up the representative in
1921 the middle of a large bitfield with different possibly
1922 overlapping representatives. And all representatives start
1923 at byte offset. */
1924 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1925
1926 /* Find the smallest nice mode to use. */
1927 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1928 mode = GET_MODE_WIDER_MODE (mode))
1929 if (GET_MODE_BITSIZE (mode) >= bitsize)
1930 break;
1931 if (mode != VOIDmode
1932 && (GET_MODE_BITSIZE (mode) > maxbitsize
1933 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1934 mode = VOIDmode;
1935
1936 if (mode == VOIDmode)
1937 {
1938 /* We really want a BLKmode representative only as a last resort,
1939 considering the member b in
1940 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1941 Otherwise we simply want to split the representative up
1942 allowing for overlaps within the bitfield region as required for
1943 struct { int a : 7; int b : 7;
1944 int c : 10; int d; } __attribute__((packed));
1945 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1946 DECL_SIZE (repr) = bitsize_int (bitsize);
1947 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1948 DECL_MODE (repr) = BLKmode;
1949 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1950 bitsize / BITS_PER_UNIT);
1951 }
1952 else
1953 {
1954 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1955 DECL_SIZE (repr) = bitsize_int (modesize);
1956 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1957 DECL_MODE (repr) = mode;
1958 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1959 }
1960
1961 /* Remember whether the bitfield group is at the end of the
1962 structure or not. */
1963 DECL_CHAIN (repr) = nextf;
1964 }
1965
1966 /* Compute and set FIELD_DECLs for the underlying objects we should
1967 use for bitfield access for the structure T. */
1968
1969 void
1970 finish_bitfield_layout (tree t)
1971 {
1972 tree field, prev;
1973 tree repr = NULL_TREE;
1974
1975 /* Unions would be special, for the ease of type-punning optimizations
1976 we could use the underlying type as hint for the representative
1977 if the bitfield would fit and the representative would not exceed
1978 the union in size. */
1979 if (TREE_CODE (t) != RECORD_TYPE)
1980 return;
1981
1982 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1983 field; field = DECL_CHAIN (field))
1984 {
1985 if (TREE_CODE (field) != FIELD_DECL)
1986 continue;
1987
1988 /* In the C++ memory model, consecutive bit fields in a structure are
1989 considered one memory location and updating a memory location
1990 may not store into adjacent memory locations. */
1991 if (!repr
1992 && DECL_BIT_FIELD_TYPE (field))
1993 {
1994 /* Start new representative. */
1995 repr = start_bitfield_representative (field);
1996 }
1997 else if (repr
1998 && ! DECL_BIT_FIELD_TYPE (field))
1999 {
2000 /* Finish off new representative. */
2001 finish_bitfield_representative (repr, prev);
2002 repr = NULL_TREE;
2003 }
2004 else if (DECL_BIT_FIELD_TYPE (field))
2005 {
2006 gcc_assert (repr != NULL_TREE);
2007
2008 /* Zero-size bitfields finish off a representative and
2009 do not have a representative themselves. This is
2010 required by the C++ memory model. */
2011 if (integer_zerop (DECL_SIZE (field)))
2012 {
2013 finish_bitfield_representative (repr, prev);
2014 repr = NULL_TREE;
2015 }
2016
2017 /* We assume that either DECL_FIELD_OFFSET of the representative
2018 and each bitfield member is a constant or they are equal.
2019 This is because we need to be able to compute the bit-offset
2020 of each field relative to the representative in get_bit_range
2021 during RTL expansion.
2022 If these constraints are not met, simply force a new
2023 representative to be generated. That will at most
2024 generate worse code but still maintain correctness with
2025 respect to the C++ memory model. */
2026 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2027 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2028 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2029 DECL_FIELD_OFFSET (field), 0)))
2030 {
2031 finish_bitfield_representative (repr, prev);
2032 repr = start_bitfield_representative (field);
2033 }
2034 }
2035 else
2036 continue;
2037
2038 if (repr)
2039 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2040
2041 prev = field;
2042 }
2043
2044 if (repr)
2045 finish_bitfield_representative (repr, prev);
2046 }
2047
2048 /* Do all of the work required to layout the type indicated by RLI,
2049 once the fields have been laid out. This function will call `free'
2050 for RLI, unless FREE_P is false. Passing a value other than false
2051 for FREE_P is bad practice; this option only exists to support the
2052 G++ 3.2 ABI. */
2053
2054 void
2055 finish_record_layout (record_layout_info rli, int free_p)
2056 {
2057 tree variant;
2058
2059 /* Compute the final size. */
2060 finalize_record_size (rli);
2061
2062 /* Compute the TYPE_MODE for the record. */
2063 compute_record_mode (rli->t);
2064
2065 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2066 finalize_type_size (rli->t);
2067
2068 /* Compute bitfield representatives. */
2069 finish_bitfield_layout (rli->t);
2070
2071 /* Propagate TYPE_PACKED to variants. With C++ templates,
2072 handle_packed_attribute is too early to do this. */
2073 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2074 variant = TYPE_NEXT_VARIANT (variant))
2075 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2076
2077 /* Lay out any static members. This is done now because their type
2078 may use the record's type. */
2079 while (!vec_safe_is_empty (rli->pending_statics))
2080 layout_decl (rli->pending_statics->pop (), 0);
2081
2082 /* Clean up. */
2083 if (free_p)
2084 {
2085 vec_free (rli->pending_statics);
2086 free (rli);
2087 }
2088 }
2089 \f
2090
2091 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2092 NAME, its fields are chained in reverse on FIELDS.
2093
2094 If ALIGN_TYPE is non-null, it is given the same alignment as
2095 ALIGN_TYPE. */
2096
2097 void
2098 finish_builtin_struct (tree type, const char *name, tree fields,
2099 tree align_type)
2100 {
2101 tree tail, next;
2102
2103 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2104 {
2105 DECL_FIELD_CONTEXT (fields) = type;
2106 next = DECL_CHAIN (fields);
2107 DECL_CHAIN (fields) = tail;
2108 }
2109 TYPE_FIELDS (type) = tail;
2110
2111 if (align_type)
2112 {
2113 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2114 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2115 }
2116
2117 layout_type (type);
2118 #if 0 /* not yet, should get fixed properly later */
2119 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2120 #else
2121 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2122 TYPE_DECL, get_identifier (name), type);
2123 #endif
2124 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2125 layout_decl (TYPE_NAME (type), 0);
2126 }
2127
2128 /* Calculate the mode, size, and alignment for TYPE.
2129 For an array type, calculate the element separation as well.
2130 Record TYPE on the chain of permanent or temporary types
2131 so that dbxout will find out about it.
2132
2133 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2134 layout_type does nothing on such a type.
2135
2136 If the type is incomplete, its TYPE_SIZE remains zero. */
2137
2138 void
2139 layout_type (tree type)
2140 {
2141 gcc_assert (type);
2142
2143 if (type == error_mark_node)
2144 return;
2145
2146 /* Do nothing if type has been laid out before. */
2147 if (TYPE_SIZE (type))
2148 return;
2149
2150 switch (TREE_CODE (type))
2151 {
2152 case LANG_TYPE:
2153 /* This kind of type is the responsibility
2154 of the language-specific code. */
2155 gcc_unreachable ();
2156
2157 case BOOLEAN_TYPE:
2158 case INTEGER_TYPE:
2159 case ENUMERAL_TYPE:
2160 SET_TYPE_MODE (type,
2161 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2162 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2163 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2164 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2165 break;
2166
2167 case REAL_TYPE:
2168 SET_TYPE_MODE (type,
2169 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2170 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2171 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2172 break;
2173
2174 case FIXED_POINT_TYPE:
2175 /* TYPE_MODE (type) has been set already. */
2176 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2177 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2178 break;
2179
2180 case COMPLEX_TYPE:
2181 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2182 SET_TYPE_MODE (type,
2183 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2184 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2185 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2186 0));
2187 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2188 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2189 break;
2190
2191 case VECTOR_TYPE:
2192 {
2193 int nunits = TYPE_VECTOR_SUBPARTS (type);
2194 tree innertype = TREE_TYPE (type);
2195
2196 gcc_assert (!(nunits & (nunits - 1)));
2197
2198 /* Find an appropriate mode for the vector type. */
2199 if (TYPE_MODE (type) == VOIDmode)
2200 SET_TYPE_MODE (type,
2201 mode_for_vector (TYPE_MODE (innertype), nunits));
2202
2203 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2204 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2205 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2206 TYPE_SIZE_UNIT (innertype),
2207 size_int (nunits));
2208 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2209 bitsize_int (nunits));
2210
2211 /* For vector types, we do not default to the mode's alignment.
2212 Instead, query a target hook, defaulting to natural alignment.
2213 This prevents ABI changes depending on whether or not native
2214 vector modes are supported. */
2215 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2216
2217 /* However, if the underlying mode requires a bigger alignment than
2218 what the target hook provides, we cannot use the mode. For now,
2219 simply reject that case. */
2220 gcc_assert (TYPE_ALIGN (type)
2221 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2222 break;
2223 }
2224
2225 case VOID_TYPE:
2226 /* This is an incomplete type and so doesn't have a size. */
2227 TYPE_ALIGN (type) = 1;
2228 TYPE_USER_ALIGN (type) = 0;
2229 SET_TYPE_MODE (type, VOIDmode);
2230 break;
2231
2232 case POINTER_BOUNDS_TYPE:
2233 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2234 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2235 break;
2236
2237 case OFFSET_TYPE:
2238 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2239 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2240 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2241 integral, which may be an __intN. */
2242 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2243 TYPE_PRECISION (type) = POINTER_SIZE;
2244 break;
2245
2246 case FUNCTION_TYPE:
2247 case METHOD_TYPE:
2248 /* It's hard to see what the mode and size of a function ought to
2249 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2250 make it consistent with that. */
2251 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2252 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2253 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2254 break;
2255
2256 case POINTER_TYPE:
2257 case REFERENCE_TYPE:
2258 {
2259 machine_mode mode = TYPE_MODE (type);
2260 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2261 {
2262 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2263 mode = targetm.addr_space.address_mode (as);
2264 }
2265
2266 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2267 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2268 TYPE_UNSIGNED (type) = 1;
2269 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2270 }
2271 break;
2272
2273 case ARRAY_TYPE:
2274 {
2275 tree index = TYPE_DOMAIN (type);
2276 tree element = TREE_TYPE (type);
2277
2278 build_pointer_type (element);
2279
2280 /* We need to know both bounds in order to compute the size. */
2281 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2282 && TYPE_SIZE (element))
2283 {
2284 tree ub = TYPE_MAX_VALUE (index);
2285 tree lb = TYPE_MIN_VALUE (index);
2286 tree element_size = TYPE_SIZE (element);
2287 tree length;
2288
2289 /* Make sure that an array of zero-sized element is zero-sized
2290 regardless of its extent. */
2291 if (integer_zerop (element_size))
2292 length = size_zero_node;
2293
2294 /* The computation should happen in the original signedness so
2295 that (possible) negative values are handled appropriately
2296 when determining overflow. */
2297 else
2298 {
2299 /* ??? When it is obvious that the range is signed
2300 represent it using ssizetype. */
2301 if (TREE_CODE (lb) == INTEGER_CST
2302 && TREE_CODE (ub) == INTEGER_CST
2303 && TYPE_UNSIGNED (TREE_TYPE (lb))
2304 && tree_int_cst_lt (ub, lb))
2305 {
2306 lb = wide_int_to_tree (ssizetype,
2307 offset_int::from (lb, SIGNED));
2308 ub = wide_int_to_tree (ssizetype,
2309 offset_int::from (ub, SIGNED));
2310 }
2311 length
2312 = fold_convert (sizetype,
2313 size_binop (PLUS_EXPR,
2314 build_int_cst (TREE_TYPE (lb), 1),
2315 size_binop (MINUS_EXPR, ub, lb)));
2316 }
2317
2318 /* ??? We have no way to distinguish a null-sized array from an
2319 array spanning the whole sizetype range, so we arbitrarily
2320 decide that [0, -1] is the only valid representation. */
2321 if (integer_zerop (length)
2322 && TREE_OVERFLOW (length)
2323 && integer_zerop (lb))
2324 length = size_zero_node;
2325
2326 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2327 fold_convert (bitsizetype,
2328 length));
2329
2330 /* If we know the size of the element, calculate the total size
2331 directly, rather than do some division thing below. This
2332 optimization helps Fortran assumed-size arrays (where the
2333 size of the array is determined at runtime) substantially. */
2334 if (TYPE_SIZE_UNIT (element))
2335 TYPE_SIZE_UNIT (type)
2336 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2337 }
2338
2339 /* Now round the alignment and size,
2340 using machine-dependent criteria if any. */
2341
2342 #ifdef ROUND_TYPE_ALIGN
2343 TYPE_ALIGN (type)
2344 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2345 #else
2346 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2347 #endif
2348 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2349 SET_TYPE_MODE (type, BLKmode);
2350 if (TYPE_SIZE (type) != 0
2351 && ! targetm.member_type_forces_blk (type, VOIDmode)
2352 /* BLKmode elements force BLKmode aggregate;
2353 else extract/store fields may lose. */
2354 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2355 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2356 {
2357 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2358 TYPE_SIZE (type)));
2359 if (TYPE_MODE (type) != BLKmode
2360 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2361 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2362 {
2363 TYPE_NO_FORCE_BLK (type) = 1;
2364 SET_TYPE_MODE (type, BLKmode);
2365 }
2366 }
2367 /* When the element size is constant, check that it is at least as
2368 large as the element alignment. */
2369 if (TYPE_SIZE_UNIT (element)
2370 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2371 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2372 TYPE_ALIGN_UNIT. */
2373 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2374 && !integer_zerop (TYPE_SIZE_UNIT (element))
2375 && compare_tree_int (TYPE_SIZE_UNIT (element),
2376 TYPE_ALIGN_UNIT (element)) < 0)
2377 error ("alignment of array elements is greater than element size");
2378 break;
2379 }
2380
2381 case RECORD_TYPE:
2382 case UNION_TYPE:
2383 case QUAL_UNION_TYPE:
2384 {
2385 tree field;
2386 record_layout_info rli;
2387
2388 /* Initialize the layout information. */
2389 rli = start_record_layout (type);
2390
2391 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2392 in the reverse order in building the COND_EXPR that denotes
2393 its size. We reverse them again later. */
2394 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2395 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2396
2397 /* Place all the fields. */
2398 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2399 place_field (rli, field);
2400
2401 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2402 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2403
2404 /* Finish laying out the record. */
2405 finish_record_layout (rli, /*free_p=*/true);
2406 }
2407 break;
2408
2409 default:
2410 gcc_unreachable ();
2411 }
2412
2413 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2414 records and unions, finish_record_layout already called this
2415 function. */
2416 if (TREE_CODE (type) != RECORD_TYPE
2417 && TREE_CODE (type) != UNION_TYPE
2418 && TREE_CODE (type) != QUAL_UNION_TYPE)
2419 finalize_type_size (type);
2420
2421 /* We should never see alias sets on incomplete aggregates. And we
2422 should not call layout_type on not incomplete aggregates. */
2423 if (AGGREGATE_TYPE_P (type))
2424 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2425 }
2426
2427 /* Return the least alignment required for type TYPE. */
2428
2429 unsigned int
2430 min_align_of_type (tree type)
2431 {
2432 unsigned int align = TYPE_ALIGN (type);
2433 align = MIN (align, BIGGEST_ALIGNMENT);
2434 if (!TYPE_USER_ALIGN (type))
2435 {
2436 #ifdef BIGGEST_FIELD_ALIGNMENT
2437 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2438 #endif
2439 unsigned int field_align = align;
2440 #ifdef ADJUST_FIELD_ALIGN
2441 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2442 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2443 ggc_free (field);
2444 #endif
2445 align = MIN (align, field_align);
2446 }
2447 return align / BITS_PER_UNIT;
2448 }
2449
2450 /* Vector types need to re-check the target flags each time we report
2451 the machine mode. We need to do this because attribute target can
2452 change the result of vector_mode_supported_p and have_regs_of_mode
2453 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2454 change on a per-function basis. */
2455 /* ??? Possibly a better solution is to run through all the types
2456 referenced by a function and re-compute the TYPE_MODE once, rather
2457 than make the TYPE_MODE macro call a function. */
2458
2459 machine_mode
2460 vector_type_mode (const_tree t)
2461 {
2462 machine_mode mode;
2463
2464 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2465
2466 mode = t->type_common.mode;
2467 if (VECTOR_MODE_P (mode)
2468 && (!targetm.vector_mode_supported_p (mode)
2469 || !have_regs_of_mode[mode]))
2470 {
2471 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2472
2473 /* For integers, try mapping it to a same-sized scalar mode. */
2474 if (GET_MODE_CLASS (innermode) == MODE_INT)
2475 {
2476 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2477 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2478
2479 if (mode != VOIDmode && have_regs_of_mode[mode])
2480 return mode;
2481 }
2482
2483 return BLKmode;
2484 }
2485
2486 return mode;
2487 }
2488 \f
2489 /* Create and return a type for signed integers of PRECISION bits. */
2490
2491 tree
2492 make_signed_type (int precision)
2493 {
2494 tree type = make_node (INTEGER_TYPE);
2495
2496 TYPE_PRECISION (type) = precision;
2497
2498 fixup_signed_type (type);
2499 return type;
2500 }
2501
2502 /* Create and return a type for unsigned integers of PRECISION bits. */
2503
2504 tree
2505 make_unsigned_type (int precision)
2506 {
2507 tree type = make_node (INTEGER_TYPE);
2508
2509 TYPE_PRECISION (type) = precision;
2510
2511 fixup_unsigned_type (type);
2512 return type;
2513 }
2514 \f
2515 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2516 and SATP. */
2517
2518 tree
2519 make_fract_type (int precision, int unsignedp, int satp)
2520 {
2521 tree type = make_node (FIXED_POINT_TYPE);
2522
2523 TYPE_PRECISION (type) = precision;
2524
2525 if (satp)
2526 TYPE_SATURATING (type) = 1;
2527
2528 /* Lay out the type: set its alignment, size, etc. */
2529 if (unsignedp)
2530 {
2531 TYPE_UNSIGNED (type) = 1;
2532 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2533 }
2534 else
2535 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2536 layout_type (type);
2537
2538 return type;
2539 }
2540
2541 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2542 and SATP. */
2543
2544 tree
2545 make_accum_type (int precision, int unsignedp, int satp)
2546 {
2547 tree type = make_node (FIXED_POINT_TYPE);
2548
2549 TYPE_PRECISION (type) = precision;
2550
2551 if (satp)
2552 TYPE_SATURATING (type) = 1;
2553
2554 /* Lay out the type: set its alignment, size, etc. */
2555 if (unsignedp)
2556 {
2557 TYPE_UNSIGNED (type) = 1;
2558 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2559 }
2560 else
2561 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2562 layout_type (type);
2563
2564 return type;
2565 }
2566
2567 /* Initialize sizetypes so layout_type can use them. */
2568
2569 void
2570 initialize_sizetypes (void)
2571 {
2572 int precision, bprecision;
2573
2574 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2575 if (strcmp (SIZETYPE, "unsigned int") == 0)
2576 precision = INT_TYPE_SIZE;
2577 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2578 precision = LONG_TYPE_SIZE;
2579 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2580 precision = LONG_LONG_TYPE_SIZE;
2581 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2582 precision = SHORT_TYPE_SIZE;
2583 else
2584 {
2585 int i;
2586
2587 precision = -1;
2588 for (i = 0; i < NUM_INT_N_ENTS; i++)
2589 if (int_n_enabled_p[i])
2590 {
2591 char name[50];
2592 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2593
2594 if (strcmp (name, SIZETYPE) == 0)
2595 {
2596 precision = int_n_data[i].bitsize;
2597 }
2598 }
2599 if (precision == -1)
2600 gcc_unreachable ();
2601 }
2602
2603 bprecision
2604 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2605 bprecision
2606 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2607 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2608 bprecision = HOST_BITS_PER_DOUBLE_INT;
2609
2610 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2611 sizetype = make_node (INTEGER_TYPE);
2612 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2613 TYPE_PRECISION (sizetype) = precision;
2614 TYPE_UNSIGNED (sizetype) = 1;
2615 bitsizetype = make_node (INTEGER_TYPE);
2616 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2617 TYPE_PRECISION (bitsizetype) = bprecision;
2618 TYPE_UNSIGNED (bitsizetype) = 1;
2619
2620 /* Now layout both types manually. */
2621 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2622 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2623 TYPE_SIZE (sizetype) = bitsize_int (precision);
2624 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2625 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2626
2627 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2628 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2629 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2630 TYPE_SIZE_UNIT (bitsizetype)
2631 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2632 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2633
2634 /* Create the signed variants of *sizetype. */
2635 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2636 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2637 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2638 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2639 }
2640 \f
2641 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2642 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2643 for TYPE, based on the PRECISION and whether or not the TYPE
2644 IS_UNSIGNED. PRECISION need not correspond to a width supported
2645 natively by the hardware; for example, on a machine with 8-bit,
2646 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2647 61. */
2648
2649 void
2650 set_min_and_max_values_for_integral_type (tree type,
2651 int precision,
2652 signop sgn)
2653 {
2654 /* For bitfields with zero width we end up creating integer types
2655 with zero precision. Don't assign any minimum/maximum values
2656 to those types, they don't have any valid value. */
2657 if (precision < 1)
2658 return;
2659
2660 TYPE_MIN_VALUE (type)
2661 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2662 TYPE_MAX_VALUE (type)
2663 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2664 }
2665
2666 /* Set the extreme values of TYPE based on its precision in bits,
2667 then lay it out. Used when make_signed_type won't do
2668 because the tree code is not INTEGER_TYPE.
2669 E.g. for Pascal, when the -fsigned-char option is given. */
2670
2671 void
2672 fixup_signed_type (tree type)
2673 {
2674 int precision = TYPE_PRECISION (type);
2675
2676 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2677
2678 /* Lay out the type: set its alignment, size, etc. */
2679 layout_type (type);
2680 }
2681
2682 /* Set the extreme values of TYPE based on its precision in bits,
2683 then lay it out. This is used both in `make_unsigned_type'
2684 and for enumeral types. */
2685
2686 void
2687 fixup_unsigned_type (tree type)
2688 {
2689 int precision = TYPE_PRECISION (type);
2690
2691 TYPE_UNSIGNED (type) = 1;
2692
2693 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2694
2695 /* Lay out the type: set its alignment, size, etc. */
2696 layout_type (type);
2697 }
2698 \f
2699 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2700 starting at BITPOS.
2701
2702 BITREGION_START is the bit position of the first bit in this
2703 sequence of bit fields. BITREGION_END is the last bit in this
2704 sequence. If these two fields are non-zero, we should restrict the
2705 memory access to that range. Otherwise, we are allowed to touch
2706 any adjacent non bit-fields.
2707
2708 ALIGN is the alignment of the underlying object in bits.
2709 VOLATILEP says whether the bitfield is volatile. */
2710
2711 bit_field_mode_iterator
2712 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2713 HOST_WIDE_INT bitregion_start,
2714 HOST_WIDE_INT bitregion_end,
2715 unsigned int align, bool volatilep)
2716 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2717 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2718 m_bitregion_end (bitregion_end), m_align (align),
2719 m_volatilep (volatilep), m_count (0)
2720 {
2721 if (!m_bitregion_end)
2722 {
2723 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2724 the bitfield is mapped and won't trap, provided that ALIGN isn't
2725 too large. The cap is the biggest required alignment for data,
2726 or at least the word size. And force one such chunk at least. */
2727 unsigned HOST_WIDE_INT units
2728 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2729 if (bitsize <= 0)
2730 bitsize = 1;
2731 m_bitregion_end = bitpos + bitsize + units - 1;
2732 m_bitregion_end -= m_bitregion_end % units + 1;
2733 }
2734 }
2735
2736 /* Calls to this function return successively larger modes that can be used
2737 to represent the bitfield. Return true if another bitfield mode is
2738 available, storing it in *OUT_MODE if so. */
2739
2740 bool
2741 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2742 {
2743 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2744 {
2745 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2746
2747 /* Skip modes that don't have full precision. */
2748 if (unit != GET_MODE_PRECISION (m_mode))
2749 continue;
2750
2751 /* Stop if the mode is too wide to handle efficiently. */
2752 if (unit > MAX_FIXED_MODE_SIZE)
2753 break;
2754
2755 /* Don't deliver more than one multiword mode; the smallest one
2756 should be used. */
2757 if (m_count > 0 && unit > BITS_PER_WORD)
2758 break;
2759
2760 /* Skip modes that are too small. */
2761 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2762 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2763 if (subend > unit)
2764 continue;
2765
2766 /* Stop if the mode goes outside the bitregion. */
2767 HOST_WIDE_INT start = m_bitpos - substart;
2768 if (m_bitregion_start && start < m_bitregion_start)
2769 break;
2770 HOST_WIDE_INT end = start + unit;
2771 if (end > m_bitregion_end + 1)
2772 break;
2773
2774 /* Stop if the mode requires too much alignment. */
2775 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2776 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2777 break;
2778
2779 *out_mode = m_mode;
2780 m_mode = GET_MODE_WIDER_MODE (m_mode);
2781 m_count++;
2782 return true;
2783 }
2784 return false;
2785 }
2786
2787 /* Return true if smaller modes are generally preferred for this kind
2788 of bitfield. */
2789
2790 bool
2791 bit_field_mode_iterator::prefer_smaller_modes ()
2792 {
2793 return (m_volatilep
2794 ? targetm.narrow_volatile_bitfield ()
2795 : !SLOW_BYTE_ACCESS);
2796 }
2797
2798 /* Find the best machine mode to use when referencing a bit field of length
2799 BITSIZE bits starting at BITPOS.
2800
2801 BITREGION_START is the bit position of the first bit in this
2802 sequence of bit fields. BITREGION_END is the last bit in this
2803 sequence. If these two fields are non-zero, we should restrict the
2804 memory access to that range. Otherwise, we are allowed to touch
2805 any adjacent non bit-fields.
2806
2807 The underlying object is known to be aligned to a boundary of ALIGN bits.
2808 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2809 larger than LARGEST_MODE (usually SImode).
2810
2811 If no mode meets all these conditions, we return VOIDmode.
2812
2813 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2814 smallest mode meeting these conditions.
2815
2816 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2817 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2818 all the conditions.
2819
2820 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2821 decide which of the above modes should be used. */
2822
2823 machine_mode
2824 get_best_mode (int bitsize, int bitpos,
2825 unsigned HOST_WIDE_INT bitregion_start,
2826 unsigned HOST_WIDE_INT bitregion_end,
2827 unsigned int align,
2828 machine_mode largest_mode, bool volatilep)
2829 {
2830 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2831 bitregion_end, align, volatilep);
2832 machine_mode widest_mode = VOIDmode;
2833 machine_mode mode;
2834 while (iter.next_mode (&mode)
2835 /* ??? For historical reasons, reject modes that would normally
2836 receive greater alignment, even if unaligned accesses are
2837 acceptable. This has both advantages and disadvantages.
2838 Removing this check means that something like:
2839
2840 struct s { unsigned int x; unsigned int y; };
2841 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2842
2843 can be implemented using a single load and compare on
2844 64-bit machines that have no alignment restrictions.
2845 For example, on powerpc64-linux-gnu, we would generate:
2846
2847 ld 3,0(3)
2848 cntlzd 3,3
2849 srdi 3,3,6
2850 blr
2851
2852 rather than:
2853
2854 lwz 9,0(3)
2855 cmpwi 7,9,0
2856 bne 7,.L3
2857 lwz 3,4(3)
2858 cntlzw 3,3
2859 srwi 3,3,5
2860 extsw 3,3
2861 blr
2862 .p2align 4,,15
2863 .L3:
2864 li 3,0
2865 blr
2866
2867 However, accessing more than one field can make life harder
2868 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2869 has a series of unsigned short copies followed by a series of
2870 unsigned short comparisons. With this check, both the copies
2871 and comparisons remain 16-bit accesses and FRE is able
2872 to eliminate the latter. Without the check, the comparisons
2873 can be done using 2 64-bit operations, which FRE isn't able
2874 to handle in the same way.
2875
2876 Either way, it would probably be worth disabling this check
2877 during expand. One particular example where removing the
2878 check would help is the get_best_mode call in store_bit_field.
2879 If we are given a memory bitregion of 128 bits that is aligned
2880 to a 64-bit boundary, and the bitfield we want to modify is
2881 in the second half of the bitregion, this check causes
2882 store_bitfield to turn the memory into a 64-bit reference
2883 to the _first_ half of the region. We later use
2884 adjust_bitfield_address to get a reference to the correct half,
2885 but doing so looks to adjust_bitfield_address as though we are
2886 moving past the end of the original object, so it drops the
2887 associated MEM_EXPR and MEM_OFFSET. Removing the check
2888 causes store_bit_field to keep a 128-bit memory reference,
2889 so that the final bitfield reference still has a MEM_EXPR
2890 and MEM_OFFSET. */
2891 && GET_MODE_ALIGNMENT (mode) <= align
2892 && (largest_mode == VOIDmode
2893 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2894 {
2895 widest_mode = mode;
2896 if (iter.prefer_smaller_modes ())
2897 break;
2898 }
2899 return widest_mode;
2900 }
2901
2902 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2903 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2904
2905 void
2906 get_mode_bounds (machine_mode mode, int sign,
2907 machine_mode target_mode,
2908 rtx *mmin, rtx *mmax)
2909 {
2910 unsigned size = GET_MODE_PRECISION (mode);
2911 unsigned HOST_WIDE_INT min_val, max_val;
2912
2913 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2914
2915 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2916 if (mode == BImode)
2917 {
2918 if (STORE_FLAG_VALUE < 0)
2919 {
2920 min_val = STORE_FLAG_VALUE;
2921 max_val = 0;
2922 }
2923 else
2924 {
2925 min_val = 0;
2926 max_val = STORE_FLAG_VALUE;
2927 }
2928 }
2929 else if (sign)
2930 {
2931 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2932 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2933 }
2934 else
2935 {
2936 min_val = 0;
2937 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2938 }
2939
2940 *mmin = gen_int_mode (min_val, target_mode);
2941 *mmax = gen_int_mode (max_val, target_mode);
2942 }
2943
2944 #include "gt-stor-layout.h"