]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-phiopt.c
* config/i386/i386.md (and<mode>3): Generate zero-extends for
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "insn-codes.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "gimple-pretty-print.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "cfganal.h"
37 #include "gimplify.h"
38 #include "gimple-iterator.h"
39 #include "gimplify-me.h"
40 #include "tree-cfg.h"
41 #include "tree-dfa.h"
42 #include "domwalk.h"
43 #include "cfgloop.h"
44 #include "tree-data-ref.h"
45 #include "tree-scalar-evolution.h"
46 #include "tree-inline.h"
47 #include "params.h"
48 #include "case-cfn-macros.h"
49
50 static unsigned int tree_ssa_phiopt_worker (bool, bool, bool);
51 static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
52 tree, tree);
53 static bool conditional_replacement (basic_block, basic_block,
54 edge, edge, gphi *, tree, tree);
55 static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
56 gimple *);
57 static int value_replacement (basic_block, basic_block,
58 edge, edge, gimple *, tree, tree);
59 static bool minmax_replacement (basic_block, basic_block,
60 edge, edge, gimple *, tree, tree);
61 static bool abs_replacement (basic_block, basic_block,
62 edge, edge, gimple *, tree, tree);
63 static bool cond_removal_in_popcount_pattern (basic_block, basic_block,
64 edge, edge, gimple *, tree, tree);
65 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
66 hash_set<tree> *);
67 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
68 static hash_set<tree> * get_non_trapping ();
69 static void replace_phi_edge_with_variable (basic_block, edge, gimple *, tree);
70 static void hoist_adjacent_loads (basic_block, basic_block,
71 basic_block, basic_block);
72 static bool gate_hoist_loads (void);
73
74 /* This pass tries to transform conditional stores into unconditional
75 ones, enabling further simplifications with the simpler then and else
76 blocks. In particular it replaces this:
77
78 bb0:
79 if (cond) goto bb2; else goto bb1;
80 bb1:
81 *p = RHS;
82 bb2:
83
84 with
85
86 bb0:
87 if (cond) goto bb1; else goto bb2;
88 bb1:
89 condtmp' = *p;
90 bb2:
91 condtmp = PHI <RHS, condtmp'>
92 *p = condtmp;
93
94 This transformation can only be done under several constraints,
95 documented below. It also replaces:
96
97 bb0:
98 if (cond) goto bb2; else goto bb1;
99 bb1:
100 *p = RHS1;
101 goto bb3;
102 bb2:
103 *p = RHS2;
104 bb3:
105
106 with
107
108 bb0:
109 if (cond) goto bb3; else goto bb1;
110 bb1:
111 bb3:
112 condtmp = PHI <RHS1, RHS2>
113 *p = condtmp; */
114
115 static unsigned int
116 tree_ssa_cs_elim (void)
117 {
118 unsigned todo;
119 /* ??? We are not interested in loop related info, but the following
120 will create it, ICEing as we didn't init loops with pre-headers.
121 An interfacing issue of find_data_references_in_bb. */
122 loop_optimizer_init (LOOPS_NORMAL);
123 scev_initialize ();
124 todo = tree_ssa_phiopt_worker (true, false, false);
125 scev_finalize ();
126 loop_optimizer_finalize ();
127 return todo;
128 }
129
130 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
131
132 static gphi *
133 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
134 {
135 gimple_stmt_iterator i;
136 gphi *phi = NULL;
137 if (gimple_seq_singleton_p (seq))
138 return as_a <gphi *> (gsi_stmt (gsi_start (seq)));
139 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
140 {
141 gphi *p = as_a <gphi *> (gsi_stmt (i));
142 /* If the PHI arguments are equal then we can skip this PHI. */
143 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
144 gimple_phi_arg_def (p, e1->dest_idx)))
145 continue;
146
147 /* If we already have a PHI that has the two edge arguments are
148 different, then return it is not a singleton for these PHIs. */
149 if (phi)
150 return NULL;
151
152 phi = p;
153 }
154 return phi;
155 }
156
157 /* The core routine of conditional store replacement and normal
158 phi optimizations. Both share much of the infrastructure in how
159 to match applicable basic block patterns. DO_STORE_ELIM is true
160 when we want to do conditional store replacement, false otherwise.
161 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
162 of diamond control flow patterns, false otherwise. */
163 static unsigned int
164 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads, bool early_p)
165 {
166 basic_block bb;
167 basic_block *bb_order;
168 unsigned n, i;
169 bool cfgchanged = false;
170 hash_set<tree> *nontrap = 0;
171
172 if (do_store_elim)
173 /* Calculate the set of non-trapping memory accesses. */
174 nontrap = get_non_trapping ();
175
176 /* Search every basic block for COND_EXPR we may be able to optimize.
177
178 We walk the blocks in order that guarantees that a block with
179 a single predecessor is processed before the predecessor.
180 This ensures that we collapse inner ifs before visiting the
181 outer ones, and also that we do not try to visit a removed
182 block. */
183 bb_order = single_pred_before_succ_order ();
184 n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
185
186 for (i = 0; i < n; i++)
187 {
188 gimple *cond_stmt;
189 gphi *phi;
190 basic_block bb1, bb2;
191 edge e1, e2;
192 tree arg0, arg1;
193
194 bb = bb_order[i];
195
196 cond_stmt = last_stmt (bb);
197 /* Check to see if the last statement is a GIMPLE_COND. */
198 if (!cond_stmt
199 || gimple_code (cond_stmt) != GIMPLE_COND)
200 continue;
201
202 e1 = EDGE_SUCC (bb, 0);
203 bb1 = e1->dest;
204 e2 = EDGE_SUCC (bb, 1);
205 bb2 = e2->dest;
206
207 /* We cannot do the optimization on abnormal edges. */
208 if ((e1->flags & EDGE_ABNORMAL) != 0
209 || (e2->flags & EDGE_ABNORMAL) != 0)
210 continue;
211
212 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
213 if (EDGE_COUNT (bb1->succs) == 0
214 || bb2 == NULL
215 || EDGE_COUNT (bb2->succs) == 0)
216 continue;
217
218 /* Find the bb which is the fall through to the other. */
219 if (EDGE_SUCC (bb1, 0)->dest == bb2)
220 ;
221 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
222 {
223 std::swap (bb1, bb2);
224 std::swap (e1, e2);
225 }
226 else if (do_store_elim
227 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
228 {
229 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
230
231 if (!single_succ_p (bb1)
232 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
233 || !single_succ_p (bb2)
234 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
235 || EDGE_COUNT (bb3->preds) != 2)
236 continue;
237 if (cond_if_else_store_replacement (bb1, bb2, bb3))
238 cfgchanged = true;
239 continue;
240 }
241 else if (do_hoist_loads
242 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
243 {
244 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
245
246 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
247 && single_succ_p (bb1)
248 && single_succ_p (bb2)
249 && single_pred_p (bb1)
250 && single_pred_p (bb2)
251 && EDGE_COUNT (bb->succs) == 2
252 && EDGE_COUNT (bb3->preds) == 2
253 /* If one edge or the other is dominant, a conditional move
254 is likely to perform worse than the well-predicted branch. */
255 && !predictable_edge_p (EDGE_SUCC (bb, 0))
256 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
257 hoist_adjacent_loads (bb, bb1, bb2, bb3);
258 continue;
259 }
260 else
261 continue;
262
263 e1 = EDGE_SUCC (bb1, 0);
264
265 /* Make sure that bb1 is just a fall through. */
266 if (!single_succ_p (bb1)
267 || (e1->flags & EDGE_FALLTHRU) == 0)
268 continue;
269
270 /* Also make sure that bb1 only have one predecessor and that it
271 is bb. */
272 if (!single_pred_p (bb1)
273 || single_pred (bb1) != bb)
274 continue;
275
276 if (do_store_elim)
277 {
278 /* bb1 is the middle block, bb2 the join block, bb the split block,
279 e1 the fallthrough edge from bb1 to bb2. We can't do the
280 optimization if the join block has more than two predecessors. */
281 if (EDGE_COUNT (bb2->preds) > 2)
282 continue;
283 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
284 cfgchanged = true;
285 }
286 else
287 {
288 gimple_seq phis = phi_nodes (bb2);
289 gimple_stmt_iterator gsi;
290 bool candorest = true;
291
292 /* Value replacement can work with more than one PHI
293 so try that first. */
294 if (!early_p)
295 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
296 {
297 phi = as_a <gphi *> (gsi_stmt (gsi));
298 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
299 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
300 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
301 {
302 candorest = false;
303 cfgchanged = true;
304 break;
305 }
306 }
307
308 if (!candorest)
309 continue;
310
311 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
312 if (!phi)
313 continue;
314
315 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
316 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
317
318 /* Something is wrong if we cannot find the arguments in the PHI
319 node. */
320 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
321
322 gphi *newphi = factor_out_conditional_conversion (e1, e2, phi,
323 arg0, arg1,
324 cond_stmt);
325 if (newphi != NULL)
326 {
327 phi = newphi;
328 /* factor_out_conditional_conversion may create a new PHI in
329 BB2 and eliminate an existing PHI in BB2. Recompute values
330 that may be affected by that change. */
331 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
332 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
333 gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
334 }
335
336 /* Do the replacement of conditional if it can be done. */
337 if (two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
338 cfgchanged = true;
339 else if (!early_p
340 && conditional_replacement (bb, bb1, e1, e2, phi,
341 arg0, arg1))
342 cfgchanged = true;
343 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
344 cfgchanged = true;
345 else if (!early_p
346 && cond_removal_in_popcount_pattern (bb, bb1, e1, e2,
347 phi, arg0, arg1))
348 cfgchanged = true;
349 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
350 cfgchanged = true;
351 }
352 }
353
354 free (bb_order);
355
356 if (do_store_elim)
357 delete nontrap;
358 /* If the CFG has changed, we should cleanup the CFG. */
359 if (cfgchanged && do_store_elim)
360 {
361 /* In cond-store replacement we have added some loads on edges
362 and new VOPS (as we moved the store, and created a load). */
363 gsi_commit_edge_inserts ();
364 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
365 }
366 else if (cfgchanged)
367 return TODO_cleanup_cfg;
368 return 0;
369 }
370
371 /* Replace PHI node element whose edge is E in block BB with variable NEW.
372 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
373 is known to have two edges, one of which must reach BB). */
374
375 static void
376 replace_phi_edge_with_variable (basic_block cond_block,
377 edge e, gimple *phi, tree new_tree)
378 {
379 basic_block bb = gimple_bb (phi);
380 basic_block block_to_remove;
381 gimple_stmt_iterator gsi;
382
383 /* Change the PHI argument to new. */
384 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
385
386 /* Remove the empty basic block. */
387 if (EDGE_SUCC (cond_block, 0)->dest == bb)
388 {
389 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
390 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
391 EDGE_SUCC (cond_block, 0)->probability = profile_probability::always ();
392
393 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
394 }
395 else
396 {
397 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
398 EDGE_SUCC (cond_block, 1)->flags
399 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
400 EDGE_SUCC (cond_block, 1)->probability = profile_probability::always ();
401
402 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
403 }
404 delete_basic_block (block_to_remove);
405
406 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
407 gsi = gsi_last_bb (cond_block);
408 gsi_remove (&gsi, true);
409
410 if (dump_file && (dump_flags & TDF_DETAILS))
411 fprintf (dump_file,
412 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
413 cond_block->index,
414 bb->index);
415 }
416
417 /* PR66726: Factor conversion out of COND_EXPR. If the arguments of the PHI
418 stmt are CONVERT_STMT, factor out the conversion and perform the conversion
419 to the result of PHI stmt. COND_STMT is the controlling predicate.
420 Return the newly-created PHI, if any. */
421
422 static gphi *
423 factor_out_conditional_conversion (edge e0, edge e1, gphi *phi,
424 tree arg0, tree arg1, gimple *cond_stmt)
425 {
426 gimple *arg0_def_stmt = NULL, *arg1_def_stmt = NULL, *new_stmt;
427 tree new_arg0 = NULL_TREE, new_arg1 = NULL_TREE;
428 tree temp, result;
429 gphi *newphi;
430 gimple_stmt_iterator gsi, gsi_for_def;
431 location_t locus = gimple_location (phi);
432 enum tree_code convert_code;
433
434 /* Handle only PHI statements with two arguments. TODO: If all
435 other arguments to PHI are INTEGER_CST or if their defining
436 statement have the same unary operation, we can handle more
437 than two arguments too. */
438 if (gimple_phi_num_args (phi) != 2)
439 return NULL;
440
441 /* First canonicalize to simplify tests. */
442 if (TREE_CODE (arg0) != SSA_NAME)
443 {
444 std::swap (arg0, arg1);
445 std::swap (e0, e1);
446 }
447
448 if (TREE_CODE (arg0) != SSA_NAME
449 || (TREE_CODE (arg1) != SSA_NAME
450 && TREE_CODE (arg1) != INTEGER_CST))
451 return NULL;
452
453 /* Check if arg0 is an SSA_NAME and the stmt which defines arg0 is
454 a conversion. */
455 arg0_def_stmt = SSA_NAME_DEF_STMT (arg0);
456 if (!gimple_assign_cast_p (arg0_def_stmt))
457 return NULL;
458
459 /* Use the RHS as new_arg0. */
460 convert_code = gimple_assign_rhs_code (arg0_def_stmt);
461 new_arg0 = gimple_assign_rhs1 (arg0_def_stmt);
462 if (convert_code == VIEW_CONVERT_EXPR)
463 {
464 new_arg0 = TREE_OPERAND (new_arg0, 0);
465 if (!is_gimple_reg_type (TREE_TYPE (new_arg0)))
466 return NULL;
467 }
468
469 if (TREE_CODE (arg1) == SSA_NAME)
470 {
471 /* Check if arg1 is an SSA_NAME and the stmt which defines arg1
472 is a conversion. */
473 arg1_def_stmt = SSA_NAME_DEF_STMT (arg1);
474 if (!is_gimple_assign (arg1_def_stmt)
475 || gimple_assign_rhs_code (arg1_def_stmt) != convert_code)
476 return NULL;
477
478 /* Use the RHS as new_arg1. */
479 new_arg1 = gimple_assign_rhs1 (arg1_def_stmt);
480 if (convert_code == VIEW_CONVERT_EXPR)
481 new_arg1 = TREE_OPERAND (new_arg1, 0);
482 }
483 else
484 {
485 /* If arg1 is an INTEGER_CST, fold it to new type. */
486 if (INTEGRAL_TYPE_P (TREE_TYPE (new_arg0))
487 && int_fits_type_p (arg1, TREE_TYPE (new_arg0)))
488 {
489 if (gimple_assign_cast_p (arg0_def_stmt))
490 {
491 /* For the INTEGER_CST case, we are just moving the
492 conversion from one place to another, which can often
493 hurt as the conversion moves further away from the
494 statement that computes the value. So, perform this
495 only if new_arg0 is an operand of COND_STMT, or
496 if arg0_def_stmt is the only non-debug stmt in
497 its basic block, because then it is possible this
498 could enable further optimizations (minmax replacement
499 etc.). See PR71016. */
500 if (new_arg0 != gimple_cond_lhs (cond_stmt)
501 && new_arg0 != gimple_cond_rhs (cond_stmt)
502 && gimple_bb (arg0_def_stmt) == e0->src)
503 {
504 gsi = gsi_for_stmt (arg0_def_stmt);
505 gsi_prev_nondebug (&gsi);
506 if (!gsi_end_p (gsi))
507 return NULL;
508 gsi = gsi_for_stmt (arg0_def_stmt);
509 gsi_next_nondebug (&gsi);
510 if (!gsi_end_p (gsi))
511 return NULL;
512 }
513 new_arg1 = fold_convert (TREE_TYPE (new_arg0), arg1);
514 }
515 else
516 return NULL;
517 }
518 else
519 return NULL;
520 }
521
522 /* If arg0/arg1 have > 1 use, then this transformation actually increases
523 the number of expressions evaluated at runtime. */
524 if (!has_single_use (arg0)
525 || (arg1_def_stmt && !has_single_use (arg1)))
526 return NULL;
527
528 /* If types of new_arg0 and new_arg1 are different bailout. */
529 if (!types_compatible_p (TREE_TYPE (new_arg0), TREE_TYPE (new_arg1)))
530 return NULL;
531
532 /* Create a new PHI stmt. */
533 result = PHI_RESULT (phi);
534 temp = make_ssa_name (TREE_TYPE (new_arg0), NULL);
535 newphi = create_phi_node (temp, gimple_bb (phi));
536
537 if (dump_file && (dump_flags & TDF_DETAILS))
538 {
539 fprintf (dump_file, "PHI ");
540 print_generic_expr (dump_file, gimple_phi_result (phi));
541 fprintf (dump_file,
542 " changed to factor conversion out from COND_EXPR.\n");
543 fprintf (dump_file, "New stmt with CAST that defines ");
544 print_generic_expr (dump_file, result);
545 fprintf (dump_file, ".\n");
546 }
547
548 /* Remove the old cast(s) that has single use. */
549 gsi_for_def = gsi_for_stmt (arg0_def_stmt);
550 gsi_remove (&gsi_for_def, true);
551 release_defs (arg0_def_stmt);
552
553 if (arg1_def_stmt)
554 {
555 gsi_for_def = gsi_for_stmt (arg1_def_stmt);
556 gsi_remove (&gsi_for_def, true);
557 release_defs (arg1_def_stmt);
558 }
559
560 add_phi_arg (newphi, new_arg0, e0, locus);
561 add_phi_arg (newphi, new_arg1, e1, locus);
562
563 /* Create the conversion stmt and insert it. */
564 if (convert_code == VIEW_CONVERT_EXPR)
565 {
566 temp = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (result), temp);
567 new_stmt = gimple_build_assign (result, temp);
568 }
569 else
570 new_stmt = gimple_build_assign (result, convert_code, temp);
571 gsi = gsi_after_labels (gimple_bb (phi));
572 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
573
574 /* Remove the original PHI stmt. */
575 gsi = gsi_for_stmt (phi);
576 gsi_remove (&gsi, true);
577 return newphi;
578 }
579
580 /* Optimize
581 # x_5 in range [cst1, cst2] where cst2 = cst1 + 1
582 if (x_5 op cstN) # where op is == or != and N is 1 or 2
583 goto bb3;
584 else
585 goto bb4;
586 bb3:
587 bb4:
588 # r_6 = PHI<cst3(2), cst4(3)> # where cst3 == cst4 + 1 or cst4 == cst3 + 1
589
590 to r_6 = x_5 + (min (cst3, cst4) - cst1) or
591 r_6 = (min (cst3, cst4) + cst1) - x_5 depending on op, N and which
592 of cst3 and cst4 is smaller. */
593
594 static bool
595 two_value_replacement (basic_block cond_bb, basic_block middle_bb,
596 edge e1, gphi *phi, tree arg0, tree arg1)
597 {
598 /* Only look for adjacent integer constants. */
599 if (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
600 || !INTEGRAL_TYPE_P (TREE_TYPE (arg1))
601 || TREE_CODE (arg0) != INTEGER_CST
602 || TREE_CODE (arg1) != INTEGER_CST
603 || (tree_int_cst_lt (arg0, arg1)
604 ? wi::to_widest (arg0) + 1 != wi::to_widest (arg1)
605 : wi::to_widest (arg1) + 1 != wi::to_widest (arg0)))
606 return false;
607
608 if (!empty_block_p (middle_bb))
609 return false;
610
611 gimple *stmt = last_stmt (cond_bb);
612 tree lhs = gimple_cond_lhs (stmt);
613 tree rhs = gimple_cond_rhs (stmt);
614
615 if (TREE_CODE (lhs) != SSA_NAME
616 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
617 || TREE_CODE (TREE_TYPE (lhs)) == BOOLEAN_TYPE
618 || TREE_CODE (rhs) != INTEGER_CST)
619 return false;
620
621 switch (gimple_cond_code (stmt))
622 {
623 case EQ_EXPR:
624 case NE_EXPR:
625 break;
626 default:
627 return false;
628 }
629
630 wide_int min, max;
631 if (get_range_info (lhs, &min, &max) != VR_RANGE
632 || min + 1 != max
633 || (wi::to_wide (rhs) != min
634 && wi::to_wide (rhs) != max))
635 return false;
636
637 /* We need to know which is the true edge and which is the false
638 edge so that we know when to invert the condition below. */
639 edge true_edge, false_edge;
640 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
641 if ((gimple_cond_code (stmt) == EQ_EXPR)
642 ^ (wi::to_wide (rhs) == max)
643 ^ (e1 == false_edge))
644 std::swap (arg0, arg1);
645
646 tree type;
647 if (TYPE_PRECISION (TREE_TYPE (lhs)) == TYPE_PRECISION (TREE_TYPE (arg0)))
648 {
649 /* Avoid performing the arithmetics in bool type which has different
650 semantics, otherwise prefer unsigned types from the two with
651 the same precision. */
652 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE
653 || !TYPE_UNSIGNED (TREE_TYPE (arg0)))
654 type = TREE_TYPE (lhs);
655 else
656 type = TREE_TYPE (arg0);
657 }
658 else if (TYPE_PRECISION (TREE_TYPE (lhs)) > TYPE_PRECISION (TREE_TYPE (arg0)))
659 type = TREE_TYPE (lhs);
660 else
661 type = TREE_TYPE (arg0);
662
663 min = wide_int::from (min, TYPE_PRECISION (type),
664 TYPE_SIGN (TREE_TYPE (lhs)));
665 wide_int a = wide_int::from (wi::to_wide (arg0), TYPE_PRECISION (type),
666 TYPE_SIGN (TREE_TYPE (arg0)));
667 enum tree_code code;
668 wi::overflow_type ovf;
669 if (tree_int_cst_lt (arg0, arg1))
670 {
671 code = PLUS_EXPR;
672 a -= min;
673 if (!TYPE_UNSIGNED (type))
674 {
675 /* lhs is known to be in range [min, min+1] and we want to add a
676 to it. Check if that operation can overflow for those 2 values
677 and if yes, force unsigned type. */
678 wi::add (min + (wi::neg_p (a) ? 0 : 1), a, SIGNED, &ovf);
679 if (ovf)
680 type = unsigned_type_for (type);
681 }
682 }
683 else
684 {
685 code = MINUS_EXPR;
686 a += min;
687 if (!TYPE_UNSIGNED (type))
688 {
689 /* lhs is known to be in range [min, min+1] and we want to subtract
690 it from a. Check if that operation can overflow for those 2
691 values and if yes, force unsigned type. */
692 wi::sub (a, min + (wi::neg_p (min) ? 0 : 1), SIGNED, &ovf);
693 if (ovf)
694 type = unsigned_type_for (type);
695 }
696 }
697
698 tree arg = wide_int_to_tree (type, a);
699 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
700 if (!useless_type_conversion_p (type, TREE_TYPE (lhs)))
701 lhs = gimplify_build1 (&gsi, NOP_EXPR, type, lhs);
702 tree new_rhs;
703 if (code == PLUS_EXPR)
704 new_rhs = gimplify_build2 (&gsi, PLUS_EXPR, type, lhs, arg);
705 else
706 new_rhs = gimplify_build2 (&gsi, MINUS_EXPR, type, arg, lhs);
707 if (!useless_type_conversion_p (TREE_TYPE (arg0), type))
708 new_rhs = gimplify_build1 (&gsi, NOP_EXPR, TREE_TYPE (arg0), new_rhs);
709
710 replace_phi_edge_with_variable (cond_bb, e1, phi, new_rhs);
711
712 /* Note that we optimized this PHI. */
713 return true;
714 }
715
716 /* The function conditional_replacement does the main work of doing the
717 conditional replacement. Return true if the replacement is done.
718 Otherwise return false.
719 BB is the basic block where the replacement is going to be done on. ARG0
720 is argument 0 from PHI. Likewise for ARG1. */
721
722 static bool
723 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
724 edge e0, edge e1, gphi *phi,
725 tree arg0, tree arg1)
726 {
727 tree result;
728 gimple *stmt;
729 gassign *new_stmt;
730 tree cond;
731 gimple_stmt_iterator gsi;
732 edge true_edge, false_edge;
733 tree new_var, new_var2;
734 bool neg;
735
736 /* FIXME: Gimplification of complex type is too hard for now. */
737 /* We aren't prepared to handle vectors either (and it is a question
738 if it would be worthwhile anyway). */
739 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
740 || POINTER_TYPE_P (TREE_TYPE (arg0)))
741 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
742 || POINTER_TYPE_P (TREE_TYPE (arg1))))
743 return false;
744
745 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
746 convert it to the conditional. */
747 if ((integer_zerop (arg0) && integer_onep (arg1))
748 || (integer_zerop (arg1) && integer_onep (arg0)))
749 neg = false;
750 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
751 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
752 neg = true;
753 else
754 return false;
755
756 if (!empty_block_p (middle_bb))
757 return false;
758
759 /* At this point we know we have a GIMPLE_COND with two successors.
760 One successor is BB, the other successor is an empty block which
761 falls through into BB.
762
763 There is a single PHI node at the join point (BB) and its arguments
764 are constants (0, 1) or (0, -1).
765
766 So, given the condition COND, and the two PHI arguments, we can
767 rewrite this PHI into non-branching code:
768
769 dest = (COND) or dest = COND'
770
771 We use the condition as-is if the argument associated with the
772 true edge has the value one or the argument associated with the
773 false edge as the value zero. Note that those conditions are not
774 the same since only one of the outgoing edges from the GIMPLE_COND
775 will directly reach BB and thus be associated with an argument. */
776
777 stmt = last_stmt (cond_bb);
778 result = PHI_RESULT (phi);
779
780 /* To handle special cases like floating point comparison, it is easier and
781 less error-prone to build a tree and gimplify it on the fly though it is
782 less efficient. */
783 cond = fold_build2_loc (gimple_location (stmt),
784 gimple_cond_code (stmt), boolean_type_node,
785 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
786
787 /* We need to know which is the true edge and which is the false
788 edge so that we know when to invert the condition below. */
789 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
790 if ((e0 == true_edge && integer_zerop (arg0))
791 || (e0 == false_edge && !integer_zerop (arg0))
792 || (e1 == true_edge && integer_zerop (arg1))
793 || (e1 == false_edge && !integer_zerop (arg1)))
794 cond = fold_build1_loc (gimple_location (stmt),
795 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
796
797 if (neg)
798 {
799 cond = fold_convert_loc (gimple_location (stmt),
800 TREE_TYPE (result), cond);
801 cond = fold_build1_loc (gimple_location (stmt),
802 NEGATE_EXPR, TREE_TYPE (cond), cond);
803 }
804
805 /* Insert our new statements at the end of conditional block before the
806 COND_STMT. */
807 gsi = gsi_for_stmt (stmt);
808 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
809 GSI_SAME_STMT);
810
811 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
812 {
813 location_t locus_0, locus_1;
814
815 new_var2 = make_ssa_name (TREE_TYPE (result));
816 new_stmt = gimple_build_assign (new_var2, CONVERT_EXPR, new_var);
817 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
818 new_var = new_var2;
819
820 /* Set the locus to the first argument, unless is doesn't have one. */
821 locus_0 = gimple_phi_arg_location (phi, 0);
822 locus_1 = gimple_phi_arg_location (phi, 1);
823 if (locus_0 == UNKNOWN_LOCATION)
824 locus_0 = locus_1;
825 gimple_set_location (new_stmt, locus_0);
826 }
827
828 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
829
830 /* Note that we optimized this PHI. */
831 return true;
832 }
833
834 /* Update *ARG which is defined in STMT so that it contains the
835 computed value if that seems profitable. Return true if the
836 statement is made dead by that rewriting. */
837
838 static bool
839 jump_function_from_stmt (tree *arg, gimple *stmt)
840 {
841 enum tree_code code = gimple_assign_rhs_code (stmt);
842 if (code == ADDR_EXPR)
843 {
844 /* For arg = &p->i transform it to p, if possible. */
845 tree rhs1 = gimple_assign_rhs1 (stmt);
846 poly_int64 offset;
847 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
848 &offset);
849 if (tem
850 && TREE_CODE (tem) == MEM_REF
851 && known_eq (mem_ref_offset (tem) + offset, 0))
852 {
853 *arg = TREE_OPERAND (tem, 0);
854 return true;
855 }
856 }
857 /* TODO: Much like IPA-CP jump-functions we want to handle constant
858 additions symbolically here, and we'd need to update the comparison
859 code that compares the arg + cst tuples in our caller. For now the
860 code above exactly handles the VEC_BASE pattern from vec.h. */
861 return false;
862 }
863
864 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
865 of the form SSA_NAME NE 0.
866
867 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
868 the two input values of the EQ_EXPR match arg0 and arg1.
869
870 If so update *code and return TRUE. Otherwise return FALSE. */
871
872 static bool
873 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
874 enum tree_code *code, const_tree rhs)
875 {
876 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
877 statement. */
878 if (TREE_CODE (rhs) == SSA_NAME)
879 {
880 gimple *def1 = SSA_NAME_DEF_STMT (rhs);
881
882 /* Verify the defining statement has an EQ_EXPR on the RHS. */
883 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
884 {
885 /* Finally verify the source operands of the EQ_EXPR are equal
886 to arg0 and arg1. */
887 tree op0 = gimple_assign_rhs1 (def1);
888 tree op1 = gimple_assign_rhs2 (def1);
889 if ((operand_equal_for_phi_arg_p (arg0, op0)
890 && operand_equal_for_phi_arg_p (arg1, op1))
891 || (operand_equal_for_phi_arg_p (arg0, op1)
892 && operand_equal_for_phi_arg_p (arg1, op0)))
893 {
894 /* We will perform the optimization. */
895 *code = gimple_assign_rhs_code (def1);
896 return true;
897 }
898 }
899 }
900 return false;
901 }
902
903 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
904
905 Also return TRUE if arg0/arg1 are equal to the source arguments of a
906 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
907
908 Return FALSE otherwise. */
909
910 static bool
911 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
912 enum tree_code *code, gimple *cond)
913 {
914 gimple *def;
915 tree lhs = gimple_cond_lhs (cond);
916 tree rhs = gimple_cond_rhs (cond);
917
918 if ((operand_equal_for_phi_arg_p (arg0, lhs)
919 && operand_equal_for_phi_arg_p (arg1, rhs))
920 || (operand_equal_for_phi_arg_p (arg1, lhs)
921 && operand_equal_for_phi_arg_p (arg0, rhs)))
922 return true;
923
924 /* Now handle more complex case where we have an EQ comparison
925 which feeds a BIT_AND_EXPR which feeds COND.
926
927 First verify that COND is of the form SSA_NAME NE 0. */
928 if (*code != NE_EXPR || !integer_zerop (rhs)
929 || TREE_CODE (lhs) != SSA_NAME)
930 return false;
931
932 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
933 def = SSA_NAME_DEF_STMT (lhs);
934 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
935 return false;
936
937 /* Now verify arg0/arg1 correspond to the source arguments of an
938 EQ comparison feeding the BIT_AND_EXPR. */
939
940 tree tmp = gimple_assign_rhs1 (def);
941 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
942 return true;
943
944 tmp = gimple_assign_rhs2 (def);
945 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
946 return true;
947
948 return false;
949 }
950
951 /* Returns true if ARG is a neutral element for operation CODE
952 on the RIGHT side. */
953
954 static bool
955 neutral_element_p (tree_code code, tree arg, bool right)
956 {
957 switch (code)
958 {
959 case PLUS_EXPR:
960 case BIT_IOR_EXPR:
961 case BIT_XOR_EXPR:
962 return integer_zerop (arg);
963
964 case LROTATE_EXPR:
965 case RROTATE_EXPR:
966 case LSHIFT_EXPR:
967 case RSHIFT_EXPR:
968 case MINUS_EXPR:
969 case POINTER_PLUS_EXPR:
970 return right && integer_zerop (arg);
971
972 case MULT_EXPR:
973 return integer_onep (arg);
974
975 case TRUNC_DIV_EXPR:
976 case CEIL_DIV_EXPR:
977 case FLOOR_DIV_EXPR:
978 case ROUND_DIV_EXPR:
979 case EXACT_DIV_EXPR:
980 return right && integer_onep (arg);
981
982 case BIT_AND_EXPR:
983 return integer_all_onesp (arg);
984
985 default:
986 return false;
987 }
988 }
989
990 /* Returns true if ARG is an absorbing element for operation CODE. */
991
992 static bool
993 absorbing_element_p (tree_code code, tree arg, bool right, tree rval)
994 {
995 switch (code)
996 {
997 case BIT_IOR_EXPR:
998 return integer_all_onesp (arg);
999
1000 case MULT_EXPR:
1001 case BIT_AND_EXPR:
1002 return integer_zerop (arg);
1003
1004 case LSHIFT_EXPR:
1005 case RSHIFT_EXPR:
1006 case LROTATE_EXPR:
1007 case RROTATE_EXPR:
1008 return !right && integer_zerop (arg);
1009
1010 case TRUNC_DIV_EXPR:
1011 case CEIL_DIV_EXPR:
1012 case FLOOR_DIV_EXPR:
1013 case ROUND_DIV_EXPR:
1014 case EXACT_DIV_EXPR:
1015 case TRUNC_MOD_EXPR:
1016 case CEIL_MOD_EXPR:
1017 case FLOOR_MOD_EXPR:
1018 case ROUND_MOD_EXPR:
1019 return (!right
1020 && integer_zerop (arg)
1021 && tree_single_nonzero_warnv_p (rval, NULL));
1022
1023 default:
1024 return false;
1025 }
1026 }
1027
1028 /* The function value_replacement does the main work of doing the value
1029 replacement. Return non-zero if the replacement is done. Otherwise return
1030 0. If we remove the middle basic block, return 2.
1031 BB is the basic block where the replacement is going to be done on. ARG0
1032 is argument 0 from the PHI. Likewise for ARG1. */
1033
1034 static int
1035 value_replacement (basic_block cond_bb, basic_block middle_bb,
1036 edge e0, edge e1, gimple *phi,
1037 tree arg0, tree arg1)
1038 {
1039 gimple_stmt_iterator gsi;
1040 gimple *cond;
1041 edge true_edge, false_edge;
1042 enum tree_code code;
1043 bool emtpy_or_with_defined_p = true;
1044
1045 /* If the type says honor signed zeros we cannot do this
1046 optimization. */
1047 if (HONOR_SIGNED_ZEROS (arg1))
1048 return 0;
1049
1050 /* If there is a statement in MIDDLE_BB that defines one of the PHI
1051 arguments, then adjust arg0 or arg1. */
1052 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1053 while (!gsi_end_p (gsi))
1054 {
1055 gimple *stmt = gsi_stmt (gsi);
1056 tree lhs;
1057 gsi_next_nondebug (&gsi);
1058 if (!is_gimple_assign (stmt))
1059 {
1060 if (gimple_code (stmt) != GIMPLE_PREDICT
1061 && gimple_code (stmt) != GIMPLE_NOP)
1062 emtpy_or_with_defined_p = false;
1063 continue;
1064 }
1065 /* Now try to adjust arg0 or arg1 according to the computation
1066 in the statement. */
1067 lhs = gimple_assign_lhs (stmt);
1068 if (!(lhs == arg0
1069 && jump_function_from_stmt (&arg0, stmt))
1070 || (lhs == arg1
1071 && jump_function_from_stmt (&arg1, stmt)))
1072 emtpy_or_with_defined_p = false;
1073 }
1074
1075 cond = last_stmt (cond_bb);
1076 code = gimple_cond_code (cond);
1077
1078 /* This transformation is only valid for equality comparisons. */
1079 if (code != NE_EXPR && code != EQ_EXPR)
1080 return 0;
1081
1082 /* We need to know which is the true edge and which is the false
1083 edge so that we know if have abs or negative abs. */
1084 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1085
1086 /* At this point we know we have a COND_EXPR with two successors.
1087 One successor is BB, the other successor is an empty block which
1088 falls through into BB.
1089
1090 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
1091
1092 There is a single PHI node at the join point (BB) with two arguments.
1093
1094 We now need to verify that the two arguments in the PHI node match
1095 the two arguments to the equality comparison. */
1096
1097 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
1098 {
1099 edge e;
1100 tree arg;
1101
1102 /* For NE_EXPR, we want to build an assignment result = arg where
1103 arg is the PHI argument associated with the true edge. For
1104 EQ_EXPR we want the PHI argument associated with the false edge. */
1105 e = (code == NE_EXPR ? true_edge : false_edge);
1106
1107 /* Unfortunately, E may not reach BB (it may instead have gone to
1108 OTHER_BLOCK). If that is the case, then we want the single outgoing
1109 edge from OTHER_BLOCK which reaches BB and represents the desired
1110 path from COND_BLOCK. */
1111 if (e->dest == middle_bb)
1112 e = single_succ_edge (e->dest);
1113
1114 /* Now we know the incoming edge to BB that has the argument for the
1115 RHS of our new assignment statement. */
1116 if (e0 == e)
1117 arg = arg0;
1118 else
1119 arg = arg1;
1120
1121 /* If the middle basic block was empty or is defining the
1122 PHI arguments and this is a single phi where the args are different
1123 for the edges e0 and e1 then we can remove the middle basic block. */
1124 if (emtpy_or_with_defined_p
1125 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
1126 e0, e1) == phi)
1127 {
1128 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
1129 /* Note that we optimized this PHI. */
1130 return 2;
1131 }
1132 else
1133 {
1134 /* Replace the PHI arguments with arg. */
1135 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
1136 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
1137 if (dump_file && (dump_flags & TDF_DETAILS))
1138 {
1139 fprintf (dump_file, "PHI ");
1140 print_generic_expr (dump_file, gimple_phi_result (phi));
1141 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
1142 cond_bb->index);
1143 print_generic_expr (dump_file, arg);
1144 fprintf (dump_file, ".\n");
1145 }
1146 return 1;
1147 }
1148
1149 }
1150
1151 /* Now optimize (x != 0) ? x + y : y to just x + y. */
1152 gsi = gsi_last_nondebug_bb (middle_bb);
1153 if (gsi_end_p (gsi))
1154 return 0;
1155
1156 gimple *assign = gsi_stmt (gsi);
1157 if (!is_gimple_assign (assign)
1158 || gimple_assign_rhs_class (assign) != GIMPLE_BINARY_RHS
1159 || (!INTEGRAL_TYPE_P (TREE_TYPE (arg0))
1160 && !POINTER_TYPE_P (TREE_TYPE (arg0))))
1161 return 0;
1162
1163 /* Punt if there are (degenerate) PHIs in middle_bb, there should not be. */
1164 if (!gimple_seq_empty_p (phi_nodes (middle_bb)))
1165 return 0;
1166
1167 /* Allow up to 2 cheap preparation statements that prepare argument
1168 for assign, e.g.:
1169 if (y_4 != 0)
1170 goto <bb 3>;
1171 else
1172 goto <bb 4>;
1173 <bb 3>:
1174 _1 = (int) y_4;
1175 iftmp.0_6 = x_5(D) r<< _1;
1176 <bb 4>:
1177 # iftmp.0_2 = PHI <iftmp.0_6(3), x_5(D)(2)>
1178 or:
1179 if (y_3(D) == 0)
1180 goto <bb 4>;
1181 else
1182 goto <bb 3>;
1183 <bb 3>:
1184 y_4 = y_3(D) & 31;
1185 _1 = (int) y_4;
1186 _6 = x_5(D) r<< _1;
1187 <bb 4>:
1188 # _2 = PHI <x_5(D)(2), _6(3)> */
1189 gimple *prep_stmt[2] = { NULL, NULL };
1190 int prep_cnt;
1191 for (prep_cnt = 0; ; prep_cnt++)
1192 {
1193 gsi_prev_nondebug (&gsi);
1194 if (gsi_end_p (gsi))
1195 break;
1196
1197 gimple *g = gsi_stmt (gsi);
1198 if (gimple_code (g) == GIMPLE_LABEL)
1199 break;
1200
1201 if (prep_cnt == 2 || !is_gimple_assign (g))
1202 return 0;
1203
1204 tree lhs = gimple_assign_lhs (g);
1205 tree rhs1 = gimple_assign_rhs1 (g);
1206 use_operand_p use_p;
1207 gimple *use_stmt;
1208 if (TREE_CODE (lhs) != SSA_NAME
1209 || TREE_CODE (rhs1) != SSA_NAME
1210 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1211 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1212 || !single_imm_use (lhs, &use_p, &use_stmt)
1213 || use_stmt != (prep_cnt ? prep_stmt[prep_cnt - 1] : assign))
1214 return 0;
1215 switch (gimple_assign_rhs_code (g))
1216 {
1217 CASE_CONVERT:
1218 break;
1219 case PLUS_EXPR:
1220 case BIT_AND_EXPR:
1221 case BIT_IOR_EXPR:
1222 case BIT_XOR_EXPR:
1223 if (TREE_CODE (gimple_assign_rhs2 (g)) != INTEGER_CST)
1224 return 0;
1225 break;
1226 default:
1227 return 0;
1228 }
1229 prep_stmt[prep_cnt] = g;
1230 }
1231
1232 /* Only transform if it removes the condition. */
1233 if (!single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)), e0, e1))
1234 return 0;
1235
1236 /* Size-wise, this is always profitable. */
1237 if (optimize_bb_for_speed_p (cond_bb)
1238 /* The special case is useless if it has a low probability. */
1239 && profile_status_for_fn (cfun) != PROFILE_ABSENT
1240 && EDGE_PRED (middle_bb, 0)->probability < profile_probability::even ()
1241 /* If assign is cheap, there is no point avoiding it. */
1242 && estimate_num_insns (bb_seq (middle_bb), &eni_time_weights)
1243 >= 3 * estimate_num_insns (cond, &eni_time_weights))
1244 return 0;
1245
1246 tree lhs = gimple_assign_lhs (assign);
1247 tree rhs1 = gimple_assign_rhs1 (assign);
1248 tree rhs2 = gimple_assign_rhs2 (assign);
1249 enum tree_code code_def = gimple_assign_rhs_code (assign);
1250 tree cond_lhs = gimple_cond_lhs (cond);
1251 tree cond_rhs = gimple_cond_rhs (cond);
1252
1253 /* Propagate the cond_rhs constant through preparation stmts,
1254 make sure UB isn't invoked while doing that. */
1255 for (int i = prep_cnt - 1; i >= 0; --i)
1256 {
1257 gimple *g = prep_stmt[i];
1258 tree grhs1 = gimple_assign_rhs1 (g);
1259 if (!operand_equal_for_phi_arg_p (cond_lhs, grhs1))
1260 return 0;
1261 cond_lhs = gimple_assign_lhs (g);
1262 cond_rhs = fold_convert (TREE_TYPE (grhs1), cond_rhs);
1263 if (TREE_CODE (cond_rhs) != INTEGER_CST
1264 || TREE_OVERFLOW (cond_rhs))
1265 return 0;
1266 if (gimple_assign_rhs_class (g) == GIMPLE_BINARY_RHS)
1267 {
1268 cond_rhs = int_const_binop (gimple_assign_rhs_code (g), cond_rhs,
1269 gimple_assign_rhs2 (g));
1270 if (TREE_OVERFLOW (cond_rhs))
1271 return 0;
1272 }
1273 cond_rhs = fold_convert (TREE_TYPE (cond_lhs), cond_rhs);
1274 if (TREE_CODE (cond_rhs) != INTEGER_CST
1275 || TREE_OVERFLOW (cond_rhs))
1276 return 0;
1277 }
1278
1279 if (((code == NE_EXPR && e1 == false_edge)
1280 || (code == EQ_EXPR && e1 == true_edge))
1281 && arg0 == lhs
1282 && ((arg1 == rhs1
1283 && operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1284 && neutral_element_p (code_def, cond_rhs, true))
1285 || (arg1 == rhs2
1286 && operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1287 && neutral_element_p (code_def, cond_rhs, false))
1288 || (operand_equal_for_phi_arg_p (arg1, cond_rhs)
1289 && ((operand_equal_for_phi_arg_p (rhs2, cond_lhs)
1290 && absorbing_element_p (code_def, cond_rhs, true, rhs2))
1291 || (operand_equal_for_phi_arg_p (rhs1, cond_lhs)
1292 && absorbing_element_p (code_def,
1293 cond_rhs, false, rhs2))))))
1294 {
1295 gsi = gsi_for_stmt (cond);
1296 /* Moving ASSIGN might change VR of lhs, e.g. when moving u_6
1297 def-stmt in:
1298 if (n_5 != 0)
1299 goto <bb 3>;
1300 else
1301 goto <bb 4>;
1302
1303 <bb 3>:
1304 # RANGE [0, 4294967294]
1305 u_6 = n_5 + 4294967295;
1306
1307 <bb 4>:
1308 # u_3 = PHI <u_6(3), 4294967295(2)> */
1309 reset_flow_sensitive_info (lhs);
1310 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
1311 {
1312 /* If available, we can use VR of phi result at least. */
1313 tree phires = gimple_phi_result (phi);
1314 struct range_info_def *phires_range_info
1315 = SSA_NAME_RANGE_INFO (phires);
1316 if (phires_range_info)
1317 duplicate_ssa_name_range_info (lhs, SSA_NAME_RANGE_TYPE (phires),
1318 phires_range_info);
1319 }
1320 gimple_stmt_iterator gsi_from;
1321 for (int i = prep_cnt - 1; i >= 0; --i)
1322 {
1323 tree plhs = gimple_assign_lhs (prep_stmt[i]);
1324 reset_flow_sensitive_info (plhs);
1325 gsi_from = gsi_for_stmt (prep_stmt[i]);
1326 gsi_move_before (&gsi_from, &gsi);
1327 }
1328 gsi_from = gsi_for_stmt (assign);
1329 gsi_move_before (&gsi_from, &gsi);
1330 replace_phi_edge_with_variable (cond_bb, e1, phi, lhs);
1331 return 2;
1332 }
1333
1334 return 0;
1335 }
1336
1337 /* The function minmax_replacement does the main work of doing the minmax
1338 replacement. Return true if the replacement is done. Otherwise return
1339 false.
1340 BB is the basic block where the replacement is going to be done on. ARG0
1341 is argument 0 from the PHI. Likewise for ARG1. */
1342
1343 static bool
1344 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
1345 edge e0, edge e1, gimple *phi,
1346 tree arg0, tree arg1)
1347 {
1348 tree result, type, rhs;
1349 gcond *cond;
1350 gassign *new_stmt;
1351 edge true_edge, false_edge;
1352 enum tree_code cmp, minmax, ass_code;
1353 tree smaller, alt_smaller, larger, alt_larger, arg_true, arg_false;
1354 gimple_stmt_iterator gsi, gsi_from;
1355
1356 type = TREE_TYPE (PHI_RESULT (phi));
1357
1358 /* The optimization may be unsafe due to NaNs. */
1359 if (HONOR_NANS (type) || HONOR_SIGNED_ZEROS (type))
1360 return false;
1361
1362 cond = as_a <gcond *> (last_stmt (cond_bb));
1363 cmp = gimple_cond_code (cond);
1364 rhs = gimple_cond_rhs (cond);
1365
1366 /* Turn EQ/NE of extreme values to order comparisons. */
1367 if ((cmp == NE_EXPR || cmp == EQ_EXPR)
1368 && TREE_CODE (rhs) == INTEGER_CST)
1369 {
1370 if (wi::eq_p (wi::to_wide (rhs), wi::min_value (TREE_TYPE (rhs))))
1371 {
1372 cmp = (cmp == EQ_EXPR) ? LT_EXPR : GE_EXPR;
1373 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1374 wi::min_value (TREE_TYPE (rhs)) + 1);
1375 }
1376 else if (wi::eq_p (wi::to_wide (rhs), wi::max_value (TREE_TYPE (rhs))))
1377 {
1378 cmp = (cmp == EQ_EXPR) ? GT_EXPR : LE_EXPR;
1379 rhs = wide_int_to_tree (TREE_TYPE (rhs),
1380 wi::max_value (TREE_TYPE (rhs)) - 1);
1381 }
1382 }
1383
1384 /* This transformation is only valid for order comparisons. Record which
1385 operand is smaller/larger if the result of the comparison is true. */
1386 alt_smaller = NULL_TREE;
1387 alt_larger = NULL_TREE;
1388 if (cmp == LT_EXPR || cmp == LE_EXPR)
1389 {
1390 smaller = gimple_cond_lhs (cond);
1391 larger = rhs;
1392 /* If we have smaller < CST it is equivalent to smaller <= CST-1.
1393 Likewise smaller <= CST is equivalent to smaller < CST+1. */
1394 if (TREE_CODE (larger) == INTEGER_CST)
1395 {
1396 if (cmp == LT_EXPR)
1397 {
1398 wi::overflow_type overflow;
1399 wide_int alt = wi::sub (wi::to_wide (larger), 1,
1400 TYPE_SIGN (TREE_TYPE (larger)),
1401 &overflow);
1402 if (! overflow)
1403 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1404 }
1405 else
1406 {
1407 wi::overflow_type overflow;
1408 wide_int alt = wi::add (wi::to_wide (larger), 1,
1409 TYPE_SIGN (TREE_TYPE (larger)),
1410 &overflow);
1411 if (! overflow)
1412 alt_larger = wide_int_to_tree (TREE_TYPE (larger), alt);
1413 }
1414 }
1415 }
1416 else if (cmp == GT_EXPR || cmp == GE_EXPR)
1417 {
1418 smaller = rhs;
1419 larger = gimple_cond_lhs (cond);
1420 /* If we have larger > CST it is equivalent to larger >= CST+1.
1421 Likewise larger >= CST is equivalent to larger > CST-1. */
1422 if (TREE_CODE (smaller) == INTEGER_CST)
1423 {
1424 wi::overflow_type overflow;
1425 if (cmp == GT_EXPR)
1426 {
1427 wide_int alt = wi::add (wi::to_wide (smaller), 1,
1428 TYPE_SIGN (TREE_TYPE (smaller)),
1429 &overflow);
1430 if (! overflow)
1431 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1432 }
1433 else
1434 {
1435 wide_int alt = wi::sub (wi::to_wide (smaller), 1,
1436 TYPE_SIGN (TREE_TYPE (smaller)),
1437 &overflow);
1438 if (! overflow)
1439 alt_smaller = wide_int_to_tree (TREE_TYPE (smaller), alt);
1440 }
1441 }
1442 }
1443 else
1444 return false;
1445
1446 /* We need to know which is the true edge and which is the false
1447 edge so that we know if have abs or negative abs. */
1448 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1449
1450 /* Forward the edges over the middle basic block. */
1451 if (true_edge->dest == middle_bb)
1452 true_edge = EDGE_SUCC (true_edge->dest, 0);
1453 if (false_edge->dest == middle_bb)
1454 false_edge = EDGE_SUCC (false_edge->dest, 0);
1455
1456 if (true_edge == e0)
1457 {
1458 gcc_assert (false_edge == e1);
1459 arg_true = arg0;
1460 arg_false = arg1;
1461 }
1462 else
1463 {
1464 gcc_assert (false_edge == e0);
1465 gcc_assert (true_edge == e1);
1466 arg_true = arg1;
1467 arg_false = arg0;
1468 }
1469
1470 if (empty_block_p (middle_bb))
1471 {
1472 if ((operand_equal_for_phi_arg_p (arg_true, smaller)
1473 || (alt_smaller
1474 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1475 && (operand_equal_for_phi_arg_p (arg_false, larger)
1476 || (alt_larger
1477 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1478 {
1479 /* Case
1480
1481 if (smaller < larger)
1482 rslt = smaller;
1483 else
1484 rslt = larger; */
1485 minmax = MIN_EXPR;
1486 }
1487 else if ((operand_equal_for_phi_arg_p (arg_false, smaller)
1488 || (alt_smaller
1489 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1490 && (operand_equal_for_phi_arg_p (arg_true, larger)
1491 || (alt_larger
1492 && operand_equal_for_phi_arg_p (arg_true, alt_larger))))
1493 minmax = MAX_EXPR;
1494 else
1495 return false;
1496 }
1497 else
1498 {
1499 /* Recognize the following case, assuming d <= u:
1500
1501 if (a <= u)
1502 b = MAX (a, d);
1503 x = PHI <b, u>
1504
1505 This is equivalent to
1506
1507 b = MAX (a, d);
1508 x = MIN (b, u); */
1509
1510 gimple *assign = last_and_only_stmt (middle_bb);
1511 tree lhs, op0, op1, bound;
1512
1513 if (!assign
1514 || gimple_code (assign) != GIMPLE_ASSIGN)
1515 return false;
1516
1517 lhs = gimple_assign_lhs (assign);
1518 ass_code = gimple_assign_rhs_code (assign);
1519 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1520 return false;
1521 op0 = gimple_assign_rhs1 (assign);
1522 op1 = gimple_assign_rhs2 (assign);
1523
1524 if (true_edge->src == middle_bb)
1525 {
1526 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1527 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1528 return false;
1529
1530 if (operand_equal_for_phi_arg_p (arg_false, larger)
1531 || (alt_larger
1532 && operand_equal_for_phi_arg_p (arg_false, alt_larger)))
1533 {
1534 /* Case
1535
1536 if (smaller < larger)
1537 {
1538 r' = MAX_EXPR (smaller, bound)
1539 }
1540 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1541 if (ass_code != MAX_EXPR)
1542 return false;
1543
1544 minmax = MIN_EXPR;
1545 if (operand_equal_for_phi_arg_p (op0, smaller)
1546 || (alt_smaller
1547 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1548 bound = op1;
1549 else if (operand_equal_for_phi_arg_p (op1, smaller)
1550 || (alt_smaller
1551 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1552 bound = op0;
1553 else
1554 return false;
1555
1556 /* We need BOUND <= LARGER. */
1557 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1558 bound, larger)))
1559 return false;
1560 }
1561 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
1562 || (alt_smaller
1563 && operand_equal_for_phi_arg_p (arg_false, alt_smaller)))
1564 {
1565 /* Case
1566
1567 if (smaller < larger)
1568 {
1569 r' = MIN_EXPR (larger, bound)
1570 }
1571 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1572 if (ass_code != MIN_EXPR)
1573 return false;
1574
1575 minmax = MAX_EXPR;
1576 if (operand_equal_for_phi_arg_p (op0, larger)
1577 || (alt_larger
1578 && operand_equal_for_phi_arg_p (op0, alt_larger)))
1579 bound = op1;
1580 else if (operand_equal_for_phi_arg_p (op1, larger)
1581 || (alt_larger
1582 && operand_equal_for_phi_arg_p (op1, alt_larger)))
1583 bound = op0;
1584 else
1585 return false;
1586
1587 /* We need BOUND >= SMALLER. */
1588 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1589 bound, smaller)))
1590 return false;
1591 }
1592 else
1593 return false;
1594 }
1595 else
1596 {
1597 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1598 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1599 return false;
1600
1601 if (operand_equal_for_phi_arg_p (arg_true, larger)
1602 || (alt_larger
1603 && operand_equal_for_phi_arg_p (arg_true, alt_larger)))
1604 {
1605 /* Case
1606
1607 if (smaller > larger)
1608 {
1609 r' = MIN_EXPR (smaller, bound)
1610 }
1611 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1612 if (ass_code != MIN_EXPR)
1613 return false;
1614
1615 minmax = MAX_EXPR;
1616 if (operand_equal_for_phi_arg_p (op0, smaller)
1617 || (alt_smaller
1618 && operand_equal_for_phi_arg_p (op0, alt_smaller)))
1619 bound = op1;
1620 else if (operand_equal_for_phi_arg_p (op1, smaller)
1621 || (alt_smaller
1622 && operand_equal_for_phi_arg_p (op1, alt_smaller)))
1623 bound = op0;
1624 else
1625 return false;
1626
1627 /* We need BOUND >= LARGER. */
1628 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1629 bound, larger)))
1630 return false;
1631 }
1632 else if (operand_equal_for_phi_arg_p (arg_true, smaller)
1633 || (alt_smaller
1634 && operand_equal_for_phi_arg_p (arg_true, alt_smaller)))
1635 {
1636 /* Case
1637
1638 if (smaller > larger)
1639 {
1640 r' = MAX_EXPR (larger, bound)
1641 }
1642 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1643 if (ass_code != MAX_EXPR)
1644 return false;
1645
1646 minmax = MIN_EXPR;
1647 if (operand_equal_for_phi_arg_p (op0, larger))
1648 bound = op1;
1649 else if (operand_equal_for_phi_arg_p (op1, larger))
1650 bound = op0;
1651 else
1652 return false;
1653
1654 /* We need BOUND <= SMALLER. */
1655 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1656 bound, smaller)))
1657 return false;
1658 }
1659 else
1660 return false;
1661 }
1662
1663 /* Move the statement from the middle block. */
1664 gsi = gsi_last_bb (cond_bb);
1665 gsi_from = gsi_last_nondebug_bb (middle_bb);
1666 reset_flow_sensitive_info (SINGLE_SSA_TREE_OPERAND (gsi_stmt (gsi_from),
1667 SSA_OP_DEF));
1668 gsi_move_before (&gsi_from, &gsi);
1669 }
1670
1671 /* Create an SSA var to hold the min/max result. If we're the only
1672 things setting the target PHI, then we can clone the PHI
1673 variable. Otherwise we must create a new one. */
1674 result = PHI_RESULT (phi);
1675 if (EDGE_COUNT (gimple_bb (phi)->preds) == 2)
1676 result = duplicate_ssa_name (result, NULL);
1677 else
1678 result = make_ssa_name (TREE_TYPE (result));
1679
1680 /* Emit the statement to compute min/max. */
1681 new_stmt = gimple_build_assign (result, minmax, arg0, arg1);
1682 gsi = gsi_last_bb (cond_bb);
1683 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1684
1685 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1686
1687 return true;
1688 }
1689
1690 /* Convert
1691
1692 <bb 2>
1693 if (b_4(D) != 0)
1694 goto <bb 3>
1695 else
1696 goto <bb 4>
1697
1698 <bb 3>
1699 _2 = (unsigned long) b_4(D);
1700 _9 = __builtin_popcountl (_2);
1701 OR
1702 _9 = __builtin_popcountl (b_4(D));
1703
1704 <bb 4>
1705 c_12 = PHI <0(2), _9(3)>
1706
1707 Into
1708 <bb 2>
1709 _2 = (unsigned long) b_4(D);
1710 _9 = __builtin_popcountl (_2);
1711 OR
1712 _9 = __builtin_popcountl (b_4(D));
1713
1714 <bb 4>
1715 c_12 = PHI <_9(2)>
1716 */
1717
1718 static bool
1719 cond_removal_in_popcount_pattern (basic_block cond_bb, basic_block middle_bb,
1720 edge e1, edge e2,
1721 gimple *phi, tree arg0, tree arg1)
1722 {
1723 gimple *cond;
1724 gimple_stmt_iterator gsi, gsi_from;
1725 gimple *popcount;
1726 gimple *cast = NULL;
1727 tree lhs, arg;
1728
1729 /* Check that
1730 _2 = (unsigned long) b_4(D);
1731 _9 = __builtin_popcountl (_2);
1732 OR
1733 _9 = __builtin_popcountl (b_4(D));
1734 are the only stmts in the middle_bb. */
1735
1736 gsi = gsi_start_nondebug_after_labels_bb (middle_bb);
1737 if (gsi_end_p (gsi))
1738 return false;
1739 cast = gsi_stmt (gsi);
1740 gsi_next_nondebug (&gsi);
1741 if (!gsi_end_p (gsi))
1742 {
1743 popcount = gsi_stmt (gsi);
1744 gsi_next_nondebug (&gsi);
1745 if (!gsi_end_p (gsi))
1746 return false;
1747 }
1748 else
1749 {
1750 popcount = cast;
1751 cast = NULL;
1752 }
1753
1754 /* Check that we have a popcount builtin. */
1755 if (!is_gimple_call (popcount))
1756 return false;
1757 combined_fn cfn = gimple_call_combined_fn (popcount);
1758 switch (cfn)
1759 {
1760 CASE_CFN_POPCOUNT:
1761 break;
1762 default:
1763 return false;
1764 }
1765
1766 arg = gimple_call_arg (popcount, 0);
1767 lhs = gimple_get_lhs (popcount);
1768
1769 if (cast)
1770 {
1771 /* We have a cast stmt feeding popcount builtin. */
1772 /* Check that we have a cast prior to that. */
1773 if (gimple_code (cast) != GIMPLE_ASSIGN
1774 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (cast)))
1775 return false;
1776 /* Result of the cast stmt is the argument to the builtin. */
1777 if (arg != gimple_assign_lhs (cast))
1778 return false;
1779 arg = gimple_assign_rhs1 (cast);
1780 }
1781
1782 cond = last_stmt (cond_bb);
1783
1784 /* Cond_bb has a check for b_4 [!=|==] 0 before calling the popcount
1785 builtin. */
1786 if (gimple_code (cond) != GIMPLE_COND
1787 || (gimple_cond_code (cond) != NE_EXPR
1788 && gimple_cond_code (cond) != EQ_EXPR)
1789 || !integer_zerop (gimple_cond_rhs (cond))
1790 || arg != gimple_cond_lhs (cond))
1791 return false;
1792
1793 /* Canonicalize. */
1794 if ((e2->flags & EDGE_TRUE_VALUE
1795 && gimple_cond_code (cond) == NE_EXPR)
1796 || (e1->flags & EDGE_TRUE_VALUE
1797 && gimple_cond_code (cond) == EQ_EXPR))
1798 {
1799 std::swap (arg0, arg1);
1800 std::swap (e1, e2);
1801 }
1802
1803 /* Check PHI arguments. */
1804 if (lhs != arg0 || !integer_zerop (arg1))
1805 return false;
1806
1807 /* And insert the popcount builtin and cast stmt before the cond_bb. */
1808 gsi = gsi_last_bb (cond_bb);
1809 if (cast)
1810 {
1811 gsi_from = gsi_for_stmt (cast);
1812 gsi_move_before (&gsi_from, &gsi);
1813 reset_flow_sensitive_info (gimple_get_lhs (cast));
1814 }
1815 gsi_from = gsi_for_stmt (popcount);
1816 gsi_move_before (&gsi_from, &gsi);
1817 reset_flow_sensitive_info (gimple_get_lhs (popcount));
1818
1819 /* Now update the PHI and remove unneeded bbs. */
1820 replace_phi_edge_with_variable (cond_bb, e2, phi, lhs);
1821 return true;
1822 }
1823
1824 /* The function absolute_replacement does the main work of doing the absolute
1825 replacement. Return true if the replacement is done. Otherwise return
1826 false.
1827 bb is the basic block where the replacement is going to be done on. arg0
1828 is argument 0 from the phi. Likewise for arg1. */
1829
1830 static bool
1831 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1832 edge e0 ATTRIBUTE_UNUSED, edge e1,
1833 gimple *phi, tree arg0, tree arg1)
1834 {
1835 tree result;
1836 gassign *new_stmt;
1837 gimple *cond;
1838 gimple_stmt_iterator gsi;
1839 edge true_edge, false_edge;
1840 gimple *assign;
1841 edge e;
1842 tree rhs, lhs;
1843 bool negate;
1844 enum tree_code cond_code;
1845
1846 /* If the type says honor signed zeros we cannot do this
1847 optimization. */
1848 if (HONOR_SIGNED_ZEROS (arg1))
1849 return false;
1850
1851 /* OTHER_BLOCK must have only one executable statement which must have the
1852 form arg0 = -arg1 or arg1 = -arg0. */
1853
1854 assign = last_and_only_stmt (middle_bb);
1855 /* If we did not find the proper negation assignment, then we cannot
1856 optimize. */
1857 if (assign == NULL)
1858 return false;
1859
1860 /* If we got here, then we have found the only executable statement
1861 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1862 arg1 = -arg0, then we cannot optimize. */
1863 if (gimple_code (assign) != GIMPLE_ASSIGN)
1864 return false;
1865
1866 lhs = gimple_assign_lhs (assign);
1867
1868 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1869 return false;
1870
1871 rhs = gimple_assign_rhs1 (assign);
1872
1873 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1874 if (!(lhs == arg0 && rhs == arg1)
1875 && !(lhs == arg1 && rhs == arg0))
1876 return false;
1877
1878 cond = last_stmt (cond_bb);
1879 result = PHI_RESULT (phi);
1880
1881 /* Only relationals comparing arg[01] against zero are interesting. */
1882 cond_code = gimple_cond_code (cond);
1883 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1884 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1885 return false;
1886
1887 /* Make sure the conditional is arg[01] OP y. */
1888 if (gimple_cond_lhs (cond) != rhs)
1889 return false;
1890
1891 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1892 ? real_zerop (gimple_cond_rhs (cond))
1893 : integer_zerop (gimple_cond_rhs (cond)))
1894 ;
1895 else
1896 return false;
1897
1898 /* We need to know which is the true edge and which is the false
1899 edge so that we know if have abs or negative abs. */
1900 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1901
1902 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1903 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1904 the false edge goes to OTHER_BLOCK. */
1905 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1906 e = true_edge;
1907 else
1908 e = false_edge;
1909
1910 if (e->dest == middle_bb)
1911 negate = true;
1912 else
1913 negate = false;
1914
1915 /* If the code negates only iff positive then make sure to not
1916 introduce undefined behavior when negating or computing the absolute.
1917 ??? We could use range info if present to check for arg1 == INT_MIN. */
1918 if (negate
1919 && (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1))
1920 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))))
1921 return false;
1922
1923 result = duplicate_ssa_name (result, NULL);
1924
1925 if (negate)
1926 lhs = make_ssa_name (TREE_TYPE (result));
1927 else
1928 lhs = result;
1929
1930 /* Build the modify expression with abs expression. */
1931 new_stmt = gimple_build_assign (lhs, ABS_EXPR, rhs);
1932
1933 gsi = gsi_last_bb (cond_bb);
1934 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1935
1936 if (negate)
1937 {
1938 /* Get the right GSI. We want to insert after the recently
1939 added ABS_EXPR statement (which we know is the first statement
1940 in the block. */
1941 new_stmt = gimple_build_assign (result, NEGATE_EXPR, lhs);
1942
1943 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1944 }
1945
1946 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1947
1948 /* Note that we optimized this PHI. */
1949 return true;
1950 }
1951
1952 /* Auxiliary functions to determine the set of memory accesses which
1953 can't trap because they are preceded by accesses to the same memory
1954 portion. We do that for MEM_REFs, so we only need to track
1955 the SSA_NAME of the pointer indirectly referenced. The algorithm
1956 simply is a walk over all instructions in dominator order. When
1957 we see an MEM_REF we determine if we've already seen a same
1958 ref anywhere up to the root of the dominator tree. If we do the
1959 current access can't trap. If we don't see any dominating access
1960 the current access might trap, but might also make later accesses
1961 non-trapping, so we remember it. We need to be careful with loads
1962 or stores, for instance a load might not trap, while a store would,
1963 so if we see a dominating read access this doesn't mean that a later
1964 write access would not trap. Hence we also need to differentiate the
1965 type of access(es) seen.
1966
1967 ??? We currently are very conservative and assume that a load might
1968 trap even if a store doesn't (write-only memory). This probably is
1969 overly conservative. */
1970
1971 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1972 through it was seen, which would constitute a no-trap region for
1973 same accesses. */
1974 struct name_to_bb
1975 {
1976 unsigned int ssa_name_ver;
1977 unsigned int phase;
1978 bool store;
1979 HOST_WIDE_INT offset, size;
1980 basic_block bb;
1981 };
1982
1983 /* Hashtable helpers. */
1984
1985 struct ssa_names_hasher : free_ptr_hash <name_to_bb>
1986 {
1987 static inline hashval_t hash (const name_to_bb *);
1988 static inline bool equal (const name_to_bb *, const name_to_bb *);
1989 };
1990
1991 /* Used for quick clearing of the hash-table when we see calls.
1992 Hash entries with phase < nt_call_phase are invalid. */
1993 static unsigned int nt_call_phase;
1994
1995 /* The hash function. */
1996
1997 inline hashval_t
1998 ssa_names_hasher::hash (const name_to_bb *n)
1999 {
2000 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
2001 ^ (n->offset << 6) ^ (n->size << 3);
2002 }
2003
2004 /* The equality function of *P1 and *P2. */
2005
2006 inline bool
2007 ssa_names_hasher::equal (const name_to_bb *n1, const name_to_bb *n2)
2008 {
2009 return n1->ssa_name_ver == n2->ssa_name_ver
2010 && n1->store == n2->store
2011 && n1->offset == n2->offset
2012 && n1->size == n2->size;
2013 }
2014
2015 class nontrapping_dom_walker : public dom_walker
2016 {
2017 public:
2018 nontrapping_dom_walker (cdi_direction direction, hash_set<tree> *ps)
2019 : dom_walker (direction), m_nontrapping (ps), m_seen_ssa_names (128) {}
2020
2021 virtual edge before_dom_children (basic_block);
2022 virtual void after_dom_children (basic_block);
2023
2024 private:
2025
2026 /* We see the expression EXP in basic block BB. If it's an interesting
2027 expression (an MEM_REF through an SSA_NAME) possibly insert the
2028 expression into the set NONTRAP or the hash table of seen expressions.
2029 STORE is true if this expression is on the LHS, otherwise it's on
2030 the RHS. */
2031 void add_or_mark_expr (basic_block, tree, bool);
2032
2033 hash_set<tree> *m_nontrapping;
2034
2035 /* The hash table for remembering what we've seen. */
2036 hash_table<ssa_names_hasher> m_seen_ssa_names;
2037 };
2038
2039 /* Called by walk_dominator_tree, when entering the block BB. */
2040 edge
2041 nontrapping_dom_walker::before_dom_children (basic_block bb)
2042 {
2043 edge e;
2044 edge_iterator ei;
2045 gimple_stmt_iterator gsi;
2046
2047 /* If we haven't seen all our predecessors, clear the hash-table. */
2048 FOR_EACH_EDGE (e, ei, bb->preds)
2049 if ((((size_t)e->src->aux) & 2) == 0)
2050 {
2051 nt_call_phase++;
2052 break;
2053 }
2054
2055 /* Mark this BB as being on the path to dominator root and as visited. */
2056 bb->aux = (void*)(1 | 2);
2057
2058 /* And walk the statements in order. */
2059 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2060 {
2061 gimple *stmt = gsi_stmt (gsi);
2062
2063 if ((gimple_code (stmt) == GIMPLE_ASM && gimple_vdef (stmt))
2064 || (is_gimple_call (stmt)
2065 && (!nonfreeing_call_p (stmt) || !nonbarrier_call_p (stmt))))
2066 nt_call_phase++;
2067 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
2068 {
2069 add_or_mark_expr (bb, gimple_assign_lhs (stmt), true);
2070 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), false);
2071 }
2072 }
2073 return NULL;
2074 }
2075
2076 /* Called by walk_dominator_tree, when basic block BB is exited. */
2077 void
2078 nontrapping_dom_walker::after_dom_children (basic_block bb)
2079 {
2080 /* This BB isn't on the path to dominator root anymore. */
2081 bb->aux = (void*)2;
2082 }
2083
2084 /* We see the expression EXP in basic block BB. If it's an interesting
2085 expression (an MEM_REF through an SSA_NAME) possibly insert the
2086 expression into the set NONTRAP or the hash table of seen expressions.
2087 STORE is true if this expression is on the LHS, otherwise it's on
2088 the RHS. */
2089 void
2090 nontrapping_dom_walker::add_or_mark_expr (basic_block bb, tree exp, bool store)
2091 {
2092 HOST_WIDE_INT size;
2093
2094 if (TREE_CODE (exp) == MEM_REF
2095 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
2096 && tree_fits_shwi_p (TREE_OPERAND (exp, 1))
2097 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
2098 {
2099 tree name = TREE_OPERAND (exp, 0);
2100 struct name_to_bb map;
2101 name_to_bb **slot;
2102 struct name_to_bb *n2bb;
2103 basic_block found_bb = 0;
2104
2105 /* Try to find the last seen MEM_REF through the same
2106 SSA_NAME, which can trap. */
2107 map.ssa_name_ver = SSA_NAME_VERSION (name);
2108 map.phase = 0;
2109 map.bb = 0;
2110 map.store = store;
2111 map.offset = tree_to_shwi (TREE_OPERAND (exp, 1));
2112 map.size = size;
2113
2114 slot = m_seen_ssa_names.find_slot (&map, INSERT);
2115 n2bb = *slot;
2116 if (n2bb && n2bb->phase >= nt_call_phase)
2117 found_bb = n2bb->bb;
2118
2119 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
2120 (it's in a basic block on the path from us to the dominator root)
2121 then we can't trap. */
2122 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
2123 {
2124 m_nontrapping->add (exp);
2125 }
2126 else
2127 {
2128 /* EXP might trap, so insert it into the hash table. */
2129 if (n2bb)
2130 {
2131 n2bb->phase = nt_call_phase;
2132 n2bb->bb = bb;
2133 }
2134 else
2135 {
2136 n2bb = XNEW (struct name_to_bb);
2137 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
2138 n2bb->phase = nt_call_phase;
2139 n2bb->bb = bb;
2140 n2bb->store = store;
2141 n2bb->offset = map.offset;
2142 n2bb->size = size;
2143 *slot = n2bb;
2144 }
2145 }
2146 }
2147 }
2148
2149 /* This is the entry point of gathering non trapping memory accesses.
2150 It will do a dominator walk over the whole function, and it will
2151 make use of the bb->aux pointers. It returns a set of trees
2152 (the MEM_REFs itself) which can't trap. */
2153 static hash_set<tree> *
2154 get_non_trapping (void)
2155 {
2156 nt_call_phase = 0;
2157 hash_set<tree> *nontrap = new hash_set<tree>;
2158 /* We're going to do a dominator walk, so ensure that we have
2159 dominance information. */
2160 calculate_dominance_info (CDI_DOMINATORS);
2161
2162 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
2163 .walk (cfun->cfg->x_entry_block_ptr);
2164
2165 clear_aux_for_blocks ();
2166 return nontrap;
2167 }
2168
2169 /* Do the main work of conditional store replacement. We already know
2170 that the recognized pattern looks like so:
2171
2172 split:
2173 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
2174 MIDDLE_BB:
2175 something
2176 fallthrough (edge E0)
2177 JOIN_BB:
2178 some more
2179
2180 We check that MIDDLE_BB contains only one store, that that store
2181 doesn't trap (not via NOTRAP, but via checking if an access to the same
2182 memory location dominates us) and that the store has a "simple" RHS. */
2183
2184 static bool
2185 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
2186 edge e0, edge e1, hash_set<tree> *nontrap)
2187 {
2188 gimple *assign = last_and_only_stmt (middle_bb);
2189 tree lhs, rhs, name, name2;
2190 gphi *newphi;
2191 gassign *new_stmt;
2192 gimple_stmt_iterator gsi;
2193 location_t locus;
2194
2195 /* Check if middle_bb contains of only one store. */
2196 if (!assign
2197 || !gimple_assign_single_p (assign)
2198 || gimple_has_volatile_ops (assign))
2199 return false;
2200
2201 locus = gimple_location (assign);
2202 lhs = gimple_assign_lhs (assign);
2203 rhs = gimple_assign_rhs1 (assign);
2204 if (TREE_CODE (lhs) != MEM_REF
2205 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
2206 || !is_gimple_reg_type (TREE_TYPE (lhs)))
2207 return false;
2208
2209 /* Prove that we can move the store down. We could also check
2210 TREE_THIS_NOTRAP here, but in that case we also could move stores,
2211 whose value is not available readily, which we want to avoid. */
2212 if (!nontrap->contains (lhs))
2213 return false;
2214
2215 /* Now we've checked the constraints, so do the transformation:
2216 1) Remove the single store. */
2217 gsi = gsi_for_stmt (assign);
2218 unlink_stmt_vdef (assign);
2219 gsi_remove (&gsi, true);
2220 release_defs (assign);
2221
2222 /* Make both store and load use alias-set zero as we have to
2223 deal with the case of the store being a conditional change
2224 of the dynamic type. */
2225 lhs = unshare_expr (lhs);
2226 tree *basep = &lhs;
2227 while (handled_component_p (*basep))
2228 basep = &TREE_OPERAND (*basep, 0);
2229 if (TREE_CODE (*basep) == MEM_REF
2230 || TREE_CODE (*basep) == TARGET_MEM_REF)
2231 TREE_OPERAND (*basep, 1)
2232 = fold_convert (ptr_type_node, TREE_OPERAND (*basep, 1));
2233 else
2234 *basep = build2 (MEM_REF, TREE_TYPE (*basep),
2235 build_fold_addr_expr (*basep),
2236 build_zero_cst (ptr_type_node));
2237
2238 /* 2) Insert a load from the memory of the store to the temporary
2239 on the edge which did not contain the store. */
2240 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2241 new_stmt = gimple_build_assign (name, lhs);
2242 gimple_set_location (new_stmt, locus);
2243 gsi_insert_on_edge (e1, new_stmt);
2244
2245 /* 3) Create a PHI node at the join block, with one argument
2246 holding the old RHS, and the other holding the temporary
2247 where we stored the old memory contents. */
2248 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2249 newphi = create_phi_node (name2, join_bb);
2250 add_phi_arg (newphi, rhs, e0, locus);
2251 add_phi_arg (newphi, name, e1, locus);
2252
2253 lhs = unshare_expr (lhs);
2254 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2255
2256 /* 4) Insert that PHI node. */
2257 gsi = gsi_after_labels (join_bb);
2258 if (gsi_end_p (gsi))
2259 {
2260 gsi = gsi_last_bb (join_bb);
2261 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2262 }
2263 else
2264 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2265
2266 return true;
2267 }
2268
2269 /* Do the main work of conditional store replacement. */
2270
2271 static bool
2272 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
2273 basic_block join_bb, gimple *then_assign,
2274 gimple *else_assign)
2275 {
2276 tree lhs_base, lhs, then_rhs, else_rhs, name;
2277 location_t then_locus, else_locus;
2278 gimple_stmt_iterator gsi;
2279 gphi *newphi;
2280 gassign *new_stmt;
2281
2282 if (then_assign == NULL
2283 || !gimple_assign_single_p (then_assign)
2284 || gimple_clobber_p (then_assign)
2285 || gimple_has_volatile_ops (then_assign)
2286 || else_assign == NULL
2287 || !gimple_assign_single_p (else_assign)
2288 || gimple_clobber_p (else_assign)
2289 || gimple_has_volatile_ops (else_assign))
2290 return false;
2291
2292 lhs = gimple_assign_lhs (then_assign);
2293 if (!is_gimple_reg_type (TREE_TYPE (lhs))
2294 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
2295 return false;
2296
2297 lhs_base = get_base_address (lhs);
2298 if (lhs_base == NULL_TREE
2299 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
2300 return false;
2301
2302 then_rhs = gimple_assign_rhs1 (then_assign);
2303 else_rhs = gimple_assign_rhs1 (else_assign);
2304 then_locus = gimple_location (then_assign);
2305 else_locus = gimple_location (else_assign);
2306
2307 /* Now we've checked the constraints, so do the transformation:
2308 1) Remove the stores. */
2309 gsi = gsi_for_stmt (then_assign);
2310 unlink_stmt_vdef (then_assign);
2311 gsi_remove (&gsi, true);
2312 release_defs (then_assign);
2313
2314 gsi = gsi_for_stmt (else_assign);
2315 unlink_stmt_vdef (else_assign);
2316 gsi_remove (&gsi, true);
2317 release_defs (else_assign);
2318
2319 /* 2) Create a PHI node at the join block, with one argument
2320 holding the old RHS, and the other holding the temporary
2321 where we stored the old memory contents. */
2322 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
2323 newphi = create_phi_node (name, join_bb);
2324 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
2325 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
2326
2327 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
2328
2329 /* 3) Insert that PHI node. */
2330 gsi = gsi_after_labels (join_bb);
2331 if (gsi_end_p (gsi))
2332 {
2333 gsi = gsi_last_bb (join_bb);
2334 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
2335 }
2336 else
2337 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
2338
2339 return true;
2340 }
2341
2342 /* Return the single store in BB with VDEF or NULL if there are
2343 other stores in the BB or loads following the store. */
2344
2345 static gimple *
2346 single_trailing_store_in_bb (basic_block bb, tree vdef)
2347 {
2348 if (SSA_NAME_IS_DEFAULT_DEF (vdef))
2349 return NULL;
2350 gimple *store = SSA_NAME_DEF_STMT (vdef);
2351 if (gimple_bb (store) != bb
2352 || gimple_code (store) == GIMPLE_PHI)
2353 return NULL;
2354
2355 /* Verify there is no other store in this BB. */
2356 if (!SSA_NAME_IS_DEFAULT_DEF (gimple_vuse (store))
2357 && gimple_bb (SSA_NAME_DEF_STMT (gimple_vuse (store))) == bb
2358 && gimple_code (SSA_NAME_DEF_STMT (gimple_vuse (store))) != GIMPLE_PHI)
2359 return NULL;
2360
2361 /* Verify there is no load or store after the store. */
2362 use_operand_p use_p;
2363 imm_use_iterator imm_iter;
2364 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_vdef (store))
2365 if (USE_STMT (use_p) != store
2366 && gimple_bb (USE_STMT (use_p)) == bb)
2367 return NULL;
2368
2369 return store;
2370 }
2371
2372 /* Conditional store replacement. We already know
2373 that the recognized pattern looks like so:
2374
2375 split:
2376 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
2377 THEN_BB:
2378 ...
2379 X = Y;
2380 ...
2381 goto JOIN_BB;
2382 ELSE_BB:
2383 ...
2384 X = Z;
2385 ...
2386 fallthrough (edge E0)
2387 JOIN_BB:
2388 some more
2389
2390 We check that it is safe to sink the store to JOIN_BB by verifying that
2391 there are no read-after-write or write-after-write dependencies in
2392 THEN_BB and ELSE_BB. */
2393
2394 static bool
2395 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
2396 basic_block join_bb)
2397 {
2398 vec<data_reference_p> then_datarefs, else_datarefs;
2399 vec<ddr_p> then_ddrs, else_ddrs;
2400 gimple *then_store, *else_store;
2401 bool found, ok = false, res;
2402 struct data_dependence_relation *ddr;
2403 data_reference_p then_dr, else_dr;
2404 int i, j;
2405 tree then_lhs, else_lhs;
2406 basic_block blocks[3];
2407
2408 /* Handle the case with single store in THEN_BB and ELSE_BB. That is
2409 cheap enough to always handle as it allows us to elide dependence
2410 checking. */
2411 gphi *vphi = NULL;
2412 for (gphi_iterator si = gsi_start_phis (join_bb); !gsi_end_p (si);
2413 gsi_next (&si))
2414 if (virtual_operand_p (gimple_phi_result (si.phi ())))
2415 {
2416 vphi = si.phi ();
2417 break;
2418 }
2419 if (!vphi)
2420 return false;
2421 tree then_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (then_bb));
2422 tree else_vdef = PHI_ARG_DEF_FROM_EDGE (vphi, single_succ_edge (else_bb));
2423 gimple *then_assign = single_trailing_store_in_bb (then_bb, then_vdef);
2424 if (then_assign)
2425 {
2426 gimple *else_assign = single_trailing_store_in_bb (else_bb, else_vdef);
2427 if (else_assign)
2428 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2429 then_assign, else_assign);
2430 }
2431
2432 if (MAX_STORES_TO_SINK == 0)
2433 return false;
2434
2435 /* Find data references. */
2436 then_datarefs.create (1);
2437 else_datarefs.create (1);
2438 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
2439 == chrec_dont_know)
2440 || !then_datarefs.length ()
2441 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
2442 == chrec_dont_know)
2443 || !else_datarefs.length ())
2444 {
2445 free_data_refs (then_datarefs);
2446 free_data_refs (else_datarefs);
2447 return false;
2448 }
2449
2450 /* Find pairs of stores with equal LHS. */
2451 auto_vec<gimple *, 1> then_stores, else_stores;
2452 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
2453 {
2454 if (DR_IS_READ (then_dr))
2455 continue;
2456
2457 then_store = DR_STMT (then_dr);
2458 then_lhs = gimple_get_lhs (then_store);
2459 if (then_lhs == NULL_TREE)
2460 continue;
2461 found = false;
2462
2463 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
2464 {
2465 if (DR_IS_READ (else_dr))
2466 continue;
2467
2468 else_store = DR_STMT (else_dr);
2469 else_lhs = gimple_get_lhs (else_store);
2470 if (else_lhs == NULL_TREE)
2471 continue;
2472
2473 if (operand_equal_p (then_lhs, else_lhs, 0))
2474 {
2475 found = true;
2476 break;
2477 }
2478 }
2479
2480 if (!found)
2481 continue;
2482
2483 then_stores.safe_push (then_store);
2484 else_stores.safe_push (else_store);
2485 }
2486
2487 /* No pairs of stores found. */
2488 if (!then_stores.length ()
2489 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
2490 {
2491 free_data_refs (then_datarefs);
2492 free_data_refs (else_datarefs);
2493 return false;
2494 }
2495
2496 /* Compute and check data dependencies in both basic blocks. */
2497 then_ddrs.create (1);
2498 else_ddrs.create (1);
2499 if (!compute_all_dependences (then_datarefs, &then_ddrs,
2500 vNULL, false)
2501 || !compute_all_dependences (else_datarefs, &else_ddrs,
2502 vNULL, false))
2503 {
2504 free_dependence_relations (then_ddrs);
2505 free_dependence_relations (else_ddrs);
2506 free_data_refs (then_datarefs);
2507 free_data_refs (else_datarefs);
2508 return false;
2509 }
2510 blocks[0] = then_bb;
2511 blocks[1] = else_bb;
2512 blocks[2] = join_bb;
2513 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
2514
2515 /* Check that there are no read-after-write or write-after-write dependencies
2516 in THEN_BB. */
2517 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
2518 {
2519 struct data_reference *dra = DDR_A (ddr);
2520 struct data_reference *drb = DDR_B (ddr);
2521
2522 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2523 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2524 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2525 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2526 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2527 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2528 {
2529 free_dependence_relations (then_ddrs);
2530 free_dependence_relations (else_ddrs);
2531 free_data_refs (then_datarefs);
2532 free_data_refs (else_datarefs);
2533 return false;
2534 }
2535 }
2536
2537 /* Check that there are no read-after-write or write-after-write dependencies
2538 in ELSE_BB. */
2539 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
2540 {
2541 struct data_reference *dra = DDR_A (ddr);
2542 struct data_reference *drb = DDR_B (ddr);
2543
2544 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
2545 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
2546 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
2547 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
2548 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
2549 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
2550 {
2551 free_dependence_relations (then_ddrs);
2552 free_dependence_relations (else_ddrs);
2553 free_data_refs (then_datarefs);
2554 free_data_refs (else_datarefs);
2555 return false;
2556 }
2557 }
2558
2559 /* Sink stores with same LHS. */
2560 FOR_EACH_VEC_ELT (then_stores, i, then_store)
2561 {
2562 else_store = else_stores[i];
2563 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
2564 then_store, else_store);
2565 ok = ok || res;
2566 }
2567
2568 free_dependence_relations (then_ddrs);
2569 free_dependence_relations (else_ddrs);
2570 free_data_refs (then_datarefs);
2571 free_data_refs (else_datarefs);
2572
2573 return ok;
2574 }
2575
2576 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
2577
2578 static bool
2579 local_mem_dependence (gimple *stmt, basic_block bb)
2580 {
2581 tree vuse = gimple_vuse (stmt);
2582 gimple *def;
2583
2584 if (!vuse)
2585 return false;
2586
2587 def = SSA_NAME_DEF_STMT (vuse);
2588 return (def && gimple_bb (def) == bb);
2589 }
2590
2591 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
2592 BB1 and BB2 are "then" and "else" blocks dependent on this test,
2593 and BB3 rejoins control flow following BB1 and BB2, look for
2594 opportunities to hoist loads as follows. If BB3 contains a PHI of
2595 two loads, one each occurring in BB1 and BB2, and the loads are
2596 provably of adjacent fields in the same structure, then move both
2597 loads into BB0. Of course this can only be done if there are no
2598 dependencies preventing such motion.
2599
2600 One of the hoisted loads will always be speculative, so the
2601 transformation is currently conservative:
2602
2603 - The fields must be strictly adjacent.
2604 - The two fields must occupy a single memory block that is
2605 guaranteed to not cross a page boundary.
2606
2607 The last is difficult to prove, as such memory blocks should be
2608 aligned on the minimum of the stack alignment boundary and the
2609 alignment guaranteed by heap allocation interfaces. Thus we rely
2610 on a parameter for the alignment value.
2611
2612 Provided a good value is used for the last case, the first
2613 restriction could possibly be relaxed. */
2614
2615 static void
2616 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
2617 basic_block bb2, basic_block bb3)
2618 {
2619 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
2620 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
2621 gphi_iterator gsi;
2622
2623 /* Walk the phis in bb3 looking for an opportunity. We are looking
2624 for phis of two SSA names, one each of which is defined in bb1 and
2625 bb2. */
2626 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
2627 {
2628 gphi *phi_stmt = gsi.phi ();
2629 gimple *def1, *def2;
2630 tree arg1, arg2, ref1, ref2, field1, field2;
2631 tree tree_offset1, tree_offset2, tree_size2, next;
2632 int offset1, offset2, size2;
2633 unsigned align1;
2634 gimple_stmt_iterator gsi2;
2635 basic_block bb_for_def1, bb_for_def2;
2636
2637 if (gimple_phi_num_args (phi_stmt) != 2
2638 || virtual_operand_p (gimple_phi_result (phi_stmt)))
2639 continue;
2640
2641 arg1 = gimple_phi_arg_def (phi_stmt, 0);
2642 arg2 = gimple_phi_arg_def (phi_stmt, 1);
2643
2644 if (TREE_CODE (arg1) != SSA_NAME
2645 || TREE_CODE (arg2) != SSA_NAME
2646 || SSA_NAME_IS_DEFAULT_DEF (arg1)
2647 || SSA_NAME_IS_DEFAULT_DEF (arg2))
2648 continue;
2649
2650 def1 = SSA_NAME_DEF_STMT (arg1);
2651 def2 = SSA_NAME_DEF_STMT (arg2);
2652
2653 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
2654 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
2655 continue;
2656
2657 /* Check the mode of the arguments to be sure a conditional move
2658 can be generated for it. */
2659 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
2660 == CODE_FOR_nothing)
2661 continue;
2662
2663 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
2664 if (!gimple_assign_single_p (def1)
2665 || !gimple_assign_single_p (def2)
2666 || gimple_has_volatile_ops (def1)
2667 || gimple_has_volatile_ops (def2))
2668 continue;
2669
2670 ref1 = gimple_assign_rhs1 (def1);
2671 ref2 = gimple_assign_rhs1 (def2);
2672
2673 if (TREE_CODE (ref1) != COMPONENT_REF
2674 || TREE_CODE (ref2) != COMPONENT_REF)
2675 continue;
2676
2677 /* The zeroth operand of the two component references must be
2678 identical. It is not sufficient to compare get_base_address of
2679 the two references, because this could allow for different
2680 elements of the same array in the two trees. It is not safe to
2681 assume that the existence of one array element implies the
2682 existence of a different one. */
2683 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
2684 continue;
2685
2686 field1 = TREE_OPERAND (ref1, 1);
2687 field2 = TREE_OPERAND (ref2, 1);
2688
2689 /* Check for field adjacency, and ensure field1 comes first. */
2690 for (next = DECL_CHAIN (field1);
2691 next && TREE_CODE (next) != FIELD_DECL;
2692 next = DECL_CHAIN (next))
2693 ;
2694
2695 if (next != field2)
2696 {
2697 for (next = DECL_CHAIN (field2);
2698 next && TREE_CODE (next) != FIELD_DECL;
2699 next = DECL_CHAIN (next))
2700 ;
2701
2702 if (next != field1)
2703 continue;
2704
2705 std::swap (field1, field2);
2706 std::swap (def1, def2);
2707 }
2708
2709 bb_for_def1 = gimple_bb (def1);
2710 bb_for_def2 = gimple_bb (def2);
2711
2712 /* Check for proper alignment of the first field. */
2713 tree_offset1 = bit_position (field1);
2714 tree_offset2 = bit_position (field2);
2715 tree_size2 = DECL_SIZE (field2);
2716
2717 if (!tree_fits_uhwi_p (tree_offset1)
2718 || !tree_fits_uhwi_p (tree_offset2)
2719 || !tree_fits_uhwi_p (tree_size2))
2720 continue;
2721
2722 offset1 = tree_to_uhwi (tree_offset1);
2723 offset2 = tree_to_uhwi (tree_offset2);
2724 size2 = tree_to_uhwi (tree_size2);
2725 align1 = DECL_ALIGN (field1) % param_align_bits;
2726
2727 if (offset1 % BITS_PER_UNIT != 0)
2728 continue;
2729
2730 /* For profitability, the two field references should fit within
2731 a single cache line. */
2732 if (align1 + offset2 - offset1 + size2 > param_align_bits)
2733 continue;
2734
2735 /* The two expressions cannot be dependent upon vdefs defined
2736 in bb1/bb2. */
2737 if (local_mem_dependence (def1, bb_for_def1)
2738 || local_mem_dependence (def2, bb_for_def2))
2739 continue;
2740
2741 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2742 bb0. We hoist the first one first so that a cache miss is handled
2743 efficiently regardless of hardware cache-fill policy. */
2744 gsi2 = gsi_for_stmt (def1);
2745 gsi_move_to_bb_end (&gsi2, bb0);
2746 gsi2 = gsi_for_stmt (def2);
2747 gsi_move_to_bb_end (&gsi2, bb0);
2748
2749 if (dump_file && (dump_flags & TDF_DETAILS))
2750 {
2751 fprintf (dump_file,
2752 "\nHoisting adjacent loads from %d and %d into %d: \n",
2753 bb_for_def1->index, bb_for_def2->index, bb0->index);
2754 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2755 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2756 }
2757 }
2758 }
2759
2760 /* Determine whether we should attempt to hoist adjacent loads out of
2761 diamond patterns in pass_phiopt. Always hoist loads if
2762 -fhoist-adjacent-loads is specified and the target machine has
2763 both a conditional move instruction and a defined cache line size. */
2764
2765 static bool
2766 gate_hoist_loads (void)
2767 {
2768 return (flag_hoist_adjacent_loads == 1
2769 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2770 && HAVE_conditional_move);
2771 }
2772
2773 /* This pass tries to replaces an if-then-else block with an
2774 assignment. We have four kinds of transformations. Some of these
2775 transformations are also performed by the ifcvt RTL optimizer.
2776
2777 Conditional Replacement
2778 -----------------------
2779
2780 This transformation, implemented in conditional_replacement,
2781 replaces
2782
2783 bb0:
2784 if (cond) goto bb2; else goto bb1;
2785 bb1:
2786 bb2:
2787 x = PHI <0 (bb1), 1 (bb0), ...>;
2788
2789 with
2790
2791 bb0:
2792 x' = cond;
2793 goto bb2;
2794 bb2:
2795 x = PHI <x' (bb0), ...>;
2796
2797 We remove bb1 as it becomes unreachable. This occurs often due to
2798 gimplification of conditionals.
2799
2800 Value Replacement
2801 -----------------
2802
2803 This transformation, implemented in value_replacement, replaces
2804
2805 bb0:
2806 if (a != b) goto bb2; else goto bb1;
2807 bb1:
2808 bb2:
2809 x = PHI <a (bb1), b (bb0), ...>;
2810
2811 with
2812
2813 bb0:
2814 bb2:
2815 x = PHI <b (bb0), ...>;
2816
2817 This opportunity can sometimes occur as a result of other
2818 optimizations.
2819
2820
2821 Another case caught by value replacement looks like this:
2822
2823 bb0:
2824 t1 = a == CONST;
2825 t2 = b > c;
2826 t3 = t1 & t2;
2827 if (t3 != 0) goto bb1; else goto bb2;
2828 bb1:
2829 bb2:
2830 x = PHI (CONST, a)
2831
2832 Gets replaced with:
2833 bb0:
2834 bb2:
2835 t1 = a == CONST;
2836 t2 = b > c;
2837 t3 = t1 & t2;
2838 x = a;
2839
2840 ABS Replacement
2841 ---------------
2842
2843 This transformation, implemented in abs_replacement, replaces
2844
2845 bb0:
2846 if (a >= 0) goto bb2; else goto bb1;
2847 bb1:
2848 x = -a;
2849 bb2:
2850 x = PHI <x (bb1), a (bb0), ...>;
2851
2852 with
2853
2854 bb0:
2855 x' = ABS_EXPR< a >;
2856 bb2:
2857 x = PHI <x' (bb0), ...>;
2858
2859 MIN/MAX Replacement
2860 -------------------
2861
2862 This transformation, minmax_replacement replaces
2863
2864 bb0:
2865 if (a <= b) goto bb2; else goto bb1;
2866 bb1:
2867 bb2:
2868 x = PHI <b (bb1), a (bb0), ...>;
2869
2870 with
2871
2872 bb0:
2873 x' = MIN_EXPR (a, b)
2874 bb2:
2875 x = PHI <x' (bb0), ...>;
2876
2877 A similar transformation is done for MAX_EXPR.
2878
2879
2880 This pass also performs a fifth transformation of a slightly different
2881 flavor.
2882
2883 Factor conversion in COND_EXPR
2884 ------------------------------
2885
2886 This transformation factors the conversion out of COND_EXPR with
2887 factor_out_conditional_conversion.
2888
2889 For example:
2890 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2891 <bb 3>:
2892 tmp = (int) a;
2893 <bb 4>:
2894 tmp = PHI <tmp, CST>
2895
2896 Into:
2897 if (a <= CST) goto <bb 3>; else goto <bb 4>;
2898 <bb 3>:
2899 <bb 4>:
2900 a = PHI <a, CST>
2901 tmp = (int) a;
2902
2903 Adjacent Load Hoisting
2904 ----------------------
2905
2906 This transformation replaces
2907
2908 bb0:
2909 if (...) goto bb2; else goto bb1;
2910 bb1:
2911 x1 = (<expr>).field1;
2912 goto bb3;
2913 bb2:
2914 x2 = (<expr>).field2;
2915 bb3:
2916 # x = PHI <x1, x2>;
2917
2918 with
2919
2920 bb0:
2921 x1 = (<expr>).field1;
2922 x2 = (<expr>).field2;
2923 if (...) goto bb2; else goto bb1;
2924 bb1:
2925 goto bb3;
2926 bb2:
2927 bb3:
2928 # x = PHI <x1, x2>;
2929
2930 The purpose of this transformation is to enable generation of conditional
2931 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
2932 the loads is speculative, the transformation is restricted to very
2933 specific cases to avoid introducing a page fault. We are looking for
2934 the common idiom:
2935
2936 if (...)
2937 x = y->left;
2938 else
2939 x = y->right;
2940
2941 where left and right are typically adjacent pointers in a tree structure. */
2942
2943 namespace {
2944
2945 const pass_data pass_data_phiopt =
2946 {
2947 GIMPLE_PASS, /* type */
2948 "phiopt", /* name */
2949 OPTGROUP_NONE, /* optinfo_flags */
2950 TV_TREE_PHIOPT, /* tv_id */
2951 ( PROP_cfg | PROP_ssa ), /* properties_required */
2952 0, /* properties_provided */
2953 0, /* properties_destroyed */
2954 0, /* todo_flags_start */
2955 0, /* todo_flags_finish */
2956 };
2957
2958 class pass_phiopt : public gimple_opt_pass
2959 {
2960 public:
2961 pass_phiopt (gcc::context *ctxt)
2962 : gimple_opt_pass (pass_data_phiopt, ctxt), early_p (false)
2963 {}
2964
2965 /* opt_pass methods: */
2966 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2967 void set_pass_param (unsigned n, bool param)
2968 {
2969 gcc_assert (n == 0);
2970 early_p = param;
2971 }
2972 virtual bool gate (function *) { return flag_ssa_phiopt; }
2973 virtual unsigned int execute (function *)
2974 {
2975 return tree_ssa_phiopt_worker (false,
2976 !early_p ? gate_hoist_loads () : false,
2977 early_p);
2978 }
2979
2980 private:
2981 bool early_p;
2982 }; // class pass_phiopt
2983
2984 } // anon namespace
2985
2986 gimple_opt_pass *
2987 make_pass_phiopt (gcc::context *ctxt)
2988 {
2989 return new pass_phiopt (ctxt);
2990 }
2991
2992 namespace {
2993
2994 const pass_data pass_data_cselim =
2995 {
2996 GIMPLE_PASS, /* type */
2997 "cselim", /* name */
2998 OPTGROUP_NONE, /* optinfo_flags */
2999 TV_TREE_PHIOPT, /* tv_id */
3000 ( PROP_cfg | PROP_ssa ), /* properties_required */
3001 0, /* properties_provided */
3002 0, /* properties_destroyed */
3003 0, /* todo_flags_start */
3004 0, /* todo_flags_finish */
3005 };
3006
3007 class pass_cselim : public gimple_opt_pass
3008 {
3009 public:
3010 pass_cselim (gcc::context *ctxt)
3011 : gimple_opt_pass (pass_data_cselim, ctxt)
3012 {}
3013
3014 /* opt_pass methods: */
3015 virtual bool gate (function *) { return flag_tree_cselim; }
3016 virtual unsigned int execute (function *) { return tree_ssa_cs_elim (); }
3017
3018 }; // class pass_cselim
3019
3020 } // anon namespace
3021
3022 gimple_opt_pass *
3023 make_pass_cselim (gcc::context *ctxt)
3024 {
3025 return new pass_cselim (ctxt);
3026 }