]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-coalesce.c
[Ada] Improved support for aspect alignment in CCG
[thirdparty/gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Andrew MacLeod <amacleod@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "predict.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "ssa.h"
31 #include "tree-ssa.h"
32 #include "tree-pretty-print.h"
33 #include "diagnostic-core.h"
34 #include "dumpfile.h"
35 #include "gimple-iterator.h"
36 #include "tree-ssa-live.h"
37 #include "tree-ssa-coalesce.h"
38 #include "explow.h"
39 #include "tree-dfa.h"
40 #include "stor-layout.h"
41
42 /* This set of routines implements a coalesce_list. This is an object which
43 is used to track pairs of ssa_names which are desirable to coalesce
44 together to avoid copies. Costs are associated with each pair, and when
45 all desired information has been collected, the object can be used to
46 order the pairs for processing. */
47
48 /* This structure defines a pair entry. */
49
50 struct coalesce_pair
51 {
52 int first_element;
53 int second_element;
54 int cost;
55
56 /* A count of the number of unique partitions this pair would conflict
57 with if coalescing was successful. This is the secondary sort key,
58 given two pairs with equal costs, we will prefer the pair with a smaller
59 conflict set.
60
61 This is lazily initialized when we discover two coalescing pairs have
62 the same primary cost.
63
64 Note this is not updated and propagated as pairs are coalesced. */
65 int conflict_count;
66
67 /* The order in which coalescing pairs are discovered is recorded in this
68 field, which is used as the final tie breaker when sorting coalesce
69 pairs. */
70 int index;
71 };
72
73 /* This represents a conflict graph. Implemented as an array of bitmaps.
74 A full matrix is used for conflicts rather than just upper triangular form.
75 this makes it much simpler and faster to perform conflict merges. */
76
77 struct ssa_conflicts
78 {
79 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
80 vec<bitmap> conflicts;
81 };
82
83 /* The narrow API of the qsort comparison function doesn't allow easy
84 access to additional arguments. So we have two globals (ick) to hold
85 the data we need. They're initialized before the call to qsort and
86 wiped immediately after. */
87 static ssa_conflicts *conflicts_;
88 static var_map map_;
89
90 /* Coalesce pair hashtable helpers. */
91
92 struct coalesce_pair_hasher : nofree_ptr_hash <coalesce_pair>
93 {
94 static inline hashval_t hash (const coalesce_pair *);
95 static inline bool equal (const coalesce_pair *, const coalesce_pair *);
96 };
97
98 /* Hash function for coalesce list. Calculate hash for PAIR. */
99
100 inline hashval_t
101 coalesce_pair_hasher::hash (const coalesce_pair *pair)
102 {
103 hashval_t a = (hashval_t)(pair->first_element);
104 hashval_t b = (hashval_t)(pair->second_element);
105
106 return b * (b - 1) / 2 + a;
107 }
108
109 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
110 returning TRUE if the two pairs are equivalent. */
111
112 inline bool
113 coalesce_pair_hasher::equal (const coalesce_pair *p1, const coalesce_pair *p2)
114 {
115 return (p1->first_element == p2->first_element
116 && p1->second_element == p2->second_element);
117 }
118
119 typedef hash_table<coalesce_pair_hasher> coalesce_table_type;
120 typedef coalesce_table_type::iterator coalesce_iterator_type;
121
122
123 struct cost_one_pair
124 {
125 int first_element;
126 int second_element;
127 cost_one_pair *next;
128 };
129
130 /* This structure maintains the list of coalesce pairs. */
131
132 struct coalesce_list
133 {
134 coalesce_table_type *list; /* Hash table. */
135 coalesce_pair **sorted; /* List when sorted. */
136 int num_sorted; /* Number in the sorted list. */
137 cost_one_pair *cost_one_list;/* Single use coalesces with cost 1. */
138 obstack ob;
139 };
140
141 #define NO_BEST_COALESCE -1
142 #define MUST_COALESCE_COST INT_MAX
143
144
145 /* Return cost of execution of copy instruction with FREQUENCY. */
146
147 static inline int
148 coalesce_cost (int frequency, bool optimize_for_size)
149 {
150 /* Base costs on BB frequencies bounded by 1. */
151 int cost = frequency;
152
153 if (!cost)
154 cost = 1;
155
156 if (optimize_for_size)
157 cost = 1;
158
159 return cost;
160 }
161
162
163 /* Return the cost of executing a copy instruction in basic block BB. */
164
165 static inline int
166 coalesce_cost_bb (basic_block bb)
167 {
168 return coalesce_cost (bb->count.to_frequency (cfun),
169 optimize_bb_for_size_p (bb));
170 }
171
172
173 /* Return the cost of executing a copy instruction on edge E. */
174
175 static inline int
176 coalesce_cost_edge (edge e)
177 {
178 int mult = 1;
179
180 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
181 if (EDGE_CRITICAL_P (e))
182 mult = 2;
183 if (e->flags & EDGE_ABNORMAL)
184 return MUST_COALESCE_COST;
185 if (e->flags & EDGE_EH)
186 {
187 edge e2;
188 edge_iterator ei;
189 FOR_EACH_EDGE (e2, ei, e->dest->preds)
190 if (e2 != e)
191 {
192 /* Putting code on EH edge that leads to BB
193 with multiple predecestors imply splitting of
194 edge too. */
195 if (mult < 2)
196 mult = 2;
197 /* If there are multiple EH predecestors, we
198 also copy EH regions and produce separate
199 landing pad. This is expensive. */
200 if (e2->flags & EDGE_EH)
201 {
202 mult = 5;
203 break;
204 }
205 }
206 }
207
208 return coalesce_cost (EDGE_FREQUENCY (e),
209 optimize_edge_for_size_p (e)) * mult;
210 }
211
212
213 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
214 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
215 NO_BEST_COALESCE is returned if there aren't any. */
216
217 static inline int
218 pop_cost_one_pair (coalesce_list *cl, int *p1, int *p2)
219 {
220 cost_one_pair *ptr;
221
222 ptr = cl->cost_one_list;
223 if (!ptr)
224 return NO_BEST_COALESCE;
225
226 *p1 = ptr->first_element;
227 *p2 = ptr->second_element;
228 cl->cost_one_list = ptr->next;
229
230 return 1;
231 }
232
233 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
234 2 elements via P1 and P2. Their calculated cost is returned by the function.
235 NO_BEST_COALESCE is returned if the coalesce list is empty. */
236
237 static inline int
238 pop_best_coalesce (coalesce_list *cl, int *p1, int *p2)
239 {
240 coalesce_pair *node;
241 int ret;
242
243 if (cl->sorted == NULL)
244 return pop_cost_one_pair (cl, p1, p2);
245
246 if (cl->num_sorted == 0)
247 return pop_cost_one_pair (cl, p1, p2);
248
249 node = cl->sorted[--(cl->num_sorted)];
250 *p1 = node->first_element;
251 *p2 = node->second_element;
252 ret = node->cost;
253
254 return ret;
255 }
256
257
258 /* Create a new empty coalesce list object and return it. */
259
260 static inline coalesce_list *
261 create_coalesce_list (void)
262 {
263 coalesce_list *list;
264 unsigned size = num_ssa_names * 3;
265
266 if (size < 40)
267 size = 40;
268
269 list = (coalesce_list *) xmalloc (sizeof (struct coalesce_list));
270 list->list = new coalesce_table_type (size);
271 list->sorted = NULL;
272 list->num_sorted = 0;
273 list->cost_one_list = NULL;
274 gcc_obstack_init (&list->ob);
275 return list;
276 }
277
278
279 /* Delete coalesce list CL. */
280
281 static inline void
282 delete_coalesce_list (coalesce_list *cl)
283 {
284 gcc_assert (cl->cost_one_list == NULL);
285 delete cl->list;
286 cl->list = NULL;
287 free (cl->sorted);
288 gcc_assert (cl->num_sorted == 0);
289 obstack_free (&cl->ob, NULL);
290 free (cl);
291 }
292
293 /* Return the number of unique coalesce pairs in CL. */
294
295 static inline int
296 num_coalesce_pairs (coalesce_list *cl)
297 {
298 return cl->list->elements ();
299 }
300
301 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
302 one isn't found, return NULL if CREATE is false, otherwise create a new
303 coalesce pair object and return it. */
304
305 static coalesce_pair *
306 find_coalesce_pair (coalesce_list *cl, int p1, int p2, bool create)
307 {
308 struct coalesce_pair p;
309 coalesce_pair **slot;
310 unsigned int hash;
311
312 /* Normalize so that p1 is the smaller value. */
313 if (p2 < p1)
314 {
315 p.first_element = p2;
316 p.second_element = p1;
317 }
318 else
319 {
320 p.first_element = p1;
321 p.second_element = p2;
322 }
323
324 hash = coalesce_pair_hasher::hash (&p);
325 slot = cl->list->find_slot_with_hash (&p, hash, create ? INSERT : NO_INSERT);
326 if (!slot)
327 return NULL;
328
329 if (!*slot)
330 {
331 struct coalesce_pair * pair = XOBNEW (&cl->ob, struct coalesce_pair);
332 gcc_assert (cl->sorted == NULL);
333 pair->first_element = p.first_element;
334 pair->second_element = p.second_element;
335 pair->cost = 0;
336 pair->index = num_coalesce_pairs (cl);
337 pair->conflict_count = 0;
338 *slot = pair;
339 }
340
341 return (struct coalesce_pair *) *slot;
342 }
343
344 static inline void
345 add_cost_one_coalesce (coalesce_list *cl, int p1, int p2)
346 {
347 cost_one_pair *pair;
348
349 pair = XOBNEW (&cl->ob, cost_one_pair);
350 pair->first_element = p1;
351 pair->second_element = p2;
352 pair->next = cl->cost_one_list;
353 cl->cost_one_list = pair;
354 }
355
356
357 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
358
359 static inline void
360 add_coalesce (coalesce_list *cl, int p1, int p2, int value)
361 {
362 coalesce_pair *node;
363
364 gcc_assert (cl->sorted == NULL);
365 if (p1 == p2)
366 return;
367
368 node = find_coalesce_pair (cl, p1, p2, true);
369
370 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
371 if (node->cost < MUST_COALESCE_COST - 1)
372 {
373 if (value < MUST_COALESCE_COST - 1)
374 node->cost += value;
375 else
376 node->cost = value;
377 }
378 }
379
380 /* Compute and record how many unique conflicts would exist for the
381 representative partition for each coalesce pair in CL.
382
383 CONFLICTS is the conflict graph and MAP is the current partition view. */
384
385 static void
386 initialize_conflict_count (coalesce_pair *p,
387 ssa_conflicts *conflicts,
388 var_map map)
389 {
390 int p1 = var_to_partition (map, ssa_name (p->first_element));
391 int p2 = var_to_partition (map, ssa_name (p->second_element));
392
393 /* 4 cases. If both P1 and P2 have conflicts, then build their
394 union and count the members. Else handle the degenerate cases
395 in the obvious ways. */
396 if (conflicts->conflicts[p1] && conflicts->conflicts[p2])
397 p->conflict_count = bitmap_count_unique_bits (conflicts->conflicts[p1],
398 conflicts->conflicts[p2]);
399 else if (conflicts->conflicts[p1])
400 p->conflict_count = bitmap_count_bits (conflicts->conflicts[p1]);
401 else if (conflicts->conflicts[p2])
402 p->conflict_count = bitmap_count_bits (conflicts->conflicts[p2]);
403 else
404 p->conflict_count = 0;
405 }
406
407
408 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
409
410 static int
411 compare_pairs (const void *p1, const void *p2)
412 {
413 coalesce_pair *const *const pp1 = (coalesce_pair *const *) p1;
414 coalesce_pair *const *const pp2 = (coalesce_pair *const *) p2;
415 int result;
416
417 result = (* pp1)->cost - (* pp2)->cost;
418 /* We use the size of the resulting conflict set as the secondary sort key.
419 Given two equal costing coalesce pairs, we want to prefer the pair that
420 has the smaller conflict set. */
421 if (result == 0)
422 {
423 if (flag_expensive_optimizations)
424 {
425 /* Lazily initialize the conflict counts as it's fairly expensive
426 to compute. */
427 if ((*pp2)->conflict_count == 0)
428 initialize_conflict_count (*pp2, conflicts_, map_);
429 if ((*pp1)->conflict_count == 0)
430 initialize_conflict_count (*pp1, conflicts_, map_);
431
432 result = (*pp2)->conflict_count - (*pp1)->conflict_count;
433 }
434
435 /* And if everything else is equal, then sort based on which
436 coalesce pair was found first. */
437 if (result == 0)
438 result = (*pp2)->index - (*pp1)->index;
439 }
440
441 return result;
442 }
443
444 /* Iterate over CL using ITER, returning values in PAIR. */
445
446 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
447 FOR_EACH_HASH_TABLE_ELEMENT (*(CL)->list, (PAIR), coalesce_pair_p, (ITER))
448
449
450 /* Prepare CL for removal of preferred pairs. When finished they are sorted
451 in order from most important coalesce to least important. */
452
453 static void
454 sort_coalesce_list (coalesce_list *cl, ssa_conflicts *conflicts, var_map map)
455 {
456 unsigned x, num;
457 coalesce_pair *p;
458 coalesce_iterator_type ppi;
459
460 gcc_assert (cl->sorted == NULL);
461
462 num = num_coalesce_pairs (cl);
463 cl->num_sorted = num;
464 if (num == 0)
465 return;
466
467 /* Allocate a vector for the pair pointers. */
468 cl->sorted = XNEWVEC (coalesce_pair *, num);
469
470 /* Populate the vector with pointers to the pairs. */
471 x = 0;
472 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
473 cl->sorted[x++] = p;
474 gcc_assert (x == num);
475
476 /* Already sorted. */
477 if (num == 1)
478 return;
479
480 /* We don't want to depend on qsort_r, so we have to stuff away
481 additional data into globals so it can be referenced in
482 compare_pairs. */
483 conflicts_ = conflicts;
484 map_ = map;
485 qsort (cl->sorted, num, sizeof (coalesce_pair *), compare_pairs);
486 conflicts_ = NULL;
487 map_ = NULL;
488 }
489
490
491 /* Send debug info for coalesce list CL to file F. */
492
493 static void
494 dump_coalesce_list (FILE *f, coalesce_list *cl)
495 {
496 coalesce_pair *node;
497 coalesce_iterator_type ppi;
498
499 int x;
500 tree var;
501
502 if (cl->sorted == NULL)
503 {
504 fprintf (f, "Coalesce List:\n");
505 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
506 {
507 tree var1 = ssa_name (node->first_element);
508 tree var2 = ssa_name (node->second_element);
509 print_generic_expr (f, var1, TDF_SLIM);
510 fprintf (f, " <-> ");
511 print_generic_expr (f, var2, TDF_SLIM);
512 fprintf (f, " (%1d, %1d), ", node->cost, node->conflict_count);
513 fprintf (f, "\n");
514 }
515 }
516 else
517 {
518 fprintf (f, "Sorted Coalesce list:\n");
519 for (x = cl->num_sorted - 1 ; x >=0; x--)
520 {
521 node = cl->sorted[x];
522 fprintf (f, "(%d, %d) ", node->cost, node->conflict_count);
523 var = ssa_name (node->first_element);
524 print_generic_expr (f, var, TDF_SLIM);
525 fprintf (f, " <-> ");
526 var = ssa_name (node->second_element);
527 print_generic_expr (f, var, TDF_SLIM);
528 fprintf (f, "\n");
529 }
530 }
531 }
532
533
534 /* Return an empty new conflict graph for SIZE elements. */
535
536 static inline ssa_conflicts *
537 ssa_conflicts_new (unsigned size)
538 {
539 ssa_conflicts *ptr;
540
541 ptr = XNEW (ssa_conflicts);
542 bitmap_obstack_initialize (&ptr->obstack);
543 ptr->conflicts.create (size);
544 ptr->conflicts.safe_grow_cleared (size);
545 return ptr;
546 }
547
548
549 /* Free storage for conflict graph PTR. */
550
551 static inline void
552 ssa_conflicts_delete (ssa_conflicts *ptr)
553 {
554 bitmap_obstack_release (&ptr->obstack);
555 ptr->conflicts.release ();
556 free (ptr);
557 }
558
559
560 /* Test if elements X and Y conflict in graph PTR. */
561
562 static inline bool
563 ssa_conflicts_test_p (ssa_conflicts *ptr, unsigned x, unsigned y)
564 {
565 bitmap bx = ptr->conflicts[x];
566 bitmap by = ptr->conflicts[y];
567
568 gcc_checking_assert (x != y);
569
570 if (bx)
571 /* Avoid the lookup if Y has no conflicts. */
572 return by ? bitmap_bit_p (bx, y) : false;
573 else
574 return false;
575 }
576
577
578 /* Add a conflict with Y to the bitmap for X in graph PTR. */
579
580 static inline void
581 ssa_conflicts_add_one (ssa_conflicts *ptr, unsigned x, unsigned y)
582 {
583 bitmap bx = ptr->conflicts[x];
584 /* If there are no conflicts yet, allocate the bitmap and set bit. */
585 if (! bx)
586 bx = ptr->conflicts[x] = BITMAP_ALLOC (&ptr->obstack);
587 bitmap_set_bit (bx, y);
588 }
589
590
591 /* Add conflicts between X and Y in graph PTR. */
592
593 static inline void
594 ssa_conflicts_add (ssa_conflicts *ptr, unsigned x, unsigned y)
595 {
596 gcc_checking_assert (x != y);
597 ssa_conflicts_add_one (ptr, x, y);
598 ssa_conflicts_add_one (ptr, y, x);
599 }
600
601
602 /* Merge all Y's conflict into X in graph PTR. */
603
604 static inline void
605 ssa_conflicts_merge (ssa_conflicts *ptr, unsigned x, unsigned y)
606 {
607 unsigned z;
608 bitmap_iterator bi;
609 bitmap bx = ptr->conflicts[x];
610 bitmap by = ptr->conflicts[y];
611
612 gcc_checking_assert (x != y);
613 if (! by)
614 return;
615
616 /* Add a conflict between X and every one Y has. If the bitmap doesn't
617 exist, then it has already been coalesced, and we don't need to add a
618 conflict. */
619 EXECUTE_IF_SET_IN_BITMAP (by, 0, z, bi)
620 {
621 bitmap bz = ptr->conflicts[z];
622 if (bz)
623 {
624 bool was_there = bitmap_clear_bit (bz, y);
625 gcc_checking_assert (was_there);
626 bitmap_set_bit (bz, x);
627 }
628 }
629
630 if (bx)
631 {
632 /* If X has conflicts, add Y's to X. */
633 bitmap_ior_into (bx, by);
634 BITMAP_FREE (by);
635 ptr->conflicts[y] = NULL;
636 }
637 else
638 {
639 /* If X has no conflicts, simply use Y's. */
640 ptr->conflicts[x] = by;
641 ptr->conflicts[y] = NULL;
642 }
643 }
644
645
646 /* Dump a conflicts graph. */
647
648 static void
649 ssa_conflicts_dump (FILE *file, ssa_conflicts *ptr)
650 {
651 unsigned x;
652 bitmap b;
653
654 fprintf (file, "\nConflict graph:\n");
655
656 FOR_EACH_VEC_ELT (ptr->conflicts, x, b)
657 if (b)
658 {
659 fprintf (file, "%d: ", x);
660 dump_bitmap (file, b);
661 }
662 }
663
664
665 /* This structure is used to efficiently record the current status of live
666 SSA_NAMES when building a conflict graph.
667 LIVE_BASE_VAR has a bit set for each base variable which has at least one
668 ssa version live.
669 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
670 index, and is used to track what partitions of each base variable are
671 live. This makes it easy to add conflicts between just live partitions
672 with the same base variable.
673 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
674 marked as being live. This delays clearing of these bitmaps until
675 they are actually needed again. */
676
677 class live_track
678 {
679 public:
680 bitmap_obstack obstack; /* A place to allocate our bitmaps. */
681 bitmap_head live_base_var; /* Indicates if a basevar is live. */
682 bitmap_head *live_base_partitions; /* Live partitions for each basevar. */
683 var_map map; /* Var_map being used for partition mapping. */
684 };
685
686
687 /* This routine will create a new live track structure based on the partitions
688 in MAP. */
689
690 static live_track *
691 new_live_track (var_map map)
692 {
693 live_track *ptr;
694 int lim, x;
695
696 /* Make sure there is a partition view in place. */
697 gcc_assert (map->partition_to_base_index != NULL);
698
699 ptr = XNEW (live_track);
700 ptr->map = map;
701 lim = num_basevars (map);
702 bitmap_obstack_initialize (&ptr->obstack);
703 ptr->live_base_partitions = XNEWVEC (bitmap_head, lim);
704 bitmap_initialize (&ptr->live_base_var, &ptr->obstack);
705 for (x = 0; x < lim; x++)
706 bitmap_initialize (&ptr->live_base_partitions[x], &ptr->obstack);
707 return ptr;
708 }
709
710
711 /* This routine will free the memory associated with PTR. */
712
713 static void
714 delete_live_track (live_track *ptr)
715 {
716 bitmap_obstack_release (&ptr->obstack);
717 XDELETEVEC (ptr->live_base_partitions);
718 XDELETE (ptr);
719 }
720
721
722 /* This function will remove PARTITION from the live list in PTR. */
723
724 static inline void
725 live_track_remove_partition (live_track *ptr, int partition)
726 {
727 int root;
728
729 root = basevar_index (ptr->map, partition);
730 bitmap_clear_bit (&ptr->live_base_partitions[root], partition);
731 /* If the element list is empty, make the base variable not live either. */
732 if (bitmap_empty_p (&ptr->live_base_partitions[root]))
733 bitmap_clear_bit (&ptr->live_base_var, root);
734 }
735
736
737 /* This function will adds PARTITION to the live list in PTR. */
738
739 static inline void
740 live_track_add_partition (live_track *ptr, int partition)
741 {
742 int root;
743
744 root = basevar_index (ptr->map, partition);
745 /* If this base var wasn't live before, it is now. Clear the element list
746 since it was delayed until needed. */
747 if (bitmap_set_bit (&ptr->live_base_var, root))
748 bitmap_clear (&ptr->live_base_partitions[root]);
749 bitmap_set_bit (&ptr->live_base_partitions[root], partition);
750
751 }
752
753
754 /* Clear the live bit for VAR in PTR. */
755
756 static inline void
757 live_track_clear_var (live_track *ptr, tree var)
758 {
759 int p;
760
761 p = var_to_partition (ptr->map, var);
762 if (p != NO_PARTITION)
763 live_track_remove_partition (ptr, p);
764 }
765
766
767 /* Return TRUE if VAR is live in PTR. */
768
769 static inline bool
770 live_track_live_p (live_track *ptr, tree var)
771 {
772 int p, root;
773
774 p = var_to_partition (ptr->map, var);
775 if (p != NO_PARTITION)
776 {
777 root = basevar_index (ptr->map, p);
778 if (bitmap_bit_p (&ptr->live_base_var, root))
779 return bitmap_bit_p (&ptr->live_base_partitions[root], p);
780 }
781 return false;
782 }
783
784
785 /* This routine will add USE to PTR. USE will be marked as live in both the
786 ssa live map and the live bitmap for the root of USE. */
787
788 static inline void
789 live_track_process_use (live_track *ptr, tree use)
790 {
791 int p;
792
793 p = var_to_partition (ptr->map, use);
794 if (p == NO_PARTITION)
795 return;
796
797 /* Mark as live in the appropriate live list. */
798 live_track_add_partition (ptr, p);
799 }
800
801
802 /* This routine will process a DEF in PTR. DEF will be removed from the live
803 lists, and if there are any other live partitions with the same base
804 variable, conflicts will be added to GRAPH. */
805
806 static inline void
807 live_track_process_def (live_track *ptr, tree def, ssa_conflicts *graph)
808 {
809 int p, root;
810 bitmap b;
811 unsigned x;
812 bitmap_iterator bi;
813
814 p = var_to_partition (ptr->map, def);
815 if (p == NO_PARTITION)
816 return;
817
818 /* Clear the liveness bit. */
819 live_track_remove_partition (ptr, p);
820
821 /* If the bitmap isn't empty now, conflicts need to be added. */
822 root = basevar_index (ptr->map, p);
823 if (bitmap_bit_p (&ptr->live_base_var, root))
824 {
825 b = &ptr->live_base_partitions[root];
826 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
827 ssa_conflicts_add (graph, p, x);
828 }
829 }
830
831
832 /* Initialize PTR with the partitions set in INIT. */
833
834 static inline void
835 live_track_init (live_track *ptr, bitmap init)
836 {
837 unsigned p;
838 bitmap_iterator bi;
839
840 /* Mark all live on exit partitions. */
841 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
842 live_track_add_partition (ptr, p);
843 }
844
845
846 /* This routine will clear all live partitions in PTR. */
847
848 static inline void
849 live_track_clear_base_vars (live_track *ptr)
850 {
851 /* Simply clear the live base list. Anything marked as live in the element
852 lists will be cleared later if/when the base variable ever comes alive
853 again. */
854 bitmap_clear (&ptr->live_base_var);
855 }
856
857
858 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
859 partition view of the var_map liveinfo is based on get entries in the
860 conflict graph. Only conflicts between ssa_name partitions with the same
861 base variable are added. */
862
863 static ssa_conflicts *
864 build_ssa_conflict_graph (tree_live_info_p liveinfo)
865 {
866 ssa_conflicts *graph;
867 var_map map;
868 basic_block bb;
869 ssa_op_iter iter;
870 live_track *live;
871 basic_block entry;
872
873 /* If inter-variable coalescing is enabled, we may attempt to
874 coalesce variables from different base variables, including
875 different parameters, so we have to make sure default defs live
876 at the entry block conflict with each other. */
877 if (flag_tree_coalesce_vars)
878 entry = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
879 else
880 entry = NULL;
881
882 map = live_var_map (liveinfo);
883 graph = ssa_conflicts_new (num_var_partitions (map));
884
885 live = new_live_track (map);
886
887 for (unsigned i = 0; liveinfo->map->vec_bbs.iterate (i, &bb); ++i)
888 {
889 /* Start with live on exit temporaries. */
890 live_track_init (live, live_on_exit (liveinfo, bb));
891
892 for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
893 gsi_prev (&gsi))
894 {
895 tree var;
896 gimple *stmt = gsi_stmt (gsi);
897
898 /* A copy between 2 partitions does not introduce an interference
899 by itself. If they did, you would never be able to coalesce
900 two things which are copied. If the two variables really do
901 conflict, they will conflict elsewhere in the program.
902
903 This is handled by simply removing the SRC of the copy from the
904 live list, and processing the stmt normally. */
905 if (is_gimple_assign (stmt))
906 {
907 tree lhs = gimple_assign_lhs (stmt);
908 tree rhs1 = gimple_assign_rhs1 (stmt);
909 if (gimple_assign_copy_p (stmt)
910 && TREE_CODE (lhs) == SSA_NAME
911 && TREE_CODE (rhs1) == SSA_NAME)
912 live_track_clear_var (live, rhs1);
913 }
914 else if (is_gimple_debug (stmt))
915 continue;
916
917 /* For stmts with more than one SSA_NAME definition pretend all the
918 SSA_NAME outputs but the first one are live at this point, so
919 that conflicts are added in between all those even when they are
920 actually not really live after the asm, because expansion might
921 copy those into pseudos after the asm and if multiple outputs
922 share the same partition, it might overwrite those that should
923 be live. E.g.
924 asm volatile (".." : "=r" (a) : "=r" (b) : "0" (a), "1" (a));
925 return a;
926 See PR70593. */
927 bool first = true;
928 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
929 if (first)
930 first = false;
931 else
932 live_track_process_use (live, var);
933
934 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
935 live_track_process_def (live, var, graph);
936
937 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
938 live_track_process_use (live, var);
939 }
940
941 /* If result of a PHI is unused, looping over the statements will not
942 record any conflicts since the def was never live. Since the PHI node
943 is going to be translated out of SSA form, it will insert a copy.
944 There must be a conflict recorded between the result of the PHI and
945 any variables that are live. Otherwise the out-of-ssa translation
946 may create incorrect code. */
947 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
948 gsi_next (&gsi))
949 {
950 gphi *phi = gsi.phi ();
951 tree result = PHI_RESULT (phi);
952 if (virtual_operand_p (result))
953 continue;
954 if (live_track_live_p (live, result))
955 live_track_process_def (live, result, graph);
956 }
957
958 /* Pretend there are defs for params' default defs at the start
959 of the (post-)entry block. This will prevent PARM_DECLs from
960 coalescing into the same partition. Although RESULT_DECLs'
961 default defs don't have a useful initial value, we have to
962 prevent them from coalescing with PARM_DECLs' default defs
963 too, otherwise assign_parms would attempt to assign different
964 RTL to the same partition. */
965 if (bb == entry)
966 {
967 unsigned i;
968 tree var;
969
970 FOR_EACH_SSA_NAME (i, var, cfun)
971 {
972 if (!SSA_NAME_IS_DEFAULT_DEF (var)
973 || !SSA_NAME_VAR (var)
974 || VAR_P (SSA_NAME_VAR (var)))
975 continue;
976
977 live_track_process_def (live, var, graph);
978 /* Process a use too, so that it remains live and
979 conflicts with other parms' default defs, even unused
980 ones. */
981 live_track_process_use (live, var);
982 }
983 }
984
985 live_track_clear_base_vars (live);
986 }
987
988 delete_live_track (live);
989 return graph;
990 }
991
992 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
993
994 static inline void
995 fail_abnormal_edge_coalesce (int x, int y)
996 {
997 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
998 fprintf (stderr, " which are marked as MUST COALESCE.\n");
999 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
1000 fprintf (stderr, " and ");
1001 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
1002
1003 internal_error ("SSA corruption");
1004 }
1005
1006 /* If VAR is an SSA_NAME associated with a PARM_DECL or a RESULT_DECL,
1007 and the DECL's default def is unused (i.e., it was introduced by
1008 create_default_def for out-of-ssa), mark VAR and the default def for
1009 coalescing. */
1010
1011 static void
1012 coalesce_with_default (tree var, coalesce_list *cl, bitmap used_in_copy)
1013 {
1014 if (SSA_NAME_IS_DEFAULT_DEF (var)
1015 || !SSA_NAME_VAR (var)
1016 || VAR_P (SSA_NAME_VAR (var)))
1017 return;
1018
1019 tree ssa = ssa_default_def (cfun, SSA_NAME_VAR (var));
1020 if (!has_zero_uses (ssa))
1021 return;
1022
1023 add_cost_one_coalesce (cl, SSA_NAME_VERSION (ssa), SSA_NAME_VERSION (var));
1024 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1025 /* Default defs will have their used_in_copy bits set at the beginning of
1026 populate_coalesce_list_for_outofssa. */
1027 }
1028
1029
1030 /* Given var_map MAP for a region, this function creates and returns a coalesce
1031 list as well as recording related ssa names in USED_IN_COPIES for use later
1032 in the out-of-ssa or live range computation process. */
1033
1034 static coalesce_list *
1035 create_coalesce_list_for_region (var_map map, bitmap used_in_copy)
1036 {
1037 gimple_stmt_iterator gsi;
1038 basic_block bb;
1039 coalesce_list *cl = create_coalesce_list ();
1040 gimple *stmt;
1041 int v1, v2, cost;
1042
1043 for (unsigned j = 0; map->vec_bbs.iterate (j, &bb); ++j)
1044 {
1045 tree arg;
1046
1047 for (gphi_iterator gpi = gsi_start_phis (bb);
1048 !gsi_end_p (gpi);
1049 gsi_next (&gpi))
1050 {
1051 gphi *phi = gpi.phi ();
1052 size_t i;
1053 int ver;
1054 tree res;
1055 bool saw_copy = false;
1056
1057 res = gimple_phi_result (phi);
1058 if (virtual_operand_p (res))
1059 continue;
1060 ver = SSA_NAME_VERSION (res);
1061
1062 /* Register ssa_names and coalesces between the args and the result
1063 of all PHI. */
1064 for (i = 0; i < gimple_phi_num_args (phi); i++)
1065 {
1066 edge e = gimple_phi_arg_edge (phi, i);
1067 arg = PHI_ARG_DEF (phi, i);
1068 if (TREE_CODE (arg) != SSA_NAME)
1069 continue;
1070
1071 if (gimple_can_coalesce_p (arg, res)
1072 || (e->flags & EDGE_ABNORMAL))
1073 {
1074 saw_copy = true;
1075 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1076 if ((e->flags & EDGE_ABNORMAL) == 0)
1077 {
1078 int cost = coalesce_cost_edge (e);
1079 if (cost == 1 && has_single_use (arg))
1080 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1081 else
1082 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1083 }
1084 }
1085 }
1086 if (saw_copy)
1087 bitmap_set_bit (used_in_copy, ver);
1088 }
1089
1090 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1091 {
1092 stmt = gsi_stmt (gsi);
1093
1094 if (is_gimple_debug (stmt))
1095 continue;
1096
1097 /* Check for copy coalesces. */
1098 switch (gimple_code (stmt))
1099 {
1100 case GIMPLE_ASSIGN:
1101 {
1102 tree lhs = gimple_assign_lhs (stmt);
1103 tree rhs1 = gimple_assign_rhs1 (stmt);
1104 if (gimple_assign_ssa_name_copy_p (stmt)
1105 && gimple_can_coalesce_p (lhs, rhs1))
1106 {
1107 v1 = SSA_NAME_VERSION (lhs);
1108 v2 = SSA_NAME_VERSION (rhs1);
1109 cost = coalesce_cost_bb (bb);
1110 add_coalesce (cl, v1, v2, cost);
1111 bitmap_set_bit (used_in_copy, v1);
1112 bitmap_set_bit (used_in_copy, v2);
1113 }
1114 }
1115 break;
1116
1117 case GIMPLE_RETURN:
1118 {
1119 tree res = DECL_RESULT (current_function_decl);
1120 if (VOID_TYPE_P (TREE_TYPE (res))
1121 || !is_gimple_reg (res))
1122 break;
1123 tree rhs1 = gimple_return_retval (as_a <greturn *> (stmt));
1124 if (!rhs1)
1125 break;
1126 tree lhs = ssa_default_def (cfun, res);
1127 gcc_assert (lhs);
1128 if (TREE_CODE (rhs1) == SSA_NAME
1129 && gimple_can_coalesce_p (lhs, rhs1))
1130 {
1131 v1 = SSA_NAME_VERSION (lhs);
1132 v2 = SSA_NAME_VERSION (rhs1);
1133 cost = coalesce_cost_bb (bb);
1134 add_coalesce (cl, v1, v2, cost);
1135 bitmap_set_bit (used_in_copy, v1);
1136 bitmap_set_bit (used_in_copy, v2);
1137 }
1138 break;
1139 }
1140
1141 case GIMPLE_ASM:
1142 {
1143 gasm *asm_stmt = as_a <gasm *> (stmt);
1144 unsigned long noutputs, i;
1145 unsigned long ninputs;
1146 tree *outputs, link;
1147 noutputs = gimple_asm_noutputs (asm_stmt);
1148 ninputs = gimple_asm_ninputs (asm_stmt);
1149 outputs = (tree *) alloca (noutputs * sizeof (tree));
1150 for (i = 0; i < noutputs; ++i)
1151 {
1152 link = gimple_asm_output_op (asm_stmt, i);
1153 outputs[i] = TREE_VALUE (link);
1154 }
1155
1156 for (i = 0; i < ninputs; ++i)
1157 {
1158 const char *constraint;
1159 tree input;
1160 char *end;
1161 unsigned long match;
1162
1163 link = gimple_asm_input_op (asm_stmt, i);
1164 constraint
1165 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1166 input = TREE_VALUE (link);
1167
1168 if (TREE_CODE (input) != SSA_NAME)
1169 continue;
1170
1171 match = strtoul (constraint, &end, 10);
1172 if (match >= noutputs || end == constraint)
1173 continue;
1174
1175 if (TREE_CODE (outputs[match]) != SSA_NAME)
1176 continue;
1177
1178 v1 = SSA_NAME_VERSION (outputs[match]);
1179 v2 = SSA_NAME_VERSION (input);
1180
1181 if (gimple_can_coalesce_p (outputs[match], input))
1182 {
1183 cost = coalesce_cost (REG_BR_PROB_BASE,
1184 optimize_bb_for_size_p (bb));
1185 add_coalesce (cl, v1, v2, cost);
1186 bitmap_set_bit (used_in_copy, v1);
1187 bitmap_set_bit (used_in_copy, v2);
1188 }
1189 }
1190 break;
1191 }
1192
1193 default:
1194 break;
1195 }
1196 }
1197 }
1198
1199 return cl;
1200 }
1201
1202
1203 /* Hashtable support for storing SSA names hashed by their SSA_NAME_VAR. */
1204
1205 struct ssa_name_var_hash : nofree_ptr_hash <tree_node>
1206 {
1207 static inline hashval_t hash (const tree_node *);
1208 static inline int equal (const tree_node *, const tree_node *);
1209 };
1210
1211 inline hashval_t
1212 ssa_name_var_hash::hash (const_tree n)
1213 {
1214 return DECL_UID (SSA_NAME_VAR (n));
1215 }
1216
1217 inline int
1218 ssa_name_var_hash::equal (const tree_node *n1, const tree_node *n2)
1219 {
1220 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1221 }
1222
1223
1224 /* This function populates coalesce list CL as well as recording related ssa
1225 names in USED_IN_COPIES for use later in the out-of-ssa process. */
1226
1227 static void
1228 populate_coalesce_list_for_outofssa (coalesce_list *cl, bitmap used_in_copy)
1229 {
1230 tree var;
1231 tree first;
1232 int v1, v2, cost;
1233 unsigned i;
1234
1235 /* Process result decls and live on entry variables for entry into the
1236 coalesce list. */
1237 first = NULL_TREE;
1238 FOR_EACH_SSA_NAME (i, var, cfun)
1239 {
1240 if (!virtual_operand_p (var))
1241 {
1242 coalesce_with_default (var, cl, used_in_copy);
1243
1244 /* Add coalesces between all the result decls. */
1245 if (SSA_NAME_VAR (var)
1246 && TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1247 {
1248 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1249 if (first == NULL_TREE)
1250 first = var;
1251 else
1252 {
1253 gcc_assert (gimple_can_coalesce_p (var, first));
1254 v1 = SSA_NAME_VERSION (first);
1255 v2 = SSA_NAME_VERSION (var);
1256 cost = coalesce_cost_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1257 add_coalesce (cl, v1, v2, cost);
1258 }
1259 }
1260 /* Mark any default_def variables as being in the coalesce list
1261 since they will have to be coalesced with the base variable. If
1262 not marked as present, they won't be in the coalesce view. */
1263 if (SSA_NAME_IS_DEFAULT_DEF (var)
1264 && (!has_zero_uses (var)
1265 || (SSA_NAME_VAR (var)
1266 && !VAR_P (SSA_NAME_VAR (var)))))
1267 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1268 }
1269 }
1270
1271 /* If this optimization is disabled, we need to coalesce all the
1272 names originating from the same SSA_NAME_VAR so debug info
1273 remains undisturbed. */
1274 if (!flag_tree_coalesce_vars)
1275 {
1276 tree a;
1277 hash_table<ssa_name_var_hash> ssa_name_hash (10);
1278
1279 FOR_EACH_SSA_NAME (i, a, cfun)
1280 {
1281 if (SSA_NAME_VAR (a)
1282 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1283 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)
1284 || !VAR_P (SSA_NAME_VAR (a))))
1285 {
1286 tree *slot = ssa_name_hash.find_slot (a, INSERT);
1287
1288 if (!*slot)
1289 *slot = a;
1290 else
1291 {
1292 /* If the variable is a PARM_DECL or a RESULT_DECL, we
1293 _require_ that all the names originating from it be
1294 coalesced, because there must be a single partition
1295 containing all the names so that it can be assigned
1296 the canonical RTL location of the DECL safely.
1297 If in_lto_p, a function could have been compiled
1298 originally with optimizations and only the link
1299 performed at -O0, so we can't actually require it. */
1300 const int cost
1301 = (TREE_CODE (SSA_NAME_VAR (a)) == VAR_DECL || in_lto_p)
1302 ? MUST_COALESCE_COST - 1 : MUST_COALESCE_COST;
1303 add_coalesce (cl, SSA_NAME_VERSION (a),
1304 SSA_NAME_VERSION (*slot), cost);
1305 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (a));
1306 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (*slot));
1307 }
1308 }
1309 }
1310 }
1311 }
1312
1313
1314 /* Attempt to coalesce ssa versions X and Y together using the partition
1315 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1316 DEBUG, if it is nun-NULL. */
1317
1318 static inline bool
1319 attempt_coalesce (var_map map, ssa_conflicts *graph, int x, int y,
1320 FILE *debug)
1321 {
1322 int z;
1323 tree var1, var2;
1324 int p1, p2;
1325
1326 p1 = var_to_partition (map, ssa_name (x));
1327 p2 = var_to_partition (map, ssa_name (y));
1328
1329 if (debug)
1330 {
1331 fprintf (debug, "(%d)", x);
1332 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1333 fprintf (debug, " & (%d)", y);
1334 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1335 }
1336
1337 if (p1 == p2)
1338 {
1339 if (debug)
1340 fprintf (debug, ": Already Coalesced.\n");
1341 return true;
1342 }
1343
1344 if (debug)
1345 fprintf (debug, " [map: %d, %d] ", p1, p2);
1346
1347
1348 if (!ssa_conflicts_test_p (graph, p1, p2))
1349 {
1350 var1 = partition_to_var (map, p1);
1351 var2 = partition_to_var (map, p2);
1352
1353 z = var_union (map, var1, var2);
1354 if (z == NO_PARTITION)
1355 {
1356 if (debug)
1357 fprintf (debug, ": Unable to perform partition union.\n");
1358 return false;
1359 }
1360
1361 /* z is the new combined partition. Remove the other partition from
1362 the list, and merge the conflicts. */
1363 if (z == p1)
1364 ssa_conflicts_merge (graph, p1, p2);
1365 else
1366 ssa_conflicts_merge (graph, p2, p1);
1367
1368 if (debug)
1369 fprintf (debug, ": Success -> %d\n", z);
1370
1371 return true;
1372 }
1373
1374 if (debug)
1375 fprintf (debug, ": Fail due to conflict\n");
1376
1377 return false;
1378 }
1379
1380
1381 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1382 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1383
1384 static void
1385 coalesce_partitions (var_map map, ssa_conflicts *graph, coalesce_list *cl,
1386 FILE *debug)
1387 {
1388 int x = 0, y = 0;
1389 tree var1, var2;
1390 int cost;
1391 basic_block bb;
1392 edge e;
1393 edge_iterator ei;
1394
1395 /* First, coalesce all the copies across abnormal edges. These are not placed
1396 in the coalesce list because they do not need to be sorted, and simply
1397 consume extra memory/compilation time in large programs. */
1398
1399 FOR_EACH_BB_FN (bb, cfun)
1400 {
1401 FOR_EACH_EDGE (e, ei, bb->preds)
1402 if (e->flags & EDGE_ABNORMAL)
1403 {
1404 gphi_iterator gsi;
1405 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1406 gsi_next (&gsi))
1407 {
1408 gphi *phi = gsi.phi ();
1409 tree res = PHI_RESULT (phi);
1410 if (virtual_operand_p (res))
1411 continue;
1412 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1413 if (SSA_NAME_IS_DEFAULT_DEF (arg)
1414 && (!SSA_NAME_VAR (arg)
1415 || TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
1416 continue;
1417
1418 int v1 = SSA_NAME_VERSION (res);
1419 int v2 = SSA_NAME_VERSION (arg);
1420
1421 if (debug)
1422 fprintf (debug, "Abnormal coalesce: ");
1423
1424 if (!attempt_coalesce (map, graph, v1, v2, debug))
1425 fail_abnormal_edge_coalesce (v1, v2);
1426 }
1427 }
1428 }
1429
1430 /* Now process the items in the coalesce list. */
1431
1432 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1433 {
1434 var1 = ssa_name (x);
1435 var2 = ssa_name (y);
1436
1437 /* Assert the coalesces have the same base variable. */
1438 gcc_assert (gimple_can_coalesce_p (var1, var2));
1439
1440 if (debug)
1441 fprintf (debug, "Coalesce list: ");
1442 attempt_coalesce (map, graph, x, y, debug);
1443 }
1444 }
1445
1446
1447 /* Output partition map MAP with coalescing plan PART to file F. */
1448
1449 void
1450 dump_part_var_map (FILE *f, partition part, var_map map)
1451 {
1452 int t;
1453 unsigned x, y;
1454 int p;
1455
1456 fprintf (f, "\nCoalescible Partition map \n\n");
1457
1458 for (x = 0; x < map->num_partitions; x++)
1459 {
1460 if (map->view_to_partition != NULL)
1461 p = map->view_to_partition[x];
1462 else
1463 p = x;
1464
1465 if (ssa_name (p) == NULL_TREE
1466 || virtual_operand_p (ssa_name (p)))
1467 continue;
1468
1469 t = 0;
1470 for (y = 1; y < num_ssa_names; y++)
1471 {
1472 tree var = version_to_var (map, y);
1473 if (!var)
1474 continue;
1475 int q = var_to_partition (map, var);
1476 p = partition_find (part, q);
1477 gcc_assert (map->partition_to_base_index[q]
1478 == map->partition_to_base_index[p]);
1479
1480 if (p == (int)x)
1481 {
1482 if (t++ == 0)
1483 {
1484 fprintf (f, "Partition %d, base %d (", x,
1485 map->partition_to_base_index[q]);
1486 print_generic_expr (f, partition_to_var (map, q), TDF_SLIM);
1487 fprintf (f, " - ");
1488 }
1489 fprintf (f, "%d ", y);
1490 }
1491 }
1492 if (t != 0)
1493 fprintf (f, ")\n");
1494 }
1495 fprintf (f, "\n");
1496 }
1497
1498 /* Given SSA_NAMEs NAME1 and NAME2, return true if they are candidates for
1499 coalescing together, false otherwise.
1500
1501 This must stay consistent with compute_samebase_partition_bases and
1502 compute_optimized_partition_bases. */
1503
1504 bool
1505 gimple_can_coalesce_p (tree name1, tree name2)
1506 {
1507 /* First check the SSA_NAME's associated DECL. Without
1508 optimization, we only want to coalesce if they have the same DECL
1509 or both have no associated DECL. */
1510 tree var1 = SSA_NAME_VAR (name1);
1511 tree var2 = SSA_NAME_VAR (name2);
1512 var1 = (var1 && (!VAR_P (var1) || !DECL_IGNORED_P (var1))) ? var1 : NULL_TREE;
1513 var2 = (var2 && (!VAR_P (var2) || !DECL_IGNORED_P (var2))) ? var2 : NULL_TREE;
1514 if (var1 != var2 && !flag_tree_coalesce_vars)
1515 return false;
1516
1517 /* Now check the types. If the types are the same, then we should
1518 try to coalesce V1 and V2. */
1519 tree t1 = TREE_TYPE (name1);
1520 tree t2 = TREE_TYPE (name2);
1521 if (t1 == t2)
1522 {
1523 check_modes:
1524 /* If the base variables are the same, we're good: none of the
1525 other tests below could possibly fail. */
1526 var1 = SSA_NAME_VAR (name1);
1527 var2 = SSA_NAME_VAR (name2);
1528 if (var1 == var2)
1529 return true;
1530
1531 /* We don't want to coalesce two SSA names if one of the base
1532 variables is supposed to be a register while the other is
1533 supposed to be on the stack. Anonymous SSA names most often
1534 take registers, but when not optimizing, user variables
1535 should go on the stack, so coalescing them with the anonymous
1536 variable as the partition leader would end up assigning the
1537 user variable to a register. Don't do that! */
1538 bool reg1 = use_register_for_decl (name1);
1539 bool reg2 = use_register_for_decl (name2);
1540 if (reg1 != reg2)
1541 return false;
1542
1543 /* Check that the promoted modes and unsignedness are the same.
1544 We don't want to coalesce if the promoted modes would be
1545 different, or if they would sign-extend differently. Only
1546 PARM_DECLs and RESULT_DECLs have different promotion rules,
1547 so skip the test if both are variables, or both are anonymous
1548 SSA_NAMEs. */
1549 int unsigned1, unsigned2;
1550 return ((!var1 || VAR_P (var1)) && (!var2 || VAR_P (var2)))
1551 || ((promote_ssa_mode (name1, &unsigned1)
1552 == promote_ssa_mode (name2, &unsigned2))
1553 && unsigned1 == unsigned2);
1554 }
1555
1556 /* If alignment requirements are different, we can't coalesce. */
1557 if (MINIMUM_ALIGNMENT (t1,
1558 var1 ? DECL_MODE (var1) : TYPE_MODE (t1),
1559 var1 ? LOCAL_DECL_ALIGNMENT (var1) : TYPE_ALIGN (t1))
1560 != MINIMUM_ALIGNMENT (t2,
1561 var2 ? DECL_MODE (var2) : TYPE_MODE (t2),
1562 var2 ? LOCAL_DECL_ALIGNMENT (var2) : TYPE_ALIGN (t2)))
1563 return false;
1564
1565 /* If the types are not the same, see whether they are compatible. This
1566 (for example) allows coalescing when the types are fundamentally the
1567 same, but just have different names. */
1568 if (types_compatible_p (t1, t2))
1569 goto check_modes;
1570
1571 return false;
1572 }
1573
1574 /* Fill in MAP's partition_to_base_index, with one index for each
1575 partition of SSA names USED_IN_COPIES and related by CL coalesce
1576 possibilities. This must match gimple_can_coalesce_p in the
1577 optimized case. */
1578
1579 static void
1580 compute_optimized_partition_bases (var_map map, bitmap used_in_copies,
1581 coalesce_list *cl)
1582 {
1583 int parts = num_var_partitions (map);
1584 partition tentative = partition_new (parts);
1585
1586 /* Partition the SSA versions so that, for each coalescible
1587 pair, both of its members are in the same partition in
1588 TENTATIVE. */
1589 gcc_assert (!cl->sorted);
1590 coalesce_pair *node;
1591 coalesce_iterator_type ppi;
1592 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
1593 {
1594 tree v1 = ssa_name (node->first_element);
1595 int p1 = partition_find (tentative, var_to_partition (map, v1));
1596 tree v2 = ssa_name (node->second_element);
1597 int p2 = partition_find (tentative, var_to_partition (map, v2));
1598
1599 if (p1 == p2)
1600 continue;
1601
1602 partition_union (tentative, p1, p2);
1603 }
1604
1605 /* We have to deal with cost one pairs too. */
1606 for (cost_one_pair *co = cl->cost_one_list; co; co = co->next)
1607 {
1608 tree v1 = ssa_name (co->first_element);
1609 int p1 = partition_find (tentative, var_to_partition (map, v1));
1610 tree v2 = ssa_name (co->second_element);
1611 int p2 = partition_find (tentative, var_to_partition (map, v2));
1612
1613 if (p1 == p2)
1614 continue;
1615
1616 partition_union (tentative, p1, p2);
1617 }
1618
1619 /* And also with abnormal edges. */
1620 basic_block bb;
1621 edge e;
1622 unsigned i;
1623 edge_iterator ei;
1624 for (i = 0; map->vec_bbs.iterate (i, &bb); ++i)
1625 {
1626 FOR_EACH_EDGE (e, ei, bb->preds)
1627 if (e->flags & EDGE_ABNORMAL)
1628 {
1629 gphi_iterator gsi;
1630 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1631 gsi_next (&gsi))
1632 {
1633 gphi *phi = gsi.phi ();
1634 tree res = PHI_RESULT (phi);
1635 if (virtual_operand_p (res))
1636 continue;
1637 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1638 if (SSA_NAME_IS_DEFAULT_DEF (arg)
1639 && (!SSA_NAME_VAR (arg)
1640 || TREE_CODE (SSA_NAME_VAR (arg)) != PARM_DECL))
1641 continue;
1642
1643 int p1 = partition_find (tentative, var_to_partition (map, res));
1644 int p2 = partition_find (tentative, var_to_partition (map, arg));
1645
1646 if (p1 == p2)
1647 continue;
1648
1649 partition_union (tentative, p1, p2);
1650 }
1651 }
1652 }
1653
1654 map->partition_to_base_index = XCNEWVEC (int, parts);
1655 auto_vec<unsigned int> index_map (parts);
1656 if (parts)
1657 index_map.quick_grow (parts);
1658
1659 const unsigned no_part = -1;
1660 unsigned count = parts;
1661 while (count)
1662 index_map[--count] = no_part;
1663
1664 /* Initialize MAP's mapping from partition to base index, using
1665 as base indices an enumeration of the TENTATIVE partitions in
1666 which each SSA version ended up, so that we compute conflicts
1667 between all SSA versions that ended up in the same potential
1668 coalesce partition. */
1669 bitmap_iterator bi;
1670 EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
1671 {
1672 int pidx = var_to_partition (map, ssa_name (i));
1673 int base = partition_find (tentative, pidx);
1674 if (index_map[base] != no_part)
1675 continue;
1676 index_map[base] = count++;
1677 }
1678
1679 map->num_basevars = count;
1680
1681 EXECUTE_IF_SET_IN_BITMAP (used_in_copies, 0, i, bi)
1682 {
1683 int pidx = var_to_partition (map, ssa_name (i));
1684 int base = partition_find (tentative, pidx);
1685 gcc_assert (index_map[base] < count);
1686 map->partition_to_base_index[pidx] = index_map[base];
1687 }
1688
1689 if (dump_file && (dump_flags & TDF_DETAILS))
1690 dump_part_var_map (dump_file, tentative, map);
1691
1692 partition_delete (tentative);
1693 }
1694
1695 /* Given an initial var_map MAP, coalesce variables and return a partition map
1696 with the resulting coalesce. Note that this function is called in either
1697 live range computation context or out-of-ssa context, indicated by MAP. */
1698
1699 extern void
1700 coalesce_ssa_name (var_map map)
1701 {
1702 tree_live_info_p liveinfo;
1703 ssa_conflicts *graph;
1704 coalesce_list *cl;
1705 auto_bitmap used_in_copies;
1706
1707 bitmap_tree_view (used_in_copies);
1708 cl = create_coalesce_list_for_region (map, used_in_copies);
1709 if (map->outofssa_p)
1710 populate_coalesce_list_for_outofssa (cl, used_in_copies);
1711 bitmap_list_view (used_in_copies);
1712
1713 if (dump_file && (dump_flags & TDF_DETAILS))
1714 dump_var_map (dump_file, map);
1715
1716 partition_view_bitmap (map, used_in_copies);
1717
1718 compute_optimized_partition_bases (map, used_in_copies, cl);
1719
1720 if (num_var_partitions (map) < 1)
1721 {
1722 delete_coalesce_list (cl);
1723 return;
1724 }
1725
1726 if (dump_file && (dump_flags & TDF_DETAILS))
1727 dump_var_map (dump_file, map);
1728
1729 liveinfo = calculate_live_ranges (map, false);
1730
1731 if (dump_file && (dump_flags & TDF_DETAILS))
1732 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1733
1734 /* Build a conflict graph. */
1735 graph = build_ssa_conflict_graph (liveinfo);
1736 delete_tree_live_info (liveinfo);
1737 if (dump_file && (dump_flags & TDF_DETAILS))
1738 ssa_conflicts_dump (dump_file, graph);
1739
1740 sort_coalesce_list (cl, graph, map);
1741
1742 if (dump_file && (dump_flags & TDF_DETAILS))
1743 {
1744 fprintf (dump_file, "\nAfter sorting:\n");
1745 dump_coalesce_list (dump_file, cl);
1746 }
1747
1748 /* First, coalesce all live on entry variables to their base variable.
1749 This will ensure the first use is coming from the correct location. */
1750
1751 if (dump_file && (dump_flags & TDF_DETAILS))
1752 dump_var_map (dump_file, map);
1753
1754 /* Now coalesce everything in the list. */
1755 coalesce_partitions (map, graph, cl,
1756 ((dump_flags & TDF_DETAILS) ? dump_file : NULL));
1757
1758 delete_coalesce_list (cl);
1759 ssa_conflicts_delete (graph);
1760 }
1761