]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-ivcanon.c
[Ada] Fix documentation for GNAT.Command_Line.Exit_From_Command_Line
[thirdparty/gcc.git] / gcc / tree-ssa-loop-ivcanon.c
1 /* Induction variable canonicalization and loop peeling.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This pass detects the loops that iterate a constant number of times,
21 adds a canonical induction variable (step -1, tested against 0)
22 and replaces the exit test. This enables the less powerful rtl
23 level analysis to use this information.
24
25 This might spoil the code in some cases (by increasing register pressure).
26 Note that in the case the new variable is not needed, ivopts will get rid
27 of it, so it might only be a problem when there are no other linear induction
28 variables. In that case the created optimization possibilities are likely
29 to pay up.
30
31 We also perform
32 - complete unrolling (or peeling) when the loops is rolling few enough
33 times
34 - simple peeling (i.e. copying few initial iterations prior the loop)
35 when number of iteration estimate is known (typically by the profile
36 info). */
37
38 #include "config.h"
39 #include "system.h"
40 #include "coretypes.h"
41 #include "backend.h"
42 #include "tree.h"
43 #include "gimple.h"
44 #include "cfghooks.h"
45 #include "tree-pass.h"
46 #include "ssa.h"
47 #include "cgraph.h"
48 #include "gimple-pretty-print.h"
49 #include "fold-const.h"
50 #include "profile.h"
51 #include "gimple-fold.h"
52 #include "tree-eh.h"
53 #include "gimple-iterator.h"
54 #include "tree-cfg.h"
55 #include "tree-ssa-loop-manip.h"
56 #include "tree-ssa-loop-niter.h"
57 #include "tree-ssa-loop.h"
58 #include "tree-into-ssa.h"
59 #include "cfgloop.h"
60 #include "tree-chrec.h"
61 #include "tree-scalar-evolution.h"
62 #include "params.h"
63 #include "tree-inline.h"
64 #include "tree-cfgcleanup.h"
65 #include "builtins.h"
66 #include "tree-ssa-sccvn.h"
67
68 /* Specifies types of loops that may be unrolled. */
69
70 enum unroll_level
71 {
72 UL_SINGLE_ITER, /* Only loops that exit immediately in the first
73 iteration. */
74 UL_NO_GROWTH, /* Only loops whose unrolling will not cause increase
75 of code size. */
76 UL_ALL /* All suitable loops. */
77 };
78
79 /* Adds a canonical induction variable to LOOP iterating NITER times. EXIT
80 is the exit edge whose condition is replaced. The ssa versions of the new
81 IV before and after increment will be stored in VAR_BEFORE and VAR_AFTER
82 if they are not NULL. */
83
84 void
85 create_canonical_iv (class loop *loop, edge exit, tree niter,
86 tree *var_before = NULL, tree *var_after = NULL)
87 {
88 edge in;
89 tree type, var;
90 gcond *cond;
91 gimple_stmt_iterator incr_at;
92 enum tree_code cmp;
93
94 if (dump_file && (dump_flags & TDF_DETAILS))
95 {
96 fprintf (dump_file, "Added canonical iv to loop %d, ", loop->num);
97 print_generic_expr (dump_file, niter, TDF_SLIM);
98 fprintf (dump_file, " iterations.\n");
99 }
100
101 cond = as_a <gcond *> (last_stmt (exit->src));
102 in = EDGE_SUCC (exit->src, 0);
103 if (in == exit)
104 in = EDGE_SUCC (exit->src, 1);
105
106 /* Note that we do not need to worry about overflows, since
107 type of niter is always unsigned and all comparisons are
108 just for equality/nonequality -- i.e. everything works
109 with a modulo arithmetics. */
110
111 type = TREE_TYPE (niter);
112 niter = fold_build2 (PLUS_EXPR, type,
113 niter,
114 build_int_cst (type, 1));
115 incr_at = gsi_last_bb (in->src);
116 create_iv (niter,
117 build_int_cst (type, -1),
118 NULL_TREE, loop,
119 &incr_at, false, var_before, &var);
120 if (var_after)
121 *var_after = var;
122
123 cmp = (exit->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
124 gimple_cond_set_code (cond, cmp);
125 gimple_cond_set_lhs (cond, var);
126 gimple_cond_set_rhs (cond, build_int_cst (type, 0));
127 update_stmt (cond);
128 }
129
130 /* Describe size of loop as detected by tree_estimate_loop_size. */
131 struct loop_size
132 {
133 /* Number of instructions in the loop. */
134 int overall;
135
136 /* Number of instructions that will be likely optimized out in
137 peeled iterations of loop (i.e. computation based on induction
138 variable where induction variable starts at known constant.) */
139 int eliminated_by_peeling;
140
141 /* Same statistics for last iteration of loop: it is smaller because
142 instructions after exit are not executed. */
143 int last_iteration;
144 int last_iteration_eliminated_by_peeling;
145
146 /* If some IV computation will become constant. */
147 bool constant_iv;
148
149 /* Number of call stmts that are not a builtin and are pure or const
150 present on the hot path. */
151 int num_pure_calls_on_hot_path;
152 /* Number of call stmts that are not a builtin and are not pure nor const
153 present on the hot path. */
154 int num_non_pure_calls_on_hot_path;
155 /* Number of statements other than calls in the loop. */
156 int non_call_stmts_on_hot_path;
157 /* Number of branches seen on the hot path. */
158 int num_branches_on_hot_path;
159 };
160
161 /* Return true if OP in STMT will be constant after peeling LOOP. */
162
163 static bool
164 constant_after_peeling (tree op, gimple *stmt, class loop *loop)
165 {
166 if (is_gimple_min_invariant (op))
167 return true;
168
169 /* We can still fold accesses to constant arrays when index is known. */
170 if (TREE_CODE (op) != SSA_NAME)
171 {
172 tree base = op;
173
174 /* First make fast look if we see constant array inside. */
175 while (handled_component_p (base))
176 base = TREE_OPERAND (base, 0);
177 if ((DECL_P (base)
178 && ctor_for_folding (base) != error_mark_node)
179 || CONSTANT_CLASS_P (base))
180 {
181 /* If so, see if we understand all the indices. */
182 base = op;
183 while (handled_component_p (base))
184 {
185 if (TREE_CODE (base) == ARRAY_REF
186 && !constant_after_peeling (TREE_OPERAND (base, 1), stmt, loop))
187 return false;
188 base = TREE_OPERAND (base, 0);
189 }
190 return true;
191 }
192 return false;
193 }
194
195 /* Induction variables are constants when defined in loop. */
196 if (loop_containing_stmt (stmt) != loop)
197 return false;
198 tree ev = analyze_scalar_evolution (loop, op);
199 if (chrec_contains_undetermined (ev)
200 || chrec_contains_symbols (ev))
201 return false;
202 return true;
203 }
204
205 /* Computes an estimated number of insns in LOOP.
206 EXIT (if non-NULL) is an exite edge that will be eliminated in all but last
207 iteration of the loop.
208 EDGE_TO_CANCEL (if non-NULL) is an non-exit edge eliminated in the last iteration
209 of loop.
210 Return results in SIZE, estimate benefits for complete unrolling exiting by EXIT.
211 Stop estimating after UPPER_BOUND is met. Return true in this case. */
212
213 static bool
214 tree_estimate_loop_size (class loop *loop, edge exit, edge edge_to_cancel,
215 struct loop_size *size, int upper_bound)
216 {
217 basic_block *body = get_loop_body (loop);
218 gimple_stmt_iterator gsi;
219 unsigned int i;
220 bool after_exit;
221 vec<basic_block> path = get_loop_hot_path (loop);
222
223 size->overall = 0;
224 size->eliminated_by_peeling = 0;
225 size->last_iteration = 0;
226 size->last_iteration_eliminated_by_peeling = 0;
227 size->num_pure_calls_on_hot_path = 0;
228 size->num_non_pure_calls_on_hot_path = 0;
229 size->non_call_stmts_on_hot_path = 0;
230 size->num_branches_on_hot_path = 0;
231 size->constant_iv = 0;
232
233 if (dump_file && (dump_flags & TDF_DETAILS))
234 fprintf (dump_file, "Estimating sizes for loop %i\n", loop->num);
235 for (i = 0; i < loop->num_nodes; i++)
236 {
237 if (edge_to_cancel && body[i] != edge_to_cancel->src
238 && dominated_by_p (CDI_DOMINATORS, body[i], edge_to_cancel->src))
239 after_exit = true;
240 else
241 after_exit = false;
242 if (dump_file && (dump_flags & TDF_DETAILS))
243 fprintf (dump_file, " BB: %i, after_exit: %i\n", body[i]->index,
244 after_exit);
245
246 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi); gsi_next (&gsi))
247 {
248 gimple *stmt = gsi_stmt (gsi);
249 int num = estimate_num_insns (stmt, &eni_size_weights);
250 bool likely_eliminated = false;
251 bool likely_eliminated_last = false;
252 bool likely_eliminated_peeled = false;
253
254 if (dump_file && (dump_flags & TDF_DETAILS))
255 {
256 fprintf (dump_file, " size: %3i ", num);
257 print_gimple_stmt (dump_file, gsi_stmt (gsi), 0);
258 }
259
260 /* Look for reasons why we might optimize this stmt away. */
261
262 if (!gimple_has_side_effects (stmt))
263 {
264 /* Exit conditional. */
265 if (exit && body[i] == exit->src
266 && stmt == last_stmt (exit->src))
267 {
268 if (dump_file && (dump_flags & TDF_DETAILS))
269 fprintf (dump_file, " Exit condition will be eliminated "
270 "in peeled copies.\n");
271 likely_eliminated_peeled = true;
272 }
273 if (edge_to_cancel && body[i] == edge_to_cancel->src
274 && stmt == last_stmt (edge_to_cancel->src))
275 {
276 if (dump_file && (dump_flags & TDF_DETAILS))
277 fprintf (dump_file, " Exit condition will be eliminated "
278 "in last copy.\n");
279 likely_eliminated_last = true;
280 }
281 /* Sets of IV variables */
282 if (gimple_code (stmt) == GIMPLE_ASSIGN
283 && constant_after_peeling (gimple_assign_lhs (stmt), stmt, loop))
284 {
285 if (dump_file && (dump_flags & TDF_DETAILS))
286 fprintf (dump_file, " Induction variable computation will"
287 " be folded away.\n");
288 likely_eliminated = true;
289 }
290 /* Assignments of IV variables. */
291 else if (gimple_code (stmt) == GIMPLE_ASSIGN
292 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
293 && constant_after_peeling (gimple_assign_rhs1 (stmt),
294 stmt, loop)
295 && (gimple_assign_rhs_class (stmt) != GIMPLE_BINARY_RHS
296 || constant_after_peeling (gimple_assign_rhs2 (stmt),
297 stmt, loop)))
298 {
299 size->constant_iv = true;
300 if (dump_file && (dump_flags & TDF_DETAILS))
301 fprintf (dump_file,
302 " Constant expression will be folded away.\n");
303 likely_eliminated = true;
304 }
305 /* Conditionals. */
306 else if ((gimple_code (stmt) == GIMPLE_COND
307 && constant_after_peeling (gimple_cond_lhs (stmt), stmt,
308 loop)
309 && constant_after_peeling (gimple_cond_rhs (stmt), stmt,
310 loop)
311 /* We don't simplify all constant compares so make sure
312 they are not both constant already. See PR70288. */
313 && (! is_gimple_min_invariant (gimple_cond_lhs (stmt))
314 || ! is_gimple_min_invariant
315 (gimple_cond_rhs (stmt))))
316 || (gimple_code (stmt) == GIMPLE_SWITCH
317 && constant_after_peeling (gimple_switch_index (
318 as_a <gswitch *>
319 (stmt)),
320 stmt, loop)
321 && ! is_gimple_min_invariant
322 (gimple_switch_index
323 (as_a <gswitch *> (stmt)))))
324 {
325 if (dump_file && (dump_flags & TDF_DETAILS))
326 fprintf (dump_file, " Constant conditional.\n");
327 likely_eliminated = true;
328 }
329 }
330
331 size->overall += num;
332 if (likely_eliminated || likely_eliminated_peeled)
333 size->eliminated_by_peeling += num;
334 if (!after_exit)
335 {
336 size->last_iteration += num;
337 if (likely_eliminated || likely_eliminated_last)
338 size->last_iteration_eliminated_by_peeling += num;
339 }
340 if ((size->overall * 3 / 2 - size->eliminated_by_peeling
341 - size->last_iteration_eliminated_by_peeling) > upper_bound)
342 {
343 free (body);
344 path.release ();
345 return true;
346 }
347 }
348 }
349 while (path.length ())
350 {
351 basic_block bb = path.pop ();
352 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
353 {
354 gimple *stmt = gsi_stmt (gsi);
355 if (gimple_code (stmt) == GIMPLE_CALL
356 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt)))
357 {
358 int flags = gimple_call_flags (stmt);
359 if (flags & (ECF_PURE | ECF_CONST))
360 size->num_pure_calls_on_hot_path++;
361 else
362 size->num_non_pure_calls_on_hot_path++;
363 size->num_branches_on_hot_path ++;
364 }
365 /* Count inexpensive calls as non-calls, because they will likely
366 expand inline. */
367 else if (gimple_code (stmt) != GIMPLE_DEBUG)
368 size->non_call_stmts_on_hot_path++;
369 if (((gimple_code (stmt) == GIMPLE_COND
370 && (!constant_after_peeling (gimple_cond_lhs (stmt), stmt, loop)
371 || !constant_after_peeling (gimple_cond_rhs (stmt), stmt,
372 loop)))
373 || (gimple_code (stmt) == GIMPLE_SWITCH
374 && !constant_after_peeling (gimple_switch_index (
375 as_a <gswitch *> (stmt)),
376 stmt, loop)))
377 && (!exit || bb != exit->src))
378 size->num_branches_on_hot_path++;
379 }
380 }
381 path.release ();
382 if (dump_file && (dump_flags & TDF_DETAILS))
383 fprintf (dump_file, "size: %i-%i, last_iteration: %i-%i\n", size->overall,
384 size->eliminated_by_peeling, size->last_iteration,
385 size->last_iteration_eliminated_by_peeling);
386
387 free (body);
388 return false;
389 }
390
391 /* Estimate number of insns of completely unrolled loop.
392 It is (NUNROLL + 1) * size of loop body with taking into account
393 the fact that in last copy everything after exit conditional
394 is dead and that some instructions will be eliminated after
395 peeling.
396
397 Loop body is likely going to simplify further, this is difficult
398 to guess, we just decrease the result by 1/3. */
399
400 static unsigned HOST_WIDE_INT
401 estimated_unrolled_size (struct loop_size *size,
402 unsigned HOST_WIDE_INT nunroll)
403 {
404 HOST_WIDE_INT unr_insns = ((nunroll)
405 * (HOST_WIDE_INT) (size->overall
406 - size->eliminated_by_peeling));
407 if (!nunroll)
408 unr_insns = 0;
409 unr_insns += size->last_iteration - size->last_iteration_eliminated_by_peeling;
410
411 unr_insns = unr_insns * 2 / 3;
412 if (unr_insns <= 0)
413 unr_insns = 1;
414
415 return unr_insns;
416 }
417
418 /* Loop LOOP is known to not loop. See if there is an edge in the loop
419 body that can be remove to make the loop to always exit and at
420 the same time it does not make any code potentially executed
421 during the last iteration dead.
422
423 After complete unrolling we still may get rid of the conditional
424 on the exit in the last copy even if we have no idea what it does.
425 This is quite common case for loops of form
426
427 int a[5];
428 for (i=0;i<b;i++)
429 a[i]=0;
430
431 Here we prove the loop to iterate 5 times but we do not know
432 it from induction variable.
433
434 For now we handle only simple case where there is exit condition
435 just before the latch block and the latch block contains no statements
436 with side effect that may otherwise terminate the execution of loop
437 (such as by EH or by terminating the program or longjmp).
438
439 In the general case we may want to cancel the paths leading to statements
440 loop-niter identified as having undefined effect in the last iteration.
441 The other cases are hopefully rare and will be cleaned up later. */
442
443 static edge
444 loop_edge_to_cancel (class loop *loop)
445 {
446 vec<edge> exits;
447 unsigned i;
448 edge edge_to_cancel;
449 gimple_stmt_iterator gsi;
450
451 /* We want only one predecestor of the loop. */
452 if (EDGE_COUNT (loop->latch->preds) > 1)
453 return NULL;
454
455 exits = get_loop_exit_edges (loop);
456
457 FOR_EACH_VEC_ELT (exits, i, edge_to_cancel)
458 {
459 /* Find the other edge than the loop exit
460 leaving the conditoinal. */
461 if (EDGE_COUNT (edge_to_cancel->src->succs) != 2)
462 continue;
463 if (EDGE_SUCC (edge_to_cancel->src, 0) == edge_to_cancel)
464 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 1);
465 else
466 edge_to_cancel = EDGE_SUCC (edge_to_cancel->src, 0);
467
468 /* We only can handle conditionals. */
469 if (!(edge_to_cancel->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
470 continue;
471
472 /* We should never have conditionals in the loop latch. */
473 gcc_assert (edge_to_cancel->dest != loop->header);
474
475 /* Check that it leads to loop latch. */
476 if (edge_to_cancel->dest != loop->latch)
477 continue;
478
479 exits.release ();
480
481 /* Verify that the code in loop latch does nothing that may end program
482 execution without really reaching the exit. This may include
483 non-pure/const function calls, EH statements, volatile ASMs etc. */
484 for (gsi = gsi_start_bb (loop->latch); !gsi_end_p (gsi); gsi_next (&gsi))
485 if (gimple_has_side_effects (gsi_stmt (gsi)))
486 return NULL;
487 return edge_to_cancel;
488 }
489 exits.release ();
490 return NULL;
491 }
492
493 /* Remove all tests for exits that are known to be taken after LOOP was
494 peeled NPEELED times. Put gcc_unreachable before every statement
495 known to not be executed. */
496
497 static bool
498 remove_exits_and_undefined_stmts (class loop *loop, unsigned int npeeled)
499 {
500 class nb_iter_bound *elt;
501 bool changed = false;
502
503 for (elt = loop->bounds; elt; elt = elt->next)
504 {
505 /* If statement is known to be undefined after peeling, turn it
506 into unreachable (or trap when debugging experience is supposed
507 to be good). */
508 if (!elt->is_exit
509 && wi::ltu_p (elt->bound, npeeled))
510 {
511 gimple_stmt_iterator gsi = gsi_for_stmt (elt->stmt);
512 gcall *stmt = gimple_build_call
513 (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
514 gimple_set_location (stmt, gimple_location (elt->stmt));
515 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
516 split_block (gimple_bb (stmt), stmt);
517 changed = true;
518 if (dump_file && (dump_flags & TDF_DETAILS))
519 {
520 fprintf (dump_file, "Forced statement unreachable: ");
521 print_gimple_stmt (dump_file, elt->stmt, 0);
522 }
523 }
524 /* If we know the exit will be taken after peeling, update. */
525 else if (elt->is_exit
526 && wi::leu_p (elt->bound, npeeled))
527 {
528 basic_block bb = gimple_bb (elt->stmt);
529 edge exit_edge = EDGE_SUCC (bb, 0);
530
531 if (dump_file && (dump_flags & TDF_DETAILS))
532 {
533 fprintf (dump_file, "Forced exit to be taken: ");
534 print_gimple_stmt (dump_file, elt->stmt, 0);
535 }
536 if (!loop_exit_edge_p (loop, exit_edge))
537 exit_edge = EDGE_SUCC (bb, 1);
538 exit_edge->probability = profile_probability::always ();
539 gcc_checking_assert (loop_exit_edge_p (loop, exit_edge));
540 gcond *cond_stmt = as_a <gcond *> (elt->stmt);
541 if (exit_edge->flags & EDGE_TRUE_VALUE)
542 gimple_cond_make_true (cond_stmt);
543 else
544 gimple_cond_make_false (cond_stmt);
545 update_stmt (cond_stmt);
546 changed = true;
547 }
548 }
549 return changed;
550 }
551
552 /* Remove all exits that are known to be never taken because of the loop bound
553 discovered. */
554
555 static bool
556 remove_redundant_iv_tests (class loop *loop)
557 {
558 class nb_iter_bound *elt;
559 bool changed = false;
560
561 if (!loop->any_upper_bound)
562 return false;
563 for (elt = loop->bounds; elt; elt = elt->next)
564 {
565 /* Exit is pointless if it won't be taken before loop reaches
566 upper bound. */
567 if (elt->is_exit && loop->any_upper_bound
568 && wi::ltu_p (loop->nb_iterations_upper_bound, elt->bound))
569 {
570 basic_block bb = gimple_bb (elt->stmt);
571 edge exit_edge = EDGE_SUCC (bb, 0);
572 class tree_niter_desc niter;
573
574 if (!loop_exit_edge_p (loop, exit_edge))
575 exit_edge = EDGE_SUCC (bb, 1);
576
577 /* Only when we know the actual number of iterations, not
578 just a bound, we can remove the exit. */
579 if (!number_of_iterations_exit (loop, exit_edge,
580 &niter, false, false)
581 || !integer_onep (niter.assumptions)
582 || !integer_zerop (niter.may_be_zero)
583 || !niter.niter
584 || TREE_CODE (niter.niter) != INTEGER_CST
585 || !wi::ltu_p (loop->nb_iterations_upper_bound,
586 wi::to_widest (niter.niter)))
587 continue;
588
589 if (dump_file && (dump_flags & TDF_DETAILS))
590 {
591 fprintf (dump_file, "Removed pointless exit: ");
592 print_gimple_stmt (dump_file, elt->stmt, 0);
593 }
594 gcond *cond_stmt = as_a <gcond *> (elt->stmt);
595 if (exit_edge->flags & EDGE_TRUE_VALUE)
596 gimple_cond_make_false (cond_stmt);
597 else
598 gimple_cond_make_true (cond_stmt);
599 update_stmt (cond_stmt);
600 changed = true;
601 }
602 }
603 return changed;
604 }
605
606 /* Stores loops that will be unlooped and edges that will be removed
607 after we process whole loop tree. */
608 static vec<loop_p> loops_to_unloop;
609 static vec<int> loops_to_unloop_nunroll;
610 static vec<edge> edges_to_remove;
611 /* Stores loops that has been peeled. */
612 static bitmap peeled_loops;
613
614 /* Cancel all fully unrolled loops by putting __builtin_unreachable
615 on the latch edge.
616 We do it after all unrolling since unlooping moves basic blocks
617 across loop boundaries trashing loop closed SSA form as well
618 as SCEV info needed to be intact during unrolling.
619
620 IRRED_INVALIDATED is used to bookkeep if information about
621 irreducible regions may become invalid as a result
622 of the transformation.
623 LOOP_CLOSED_SSA_INVALIDATED is used to bookkepp the case
624 when we need to go into loop closed SSA form. */
625
626 static void
627 unloop_loops (bitmap loop_closed_ssa_invalidated,
628 bool *irred_invalidated)
629 {
630 while (loops_to_unloop.length ())
631 {
632 class loop *loop = loops_to_unloop.pop ();
633 int n_unroll = loops_to_unloop_nunroll.pop ();
634 basic_block latch = loop->latch;
635 edge latch_edge = loop_latch_edge (loop);
636 int flags = latch_edge->flags;
637 location_t locus = latch_edge->goto_locus;
638 gcall *stmt;
639 gimple_stmt_iterator gsi;
640
641 remove_exits_and_undefined_stmts (loop, n_unroll);
642
643 /* Unloop destroys the latch edge. */
644 unloop (loop, irred_invalidated, loop_closed_ssa_invalidated);
645
646 /* Create new basic block for the latch edge destination and wire
647 it in. */
648 stmt = gimple_build_call (builtin_decl_implicit (BUILT_IN_UNREACHABLE), 0);
649 latch_edge = make_edge (latch, create_basic_block (NULL, NULL, latch), flags);
650 latch_edge->probability = profile_probability::never ();
651 latch_edge->flags |= flags;
652 latch_edge->goto_locus = locus;
653
654 add_bb_to_loop (latch_edge->dest, current_loops->tree_root);
655 latch_edge->dest->count = profile_count::zero ();
656 set_immediate_dominator (CDI_DOMINATORS, latch_edge->dest, latch_edge->src);
657
658 gsi = gsi_start_bb (latch_edge->dest);
659 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
660 }
661 loops_to_unloop.release ();
662 loops_to_unloop_nunroll.release ();
663
664 /* Remove edges in peeled copies. Given remove_path removes dominated
665 regions we need to cope with removal of already removed paths. */
666 unsigned i;
667 edge e;
668 auto_vec<int, 20> src_bbs;
669 src_bbs.reserve_exact (edges_to_remove.length ());
670 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
671 src_bbs.quick_push (e->src->index);
672 FOR_EACH_VEC_ELT (edges_to_remove, i, e)
673 if (BASIC_BLOCK_FOR_FN (cfun, src_bbs[i]))
674 {
675 bool ok = remove_path (e, irred_invalidated,
676 loop_closed_ssa_invalidated);
677 gcc_assert (ok);
678 }
679 edges_to_remove.release ();
680 }
681
682 /* Tries to unroll LOOP completely, i.e. NITER times.
683 UL determines which loops we are allowed to unroll.
684 EXIT is the exit of the loop that should be eliminated.
685 MAXITER specfy bound on number of iterations, -1 if it is
686 not known or too large for HOST_WIDE_INT. The location
687 LOCUS corresponding to the loop is used when emitting
688 a summary of the unroll to the dump file. */
689
690 static bool
691 try_unroll_loop_completely (class loop *loop,
692 edge exit, tree niter, bool may_be_zero,
693 enum unroll_level ul,
694 HOST_WIDE_INT maxiter,
695 dump_user_location_t locus, bool allow_peel)
696 {
697 unsigned HOST_WIDE_INT n_unroll = 0;
698 bool n_unroll_found = false;
699 edge edge_to_cancel = NULL;
700
701 /* See if we proved number of iterations to be low constant.
702
703 EXIT is an edge that will be removed in all but last iteration of
704 the loop.
705
706 EDGE_TO_CACNEL is an edge that will be removed from the last iteration
707 of the unrolled sequence and is expected to make the final loop not
708 rolling.
709
710 If the number of execution of loop is determined by standard induction
711 variable test, then EXIT and EDGE_TO_CANCEL are the two edges leaving
712 from the iv test. */
713 if (tree_fits_uhwi_p (niter))
714 {
715 n_unroll = tree_to_uhwi (niter);
716 n_unroll_found = true;
717 edge_to_cancel = EDGE_SUCC (exit->src, 0);
718 if (edge_to_cancel == exit)
719 edge_to_cancel = EDGE_SUCC (exit->src, 1);
720 }
721 /* We do not know the number of iterations and thus we cannot eliminate
722 the EXIT edge. */
723 else
724 exit = NULL;
725
726 /* See if we can improve our estimate by using recorded loop bounds. */
727 if ((allow_peel || maxiter == 0 || ul == UL_NO_GROWTH)
728 && maxiter >= 0
729 && (!n_unroll_found || (unsigned HOST_WIDE_INT)maxiter < n_unroll))
730 {
731 n_unroll = maxiter;
732 n_unroll_found = true;
733 /* Loop terminates before the IV variable test, so we cannot
734 remove it in the last iteration. */
735 edge_to_cancel = NULL;
736 }
737
738 if (!n_unroll_found)
739 return false;
740
741 if (!loop->unroll
742 && n_unroll > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEEL_TIMES))
743 {
744 if (dump_file && (dump_flags & TDF_DETAILS))
745 fprintf (dump_file, "Not unrolling loop %d "
746 "(--param max-completely-peel-times limit reached).\n",
747 loop->num);
748 return false;
749 }
750
751 if (!edge_to_cancel)
752 edge_to_cancel = loop_edge_to_cancel (loop);
753
754 if (n_unroll)
755 {
756 if (ul == UL_SINGLE_ITER)
757 return false;
758
759 if (loop->unroll)
760 {
761 /* If the unrolling factor is too large, bail out. */
762 if (n_unroll > (unsigned)loop->unroll)
763 {
764 if (dump_file && (dump_flags & TDF_DETAILS))
765 fprintf (dump_file,
766 "Not unrolling loop %d: "
767 "user didn't want it unrolled completely.\n",
768 loop->num);
769 return false;
770 }
771 }
772 else
773 {
774 struct loop_size size;
775 /* EXIT can be removed only if we are sure it passes first N_UNROLL
776 iterations. */
777 bool remove_exit = (exit && niter
778 && TREE_CODE (niter) == INTEGER_CST
779 && wi::leu_p (n_unroll, wi::to_widest (niter)));
780 bool large
781 = tree_estimate_loop_size
782 (loop, remove_exit ? exit : NULL, edge_to_cancel, &size,
783 PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS));
784 if (large)
785 {
786 if (dump_file && (dump_flags & TDF_DETAILS))
787 fprintf (dump_file, "Not unrolling loop %d: it is too large.\n",
788 loop->num);
789 return false;
790 }
791
792 unsigned HOST_WIDE_INT ninsns = size.overall;
793 unsigned HOST_WIDE_INT unr_insns
794 = estimated_unrolled_size (&size, n_unroll);
795 if (dump_file && (dump_flags & TDF_DETAILS))
796 {
797 fprintf (dump_file, " Loop size: %d\n", (int) ninsns);
798 fprintf (dump_file, " Estimated size after unrolling: %d\n",
799 (int) unr_insns);
800 }
801
802 /* If the code is going to shrink, we don't need to be extra
803 cautious on guessing if the unrolling is going to be
804 profitable. */
805 if (unr_insns
806 /* If there is IV variable that will become constant, we
807 save one instruction in the loop prologue we do not
808 account otherwise. */
809 <= ninsns + (size.constant_iv != false))
810 ;
811 /* We unroll only inner loops, because we do not consider it
812 profitable otheriwse. We still can cancel loopback edge
813 of not rolling loop; this is always a good idea. */
814 else if (ul == UL_NO_GROWTH)
815 {
816 if (dump_file && (dump_flags & TDF_DETAILS))
817 fprintf (dump_file, "Not unrolling loop %d: size would grow.\n",
818 loop->num);
819 return false;
820 }
821 /* Outer loops tend to be less interesting candidates for
822 complete unrolling unless we can do a lot of propagation
823 into the inner loop body. For now we disable outer loop
824 unrolling when the code would grow. */
825 else if (loop->inner)
826 {
827 if (dump_file && (dump_flags & TDF_DETAILS))
828 fprintf (dump_file, "Not unrolling loop %d: "
829 "it is not innermost and code would grow.\n",
830 loop->num);
831 return false;
832 }
833 /* If there is call on a hot path through the loop, then
834 there is most probably not much to optimize. */
835 else if (size.num_non_pure_calls_on_hot_path)
836 {
837 if (dump_file && (dump_flags & TDF_DETAILS))
838 fprintf (dump_file, "Not unrolling loop %d: "
839 "contains call and code would grow.\n",
840 loop->num);
841 return false;
842 }
843 /* If there is pure/const call in the function, then we can
844 still optimize the unrolled loop body if it contains some
845 other interesting code than the calls and code storing or
846 cumulating the return value. */
847 else if (size.num_pure_calls_on_hot_path
848 /* One IV increment, one test, one ivtmp store and
849 one useful stmt. That is about minimal loop
850 doing pure call. */
851 && (size.non_call_stmts_on_hot_path
852 <= 3 + size.num_pure_calls_on_hot_path))
853 {
854 if (dump_file && (dump_flags & TDF_DETAILS))
855 fprintf (dump_file, "Not unrolling loop %d: "
856 "contains just pure calls and code would grow.\n",
857 loop->num);
858 return false;
859 }
860 /* Complete unrolling is major win when control flow is
861 removed and one big basic block is created. If the loop
862 contains control flow the optimization may still be a win
863 because of eliminating the loop overhead but it also may
864 blow the branch predictor tables. Limit number of
865 branches on the hot path through the peeled sequence. */
866 else if (size.num_branches_on_hot_path * (int)n_unroll
867 > PARAM_VALUE (PARAM_MAX_PEEL_BRANCHES))
868 {
869 if (dump_file && (dump_flags & TDF_DETAILS))
870 fprintf (dump_file, "Not unrolling loop %d: "
871 "number of branches on hot path in the unrolled "
872 "sequence reaches --param max-peel-branches limit.\n",
873 loop->num);
874 return false;
875 }
876 else if (unr_insns
877 > (unsigned) PARAM_VALUE (PARAM_MAX_COMPLETELY_PEELED_INSNS))
878 {
879 if (dump_file && (dump_flags & TDF_DETAILS))
880 fprintf (dump_file, "Not unrolling loop %d: "
881 "number of insns in the unrolled sequence reaches "
882 "--param max-completely-peeled-insns limit.\n",
883 loop->num);
884 return false;
885 }
886 }
887
888 initialize_original_copy_tables ();
889 auto_sbitmap wont_exit (n_unroll + 1);
890 if (exit && niter
891 && TREE_CODE (niter) == INTEGER_CST
892 && wi::leu_p (n_unroll, wi::to_widest (niter)))
893 {
894 bitmap_ones (wont_exit);
895 if (wi::eq_p (wi::to_widest (niter), n_unroll)
896 || edge_to_cancel)
897 bitmap_clear_bit (wont_exit, 0);
898 }
899 else
900 {
901 exit = NULL;
902 bitmap_clear (wont_exit);
903 }
904 if (may_be_zero)
905 bitmap_clear_bit (wont_exit, 1);
906
907 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
908 n_unroll, wont_exit,
909 exit, &edges_to_remove,
910 DLTHE_FLAG_UPDATE_FREQ
911 | DLTHE_FLAG_COMPLETTE_PEEL))
912 {
913 free_original_copy_tables ();
914 if (dump_file && (dump_flags & TDF_DETAILS))
915 fprintf (dump_file, "Failed to duplicate the loop\n");
916 return false;
917 }
918
919 free_original_copy_tables ();
920 }
921
922 /* Remove the conditional from the last copy of the loop. */
923 if (edge_to_cancel)
924 {
925 gcond *cond = as_a <gcond *> (last_stmt (edge_to_cancel->src));
926 force_edge_cold (edge_to_cancel, true);
927 if (edge_to_cancel->flags & EDGE_TRUE_VALUE)
928 gimple_cond_make_false (cond);
929 else
930 gimple_cond_make_true (cond);
931 update_stmt (cond);
932 /* Do not remove the path, as doing so may remove outer loop and
933 confuse bookkeeping code in tree_unroll_loops_completely. */
934 }
935
936 /* Store the loop for later unlooping and exit removal. */
937 loops_to_unloop.safe_push (loop);
938 loops_to_unloop_nunroll.safe_push (n_unroll);
939
940 if (dump_enabled_p ())
941 {
942 if (!n_unroll)
943 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
944 "loop turned into non-loop; it never loops\n");
945 else
946 {
947 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, locus,
948 "loop with %d iterations completely unrolled",
949 (int) n_unroll);
950 if (loop->header->count.initialized_p ())
951 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS,
952 " (header execution count %d)",
953 (int)loop->header->count.to_gcov_type ());
954 dump_printf (MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS, "\n");
955 }
956 }
957
958 if (dump_file && (dump_flags & TDF_DETAILS))
959 {
960 if (exit)
961 fprintf (dump_file, "Exit condition of peeled iterations was "
962 "eliminated.\n");
963 if (edge_to_cancel)
964 fprintf (dump_file, "Last iteration exit edge was proved true.\n");
965 else
966 fprintf (dump_file, "Latch of last iteration was marked by "
967 "__builtin_unreachable ().\n");
968 }
969
970 return true;
971 }
972
973 /* Return number of instructions after peeling. */
974 static unsigned HOST_WIDE_INT
975 estimated_peeled_sequence_size (struct loop_size *size,
976 unsigned HOST_WIDE_INT npeel)
977 {
978 return MAX (npeel * (HOST_WIDE_INT) (size->overall
979 - size->eliminated_by_peeling), 1);
980 }
981
982 /* If the loop is expected to iterate N times and is
983 small enough, duplicate the loop body N+1 times before
984 the loop itself. This way the hot path will never
985 enter the loop.
986 Parameters are the same as for try_unroll_loops_completely */
987
988 static bool
989 try_peel_loop (class loop *loop,
990 edge exit, tree niter, bool may_be_zero,
991 HOST_WIDE_INT maxiter)
992 {
993 HOST_WIDE_INT npeel;
994 struct loop_size size;
995 int peeled_size;
996
997 if (!flag_peel_loops
998 || PARAM_VALUE (PARAM_MAX_PEEL_TIMES) <= 0
999 || !peeled_loops)
1000 return false;
1001
1002 if (bitmap_bit_p (peeled_loops, loop->num))
1003 {
1004 if (dump_file)
1005 fprintf (dump_file, "Not peeling: loop is already peeled\n");
1006 return false;
1007 }
1008
1009 /* We don't peel loops that will be unrolled as this can duplicate a
1010 loop more times than the user requested. */
1011 if (loop->unroll)
1012 {
1013 if (dump_file)
1014 fprintf (dump_file, "Not peeling: user didn't want it peeled.\n");
1015 return false;
1016 }
1017
1018 /* Peel only innermost loops.
1019 While the code is perfectly capable of peeling non-innermost loops,
1020 the heuristics would probably need some improvements. */
1021 if (loop->inner)
1022 {
1023 if (dump_file)
1024 fprintf (dump_file, "Not peeling: outer loop\n");
1025 return false;
1026 }
1027
1028 if (!optimize_loop_for_speed_p (loop))
1029 {
1030 if (dump_file)
1031 fprintf (dump_file, "Not peeling: cold loop\n");
1032 return false;
1033 }
1034
1035 /* Check if there is an estimate on the number of iterations. */
1036 npeel = estimated_loop_iterations_int (loop);
1037 if (npeel < 0)
1038 npeel = likely_max_loop_iterations_int (loop);
1039 if (npeel < 0)
1040 {
1041 if (dump_file)
1042 fprintf (dump_file, "Not peeling: number of iterations is not "
1043 "estimated\n");
1044 return false;
1045 }
1046 if (maxiter >= 0 && maxiter <= npeel)
1047 {
1048 if (dump_file)
1049 fprintf (dump_file, "Not peeling: upper bound is known so can "
1050 "unroll completely\n");
1051 return false;
1052 }
1053
1054 /* We want to peel estimated number of iterations + 1 (so we never
1055 enter the loop on quick path). Check against PARAM_MAX_PEEL_TIMES
1056 and be sure to avoid overflows. */
1057 if (npeel > PARAM_VALUE (PARAM_MAX_PEEL_TIMES) - 1)
1058 {
1059 if (dump_file)
1060 fprintf (dump_file, "Not peeling: rolls too much "
1061 "(%i + 1 > --param max-peel-times)\n", (int) npeel);
1062 return false;
1063 }
1064 npeel++;
1065
1066 /* Check peeled loops size. */
1067 tree_estimate_loop_size (loop, exit, NULL, &size,
1068 PARAM_VALUE (PARAM_MAX_PEELED_INSNS));
1069 if ((peeled_size = estimated_peeled_sequence_size (&size, (int) npeel))
1070 > PARAM_VALUE (PARAM_MAX_PEELED_INSNS))
1071 {
1072 if (dump_file)
1073 fprintf (dump_file, "Not peeling: peeled sequence size is too large "
1074 "(%i insns > --param max-peel-insns)", peeled_size);
1075 return false;
1076 }
1077
1078 /* Duplicate possibly eliminating the exits. */
1079 initialize_original_copy_tables ();
1080 auto_sbitmap wont_exit (npeel + 1);
1081 if (exit && niter
1082 && TREE_CODE (niter) == INTEGER_CST
1083 && wi::leu_p (npeel, wi::to_widest (niter)))
1084 {
1085 bitmap_ones (wont_exit);
1086 bitmap_clear_bit (wont_exit, 0);
1087 }
1088 else
1089 {
1090 exit = NULL;
1091 bitmap_clear (wont_exit);
1092 }
1093 if (may_be_zero)
1094 bitmap_clear_bit (wont_exit, 1);
1095 if (!gimple_duplicate_loop_to_header_edge (loop, loop_preheader_edge (loop),
1096 npeel, wont_exit,
1097 exit, &edges_to_remove,
1098 DLTHE_FLAG_UPDATE_FREQ))
1099 {
1100 free_original_copy_tables ();
1101 return false;
1102 }
1103 free_original_copy_tables ();
1104 if (dump_file && (dump_flags & TDF_DETAILS))
1105 {
1106 fprintf (dump_file, "Peeled loop %d, %i times.\n",
1107 loop->num, (int) npeel);
1108 }
1109 if (loop->any_estimate)
1110 {
1111 if (wi::ltu_p (npeel, loop->nb_iterations_estimate))
1112 loop->nb_iterations_estimate -= npeel;
1113 else
1114 loop->nb_iterations_estimate = 0;
1115 }
1116 if (loop->any_upper_bound)
1117 {
1118 if (wi::ltu_p (npeel, loop->nb_iterations_upper_bound))
1119 loop->nb_iterations_upper_bound -= npeel;
1120 else
1121 loop->nb_iterations_upper_bound = 0;
1122 }
1123 if (loop->any_likely_upper_bound)
1124 {
1125 if (wi::ltu_p (npeel, loop->nb_iterations_likely_upper_bound))
1126 loop->nb_iterations_likely_upper_bound -= npeel;
1127 else
1128 {
1129 loop->any_estimate = true;
1130 loop->nb_iterations_estimate = 0;
1131 loop->nb_iterations_likely_upper_bound = 0;
1132 }
1133 }
1134 profile_count entry_count = profile_count::zero ();
1135
1136 edge e;
1137 edge_iterator ei;
1138 FOR_EACH_EDGE (e, ei, loop->header->preds)
1139 if (e->src != loop->latch)
1140 {
1141 if (e->src->count.initialized_p ())
1142 entry_count += e->src->count;
1143 gcc_assert (!flow_bb_inside_loop_p (loop, e->src));
1144 }
1145 profile_probability p;
1146 p = entry_count.probability_in (loop->header->count);
1147 scale_loop_profile (loop, p, 0);
1148 bitmap_set_bit (peeled_loops, loop->num);
1149 return true;
1150 }
1151 /* Adds a canonical induction variable to LOOP if suitable.
1152 CREATE_IV is true if we may create a new iv. UL determines
1153 which loops we are allowed to completely unroll. If TRY_EVAL is true, we try
1154 to determine the number of iterations of a loop by direct evaluation.
1155 Returns true if cfg is changed. */
1156
1157 static bool
1158 canonicalize_loop_induction_variables (class loop *loop,
1159 bool create_iv, enum unroll_level ul,
1160 bool try_eval, bool allow_peel)
1161 {
1162 edge exit = NULL;
1163 tree niter;
1164 HOST_WIDE_INT maxiter;
1165 bool modified = false;
1166 dump_user_location_t locus;
1167 class tree_niter_desc niter_desc;
1168 bool may_be_zero = false;
1169
1170 /* For unrolling allow conditional constant or zero iterations, thus
1171 perform loop-header copying on-the-fly. */
1172 exit = single_exit (loop);
1173 niter = chrec_dont_know;
1174 if (exit && number_of_iterations_exit (loop, exit, &niter_desc, false))
1175 {
1176 niter = niter_desc.niter;
1177 may_be_zero
1178 = niter_desc.may_be_zero && !integer_zerop (niter_desc.may_be_zero);
1179 }
1180 if (TREE_CODE (niter) == INTEGER_CST)
1181 locus = last_stmt (exit->src);
1182 else
1183 {
1184 /* For non-constant niter fold may_be_zero into niter again. */
1185 if (may_be_zero)
1186 {
1187 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1188 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter),
1189 niter_desc.may_be_zero,
1190 build_int_cst (TREE_TYPE (niter), 0), niter);
1191 else
1192 niter = chrec_dont_know;
1193 may_be_zero = false;
1194 }
1195
1196 /* If the loop has more than one exit, try checking all of them
1197 for # of iterations determinable through scev. */
1198 if (!exit)
1199 niter = find_loop_niter (loop, &exit);
1200
1201 /* Finally if everything else fails, try brute force evaluation. */
1202 if (try_eval
1203 && (chrec_contains_undetermined (niter)
1204 || TREE_CODE (niter) != INTEGER_CST))
1205 niter = find_loop_niter_by_eval (loop, &exit);
1206
1207 if (exit)
1208 locus = last_stmt (exit->src);
1209
1210 if (TREE_CODE (niter) != INTEGER_CST)
1211 exit = NULL;
1212 }
1213
1214 /* We work exceptionally hard here to estimate the bound
1215 by find_loop_niter_by_eval. Be sure to keep it for future. */
1216 if (niter && TREE_CODE (niter) == INTEGER_CST)
1217 {
1218 record_niter_bound (loop, wi::to_widest (niter),
1219 exit == single_likely_exit (loop), true);
1220 }
1221
1222 /* Force re-computation of loop bounds so we can remove redundant exits. */
1223 maxiter = max_loop_iterations_int (loop);
1224
1225 if (dump_file && (dump_flags & TDF_DETAILS)
1226 && TREE_CODE (niter) == INTEGER_CST)
1227 {
1228 fprintf (dump_file, "Loop %d iterates ", loop->num);
1229 print_generic_expr (dump_file, niter, TDF_SLIM);
1230 fprintf (dump_file, " times.\n");
1231 }
1232 if (dump_file && (dump_flags & TDF_DETAILS)
1233 && maxiter >= 0)
1234 {
1235 fprintf (dump_file, "Loop %d iterates at most %i times.\n", loop->num,
1236 (int)maxiter);
1237 }
1238 if (dump_file && (dump_flags & TDF_DETAILS)
1239 && likely_max_loop_iterations_int (loop) >= 0)
1240 {
1241 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1242 loop->num, (int)likely_max_loop_iterations_int (loop));
1243 }
1244
1245 /* Remove exits that are known to be never taken based on loop bound.
1246 Needs to be called after compilation of max_loop_iterations_int that
1247 populates the loop bounds. */
1248 modified |= remove_redundant_iv_tests (loop);
1249
1250 if (try_unroll_loop_completely (loop, exit, niter, may_be_zero, ul,
1251 maxiter, locus, allow_peel))
1252 return true;
1253
1254 if (create_iv
1255 && niter && !chrec_contains_undetermined (niter)
1256 && exit && just_once_each_iteration_p (loop, exit->src))
1257 {
1258 tree iv_niter = niter;
1259 if (may_be_zero)
1260 {
1261 if (COMPARISON_CLASS_P (niter_desc.may_be_zero))
1262 iv_niter = fold_build3 (COND_EXPR, TREE_TYPE (iv_niter),
1263 niter_desc.may_be_zero,
1264 build_int_cst (TREE_TYPE (iv_niter), 0),
1265 iv_niter);
1266 else
1267 iv_niter = NULL_TREE;
1268 }
1269 if (iv_niter)
1270 create_canonical_iv (loop, exit, iv_niter);
1271 }
1272
1273 if (ul == UL_ALL)
1274 modified |= try_peel_loop (loop, exit, niter, may_be_zero, maxiter);
1275
1276 return modified;
1277 }
1278
1279 /* The main entry point of the pass. Adds canonical induction variables
1280 to the suitable loops. */
1281
1282 unsigned int
1283 canonicalize_induction_variables (void)
1284 {
1285 class loop *loop;
1286 bool changed = false;
1287 bool irred_invalidated = false;
1288 bitmap loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1289
1290 estimate_numbers_of_iterations (cfun);
1291
1292 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1293 {
1294 changed |= canonicalize_loop_induction_variables (loop,
1295 true, UL_SINGLE_ITER,
1296 true, false);
1297 }
1298 gcc_assert (!need_ssa_update_p (cfun));
1299
1300 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1301 if (irred_invalidated
1302 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1303 mark_irreducible_loops ();
1304
1305 /* Clean up the information about numbers of iterations, since brute force
1306 evaluation could reveal new information. */
1307 free_numbers_of_iterations_estimates (cfun);
1308 scev_reset ();
1309
1310 if (!bitmap_empty_p (loop_closed_ssa_invalidated))
1311 {
1312 gcc_checking_assert (loops_state_satisfies_p (LOOP_CLOSED_SSA));
1313 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1314 }
1315 BITMAP_FREE (loop_closed_ssa_invalidated);
1316
1317 if (changed)
1318 return TODO_cleanup_cfg;
1319 return 0;
1320 }
1321
1322 /* Process loops from innermost to outer, stopping at the innermost
1323 loop we unrolled. */
1324
1325 static bool
1326 tree_unroll_loops_completely_1 (bool may_increase_size, bool unroll_outer,
1327 bitmap father_bbs, class loop *loop)
1328 {
1329 class loop *loop_father;
1330 bool changed = false;
1331 class loop *inner;
1332 enum unroll_level ul;
1333 unsigned num = number_of_loops (cfun);
1334
1335 /* Process inner loops first. Don't walk loops added by the recursive
1336 calls because SSA form is not up-to-date. They can be handled in the
1337 next iteration. */
1338 bitmap child_father_bbs = NULL;
1339 for (inner = loop->inner; inner != NULL; inner = inner->next)
1340 if ((unsigned) inner->num < num)
1341 {
1342 if (!child_father_bbs)
1343 child_father_bbs = BITMAP_ALLOC (NULL);
1344 if (tree_unroll_loops_completely_1 (may_increase_size, unroll_outer,
1345 child_father_bbs, inner))
1346 {
1347 bitmap_ior_into (father_bbs, child_father_bbs);
1348 bitmap_clear (child_father_bbs);
1349 changed = true;
1350 }
1351 }
1352 if (child_father_bbs)
1353 BITMAP_FREE (child_father_bbs);
1354
1355 /* If we changed an inner loop we cannot process outer loops in this
1356 iteration because SSA form is not up-to-date. Continue with
1357 siblings of outer loops instead. */
1358 if (changed)
1359 {
1360 /* If we are recorded as father clear all other fathers that
1361 are necessarily covered already to avoid redundant work. */
1362 if (bitmap_bit_p (father_bbs, loop->header->index))
1363 {
1364 bitmap_clear (father_bbs);
1365 bitmap_set_bit (father_bbs, loop->header->index);
1366 }
1367 return true;
1368 }
1369
1370 /* Don't unroll #pragma omp simd loops until the vectorizer
1371 attempts to vectorize those. */
1372 if (loop->force_vectorize)
1373 return false;
1374
1375 /* Try to unroll this loop. */
1376 loop_father = loop_outer (loop);
1377 if (!loop_father)
1378 return false;
1379
1380 if (loop->unroll > 1)
1381 ul = UL_ALL;
1382 else if (may_increase_size && optimize_loop_nest_for_speed_p (loop)
1383 /* Unroll outermost loops only if asked to do so or they do
1384 not cause code growth. */
1385 && (unroll_outer || loop_outer (loop_father)))
1386 ul = UL_ALL;
1387 else
1388 ul = UL_NO_GROWTH;
1389
1390 if (canonicalize_loop_induction_variables
1391 (loop, false, ul, !flag_tree_loop_ivcanon, unroll_outer))
1392 {
1393 /* If we'll continue unrolling, we need to propagate constants
1394 within the new basic blocks to fold away induction variable
1395 computations; otherwise, the size might blow up before the
1396 iteration is complete and the IR eventually cleaned up. */
1397 if (loop_outer (loop_father))
1398 {
1399 /* Once we process our father we will have processed
1400 the fathers of our children as well, so avoid doing
1401 redundant work and clear fathers we've gathered sofar. */
1402 bitmap_clear (father_bbs);
1403 bitmap_set_bit (father_bbs, loop_father->header->index);
1404 }
1405
1406 return true;
1407 }
1408
1409 return false;
1410 }
1411
1412 /* Unroll LOOPS completely if they iterate just few times. Unless
1413 MAY_INCREASE_SIZE is true, perform the unrolling only if the
1414 size of the code does not increase. */
1415
1416 static unsigned int
1417 tree_unroll_loops_completely (bool may_increase_size, bool unroll_outer)
1418 {
1419 bitmap father_bbs = BITMAP_ALLOC (NULL);
1420 bool changed;
1421 int iteration = 0;
1422 bool irred_invalidated = false;
1423
1424 estimate_numbers_of_iterations (cfun);
1425
1426 do
1427 {
1428 changed = false;
1429 bitmap loop_closed_ssa_invalidated = NULL;
1430
1431 if (loops_state_satisfies_p (LOOP_CLOSED_SSA))
1432 loop_closed_ssa_invalidated = BITMAP_ALLOC (NULL);
1433
1434 free_numbers_of_iterations_estimates (cfun);
1435 estimate_numbers_of_iterations (cfun);
1436
1437 changed = tree_unroll_loops_completely_1 (may_increase_size,
1438 unroll_outer, father_bbs,
1439 current_loops->tree_root);
1440 if (changed)
1441 {
1442 unsigned i;
1443
1444 unloop_loops (loop_closed_ssa_invalidated, &irred_invalidated);
1445
1446 /* We cannot use TODO_update_ssa_no_phi because VOPS gets confused. */
1447 if (loop_closed_ssa_invalidated
1448 && !bitmap_empty_p (loop_closed_ssa_invalidated))
1449 rewrite_into_loop_closed_ssa (loop_closed_ssa_invalidated,
1450 TODO_update_ssa);
1451 else
1452 update_ssa (TODO_update_ssa);
1453
1454 /* father_bbs is a bitmap of loop father header BB indices.
1455 Translate that to what non-root loops these BBs belong to now. */
1456 bitmap_iterator bi;
1457 bitmap fathers = BITMAP_ALLOC (NULL);
1458 EXECUTE_IF_SET_IN_BITMAP (father_bbs, 0, i, bi)
1459 {
1460 basic_block unrolled_loop_bb = BASIC_BLOCK_FOR_FN (cfun, i);
1461 if (! unrolled_loop_bb)
1462 continue;
1463 if (loop_outer (unrolled_loop_bb->loop_father))
1464 bitmap_set_bit (fathers,
1465 unrolled_loop_bb->loop_father->num);
1466 }
1467 bitmap_clear (father_bbs);
1468 /* Propagate the constants within the new basic blocks. */
1469 EXECUTE_IF_SET_IN_BITMAP (fathers, 0, i, bi)
1470 {
1471 loop_p father = get_loop (cfun, i);
1472 bitmap exit_bbs = BITMAP_ALLOC (NULL);
1473 loop_exit *exit = father->exits->next;
1474 while (exit->e)
1475 {
1476 bitmap_set_bit (exit_bbs, exit->e->dest->index);
1477 exit = exit->next;
1478 }
1479 do_rpo_vn (cfun, loop_preheader_edge (father), exit_bbs);
1480 }
1481 BITMAP_FREE (fathers);
1482
1483 /* This will take care of removing completely unrolled loops
1484 from the loop structures so we can continue unrolling now
1485 innermost loops. */
1486 if (cleanup_tree_cfg ())
1487 update_ssa (TODO_update_ssa_only_virtuals);
1488
1489 /* Clean up the information about numbers of iterations, since
1490 complete unrolling might have invalidated it. */
1491 scev_reset ();
1492 if (flag_checking && loops_state_satisfies_p (LOOP_CLOSED_SSA))
1493 verify_loop_closed_ssa (true);
1494 }
1495 if (loop_closed_ssa_invalidated)
1496 BITMAP_FREE (loop_closed_ssa_invalidated);
1497 }
1498 while (changed
1499 && ++iteration <= PARAM_VALUE (PARAM_MAX_UNROLL_ITERATIONS));
1500
1501 BITMAP_FREE (father_bbs);
1502
1503 if (irred_invalidated
1504 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1505 mark_irreducible_loops ();
1506
1507 return 0;
1508 }
1509
1510 /* Canonical induction variable creation pass. */
1511
1512 namespace {
1513
1514 const pass_data pass_data_iv_canon =
1515 {
1516 GIMPLE_PASS, /* type */
1517 "ivcanon", /* name */
1518 OPTGROUP_LOOP, /* optinfo_flags */
1519 TV_TREE_LOOP_IVCANON, /* tv_id */
1520 ( PROP_cfg | PROP_ssa ), /* properties_required */
1521 0, /* properties_provided */
1522 0, /* properties_destroyed */
1523 0, /* todo_flags_start */
1524 0, /* todo_flags_finish */
1525 };
1526
1527 class pass_iv_canon : public gimple_opt_pass
1528 {
1529 public:
1530 pass_iv_canon (gcc::context *ctxt)
1531 : gimple_opt_pass (pass_data_iv_canon, ctxt)
1532 {}
1533
1534 /* opt_pass methods: */
1535 virtual bool gate (function *) { return flag_tree_loop_ivcanon != 0; }
1536 virtual unsigned int execute (function *fun);
1537
1538 }; // class pass_iv_canon
1539
1540 unsigned int
1541 pass_iv_canon::execute (function *fun)
1542 {
1543 if (number_of_loops (fun) <= 1)
1544 return 0;
1545
1546 return canonicalize_induction_variables ();
1547 }
1548
1549 } // anon namespace
1550
1551 gimple_opt_pass *
1552 make_pass_iv_canon (gcc::context *ctxt)
1553 {
1554 return new pass_iv_canon (ctxt);
1555 }
1556
1557 /* Complete unrolling of loops. */
1558
1559 namespace {
1560
1561 const pass_data pass_data_complete_unroll =
1562 {
1563 GIMPLE_PASS, /* type */
1564 "cunroll", /* name */
1565 OPTGROUP_LOOP, /* optinfo_flags */
1566 TV_COMPLETE_UNROLL, /* tv_id */
1567 ( PROP_cfg | PROP_ssa ), /* properties_required */
1568 0, /* properties_provided */
1569 0, /* properties_destroyed */
1570 0, /* todo_flags_start */
1571 0, /* todo_flags_finish */
1572 };
1573
1574 class pass_complete_unroll : public gimple_opt_pass
1575 {
1576 public:
1577 pass_complete_unroll (gcc::context *ctxt)
1578 : gimple_opt_pass (pass_data_complete_unroll, ctxt)
1579 {}
1580
1581 /* opt_pass methods: */
1582 virtual unsigned int execute (function *);
1583
1584 }; // class pass_complete_unroll
1585
1586 unsigned int
1587 pass_complete_unroll::execute (function *fun)
1588 {
1589 if (number_of_loops (fun) <= 1)
1590 return 0;
1591
1592 /* If we ever decide to run loop peeling more than once, we will need to
1593 track loops already peeled in loop structures themselves to avoid
1594 re-peeling the same loop multiple times. */
1595 if (flag_peel_loops)
1596 peeled_loops = BITMAP_ALLOC (NULL);
1597 unsigned int val = tree_unroll_loops_completely (flag_unroll_loops
1598 || flag_peel_loops
1599 || optimize >= 3, true);
1600 if (peeled_loops)
1601 {
1602 BITMAP_FREE (peeled_loops);
1603 peeled_loops = NULL;
1604 }
1605 return val;
1606 }
1607
1608 } // anon namespace
1609
1610 gimple_opt_pass *
1611 make_pass_complete_unroll (gcc::context *ctxt)
1612 {
1613 return new pass_complete_unroll (ctxt);
1614 }
1615
1616 /* Complete unrolling of inner loops. */
1617
1618 namespace {
1619
1620 const pass_data pass_data_complete_unrolli =
1621 {
1622 GIMPLE_PASS, /* type */
1623 "cunrolli", /* name */
1624 OPTGROUP_LOOP, /* optinfo_flags */
1625 TV_COMPLETE_UNROLL, /* tv_id */
1626 ( PROP_cfg | PROP_ssa ), /* properties_required */
1627 0, /* properties_provided */
1628 0, /* properties_destroyed */
1629 0, /* todo_flags_start */
1630 0, /* todo_flags_finish */
1631 };
1632
1633 class pass_complete_unrolli : public gimple_opt_pass
1634 {
1635 public:
1636 pass_complete_unrolli (gcc::context *ctxt)
1637 : gimple_opt_pass (pass_data_complete_unrolli, ctxt)
1638 {}
1639
1640 /* opt_pass methods: */
1641 virtual bool gate (function *) { return optimize >= 2; }
1642 virtual unsigned int execute (function *);
1643
1644 }; // class pass_complete_unrolli
1645
1646 unsigned int
1647 pass_complete_unrolli::execute (function *fun)
1648 {
1649 unsigned ret = 0;
1650
1651 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
1652 if (number_of_loops (fun) > 1)
1653 {
1654 scev_initialize ();
1655 ret = tree_unroll_loops_completely (optimize >= 3, false);
1656 scev_finalize ();
1657 }
1658 loop_optimizer_finalize ();
1659
1660 return ret;
1661 }
1662
1663 } // anon namespace
1664
1665 gimple_opt_pass *
1666 make_pass_complete_unrolli (gcc::context *ctxt)
1667 {
1668 return new pass_complete_unrolli (ctxt);
1669 }
1670
1671