]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-dom.c
sh.c: Do not include algorithm.
[thirdparty/gcc.git] / gcc / tree-ssa-dom.c
1 /* SSA Dominator optimizations for trees
2 Copyright (C) 2001-2014 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "hash-table.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "stor-layout.h"
28 #include "flags.h"
29 #include "tm_p.h"
30 #include "predict.h"
31 #include "vec.h"
32 #include "hashtab.h"
33 #include "hash-set.h"
34 #include "machmode.h"
35 #include "hard-reg-set.h"
36 #include "input.h"
37 #include "function.h"
38 #include "dominance.h"
39 #include "cfg.h"
40 #include "cfganal.h"
41 #include "basic-block.h"
42 #include "cfgloop.h"
43 #include "inchash.h"
44 #include "gimple-pretty-print.h"
45 #include "tree-ssa-alias.h"
46 #include "internal-fn.h"
47 #include "gimple-fold.h"
48 #include "tree-eh.h"
49 #include "gimple-expr.h"
50 #include "is-a.h"
51 #include "gimple.h"
52 #include "gimple-iterator.h"
53 #include "gimple-ssa.h"
54 #include "tree-cfg.h"
55 #include "tree-phinodes.h"
56 #include "ssa-iterators.h"
57 #include "stringpool.h"
58 #include "tree-ssanames.h"
59 #include "tree-into-ssa.h"
60 #include "domwalk.h"
61 #include "tree-pass.h"
62 #include "tree-ssa-propagate.h"
63 #include "tree-ssa-threadupdate.h"
64 #include "langhooks.h"
65 #include "params.h"
66 #include "tree-ssa-threadedge.h"
67 #include "tree-ssa-dom.h"
68 #include "inchash.h"
69
70 /* This file implements optimizations on the dominator tree. */
71
72 /* Representation of a "naked" right-hand-side expression, to be used
73 in recording available expressions in the expression hash table. */
74
75 enum expr_kind
76 {
77 EXPR_SINGLE,
78 EXPR_UNARY,
79 EXPR_BINARY,
80 EXPR_TERNARY,
81 EXPR_CALL,
82 EXPR_PHI
83 };
84
85 struct hashable_expr
86 {
87 tree type;
88 enum expr_kind kind;
89 union {
90 struct { tree rhs; } single;
91 struct { enum tree_code op; tree opnd; } unary;
92 struct { enum tree_code op; tree opnd0, opnd1; } binary;
93 struct { enum tree_code op; tree opnd0, opnd1, opnd2; } ternary;
94 struct { gimple fn_from; bool pure; size_t nargs; tree *args; } call;
95 struct { size_t nargs; tree *args; } phi;
96 } ops;
97 };
98
99 /* Structure for recording known values of a conditional expression
100 at the exits from its block. */
101
102 typedef struct cond_equivalence_s
103 {
104 struct hashable_expr cond;
105 tree value;
106 } cond_equivalence;
107
108
109 /* Structure for recording edge equivalences as well as any pending
110 edge redirections during the dominator optimizer.
111
112 Computing and storing the edge equivalences instead of creating
113 them on-demand can save significant amounts of time, particularly
114 for pathological cases involving switch statements.
115
116 These structures live for a single iteration of the dominator
117 optimizer in the edge's AUX field. At the end of an iteration we
118 free each of these structures and update the AUX field to point
119 to any requested redirection target (the code for updating the
120 CFG and SSA graph for edge redirection expects redirection edge
121 targets to be in the AUX field for each edge. */
122
123 struct edge_info
124 {
125 /* If this edge creates a simple equivalence, the LHS and RHS of
126 the equivalence will be stored here. */
127 tree lhs;
128 tree rhs;
129
130 /* Traversing an edge may also indicate one or more particular conditions
131 are true or false. */
132 vec<cond_equivalence> cond_equivalences;
133 };
134
135 /* Stack of available expressions in AVAIL_EXPRs. Each block pushes any
136 expressions it enters into the hash table along with a marker entry
137 (null). When we finish processing the block, we pop off entries and
138 remove the expressions from the global hash table until we hit the
139 marker. */
140 typedef struct expr_hash_elt * expr_hash_elt_t;
141
142 static vec<expr_hash_elt_t> avail_exprs_stack;
143
144 /* Structure for entries in the expression hash table. */
145
146 struct expr_hash_elt
147 {
148 /* The value (lhs) of this expression. */
149 tree lhs;
150
151 /* The expression (rhs) we want to record. */
152 struct hashable_expr expr;
153
154 /* The stmt pointer if this element corresponds to a statement. */
155 gimple stmt;
156
157 /* The hash value for RHS. */
158 hashval_t hash;
159
160 /* A unique stamp, typically the address of the hash
161 element itself, used in removing entries from the table. */
162 struct expr_hash_elt *stamp;
163 };
164
165 /* Hashtable helpers. */
166
167 static bool hashable_expr_equal_p (const struct hashable_expr *,
168 const struct hashable_expr *);
169 static void free_expr_hash_elt (void *);
170
171 struct expr_elt_hasher
172 {
173 typedef expr_hash_elt *value_type;
174 typedef expr_hash_elt *compare_type;
175 typedef int store_values_directly;
176 static inline hashval_t hash (const value_type &);
177 static inline bool equal (const value_type &, const compare_type &);
178 static inline void remove (value_type &);
179 };
180
181 inline hashval_t
182 expr_elt_hasher::hash (const value_type &p)
183 {
184 return p->hash;
185 }
186
187 inline bool
188 expr_elt_hasher::equal (const value_type &p1, const compare_type &p2)
189 {
190 gimple stmt1 = p1->stmt;
191 const struct hashable_expr *expr1 = &p1->expr;
192 const struct expr_hash_elt *stamp1 = p1->stamp;
193 gimple stmt2 = p2->stmt;
194 const struct hashable_expr *expr2 = &p2->expr;
195 const struct expr_hash_elt *stamp2 = p2->stamp;
196
197 /* This case should apply only when removing entries from the table. */
198 if (stamp1 == stamp2)
199 return true;
200
201 /* FIXME tuples:
202 We add stmts to a hash table and them modify them. To detect the case
203 that we modify a stmt and then search for it, we assume that the hash
204 is always modified by that change.
205 We have to fully check why this doesn't happen on trunk or rewrite
206 this in a more reliable (and easier to understand) way. */
207 if (((const struct expr_hash_elt *)p1)->hash
208 != ((const struct expr_hash_elt *)p2)->hash)
209 return false;
210
211 /* In case of a collision, both RHS have to be identical and have the
212 same VUSE operands. */
213 if (hashable_expr_equal_p (expr1, expr2)
214 && types_compatible_p (expr1->type, expr2->type))
215 {
216 /* Note that STMT1 and/or STMT2 may be NULL. */
217 return ((stmt1 ? gimple_vuse (stmt1) : NULL_TREE)
218 == (stmt2 ? gimple_vuse (stmt2) : NULL_TREE));
219 }
220
221 return false;
222 }
223
224 /* Delete an expr_hash_elt and reclaim its storage. */
225
226 inline void
227 expr_elt_hasher::remove (value_type &element)
228 {
229 free_expr_hash_elt (element);
230 }
231
232 /* Hash table with expressions made available during the renaming process.
233 When an assignment of the form X_i = EXPR is found, the statement is
234 stored in this table. If the same expression EXPR is later found on the
235 RHS of another statement, it is replaced with X_i (thus performing
236 global redundancy elimination). Similarly as we pass through conditionals
237 we record the conditional itself as having either a true or false value
238 in this table. */
239 static hash_table<expr_elt_hasher> *avail_exprs;
240
241 /* Stack of dest,src pairs that need to be restored during finalization.
242
243 A NULL entry is used to mark the end of pairs which need to be
244 restored during finalization of this block. */
245 static vec<tree> const_and_copies_stack;
246
247 /* Track whether or not we have changed the control flow graph. */
248 static bool cfg_altered;
249
250 /* Bitmap of blocks that have had EH statements cleaned. We should
251 remove their dead edges eventually. */
252 static bitmap need_eh_cleanup;
253
254 /* Statistics for dominator optimizations. */
255 struct opt_stats_d
256 {
257 long num_stmts;
258 long num_exprs_considered;
259 long num_re;
260 long num_const_prop;
261 long num_copy_prop;
262 };
263
264 static struct opt_stats_d opt_stats;
265
266 /* Local functions. */
267 static void optimize_stmt (basic_block, gimple_stmt_iterator);
268 static tree lookup_avail_expr (gimple, bool);
269 static hashval_t avail_expr_hash (const void *);
270 static void htab_statistics (FILE *,
271 const hash_table<expr_elt_hasher> &);
272 static void record_cond (cond_equivalence *);
273 static void record_const_or_copy (tree, tree);
274 static void record_equality (tree, tree);
275 static void record_equivalences_from_phis (basic_block);
276 static void record_equivalences_from_incoming_edge (basic_block);
277 static void eliminate_redundant_computations (gimple_stmt_iterator *);
278 static void record_equivalences_from_stmt (gimple, int);
279 static void remove_local_expressions_from_table (void);
280 static void restore_vars_to_original_value (void);
281 static edge single_incoming_edge_ignoring_loop_edges (basic_block);
282
283
284 /* Given a statement STMT, initialize the hash table element pointed to
285 by ELEMENT. */
286
287 static void
288 initialize_hash_element (gimple stmt, tree lhs,
289 struct expr_hash_elt *element)
290 {
291 enum gimple_code code = gimple_code (stmt);
292 struct hashable_expr *expr = &element->expr;
293
294 if (code == GIMPLE_ASSIGN)
295 {
296 enum tree_code subcode = gimple_assign_rhs_code (stmt);
297
298 switch (get_gimple_rhs_class (subcode))
299 {
300 case GIMPLE_SINGLE_RHS:
301 expr->kind = EXPR_SINGLE;
302 expr->type = TREE_TYPE (gimple_assign_rhs1 (stmt));
303 expr->ops.single.rhs = gimple_assign_rhs1 (stmt);
304 break;
305 case GIMPLE_UNARY_RHS:
306 expr->kind = EXPR_UNARY;
307 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
308 if (CONVERT_EXPR_CODE_P (subcode))
309 subcode = NOP_EXPR;
310 expr->ops.unary.op = subcode;
311 expr->ops.unary.opnd = gimple_assign_rhs1 (stmt);
312 break;
313 case GIMPLE_BINARY_RHS:
314 expr->kind = EXPR_BINARY;
315 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
316 expr->ops.binary.op = subcode;
317 expr->ops.binary.opnd0 = gimple_assign_rhs1 (stmt);
318 expr->ops.binary.opnd1 = gimple_assign_rhs2 (stmt);
319 break;
320 case GIMPLE_TERNARY_RHS:
321 expr->kind = EXPR_TERNARY;
322 expr->type = TREE_TYPE (gimple_assign_lhs (stmt));
323 expr->ops.ternary.op = subcode;
324 expr->ops.ternary.opnd0 = gimple_assign_rhs1 (stmt);
325 expr->ops.ternary.opnd1 = gimple_assign_rhs2 (stmt);
326 expr->ops.ternary.opnd2 = gimple_assign_rhs3 (stmt);
327 break;
328 default:
329 gcc_unreachable ();
330 }
331 }
332 else if (code == GIMPLE_COND)
333 {
334 expr->type = boolean_type_node;
335 expr->kind = EXPR_BINARY;
336 expr->ops.binary.op = gimple_cond_code (stmt);
337 expr->ops.binary.opnd0 = gimple_cond_lhs (stmt);
338 expr->ops.binary.opnd1 = gimple_cond_rhs (stmt);
339 }
340 else if (code == GIMPLE_CALL)
341 {
342 size_t nargs = gimple_call_num_args (stmt);
343 size_t i;
344
345 gcc_assert (gimple_call_lhs (stmt));
346
347 expr->type = TREE_TYPE (gimple_call_lhs (stmt));
348 expr->kind = EXPR_CALL;
349 expr->ops.call.fn_from = stmt;
350
351 if (gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))
352 expr->ops.call.pure = true;
353 else
354 expr->ops.call.pure = false;
355
356 expr->ops.call.nargs = nargs;
357 expr->ops.call.args = XCNEWVEC (tree, nargs);
358 for (i = 0; i < nargs; i++)
359 expr->ops.call.args[i] = gimple_call_arg (stmt, i);
360 }
361 else if (code == GIMPLE_SWITCH)
362 {
363 expr->type = TREE_TYPE (gimple_switch_index (stmt));
364 expr->kind = EXPR_SINGLE;
365 expr->ops.single.rhs = gimple_switch_index (stmt);
366 }
367 else if (code == GIMPLE_GOTO)
368 {
369 expr->type = TREE_TYPE (gimple_goto_dest (stmt));
370 expr->kind = EXPR_SINGLE;
371 expr->ops.single.rhs = gimple_goto_dest (stmt);
372 }
373 else if (code == GIMPLE_PHI)
374 {
375 size_t nargs = gimple_phi_num_args (stmt);
376 size_t i;
377
378 expr->type = TREE_TYPE (gimple_phi_result (stmt));
379 expr->kind = EXPR_PHI;
380 expr->ops.phi.nargs = nargs;
381 expr->ops.phi.args = XCNEWVEC (tree, nargs);
382
383 for (i = 0; i < nargs; i++)
384 expr->ops.phi.args[i] = gimple_phi_arg_def (stmt, i);
385 }
386 else
387 gcc_unreachable ();
388
389 element->lhs = lhs;
390 element->stmt = stmt;
391 element->hash = avail_expr_hash (element);
392 element->stamp = element;
393 }
394
395 /* Given a conditional expression COND as a tree, initialize
396 a hashable_expr expression EXPR. The conditional must be a
397 comparison or logical negation. A constant or a variable is
398 not permitted. */
399
400 static void
401 initialize_expr_from_cond (tree cond, struct hashable_expr *expr)
402 {
403 expr->type = boolean_type_node;
404
405 if (COMPARISON_CLASS_P (cond))
406 {
407 expr->kind = EXPR_BINARY;
408 expr->ops.binary.op = TREE_CODE (cond);
409 expr->ops.binary.opnd0 = TREE_OPERAND (cond, 0);
410 expr->ops.binary.opnd1 = TREE_OPERAND (cond, 1);
411 }
412 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
413 {
414 expr->kind = EXPR_UNARY;
415 expr->ops.unary.op = TRUTH_NOT_EXPR;
416 expr->ops.unary.opnd = TREE_OPERAND (cond, 0);
417 }
418 else
419 gcc_unreachable ();
420 }
421
422 /* Given a hashable_expr expression EXPR and an LHS,
423 initialize the hash table element pointed to by ELEMENT. */
424
425 static void
426 initialize_hash_element_from_expr (struct hashable_expr *expr,
427 tree lhs,
428 struct expr_hash_elt *element)
429 {
430 element->expr = *expr;
431 element->lhs = lhs;
432 element->stmt = NULL;
433 element->hash = avail_expr_hash (element);
434 element->stamp = element;
435 }
436
437 /* Compare two hashable_expr structures for equivalence.
438 They are considered equivalent when the the expressions
439 they denote must necessarily be equal. The logic is intended
440 to follow that of operand_equal_p in fold-const.c */
441
442 static bool
443 hashable_expr_equal_p (const struct hashable_expr *expr0,
444 const struct hashable_expr *expr1)
445 {
446 tree type0 = expr0->type;
447 tree type1 = expr1->type;
448
449 /* If either type is NULL, there is nothing to check. */
450 if ((type0 == NULL_TREE) ^ (type1 == NULL_TREE))
451 return false;
452
453 /* If both types don't have the same signedness, precision, and mode,
454 then we can't consider them equal. */
455 if (type0 != type1
456 && (TREE_CODE (type0) == ERROR_MARK
457 || TREE_CODE (type1) == ERROR_MARK
458 || TYPE_UNSIGNED (type0) != TYPE_UNSIGNED (type1)
459 || TYPE_PRECISION (type0) != TYPE_PRECISION (type1)
460 || TYPE_MODE (type0) != TYPE_MODE (type1)))
461 return false;
462
463 if (expr0->kind != expr1->kind)
464 return false;
465
466 switch (expr0->kind)
467 {
468 case EXPR_SINGLE:
469 return operand_equal_p (expr0->ops.single.rhs,
470 expr1->ops.single.rhs, 0);
471
472 case EXPR_UNARY:
473 if (expr0->ops.unary.op != expr1->ops.unary.op)
474 return false;
475
476 if ((CONVERT_EXPR_CODE_P (expr0->ops.unary.op)
477 || expr0->ops.unary.op == NON_LVALUE_EXPR)
478 && TYPE_UNSIGNED (expr0->type) != TYPE_UNSIGNED (expr1->type))
479 return false;
480
481 return operand_equal_p (expr0->ops.unary.opnd,
482 expr1->ops.unary.opnd, 0);
483
484 case EXPR_BINARY:
485 if (expr0->ops.binary.op != expr1->ops.binary.op)
486 return false;
487
488 if (operand_equal_p (expr0->ops.binary.opnd0,
489 expr1->ops.binary.opnd0, 0)
490 && operand_equal_p (expr0->ops.binary.opnd1,
491 expr1->ops.binary.opnd1, 0))
492 return true;
493
494 /* For commutative ops, allow the other order. */
495 return (commutative_tree_code (expr0->ops.binary.op)
496 && operand_equal_p (expr0->ops.binary.opnd0,
497 expr1->ops.binary.opnd1, 0)
498 && operand_equal_p (expr0->ops.binary.opnd1,
499 expr1->ops.binary.opnd0, 0));
500
501 case EXPR_TERNARY:
502 if (expr0->ops.ternary.op != expr1->ops.ternary.op
503 || !operand_equal_p (expr0->ops.ternary.opnd2,
504 expr1->ops.ternary.opnd2, 0))
505 return false;
506
507 if (operand_equal_p (expr0->ops.ternary.opnd0,
508 expr1->ops.ternary.opnd0, 0)
509 && operand_equal_p (expr0->ops.ternary.opnd1,
510 expr1->ops.ternary.opnd1, 0))
511 return true;
512
513 /* For commutative ops, allow the other order. */
514 return (commutative_ternary_tree_code (expr0->ops.ternary.op)
515 && operand_equal_p (expr0->ops.ternary.opnd0,
516 expr1->ops.ternary.opnd1, 0)
517 && operand_equal_p (expr0->ops.ternary.opnd1,
518 expr1->ops.ternary.opnd0, 0));
519
520 case EXPR_CALL:
521 {
522 size_t i;
523
524 /* If the calls are to different functions, then they
525 clearly cannot be equal. */
526 if (!gimple_call_same_target_p (expr0->ops.call.fn_from,
527 expr1->ops.call.fn_from))
528 return false;
529
530 if (! expr0->ops.call.pure)
531 return false;
532
533 if (expr0->ops.call.nargs != expr1->ops.call.nargs)
534 return false;
535
536 for (i = 0; i < expr0->ops.call.nargs; i++)
537 if (! operand_equal_p (expr0->ops.call.args[i],
538 expr1->ops.call.args[i], 0))
539 return false;
540
541 if (stmt_could_throw_p (expr0->ops.call.fn_from))
542 {
543 int lp0 = lookup_stmt_eh_lp (expr0->ops.call.fn_from);
544 int lp1 = lookup_stmt_eh_lp (expr1->ops.call.fn_from);
545 if ((lp0 > 0 || lp1 > 0) && lp0 != lp1)
546 return false;
547 }
548
549 return true;
550 }
551
552 case EXPR_PHI:
553 {
554 size_t i;
555
556 if (expr0->ops.phi.nargs != expr1->ops.phi.nargs)
557 return false;
558
559 for (i = 0; i < expr0->ops.phi.nargs; i++)
560 if (! operand_equal_p (expr0->ops.phi.args[i],
561 expr1->ops.phi.args[i], 0))
562 return false;
563
564 return true;
565 }
566
567 default:
568 gcc_unreachable ();
569 }
570 }
571
572 /* Generate a hash value for a pair of expressions. This can be used
573 iteratively by passing a previous result in HSTATE.
574
575 The same hash value is always returned for a given pair of expressions,
576 regardless of the order in which they are presented. This is useful in
577 hashing the operands of commutative functions. */
578
579 namespace inchash
580 {
581
582 static void
583 add_expr_commutative (const_tree t1, const_tree t2, hash &hstate)
584 {
585 hash one, two;
586
587 inchash::add_expr (t1, one);
588 inchash::add_expr (t2, two);
589 hstate.add_commutative (one, two);
590 }
591
592 /* Compute a hash value for a hashable_expr value EXPR and a
593 previously accumulated hash value VAL. If two hashable_expr
594 values compare equal with hashable_expr_equal_p, they must
595 hash to the same value, given an identical value of VAL.
596 The logic is intended to follow inchash::add_expr in tree.c. */
597
598 static void
599 add_hashable_expr (const struct hashable_expr *expr, hash &hstate)
600 {
601 switch (expr->kind)
602 {
603 case EXPR_SINGLE:
604 inchash::add_expr (expr->ops.single.rhs, hstate);
605 break;
606
607 case EXPR_UNARY:
608 hstate.add_object (expr->ops.unary.op);
609
610 /* Make sure to include signedness in the hash computation.
611 Don't hash the type, that can lead to having nodes which
612 compare equal according to operand_equal_p, but which
613 have different hash codes. */
614 if (CONVERT_EXPR_CODE_P (expr->ops.unary.op)
615 || expr->ops.unary.op == NON_LVALUE_EXPR)
616 hstate.add_int (TYPE_UNSIGNED (expr->type));
617
618 inchash::add_expr (expr->ops.unary.opnd, hstate);
619 break;
620
621 case EXPR_BINARY:
622 hstate.add_object (expr->ops.binary.op);
623 if (commutative_tree_code (expr->ops.binary.op))
624 inchash::add_expr_commutative (expr->ops.binary.opnd0,
625 expr->ops.binary.opnd1, hstate);
626 else
627 {
628 inchash::add_expr (expr->ops.binary.opnd0, hstate);
629 inchash::add_expr (expr->ops.binary.opnd1, hstate);
630 }
631 break;
632
633 case EXPR_TERNARY:
634 hstate.add_object (expr->ops.ternary.op);
635 if (commutative_ternary_tree_code (expr->ops.ternary.op))
636 inchash::add_expr_commutative (expr->ops.ternary.opnd0,
637 expr->ops.ternary.opnd1, hstate);
638 else
639 {
640 inchash::add_expr (expr->ops.ternary.opnd0, hstate);
641 inchash::add_expr (expr->ops.ternary.opnd1, hstate);
642 }
643 inchash::add_expr (expr->ops.ternary.opnd2, hstate);
644 break;
645
646 case EXPR_CALL:
647 {
648 size_t i;
649 enum tree_code code = CALL_EXPR;
650 gimple fn_from;
651
652 hstate.add_object (code);
653 fn_from = expr->ops.call.fn_from;
654 if (gimple_call_internal_p (fn_from))
655 hstate.merge_hash ((hashval_t) gimple_call_internal_fn (fn_from));
656 else
657 inchash::add_expr (gimple_call_fn (fn_from), hstate);
658 for (i = 0; i < expr->ops.call.nargs; i++)
659 inchash::add_expr (expr->ops.call.args[i], hstate);
660 }
661 break;
662
663 case EXPR_PHI:
664 {
665 size_t i;
666
667 for (i = 0; i < expr->ops.phi.nargs; i++)
668 inchash::add_expr (expr->ops.phi.args[i], hstate);
669 }
670 break;
671
672 default:
673 gcc_unreachable ();
674 }
675 }
676
677 }
678
679 /* Print a diagnostic dump of an expression hash table entry. */
680
681 static void
682 print_expr_hash_elt (FILE * stream, const struct expr_hash_elt *element)
683 {
684 if (element->stmt)
685 fprintf (stream, "STMT ");
686 else
687 fprintf (stream, "COND ");
688
689 if (element->lhs)
690 {
691 print_generic_expr (stream, element->lhs, 0);
692 fprintf (stream, " = ");
693 }
694
695 switch (element->expr.kind)
696 {
697 case EXPR_SINGLE:
698 print_generic_expr (stream, element->expr.ops.single.rhs, 0);
699 break;
700
701 case EXPR_UNARY:
702 fprintf (stream, "%s ", get_tree_code_name (element->expr.ops.unary.op));
703 print_generic_expr (stream, element->expr.ops.unary.opnd, 0);
704 break;
705
706 case EXPR_BINARY:
707 print_generic_expr (stream, element->expr.ops.binary.opnd0, 0);
708 fprintf (stream, " %s ", get_tree_code_name (element->expr.ops.binary.op));
709 print_generic_expr (stream, element->expr.ops.binary.opnd1, 0);
710 break;
711
712 case EXPR_TERNARY:
713 fprintf (stream, " %s <", get_tree_code_name (element->expr.ops.ternary.op));
714 print_generic_expr (stream, element->expr.ops.ternary.opnd0, 0);
715 fputs (", ", stream);
716 print_generic_expr (stream, element->expr.ops.ternary.opnd1, 0);
717 fputs (", ", stream);
718 print_generic_expr (stream, element->expr.ops.ternary.opnd2, 0);
719 fputs (">", stream);
720 break;
721
722 case EXPR_CALL:
723 {
724 size_t i;
725 size_t nargs = element->expr.ops.call.nargs;
726 gimple fn_from;
727
728 fn_from = element->expr.ops.call.fn_from;
729 if (gimple_call_internal_p (fn_from))
730 fputs (internal_fn_name (gimple_call_internal_fn (fn_from)),
731 stream);
732 else
733 print_generic_expr (stream, gimple_call_fn (fn_from), 0);
734 fprintf (stream, " (");
735 for (i = 0; i < nargs; i++)
736 {
737 print_generic_expr (stream, element->expr.ops.call.args[i], 0);
738 if (i + 1 < nargs)
739 fprintf (stream, ", ");
740 }
741 fprintf (stream, ")");
742 }
743 break;
744
745 case EXPR_PHI:
746 {
747 size_t i;
748 size_t nargs = element->expr.ops.phi.nargs;
749
750 fprintf (stream, "PHI <");
751 for (i = 0; i < nargs; i++)
752 {
753 print_generic_expr (stream, element->expr.ops.phi.args[i], 0);
754 if (i + 1 < nargs)
755 fprintf (stream, ", ");
756 }
757 fprintf (stream, ">");
758 }
759 break;
760 }
761 fprintf (stream, "\n");
762
763 if (element->stmt)
764 {
765 fprintf (stream, " ");
766 print_gimple_stmt (stream, element->stmt, 0, 0);
767 }
768 }
769
770 /* Delete variable sized pieces of the expr_hash_elt ELEMENT. */
771
772 static void
773 free_expr_hash_elt_contents (struct expr_hash_elt *element)
774 {
775 if (element->expr.kind == EXPR_CALL)
776 free (element->expr.ops.call.args);
777 else if (element->expr.kind == EXPR_PHI)
778 free (element->expr.ops.phi.args);
779 }
780
781 /* Delete an expr_hash_elt and reclaim its storage. */
782
783 static void
784 free_expr_hash_elt (void *elt)
785 {
786 struct expr_hash_elt *element = ((struct expr_hash_elt *)elt);
787 free_expr_hash_elt_contents (element);
788 free (element);
789 }
790
791 /* Allocate an EDGE_INFO for edge E and attach it to E.
792 Return the new EDGE_INFO structure. */
793
794 static struct edge_info *
795 allocate_edge_info (edge e)
796 {
797 struct edge_info *edge_info;
798
799 edge_info = XCNEW (struct edge_info);
800
801 e->aux = edge_info;
802 return edge_info;
803 }
804
805 /* Free all EDGE_INFO structures associated with edges in the CFG.
806 If a particular edge can be threaded, copy the redirection
807 target from the EDGE_INFO structure into the edge's AUX field
808 as required by code to update the CFG and SSA graph for
809 jump threading. */
810
811 static void
812 free_all_edge_infos (void)
813 {
814 basic_block bb;
815 edge_iterator ei;
816 edge e;
817
818 FOR_EACH_BB_FN (bb, cfun)
819 {
820 FOR_EACH_EDGE (e, ei, bb->preds)
821 {
822 struct edge_info *edge_info = (struct edge_info *) e->aux;
823
824 if (edge_info)
825 {
826 edge_info->cond_equivalences.release ();
827 free (edge_info);
828 e->aux = NULL;
829 }
830 }
831 }
832 }
833
834 class dom_opt_dom_walker : public dom_walker
835 {
836 public:
837 dom_opt_dom_walker (cdi_direction direction)
838 : dom_walker (direction), m_dummy_cond (NULL) {}
839
840 virtual void before_dom_children (basic_block);
841 virtual void after_dom_children (basic_block);
842
843 private:
844 void thread_across_edge (edge);
845
846 gimple m_dummy_cond;
847 };
848
849 /* Jump threading, redundancy elimination and const/copy propagation.
850
851 This pass may expose new symbols that need to be renamed into SSA. For
852 every new symbol exposed, its corresponding bit will be set in
853 VARS_TO_RENAME. */
854
855 namespace {
856
857 const pass_data pass_data_dominator =
858 {
859 GIMPLE_PASS, /* type */
860 "dom", /* name */
861 OPTGROUP_NONE, /* optinfo_flags */
862 TV_TREE_SSA_DOMINATOR_OPTS, /* tv_id */
863 ( PROP_cfg | PROP_ssa ), /* properties_required */
864 0, /* properties_provided */
865 0, /* properties_destroyed */
866 0, /* todo_flags_start */
867 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
868 };
869
870 class pass_dominator : public gimple_opt_pass
871 {
872 public:
873 pass_dominator (gcc::context *ctxt)
874 : gimple_opt_pass (pass_data_dominator, ctxt)
875 {}
876
877 /* opt_pass methods: */
878 opt_pass * clone () { return new pass_dominator (m_ctxt); }
879 virtual bool gate (function *) { return flag_tree_dom != 0; }
880 virtual unsigned int execute (function *);
881
882 }; // class pass_dominator
883
884 unsigned int
885 pass_dominator::execute (function *fun)
886 {
887 memset (&opt_stats, 0, sizeof (opt_stats));
888
889 /* Create our hash tables. */
890 avail_exprs = new hash_table<expr_elt_hasher> (1024);
891 avail_exprs_stack.create (20);
892 const_and_copies_stack.create (20);
893 need_eh_cleanup = BITMAP_ALLOC (NULL);
894
895 calculate_dominance_info (CDI_DOMINATORS);
896 cfg_altered = false;
897
898 /* We need to know loop structures in order to avoid destroying them
899 in jump threading. Note that we still can e.g. thread through loop
900 headers to an exit edge, or through loop header to the loop body, assuming
901 that we update the loop info.
902
903 TODO: We don't need to set LOOPS_HAVE_PREHEADERS generally, but due
904 to several overly conservative bail-outs in jump threading, case
905 gcc.dg/tree-ssa/pr21417.c can't be threaded if loop preheader is
906 missing. We should improve jump threading in future then
907 LOOPS_HAVE_PREHEADERS won't be needed here. */
908 loop_optimizer_init (LOOPS_HAVE_PREHEADERS | LOOPS_HAVE_SIMPLE_LATCHES);
909
910 /* Initialize the value-handle array. */
911 threadedge_initialize_values ();
912
913 /* We need accurate information regarding back edges in the CFG
914 for jump threading; this may include back edges that are not part of
915 a single loop. */
916 mark_dfs_back_edges ();
917
918 /* Recursively walk the dominator tree optimizing statements. */
919 dom_opt_dom_walker (CDI_DOMINATORS).walk (fun->cfg->x_entry_block_ptr);
920
921 {
922 gimple_stmt_iterator gsi;
923 basic_block bb;
924 FOR_EACH_BB_FN (bb, fun)
925 {
926 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
927 update_stmt_if_modified (gsi_stmt (gsi));
928 }
929 }
930
931 /* If we exposed any new variables, go ahead and put them into
932 SSA form now, before we handle jump threading. This simplifies
933 interactions between rewriting of _DECL nodes into SSA form
934 and rewriting SSA_NAME nodes into SSA form after block
935 duplication and CFG manipulation. */
936 update_ssa (TODO_update_ssa);
937
938 free_all_edge_infos ();
939
940 /* Thread jumps, creating duplicate blocks as needed. */
941 cfg_altered |= thread_through_all_blocks (first_pass_instance);
942
943 if (cfg_altered)
944 free_dominance_info (CDI_DOMINATORS);
945
946 /* Removal of statements may make some EH edges dead. Purge
947 such edges from the CFG as needed. */
948 if (!bitmap_empty_p (need_eh_cleanup))
949 {
950 unsigned i;
951 bitmap_iterator bi;
952
953 /* Jump threading may have created forwarder blocks from blocks
954 needing EH cleanup; the new successor of these blocks, which
955 has inherited from the original block, needs the cleanup.
956 Don't clear bits in the bitmap, as that can break the bitmap
957 iterator. */
958 EXECUTE_IF_SET_IN_BITMAP (need_eh_cleanup, 0, i, bi)
959 {
960 basic_block bb = BASIC_BLOCK_FOR_FN (fun, i);
961 if (bb == NULL)
962 continue;
963 while (single_succ_p (bb)
964 && (single_succ_edge (bb)->flags & EDGE_EH) == 0)
965 bb = single_succ (bb);
966 if (bb == EXIT_BLOCK_PTR_FOR_FN (fun))
967 continue;
968 if ((unsigned) bb->index != i)
969 bitmap_set_bit (need_eh_cleanup, bb->index);
970 }
971
972 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
973 bitmap_clear (need_eh_cleanup);
974 }
975
976 statistics_counter_event (fun, "Redundant expressions eliminated",
977 opt_stats.num_re);
978 statistics_counter_event (fun, "Constants propagated",
979 opt_stats.num_const_prop);
980 statistics_counter_event (fun, "Copies propagated",
981 opt_stats.num_copy_prop);
982
983 /* Debugging dumps. */
984 if (dump_file && (dump_flags & TDF_STATS))
985 dump_dominator_optimization_stats (dump_file);
986
987 loop_optimizer_finalize ();
988
989 /* Delete our main hashtable. */
990 delete avail_exprs;
991 avail_exprs = NULL;
992
993 /* Free asserted bitmaps and stacks. */
994 BITMAP_FREE (need_eh_cleanup);
995
996 avail_exprs_stack.release ();
997 const_and_copies_stack.release ();
998
999 /* Free the value-handle array. */
1000 threadedge_finalize_values ();
1001
1002 return 0;
1003 }
1004
1005 } // anon namespace
1006
1007 gimple_opt_pass *
1008 make_pass_dominator (gcc::context *ctxt)
1009 {
1010 return new pass_dominator (ctxt);
1011 }
1012
1013
1014 /* Given a conditional statement CONDSTMT, convert the
1015 condition to a canonical form. */
1016
1017 static void
1018 canonicalize_comparison (gimple condstmt)
1019 {
1020 tree op0;
1021 tree op1;
1022 enum tree_code code;
1023
1024 gcc_assert (gimple_code (condstmt) == GIMPLE_COND);
1025
1026 op0 = gimple_cond_lhs (condstmt);
1027 op1 = gimple_cond_rhs (condstmt);
1028
1029 code = gimple_cond_code (condstmt);
1030
1031 /* If it would be profitable to swap the operands, then do so to
1032 canonicalize the statement, enabling better optimization.
1033
1034 By placing canonicalization of such expressions here we
1035 transparently keep statements in canonical form, even
1036 when the statement is modified. */
1037 if (tree_swap_operands_p (op0, op1, false))
1038 {
1039 /* For relationals we need to swap the operands
1040 and change the code. */
1041 if (code == LT_EXPR
1042 || code == GT_EXPR
1043 || code == LE_EXPR
1044 || code == GE_EXPR)
1045 {
1046 code = swap_tree_comparison (code);
1047
1048 gimple_cond_set_code (condstmt, code);
1049 gimple_cond_set_lhs (condstmt, op1);
1050 gimple_cond_set_rhs (condstmt, op0);
1051
1052 update_stmt (condstmt);
1053 }
1054 }
1055 }
1056
1057 /* Initialize local stacks for this optimizer and record equivalences
1058 upon entry to BB. Equivalences can come from the edge traversed to
1059 reach BB or they may come from PHI nodes at the start of BB. */
1060
1061 /* Remove all the expressions in LOCALS from TABLE, stopping when there are
1062 LIMIT entries left in LOCALs. */
1063
1064 static void
1065 remove_local_expressions_from_table (void)
1066 {
1067 /* Remove all the expressions made available in this block. */
1068 while (avail_exprs_stack.length () > 0)
1069 {
1070 expr_hash_elt_t victim = avail_exprs_stack.pop ();
1071 expr_hash_elt **slot;
1072
1073 if (victim == NULL)
1074 break;
1075
1076 /* This must precede the actual removal from the hash table,
1077 as ELEMENT and the table entry may share a call argument
1078 vector which will be freed during removal. */
1079 if (dump_file && (dump_flags & TDF_DETAILS))
1080 {
1081 fprintf (dump_file, "<<<< ");
1082 print_expr_hash_elt (dump_file, victim);
1083 }
1084
1085 slot = avail_exprs->find_slot (victim, NO_INSERT);
1086 gcc_assert (slot && *slot == victim);
1087 avail_exprs->clear_slot (slot);
1088 }
1089 }
1090
1091 /* Use the source/dest pairs in CONST_AND_COPIES_STACK to restore
1092 CONST_AND_COPIES to its original state, stopping when we hit a
1093 NULL marker. */
1094
1095 static void
1096 restore_vars_to_original_value (void)
1097 {
1098 while (const_and_copies_stack.length () > 0)
1099 {
1100 tree prev_value, dest;
1101
1102 dest = const_and_copies_stack.pop ();
1103
1104 if (dest == NULL)
1105 break;
1106
1107 if (dump_file && (dump_flags & TDF_DETAILS))
1108 {
1109 fprintf (dump_file, "<<<< COPY ");
1110 print_generic_expr (dump_file, dest, 0);
1111 fprintf (dump_file, " = ");
1112 print_generic_expr (dump_file, SSA_NAME_VALUE (dest), 0);
1113 fprintf (dump_file, "\n");
1114 }
1115
1116 prev_value = const_and_copies_stack.pop ();
1117 set_ssa_name_value (dest, prev_value);
1118 }
1119 }
1120
1121 /* A trivial wrapper so that we can present the generic jump
1122 threading code with a simple API for simplifying statements. */
1123 static tree
1124 simplify_stmt_for_jump_threading (gimple stmt,
1125 gimple within_stmt ATTRIBUTE_UNUSED)
1126 {
1127 return lookup_avail_expr (stmt, false);
1128 }
1129
1130 /* Record into the equivalence tables any equivalences implied by
1131 traversing edge E (which are cached in E->aux).
1132
1133 Callers are responsible for managing the unwinding markers. */
1134 static void
1135 record_temporary_equivalences (edge e)
1136 {
1137 int i;
1138 struct edge_info *edge_info = (struct edge_info *) e->aux;
1139
1140 /* If we have info associated with this edge, record it into
1141 our equivalence tables. */
1142 if (edge_info)
1143 {
1144 cond_equivalence *eq;
1145 tree lhs = edge_info->lhs;
1146 tree rhs = edge_info->rhs;
1147
1148 /* If we have a simple NAME = VALUE equivalence, record it. */
1149 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1150 record_const_or_copy (lhs, rhs);
1151
1152 /* If we have 0 = COND or 1 = COND equivalences, record them
1153 into our expression hash tables. */
1154 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1155 record_cond (eq);
1156 }
1157 }
1158
1159 /* Wrapper for common code to attempt to thread an edge. For example,
1160 it handles lazily building the dummy condition and the bookkeeping
1161 when jump threading is successful. */
1162
1163 void
1164 dom_opt_dom_walker::thread_across_edge (edge e)
1165 {
1166 if (! m_dummy_cond)
1167 m_dummy_cond =
1168 gimple_build_cond (NE_EXPR,
1169 integer_zero_node, integer_zero_node,
1170 NULL, NULL);
1171
1172 /* Push a marker on both stacks so we can unwind the tables back to their
1173 current state. */
1174 avail_exprs_stack.safe_push (NULL);
1175 const_and_copies_stack.safe_push (NULL_TREE);
1176
1177 /* Traversing E may result in equivalences we can utilize. */
1178 record_temporary_equivalences (e);
1179
1180 /* With all the edge equivalences in the tables, go ahead and attempt
1181 to thread through E->dest. */
1182 ::thread_across_edge (m_dummy_cond, e, false,
1183 &const_and_copies_stack,
1184 simplify_stmt_for_jump_threading);
1185
1186 /* And restore the various tables to their state before
1187 we threaded this edge.
1188
1189 XXX The code in tree-ssa-threadedge.c will restore the state of
1190 the const_and_copies table. We we just have to restore the expression
1191 table. */
1192 remove_local_expressions_from_table ();
1193 }
1194
1195 /* PHI nodes can create equivalences too.
1196
1197 Ignoring any alternatives which are the same as the result, if
1198 all the alternatives are equal, then the PHI node creates an
1199 equivalence. */
1200
1201 static void
1202 record_equivalences_from_phis (basic_block bb)
1203 {
1204 gimple_stmt_iterator gsi;
1205
1206 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1207 {
1208 gimple phi = gsi_stmt (gsi);
1209
1210 tree lhs = gimple_phi_result (phi);
1211 tree rhs = NULL;
1212 size_t i;
1213
1214 for (i = 0; i < gimple_phi_num_args (phi); i++)
1215 {
1216 tree t = gimple_phi_arg_def (phi, i);
1217
1218 /* Ignore alternatives which are the same as our LHS. Since
1219 LHS is a PHI_RESULT, it is known to be a SSA_NAME, so we
1220 can simply compare pointers. */
1221 if (lhs == t)
1222 continue;
1223
1224 /* If we have not processed an alternative yet, then set
1225 RHS to this alternative. */
1226 if (rhs == NULL)
1227 rhs = t;
1228 /* If we have processed an alternative (stored in RHS), then
1229 see if it is equal to this one. If it isn't, then stop
1230 the search. */
1231 else if (! operand_equal_for_phi_arg_p (rhs, t))
1232 break;
1233 }
1234
1235 /* If we had no interesting alternatives, then all the RHS alternatives
1236 must have been the same as LHS. */
1237 if (!rhs)
1238 rhs = lhs;
1239
1240 /* If we managed to iterate through each PHI alternative without
1241 breaking out of the loop, then we have a PHI which may create
1242 a useful equivalence. We do not need to record unwind data for
1243 this, since this is a true assignment and not an equivalence
1244 inferred from a comparison. All uses of this ssa name are dominated
1245 by this assignment, so unwinding just costs time and space. */
1246 if (i == gimple_phi_num_args (phi)
1247 && may_propagate_copy (lhs, rhs))
1248 set_ssa_name_value (lhs, rhs);
1249 }
1250 }
1251
1252 /* Ignoring loop backedges, if BB has precisely one incoming edge then
1253 return that edge. Otherwise return NULL. */
1254 static edge
1255 single_incoming_edge_ignoring_loop_edges (basic_block bb)
1256 {
1257 edge retval = NULL;
1258 edge e;
1259 edge_iterator ei;
1260
1261 FOR_EACH_EDGE (e, ei, bb->preds)
1262 {
1263 /* A loop back edge can be identified by the destination of
1264 the edge dominating the source of the edge. */
1265 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
1266 continue;
1267
1268 /* If we have already seen a non-loop edge, then we must have
1269 multiple incoming non-loop edges and thus we return NULL. */
1270 if (retval)
1271 return NULL;
1272
1273 /* This is the first non-loop incoming edge we have found. Record
1274 it. */
1275 retval = e;
1276 }
1277
1278 return retval;
1279 }
1280
1281 /* Record any equivalences created by the incoming edge to BB. If BB
1282 has more than one incoming edge, then no equivalence is created. */
1283
1284 static void
1285 record_equivalences_from_incoming_edge (basic_block bb)
1286 {
1287 edge e;
1288 basic_block parent;
1289 struct edge_info *edge_info;
1290
1291 /* If our parent block ended with a control statement, then we may be
1292 able to record some equivalences based on which outgoing edge from
1293 the parent was followed. */
1294 parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1295
1296 e = single_incoming_edge_ignoring_loop_edges (bb);
1297
1298 /* If we had a single incoming edge from our parent block, then enter
1299 any data associated with the edge into our tables. */
1300 if (e && e->src == parent)
1301 {
1302 unsigned int i;
1303
1304 edge_info = (struct edge_info *) e->aux;
1305
1306 if (edge_info)
1307 {
1308 tree lhs = edge_info->lhs;
1309 tree rhs = edge_info->rhs;
1310 cond_equivalence *eq;
1311
1312 if (lhs)
1313 record_equality (lhs, rhs);
1314
1315 /* If LHS is an SSA_NAME and RHS is a constant integer and LHS was
1316 set via a widening type conversion, then we may be able to record
1317 additional equivalences. */
1318 if (lhs
1319 && TREE_CODE (lhs) == SSA_NAME
1320 && is_gimple_constant (rhs)
1321 && TREE_CODE (rhs) == INTEGER_CST)
1322 {
1323 gimple defstmt = SSA_NAME_DEF_STMT (lhs);
1324
1325 if (defstmt
1326 && is_gimple_assign (defstmt)
1327 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (defstmt)))
1328 {
1329 tree old_rhs = gimple_assign_rhs1 (defstmt);
1330
1331 /* If the conversion widens the original value and
1332 the constant is in the range of the type of OLD_RHS,
1333 then convert the constant and record the equivalence.
1334
1335 Note that int_fits_type_p does not check the precision
1336 if the upper and lower bounds are OK. */
1337 if (INTEGRAL_TYPE_P (TREE_TYPE (old_rhs))
1338 && (TYPE_PRECISION (TREE_TYPE (lhs))
1339 > TYPE_PRECISION (TREE_TYPE (old_rhs)))
1340 && int_fits_type_p (rhs, TREE_TYPE (old_rhs)))
1341 {
1342 tree newval = fold_convert (TREE_TYPE (old_rhs), rhs);
1343 record_equality (old_rhs, newval);
1344 }
1345 }
1346 }
1347
1348 for (i = 0; edge_info->cond_equivalences.iterate (i, &eq); ++i)
1349 record_cond (eq);
1350 }
1351 }
1352 }
1353
1354 /* Dump SSA statistics on FILE. */
1355
1356 void
1357 dump_dominator_optimization_stats (FILE *file)
1358 {
1359 fprintf (file, "Total number of statements: %6ld\n\n",
1360 opt_stats.num_stmts);
1361 fprintf (file, "Exprs considered for dominator optimizations: %6ld\n",
1362 opt_stats.num_exprs_considered);
1363
1364 fprintf (file, "\nHash table statistics:\n");
1365
1366 fprintf (file, " avail_exprs: ");
1367 htab_statistics (file, *avail_exprs);
1368 }
1369
1370
1371 /* Dump SSA statistics on stderr. */
1372
1373 DEBUG_FUNCTION void
1374 debug_dominator_optimization_stats (void)
1375 {
1376 dump_dominator_optimization_stats (stderr);
1377 }
1378
1379
1380 /* Dump statistics for the hash table HTAB. */
1381
1382 static void
1383 htab_statistics (FILE *file, const hash_table<expr_elt_hasher> &htab)
1384 {
1385 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1386 (long) htab.size (),
1387 (long) htab.elements (),
1388 htab.collisions ());
1389 }
1390
1391
1392 /* Enter condition equivalence into the expression hash table.
1393 This indicates that a conditional expression has a known
1394 boolean value. */
1395
1396 static void
1397 record_cond (cond_equivalence *p)
1398 {
1399 struct expr_hash_elt *element = XCNEW (struct expr_hash_elt);
1400 expr_hash_elt **slot;
1401
1402 initialize_hash_element_from_expr (&p->cond, p->value, element);
1403
1404 slot = avail_exprs->find_slot_with_hash (element, element->hash, INSERT);
1405 if (*slot == NULL)
1406 {
1407 *slot = element;
1408
1409 if (dump_file && (dump_flags & TDF_DETAILS))
1410 {
1411 fprintf (dump_file, "1>>> ");
1412 print_expr_hash_elt (dump_file, element);
1413 }
1414
1415 avail_exprs_stack.safe_push (element);
1416 }
1417 else
1418 free_expr_hash_elt (element);
1419 }
1420
1421 /* Build a cond_equivalence record indicating that the comparison
1422 CODE holds between operands OP0 and OP1 and push it to **P. */
1423
1424 static void
1425 build_and_record_new_cond (enum tree_code code,
1426 tree op0, tree op1,
1427 vec<cond_equivalence> *p)
1428 {
1429 cond_equivalence c;
1430 struct hashable_expr *cond = &c.cond;
1431
1432 gcc_assert (TREE_CODE_CLASS (code) == tcc_comparison);
1433
1434 cond->type = boolean_type_node;
1435 cond->kind = EXPR_BINARY;
1436 cond->ops.binary.op = code;
1437 cond->ops.binary.opnd0 = op0;
1438 cond->ops.binary.opnd1 = op1;
1439
1440 c.value = boolean_true_node;
1441 p->safe_push (c);
1442 }
1443
1444 /* Record that COND is true and INVERTED is false into the edge information
1445 structure. Also record that any conditions dominated by COND are true
1446 as well.
1447
1448 For example, if a < b is true, then a <= b must also be true. */
1449
1450 static void
1451 record_conditions (struct edge_info *edge_info, tree cond, tree inverted)
1452 {
1453 tree op0, op1;
1454 cond_equivalence c;
1455
1456 if (!COMPARISON_CLASS_P (cond))
1457 return;
1458
1459 op0 = TREE_OPERAND (cond, 0);
1460 op1 = TREE_OPERAND (cond, 1);
1461
1462 switch (TREE_CODE (cond))
1463 {
1464 case LT_EXPR:
1465 case GT_EXPR:
1466 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1467 {
1468 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1469 &edge_info->cond_equivalences);
1470 build_and_record_new_cond (LTGT_EXPR, op0, op1,
1471 &edge_info->cond_equivalences);
1472 }
1473
1474 build_and_record_new_cond ((TREE_CODE (cond) == LT_EXPR
1475 ? LE_EXPR : GE_EXPR),
1476 op0, op1, &edge_info->cond_equivalences);
1477 build_and_record_new_cond (NE_EXPR, op0, op1,
1478 &edge_info->cond_equivalences);
1479 break;
1480
1481 case GE_EXPR:
1482 case LE_EXPR:
1483 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1484 {
1485 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1486 &edge_info->cond_equivalences);
1487 }
1488 break;
1489
1490 case EQ_EXPR:
1491 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
1492 {
1493 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1494 &edge_info->cond_equivalences);
1495 }
1496 build_and_record_new_cond (LE_EXPR, op0, op1,
1497 &edge_info->cond_equivalences);
1498 build_and_record_new_cond (GE_EXPR, op0, op1,
1499 &edge_info->cond_equivalences);
1500 break;
1501
1502 case UNORDERED_EXPR:
1503 build_and_record_new_cond (NE_EXPR, op0, op1,
1504 &edge_info->cond_equivalences);
1505 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1506 &edge_info->cond_equivalences);
1507 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1508 &edge_info->cond_equivalences);
1509 build_and_record_new_cond (UNEQ_EXPR, op0, op1,
1510 &edge_info->cond_equivalences);
1511 build_and_record_new_cond (UNLT_EXPR, op0, op1,
1512 &edge_info->cond_equivalences);
1513 build_and_record_new_cond (UNGT_EXPR, op0, op1,
1514 &edge_info->cond_equivalences);
1515 break;
1516
1517 case UNLT_EXPR:
1518 case UNGT_EXPR:
1519 build_and_record_new_cond ((TREE_CODE (cond) == UNLT_EXPR
1520 ? UNLE_EXPR : UNGE_EXPR),
1521 op0, op1, &edge_info->cond_equivalences);
1522 build_and_record_new_cond (NE_EXPR, op0, op1,
1523 &edge_info->cond_equivalences);
1524 break;
1525
1526 case UNEQ_EXPR:
1527 build_and_record_new_cond (UNLE_EXPR, op0, op1,
1528 &edge_info->cond_equivalences);
1529 build_and_record_new_cond (UNGE_EXPR, op0, op1,
1530 &edge_info->cond_equivalences);
1531 break;
1532
1533 case LTGT_EXPR:
1534 build_and_record_new_cond (NE_EXPR, op0, op1,
1535 &edge_info->cond_equivalences);
1536 build_and_record_new_cond (ORDERED_EXPR, op0, op1,
1537 &edge_info->cond_equivalences);
1538 break;
1539
1540 default:
1541 break;
1542 }
1543
1544 /* Now store the original true and false conditions into the first
1545 two slots. */
1546 initialize_expr_from_cond (cond, &c.cond);
1547 c.value = boolean_true_node;
1548 edge_info->cond_equivalences.safe_push (c);
1549
1550 /* It is possible for INVERTED to be the negation of a comparison,
1551 and not a valid RHS or GIMPLE_COND condition. This happens because
1552 invert_truthvalue may return such an expression when asked to invert
1553 a floating-point comparison. These comparisons are not assumed to
1554 obey the trichotomy law. */
1555 initialize_expr_from_cond (inverted, &c.cond);
1556 c.value = boolean_false_node;
1557 edge_info->cond_equivalences.safe_push (c);
1558 }
1559
1560 /* A helper function for record_const_or_copy and record_equality.
1561 Do the work of recording the value and undo info. */
1562
1563 static void
1564 record_const_or_copy_1 (tree x, tree y, tree prev_x)
1565 {
1566 set_ssa_name_value (x, y);
1567
1568 if (dump_file && (dump_flags & TDF_DETAILS))
1569 {
1570 fprintf (dump_file, "0>>> COPY ");
1571 print_generic_expr (dump_file, x, 0);
1572 fprintf (dump_file, " = ");
1573 print_generic_expr (dump_file, y, 0);
1574 fprintf (dump_file, "\n");
1575 }
1576
1577 const_and_copies_stack.reserve (2);
1578 const_and_copies_stack.quick_push (prev_x);
1579 const_and_copies_stack.quick_push (x);
1580 }
1581
1582 /* Record that X is equal to Y in const_and_copies. Record undo
1583 information in the block-local vector. */
1584
1585 static void
1586 record_const_or_copy (tree x, tree y)
1587 {
1588 tree prev_x = SSA_NAME_VALUE (x);
1589
1590 gcc_assert (TREE_CODE (x) == SSA_NAME);
1591
1592 if (TREE_CODE (y) == SSA_NAME)
1593 {
1594 tree tmp = SSA_NAME_VALUE (y);
1595 if (tmp)
1596 y = tmp;
1597 }
1598
1599 record_const_or_copy_1 (x, y, prev_x);
1600 }
1601
1602 /* Return the loop depth of the basic block of the defining statement of X.
1603 This number should not be treated as absolutely correct because the loop
1604 information may not be completely up-to-date when dom runs. However, it
1605 will be relatively correct, and as more passes are taught to keep loop info
1606 up to date, the result will become more and more accurate. */
1607
1608 static int
1609 loop_depth_of_name (tree x)
1610 {
1611 gimple defstmt;
1612 basic_block defbb;
1613
1614 /* If it's not an SSA_NAME, we have no clue where the definition is. */
1615 if (TREE_CODE (x) != SSA_NAME)
1616 return 0;
1617
1618 /* Otherwise return the loop depth of the defining statement's bb.
1619 Note that there may not actually be a bb for this statement, if the
1620 ssa_name is live on entry. */
1621 defstmt = SSA_NAME_DEF_STMT (x);
1622 defbb = gimple_bb (defstmt);
1623 if (!defbb)
1624 return 0;
1625
1626 return bb_loop_depth (defbb);
1627 }
1628
1629 /* Similarly, but assume that X and Y are the two operands of an EQ_EXPR.
1630 This constrains the cases in which we may treat this as assignment. */
1631
1632 static void
1633 record_equality (tree x, tree y)
1634 {
1635 tree prev_x = NULL, prev_y = NULL;
1636
1637 if (TREE_CODE (x) == SSA_NAME)
1638 prev_x = SSA_NAME_VALUE (x);
1639 if (TREE_CODE (y) == SSA_NAME)
1640 prev_y = SSA_NAME_VALUE (y);
1641
1642 /* If one of the previous values is invariant, or invariant in more loops
1643 (by depth), then use that.
1644 Otherwise it doesn't matter which value we choose, just so
1645 long as we canonicalize on one value. */
1646 if (is_gimple_min_invariant (y))
1647 ;
1648 else if (is_gimple_min_invariant (x)
1649 /* ??? When threading over backedges the following is important
1650 for correctness. See PR61757. */
1651 || (loop_depth_of_name (x) <= loop_depth_of_name (y)))
1652 prev_x = x, x = y, y = prev_x, prev_x = prev_y;
1653 else if (prev_x && is_gimple_min_invariant (prev_x))
1654 x = y, y = prev_x, prev_x = prev_y;
1655 else if (prev_y)
1656 y = prev_y;
1657
1658 /* After the swapping, we must have one SSA_NAME. */
1659 if (TREE_CODE (x) != SSA_NAME)
1660 return;
1661
1662 /* For IEEE, -0.0 == 0.0, so we don't necessarily know the sign of a
1663 variable compared against zero. If we're honoring signed zeros,
1664 then we cannot record this value unless we know that the value is
1665 nonzero. */
1666 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (x)))
1667 && (TREE_CODE (y) != REAL_CST
1668 || REAL_VALUES_EQUAL (dconst0, TREE_REAL_CST (y))))
1669 return;
1670
1671 record_const_or_copy_1 (x, y, prev_x);
1672 }
1673
1674 /* Returns true when STMT is a simple iv increment. It detects the
1675 following situation:
1676
1677 i_1 = phi (..., i_2)
1678 i_2 = i_1 +/- ... */
1679
1680 bool
1681 simple_iv_increment_p (gimple stmt)
1682 {
1683 enum tree_code code;
1684 tree lhs, preinc;
1685 gimple phi;
1686 size_t i;
1687
1688 if (gimple_code (stmt) != GIMPLE_ASSIGN)
1689 return false;
1690
1691 lhs = gimple_assign_lhs (stmt);
1692 if (TREE_CODE (lhs) != SSA_NAME)
1693 return false;
1694
1695 code = gimple_assign_rhs_code (stmt);
1696 if (code != PLUS_EXPR
1697 && code != MINUS_EXPR
1698 && code != POINTER_PLUS_EXPR)
1699 return false;
1700
1701 preinc = gimple_assign_rhs1 (stmt);
1702 if (TREE_CODE (preinc) != SSA_NAME)
1703 return false;
1704
1705 phi = SSA_NAME_DEF_STMT (preinc);
1706 if (gimple_code (phi) != GIMPLE_PHI)
1707 return false;
1708
1709 for (i = 0; i < gimple_phi_num_args (phi); i++)
1710 if (gimple_phi_arg_def (phi, i) == lhs)
1711 return true;
1712
1713 return false;
1714 }
1715
1716 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
1717 known value for that SSA_NAME (or NULL if no value is known).
1718
1719 Propagate values from CONST_AND_COPIES into the PHI nodes of the
1720 successors of BB. */
1721
1722 static void
1723 cprop_into_successor_phis (basic_block bb)
1724 {
1725 edge e;
1726 edge_iterator ei;
1727
1728 FOR_EACH_EDGE (e, ei, bb->succs)
1729 {
1730 int indx;
1731 gimple_stmt_iterator gsi;
1732
1733 /* If this is an abnormal edge, then we do not want to copy propagate
1734 into the PHI alternative associated with this edge. */
1735 if (e->flags & EDGE_ABNORMAL)
1736 continue;
1737
1738 gsi = gsi_start_phis (e->dest);
1739 if (gsi_end_p (gsi))
1740 continue;
1741
1742 /* We may have an equivalence associated with this edge. While
1743 we can not propagate it into non-dominated blocks, we can
1744 propagate them into PHIs in non-dominated blocks. */
1745
1746 /* Push the unwind marker so we can reset the const and copies
1747 table back to its original state after processing this edge. */
1748 const_and_copies_stack.safe_push (NULL_TREE);
1749
1750 /* Extract and record any simple NAME = VALUE equivalences.
1751
1752 Don't bother with [01] = COND equivalences, they're not useful
1753 here. */
1754 struct edge_info *edge_info = (struct edge_info *) e->aux;
1755 if (edge_info)
1756 {
1757 tree lhs = edge_info->lhs;
1758 tree rhs = edge_info->rhs;
1759
1760 if (lhs && TREE_CODE (lhs) == SSA_NAME)
1761 record_const_or_copy (lhs, rhs);
1762 }
1763
1764 indx = e->dest_idx;
1765 for ( ; !gsi_end_p (gsi); gsi_next (&gsi))
1766 {
1767 tree new_val;
1768 use_operand_p orig_p;
1769 tree orig_val;
1770 gimple phi = gsi_stmt (gsi);
1771
1772 /* The alternative may be associated with a constant, so verify
1773 it is an SSA_NAME before doing anything with it. */
1774 orig_p = gimple_phi_arg_imm_use_ptr (phi, indx);
1775 orig_val = get_use_from_ptr (orig_p);
1776 if (TREE_CODE (orig_val) != SSA_NAME)
1777 continue;
1778
1779 /* If we have *ORIG_P in our constant/copy table, then replace
1780 ORIG_P with its value in our constant/copy table. */
1781 new_val = SSA_NAME_VALUE (orig_val);
1782 if (new_val
1783 && new_val != orig_val
1784 && (TREE_CODE (new_val) == SSA_NAME
1785 || is_gimple_min_invariant (new_val))
1786 && may_propagate_copy (orig_val, new_val))
1787 propagate_value (orig_p, new_val);
1788 }
1789
1790 restore_vars_to_original_value ();
1791 }
1792 }
1793
1794 /* We have finished optimizing BB, record any information implied by
1795 taking a specific outgoing edge from BB. */
1796
1797 static void
1798 record_edge_info (basic_block bb)
1799 {
1800 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1801 struct edge_info *edge_info;
1802
1803 if (! gsi_end_p (gsi))
1804 {
1805 gimple stmt = gsi_stmt (gsi);
1806 location_t loc = gimple_location (stmt);
1807
1808 if (gimple_code (stmt) == GIMPLE_SWITCH)
1809 {
1810 tree index = gimple_switch_index (stmt);
1811
1812 if (TREE_CODE (index) == SSA_NAME)
1813 {
1814 int i;
1815 int n_labels = gimple_switch_num_labels (stmt);
1816 tree *info = XCNEWVEC (tree, last_basic_block_for_fn (cfun));
1817 edge e;
1818 edge_iterator ei;
1819
1820 for (i = 0; i < n_labels; i++)
1821 {
1822 tree label = gimple_switch_label (stmt, i);
1823 basic_block target_bb = label_to_block (CASE_LABEL (label));
1824 if (CASE_HIGH (label)
1825 || !CASE_LOW (label)
1826 || info[target_bb->index])
1827 info[target_bb->index] = error_mark_node;
1828 else
1829 info[target_bb->index] = label;
1830 }
1831
1832 FOR_EACH_EDGE (e, ei, bb->succs)
1833 {
1834 basic_block target_bb = e->dest;
1835 tree label = info[target_bb->index];
1836
1837 if (label != NULL && label != error_mark_node)
1838 {
1839 tree x = fold_convert_loc (loc, TREE_TYPE (index),
1840 CASE_LOW (label));
1841 edge_info = allocate_edge_info (e);
1842 edge_info->lhs = index;
1843 edge_info->rhs = x;
1844 }
1845 }
1846 free (info);
1847 }
1848 }
1849
1850 /* A COND_EXPR may create equivalences too. */
1851 if (gimple_code (stmt) == GIMPLE_COND)
1852 {
1853 edge true_edge;
1854 edge false_edge;
1855
1856 tree op0 = gimple_cond_lhs (stmt);
1857 tree op1 = gimple_cond_rhs (stmt);
1858 enum tree_code code = gimple_cond_code (stmt);
1859
1860 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
1861
1862 /* Special case comparing booleans against a constant as we
1863 know the value of OP0 on both arms of the branch. i.e., we
1864 can record an equivalence for OP0 rather than COND. */
1865 if ((code == EQ_EXPR || code == NE_EXPR)
1866 && TREE_CODE (op0) == SSA_NAME
1867 && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE
1868 && is_gimple_min_invariant (op1))
1869 {
1870 if (code == EQ_EXPR)
1871 {
1872 edge_info = allocate_edge_info (true_edge);
1873 edge_info->lhs = op0;
1874 edge_info->rhs = (integer_zerop (op1)
1875 ? boolean_false_node
1876 : boolean_true_node);
1877
1878 edge_info = allocate_edge_info (false_edge);
1879 edge_info->lhs = op0;
1880 edge_info->rhs = (integer_zerop (op1)
1881 ? boolean_true_node
1882 : boolean_false_node);
1883 }
1884 else
1885 {
1886 edge_info = allocate_edge_info (true_edge);
1887 edge_info->lhs = op0;
1888 edge_info->rhs = (integer_zerop (op1)
1889 ? boolean_true_node
1890 : boolean_false_node);
1891
1892 edge_info = allocate_edge_info (false_edge);
1893 edge_info->lhs = op0;
1894 edge_info->rhs = (integer_zerop (op1)
1895 ? boolean_false_node
1896 : boolean_true_node);
1897 }
1898 }
1899 else if (is_gimple_min_invariant (op0)
1900 && (TREE_CODE (op1) == SSA_NAME
1901 || is_gimple_min_invariant (op1)))
1902 {
1903 tree cond = build2 (code, boolean_type_node, op0, op1);
1904 tree inverted = invert_truthvalue_loc (loc, cond);
1905 bool can_infer_simple_equiv
1906 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
1907 && real_zerop (op0));
1908 struct edge_info *edge_info;
1909
1910 edge_info = allocate_edge_info (true_edge);
1911 record_conditions (edge_info, cond, inverted);
1912
1913 if (can_infer_simple_equiv && code == EQ_EXPR)
1914 {
1915 edge_info->lhs = op1;
1916 edge_info->rhs = op0;
1917 }
1918
1919 edge_info = allocate_edge_info (false_edge);
1920 record_conditions (edge_info, inverted, cond);
1921
1922 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1923 {
1924 edge_info->lhs = op1;
1925 edge_info->rhs = op0;
1926 }
1927 }
1928
1929 else if (TREE_CODE (op0) == SSA_NAME
1930 && (TREE_CODE (op1) == SSA_NAME
1931 || is_gimple_min_invariant (op1)))
1932 {
1933 tree cond = build2 (code, boolean_type_node, op0, op1);
1934 tree inverted = invert_truthvalue_loc (loc, cond);
1935 bool can_infer_simple_equiv
1936 = !(HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op1)))
1937 && (TREE_CODE (op1) == SSA_NAME || real_zerop (op1)));
1938 struct edge_info *edge_info;
1939
1940 edge_info = allocate_edge_info (true_edge);
1941 record_conditions (edge_info, cond, inverted);
1942
1943 if (can_infer_simple_equiv && code == EQ_EXPR)
1944 {
1945 edge_info->lhs = op0;
1946 edge_info->rhs = op1;
1947 }
1948
1949 edge_info = allocate_edge_info (false_edge);
1950 record_conditions (edge_info, inverted, cond);
1951
1952 if (can_infer_simple_equiv && TREE_CODE (inverted) == EQ_EXPR)
1953 {
1954 edge_info->lhs = op0;
1955 edge_info->rhs = op1;
1956 }
1957 }
1958 }
1959
1960 /* ??? TRUTH_NOT_EXPR can create an equivalence too. */
1961 }
1962 }
1963
1964 void
1965 dom_opt_dom_walker::before_dom_children (basic_block bb)
1966 {
1967 gimple_stmt_iterator gsi;
1968
1969 if (dump_file && (dump_flags & TDF_DETAILS))
1970 fprintf (dump_file, "\n\nOptimizing block #%d\n\n", bb->index);
1971
1972 /* Push a marker on the stacks of local information so that we know how
1973 far to unwind when we finalize this block. */
1974 avail_exprs_stack.safe_push (NULL);
1975 const_and_copies_stack.safe_push (NULL_TREE);
1976
1977 record_equivalences_from_incoming_edge (bb);
1978
1979 /* PHI nodes can create equivalences too. */
1980 record_equivalences_from_phis (bb);
1981
1982 /* Create equivalences from redundant PHIs. PHIs are only truly
1983 redundant when they exist in the same block, so push another
1984 marker and unwind right afterwards. */
1985 avail_exprs_stack.safe_push (NULL);
1986 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1987 eliminate_redundant_computations (&gsi);
1988 remove_local_expressions_from_table ();
1989
1990 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1991 optimize_stmt (bb, gsi);
1992
1993 /* Now prepare to process dominated blocks. */
1994 record_edge_info (bb);
1995 cprop_into_successor_phis (bb);
1996 }
1997
1998 /* We have finished processing the dominator children of BB, perform
1999 any finalization actions in preparation for leaving this node in
2000 the dominator tree. */
2001
2002 void
2003 dom_opt_dom_walker::after_dom_children (basic_block bb)
2004 {
2005 gimple last;
2006
2007 /* If we have an outgoing edge to a block with multiple incoming and
2008 outgoing edges, then we may be able to thread the edge, i.e., we
2009 may be able to statically determine which of the outgoing edges
2010 will be traversed when the incoming edge from BB is traversed. */
2011 if (single_succ_p (bb)
2012 && (single_succ_edge (bb)->flags & EDGE_ABNORMAL) == 0
2013 && potentially_threadable_block (single_succ (bb)))
2014 {
2015 thread_across_edge (single_succ_edge (bb));
2016 }
2017 else if ((last = last_stmt (bb))
2018 && gimple_code (last) == GIMPLE_COND
2019 && EDGE_COUNT (bb->succs) == 2
2020 && (EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL) == 0
2021 && (EDGE_SUCC (bb, 1)->flags & EDGE_ABNORMAL) == 0)
2022 {
2023 edge true_edge, false_edge;
2024
2025 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2026
2027 /* Only try to thread the edge if it reaches a target block with
2028 more than one predecessor and more than one successor. */
2029 if (potentially_threadable_block (true_edge->dest))
2030 thread_across_edge (true_edge);
2031
2032 /* Similarly for the ELSE arm. */
2033 if (potentially_threadable_block (false_edge->dest))
2034 thread_across_edge (false_edge);
2035
2036 }
2037
2038 /* These remove expressions local to BB from the tables. */
2039 remove_local_expressions_from_table ();
2040 restore_vars_to_original_value ();
2041 }
2042
2043 /* Search for redundant computations in STMT. If any are found, then
2044 replace them with the variable holding the result of the computation.
2045
2046 If safe, record this expression into the available expression hash
2047 table. */
2048
2049 static void
2050 eliminate_redundant_computations (gimple_stmt_iterator* gsi)
2051 {
2052 tree expr_type;
2053 tree cached_lhs;
2054 tree def;
2055 bool insert = true;
2056 bool assigns_var_p = false;
2057
2058 gimple stmt = gsi_stmt (*gsi);
2059
2060 if (gimple_code (stmt) == GIMPLE_PHI)
2061 def = gimple_phi_result (stmt);
2062 else
2063 def = gimple_get_lhs (stmt);
2064
2065 /* Certain expressions on the RHS can be optimized away, but can not
2066 themselves be entered into the hash tables. */
2067 if (! def
2068 || TREE_CODE (def) != SSA_NAME
2069 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def)
2070 || gimple_vdef (stmt)
2071 /* Do not record equivalences for increments of ivs. This would create
2072 overlapping live ranges for a very questionable gain. */
2073 || simple_iv_increment_p (stmt))
2074 insert = false;
2075
2076 /* Check if the expression has been computed before. */
2077 cached_lhs = lookup_avail_expr (stmt, insert);
2078
2079 opt_stats.num_exprs_considered++;
2080
2081 /* Get the type of the expression we are trying to optimize. */
2082 if (is_gimple_assign (stmt))
2083 {
2084 expr_type = TREE_TYPE (gimple_assign_lhs (stmt));
2085 assigns_var_p = true;
2086 }
2087 else if (gimple_code (stmt) == GIMPLE_COND)
2088 expr_type = boolean_type_node;
2089 else if (is_gimple_call (stmt))
2090 {
2091 gcc_assert (gimple_call_lhs (stmt));
2092 expr_type = TREE_TYPE (gimple_call_lhs (stmt));
2093 assigns_var_p = true;
2094 }
2095 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2096 expr_type = TREE_TYPE (gimple_switch_index (stmt));
2097 else if (gimple_code (stmt) == GIMPLE_PHI)
2098 /* We can't propagate into a phi, so the logic below doesn't apply.
2099 Instead record an equivalence between the cached LHS and the
2100 PHI result of this statement, provided they are in the same block.
2101 This should be sufficient to kill the redundant phi. */
2102 {
2103 if (def && cached_lhs)
2104 record_const_or_copy (def, cached_lhs);
2105 return;
2106 }
2107 else
2108 gcc_unreachable ();
2109
2110 if (!cached_lhs)
2111 return;
2112
2113 /* It is safe to ignore types here since we have already done
2114 type checking in the hashing and equality routines. In fact
2115 type checking here merely gets in the way of constant
2116 propagation. Also, make sure that it is safe to propagate
2117 CACHED_LHS into the expression in STMT. */
2118 if ((TREE_CODE (cached_lhs) != SSA_NAME
2119 && (assigns_var_p
2120 || useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs))))
2121 || may_propagate_copy_into_stmt (stmt, cached_lhs))
2122 {
2123 gcc_checking_assert (TREE_CODE (cached_lhs) == SSA_NAME
2124 || is_gimple_min_invariant (cached_lhs));
2125
2126 if (dump_file && (dump_flags & TDF_DETAILS))
2127 {
2128 fprintf (dump_file, " Replaced redundant expr '");
2129 print_gimple_expr (dump_file, stmt, 0, dump_flags);
2130 fprintf (dump_file, "' with '");
2131 print_generic_expr (dump_file, cached_lhs, dump_flags);
2132 fprintf (dump_file, "'\n");
2133 }
2134
2135 opt_stats.num_re++;
2136
2137 if (assigns_var_p
2138 && !useless_type_conversion_p (expr_type, TREE_TYPE (cached_lhs)))
2139 cached_lhs = fold_convert (expr_type, cached_lhs);
2140
2141 propagate_tree_value_into_stmt (gsi, cached_lhs);
2142
2143 /* Since it is always necessary to mark the result as modified,
2144 perhaps we should move this into propagate_tree_value_into_stmt
2145 itself. */
2146 gimple_set_modified (gsi_stmt (*gsi), true);
2147 }
2148 }
2149
2150 /* STMT, a GIMPLE_ASSIGN, may create certain equivalences, in either
2151 the available expressions table or the const_and_copies table.
2152 Detect and record those equivalences. */
2153 /* We handle only very simple copy equivalences here. The heavy
2154 lifing is done by eliminate_redundant_computations. */
2155
2156 static void
2157 record_equivalences_from_stmt (gimple stmt, int may_optimize_p)
2158 {
2159 tree lhs;
2160 enum tree_code lhs_code;
2161
2162 gcc_assert (is_gimple_assign (stmt));
2163
2164 lhs = gimple_assign_lhs (stmt);
2165 lhs_code = TREE_CODE (lhs);
2166
2167 if (lhs_code == SSA_NAME
2168 && gimple_assign_single_p (stmt))
2169 {
2170 tree rhs = gimple_assign_rhs1 (stmt);
2171
2172 /* If the RHS of the assignment is a constant or another variable that
2173 may be propagated, register it in the CONST_AND_COPIES table. We
2174 do not need to record unwind data for this, since this is a true
2175 assignment and not an equivalence inferred from a comparison. All
2176 uses of this ssa name are dominated by this assignment, so unwinding
2177 just costs time and space. */
2178 if (may_optimize_p
2179 && (TREE_CODE (rhs) == SSA_NAME
2180 || is_gimple_min_invariant (rhs)))
2181 {
2182 if (dump_file && (dump_flags & TDF_DETAILS))
2183 {
2184 fprintf (dump_file, "==== ASGN ");
2185 print_generic_expr (dump_file, lhs, 0);
2186 fprintf (dump_file, " = ");
2187 print_generic_expr (dump_file, rhs, 0);
2188 fprintf (dump_file, "\n");
2189 }
2190
2191 set_ssa_name_value (lhs, rhs);
2192 }
2193 }
2194
2195 /* A memory store, even an aliased store, creates a useful
2196 equivalence. By exchanging the LHS and RHS, creating suitable
2197 vops and recording the result in the available expression table,
2198 we may be able to expose more redundant loads. */
2199 if (!gimple_has_volatile_ops (stmt)
2200 && gimple_references_memory_p (stmt)
2201 && gimple_assign_single_p (stmt)
2202 && (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
2203 || is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
2204 && !is_gimple_reg (lhs))
2205 {
2206 tree rhs = gimple_assign_rhs1 (stmt);
2207 gimple new_stmt;
2208
2209 /* Build a new statement with the RHS and LHS exchanged. */
2210 if (TREE_CODE (rhs) == SSA_NAME)
2211 {
2212 /* NOTE tuples. The call to gimple_build_assign below replaced
2213 a call to build_gimple_modify_stmt, which did not set the
2214 SSA_NAME_DEF_STMT on the LHS of the assignment. Doing so
2215 may cause an SSA validation failure, as the LHS may be a
2216 default-initialized name and should have no definition. I'm
2217 a bit dubious of this, as the artificial statement that we
2218 generate here may in fact be ill-formed, but it is simply
2219 used as an internal device in this pass, and never becomes
2220 part of the CFG. */
2221 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2222 new_stmt = gimple_build_assign (rhs, lhs);
2223 SSA_NAME_DEF_STMT (rhs) = defstmt;
2224 }
2225 else
2226 new_stmt = gimple_build_assign (rhs, lhs);
2227
2228 gimple_set_vuse (new_stmt, gimple_vdef (stmt));
2229
2230 /* Finally enter the statement into the available expression
2231 table. */
2232 lookup_avail_expr (new_stmt, true);
2233 }
2234 }
2235
2236 /* Replace *OP_P in STMT with any known equivalent value for *OP_P from
2237 CONST_AND_COPIES. */
2238
2239 static void
2240 cprop_operand (gimple stmt, use_operand_p op_p)
2241 {
2242 tree val;
2243 tree op = USE_FROM_PTR (op_p);
2244
2245 /* If the operand has a known constant value or it is known to be a
2246 copy of some other variable, use the value or copy stored in
2247 CONST_AND_COPIES. */
2248 val = SSA_NAME_VALUE (op);
2249 if (val && val != op)
2250 {
2251 /* Do not replace hard register operands in asm statements. */
2252 if (gimple_code (stmt) == GIMPLE_ASM
2253 && !may_propagate_copy_into_asm (op))
2254 return;
2255
2256 /* Certain operands are not allowed to be copy propagated due
2257 to their interaction with exception handling and some GCC
2258 extensions. */
2259 if (!may_propagate_copy (op, val))
2260 return;
2261
2262 /* Do not propagate copies into simple IV increment statements.
2263 See PR23821 for how this can disturb IV analysis. */
2264 if (TREE_CODE (val) != INTEGER_CST
2265 && simple_iv_increment_p (stmt))
2266 return;
2267
2268 /* Dump details. */
2269 if (dump_file && (dump_flags & TDF_DETAILS))
2270 {
2271 fprintf (dump_file, " Replaced '");
2272 print_generic_expr (dump_file, op, dump_flags);
2273 fprintf (dump_file, "' with %s '",
2274 (TREE_CODE (val) != SSA_NAME ? "constant" : "variable"));
2275 print_generic_expr (dump_file, val, dump_flags);
2276 fprintf (dump_file, "'\n");
2277 }
2278
2279 if (TREE_CODE (val) != SSA_NAME)
2280 opt_stats.num_const_prop++;
2281 else
2282 opt_stats.num_copy_prop++;
2283
2284 propagate_value (op_p, val);
2285
2286 /* And note that we modified this statement. This is now
2287 safe, even if we changed virtual operands since we will
2288 rescan the statement and rewrite its operands again. */
2289 gimple_set_modified (stmt, true);
2290 }
2291 }
2292
2293 /* CONST_AND_COPIES is a table which maps an SSA_NAME to the current
2294 known value for that SSA_NAME (or NULL if no value is known).
2295
2296 Propagate values from CONST_AND_COPIES into the uses, vuses and
2297 vdef_ops of STMT. */
2298
2299 static void
2300 cprop_into_stmt (gimple stmt)
2301 {
2302 use_operand_p op_p;
2303 ssa_op_iter iter;
2304
2305 FOR_EACH_SSA_USE_OPERAND (op_p, stmt, iter, SSA_OP_USE)
2306 cprop_operand (stmt, op_p);
2307 }
2308
2309 /* Optimize the statement pointed to by iterator SI.
2310
2311 We try to perform some simplistic global redundancy elimination and
2312 constant propagation:
2313
2314 1- To detect global redundancy, we keep track of expressions that have
2315 been computed in this block and its dominators. If we find that the
2316 same expression is computed more than once, we eliminate repeated
2317 computations by using the target of the first one.
2318
2319 2- Constant values and copy assignments. This is used to do very
2320 simplistic constant and copy propagation. When a constant or copy
2321 assignment is found, we map the value on the RHS of the assignment to
2322 the variable in the LHS in the CONST_AND_COPIES table. */
2323
2324 static void
2325 optimize_stmt (basic_block bb, gimple_stmt_iterator si)
2326 {
2327 gimple stmt, old_stmt;
2328 bool may_optimize_p;
2329 bool modified_p = false;
2330
2331 old_stmt = stmt = gsi_stmt (si);
2332
2333 if (dump_file && (dump_flags & TDF_DETAILS))
2334 {
2335 fprintf (dump_file, "Optimizing statement ");
2336 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2337 }
2338
2339 if (gimple_code (stmt) == GIMPLE_COND)
2340 canonicalize_comparison (stmt);
2341
2342 update_stmt_if_modified (stmt);
2343 opt_stats.num_stmts++;
2344
2345 /* Const/copy propagate into USES, VUSES and the RHS of VDEFs. */
2346 cprop_into_stmt (stmt);
2347
2348 /* If the statement has been modified with constant replacements,
2349 fold its RHS before checking for redundant computations. */
2350 if (gimple_modified_p (stmt))
2351 {
2352 tree rhs = NULL;
2353
2354 /* Try to fold the statement making sure that STMT is kept
2355 up to date. */
2356 if (fold_stmt (&si))
2357 {
2358 stmt = gsi_stmt (si);
2359 gimple_set_modified (stmt, true);
2360
2361 if (dump_file && (dump_flags & TDF_DETAILS))
2362 {
2363 fprintf (dump_file, " Folded to: ");
2364 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2365 }
2366 }
2367
2368 /* We only need to consider cases that can yield a gimple operand. */
2369 if (gimple_assign_single_p (stmt))
2370 rhs = gimple_assign_rhs1 (stmt);
2371 else if (gimple_code (stmt) == GIMPLE_GOTO)
2372 rhs = gimple_goto_dest (stmt);
2373 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2374 /* This should never be an ADDR_EXPR. */
2375 rhs = gimple_switch_index (stmt);
2376
2377 if (rhs && TREE_CODE (rhs) == ADDR_EXPR)
2378 recompute_tree_invariant_for_addr_expr (rhs);
2379
2380 /* Indicate that maybe_clean_or_replace_eh_stmt needs to be called,
2381 even if fold_stmt updated the stmt already and thus cleared
2382 gimple_modified_p flag on it. */
2383 modified_p = true;
2384 }
2385
2386 /* Check for redundant computations. Do this optimization only
2387 for assignments that have no volatile ops and conditionals. */
2388 may_optimize_p = (!gimple_has_side_effects (stmt)
2389 && (is_gimple_assign (stmt)
2390 || (is_gimple_call (stmt)
2391 && gimple_call_lhs (stmt) != NULL_TREE)
2392 || gimple_code (stmt) == GIMPLE_COND
2393 || gimple_code (stmt) == GIMPLE_SWITCH));
2394
2395 if (may_optimize_p)
2396 {
2397 if (gimple_code (stmt) == GIMPLE_CALL)
2398 {
2399 /* Resolve __builtin_constant_p. If it hasn't been
2400 folded to integer_one_node by now, it's fairly
2401 certain that the value simply isn't constant. */
2402 tree callee = gimple_call_fndecl (stmt);
2403 if (callee
2404 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2405 && DECL_FUNCTION_CODE (callee) == BUILT_IN_CONSTANT_P)
2406 {
2407 propagate_tree_value_into_stmt (&si, integer_zero_node);
2408 stmt = gsi_stmt (si);
2409 }
2410 }
2411
2412 update_stmt_if_modified (stmt);
2413 eliminate_redundant_computations (&si);
2414 stmt = gsi_stmt (si);
2415
2416 /* Perform simple redundant store elimination. */
2417 if (gimple_assign_single_p (stmt)
2418 && TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2419 {
2420 tree lhs = gimple_assign_lhs (stmt);
2421 tree rhs = gimple_assign_rhs1 (stmt);
2422 tree cached_lhs;
2423 gimple new_stmt;
2424 if (TREE_CODE (rhs) == SSA_NAME)
2425 {
2426 tree tem = SSA_NAME_VALUE (rhs);
2427 if (tem)
2428 rhs = tem;
2429 }
2430 /* Build a new statement with the RHS and LHS exchanged. */
2431 if (TREE_CODE (rhs) == SSA_NAME)
2432 {
2433 gimple defstmt = SSA_NAME_DEF_STMT (rhs);
2434 new_stmt = gimple_build_assign (rhs, lhs);
2435 SSA_NAME_DEF_STMT (rhs) = defstmt;
2436 }
2437 else
2438 new_stmt = gimple_build_assign (rhs, lhs);
2439 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
2440 cached_lhs = lookup_avail_expr (new_stmt, false);
2441 if (cached_lhs
2442 && rhs == cached_lhs)
2443 {
2444 basic_block bb = gimple_bb (stmt);
2445 unlink_stmt_vdef (stmt);
2446 if (gsi_remove (&si, true))
2447 {
2448 bitmap_set_bit (need_eh_cleanup, bb->index);
2449 if (dump_file && (dump_flags & TDF_DETAILS))
2450 fprintf (dump_file, " Flagged to clear EH edges.\n");
2451 }
2452 release_defs (stmt);
2453 return;
2454 }
2455 }
2456 }
2457
2458 /* Record any additional equivalences created by this statement. */
2459 if (is_gimple_assign (stmt))
2460 record_equivalences_from_stmt (stmt, may_optimize_p);
2461
2462 /* If STMT is a COND_EXPR and it was modified, then we may know
2463 where it goes. If that is the case, then mark the CFG as altered.
2464
2465 This will cause us to later call remove_unreachable_blocks and
2466 cleanup_tree_cfg when it is safe to do so. It is not safe to
2467 clean things up here since removal of edges and such can trigger
2468 the removal of PHI nodes, which in turn can release SSA_NAMEs to
2469 the manager.
2470
2471 That's all fine and good, except that once SSA_NAMEs are released
2472 to the manager, we must not call create_ssa_name until all references
2473 to released SSA_NAMEs have been eliminated.
2474
2475 All references to the deleted SSA_NAMEs can not be eliminated until
2476 we remove unreachable blocks.
2477
2478 We can not remove unreachable blocks until after we have completed
2479 any queued jump threading.
2480
2481 We can not complete any queued jump threads until we have taken
2482 appropriate variables out of SSA form. Taking variables out of
2483 SSA form can call create_ssa_name and thus we lose.
2484
2485 Ultimately I suspect we're going to need to change the interface
2486 into the SSA_NAME manager. */
2487 if (gimple_modified_p (stmt) || modified_p)
2488 {
2489 tree val = NULL;
2490
2491 update_stmt_if_modified (stmt);
2492
2493 if (gimple_code (stmt) == GIMPLE_COND)
2494 val = fold_binary_loc (gimple_location (stmt),
2495 gimple_cond_code (stmt), boolean_type_node,
2496 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
2497 else if (gimple_code (stmt) == GIMPLE_SWITCH)
2498 val = gimple_switch_index (stmt);
2499
2500 if (val && TREE_CODE (val) == INTEGER_CST && find_taken_edge (bb, val))
2501 cfg_altered = true;
2502
2503 /* If we simplified a statement in such a way as to be shown that it
2504 cannot trap, update the eh information and the cfg to match. */
2505 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
2506 {
2507 bitmap_set_bit (need_eh_cleanup, bb->index);
2508 if (dump_file && (dump_flags & TDF_DETAILS))
2509 fprintf (dump_file, " Flagged to clear EH edges.\n");
2510 }
2511 }
2512 }
2513
2514 /* Search for an existing instance of STMT in the AVAIL_EXPRS table.
2515 If found, return its LHS. Otherwise insert STMT in the table and
2516 return NULL_TREE.
2517
2518 Also, when an expression is first inserted in the table, it is also
2519 is also added to AVAIL_EXPRS_STACK, so that it can be removed when
2520 we finish processing this block and its children. */
2521
2522 static tree
2523 lookup_avail_expr (gimple stmt, bool insert)
2524 {
2525 expr_hash_elt **slot;
2526 tree lhs;
2527 tree temp;
2528 struct expr_hash_elt element;
2529
2530 /* Get LHS of phi, assignment, or call; else NULL_TREE. */
2531 if (gimple_code (stmt) == GIMPLE_PHI)
2532 lhs = gimple_phi_result (stmt);
2533 else
2534 lhs = gimple_get_lhs (stmt);
2535
2536 initialize_hash_element (stmt, lhs, &element);
2537
2538 if (dump_file && (dump_flags & TDF_DETAILS))
2539 {
2540 fprintf (dump_file, "LKUP ");
2541 print_expr_hash_elt (dump_file, &element);
2542 }
2543
2544 /* Don't bother remembering constant assignments and copy operations.
2545 Constants and copy operations are handled by the constant/copy propagator
2546 in optimize_stmt. */
2547 if (element.expr.kind == EXPR_SINGLE
2548 && (TREE_CODE (element.expr.ops.single.rhs) == SSA_NAME
2549 || is_gimple_min_invariant (element.expr.ops.single.rhs)))
2550 return NULL_TREE;
2551
2552 /* Finally try to find the expression in the main expression hash table. */
2553 slot = avail_exprs->find_slot (&element, (insert ? INSERT : NO_INSERT));
2554 if (slot == NULL)
2555 {
2556 free_expr_hash_elt_contents (&element);
2557 return NULL_TREE;
2558 }
2559 else if (*slot == NULL)
2560 {
2561 struct expr_hash_elt *element2 = XNEW (struct expr_hash_elt);
2562 *element2 = element;
2563 element2->stamp = element2;
2564 *slot = element2;
2565
2566 if (dump_file && (dump_flags & TDF_DETAILS))
2567 {
2568 fprintf (dump_file, "2>>> ");
2569 print_expr_hash_elt (dump_file, element2);
2570 }
2571
2572 avail_exprs_stack.safe_push (element2);
2573 return NULL_TREE;
2574 }
2575 else
2576 free_expr_hash_elt_contents (&element);
2577
2578 /* Extract the LHS of the assignment so that it can be used as the current
2579 definition of another variable. */
2580 lhs = ((struct expr_hash_elt *)*slot)->lhs;
2581
2582 /* See if the LHS appears in the CONST_AND_COPIES table. If it does, then
2583 use the value from the const_and_copies table. */
2584 if (TREE_CODE (lhs) == SSA_NAME)
2585 {
2586 temp = SSA_NAME_VALUE (lhs);
2587 if (temp)
2588 lhs = temp;
2589 }
2590
2591 if (dump_file && (dump_flags & TDF_DETAILS))
2592 {
2593 fprintf (dump_file, "FIND: ");
2594 print_generic_expr (dump_file, lhs, 0);
2595 fprintf (dump_file, "\n");
2596 }
2597
2598 return lhs;
2599 }
2600
2601 /* Hashing and equality functions for AVAIL_EXPRS. We compute a value number
2602 for expressions using the code of the expression and the SSA numbers of
2603 its operands. */
2604
2605 static hashval_t
2606 avail_expr_hash (const void *p)
2607 {
2608 gimple stmt = ((const struct expr_hash_elt *)p)->stmt;
2609 const struct hashable_expr *expr = &((const struct expr_hash_elt *)p)->expr;
2610 tree vuse;
2611 inchash::hash hstate;
2612
2613 inchash::add_hashable_expr (expr, hstate);
2614
2615 /* If the hash table entry is not associated with a statement, then we
2616 can just hash the expression and not worry about virtual operands
2617 and such. */
2618 if (!stmt)
2619 return hstate.end ();
2620
2621 /* Add the SSA version numbers of the vuse operand. This is important
2622 because compound variables like arrays are not renamed in the
2623 operands. Rather, the rename is done on the virtual variable
2624 representing all the elements of the array. */
2625 if ((vuse = gimple_vuse (stmt)))
2626 inchash::add_expr (vuse, hstate);
2627
2628 return hstate.end ();
2629 }
2630
2631 /* PHI-ONLY copy and constant propagation. This pass is meant to clean
2632 up degenerate PHIs created by or exposed by jump threading. */
2633
2634 /* Given a statement STMT, which is either a PHI node or an assignment,
2635 remove it from the IL. */
2636
2637 static void
2638 remove_stmt_or_phi (gimple stmt)
2639 {
2640 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
2641
2642 if (gimple_code (stmt) == GIMPLE_PHI)
2643 remove_phi_node (&gsi, true);
2644 else
2645 {
2646 gsi_remove (&gsi, true);
2647 release_defs (stmt);
2648 }
2649 }
2650
2651 /* Given a statement STMT, which is either a PHI node or an assignment,
2652 return the "rhs" of the node, in the case of a non-degenerate
2653 phi, NULL is returned. */
2654
2655 static tree
2656 get_rhs_or_phi_arg (gimple stmt)
2657 {
2658 if (gimple_code (stmt) == GIMPLE_PHI)
2659 return degenerate_phi_result (stmt);
2660 else if (gimple_assign_single_p (stmt))
2661 return gimple_assign_rhs1 (stmt);
2662 else
2663 gcc_unreachable ();
2664 }
2665
2666
2667 /* Given a statement STMT, which is either a PHI node or an assignment,
2668 return the "lhs" of the node. */
2669
2670 static tree
2671 get_lhs_or_phi_result (gimple stmt)
2672 {
2673 if (gimple_code (stmt) == GIMPLE_PHI)
2674 return gimple_phi_result (stmt);
2675 else if (is_gimple_assign (stmt))
2676 return gimple_assign_lhs (stmt);
2677 else
2678 gcc_unreachable ();
2679 }
2680
2681 /* Propagate RHS into all uses of LHS (when possible).
2682
2683 RHS and LHS are derived from STMT, which is passed in solely so
2684 that we can remove it if propagation is successful.
2685
2686 When propagating into a PHI node or into a statement which turns
2687 into a trivial copy or constant initialization, set the
2688 appropriate bit in INTERESTING_NAMEs so that we will visit those
2689 nodes as well in an effort to pick up secondary optimization
2690 opportunities. */
2691
2692 static void
2693 propagate_rhs_into_lhs (gimple stmt, tree lhs, tree rhs, bitmap interesting_names)
2694 {
2695 /* First verify that propagation is valid. */
2696 if (may_propagate_copy (lhs, rhs))
2697 {
2698 use_operand_p use_p;
2699 imm_use_iterator iter;
2700 gimple use_stmt;
2701 bool all = true;
2702
2703 /* Dump details. */
2704 if (dump_file && (dump_flags & TDF_DETAILS))
2705 {
2706 fprintf (dump_file, " Replacing '");
2707 print_generic_expr (dump_file, lhs, dump_flags);
2708 fprintf (dump_file, "' with %s '",
2709 (TREE_CODE (rhs) != SSA_NAME ? "constant" : "variable"));
2710 print_generic_expr (dump_file, rhs, dump_flags);
2711 fprintf (dump_file, "'\n");
2712 }
2713
2714 /* Walk over every use of LHS and try to replace the use with RHS.
2715 At this point the only reason why such a propagation would not
2716 be successful would be if the use occurs in an ASM_EXPR. */
2717 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2718 {
2719 /* Leave debug stmts alone. If we succeed in propagating
2720 all non-debug uses, we'll drop the DEF, and propagation
2721 into debug stmts will occur then. */
2722 if (gimple_debug_bind_p (use_stmt))
2723 continue;
2724
2725 /* It's not always safe to propagate into an ASM_EXPR. */
2726 if (gimple_code (use_stmt) == GIMPLE_ASM
2727 && ! may_propagate_copy_into_asm (lhs))
2728 {
2729 all = false;
2730 continue;
2731 }
2732
2733 /* It's not ok to propagate into the definition stmt of RHS.
2734 <bb 9>:
2735 # prephitmp.12_36 = PHI <g_67.1_6(9)>
2736 g_67.1_6 = prephitmp.12_36;
2737 goto <bb 9>;
2738 While this is strictly all dead code we do not want to
2739 deal with this here. */
2740 if (TREE_CODE (rhs) == SSA_NAME
2741 && SSA_NAME_DEF_STMT (rhs) == use_stmt)
2742 {
2743 all = false;
2744 continue;
2745 }
2746
2747 /* Dump details. */
2748 if (dump_file && (dump_flags & TDF_DETAILS))
2749 {
2750 fprintf (dump_file, " Original statement:");
2751 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2752 }
2753
2754 /* Propagate the RHS into this use of the LHS. */
2755 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2756 propagate_value (use_p, rhs);
2757
2758 /* Special cases to avoid useless calls into the folding
2759 routines, operand scanning, etc.
2760
2761 Propagation into a PHI may cause the PHI to become
2762 a degenerate, so mark the PHI as interesting. No other
2763 actions are necessary. */
2764 if (gimple_code (use_stmt) == GIMPLE_PHI)
2765 {
2766 tree result;
2767
2768 /* Dump details. */
2769 if (dump_file && (dump_flags & TDF_DETAILS))
2770 {
2771 fprintf (dump_file, " Updated statement:");
2772 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2773 }
2774
2775 result = get_lhs_or_phi_result (use_stmt);
2776 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2777 continue;
2778 }
2779
2780 /* From this point onward we are propagating into a
2781 real statement. Folding may (or may not) be possible,
2782 we may expose new operands, expose dead EH edges,
2783 etc. */
2784 /* NOTE tuples. In the tuples world, fold_stmt_inplace
2785 cannot fold a call that simplifies to a constant,
2786 because the GIMPLE_CALL must be replaced by a
2787 GIMPLE_ASSIGN, and there is no way to effect such a
2788 transformation in-place. We might want to consider
2789 using the more general fold_stmt here. */
2790 {
2791 gimple_stmt_iterator gsi = gsi_for_stmt (use_stmt);
2792 fold_stmt_inplace (&gsi);
2793 }
2794
2795 /* Sometimes propagation can expose new operands to the
2796 renamer. */
2797 update_stmt (use_stmt);
2798
2799 /* Dump details. */
2800 if (dump_file && (dump_flags & TDF_DETAILS))
2801 {
2802 fprintf (dump_file, " Updated statement:");
2803 print_gimple_stmt (dump_file, use_stmt, 0, dump_flags);
2804 }
2805
2806 /* If we replaced a variable index with a constant, then
2807 we would need to update the invariant flag for ADDR_EXPRs. */
2808 if (gimple_assign_single_p (use_stmt)
2809 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ADDR_EXPR)
2810 recompute_tree_invariant_for_addr_expr
2811 (gimple_assign_rhs1 (use_stmt));
2812
2813 /* If we cleaned up EH information from the statement,
2814 mark its containing block as needing EH cleanups. */
2815 if (maybe_clean_or_replace_eh_stmt (use_stmt, use_stmt))
2816 {
2817 bitmap_set_bit (need_eh_cleanup, gimple_bb (use_stmt)->index);
2818 if (dump_file && (dump_flags & TDF_DETAILS))
2819 fprintf (dump_file, " Flagged to clear EH edges.\n");
2820 }
2821
2822 /* Propagation may expose new trivial copy/constant propagation
2823 opportunities. */
2824 if (gimple_assign_single_p (use_stmt)
2825 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
2826 && (TREE_CODE (gimple_assign_rhs1 (use_stmt)) == SSA_NAME
2827 || is_gimple_min_invariant (gimple_assign_rhs1 (use_stmt))))
2828 {
2829 tree result = get_lhs_or_phi_result (use_stmt);
2830 bitmap_set_bit (interesting_names, SSA_NAME_VERSION (result));
2831 }
2832
2833 /* Propagation into these nodes may make certain edges in
2834 the CFG unexecutable. We want to identify them as PHI nodes
2835 at the destination of those unexecutable edges may become
2836 degenerates. */
2837 else if (gimple_code (use_stmt) == GIMPLE_COND
2838 || gimple_code (use_stmt) == GIMPLE_SWITCH
2839 || gimple_code (use_stmt) == GIMPLE_GOTO)
2840 {
2841 tree val;
2842
2843 if (gimple_code (use_stmt) == GIMPLE_COND)
2844 val = fold_binary_loc (gimple_location (use_stmt),
2845 gimple_cond_code (use_stmt),
2846 boolean_type_node,
2847 gimple_cond_lhs (use_stmt),
2848 gimple_cond_rhs (use_stmt));
2849 else if (gimple_code (use_stmt) == GIMPLE_SWITCH)
2850 val = gimple_switch_index (use_stmt);
2851 else
2852 val = gimple_goto_dest (use_stmt);
2853
2854 if (val && is_gimple_min_invariant (val))
2855 {
2856 basic_block bb = gimple_bb (use_stmt);
2857 edge te = find_taken_edge (bb, val);
2858 edge_iterator ei;
2859 edge e;
2860 gimple_stmt_iterator gsi, psi;
2861
2862 /* Remove all outgoing edges except TE. */
2863 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei));)
2864 {
2865 if (e != te)
2866 {
2867 /* Mark all the PHI nodes at the destination of
2868 the unexecutable edge as interesting. */
2869 for (psi = gsi_start_phis (e->dest);
2870 !gsi_end_p (psi);
2871 gsi_next (&psi))
2872 {
2873 gimple phi = gsi_stmt (psi);
2874
2875 tree result = gimple_phi_result (phi);
2876 int version = SSA_NAME_VERSION (result);
2877
2878 bitmap_set_bit (interesting_names, version);
2879 }
2880
2881 te->probability += e->probability;
2882
2883 te->count += e->count;
2884 remove_edge (e);
2885 cfg_altered = true;
2886 }
2887 else
2888 ei_next (&ei);
2889 }
2890
2891 gsi = gsi_last_bb (gimple_bb (use_stmt));
2892 gsi_remove (&gsi, true);
2893
2894 /* And fixup the flags on the single remaining edge. */
2895 te->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
2896 te->flags &= ~EDGE_ABNORMAL;
2897 te->flags |= EDGE_FALLTHRU;
2898 if (te->probability > REG_BR_PROB_BASE)
2899 te->probability = REG_BR_PROB_BASE;
2900 }
2901 }
2902 }
2903
2904 /* Ensure there is nothing else to do. */
2905 gcc_assert (!all || has_zero_uses (lhs));
2906
2907 /* If we were able to propagate away all uses of LHS, then
2908 we can remove STMT. */
2909 if (all)
2910 remove_stmt_or_phi (stmt);
2911 }
2912 }
2913
2914 /* STMT is either a PHI node (potentially a degenerate PHI node) or
2915 a statement that is a trivial copy or constant initialization.
2916
2917 Attempt to eliminate T by propagating its RHS into all uses of
2918 its LHS. This may in turn set new bits in INTERESTING_NAMES
2919 for nodes we want to revisit later.
2920
2921 All exit paths should clear INTERESTING_NAMES for the result
2922 of STMT. */
2923
2924 static void
2925 eliminate_const_or_copy (gimple stmt, bitmap interesting_names)
2926 {
2927 tree lhs = get_lhs_or_phi_result (stmt);
2928 tree rhs;
2929 int version = SSA_NAME_VERSION (lhs);
2930
2931 /* If the LHS of this statement or PHI has no uses, then we can
2932 just eliminate it. This can occur if, for example, the PHI
2933 was created by block duplication due to threading and its only
2934 use was in the conditional at the end of the block which was
2935 deleted. */
2936 if (has_zero_uses (lhs))
2937 {
2938 bitmap_clear_bit (interesting_names, version);
2939 remove_stmt_or_phi (stmt);
2940 return;
2941 }
2942
2943 /* Get the RHS of the assignment or PHI node if the PHI is a
2944 degenerate. */
2945 rhs = get_rhs_or_phi_arg (stmt);
2946 if (!rhs)
2947 {
2948 bitmap_clear_bit (interesting_names, version);
2949 return;
2950 }
2951
2952 if (!virtual_operand_p (lhs))
2953 propagate_rhs_into_lhs (stmt, lhs, rhs, interesting_names);
2954 else
2955 {
2956 gimple use_stmt;
2957 imm_use_iterator iter;
2958 use_operand_p use_p;
2959 /* For virtual operands we have to propagate into all uses as
2960 otherwise we will create overlapping life-ranges. */
2961 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2962 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2963 SET_USE (use_p, rhs);
2964 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
2965 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
2966 remove_stmt_or_phi (stmt);
2967 }
2968
2969 /* Note that STMT may well have been deleted by now, so do
2970 not access it, instead use the saved version # to clear
2971 T's entry in the worklist. */
2972 bitmap_clear_bit (interesting_names, version);
2973 }
2974
2975 /* The first phase in degenerate PHI elimination.
2976
2977 Eliminate the degenerate PHIs in BB, then recurse on the
2978 dominator children of BB. */
2979
2980 static void
2981 eliminate_degenerate_phis_1 (basic_block bb, bitmap interesting_names)
2982 {
2983 gimple_stmt_iterator gsi;
2984 basic_block son;
2985
2986 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2987 {
2988 gimple phi = gsi_stmt (gsi);
2989
2990 eliminate_const_or_copy (phi, interesting_names);
2991 }
2992
2993 /* Recurse into the dominator children of BB. */
2994 for (son = first_dom_son (CDI_DOMINATORS, bb);
2995 son;
2996 son = next_dom_son (CDI_DOMINATORS, son))
2997 eliminate_degenerate_phis_1 (son, interesting_names);
2998 }
2999
3000
3001 /* A very simple pass to eliminate degenerate PHI nodes from the
3002 IL. This is meant to be fast enough to be able to be run several
3003 times in the optimization pipeline.
3004
3005 Certain optimizations, particularly those which duplicate blocks
3006 or remove edges from the CFG can create or expose PHIs which are
3007 trivial copies or constant initializations.
3008
3009 While we could pick up these optimizations in DOM or with the
3010 combination of copy-prop and CCP, those solutions are far too
3011 heavy-weight for our needs.
3012
3013 This implementation has two phases so that we can efficiently
3014 eliminate the first order degenerate PHIs and second order
3015 degenerate PHIs.
3016
3017 The first phase performs a dominator walk to identify and eliminate
3018 the vast majority of the degenerate PHIs. When a degenerate PHI
3019 is identified and eliminated any affected statements or PHIs
3020 are put on a worklist.
3021
3022 The second phase eliminates degenerate PHIs and trivial copies
3023 or constant initializations using the worklist. This is how we
3024 pick up the secondary optimization opportunities with minimal
3025 cost. */
3026
3027 namespace {
3028
3029 const pass_data pass_data_phi_only_cprop =
3030 {
3031 GIMPLE_PASS, /* type */
3032 "phicprop", /* name */
3033 OPTGROUP_NONE, /* optinfo_flags */
3034 TV_TREE_PHI_CPROP, /* tv_id */
3035 ( PROP_cfg | PROP_ssa ), /* properties_required */
3036 0, /* properties_provided */
3037 0, /* properties_destroyed */
3038 0, /* todo_flags_start */
3039 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
3040 };
3041
3042 class pass_phi_only_cprop : public gimple_opt_pass
3043 {
3044 public:
3045 pass_phi_only_cprop (gcc::context *ctxt)
3046 : gimple_opt_pass (pass_data_phi_only_cprop, ctxt)
3047 {}
3048
3049 /* opt_pass methods: */
3050 opt_pass * clone () { return new pass_phi_only_cprop (m_ctxt); }
3051 virtual bool gate (function *) { return flag_tree_dom != 0; }
3052 virtual unsigned int execute (function *);
3053
3054 }; // class pass_phi_only_cprop
3055
3056 unsigned int
3057 pass_phi_only_cprop::execute (function *fun)
3058 {
3059 bitmap interesting_names;
3060 bitmap interesting_names1;
3061
3062 /* Bitmap of blocks which need EH information updated. We can not
3063 update it on-the-fly as doing so invalidates the dominator tree. */
3064 need_eh_cleanup = BITMAP_ALLOC (NULL);
3065
3066 /* INTERESTING_NAMES is effectively our worklist, indexed by
3067 SSA_NAME_VERSION.
3068
3069 A set bit indicates that the statement or PHI node which
3070 defines the SSA_NAME should be (re)examined to determine if
3071 it has become a degenerate PHI or trivial const/copy propagation
3072 opportunity.
3073
3074 Experiments have show we generally get better compilation
3075 time behavior with bitmaps rather than sbitmaps. */
3076 interesting_names = BITMAP_ALLOC (NULL);
3077 interesting_names1 = BITMAP_ALLOC (NULL);
3078
3079 calculate_dominance_info (CDI_DOMINATORS);
3080 cfg_altered = false;
3081
3082 /* First phase. Eliminate degenerate PHIs via a dominator
3083 walk of the CFG.
3084
3085 Experiments have indicated that we generally get better
3086 compile-time behavior by visiting blocks in the first
3087 phase in dominator order. Presumably this is because walking
3088 in dominator order leaves fewer PHIs for later examination
3089 by the worklist phase. */
3090 eliminate_degenerate_phis_1 (ENTRY_BLOCK_PTR_FOR_FN (fun),
3091 interesting_names);
3092
3093 /* Second phase. Eliminate second order degenerate PHIs as well
3094 as trivial copies or constant initializations identified by
3095 the first phase or this phase. Basically we keep iterating
3096 until our set of INTERESTING_NAMEs is empty. */
3097 while (!bitmap_empty_p (interesting_names))
3098 {
3099 unsigned int i;
3100 bitmap_iterator bi;
3101
3102 /* EXECUTE_IF_SET_IN_BITMAP does not like its bitmap
3103 changed during the loop. Copy it to another bitmap and
3104 use that. */
3105 bitmap_copy (interesting_names1, interesting_names);
3106
3107 EXECUTE_IF_SET_IN_BITMAP (interesting_names1, 0, i, bi)
3108 {
3109 tree name = ssa_name (i);
3110
3111 /* Ignore SSA_NAMEs that have been released because
3112 their defining statement was deleted (unreachable). */
3113 if (name)
3114 eliminate_const_or_copy (SSA_NAME_DEF_STMT (ssa_name (i)),
3115 interesting_names);
3116 }
3117 }
3118
3119 if (cfg_altered)
3120 {
3121 free_dominance_info (CDI_DOMINATORS);
3122 /* If we changed the CFG schedule loops for fixup by cfgcleanup. */
3123 loops_state_set (LOOPS_NEED_FIXUP);
3124 }
3125
3126 /* Propagation of const and copies may make some EH edges dead. Purge
3127 such edges from the CFG as needed. */
3128 if (!bitmap_empty_p (need_eh_cleanup))
3129 {
3130 gimple_purge_all_dead_eh_edges (need_eh_cleanup);
3131 BITMAP_FREE (need_eh_cleanup);
3132 }
3133
3134 BITMAP_FREE (interesting_names);
3135 BITMAP_FREE (interesting_names1);
3136 return 0;
3137 }
3138
3139 } // anon namespace
3140
3141 gimple_opt_pass *
3142 make_pass_phi_only_cprop (gcc::context *ctxt)
3143 {
3144 return new pass_phi_only_cprop (ctxt);
3145 }