]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vrp.c
invoke.texi (-fvar-tracking-assignments): New.
[thirdparty/gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44 static sbitmap *live;
45
46 /* Return true if the SSA name NAME is live on the edge E. */
47
48 static bool
49 live_on_edge (edge e, tree name)
50 {
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53 }
54
55 /* Local functions. */
56 static int compare_values (tree val1, tree val2);
57 static int compare_values_warnv (tree val1, tree val2, bool *);
58 static void vrp_meet (value_range_t *, value_range_t *);
59 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
60 tree, tree, bool, bool *,
61 bool *);
62
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68 struct assert_locus_d
69 {
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si;
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
86 /* Expression to compare. */
87 tree expr;
88
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91 };
92
93 typedef struct assert_locus_d *assert_locus_t;
94
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for;
98
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t *asserts_for;
103
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t **vr_value;
107
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111 static int *vr_phi_edge_counts;
112
113 typedef struct {
114 gimple stmt;
115 tree vec;
116 } switch_update;
117
118 static VEC (edge, heap) *to_remove_edges;
119 DEF_VEC_O(switch_update);
120 DEF_VEC_ALLOC_O(switch_update, heap);
121 static VEC (switch_update, heap) *to_update_switch_stmts;
122
123
124 /* Return the maximum value for TYPE. */
125
126 static inline tree
127 vrp_val_max (const_tree type)
128 {
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
132 return TYPE_MAX_VALUE (type);
133 }
134
135 /* Return the minimum value for TYPE. */
136
137 static inline tree
138 vrp_val_min (const_tree type)
139 {
140 if (!INTEGRAL_TYPE_P (type))
141 return NULL_TREE;
142
143 return TYPE_MIN_VALUE (type);
144 }
145
146 /* Return whether VAL is equal to the maximum value of its type. This
147 will be true for a positive overflow infinity. We can't do a
148 simple equality comparison with TYPE_MAX_VALUE because C typedefs
149 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
150 to the integer constant with the same value in the type. */
151
152 static inline bool
153 vrp_val_is_max (const_tree val)
154 {
155 tree type_max = vrp_val_max (TREE_TYPE (val));
156 return (val == type_max
157 || (type_max != NULL_TREE
158 && operand_equal_p (val, type_max, 0)));
159 }
160
161 /* Return whether VAL is equal to the minimum value of its type. This
162 will be true for a negative overflow infinity. */
163
164 static inline bool
165 vrp_val_is_min (const_tree val)
166 {
167 tree type_min = vrp_val_min (TREE_TYPE (val));
168 return (val == type_min
169 || (type_min != NULL_TREE
170 && operand_equal_p (val, type_min, 0)));
171 }
172
173
174 /* Return whether TYPE should use an overflow infinity distinct from
175 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
176 represent a signed overflow during VRP computations. An infinity
177 is distinct from a half-range, which will go from some number to
178 TYPE_{MIN,MAX}_VALUE. */
179
180 static inline bool
181 needs_overflow_infinity (const_tree type)
182 {
183 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
184 }
185
186 /* Return whether TYPE can support our overflow infinity
187 representation: we use the TREE_OVERFLOW flag, which only exists
188 for constants. If TYPE doesn't support this, we don't optimize
189 cases which would require signed overflow--we drop them to
190 VARYING. */
191
192 static inline bool
193 supports_overflow_infinity (const_tree type)
194 {
195 tree min = vrp_val_min (type), max = vrp_val_max (type);
196 #ifdef ENABLE_CHECKING
197 gcc_assert (needs_overflow_infinity (type));
198 #endif
199 return (min != NULL_TREE
200 && CONSTANT_CLASS_P (min)
201 && max != NULL_TREE
202 && CONSTANT_CLASS_P (max));
203 }
204
205 /* VAL is the maximum or minimum value of a type. Return a
206 corresponding overflow infinity. */
207
208 static inline tree
209 make_overflow_infinity (tree val)
210 {
211 #ifdef ENABLE_CHECKING
212 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
213 #endif
214 val = copy_node (val);
215 TREE_OVERFLOW (val) = 1;
216 return val;
217 }
218
219 /* Return a negative overflow infinity for TYPE. */
220
221 static inline tree
222 negative_overflow_infinity (tree type)
223 {
224 #ifdef ENABLE_CHECKING
225 gcc_assert (supports_overflow_infinity (type));
226 #endif
227 return make_overflow_infinity (vrp_val_min (type));
228 }
229
230 /* Return a positive overflow infinity for TYPE. */
231
232 static inline tree
233 positive_overflow_infinity (tree type)
234 {
235 #ifdef ENABLE_CHECKING
236 gcc_assert (supports_overflow_infinity (type));
237 #endif
238 return make_overflow_infinity (vrp_val_max (type));
239 }
240
241 /* Return whether VAL is a negative overflow infinity. */
242
243 static inline bool
244 is_negative_overflow_infinity (const_tree val)
245 {
246 return (needs_overflow_infinity (TREE_TYPE (val))
247 && CONSTANT_CLASS_P (val)
248 && TREE_OVERFLOW (val)
249 && vrp_val_is_min (val));
250 }
251
252 /* Return whether VAL is a positive overflow infinity. */
253
254 static inline bool
255 is_positive_overflow_infinity (const_tree val)
256 {
257 return (needs_overflow_infinity (TREE_TYPE (val))
258 && CONSTANT_CLASS_P (val)
259 && TREE_OVERFLOW (val)
260 && vrp_val_is_max (val));
261 }
262
263 /* Return whether VAL is a positive or negative overflow infinity. */
264
265 static inline bool
266 is_overflow_infinity (const_tree val)
267 {
268 return (needs_overflow_infinity (TREE_TYPE (val))
269 && CONSTANT_CLASS_P (val)
270 && TREE_OVERFLOW (val)
271 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
272 }
273
274 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
275
276 static inline bool
277 stmt_overflow_infinity (gimple stmt)
278 {
279 if (is_gimple_assign (stmt)
280 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
281 GIMPLE_SINGLE_RHS)
282 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
283 return false;
284 }
285
286 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
287 the same value with TREE_OVERFLOW clear. This can be used to avoid
288 confusing a regular value with an overflow value. */
289
290 static inline tree
291 avoid_overflow_infinity (tree val)
292 {
293 if (!is_overflow_infinity (val))
294 return val;
295
296 if (vrp_val_is_max (val))
297 return vrp_val_max (TREE_TYPE (val));
298 else
299 {
300 #ifdef ENABLE_CHECKING
301 gcc_assert (vrp_val_is_min (val));
302 #endif
303 return vrp_val_min (TREE_TYPE (val));
304 }
305 }
306
307
308 /* Return true if ARG is marked with the nonnull attribute in the
309 current function signature. */
310
311 static bool
312 nonnull_arg_p (const_tree arg)
313 {
314 tree t, attrs, fntype;
315 unsigned HOST_WIDE_INT arg_num;
316
317 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
318
319 /* The static chain decl is always non null. */
320 if (arg == cfun->static_chain_decl)
321 return true;
322
323 fntype = TREE_TYPE (current_function_decl);
324 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
325
326 /* If "nonnull" wasn't specified, we know nothing about the argument. */
327 if (attrs == NULL_TREE)
328 return false;
329
330 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
331 if (TREE_VALUE (attrs) == NULL_TREE)
332 return true;
333
334 /* Get the position number for ARG in the function signature. */
335 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
336 t;
337 t = TREE_CHAIN (t), arg_num++)
338 {
339 if (t == arg)
340 break;
341 }
342
343 gcc_assert (t == arg);
344
345 /* Now see if ARG_NUM is mentioned in the nonnull list. */
346 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
347 {
348 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
349 return true;
350 }
351
352 return false;
353 }
354
355
356 /* Set value range VR to VR_VARYING. */
357
358 static inline void
359 set_value_range_to_varying (value_range_t *vr)
360 {
361 vr->type = VR_VARYING;
362 vr->min = vr->max = NULL_TREE;
363 if (vr->equiv)
364 bitmap_clear (vr->equiv);
365 }
366
367
368 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
369
370 static void
371 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
372 tree max, bitmap equiv)
373 {
374 #if defined ENABLE_CHECKING
375 /* Check the validity of the range. */
376 if (t == VR_RANGE || t == VR_ANTI_RANGE)
377 {
378 int cmp;
379
380 gcc_assert (min && max);
381
382 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
383 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
384
385 cmp = compare_values (min, max);
386 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
387
388 if (needs_overflow_infinity (TREE_TYPE (min)))
389 gcc_assert (!is_overflow_infinity (min)
390 || !is_overflow_infinity (max));
391 }
392
393 if (t == VR_UNDEFINED || t == VR_VARYING)
394 gcc_assert (min == NULL_TREE && max == NULL_TREE);
395
396 if (t == VR_UNDEFINED || t == VR_VARYING)
397 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
398 #endif
399
400 vr->type = t;
401 vr->min = min;
402 vr->max = max;
403
404 /* Since updating the equivalence set involves deep copying the
405 bitmaps, only do it if absolutely necessary. */
406 if (vr->equiv == NULL
407 && equiv != NULL)
408 vr->equiv = BITMAP_ALLOC (NULL);
409
410 if (equiv != vr->equiv)
411 {
412 if (equiv && !bitmap_empty_p (equiv))
413 bitmap_copy (vr->equiv, equiv);
414 else
415 bitmap_clear (vr->equiv);
416 }
417 }
418
419
420 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
421 This means adjusting T, MIN and MAX representing the case of a
422 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
423 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
424 In corner cases where MAX+1 or MIN-1 wraps this will fall back
425 to varying.
426 This routine exists to ease canonicalization in the case where we
427 extract ranges from var + CST op limit. */
428
429 static void
430 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
431 tree min, tree max, bitmap equiv)
432 {
433 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
434 if ((t != VR_RANGE
435 && t != VR_ANTI_RANGE)
436 || TREE_CODE (min) != INTEGER_CST
437 || TREE_CODE (max) != INTEGER_CST)
438 {
439 set_value_range (vr, t, min, max, equiv);
440 return;
441 }
442
443 /* Wrong order for min and max, to swap them and the VR type we need
444 to adjust them. */
445 if (tree_int_cst_lt (max, min))
446 {
447 tree one = build_int_cst (TREE_TYPE (min), 1);
448 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
449 max = int_const_binop (MINUS_EXPR, min, one, 0);
450 min = tmp;
451
452 /* There's one corner case, if we had [C+1, C] before we now have
453 that again. But this represents an empty value range, so drop
454 to varying in this case. */
455 if (tree_int_cst_lt (max, min))
456 {
457 set_value_range_to_varying (vr);
458 return;
459 }
460
461 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 }
463
464 /* Anti-ranges that can be represented as ranges should be so. */
465 if (t == VR_ANTI_RANGE)
466 {
467 bool is_min = vrp_val_is_min (min);
468 bool is_max = vrp_val_is_max (max);
469
470 if (is_min && is_max)
471 {
472 /* We cannot deal with empty ranges, drop to varying. */
473 set_value_range_to_varying (vr);
474 return;
475 }
476 else if (is_min
477 /* As a special exception preserve non-null ranges. */
478 && !(TYPE_UNSIGNED (TREE_TYPE (min))
479 && integer_zerop (max)))
480 {
481 tree one = build_int_cst (TREE_TYPE (max), 1);
482 min = int_const_binop (PLUS_EXPR, max, one, 0);
483 max = vrp_val_max (TREE_TYPE (max));
484 t = VR_RANGE;
485 }
486 else if (is_max)
487 {
488 tree one = build_int_cst (TREE_TYPE (min), 1);
489 max = int_const_binop (MINUS_EXPR, min, one, 0);
490 min = vrp_val_min (TREE_TYPE (min));
491 t = VR_RANGE;
492 }
493 }
494
495 set_value_range (vr, t, min, max, equiv);
496 }
497
498 /* Copy value range FROM into value range TO. */
499
500 static inline void
501 copy_value_range (value_range_t *to, value_range_t *from)
502 {
503 set_value_range (to, from->type, from->min, from->max, from->equiv);
504 }
505
506 /* Set value range VR to a single value. This function is only called
507 with values we get from statements, and exists to clear the
508 TREE_OVERFLOW flag so that we don't think we have an overflow
509 infinity when we shouldn't. */
510
511 static inline void
512 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
513 {
514 gcc_assert (is_gimple_min_invariant (val));
515 val = avoid_overflow_infinity (val);
516 set_value_range (vr, VR_RANGE, val, val, equiv);
517 }
518
519 /* Set value range VR to a non-negative range of type TYPE.
520 OVERFLOW_INFINITY indicates whether to use an overflow infinity
521 rather than TYPE_MAX_VALUE; this should be true if we determine
522 that the range is nonnegative based on the assumption that signed
523 overflow does not occur. */
524
525 static inline void
526 set_value_range_to_nonnegative (value_range_t *vr, tree type,
527 bool overflow_infinity)
528 {
529 tree zero;
530
531 if (overflow_infinity && !supports_overflow_infinity (type))
532 {
533 set_value_range_to_varying (vr);
534 return;
535 }
536
537 zero = build_int_cst (type, 0);
538 set_value_range (vr, VR_RANGE, zero,
539 (overflow_infinity
540 ? positive_overflow_infinity (type)
541 : TYPE_MAX_VALUE (type)),
542 vr->equiv);
543 }
544
545 /* Set value range VR to a non-NULL range of type TYPE. */
546
547 static inline void
548 set_value_range_to_nonnull (value_range_t *vr, tree type)
549 {
550 tree zero = build_int_cst (type, 0);
551 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
552 }
553
554
555 /* Set value range VR to a NULL range of type TYPE. */
556
557 static inline void
558 set_value_range_to_null (value_range_t *vr, tree type)
559 {
560 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
561 }
562
563
564 /* Set value range VR to a range of a truthvalue of type TYPE. */
565
566 static inline void
567 set_value_range_to_truthvalue (value_range_t *vr, tree type)
568 {
569 if (TYPE_PRECISION (type) == 1)
570 set_value_range_to_varying (vr);
571 else
572 set_value_range (vr, VR_RANGE,
573 build_int_cst (type, 0), build_int_cst (type, 1),
574 vr->equiv);
575 }
576
577
578 /* Set value range VR to VR_UNDEFINED. */
579
580 static inline void
581 set_value_range_to_undefined (value_range_t *vr)
582 {
583 vr->type = VR_UNDEFINED;
584 vr->min = vr->max = NULL_TREE;
585 if (vr->equiv)
586 bitmap_clear (vr->equiv);
587 }
588
589
590 /* If abs (min) < abs (max), set VR to [-max, max], if
591 abs (min) >= abs (max), set VR to [-min, min]. */
592
593 static void
594 abs_extent_range (value_range_t *vr, tree min, tree max)
595 {
596 int cmp;
597
598 gcc_assert (TREE_CODE (min) == INTEGER_CST);
599 gcc_assert (TREE_CODE (max) == INTEGER_CST);
600 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
601 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
602 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
603 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
604 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
605 {
606 set_value_range_to_varying (vr);
607 return;
608 }
609 cmp = compare_values (min, max);
610 if (cmp == -1)
611 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
612 else if (cmp == 0 || cmp == 1)
613 {
614 max = min;
615 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
616 }
617 else
618 {
619 set_value_range_to_varying (vr);
620 return;
621 }
622 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
623 }
624
625
626 /* Return value range information for VAR.
627
628 If we have no values ranges recorded (ie, VRP is not running), then
629 return NULL. Otherwise create an empty range if none existed for VAR. */
630
631 static value_range_t *
632 get_value_range (const_tree var)
633 {
634 value_range_t *vr;
635 tree sym;
636 unsigned ver = SSA_NAME_VERSION (var);
637
638 /* If we have no recorded ranges, then return NULL. */
639 if (! vr_value)
640 return NULL;
641
642 vr = vr_value[ver];
643 if (vr)
644 return vr;
645
646 /* Create a default value range. */
647 vr_value[ver] = vr = XCNEW (value_range_t);
648
649 /* Defer allocating the equivalence set. */
650 vr->equiv = NULL;
651
652 /* If VAR is a default definition, the variable can take any value
653 in VAR's type. */
654 sym = SSA_NAME_VAR (var);
655 if (SSA_NAME_IS_DEFAULT_DEF (var))
656 {
657 /* Try to use the "nonnull" attribute to create ~[0, 0]
658 anti-ranges for pointers. Note that this is only valid with
659 default definitions of PARM_DECLs. */
660 if (TREE_CODE (sym) == PARM_DECL
661 && POINTER_TYPE_P (TREE_TYPE (sym))
662 && nonnull_arg_p (sym))
663 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
664 else
665 set_value_range_to_varying (vr);
666 }
667
668 return vr;
669 }
670
671 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
672
673 static inline bool
674 vrp_operand_equal_p (const_tree val1, const_tree val2)
675 {
676 if (val1 == val2)
677 return true;
678 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
679 return false;
680 if (is_overflow_infinity (val1))
681 return is_overflow_infinity (val2);
682 return true;
683 }
684
685 /* Return true, if the bitmaps B1 and B2 are equal. */
686
687 static inline bool
688 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
689 {
690 return (b1 == b2
691 || (b1 && b2
692 && bitmap_equal_p (b1, b2)));
693 }
694
695 /* Update the value range and equivalence set for variable VAR to
696 NEW_VR. Return true if NEW_VR is different from VAR's previous
697 value.
698
699 NOTE: This function assumes that NEW_VR is a temporary value range
700 object created for the sole purpose of updating VAR's range. The
701 storage used by the equivalence set from NEW_VR will be freed by
702 this function. Do not call update_value_range when NEW_VR
703 is the range object associated with another SSA name. */
704
705 static inline bool
706 update_value_range (const_tree var, value_range_t *new_vr)
707 {
708 value_range_t *old_vr;
709 bool is_new;
710
711 /* Update the value range, if necessary. */
712 old_vr = get_value_range (var);
713 is_new = old_vr->type != new_vr->type
714 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
715 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
716 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
717
718 if (is_new)
719 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
720 new_vr->equiv);
721
722 BITMAP_FREE (new_vr->equiv);
723
724 return is_new;
725 }
726
727
728 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
729 point where equivalence processing can be turned on/off. */
730
731 static void
732 add_equivalence (bitmap *equiv, const_tree var)
733 {
734 unsigned ver = SSA_NAME_VERSION (var);
735 value_range_t *vr = vr_value[ver];
736
737 if (*equiv == NULL)
738 *equiv = BITMAP_ALLOC (NULL);
739 bitmap_set_bit (*equiv, ver);
740 if (vr && vr->equiv)
741 bitmap_ior_into (*equiv, vr->equiv);
742 }
743
744
745 /* Return true if VR is ~[0, 0]. */
746
747 static inline bool
748 range_is_nonnull (value_range_t *vr)
749 {
750 return vr->type == VR_ANTI_RANGE
751 && integer_zerop (vr->min)
752 && integer_zerop (vr->max);
753 }
754
755
756 /* Return true if VR is [0, 0]. */
757
758 static inline bool
759 range_is_null (value_range_t *vr)
760 {
761 return vr->type == VR_RANGE
762 && integer_zerop (vr->min)
763 && integer_zerop (vr->max);
764 }
765
766
767 /* Return true if value range VR involves at least one symbol. */
768
769 static inline bool
770 symbolic_range_p (value_range_t *vr)
771 {
772 return (!is_gimple_min_invariant (vr->min)
773 || !is_gimple_min_invariant (vr->max));
774 }
775
776 /* Return true if value range VR uses an overflow infinity. */
777
778 static inline bool
779 overflow_infinity_range_p (value_range_t *vr)
780 {
781 return (vr->type == VR_RANGE
782 && (is_overflow_infinity (vr->min)
783 || is_overflow_infinity (vr->max)));
784 }
785
786 /* Return false if we can not make a valid comparison based on VR;
787 this will be the case if it uses an overflow infinity and overflow
788 is not undefined (i.e., -fno-strict-overflow is in effect).
789 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
790 uses an overflow infinity. */
791
792 static bool
793 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
794 {
795 gcc_assert (vr->type == VR_RANGE);
796 if (is_overflow_infinity (vr->min))
797 {
798 *strict_overflow_p = true;
799 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
800 return false;
801 }
802 if (is_overflow_infinity (vr->max))
803 {
804 *strict_overflow_p = true;
805 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
806 return false;
807 }
808 return true;
809 }
810
811
812 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
813 ranges obtained so far. */
814
815 static bool
816 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
817 {
818 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
819 || (TREE_CODE (expr) == SSA_NAME
820 && ssa_name_nonnegative_p (expr)));
821 }
822
823 /* Return true if the result of assignment STMT is know to be non-negative.
824 If the return value is based on the assumption that signed overflow is
825 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
826 *STRICT_OVERFLOW_P.*/
827
828 static bool
829 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
830 {
831 enum tree_code code = gimple_assign_rhs_code (stmt);
832 switch (get_gimple_rhs_class (code))
833 {
834 case GIMPLE_UNARY_RHS:
835 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
836 gimple_expr_type (stmt),
837 gimple_assign_rhs1 (stmt),
838 strict_overflow_p);
839 case GIMPLE_BINARY_RHS:
840 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
841 gimple_expr_type (stmt),
842 gimple_assign_rhs1 (stmt),
843 gimple_assign_rhs2 (stmt),
844 strict_overflow_p);
845 case GIMPLE_SINGLE_RHS:
846 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
847 strict_overflow_p);
848 case GIMPLE_INVALID_RHS:
849 gcc_unreachable ();
850 default:
851 gcc_unreachable ();
852 }
853 }
854
855 /* Return true if return value of call STMT is know to be non-negative.
856 If the return value is based on the assumption that signed overflow is
857 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
858 *STRICT_OVERFLOW_P.*/
859
860 static bool
861 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
862 {
863 tree arg0 = gimple_call_num_args (stmt) > 0 ?
864 gimple_call_arg (stmt, 0) : NULL_TREE;
865 tree arg1 = gimple_call_num_args (stmt) > 1 ?
866 gimple_call_arg (stmt, 1) : NULL_TREE;
867
868 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
869 gimple_call_fndecl (stmt),
870 arg0,
871 arg1,
872 strict_overflow_p);
873 }
874
875 /* Return true if STMT is know to to compute a non-negative value.
876 If the return value is based on the assumption that signed overflow is
877 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
878 *STRICT_OVERFLOW_P.*/
879
880 static bool
881 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
882 {
883 switch (gimple_code (stmt))
884 {
885 case GIMPLE_ASSIGN:
886 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
887 case GIMPLE_CALL:
888 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
889 default:
890 gcc_unreachable ();
891 }
892 }
893
894 /* Return true if the result of assignment STMT is know to be non-zero.
895 If the return value is based on the assumption that signed overflow is
896 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
897 *STRICT_OVERFLOW_P.*/
898
899 static bool
900 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
901 {
902 enum tree_code code = gimple_assign_rhs_code (stmt);
903 switch (get_gimple_rhs_class (code))
904 {
905 case GIMPLE_UNARY_RHS:
906 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
907 gimple_expr_type (stmt),
908 gimple_assign_rhs1 (stmt),
909 strict_overflow_p);
910 case GIMPLE_BINARY_RHS:
911 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
912 gimple_expr_type (stmt),
913 gimple_assign_rhs1 (stmt),
914 gimple_assign_rhs2 (stmt),
915 strict_overflow_p);
916 case GIMPLE_SINGLE_RHS:
917 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
918 strict_overflow_p);
919 case GIMPLE_INVALID_RHS:
920 gcc_unreachable ();
921 default:
922 gcc_unreachable ();
923 }
924 }
925
926 /* Return true if STMT is know to to compute a non-zero value.
927 If the return value is based on the assumption that signed overflow is
928 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
929 *STRICT_OVERFLOW_P.*/
930
931 static bool
932 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
933 {
934 switch (gimple_code (stmt))
935 {
936 case GIMPLE_ASSIGN:
937 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
938 case GIMPLE_CALL:
939 return gimple_alloca_call_p (stmt);
940 default:
941 gcc_unreachable ();
942 }
943 }
944
945 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
946 obtained so far. */
947
948 static bool
949 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
950 {
951 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
952 return true;
953
954 /* If we have an expression of the form &X->a, then the expression
955 is nonnull if X is nonnull. */
956 if (is_gimple_assign (stmt)
957 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
958 {
959 tree expr = gimple_assign_rhs1 (stmt);
960 tree base = get_base_address (TREE_OPERAND (expr, 0));
961
962 if (base != NULL_TREE
963 && TREE_CODE (base) == INDIRECT_REF
964 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
965 {
966 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
967 if (range_is_nonnull (vr))
968 return true;
969 }
970 }
971
972 return false;
973 }
974
975 /* Returns true if EXPR is a valid value (as expected by compare_values) --
976 a gimple invariant, or SSA_NAME +- CST. */
977
978 static bool
979 valid_value_p (tree expr)
980 {
981 if (TREE_CODE (expr) == SSA_NAME)
982 return true;
983
984 if (TREE_CODE (expr) == PLUS_EXPR
985 || TREE_CODE (expr) == MINUS_EXPR)
986 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
987 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
988
989 return is_gimple_min_invariant (expr);
990 }
991
992 /* Return
993 1 if VAL < VAL2
994 0 if !(VAL < VAL2)
995 -2 if those are incomparable. */
996 static inline int
997 operand_less_p (tree val, tree val2)
998 {
999 /* LT is folded faster than GE and others. Inline the common case. */
1000 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1001 {
1002 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1003 return INT_CST_LT_UNSIGNED (val, val2);
1004 else
1005 {
1006 if (INT_CST_LT (val, val2))
1007 return 1;
1008 }
1009 }
1010 else
1011 {
1012 tree tcmp;
1013
1014 fold_defer_overflow_warnings ();
1015
1016 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1017
1018 fold_undefer_and_ignore_overflow_warnings ();
1019
1020 if (!tcmp
1021 || TREE_CODE (tcmp) != INTEGER_CST)
1022 return -2;
1023
1024 if (!integer_zerop (tcmp))
1025 return 1;
1026 }
1027
1028 /* val >= val2, not considering overflow infinity. */
1029 if (is_negative_overflow_infinity (val))
1030 return is_negative_overflow_infinity (val2) ? 0 : 1;
1031 else if (is_positive_overflow_infinity (val2))
1032 return is_positive_overflow_infinity (val) ? 0 : 1;
1033
1034 return 0;
1035 }
1036
1037 /* Compare two values VAL1 and VAL2. Return
1038
1039 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1040 -1 if VAL1 < VAL2,
1041 0 if VAL1 == VAL2,
1042 +1 if VAL1 > VAL2, and
1043 +2 if VAL1 != VAL2
1044
1045 This is similar to tree_int_cst_compare but supports pointer values
1046 and values that cannot be compared at compile time.
1047
1048 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1049 true if the return value is only valid if we assume that signed
1050 overflow is undefined. */
1051
1052 static int
1053 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1054 {
1055 if (val1 == val2)
1056 return 0;
1057
1058 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1059 both integers. */
1060 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1061 == POINTER_TYPE_P (TREE_TYPE (val2)));
1062 /* Convert the two values into the same type. This is needed because
1063 sizetype causes sign extension even for unsigned types. */
1064 val2 = fold_convert (TREE_TYPE (val1), val2);
1065 STRIP_USELESS_TYPE_CONVERSION (val2);
1066
1067 if ((TREE_CODE (val1) == SSA_NAME
1068 || TREE_CODE (val1) == PLUS_EXPR
1069 || TREE_CODE (val1) == MINUS_EXPR)
1070 && (TREE_CODE (val2) == SSA_NAME
1071 || TREE_CODE (val2) == PLUS_EXPR
1072 || TREE_CODE (val2) == MINUS_EXPR))
1073 {
1074 tree n1, c1, n2, c2;
1075 enum tree_code code1, code2;
1076
1077 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1078 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1079 same name, return -2. */
1080 if (TREE_CODE (val1) == SSA_NAME)
1081 {
1082 code1 = SSA_NAME;
1083 n1 = val1;
1084 c1 = NULL_TREE;
1085 }
1086 else
1087 {
1088 code1 = TREE_CODE (val1);
1089 n1 = TREE_OPERAND (val1, 0);
1090 c1 = TREE_OPERAND (val1, 1);
1091 if (tree_int_cst_sgn (c1) == -1)
1092 {
1093 if (is_negative_overflow_infinity (c1))
1094 return -2;
1095 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1096 if (!c1)
1097 return -2;
1098 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1099 }
1100 }
1101
1102 if (TREE_CODE (val2) == SSA_NAME)
1103 {
1104 code2 = SSA_NAME;
1105 n2 = val2;
1106 c2 = NULL_TREE;
1107 }
1108 else
1109 {
1110 code2 = TREE_CODE (val2);
1111 n2 = TREE_OPERAND (val2, 0);
1112 c2 = TREE_OPERAND (val2, 1);
1113 if (tree_int_cst_sgn (c2) == -1)
1114 {
1115 if (is_negative_overflow_infinity (c2))
1116 return -2;
1117 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1118 if (!c2)
1119 return -2;
1120 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1121 }
1122 }
1123
1124 /* Both values must use the same name. */
1125 if (n1 != n2)
1126 return -2;
1127
1128 if (code1 == SSA_NAME
1129 && code2 == SSA_NAME)
1130 /* NAME == NAME */
1131 return 0;
1132
1133 /* If overflow is defined we cannot simplify more. */
1134 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1135 return -2;
1136
1137 if (strict_overflow_p != NULL
1138 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1139 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1140 *strict_overflow_p = true;
1141
1142 if (code1 == SSA_NAME)
1143 {
1144 if (code2 == PLUS_EXPR)
1145 /* NAME < NAME + CST */
1146 return -1;
1147 else if (code2 == MINUS_EXPR)
1148 /* NAME > NAME - CST */
1149 return 1;
1150 }
1151 else if (code1 == PLUS_EXPR)
1152 {
1153 if (code2 == SSA_NAME)
1154 /* NAME + CST > NAME */
1155 return 1;
1156 else if (code2 == PLUS_EXPR)
1157 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1158 return compare_values_warnv (c1, c2, strict_overflow_p);
1159 else if (code2 == MINUS_EXPR)
1160 /* NAME + CST1 > NAME - CST2 */
1161 return 1;
1162 }
1163 else if (code1 == MINUS_EXPR)
1164 {
1165 if (code2 == SSA_NAME)
1166 /* NAME - CST < NAME */
1167 return -1;
1168 else if (code2 == PLUS_EXPR)
1169 /* NAME - CST1 < NAME + CST2 */
1170 return -1;
1171 else if (code2 == MINUS_EXPR)
1172 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1173 C1 and C2 are swapped in the call to compare_values. */
1174 return compare_values_warnv (c2, c1, strict_overflow_p);
1175 }
1176
1177 gcc_unreachable ();
1178 }
1179
1180 /* We cannot compare non-constants. */
1181 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1182 return -2;
1183
1184 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1185 {
1186 /* We cannot compare overflowed values, except for overflow
1187 infinities. */
1188 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1189 {
1190 if (strict_overflow_p != NULL)
1191 *strict_overflow_p = true;
1192 if (is_negative_overflow_infinity (val1))
1193 return is_negative_overflow_infinity (val2) ? 0 : -1;
1194 else if (is_negative_overflow_infinity (val2))
1195 return 1;
1196 else if (is_positive_overflow_infinity (val1))
1197 return is_positive_overflow_infinity (val2) ? 0 : 1;
1198 else if (is_positive_overflow_infinity (val2))
1199 return -1;
1200 return -2;
1201 }
1202
1203 return tree_int_cst_compare (val1, val2);
1204 }
1205 else
1206 {
1207 tree t;
1208
1209 /* First see if VAL1 and VAL2 are not the same. */
1210 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1211 return 0;
1212
1213 /* If VAL1 is a lower address than VAL2, return -1. */
1214 if (operand_less_p (val1, val2) == 1)
1215 return -1;
1216
1217 /* If VAL1 is a higher address than VAL2, return +1. */
1218 if (operand_less_p (val2, val1) == 1)
1219 return 1;
1220
1221 /* If VAL1 is different than VAL2, return +2.
1222 For integer constants we either have already returned -1 or 1
1223 or they are equivalent. We still might succeed in proving
1224 something about non-trivial operands. */
1225 if (TREE_CODE (val1) != INTEGER_CST
1226 || TREE_CODE (val2) != INTEGER_CST)
1227 {
1228 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1229 if (t && integer_onep (t))
1230 return 2;
1231 }
1232
1233 return -2;
1234 }
1235 }
1236
1237 /* Compare values like compare_values_warnv, but treat comparisons of
1238 nonconstants which rely on undefined overflow as incomparable. */
1239
1240 static int
1241 compare_values (tree val1, tree val2)
1242 {
1243 bool sop;
1244 int ret;
1245
1246 sop = false;
1247 ret = compare_values_warnv (val1, val2, &sop);
1248 if (sop
1249 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1250 ret = -2;
1251 return ret;
1252 }
1253
1254
1255 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1256 0 if VAL is not inside VR,
1257 -2 if we cannot tell either way.
1258
1259 FIXME, the current semantics of this functions are a bit quirky
1260 when taken in the context of VRP. In here we do not care
1261 about VR's type. If VR is the anti-range ~[3, 5] the call
1262 value_inside_range (4, VR) will return 1.
1263
1264 This is counter-intuitive in a strict sense, but the callers
1265 currently expect this. They are calling the function
1266 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1267 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1268 themselves.
1269
1270 This also applies to value_ranges_intersect_p and
1271 range_includes_zero_p. The semantics of VR_RANGE and
1272 VR_ANTI_RANGE should be encoded here, but that also means
1273 adapting the users of these functions to the new semantics.
1274
1275 Benchmark compile/20001226-1.c compilation time after changing this
1276 function. */
1277
1278 static inline int
1279 value_inside_range (tree val, value_range_t * vr)
1280 {
1281 int cmp1, cmp2;
1282
1283 cmp1 = operand_less_p (val, vr->min);
1284 if (cmp1 == -2)
1285 return -2;
1286 if (cmp1 == 1)
1287 return 0;
1288
1289 cmp2 = operand_less_p (vr->max, val);
1290 if (cmp2 == -2)
1291 return -2;
1292
1293 return !cmp2;
1294 }
1295
1296
1297 /* Return true if value ranges VR0 and VR1 have a non-empty
1298 intersection.
1299
1300 Benchmark compile/20001226-1.c compilation time after changing this
1301 function.
1302 */
1303
1304 static inline bool
1305 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1306 {
1307 /* The value ranges do not intersect if the maximum of the first range is
1308 less than the minimum of the second range or vice versa.
1309 When those relations are unknown, we can't do any better. */
1310 if (operand_less_p (vr0->max, vr1->min) != 0)
1311 return false;
1312 if (operand_less_p (vr1->max, vr0->min) != 0)
1313 return false;
1314 return true;
1315 }
1316
1317
1318 /* Return true if VR includes the value zero, false otherwise. FIXME,
1319 currently this will return false for an anti-range like ~[-4, 3].
1320 This will be wrong when the semantics of value_inside_range are
1321 modified (currently the users of this function expect these
1322 semantics). */
1323
1324 static inline bool
1325 range_includes_zero_p (value_range_t *vr)
1326 {
1327 tree zero;
1328
1329 gcc_assert (vr->type != VR_UNDEFINED
1330 && vr->type != VR_VARYING
1331 && !symbolic_range_p (vr));
1332
1333 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1334 return (value_inside_range (zero, vr) == 1);
1335 }
1336
1337 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1338 false otherwise or if no value range information is available. */
1339
1340 bool
1341 ssa_name_nonnegative_p (const_tree t)
1342 {
1343 value_range_t *vr = get_value_range (t);
1344
1345 if (!vr)
1346 return false;
1347
1348 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1349 which would return a useful value should be encoded as a VR_RANGE. */
1350 if (vr->type == VR_RANGE)
1351 {
1352 int result = compare_values (vr->min, integer_zero_node);
1353
1354 return (result == 0 || result == 1);
1355 }
1356 return false;
1357 }
1358
1359 /* If OP has a value range with a single constant value return that,
1360 otherwise return NULL_TREE. This returns OP itself if OP is a
1361 constant. */
1362
1363 static tree
1364 op_with_constant_singleton_value_range (tree op)
1365 {
1366 value_range_t *vr;
1367
1368 if (is_gimple_min_invariant (op))
1369 return op;
1370
1371 if (TREE_CODE (op) != SSA_NAME)
1372 return NULL_TREE;
1373
1374 vr = get_value_range (op);
1375 if (vr->type == VR_RANGE
1376 && operand_equal_p (vr->min, vr->max, 0)
1377 && is_gimple_min_invariant (vr->min))
1378 return vr->min;
1379
1380 return NULL_TREE;
1381 }
1382
1383
1384 /* Extract value range information from an ASSERT_EXPR EXPR and store
1385 it in *VR_P. */
1386
1387 static void
1388 extract_range_from_assert (value_range_t *vr_p, tree expr)
1389 {
1390 tree var, cond, limit, min, max, type;
1391 value_range_t *var_vr, *limit_vr;
1392 enum tree_code cond_code;
1393
1394 var = ASSERT_EXPR_VAR (expr);
1395 cond = ASSERT_EXPR_COND (expr);
1396
1397 gcc_assert (COMPARISON_CLASS_P (cond));
1398
1399 /* Find VAR in the ASSERT_EXPR conditional. */
1400 if (var == TREE_OPERAND (cond, 0)
1401 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1402 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1403 {
1404 /* If the predicate is of the form VAR COMP LIMIT, then we just
1405 take LIMIT from the RHS and use the same comparison code. */
1406 cond_code = TREE_CODE (cond);
1407 limit = TREE_OPERAND (cond, 1);
1408 cond = TREE_OPERAND (cond, 0);
1409 }
1410 else
1411 {
1412 /* If the predicate is of the form LIMIT COMP VAR, then we need
1413 to flip around the comparison code to create the proper range
1414 for VAR. */
1415 cond_code = swap_tree_comparison (TREE_CODE (cond));
1416 limit = TREE_OPERAND (cond, 0);
1417 cond = TREE_OPERAND (cond, 1);
1418 }
1419
1420 limit = avoid_overflow_infinity (limit);
1421
1422 type = TREE_TYPE (limit);
1423 gcc_assert (limit != var);
1424
1425 /* For pointer arithmetic, we only keep track of pointer equality
1426 and inequality. */
1427 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1428 {
1429 set_value_range_to_varying (vr_p);
1430 return;
1431 }
1432
1433 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1434 try to use LIMIT's range to avoid creating symbolic ranges
1435 unnecessarily. */
1436 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1437
1438 /* LIMIT's range is only interesting if it has any useful information. */
1439 if (limit_vr
1440 && (limit_vr->type == VR_UNDEFINED
1441 || limit_vr->type == VR_VARYING
1442 || symbolic_range_p (limit_vr)))
1443 limit_vr = NULL;
1444
1445 /* Initially, the new range has the same set of equivalences of
1446 VAR's range. This will be revised before returning the final
1447 value. Since assertions may be chained via mutually exclusive
1448 predicates, we will need to trim the set of equivalences before
1449 we are done. */
1450 gcc_assert (vr_p->equiv == NULL);
1451 add_equivalence (&vr_p->equiv, var);
1452
1453 /* Extract a new range based on the asserted comparison for VAR and
1454 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1455 will only use it for equality comparisons (EQ_EXPR). For any
1456 other kind of assertion, we cannot derive a range from LIMIT's
1457 anti-range that can be used to describe the new range. For
1458 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1459 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1460 no single range for x_2 that could describe LE_EXPR, so we might
1461 as well build the range [b_4, +INF] for it.
1462 One special case we handle is extracting a range from a
1463 range test encoded as (unsigned)var + CST <= limit. */
1464 if (TREE_CODE (cond) == NOP_EXPR
1465 || TREE_CODE (cond) == PLUS_EXPR)
1466 {
1467 if (TREE_CODE (cond) == PLUS_EXPR)
1468 {
1469 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1470 TREE_OPERAND (cond, 1));
1471 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1472 cond = TREE_OPERAND (cond, 0);
1473 }
1474 else
1475 {
1476 min = build_int_cst (TREE_TYPE (var), 0);
1477 max = limit;
1478 }
1479
1480 /* Make sure to not set TREE_OVERFLOW on the final type
1481 conversion. We are willingly interpreting large positive
1482 unsigned values as negative singed values here. */
1483 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1484 TREE_INT_CST_HIGH (min), 0, false);
1485 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1486 TREE_INT_CST_HIGH (max), 0, false);
1487
1488 /* We can transform a max, min range to an anti-range or
1489 vice-versa. Use set_and_canonicalize_value_range which does
1490 this for us. */
1491 if (cond_code == LE_EXPR)
1492 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1493 min, max, vr_p->equiv);
1494 else if (cond_code == GT_EXPR)
1495 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1496 min, max, vr_p->equiv);
1497 else
1498 gcc_unreachable ();
1499 }
1500 else if (cond_code == EQ_EXPR)
1501 {
1502 enum value_range_type range_type;
1503
1504 if (limit_vr)
1505 {
1506 range_type = limit_vr->type;
1507 min = limit_vr->min;
1508 max = limit_vr->max;
1509 }
1510 else
1511 {
1512 range_type = VR_RANGE;
1513 min = limit;
1514 max = limit;
1515 }
1516
1517 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1518
1519 /* When asserting the equality VAR == LIMIT and LIMIT is another
1520 SSA name, the new range will also inherit the equivalence set
1521 from LIMIT. */
1522 if (TREE_CODE (limit) == SSA_NAME)
1523 add_equivalence (&vr_p->equiv, limit);
1524 }
1525 else if (cond_code == NE_EXPR)
1526 {
1527 /* As described above, when LIMIT's range is an anti-range and
1528 this assertion is an inequality (NE_EXPR), then we cannot
1529 derive anything from the anti-range. For instance, if
1530 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1531 not imply that VAR's range is [0, 0]. So, in the case of
1532 anti-ranges, we just assert the inequality using LIMIT and
1533 not its anti-range.
1534
1535 If LIMIT_VR is a range, we can only use it to build a new
1536 anti-range if LIMIT_VR is a single-valued range. For
1537 instance, if LIMIT_VR is [0, 1], the predicate
1538 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1539 Rather, it means that for value 0 VAR should be ~[0, 0]
1540 and for value 1, VAR should be ~[1, 1]. We cannot
1541 represent these ranges.
1542
1543 The only situation in which we can build a valid
1544 anti-range is when LIMIT_VR is a single-valued range
1545 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1546 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1547 if (limit_vr
1548 && limit_vr->type == VR_RANGE
1549 && compare_values (limit_vr->min, limit_vr->max) == 0)
1550 {
1551 min = limit_vr->min;
1552 max = limit_vr->max;
1553 }
1554 else
1555 {
1556 /* In any other case, we cannot use LIMIT's range to build a
1557 valid anti-range. */
1558 min = max = limit;
1559 }
1560
1561 /* If MIN and MAX cover the whole range for their type, then
1562 just use the original LIMIT. */
1563 if (INTEGRAL_TYPE_P (type)
1564 && vrp_val_is_min (min)
1565 && vrp_val_is_max (max))
1566 min = max = limit;
1567
1568 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1569 }
1570 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1571 {
1572 min = TYPE_MIN_VALUE (type);
1573
1574 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1575 max = limit;
1576 else
1577 {
1578 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1579 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1580 LT_EXPR. */
1581 max = limit_vr->max;
1582 }
1583
1584 /* If the maximum value forces us to be out of bounds, simply punt.
1585 It would be pointless to try and do anything more since this
1586 all should be optimized away above us. */
1587 if ((cond_code == LT_EXPR
1588 && compare_values (max, min) == 0)
1589 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1590 set_value_range_to_varying (vr_p);
1591 else
1592 {
1593 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1594 if (cond_code == LT_EXPR)
1595 {
1596 tree one = build_int_cst (type, 1);
1597 max = fold_build2 (MINUS_EXPR, type, max, one);
1598 if (EXPR_P (max))
1599 TREE_NO_WARNING (max) = 1;
1600 }
1601
1602 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1603 }
1604 }
1605 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1606 {
1607 max = TYPE_MAX_VALUE (type);
1608
1609 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1610 min = limit;
1611 else
1612 {
1613 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1614 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1615 GT_EXPR. */
1616 min = limit_vr->min;
1617 }
1618
1619 /* If the minimum value forces us to be out of bounds, simply punt.
1620 It would be pointless to try and do anything more since this
1621 all should be optimized away above us. */
1622 if ((cond_code == GT_EXPR
1623 && compare_values (min, max) == 0)
1624 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1625 set_value_range_to_varying (vr_p);
1626 else
1627 {
1628 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1629 if (cond_code == GT_EXPR)
1630 {
1631 tree one = build_int_cst (type, 1);
1632 min = fold_build2 (PLUS_EXPR, type, min, one);
1633 if (EXPR_P (min))
1634 TREE_NO_WARNING (min) = 1;
1635 }
1636
1637 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1638 }
1639 }
1640 else
1641 gcc_unreachable ();
1642
1643 /* If VAR already had a known range, it may happen that the new
1644 range we have computed and VAR's range are not compatible. For
1645 instance,
1646
1647 if (p_5 == NULL)
1648 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1649 x_7 = p_6->fld;
1650 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1651
1652 While the above comes from a faulty program, it will cause an ICE
1653 later because p_8 and p_6 will have incompatible ranges and at
1654 the same time will be considered equivalent. A similar situation
1655 would arise from
1656
1657 if (i_5 > 10)
1658 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1659 if (i_5 < 5)
1660 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1661
1662 Again i_6 and i_7 will have incompatible ranges. It would be
1663 pointless to try and do anything with i_7's range because
1664 anything dominated by 'if (i_5 < 5)' will be optimized away.
1665 Note, due to the wa in which simulation proceeds, the statement
1666 i_7 = ASSERT_EXPR <...> we would never be visited because the
1667 conditional 'if (i_5 < 5)' always evaluates to false. However,
1668 this extra check does not hurt and may protect against future
1669 changes to VRP that may get into a situation similar to the
1670 NULL pointer dereference example.
1671
1672 Note that these compatibility tests are only needed when dealing
1673 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1674 are both anti-ranges, they will always be compatible, because two
1675 anti-ranges will always have a non-empty intersection. */
1676
1677 var_vr = get_value_range (var);
1678
1679 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1680 ranges or anti-ranges. */
1681 if (vr_p->type == VR_VARYING
1682 || vr_p->type == VR_UNDEFINED
1683 || var_vr->type == VR_VARYING
1684 || var_vr->type == VR_UNDEFINED
1685 || symbolic_range_p (vr_p)
1686 || symbolic_range_p (var_vr))
1687 return;
1688
1689 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1690 {
1691 /* If the two ranges have a non-empty intersection, we can
1692 refine the resulting range. Since the assert expression
1693 creates an equivalency and at the same time it asserts a
1694 predicate, we can take the intersection of the two ranges to
1695 get better precision. */
1696 if (value_ranges_intersect_p (var_vr, vr_p))
1697 {
1698 /* Use the larger of the two minimums. */
1699 if (compare_values (vr_p->min, var_vr->min) == -1)
1700 min = var_vr->min;
1701 else
1702 min = vr_p->min;
1703
1704 /* Use the smaller of the two maximums. */
1705 if (compare_values (vr_p->max, var_vr->max) == 1)
1706 max = var_vr->max;
1707 else
1708 max = vr_p->max;
1709
1710 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1711 }
1712 else
1713 {
1714 /* The two ranges do not intersect, set the new range to
1715 VARYING, because we will not be able to do anything
1716 meaningful with it. */
1717 set_value_range_to_varying (vr_p);
1718 }
1719 }
1720 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1721 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1722 {
1723 /* A range and an anti-range will cancel each other only if
1724 their ends are the same. For instance, in the example above,
1725 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1726 so VR_P should be set to VR_VARYING. */
1727 if (compare_values (var_vr->min, vr_p->min) == 0
1728 && compare_values (var_vr->max, vr_p->max) == 0)
1729 set_value_range_to_varying (vr_p);
1730 else
1731 {
1732 tree min, max, anti_min, anti_max, real_min, real_max;
1733 int cmp;
1734
1735 /* We want to compute the logical AND of the two ranges;
1736 there are three cases to consider.
1737
1738
1739 1. The VR_ANTI_RANGE range is completely within the
1740 VR_RANGE and the endpoints of the ranges are
1741 different. In that case the resulting range
1742 should be whichever range is more precise.
1743 Typically that will be the VR_RANGE.
1744
1745 2. The VR_ANTI_RANGE is completely disjoint from
1746 the VR_RANGE. In this case the resulting range
1747 should be the VR_RANGE.
1748
1749 3. There is some overlap between the VR_ANTI_RANGE
1750 and the VR_RANGE.
1751
1752 3a. If the high limit of the VR_ANTI_RANGE resides
1753 within the VR_RANGE, then the result is a new
1754 VR_RANGE starting at the high limit of the
1755 VR_ANTI_RANGE + 1 and extending to the
1756 high limit of the original VR_RANGE.
1757
1758 3b. If the low limit of the VR_ANTI_RANGE resides
1759 within the VR_RANGE, then the result is a new
1760 VR_RANGE starting at the low limit of the original
1761 VR_RANGE and extending to the low limit of the
1762 VR_ANTI_RANGE - 1. */
1763 if (vr_p->type == VR_ANTI_RANGE)
1764 {
1765 anti_min = vr_p->min;
1766 anti_max = vr_p->max;
1767 real_min = var_vr->min;
1768 real_max = var_vr->max;
1769 }
1770 else
1771 {
1772 anti_min = var_vr->min;
1773 anti_max = var_vr->max;
1774 real_min = vr_p->min;
1775 real_max = vr_p->max;
1776 }
1777
1778
1779 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1780 not including any endpoints. */
1781 if (compare_values (anti_max, real_max) == -1
1782 && compare_values (anti_min, real_min) == 1)
1783 {
1784 /* If the range is covering the whole valid range of
1785 the type keep the anti-range. */
1786 if (!vrp_val_is_min (real_min)
1787 || !vrp_val_is_max (real_max))
1788 set_value_range (vr_p, VR_RANGE, real_min,
1789 real_max, vr_p->equiv);
1790 }
1791 /* Case 2, VR_ANTI_RANGE completely disjoint from
1792 VR_RANGE. */
1793 else if (compare_values (anti_min, real_max) == 1
1794 || compare_values (anti_max, real_min) == -1)
1795 {
1796 set_value_range (vr_p, VR_RANGE, real_min,
1797 real_max, vr_p->equiv);
1798 }
1799 /* Case 3a, the anti-range extends into the low
1800 part of the real range. Thus creating a new
1801 low for the real range. */
1802 else if (((cmp = compare_values (anti_max, real_min)) == 1
1803 || cmp == 0)
1804 && compare_values (anti_max, real_max) == -1)
1805 {
1806 gcc_assert (!is_positive_overflow_infinity (anti_max));
1807 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1808 && vrp_val_is_max (anti_max))
1809 {
1810 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1811 {
1812 set_value_range_to_varying (vr_p);
1813 return;
1814 }
1815 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1816 }
1817 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1818 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1819 anti_max,
1820 build_int_cst (TREE_TYPE (var_vr->min), 1));
1821 else
1822 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1823 anti_max, size_int (1));
1824 max = real_max;
1825 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1826 }
1827 /* Case 3b, the anti-range extends into the high
1828 part of the real range. Thus creating a new
1829 higher for the real range. */
1830 else if (compare_values (anti_min, real_min) == 1
1831 && ((cmp = compare_values (anti_min, real_max)) == -1
1832 || cmp == 0))
1833 {
1834 gcc_assert (!is_negative_overflow_infinity (anti_min));
1835 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1836 && vrp_val_is_min (anti_min))
1837 {
1838 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1839 {
1840 set_value_range_to_varying (vr_p);
1841 return;
1842 }
1843 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1844 }
1845 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1846 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1847 anti_min,
1848 build_int_cst (TREE_TYPE (var_vr->min), 1));
1849 else
1850 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1851 anti_min,
1852 size_int (-1));
1853 min = real_min;
1854 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1855 }
1856 }
1857 }
1858 }
1859
1860
1861 /* Extract range information from SSA name VAR and store it in VR. If
1862 VAR has an interesting range, use it. Otherwise, create the
1863 range [VAR, VAR] and return it. This is useful in situations where
1864 we may have conditionals testing values of VARYING names. For
1865 instance,
1866
1867 x_3 = y_5;
1868 if (x_3 > y_5)
1869 ...
1870
1871 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1872 always false. */
1873
1874 static void
1875 extract_range_from_ssa_name (value_range_t *vr, tree var)
1876 {
1877 value_range_t *var_vr = get_value_range (var);
1878
1879 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1880 copy_value_range (vr, var_vr);
1881 else
1882 set_value_range (vr, VR_RANGE, var, var, NULL);
1883
1884 add_equivalence (&vr->equiv, var);
1885 }
1886
1887
1888 /* Wrapper around int_const_binop. If the operation overflows and we
1889 are not using wrapping arithmetic, then adjust the result to be
1890 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1891 NULL_TREE if we need to use an overflow infinity representation but
1892 the type does not support it. */
1893
1894 static tree
1895 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1896 {
1897 tree res;
1898
1899 res = int_const_binop (code, val1, val2, 0);
1900
1901 /* If we are not using wrapping arithmetic, operate symbolically
1902 on -INF and +INF. */
1903 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1904 {
1905 int checkz = compare_values (res, val1);
1906 bool overflow = false;
1907
1908 /* Ensure that res = val1 [+*] val2 >= val1
1909 or that res = val1 - val2 <= val1. */
1910 if ((code == PLUS_EXPR
1911 && !(checkz == 1 || checkz == 0))
1912 || (code == MINUS_EXPR
1913 && !(checkz == 0 || checkz == -1)))
1914 {
1915 overflow = true;
1916 }
1917 /* Checking for multiplication overflow is done by dividing the
1918 output of the multiplication by the first input of the
1919 multiplication. If the result of that division operation is
1920 not equal to the second input of the multiplication, then the
1921 multiplication overflowed. */
1922 else if (code == MULT_EXPR && !integer_zerop (val1))
1923 {
1924 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1925 res,
1926 val1, 0);
1927 int check = compare_values (tmp, val2);
1928
1929 if (check != 0)
1930 overflow = true;
1931 }
1932
1933 if (overflow)
1934 {
1935 res = copy_node (res);
1936 TREE_OVERFLOW (res) = 1;
1937 }
1938
1939 }
1940 else if ((TREE_OVERFLOW (res)
1941 && !TREE_OVERFLOW (val1)
1942 && !TREE_OVERFLOW (val2))
1943 || is_overflow_infinity (val1)
1944 || is_overflow_infinity (val2))
1945 {
1946 /* If the operation overflowed but neither VAL1 nor VAL2 are
1947 overflown, return -INF or +INF depending on the operation
1948 and the combination of signs of the operands. */
1949 int sgn1 = tree_int_cst_sgn (val1);
1950 int sgn2 = tree_int_cst_sgn (val2);
1951
1952 if (needs_overflow_infinity (TREE_TYPE (res))
1953 && !supports_overflow_infinity (TREE_TYPE (res)))
1954 return NULL_TREE;
1955
1956 /* We have to punt on adding infinities of different signs,
1957 since we can't tell what the sign of the result should be.
1958 Likewise for subtracting infinities of the same sign. */
1959 if (((code == PLUS_EXPR && sgn1 != sgn2)
1960 || (code == MINUS_EXPR && sgn1 == sgn2))
1961 && is_overflow_infinity (val1)
1962 && is_overflow_infinity (val2))
1963 return NULL_TREE;
1964
1965 /* Don't try to handle division or shifting of infinities. */
1966 if ((code == TRUNC_DIV_EXPR
1967 || code == FLOOR_DIV_EXPR
1968 || code == CEIL_DIV_EXPR
1969 || code == EXACT_DIV_EXPR
1970 || code == ROUND_DIV_EXPR
1971 || code == RSHIFT_EXPR)
1972 && (is_overflow_infinity (val1)
1973 || is_overflow_infinity (val2)))
1974 return NULL_TREE;
1975
1976 /* Notice that we only need to handle the restricted set of
1977 operations handled by extract_range_from_binary_expr.
1978 Among them, only multiplication, addition and subtraction
1979 can yield overflow without overflown operands because we
1980 are working with integral types only... except in the
1981 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1982 for division too. */
1983
1984 /* For multiplication, the sign of the overflow is given
1985 by the comparison of the signs of the operands. */
1986 if ((code == MULT_EXPR && sgn1 == sgn2)
1987 /* For addition, the operands must be of the same sign
1988 to yield an overflow. Its sign is therefore that
1989 of one of the operands, for example the first. For
1990 infinite operands X + -INF is negative, not positive. */
1991 || (code == PLUS_EXPR
1992 && (sgn1 >= 0
1993 ? !is_negative_overflow_infinity (val2)
1994 : is_positive_overflow_infinity (val2)))
1995 /* For subtraction, non-infinite operands must be of
1996 different signs to yield an overflow. Its sign is
1997 therefore that of the first operand or the opposite of
1998 that of the second operand. A first operand of 0 counts
1999 as positive here, for the corner case 0 - (-INF), which
2000 overflows, but must yield +INF. For infinite operands 0
2001 - INF is negative, not positive. */
2002 || (code == MINUS_EXPR
2003 && (sgn1 >= 0
2004 ? !is_positive_overflow_infinity (val2)
2005 : is_negative_overflow_infinity (val2)))
2006 /* We only get in here with positive shift count, so the
2007 overflow direction is the same as the sign of val1.
2008 Actually rshift does not overflow at all, but we only
2009 handle the case of shifting overflowed -INF and +INF. */
2010 || (code == RSHIFT_EXPR
2011 && sgn1 >= 0)
2012 /* For division, the only case is -INF / -1 = +INF. */
2013 || code == TRUNC_DIV_EXPR
2014 || code == FLOOR_DIV_EXPR
2015 || code == CEIL_DIV_EXPR
2016 || code == EXACT_DIV_EXPR
2017 || code == ROUND_DIV_EXPR)
2018 return (needs_overflow_infinity (TREE_TYPE (res))
2019 ? positive_overflow_infinity (TREE_TYPE (res))
2020 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2021 else
2022 return (needs_overflow_infinity (TREE_TYPE (res))
2023 ? negative_overflow_infinity (TREE_TYPE (res))
2024 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2025 }
2026
2027 return res;
2028 }
2029
2030
2031 /* Extract range information from a binary expression EXPR based on
2032 the ranges of each of its operands and the expression code. */
2033
2034 static void
2035 extract_range_from_binary_expr (value_range_t *vr,
2036 enum tree_code code,
2037 tree expr_type, tree op0, tree op1)
2038 {
2039 enum value_range_type type;
2040 tree min, max;
2041 int cmp;
2042 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2043 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2044
2045 /* Not all binary expressions can be applied to ranges in a
2046 meaningful way. Handle only arithmetic operations. */
2047 if (code != PLUS_EXPR
2048 && code != MINUS_EXPR
2049 && code != POINTER_PLUS_EXPR
2050 && code != MULT_EXPR
2051 && code != TRUNC_DIV_EXPR
2052 && code != FLOOR_DIV_EXPR
2053 && code != CEIL_DIV_EXPR
2054 && code != EXACT_DIV_EXPR
2055 && code != ROUND_DIV_EXPR
2056 && code != RSHIFT_EXPR
2057 && code != MIN_EXPR
2058 && code != MAX_EXPR
2059 && code != BIT_AND_EXPR
2060 && code != BIT_IOR_EXPR
2061 && code != TRUTH_AND_EXPR
2062 && code != TRUTH_OR_EXPR)
2063 {
2064 /* We can still do constant propagation here. */
2065 tree const_op0 = op_with_constant_singleton_value_range (op0);
2066 tree const_op1 = op_with_constant_singleton_value_range (op1);
2067 if (const_op0 || const_op1)
2068 {
2069 tree tem = fold_binary (code, expr_type,
2070 const_op0 ? const_op0 : op0,
2071 const_op1 ? const_op1 : op1);
2072 if (tem
2073 && is_gimple_min_invariant (tem)
2074 && !is_overflow_infinity (tem))
2075 {
2076 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2077 return;
2078 }
2079 }
2080 set_value_range_to_varying (vr);
2081 return;
2082 }
2083
2084 /* Get value ranges for each operand. For constant operands, create
2085 a new value range with the operand to simplify processing. */
2086 if (TREE_CODE (op0) == SSA_NAME)
2087 vr0 = *(get_value_range (op0));
2088 else if (is_gimple_min_invariant (op0))
2089 set_value_range_to_value (&vr0, op0, NULL);
2090 else
2091 set_value_range_to_varying (&vr0);
2092
2093 if (TREE_CODE (op1) == SSA_NAME)
2094 vr1 = *(get_value_range (op1));
2095 else if (is_gimple_min_invariant (op1))
2096 set_value_range_to_value (&vr1, op1, NULL);
2097 else
2098 set_value_range_to_varying (&vr1);
2099
2100 /* If either range is UNDEFINED, so is the result. */
2101 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2102 {
2103 set_value_range_to_undefined (vr);
2104 return;
2105 }
2106
2107 /* The type of the resulting value range defaults to VR0.TYPE. */
2108 type = vr0.type;
2109
2110 /* Refuse to operate on VARYING ranges, ranges of different kinds
2111 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2112 because we may be able to derive a useful range even if one of
2113 the operands is VR_VARYING or symbolic range. Similarly for
2114 divisions. TODO, we may be able to derive anti-ranges in
2115 some cases. */
2116 if (code != BIT_AND_EXPR
2117 && code != TRUTH_AND_EXPR
2118 && code != TRUTH_OR_EXPR
2119 && code != TRUNC_DIV_EXPR
2120 && code != FLOOR_DIV_EXPR
2121 && code != CEIL_DIV_EXPR
2122 && code != EXACT_DIV_EXPR
2123 && code != ROUND_DIV_EXPR
2124 && (vr0.type == VR_VARYING
2125 || vr1.type == VR_VARYING
2126 || vr0.type != vr1.type
2127 || symbolic_range_p (&vr0)
2128 || symbolic_range_p (&vr1)))
2129 {
2130 set_value_range_to_varying (vr);
2131 return;
2132 }
2133
2134 /* Now evaluate the expression to determine the new range. */
2135 if (POINTER_TYPE_P (expr_type)
2136 || POINTER_TYPE_P (TREE_TYPE (op0))
2137 || POINTER_TYPE_P (TREE_TYPE (op1)))
2138 {
2139 if (code == MIN_EXPR || code == MAX_EXPR)
2140 {
2141 /* For MIN/MAX expressions with pointers, we only care about
2142 nullness, if both are non null, then the result is nonnull.
2143 If both are null, then the result is null. Otherwise they
2144 are varying. */
2145 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2146 set_value_range_to_nonnull (vr, expr_type);
2147 else if (range_is_null (&vr0) && range_is_null (&vr1))
2148 set_value_range_to_null (vr, expr_type);
2149 else
2150 set_value_range_to_varying (vr);
2151
2152 return;
2153 }
2154 gcc_assert (code == POINTER_PLUS_EXPR);
2155 /* For pointer types, we are really only interested in asserting
2156 whether the expression evaluates to non-NULL. */
2157 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2158 set_value_range_to_nonnull (vr, expr_type);
2159 else if (range_is_null (&vr0) && range_is_null (&vr1))
2160 set_value_range_to_null (vr, expr_type);
2161 else
2162 set_value_range_to_varying (vr);
2163
2164 return;
2165 }
2166
2167 /* For integer ranges, apply the operation to each end of the
2168 range and see what we end up with. */
2169 if (code == TRUTH_AND_EXPR
2170 || code == TRUTH_OR_EXPR)
2171 {
2172 /* If one of the operands is zero, we know that the whole
2173 expression evaluates zero. */
2174 if (code == TRUTH_AND_EXPR
2175 && ((vr0.type == VR_RANGE
2176 && integer_zerop (vr0.min)
2177 && integer_zerop (vr0.max))
2178 || (vr1.type == VR_RANGE
2179 && integer_zerop (vr1.min)
2180 && integer_zerop (vr1.max))))
2181 {
2182 type = VR_RANGE;
2183 min = max = build_int_cst (expr_type, 0);
2184 }
2185 /* If one of the operands is one, we know that the whole
2186 expression evaluates one. */
2187 else if (code == TRUTH_OR_EXPR
2188 && ((vr0.type == VR_RANGE
2189 && integer_onep (vr0.min)
2190 && integer_onep (vr0.max))
2191 || (vr1.type == VR_RANGE
2192 && integer_onep (vr1.min)
2193 && integer_onep (vr1.max))))
2194 {
2195 type = VR_RANGE;
2196 min = max = build_int_cst (expr_type, 1);
2197 }
2198 else if (vr0.type != VR_VARYING
2199 && vr1.type != VR_VARYING
2200 && vr0.type == vr1.type
2201 && !symbolic_range_p (&vr0)
2202 && !overflow_infinity_range_p (&vr0)
2203 && !symbolic_range_p (&vr1)
2204 && !overflow_infinity_range_p (&vr1))
2205 {
2206 /* Boolean expressions cannot be folded with int_const_binop. */
2207 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2208 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2209 }
2210 else
2211 {
2212 /* The result of a TRUTH_*_EXPR is always true or false. */
2213 set_value_range_to_truthvalue (vr, expr_type);
2214 return;
2215 }
2216 }
2217 else if (code == PLUS_EXPR
2218 || code == MIN_EXPR
2219 || code == MAX_EXPR)
2220 {
2221 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2222 VR_VARYING. It would take more effort to compute a precise
2223 range for such a case. For example, if we have op0 == 1 and
2224 op1 == -1 with their ranges both being ~[0,0], we would have
2225 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2226 Note that we are guaranteed to have vr0.type == vr1.type at
2227 this point. */
2228 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2229 {
2230 set_value_range_to_varying (vr);
2231 return;
2232 }
2233
2234 /* For operations that make the resulting range directly
2235 proportional to the original ranges, apply the operation to
2236 the same end of each range. */
2237 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2238 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2239
2240 /* If both additions overflowed the range kind is still correct.
2241 This happens regularly with subtracting something in unsigned
2242 arithmetic.
2243 ??? See PR30318 for all the cases we do not handle. */
2244 if (code == PLUS_EXPR
2245 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2246 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2247 {
2248 min = build_int_cst_wide (TREE_TYPE (min),
2249 TREE_INT_CST_LOW (min),
2250 TREE_INT_CST_HIGH (min));
2251 max = build_int_cst_wide (TREE_TYPE (max),
2252 TREE_INT_CST_LOW (max),
2253 TREE_INT_CST_HIGH (max));
2254 }
2255 }
2256 else if (code == MULT_EXPR
2257 || code == TRUNC_DIV_EXPR
2258 || code == FLOOR_DIV_EXPR
2259 || code == CEIL_DIV_EXPR
2260 || code == EXACT_DIV_EXPR
2261 || code == ROUND_DIV_EXPR
2262 || code == RSHIFT_EXPR)
2263 {
2264 tree val[4];
2265 size_t i;
2266 bool sop;
2267
2268 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2269 drop to VR_VARYING. It would take more effort to compute a
2270 precise range for such a case. For example, if we have
2271 op0 == 65536 and op1 == 65536 with their ranges both being
2272 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2273 we cannot claim that the product is in ~[0,0]. Note that we
2274 are guaranteed to have vr0.type == vr1.type at this
2275 point. */
2276 if (code == MULT_EXPR
2277 && vr0.type == VR_ANTI_RANGE
2278 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2279 {
2280 set_value_range_to_varying (vr);
2281 return;
2282 }
2283
2284 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2285 then drop to VR_VARYING. Outside of this range we get undefined
2286 behavior from the shift operation. We cannot even trust
2287 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2288 shifts, and the operation at the tree level may be widened. */
2289 if (code == RSHIFT_EXPR)
2290 {
2291 if (vr1.type == VR_ANTI_RANGE
2292 || !vrp_expr_computes_nonnegative (op1, &sop)
2293 || (operand_less_p
2294 (build_int_cst (TREE_TYPE (vr1.max),
2295 TYPE_PRECISION (expr_type) - 1),
2296 vr1.max) != 0))
2297 {
2298 set_value_range_to_varying (vr);
2299 return;
2300 }
2301 }
2302
2303 else if ((code == TRUNC_DIV_EXPR
2304 || code == FLOOR_DIV_EXPR
2305 || code == CEIL_DIV_EXPR
2306 || code == EXACT_DIV_EXPR
2307 || code == ROUND_DIV_EXPR)
2308 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2309 {
2310 /* For division, if op1 has VR_RANGE but op0 does not, something
2311 can be deduced just from that range. Say [min, max] / [4, max]
2312 gives [min / 4, max / 4] range. */
2313 if (vr1.type == VR_RANGE
2314 && !symbolic_range_p (&vr1)
2315 && !range_includes_zero_p (&vr1))
2316 {
2317 vr0.type = type = VR_RANGE;
2318 vr0.min = vrp_val_min (TREE_TYPE (op0));
2319 vr0.max = vrp_val_max (TREE_TYPE (op1));
2320 }
2321 else
2322 {
2323 set_value_range_to_varying (vr);
2324 return;
2325 }
2326 }
2327
2328 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2329 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2330 include 0. */
2331 if ((code == TRUNC_DIV_EXPR
2332 || code == FLOOR_DIV_EXPR
2333 || code == CEIL_DIV_EXPR
2334 || code == EXACT_DIV_EXPR
2335 || code == ROUND_DIV_EXPR)
2336 && vr0.type == VR_RANGE
2337 && (vr1.type != VR_RANGE
2338 || symbolic_range_p (&vr1)
2339 || range_includes_zero_p (&vr1)))
2340 {
2341 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2342 int cmp;
2343
2344 sop = false;
2345 min = NULL_TREE;
2346 max = NULL_TREE;
2347 if (vrp_expr_computes_nonnegative (op1, &sop) && !sop)
2348 {
2349 /* For unsigned division or when divisor is known
2350 to be non-negative, the range has to cover
2351 all numbers from 0 to max for positive max
2352 and all numbers from min to 0 for negative min. */
2353 cmp = compare_values (vr0.max, zero);
2354 if (cmp == -1)
2355 max = zero;
2356 else if (cmp == 0 || cmp == 1)
2357 max = vr0.max;
2358 else
2359 type = VR_VARYING;
2360 cmp = compare_values (vr0.min, zero);
2361 if (cmp == 1)
2362 min = zero;
2363 else if (cmp == 0 || cmp == -1)
2364 min = vr0.min;
2365 else
2366 type = VR_VARYING;
2367 }
2368 else
2369 {
2370 /* Otherwise the range is -max .. max or min .. -min
2371 depending on which bound is bigger in absolute value,
2372 as the division can change the sign. */
2373 abs_extent_range (vr, vr0.min, vr0.max);
2374 return;
2375 }
2376 if (type == VR_VARYING)
2377 {
2378 set_value_range_to_varying (vr);
2379 return;
2380 }
2381 }
2382
2383 /* Multiplications and divisions are a bit tricky to handle,
2384 depending on the mix of signs we have in the two ranges, we
2385 need to operate on different values to get the minimum and
2386 maximum values for the new range. One approach is to figure
2387 out all the variations of range combinations and do the
2388 operations.
2389
2390 However, this involves several calls to compare_values and it
2391 is pretty convoluted. It's simpler to do the 4 operations
2392 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2393 MAX1) and then figure the smallest and largest values to form
2394 the new range. */
2395 else
2396 {
2397 gcc_assert ((vr0.type == VR_RANGE
2398 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2399 && vr0.type == vr1.type);
2400
2401 /* Compute the 4 cross operations. */
2402 sop = false;
2403 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2404 if (val[0] == NULL_TREE)
2405 sop = true;
2406
2407 if (vr1.max == vr1.min)
2408 val[1] = NULL_TREE;
2409 else
2410 {
2411 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2412 if (val[1] == NULL_TREE)
2413 sop = true;
2414 }
2415
2416 if (vr0.max == vr0.min)
2417 val[2] = NULL_TREE;
2418 else
2419 {
2420 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2421 if (val[2] == NULL_TREE)
2422 sop = true;
2423 }
2424
2425 if (vr0.min == vr0.max || vr1.min == vr1.max)
2426 val[3] = NULL_TREE;
2427 else
2428 {
2429 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2430 if (val[3] == NULL_TREE)
2431 sop = true;
2432 }
2433
2434 if (sop)
2435 {
2436 set_value_range_to_varying (vr);
2437 return;
2438 }
2439
2440 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2441 of VAL[i]. */
2442 min = val[0];
2443 max = val[0];
2444 for (i = 1; i < 4; i++)
2445 {
2446 if (!is_gimple_min_invariant (min)
2447 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2448 || !is_gimple_min_invariant (max)
2449 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2450 break;
2451
2452 if (val[i])
2453 {
2454 if (!is_gimple_min_invariant (val[i])
2455 || (TREE_OVERFLOW (val[i])
2456 && !is_overflow_infinity (val[i])))
2457 {
2458 /* If we found an overflowed value, set MIN and MAX
2459 to it so that we set the resulting range to
2460 VARYING. */
2461 min = max = val[i];
2462 break;
2463 }
2464
2465 if (compare_values (val[i], min) == -1)
2466 min = val[i];
2467
2468 if (compare_values (val[i], max) == 1)
2469 max = val[i];
2470 }
2471 }
2472 }
2473 }
2474 else if (code == MINUS_EXPR)
2475 {
2476 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2477 VR_VARYING. It would take more effort to compute a precise
2478 range for such a case. For example, if we have op0 == 1 and
2479 op1 == 1 with their ranges both being ~[0,0], we would have
2480 op0 - op1 == 0, so we cannot claim that the difference is in
2481 ~[0,0]. Note that we are guaranteed to have
2482 vr0.type == vr1.type at this point. */
2483 if (vr0.type == VR_ANTI_RANGE)
2484 {
2485 set_value_range_to_varying (vr);
2486 return;
2487 }
2488
2489 /* For MINUS_EXPR, apply the operation to the opposite ends of
2490 each range. */
2491 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2492 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2493 }
2494 else if (code == BIT_AND_EXPR)
2495 {
2496 if (vr0.type == VR_RANGE
2497 && vr0.min == vr0.max
2498 && TREE_CODE (vr0.max) == INTEGER_CST
2499 && !TREE_OVERFLOW (vr0.max)
2500 && tree_int_cst_sgn (vr0.max) >= 0)
2501 {
2502 min = build_int_cst (expr_type, 0);
2503 max = vr0.max;
2504 }
2505 else if (vr1.type == VR_RANGE
2506 && vr1.min == vr1.max
2507 && TREE_CODE (vr1.max) == INTEGER_CST
2508 && !TREE_OVERFLOW (vr1.max)
2509 && tree_int_cst_sgn (vr1.max) >= 0)
2510 {
2511 type = VR_RANGE;
2512 min = build_int_cst (expr_type, 0);
2513 max = vr1.max;
2514 }
2515 else
2516 {
2517 set_value_range_to_varying (vr);
2518 return;
2519 }
2520 }
2521 else if (code == BIT_IOR_EXPR)
2522 {
2523 if (vr0.type == VR_RANGE
2524 && vr1.type == VR_RANGE
2525 && TREE_CODE (vr0.min) == INTEGER_CST
2526 && TREE_CODE (vr1.min) == INTEGER_CST
2527 && TREE_CODE (vr0.max) == INTEGER_CST
2528 && TREE_CODE (vr1.max) == INTEGER_CST
2529 && tree_int_cst_sgn (vr0.min) >= 0
2530 && tree_int_cst_sgn (vr1.min) >= 0)
2531 {
2532 double_int vr0_max = tree_to_double_int (vr0.max);
2533 double_int vr1_max = tree_to_double_int (vr1.max);
2534 double_int ior_max;
2535
2536 /* Set all bits to the right of the most significant one to 1.
2537 For example, [0, 4] | [4, 4] = [4, 7]. */
2538 ior_max.low = vr0_max.low | vr1_max.low;
2539 ior_max.high = vr0_max.high | vr1_max.high;
2540 if (ior_max.high != 0)
2541 {
2542 ior_max.low = ~(unsigned HOST_WIDE_INT)0u;
2543 ior_max.high |= ((HOST_WIDE_INT) 1
2544 << floor_log2 (ior_max.high)) - 1;
2545 }
2546 else if (ior_max.low != 0)
2547 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2548 << floor_log2 (ior_max.low)) - 1;
2549
2550 /* Both of these endpoints are conservative. */
2551 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2552 max = double_int_to_tree (expr_type, ior_max);
2553 }
2554 else
2555 {
2556 set_value_range_to_varying (vr);
2557 return;
2558 }
2559 }
2560 else
2561 gcc_unreachable ();
2562
2563 /* If either MIN or MAX overflowed, then set the resulting range to
2564 VARYING. But we do accept an overflow infinity
2565 representation. */
2566 if (min == NULL_TREE
2567 || !is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || max == NULL_TREE
2570 || !is_gimple_min_invariant (max)
2571 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2572 {
2573 set_value_range_to_varying (vr);
2574 return;
2575 }
2576
2577 /* We punt if:
2578 1) [-INF, +INF]
2579 2) [-INF, +-INF(OVF)]
2580 3) [+-INF(OVF), +INF]
2581 4) [+-INF(OVF), +-INF(OVF)]
2582 We learn nothing when we have INF and INF(OVF) on both sides.
2583 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2584 overflow. */
2585 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2586 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2587 {
2588 set_value_range_to_varying (vr);
2589 return;
2590 }
2591
2592 cmp = compare_values (min, max);
2593 if (cmp == -2 || cmp == 1)
2594 {
2595 /* If the new range has its limits swapped around (MIN > MAX),
2596 then the operation caused one of them to wrap around, mark
2597 the new range VARYING. */
2598 set_value_range_to_varying (vr);
2599 }
2600 else
2601 set_value_range (vr, type, min, max, NULL);
2602 }
2603
2604
2605 /* Extract range information from a unary expression EXPR based on
2606 the range of its operand and the expression code. */
2607
2608 static void
2609 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2610 tree type, tree op0)
2611 {
2612 tree min, max;
2613 int cmp;
2614 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2615
2616 /* Refuse to operate on certain unary expressions for which we
2617 cannot easily determine a resulting range. */
2618 if (code == FIX_TRUNC_EXPR
2619 || code == FLOAT_EXPR
2620 || code == BIT_NOT_EXPR
2621 || code == CONJ_EXPR)
2622 {
2623 /* We can still do constant propagation here. */
2624 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2625 {
2626 tree tem = fold_unary (code, type, op0);
2627 if (tem
2628 && is_gimple_min_invariant (tem)
2629 && !is_overflow_infinity (tem))
2630 {
2631 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2632 return;
2633 }
2634 }
2635 set_value_range_to_varying (vr);
2636 return;
2637 }
2638
2639 /* Get value ranges for the operand. For constant operands, create
2640 a new value range with the operand to simplify processing. */
2641 if (TREE_CODE (op0) == SSA_NAME)
2642 vr0 = *(get_value_range (op0));
2643 else if (is_gimple_min_invariant (op0))
2644 set_value_range_to_value (&vr0, op0, NULL);
2645 else
2646 set_value_range_to_varying (&vr0);
2647
2648 /* If VR0 is UNDEFINED, so is the result. */
2649 if (vr0.type == VR_UNDEFINED)
2650 {
2651 set_value_range_to_undefined (vr);
2652 return;
2653 }
2654
2655 /* Refuse to operate on symbolic ranges, or if neither operand is
2656 a pointer or integral type. */
2657 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2658 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2659 || (vr0.type != VR_VARYING
2660 && symbolic_range_p (&vr0)))
2661 {
2662 set_value_range_to_varying (vr);
2663 return;
2664 }
2665
2666 /* If the expression involves pointers, we are only interested in
2667 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2668 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2669 {
2670 bool sop;
2671
2672 sop = false;
2673 if (range_is_nonnull (&vr0)
2674 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2675 && !sop))
2676 set_value_range_to_nonnull (vr, type);
2677 else if (range_is_null (&vr0))
2678 set_value_range_to_null (vr, type);
2679 else
2680 set_value_range_to_varying (vr);
2681
2682 return;
2683 }
2684
2685 /* Handle unary expressions on integer ranges. */
2686 if (CONVERT_EXPR_CODE_P (code)
2687 && INTEGRAL_TYPE_P (type)
2688 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2689 {
2690 tree inner_type = TREE_TYPE (op0);
2691 tree outer_type = type;
2692
2693 /* If VR0 is varying and we increase the type precision, assume
2694 a full range for the following transformation. */
2695 if (vr0.type == VR_VARYING
2696 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2697 {
2698 vr0.type = VR_RANGE;
2699 vr0.min = TYPE_MIN_VALUE (inner_type);
2700 vr0.max = TYPE_MAX_VALUE (inner_type);
2701 }
2702
2703 /* If VR0 is a constant range or anti-range and the conversion is
2704 not truncating we can convert the min and max values and
2705 canonicalize the resulting range. Otherwise we can do the
2706 conversion if the size of the range is less than what the
2707 precision of the target type can represent and the range is
2708 not an anti-range. */
2709 if ((vr0.type == VR_RANGE
2710 || vr0.type == VR_ANTI_RANGE)
2711 && TREE_CODE (vr0.min) == INTEGER_CST
2712 && TREE_CODE (vr0.max) == INTEGER_CST
2713 && !is_overflow_infinity (vr0.min)
2714 && !is_overflow_infinity (vr0.max)
2715 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2716 || (vr0.type == VR_RANGE
2717 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2718 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2719 size_int (TYPE_PRECISION (outer_type)), 0)))))
2720 {
2721 tree new_min, new_max;
2722 new_min = force_fit_type_double (outer_type,
2723 TREE_INT_CST_LOW (vr0.min),
2724 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2725 new_max = force_fit_type_double (outer_type,
2726 TREE_INT_CST_LOW (vr0.max),
2727 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2728 set_and_canonicalize_value_range (vr, vr0.type,
2729 new_min, new_max, NULL);
2730 return;
2731 }
2732
2733 set_value_range_to_varying (vr);
2734 return;
2735 }
2736
2737 /* Conversion of a VR_VARYING value to a wider type can result
2738 in a usable range. So wait until after we've handled conversions
2739 before dropping the result to VR_VARYING if we had a source
2740 operand that is VR_VARYING. */
2741 if (vr0.type == VR_VARYING)
2742 {
2743 set_value_range_to_varying (vr);
2744 return;
2745 }
2746
2747 /* Apply the operation to each end of the range and see what we end
2748 up with. */
2749 if (code == NEGATE_EXPR
2750 && !TYPE_UNSIGNED (type))
2751 {
2752 /* NEGATE_EXPR flips the range around. We need to treat
2753 TYPE_MIN_VALUE specially. */
2754 if (is_positive_overflow_infinity (vr0.max))
2755 min = negative_overflow_infinity (type);
2756 else if (is_negative_overflow_infinity (vr0.max))
2757 min = positive_overflow_infinity (type);
2758 else if (!vrp_val_is_min (vr0.max))
2759 min = fold_unary_to_constant (code, type, vr0.max);
2760 else if (needs_overflow_infinity (type))
2761 {
2762 if (supports_overflow_infinity (type)
2763 && !is_overflow_infinity (vr0.min)
2764 && !vrp_val_is_min (vr0.min))
2765 min = positive_overflow_infinity (type);
2766 else
2767 {
2768 set_value_range_to_varying (vr);
2769 return;
2770 }
2771 }
2772 else
2773 min = TYPE_MIN_VALUE (type);
2774
2775 if (is_positive_overflow_infinity (vr0.min))
2776 max = negative_overflow_infinity (type);
2777 else if (is_negative_overflow_infinity (vr0.min))
2778 max = positive_overflow_infinity (type);
2779 else if (!vrp_val_is_min (vr0.min))
2780 max = fold_unary_to_constant (code, type, vr0.min);
2781 else if (needs_overflow_infinity (type))
2782 {
2783 if (supports_overflow_infinity (type))
2784 max = positive_overflow_infinity (type);
2785 else
2786 {
2787 set_value_range_to_varying (vr);
2788 return;
2789 }
2790 }
2791 else
2792 max = TYPE_MIN_VALUE (type);
2793 }
2794 else if (code == NEGATE_EXPR
2795 && TYPE_UNSIGNED (type))
2796 {
2797 if (!range_includes_zero_p (&vr0))
2798 {
2799 max = fold_unary_to_constant (code, type, vr0.min);
2800 min = fold_unary_to_constant (code, type, vr0.max);
2801 }
2802 else
2803 {
2804 if (range_is_null (&vr0))
2805 set_value_range_to_null (vr, type);
2806 else
2807 set_value_range_to_varying (vr);
2808 return;
2809 }
2810 }
2811 else if (code == ABS_EXPR
2812 && !TYPE_UNSIGNED (type))
2813 {
2814 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2815 useful range. */
2816 if (!TYPE_OVERFLOW_UNDEFINED (type)
2817 && ((vr0.type == VR_RANGE
2818 && vrp_val_is_min (vr0.min))
2819 || (vr0.type == VR_ANTI_RANGE
2820 && !vrp_val_is_min (vr0.min)
2821 && !range_includes_zero_p (&vr0))))
2822 {
2823 set_value_range_to_varying (vr);
2824 return;
2825 }
2826
2827 /* ABS_EXPR may flip the range around, if the original range
2828 included negative values. */
2829 if (is_overflow_infinity (vr0.min))
2830 min = positive_overflow_infinity (type);
2831 else if (!vrp_val_is_min (vr0.min))
2832 min = fold_unary_to_constant (code, type, vr0.min);
2833 else if (!needs_overflow_infinity (type))
2834 min = TYPE_MAX_VALUE (type);
2835 else if (supports_overflow_infinity (type))
2836 min = positive_overflow_infinity (type);
2837 else
2838 {
2839 set_value_range_to_varying (vr);
2840 return;
2841 }
2842
2843 if (is_overflow_infinity (vr0.max))
2844 max = positive_overflow_infinity (type);
2845 else if (!vrp_val_is_min (vr0.max))
2846 max = fold_unary_to_constant (code, type, vr0.max);
2847 else if (!needs_overflow_infinity (type))
2848 max = TYPE_MAX_VALUE (type);
2849 else if (supports_overflow_infinity (type)
2850 /* We shouldn't generate [+INF, +INF] as set_value_range
2851 doesn't like this and ICEs. */
2852 && !is_positive_overflow_infinity (min))
2853 max = positive_overflow_infinity (type);
2854 else
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
2860 cmp = compare_values (min, max);
2861
2862 /* If a VR_ANTI_RANGEs contains zero, then we have
2863 ~[-INF, min(MIN, MAX)]. */
2864 if (vr0.type == VR_ANTI_RANGE)
2865 {
2866 if (range_includes_zero_p (&vr0))
2867 {
2868 /* Take the lower of the two values. */
2869 if (cmp != 1)
2870 max = min;
2871
2872 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2873 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2874 flag_wrapv is set and the original anti-range doesn't include
2875 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2876 if (TYPE_OVERFLOW_WRAPS (type))
2877 {
2878 tree type_min_value = TYPE_MIN_VALUE (type);
2879
2880 min = (vr0.min != type_min_value
2881 ? int_const_binop (PLUS_EXPR, type_min_value,
2882 integer_one_node, 0)
2883 : type_min_value);
2884 }
2885 else
2886 {
2887 if (overflow_infinity_range_p (&vr0))
2888 min = negative_overflow_infinity (type);
2889 else
2890 min = TYPE_MIN_VALUE (type);
2891 }
2892 }
2893 else
2894 {
2895 /* All else has failed, so create the range [0, INF], even for
2896 flag_wrapv since TYPE_MIN_VALUE is in the original
2897 anti-range. */
2898 vr0.type = VR_RANGE;
2899 min = build_int_cst (type, 0);
2900 if (needs_overflow_infinity (type))
2901 {
2902 if (supports_overflow_infinity (type))
2903 max = positive_overflow_infinity (type);
2904 else
2905 {
2906 set_value_range_to_varying (vr);
2907 return;
2908 }
2909 }
2910 else
2911 max = TYPE_MAX_VALUE (type);
2912 }
2913 }
2914
2915 /* If the range contains zero then we know that the minimum value in the
2916 range will be zero. */
2917 else if (range_includes_zero_p (&vr0))
2918 {
2919 if (cmp == 1)
2920 max = min;
2921 min = build_int_cst (type, 0);
2922 }
2923 else
2924 {
2925 /* If the range was reversed, swap MIN and MAX. */
2926 if (cmp == 1)
2927 {
2928 tree t = min;
2929 min = max;
2930 max = t;
2931 }
2932 }
2933 }
2934 else
2935 {
2936 /* Otherwise, operate on each end of the range. */
2937 min = fold_unary_to_constant (code, type, vr0.min);
2938 max = fold_unary_to_constant (code, type, vr0.max);
2939
2940 if (needs_overflow_infinity (type))
2941 {
2942 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2943
2944 /* If both sides have overflowed, we don't know
2945 anything. */
2946 if ((is_overflow_infinity (vr0.min)
2947 || TREE_OVERFLOW (min))
2948 && (is_overflow_infinity (vr0.max)
2949 || TREE_OVERFLOW (max)))
2950 {
2951 set_value_range_to_varying (vr);
2952 return;
2953 }
2954
2955 if (is_overflow_infinity (vr0.min))
2956 min = vr0.min;
2957 else if (TREE_OVERFLOW (min))
2958 {
2959 if (supports_overflow_infinity (type))
2960 min = (tree_int_cst_sgn (min) >= 0
2961 ? positive_overflow_infinity (TREE_TYPE (min))
2962 : negative_overflow_infinity (TREE_TYPE (min)));
2963 else
2964 {
2965 set_value_range_to_varying (vr);
2966 return;
2967 }
2968 }
2969
2970 if (is_overflow_infinity (vr0.max))
2971 max = vr0.max;
2972 else if (TREE_OVERFLOW (max))
2973 {
2974 if (supports_overflow_infinity (type))
2975 max = (tree_int_cst_sgn (max) >= 0
2976 ? positive_overflow_infinity (TREE_TYPE (max))
2977 : negative_overflow_infinity (TREE_TYPE (max)));
2978 else
2979 {
2980 set_value_range_to_varying (vr);
2981 return;
2982 }
2983 }
2984 }
2985 }
2986
2987 cmp = compare_values (min, max);
2988 if (cmp == -2 || cmp == 1)
2989 {
2990 /* If the new range has its limits swapped around (MIN > MAX),
2991 then the operation caused one of them to wrap around, mark
2992 the new range VARYING. */
2993 set_value_range_to_varying (vr);
2994 }
2995 else
2996 set_value_range (vr, vr0.type, min, max, NULL);
2997 }
2998
2999
3000 /* Extract range information from a conditional expression EXPR based on
3001 the ranges of each of its operands and the expression code. */
3002
3003 static void
3004 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3005 {
3006 tree op0, op1;
3007 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3008 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3009
3010 /* Get value ranges for each operand. For constant operands, create
3011 a new value range with the operand to simplify processing. */
3012 op0 = COND_EXPR_THEN (expr);
3013 if (TREE_CODE (op0) == SSA_NAME)
3014 vr0 = *(get_value_range (op0));
3015 else if (is_gimple_min_invariant (op0))
3016 set_value_range_to_value (&vr0, op0, NULL);
3017 else
3018 set_value_range_to_varying (&vr0);
3019
3020 op1 = COND_EXPR_ELSE (expr);
3021 if (TREE_CODE (op1) == SSA_NAME)
3022 vr1 = *(get_value_range (op1));
3023 else if (is_gimple_min_invariant (op1))
3024 set_value_range_to_value (&vr1, op1, NULL);
3025 else
3026 set_value_range_to_varying (&vr1);
3027
3028 /* The resulting value range is the union of the operand ranges */
3029 vrp_meet (&vr0, &vr1);
3030 copy_value_range (vr, &vr0);
3031 }
3032
3033
3034 /* Extract range information from a comparison expression EXPR based
3035 on the range of its operand and the expression code. */
3036
3037 static void
3038 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3039 tree type, tree op0, tree op1)
3040 {
3041 bool sop = false;
3042 tree val;
3043
3044 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3045 NULL);
3046
3047 /* A disadvantage of using a special infinity as an overflow
3048 representation is that we lose the ability to record overflow
3049 when we don't have an infinity. So we have to ignore a result
3050 which relies on overflow. */
3051
3052 if (val && !is_overflow_infinity (val) && !sop)
3053 {
3054 /* Since this expression was found on the RHS of an assignment,
3055 its type may be different from _Bool. Convert VAL to EXPR's
3056 type. */
3057 val = fold_convert (type, val);
3058 if (is_gimple_min_invariant (val))
3059 set_value_range_to_value (vr, val, vr->equiv);
3060 else
3061 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3062 }
3063 else
3064 /* The result of a comparison is always true or false. */
3065 set_value_range_to_truthvalue (vr, type);
3066 }
3067
3068 /* Try to derive a nonnegative or nonzero range out of STMT relying
3069 primarily on generic routines in fold in conjunction with range data.
3070 Store the result in *VR */
3071
3072 static void
3073 extract_range_basic (value_range_t *vr, gimple stmt)
3074 {
3075 bool sop = false;
3076 tree type = gimple_expr_type (stmt);
3077
3078 if (INTEGRAL_TYPE_P (type)
3079 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3080 set_value_range_to_nonnegative (vr, type,
3081 sop || stmt_overflow_infinity (stmt));
3082 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3083 && !sop)
3084 set_value_range_to_nonnull (vr, type);
3085 else
3086 set_value_range_to_varying (vr);
3087 }
3088
3089
3090 /* Try to compute a useful range out of assignment STMT and store it
3091 in *VR. */
3092
3093 static void
3094 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3095 {
3096 enum tree_code code = gimple_assign_rhs_code (stmt);
3097
3098 if (code == ASSERT_EXPR)
3099 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3100 else if (code == SSA_NAME)
3101 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3102 else if (TREE_CODE_CLASS (code) == tcc_binary
3103 || code == TRUTH_AND_EXPR
3104 || code == TRUTH_OR_EXPR
3105 || code == TRUTH_XOR_EXPR)
3106 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3107 gimple_expr_type (stmt),
3108 gimple_assign_rhs1 (stmt),
3109 gimple_assign_rhs2 (stmt));
3110 else if (TREE_CODE_CLASS (code) == tcc_unary)
3111 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3112 gimple_expr_type (stmt),
3113 gimple_assign_rhs1 (stmt));
3114 else if (code == COND_EXPR)
3115 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3116 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3117 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3118 gimple_expr_type (stmt),
3119 gimple_assign_rhs1 (stmt),
3120 gimple_assign_rhs2 (stmt));
3121 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3122 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3123 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3124 else
3125 set_value_range_to_varying (vr);
3126
3127 if (vr->type == VR_VARYING)
3128 extract_range_basic (vr, stmt);
3129 }
3130
3131 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3132 would be profitable to adjust VR using scalar evolution information
3133 for VAR. If so, update VR with the new limits. */
3134
3135 static void
3136 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3137 gimple stmt, tree var)
3138 {
3139 tree init, step, chrec, tmin, tmax, min, max, type;
3140 enum ev_direction dir;
3141
3142 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3143 better opportunities than a regular range, but I'm not sure. */
3144 if (vr->type == VR_ANTI_RANGE)
3145 return;
3146
3147 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3148
3149 /* Like in PR19590, scev can return a constant function. */
3150 if (is_gimple_min_invariant (chrec))
3151 {
3152 set_value_range_to_value (vr, chrec, vr->equiv);
3153 return;
3154 }
3155
3156 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3157 return;
3158
3159 init = initial_condition_in_loop_num (chrec, loop->num);
3160 step = evolution_part_in_loop_num (chrec, loop->num);
3161
3162 /* If STEP is symbolic, we can't know whether INIT will be the
3163 minimum or maximum value in the range. Also, unless INIT is
3164 a simple expression, compare_values and possibly other functions
3165 in tree-vrp won't be able to handle it. */
3166 if (step == NULL_TREE
3167 || !is_gimple_min_invariant (step)
3168 || !valid_value_p (init))
3169 return;
3170
3171 dir = scev_direction (chrec);
3172 if (/* Do not adjust ranges if we do not know whether the iv increases
3173 or decreases, ... */
3174 dir == EV_DIR_UNKNOWN
3175 /* ... or if it may wrap. */
3176 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3177 true))
3178 return;
3179
3180 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3181 negative_overflow_infinity and positive_overflow_infinity,
3182 because we have concluded that the loop probably does not
3183 wrap. */
3184
3185 type = TREE_TYPE (var);
3186 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3187 tmin = lower_bound_in_type (type, type);
3188 else
3189 tmin = TYPE_MIN_VALUE (type);
3190 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3191 tmax = upper_bound_in_type (type, type);
3192 else
3193 tmax = TYPE_MAX_VALUE (type);
3194
3195 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3196 {
3197 min = tmin;
3198 max = tmax;
3199
3200 /* For VARYING or UNDEFINED ranges, just about anything we get
3201 from scalar evolutions should be better. */
3202
3203 if (dir == EV_DIR_DECREASES)
3204 max = init;
3205 else
3206 min = init;
3207
3208 /* If we would create an invalid range, then just assume we
3209 know absolutely nothing. This may be over-conservative,
3210 but it's clearly safe, and should happen only in unreachable
3211 parts of code, or for invalid programs. */
3212 if (compare_values (min, max) == 1)
3213 return;
3214
3215 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3216 }
3217 else if (vr->type == VR_RANGE)
3218 {
3219 min = vr->min;
3220 max = vr->max;
3221
3222 if (dir == EV_DIR_DECREASES)
3223 {
3224 /* INIT is the maximum value. If INIT is lower than VR->MAX
3225 but no smaller than VR->MIN, set VR->MAX to INIT. */
3226 if (compare_values (init, max) == -1)
3227 {
3228 max = init;
3229
3230 /* If we just created an invalid range with the minimum
3231 greater than the maximum, we fail conservatively.
3232 This should happen only in unreachable
3233 parts of code, or for invalid programs. */
3234 if (compare_values (min, max) == 1)
3235 return;
3236 }
3237
3238 /* According to the loop information, the variable does not
3239 overflow. If we think it does, probably because of an
3240 overflow due to arithmetic on a different INF value,
3241 reset now. */
3242 if (is_negative_overflow_infinity (min))
3243 min = tmin;
3244 }
3245 else
3246 {
3247 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3248 if (compare_values (init, min) == 1)
3249 {
3250 min = init;
3251
3252 /* Again, avoid creating invalid range by failing. */
3253 if (compare_values (min, max) == 1)
3254 return;
3255 }
3256
3257 if (is_positive_overflow_infinity (max))
3258 max = tmax;
3259 }
3260
3261 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3262 }
3263 }
3264
3265 /* Return true if VAR may overflow at STMT. This checks any available
3266 loop information to see if we can determine that VAR does not
3267 overflow. */
3268
3269 static bool
3270 vrp_var_may_overflow (tree var, gimple stmt)
3271 {
3272 struct loop *l;
3273 tree chrec, init, step;
3274
3275 if (current_loops == NULL)
3276 return true;
3277
3278 l = loop_containing_stmt (stmt);
3279 if (l == NULL)
3280 return true;
3281
3282 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3283 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3284 return true;
3285
3286 init = initial_condition_in_loop_num (chrec, l->num);
3287 step = evolution_part_in_loop_num (chrec, l->num);
3288
3289 if (step == NULL_TREE
3290 || !is_gimple_min_invariant (step)
3291 || !valid_value_p (init))
3292 return true;
3293
3294 /* If we get here, we know something useful about VAR based on the
3295 loop information. If it wraps, it may overflow. */
3296
3297 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3298 true))
3299 return true;
3300
3301 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3302 {
3303 print_generic_expr (dump_file, var, 0);
3304 fprintf (dump_file, ": loop information indicates does not overflow\n");
3305 }
3306
3307 return false;
3308 }
3309
3310
3311 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3312
3313 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3314 all the values in the ranges.
3315
3316 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3317
3318 - Return NULL_TREE if it is not always possible to determine the
3319 value of the comparison.
3320
3321 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3322 overflow infinity was used in the test. */
3323
3324
3325 static tree
3326 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3327 bool *strict_overflow_p)
3328 {
3329 /* VARYING or UNDEFINED ranges cannot be compared. */
3330 if (vr0->type == VR_VARYING
3331 || vr0->type == VR_UNDEFINED
3332 || vr1->type == VR_VARYING
3333 || vr1->type == VR_UNDEFINED)
3334 return NULL_TREE;
3335
3336 /* Anti-ranges need to be handled separately. */
3337 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3338 {
3339 /* If both are anti-ranges, then we cannot compute any
3340 comparison. */
3341 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3342 return NULL_TREE;
3343
3344 /* These comparisons are never statically computable. */
3345 if (comp == GT_EXPR
3346 || comp == GE_EXPR
3347 || comp == LT_EXPR
3348 || comp == LE_EXPR)
3349 return NULL_TREE;
3350
3351 /* Equality can be computed only between a range and an
3352 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3353 if (vr0->type == VR_RANGE)
3354 {
3355 /* To simplify processing, make VR0 the anti-range. */
3356 value_range_t *tmp = vr0;
3357 vr0 = vr1;
3358 vr1 = tmp;
3359 }
3360
3361 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3362
3363 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3364 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3365 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3366
3367 return NULL_TREE;
3368 }
3369
3370 if (!usable_range_p (vr0, strict_overflow_p)
3371 || !usable_range_p (vr1, strict_overflow_p))
3372 return NULL_TREE;
3373
3374 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3375 operands around and change the comparison code. */
3376 if (comp == GT_EXPR || comp == GE_EXPR)
3377 {
3378 value_range_t *tmp;
3379 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3380 tmp = vr0;
3381 vr0 = vr1;
3382 vr1 = tmp;
3383 }
3384
3385 if (comp == EQ_EXPR)
3386 {
3387 /* Equality may only be computed if both ranges represent
3388 exactly one value. */
3389 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3390 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3391 {
3392 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3393 strict_overflow_p);
3394 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3395 strict_overflow_p);
3396 if (cmp_min == 0 && cmp_max == 0)
3397 return boolean_true_node;
3398 else if (cmp_min != -2 && cmp_max != -2)
3399 return boolean_false_node;
3400 }
3401 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3402 else if (compare_values_warnv (vr0->min, vr1->max,
3403 strict_overflow_p) == 1
3404 || compare_values_warnv (vr1->min, vr0->max,
3405 strict_overflow_p) == 1)
3406 return boolean_false_node;
3407
3408 return NULL_TREE;
3409 }
3410 else if (comp == NE_EXPR)
3411 {
3412 int cmp1, cmp2;
3413
3414 /* If VR0 is completely to the left or completely to the right
3415 of VR1, they are always different. Notice that we need to
3416 make sure that both comparisons yield similar results to
3417 avoid comparing values that cannot be compared at
3418 compile-time. */
3419 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3420 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3421 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3422 return boolean_true_node;
3423
3424 /* If VR0 and VR1 represent a single value and are identical,
3425 return false. */
3426 else if (compare_values_warnv (vr0->min, vr0->max,
3427 strict_overflow_p) == 0
3428 && compare_values_warnv (vr1->min, vr1->max,
3429 strict_overflow_p) == 0
3430 && compare_values_warnv (vr0->min, vr1->min,
3431 strict_overflow_p) == 0
3432 && compare_values_warnv (vr0->max, vr1->max,
3433 strict_overflow_p) == 0)
3434 return boolean_false_node;
3435
3436 /* Otherwise, they may or may not be different. */
3437 else
3438 return NULL_TREE;
3439 }
3440 else if (comp == LT_EXPR || comp == LE_EXPR)
3441 {
3442 int tst;
3443
3444 /* If VR0 is to the left of VR1, return true. */
3445 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3446 if ((comp == LT_EXPR && tst == -1)
3447 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3448 {
3449 if (overflow_infinity_range_p (vr0)
3450 || overflow_infinity_range_p (vr1))
3451 *strict_overflow_p = true;
3452 return boolean_true_node;
3453 }
3454
3455 /* If VR0 is to the right of VR1, return false. */
3456 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3457 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3458 || (comp == LE_EXPR && tst == 1))
3459 {
3460 if (overflow_infinity_range_p (vr0)
3461 || overflow_infinity_range_p (vr1))
3462 *strict_overflow_p = true;
3463 return boolean_false_node;
3464 }
3465
3466 /* Otherwise, we don't know. */
3467 return NULL_TREE;
3468 }
3469
3470 gcc_unreachable ();
3471 }
3472
3473
3474 /* Given a value range VR, a value VAL and a comparison code COMP, return
3475 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3476 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3477 always returns false. Return NULL_TREE if it is not always
3478 possible to determine the value of the comparison. Also set
3479 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3480 infinity was used in the test. */
3481
3482 static tree
3483 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3484 bool *strict_overflow_p)
3485 {
3486 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3487 return NULL_TREE;
3488
3489 /* Anti-ranges need to be handled separately. */
3490 if (vr->type == VR_ANTI_RANGE)
3491 {
3492 /* For anti-ranges, the only predicates that we can compute at
3493 compile time are equality and inequality. */
3494 if (comp == GT_EXPR
3495 || comp == GE_EXPR
3496 || comp == LT_EXPR
3497 || comp == LE_EXPR)
3498 return NULL_TREE;
3499
3500 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3501 if (value_inside_range (val, vr) == 1)
3502 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3503
3504 return NULL_TREE;
3505 }
3506
3507 if (!usable_range_p (vr, strict_overflow_p))
3508 return NULL_TREE;
3509
3510 if (comp == EQ_EXPR)
3511 {
3512 /* EQ_EXPR may only be computed if VR represents exactly
3513 one value. */
3514 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3515 {
3516 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3517 if (cmp == 0)
3518 return boolean_true_node;
3519 else if (cmp == -1 || cmp == 1 || cmp == 2)
3520 return boolean_false_node;
3521 }
3522 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3523 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3524 return boolean_false_node;
3525
3526 return NULL_TREE;
3527 }
3528 else if (comp == NE_EXPR)
3529 {
3530 /* If VAL is not inside VR, then they are always different. */
3531 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3532 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3533 return boolean_true_node;
3534
3535 /* If VR represents exactly one value equal to VAL, then return
3536 false. */
3537 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3538 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3539 return boolean_false_node;
3540
3541 /* Otherwise, they may or may not be different. */
3542 return NULL_TREE;
3543 }
3544 else if (comp == LT_EXPR || comp == LE_EXPR)
3545 {
3546 int tst;
3547
3548 /* If VR is to the left of VAL, return true. */
3549 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3550 if ((comp == LT_EXPR && tst == -1)
3551 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3552 {
3553 if (overflow_infinity_range_p (vr))
3554 *strict_overflow_p = true;
3555 return boolean_true_node;
3556 }
3557
3558 /* If VR is to the right of VAL, return false. */
3559 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3560 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3561 || (comp == LE_EXPR && tst == 1))
3562 {
3563 if (overflow_infinity_range_p (vr))
3564 *strict_overflow_p = true;
3565 return boolean_false_node;
3566 }
3567
3568 /* Otherwise, we don't know. */
3569 return NULL_TREE;
3570 }
3571 else if (comp == GT_EXPR || comp == GE_EXPR)
3572 {
3573 int tst;
3574
3575 /* If VR is to the right of VAL, return true. */
3576 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3577 if ((comp == GT_EXPR && tst == 1)
3578 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3579 {
3580 if (overflow_infinity_range_p (vr))
3581 *strict_overflow_p = true;
3582 return boolean_true_node;
3583 }
3584
3585 /* If VR is to the left of VAL, return false. */
3586 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3587 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3588 || (comp == GE_EXPR && tst == -1))
3589 {
3590 if (overflow_infinity_range_p (vr))
3591 *strict_overflow_p = true;
3592 return boolean_false_node;
3593 }
3594
3595 /* Otherwise, we don't know. */
3596 return NULL_TREE;
3597 }
3598
3599 gcc_unreachable ();
3600 }
3601
3602
3603 /* Debugging dumps. */
3604
3605 void dump_value_range (FILE *, value_range_t *);
3606 void debug_value_range (value_range_t *);
3607 void dump_all_value_ranges (FILE *);
3608 void debug_all_value_ranges (void);
3609 void dump_vr_equiv (FILE *, bitmap);
3610 void debug_vr_equiv (bitmap);
3611
3612
3613 /* Dump value range VR to FILE. */
3614
3615 void
3616 dump_value_range (FILE *file, value_range_t *vr)
3617 {
3618 if (vr == NULL)
3619 fprintf (file, "[]");
3620 else if (vr->type == VR_UNDEFINED)
3621 fprintf (file, "UNDEFINED");
3622 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3623 {
3624 tree type = TREE_TYPE (vr->min);
3625
3626 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3627
3628 if (is_negative_overflow_infinity (vr->min))
3629 fprintf (file, "-INF(OVF)");
3630 else if (INTEGRAL_TYPE_P (type)
3631 && !TYPE_UNSIGNED (type)
3632 && vrp_val_is_min (vr->min))
3633 fprintf (file, "-INF");
3634 else
3635 print_generic_expr (file, vr->min, 0);
3636
3637 fprintf (file, ", ");
3638
3639 if (is_positive_overflow_infinity (vr->max))
3640 fprintf (file, "+INF(OVF)");
3641 else if (INTEGRAL_TYPE_P (type)
3642 && vrp_val_is_max (vr->max))
3643 fprintf (file, "+INF");
3644 else
3645 print_generic_expr (file, vr->max, 0);
3646
3647 fprintf (file, "]");
3648
3649 if (vr->equiv)
3650 {
3651 bitmap_iterator bi;
3652 unsigned i, c = 0;
3653
3654 fprintf (file, " EQUIVALENCES: { ");
3655
3656 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3657 {
3658 print_generic_expr (file, ssa_name (i), 0);
3659 fprintf (file, " ");
3660 c++;
3661 }
3662
3663 fprintf (file, "} (%u elements)", c);
3664 }
3665 }
3666 else if (vr->type == VR_VARYING)
3667 fprintf (file, "VARYING");
3668 else
3669 fprintf (file, "INVALID RANGE");
3670 }
3671
3672
3673 /* Dump value range VR to stderr. */
3674
3675 void
3676 debug_value_range (value_range_t *vr)
3677 {
3678 dump_value_range (stderr, vr);
3679 fprintf (stderr, "\n");
3680 }
3681
3682
3683 /* Dump value ranges of all SSA_NAMEs to FILE. */
3684
3685 void
3686 dump_all_value_ranges (FILE *file)
3687 {
3688 size_t i;
3689
3690 for (i = 0; i < num_ssa_names; i++)
3691 {
3692 if (vr_value[i])
3693 {
3694 print_generic_expr (file, ssa_name (i), 0);
3695 fprintf (file, ": ");
3696 dump_value_range (file, vr_value[i]);
3697 fprintf (file, "\n");
3698 }
3699 }
3700
3701 fprintf (file, "\n");
3702 }
3703
3704
3705 /* Dump all value ranges to stderr. */
3706
3707 void
3708 debug_all_value_ranges (void)
3709 {
3710 dump_all_value_ranges (stderr);
3711 }
3712
3713
3714 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3715 create a new SSA name N and return the assertion assignment
3716 'V = ASSERT_EXPR <V, V OP W>'. */
3717
3718 static gimple
3719 build_assert_expr_for (tree cond, tree v)
3720 {
3721 tree n;
3722 gimple assertion;
3723
3724 gcc_assert (TREE_CODE (v) == SSA_NAME);
3725 n = duplicate_ssa_name (v, NULL);
3726
3727 if (COMPARISON_CLASS_P (cond))
3728 {
3729 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3730 assertion = gimple_build_assign (n, a);
3731 }
3732 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3733 {
3734 /* Given !V, build the assignment N = false. */
3735 tree op0 = TREE_OPERAND (cond, 0);
3736 gcc_assert (op0 == v);
3737 assertion = gimple_build_assign (n, boolean_false_node);
3738 }
3739 else if (TREE_CODE (cond) == SSA_NAME)
3740 {
3741 /* Given V, build the assignment N = true. */
3742 gcc_assert (v == cond);
3743 assertion = gimple_build_assign (n, boolean_true_node);
3744 }
3745 else
3746 gcc_unreachable ();
3747
3748 SSA_NAME_DEF_STMT (n) = assertion;
3749
3750 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3751 operand of the ASSERT_EXPR. Register the new name and the old one
3752 in the replacement table so that we can fix the SSA web after
3753 adding all the ASSERT_EXPRs. */
3754 register_new_name_mapping (n, v);
3755
3756 return assertion;
3757 }
3758
3759
3760 /* Return false if EXPR is a predicate expression involving floating
3761 point values. */
3762
3763 static inline bool
3764 fp_predicate (gimple stmt)
3765 {
3766 GIMPLE_CHECK (stmt, GIMPLE_COND);
3767
3768 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3769 }
3770
3771
3772 /* If the range of values taken by OP can be inferred after STMT executes,
3773 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3774 describes the inferred range. Return true if a range could be
3775 inferred. */
3776
3777 static bool
3778 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3779 {
3780 *val_p = NULL_TREE;
3781 *comp_code_p = ERROR_MARK;
3782
3783 /* Do not attempt to infer anything in names that flow through
3784 abnormal edges. */
3785 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3786 return false;
3787
3788 /* Similarly, don't infer anything from statements that may throw
3789 exceptions. */
3790 if (stmt_could_throw_p (stmt))
3791 return false;
3792
3793 /* If STMT is the last statement of a basic block with no
3794 successors, there is no point inferring anything about any of its
3795 operands. We would not be able to find a proper insertion point
3796 for the assertion, anyway. */
3797 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3798 return false;
3799
3800 /* We can only assume that a pointer dereference will yield
3801 non-NULL if -fdelete-null-pointer-checks is enabled. */
3802 if (flag_delete_null_pointer_checks
3803 && POINTER_TYPE_P (TREE_TYPE (op))
3804 && gimple_code (stmt) != GIMPLE_ASM)
3805 {
3806 unsigned num_uses, num_loads, num_stores;
3807
3808 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3809 if (num_loads + num_stores > 0)
3810 {
3811 *val_p = build_int_cst (TREE_TYPE (op), 0);
3812 *comp_code_p = NE_EXPR;
3813 return true;
3814 }
3815 }
3816
3817 return false;
3818 }
3819
3820
3821 void dump_asserts_for (FILE *, tree);
3822 void debug_asserts_for (tree);
3823 void dump_all_asserts (FILE *);
3824 void debug_all_asserts (void);
3825
3826 /* Dump all the registered assertions for NAME to FILE. */
3827
3828 void
3829 dump_asserts_for (FILE *file, tree name)
3830 {
3831 assert_locus_t loc;
3832
3833 fprintf (file, "Assertions to be inserted for ");
3834 print_generic_expr (file, name, 0);
3835 fprintf (file, "\n");
3836
3837 loc = asserts_for[SSA_NAME_VERSION (name)];
3838 while (loc)
3839 {
3840 fprintf (file, "\t");
3841 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3842 fprintf (file, "\n\tBB #%d", loc->bb->index);
3843 if (loc->e)
3844 {
3845 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3846 loc->e->dest->index);
3847 dump_edge_info (file, loc->e, 0);
3848 }
3849 fprintf (file, "\n\tPREDICATE: ");
3850 print_generic_expr (file, name, 0);
3851 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3852 print_generic_expr (file, loc->val, 0);
3853 fprintf (file, "\n\n");
3854 loc = loc->next;
3855 }
3856
3857 fprintf (file, "\n");
3858 }
3859
3860
3861 /* Dump all the registered assertions for NAME to stderr. */
3862
3863 void
3864 debug_asserts_for (tree name)
3865 {
3866 dump_asserts_for (stderr, name);
3867 }
3868
3869
3870 /* Dump all the registered assertions for all the names to FILE. */
3871
3872 void
3873 dump_all_asserts (FILE *file)
3874 {
3875 unsigned i;
3876 bitmap_iterator bi;
3877
3878 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3879 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3880 dump_asserts_for (file, ssa_name (i));
3881 fprintf (file, "\n");
3882 }
3883
3884
3885 /* Dump all the registered assertions for all the names to stderr. */
3886
3887 void
3888 debug_all_asserts (void)
3889 {
3890 dump_all_asserts (stderr);
3891 }
3892
3893
3894 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3895 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3896 E->DEST, then register this location as a possible insertion point
3897 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3898
3899 BB, E and SI provide the exact insertion point for the new
3900 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3901 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3902 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3903 must not be NULL. */
3904
3905 static void
3906 register_new_assert_for (tree name, tree expr,
3907 enum tree_code comp_code,
3908 tree val,
3909 basic_block bb,
3910 edge e,
3911 gimple_stmt_iterator si)
3912 {
3913 assert_locus_t n, loc, last_loc;
3914 bool found;
3915 basic_block dest_bb;
3916
3917 #if defined ENABLE_CHECKING
3918 gcc_assert (bb == NULL || e == NULL);
3919
3920 if (e == NULL)
3921 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3922 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3923 #endif
3924
3925 /* Never build an assert comparing against an integer constant with
3926 TREE_OVERFLOW set. This confuses our undefined overflow warning
3927 machinery. */
3928 if (TREE_CODE (val) == INTEGER_CST
3929 && TREE_OVERFLOW (val))
3930 val = build_int_cst_wide (TREE_TYPE (val),
3931 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3932
3933 /* The new assertion A will be inserted at BB or E. We need to
3934 determine if the new location is dominated by a previously
3935 registered location for A. If we are doing an edge insertion,
3936 assume that A will be inserted at E->DEST. Note that this is not
3937 necessarily true.
3938
3939 If E is a critical edge, it will be split. But even if E is
3940 split, the new block will dominate the same set of blocks that
3941 E->DEST dominates.
3942
3943 The reverse, however, is not true, blocks dominated by E->DEST
3944 will not be dominated by the new block created to split E. So,
3945 if the insertion location is on a critical edge, we will not use
3946 the new location to move another assertion previously registered
3947 at a block dominated by E->DEST. */
3948 dest_bb = (bb) ? bb : e->dest;
3949
3950 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3951 VAL at a block dominating DEST_BB, then we don't need to insert a new
3952 one. Similarly, if the same assertion already exists at a block
3953 dominated by DEST_BB and the new location is not on a critical
3954 edge, then update the existing location for the assertion (i.e.,
3955 move the assertion up in the dominance tree).
3956
3957 Note, this is implemented as a simple linked list because there
3958 should not be more than a handful of assertions registered per
3959 name. If this becomes a performance problem, a table hashed by
3960 COMP_CODE and VAL could be implemented. */
3961 loc = asserts_for[SSA_NAME_VERSION (name)];
3962 last_loc = loc;
3963 found = false;
3964 while (loc)
3965 {
3966 if (loc->comp_code == comp_code
3967 && (loc->val == val
3968 || operand_equal_p (loc->val, val, 0))
3969 && (loc->expr == expr
3970 || operand_equal_p (loc->expr, expr, 0)))
3971 {
3972 /* If the assertion NAME COMP_CODE VAL has already been
3973 registered at a basic block that dominates DEST_BB, then
3974 we don't need to insert the same assertion again. Note
3975 that we don't check strict dominance here to avoid
3976 replicating the same assertion inside the same basic
3977 block more than once (e.g., when a pointer is
3978 dereferenced several times inside a block).
3979
3980 An exception to this rule are edge insertions. If the
3981 new assertion is to be inserted on edge E, then it will
3982 dominate all the other insertions that we may want to
3983 insert in DEST_BB. So, if we are doing an edge
3984 insertion, don't do this dominance check. */
3985 if (e == NULL
3986 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3987 return;
3988
3989 /* Otherwise, if E is not a critical edge and DEST_BB
3990 dominates the existing location for the assertion, move
3991 the assertion up in the dominance tree by updating its
3992 location information. */
3993 if ((e == NULL || !EDGE_CRITICAL_P (e))
3994 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3995 {
3996 loc->bb = dest_bb;
3997 loc->e = e;
3998 loc->si = si;
3999 return;
4000 }
4001 }
4002
4003 /* Update the last node of the list and move to the next one. */
4004 last_loc = loc;
4005 loc = loc->next;
4006 }
4007
4008 /* If we didn't find an assertion already registered for
4009 NAME COMP_CODE VAL, add a new one at the end of the list of
4010 assertions associated with NAME. */
4011 n = XNEW (struct assert_locus_d);
4012 n->bb = dest_bb;
4013 n->e = e;
4014 n->si = si;
4015 n->comp_code = comp_code;
4016 n->val = val;
4017 n->expr = expr;
4018 n->next = NULL;
4019
4020 if (last_loc)
4021 last_loc->next = n;
4022 else
4023 asserts_for[SSA_NAME_VERSION (name)] = n;
4024
4025 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4026 }
4027
4028 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4029 Extract a suitable test code and value and store them into *CODE_P and
4030 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4031
4032 If no extraction was possible, return FALSE, otherwise return TRUE.
4033
4034 If INVERT is true, then we invert the result stored into *CODE_P. */
4035
4036 static bool
4037 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4038 tree cond_op0, tree cond_op1,
4039 bool invert, enum tree_code *code_p,
4040 tree *val_p)
4041 {
4042 enum tree_code comp_code;
4043 tree val;
4044
4045 /* Otherwise, we have a comparison of the form NAME COMP VAL
4046 or VAL COMP NAME. */
4047 if (name == cond_op1)
4048 {
4049 /* If the predicate is of the form VAL COMP NAME, flip
4050 COMP around because we need to register NAME as the
4051 first operand in the predicate. */
4052 comp_code = swap_tree_comparison (cond_code);
4053 val = cond_op0;
4054 }
4055 else
4056 {
4057 /* The comparison is of the form NAME COMP VAL, so the
4058 comparison code remains unchanged. */
4059 comp_code = cond_code;
4060 val = cond_op1;
4061 }
4062
4063 /* Invert the comparison code as necessary. */
4064 if (invert)
4065 comp_code = invert_tree_comparison (comp_code, 0);
4066
4067 /* VRP does not handle float types. */
4068 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4069 return false;
4070
4071 /* Do not register always-false predicates.
4072 FIXME: this works around a limitation in fold() when dealing with
4073 enumerations. Given 'enum { N1, N2 } x;', fold will not
4074 fold 'if (x > N2)' to 'if (0)'. */
4075 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4076 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4077 {
4078 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4079 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4080
4081 if (comp_code == GT_EXPR
4082 && (!max
4083 || compare_values (val, max) == 0))
4084 return false;
4085
4086 if (comp_code == LT_EXPR
4087 && (!min
4088 || compare_values (val, min) == 0))
4089 return false;
4090 }
4091 *code_p = comp_code;
4092 *val_p = val;
4093 return true;
4094 }
4095
4096 /* Try to register an edge assertion for SSA name NAME on edge E for
4097 the condition COND contributing to the conditional jump pointed to by BSI.
4098 Invert the condition COND if INVERT is true.
4099 Return true if an assertion for NAME could be registered. */
4100
4101 static bool
4102 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4103 enum tree_code cond_code,
4104 tree cond_op0, tree cond_op1, bool invert)
4105 {
4106 tree val;
4107 enum tree_code comp_code;
4108 bool retval = false;
4109
4110 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4111 cond_op0,
4112 cond_op1,
4113 invert, &comp_code, &val))
4114 return false;
4115
4116 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4117 reachable from E. */
4118 if (live_on_edge (e, name)
4119 && !has_single_use (name))
4120 {
4121 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4122 retval = true;
4123 }
4124
4125 /* In the case of NAME <= CST and NAME being defined as
4126 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4127 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4128 This catches range and anti-range tests. */
4129 if ((comp_code == LE_EXPR
4130 || comp_code == GT_EXPR)
4131 && TREE_CODE (val) == INTEGER_CST
4132 && TYPE_UNSIGNED (TREE_TYPE (val)))
4133 {
4134 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4135 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4136
4137 /* Extract CST2 from the (optional) addition. */
4138 if (is_gimple_assign (def_stmt)
4139 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4140 {
4141 name2 = gimple_assign_rhs1 (def_stmt);
4142 cst2 = gimple_assign_rhs2 (def_stmt);
4143 if (TREE_CODE (name2) == SSA_NAME
4144 && TREE_CODE (cst2) == INTEGER_CST)
4145 def_stmt = SSA_NAME_DEF_STMT (name2);
4146 }
4147
4148 /* Extract NAME2 from the (optional) sign-changing cast. */
4149 if (gimple_assign_cast_p (def_stmt))
4150 {
4151 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4152 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4153 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4154 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4155 name3 = gimple_assign_rhs1 (def_stmt);
4156 }
4157
4158 /* If name3 is used later, create an ASSERT_EXPR for it. */
4159 if (name3 != NULL_TREE
4160 && TREE_CODE (name3) == SSA_NAME
4161 && (cst2 == NULL_TREE
4162 || TREE_CODE (cst2) == INTEGER_CST)
4163 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4164 && live_on_edge (e, name3)
4165 && !has_single_use (name3))
4166 {
4167 tree tmp;
4168
4169 /* Build an expression for the range test. */
4170 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4171 if (cst2 != NULL_TREE)
4172 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4173
4174 if (dump_file)
4175 {
4176 fprintf (dump_file, "Adding assert for ");
4177 print_generic_expr (dump_file, name3, 0);
4178 fprintf (dump_file, " from ");
4179 print_generic_expr (dump_file, tmp, 0);
4180 fprintf (dump_file, "\n");
4181 }
4182
4183 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4184
4185 retval = true;
4186 }
4187
4188 /* If name2 is used later, create an ASSERT_EXPR for it. */
4189 if (name2 != NULL_TREE
4190 && TREE_CODE (name2) == SSA_NAME
4191 && TREE_CODE (cst2) == INTEGER_CST
4192 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4193 && live_on_edge (e, name2)
4194 && !has_single_use (name2))
4195 {
4196 tree tmp;
4197
4198 /* Build an expression for the range test. */
4199 tmp = name2;
4200 if (TREE_TYPE (name) != TREE_TYPE (name2))
4201 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4202 if (cst2 != NULL_TREE)
4203 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4204
4205 if (dump_file)
4206 {
4207 fprintf (dump_file, "Adding assert for ");
4208 print_generic_expr (dump_file, name2, 0);
4209 fprintf (dump_file, " from ");
4210 print_generic_expr (dump_file, tmp, 0);
4211 fprintf (dump_file, "\n");
4212 }
4213
4214 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4215
4216 retval = true;
4217 }
4218 }
4219
4220 return retval;
4221 }
4222
4223 /* OP is an operand of a truth value expression which is known to have
4224 a particular value. Register any asserts for OP and for any
4225 operands in OP's defining statement.
4226
4227 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4228 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4229
4230 static bool
4231 register_edge_assert_for_1 (tree op, enum tree_code code,
4232 edge e, gimple_stmt_iterator bsi)
4233 {
4234 bool retval = false;
4235 gimple op_def;
4236 tree val;
4237 enum tree_code rhs_code;
4238
4239 /* We only care about SSA_NAMEs. */
4240 if (TREE_CODE (op) != SSA_NAME)
4241 return false;
4242
4243 /* We know that OP will have a zero or nonzero value. If OP is used
4244 more than once go ahead and register an assert for OP.
4245
4246 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4247 it will always be set for OP (because OP is used in a COND_EXPR in
4248 the subgraph). */
4249 if (!has_single_use (op))
4250 {
4251 val = build_int_cst (TREE_TYPE (op), 0);
4252 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4253 retval = true;
4254 }
4255
4256 /* Now look at how OP is set. If it's set from a comparison,
4257 a truth operation or some bit operations, then we may be able
4258 to register information about the operands of that assignment. */
4259 op_def = SSA_NAME_DEF_STMT (op);
4260 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4261 return retval;
4262
4263 rhs_code = gimple_assign_rhs_code (op_def);
4264
4265 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4266 {
4267 bool invert = (code == EQ_EXPR ? true : false);
4268 tree op0 = gimple_assign_rhs1 (op_def);
4269 tree op1 = gimple_assign_rhs2 (op_def);
4270
4271 if (TREE_CODE (op0) == SSA_NAME)
4272 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4273 invert);
4274 if (TREE_CODE (op1) == SSA_NAME)
4275 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4276 invert);
4277 }
4278 else if ((code == NE_EXPR
4279 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4280 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4281 || (code == EQ_EXPR
4282 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4283 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4284 {
4285 /* Recurse on each operand. */
4286 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4287 code, e, bsi);
4288 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4289 code, e, bsi);
4290 }
4291 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4292 {
4293 /* Recurse, flipping CODE. */
4294 code = invert_tree_comparison (code, false);
4295 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4296 code, e, bsi);
4297 }
4298 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4299 {
4300 /* Recurse through the copy. */
4301 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4302 code, e, bsi);
4303 }
4304 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4305 {
4306 /* Recurse through the type conversion. */
4307 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4308 code, e, bsi);
4309 }
4310
4311 return retval;
4312 }
4313
4314 /* Try to register an edge assertion for SSA name NAME on edge E for
4315 the condition COND contributing to the conditional jump pointed to by SI.
4316 Return true if an assertion for NAME could be registered. */
4317
4318 static bool
4319 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4320 enum tree_code cond_code, tree cond_op0,
4321 tree cond_op1)
4322 {
4323 tree val;
4324 enum tree_code comp_code;
4325 bool retval = false;
4326 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4327
4328 /* Do not attempt to infer anything in names that flow through
4329 abnormal edges. */
4330 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4331 return false;
4332
4333 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4334 cond_op0, cond_op1,
4335 is_else_edge,
4336 &comp_code, &val))
4337 return false;
4338
4339 /* Register ASSERT_EXPRs for name. */
4340 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4341 cond_op1, is_else_edge);
4342
4343
4344 /* If COND is effectively an equality test of an SSA_NAME against
4345 the value zero or one, then we may be able to assert values
4346 for SSA_NAMEs which flow into COND. */
4347
4348 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4349 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4350 have nonzero value. */
4351 if (((comp_code == EQ_EXPR && integer_onep (val))
4352 || (comp_code == NE_EXPR && integer_zerop (val))))
4353 {
4354 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4355
4356 if (is_gimple_assign (def_stmt)
4357 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4358 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4359 {
4360 tree op0 = gimple_assign_rhs1 (def_stmt);
4361 tree op1 = gimple_assign_rhs2 (def_stmt);
4362 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4363 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4364 }
4365 }
4366
4367 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4368 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4369 have zero value. */
4370 if (((comp_code == EQ_EXPR && integer_zerop (val))
4371 || (comp_code == NE_EXPR && integer_onep (val))))
4372 {
4373 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4374
4375 if (is_gimple_assign (def_stmt)
4376 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4377 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4378 necessarily zero value. */
4379 || (comp_code == EQ_EXPR
4380 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4381 {
4382 tree op0 = gimple_assign_rhs1 (def_stmt);
4383 tree op1 = gimple_assign_rhs2 (def_stmt);
4384 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4385 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4386 }
4387 }
4388
4389 return retval;
4390 }
4391
4392
4393 /* Determine whether the outgoing edges of BB should receive an
4394 ASSERT_EXPR for each of the operands of BB's LAST statement.
4395 The last statement of BB must be a COND_EXPR.
4396
4397 If any of the sub-graphs rooted at BB have an interesting use of
4398 the predicate operands, an assert location node is added to the
4399 list of assertions for the corresponding operands. */
4400
4401 static bool
4402 find_conditional_asserts (basic_block bb, gimple last)
4403 {
4404 bool need_assert;
4405 gimple_stmt_iterator bsi;
4406 tree op;
4407 edge_iterator ei;
4408 edge e;
4409 ssa_op_iter iter;
4410
4411 need_assert = false;
4412 bsi = gsi_for_stmt (last);
4413
4414 /* Look for uses of the operands in each of the sub-graphs
4415 rooted at BB. We need to check each of the outgoing edges
4416 separately, so that we know what kind of ASSERT_EXPR to
4417 insert. */
4418 FOR_EACH_EDGE (e, ei, bb->succs)
4419 {
4420 if (e->dest == bb)
4421 continue;
4422
4423 /* Register the necessary assertions for each operand in the
4424 conditional predicate. */
4425 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4426 {
4427 need_assert |= register_edge_assert_for (op, e, bsi,
4428 gimple_cond_code (last),
4429 gimple_cond_lhs (last),
4430 gimple_cond_rhs (last));
4431 }
4432 }
4433
4434 return need_assert;
4435 }
4436
4437 /* Compare two case labels sorting first by the destination label uid
4438 and then by the case value. */
4439
4440 static int
4441 compare_case_labels (const void *p1, const void *p2)
4442 {
4443 const_tree const case1 = *(const_tree const*)p1;
4444 const_tree const case2 = *(const_tree const*)p2;
4445 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4446 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4447
4448 if (uid1 < uid2)
4449 return -1;
4450 else if (uid1 == uid2)
4451 {
4452 /* Make sure the default label is first in a group. */
4453 if (!CASE_LOW (case1))
4454 return -1;
4455 else if (!CASE_LOW (case2))
4456 return 1;
4457 else
4458 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4459 }
4460 else
4461 return 1;
4462 }
4463
4464 /* Determine whether the outgoing edges of BB should receive an
4465 ASSERT_EXPR for each of the operands of BB's LAST statement.
4466 The last statement of BB must be a SWITCH_EXPR.
4467
4468 If any of the sub-graphs rooted at BB have an interesting use of
4469 the predicate operands, an assert location node is added to the
4470 list of assertions for the corresponding operands. */
4471
4472 static bool
4473 find_switch_asserts (basic_block bb, gimple last)
4474 {
4475 bool need_assert;
4476 gimple_stmt_iterator bsi;
4477 tree op;
4478 edge e;
4479 tree vec2;
4480 size_t n = gimple_switch_num_labels(last);
4481 #if GCC_VERSION >= 4000
4482 unsigned int idx;
4483 #else
4484 /* Work around GCC 3.4 bug (PR 37086). */
4485 volatile unsigned int idx;
4486 #endif
4487
4488 need_assert = false;
4489 bsi = gsi_for_stmt (last);
4490 op = gimple_switch_index (last);
4491 if (TREE_CODE (op) != SSA_NAME)
4492 return false;
4493
4494 /* Build a vector of case labels sorted by destination label. */
4495 vec2 = make_tree_vec (n);
4496 for (idx = 0; idx < n; ++idx)
4497 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4498 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4499
4500 for (idx = 0; idx < n; ++idx)
4501 {
4502 tree min, max;
4503 tree cl = TREE_VEC_ELT (vec2, idx);
4504
4505 min = CASE_LOW (cl);
4506 max = CASE_HIGH (cl);
4507
4508 /* If there are multiple case labels with the same destination
4509 we need to combine them to a single value range for the edge. */
4510 if (idx + 1 < n
4511 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4512 {
4513 /* Skip labels until the last of the group. */
4514 do {
4515 ++idx;
4516 } while (idx < n
4517 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4518 --idx;
4519
4520 /* Pick up the maximum of the case label range. */
4521 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4522 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4523 else
4524 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4525 }
4526
4527 /* Nothing to do if the range includes the default label until we
4528 can register anti-ranges. */
4529 if (min == NULL_TREE)
4530 continue;
4531
4532 /* Find the edge to register the assert expr on. */
4533 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4534
4535 /* Register the necessary assertions for the operand in the
4536 SWITCH_EXPR. */
4537 need_assert |= register_edge_assert_for (op, e, bsi,
4538 max ? GE_EXPR : EQ_EXPR,
4539 op,
4540 fold_convert (TREE_TYPE (op),
4541 min));
4542 if (max)
4543 {
4544 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4545 op,
4546 fold_convert (TREE_TYPE (op),
4547 max));
4548 }
4549 }
4550
4551 return need_assert;
4552 }
4553
4554
4555 /* Traverse all the statements in block BB looking for statements that
4556 may generate useful assertions for the SSA names in their operand.
4557 If a statement produces a useful assertion A for name N_i, then the
4558 list of assertions already generated for N_i is scanned to
4559 determine if A is actually needed.
4560
4561 If N_i already had the assertion A at a location dominating the
4562 current location, then nothing needs to be done. Otherwise, the
4563 new location for A is recorded instead.
4564
4565 1- For every statement S in BB, all the variables used by S are
4566 added to bitmap FOUND_IN_SUBGRAPH.
4567
4568 2- If statement S uses an operand N in a way that exposes a known
4569 value range for N, then if N was not already generated by an
4570 ASSERT_EXPR, create a new assert location for N. For instance,
4571 if N is a pointer and the statement dereferences it, we can
4572 assume that N is not NULL.
4573
4574 3- COND_EXPRs are a special case of #2. We can derive range
4575 information from the predicate but need to insert different
4576 ASSERT_EXPRs for each of the sub-graphs rooted at the
4577 conditional block. If the last statement of BB is a conditional
4578 expression of the form 'X op Y', then
4579
4580 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4581
4582 b) If the conditional is the only entry point to the sub-graph
4583 corresponding to the THEN_CLAUSE, recurse into it. On
4584 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4585 an ASSERT_EXPR is added for the corresponding variable.
4586
4587 c) Repeat step (b) on the ELSE_CLAUSE.
4588
4589 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4590
4591 For instance,
4592
4593 if (a == 9)
4594 b = a;
4595 else
4596 b = c + 1;
4597
4598 In this case, an assertion on the THEN clause is useful to
4599 determine that 'a' is always 9 on that edge. However, an assertion
4600 on the ELSE clause would be unnecessary.
4601
4602 4- If BB does not end in a conditional expression, then we recurse
4603 into BB's dominator children.
4604
4605 At the end of the recursive traversal, every SSA name will have a
4606 list of locations where ASSERT_EXPRs should be added. When a new
4607 location for name N is found, it is registered by calling
4608 register_new_assert_for. That function keeps track of all the
4609 registered assertions to prevent adding unnecessary assertions.
4610 For instance, if a pointer P_4 is dereferenced more than once in a
4611 dominator tree, only the location dominating all the dereference of
4612 P_4 will receive an ASSERT_EXPR.
4613
4614 If this function returns true, then it means that there are names
4615 for which we need to generate ASSERT_EXPRs. Those assertions are
4616 inserted by process_assert_insertions. */
4617
4618 static bool
4619 find_assert_locations_1 (basic_block bb, sbitmap live)
4620 {
4621 gimple_stmt_iterator si;
4622 gimple last;
4623 gimple phi;
4624 bool need_assert;
4625
4626 need_assert = false;
4627 last = last_stmt (bb);
4628
4629 /* If BB's last statement is a conditional statement involving integer
4630 operands, determine if we need to add ASSERT_EXPRs. */
4631 if (last
4632 && gimple_code (last) == GIMPLE_COND
4633 && !fp_predicate (last)
4634 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4635 need_assert |= find_conditional_asserts (bb, last);
4636
4637 /* If BB's last statement is a switch statement involving integer
4638 operands, determine if we need to add ASSERT_EXPRs. */
4639 if (last
4640 && gimple_code (last) == GIMPLE_SWITCH
4641 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4642 need_assert |= find_switch_asserts (bb, last);
4643
4644 /* Traverse all the statements in BB marking used names and looking
4645 for statements that may infer assertions for their used operands. */
4646 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4647 {
4648 gimple stmt;
4649 tree op;
4650 ssa_op_iter i;
4651
4652 stmt = gsi_stmt (si);
4653
4654 if (is_gimple_debug (stmt))
4655 continue;
4656
4657 /* See if we can derive an assertion for any of STMT's operands. */
4658 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4659 {
4660 tree value;
4661 enum tree_code comp_code;
4662
4663 /* Mark OP in our live bitmap. */
4664 SET_BIT (live, SSA_NAME_VERSION (op));
4665
4666 /* If OP is used in such a way that we can infer a value
4667 range for it, and we don't find a previous assertion for
4668 it, create a new assertion location node for OP. */
4669 if (infer_value_range (stmt, op, &comp_code, &value))
4670 {
4671 /* If we are able to infer a nonzero value range for OP,
4672 then walk backwards through the use-def chain to see if OP
4673 was set via a typecast.
4674
4675 If so, then we can also infer a nonzero value range
4676 for the operand of the NOP_EXPR. */
4677 if (comp_code == NE_EXPR && integer_zerop (value))
4678 {
4679 tree t = op;
4680 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4681
4682 while (is_gimple_assign (def_stmt)
4683 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4684 && TREE_CODE
4685 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4686 && POINTER_TYPE_P
4687 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4688 {
4689 t = gimple_assign_rhs1 (def_stmt);
4690 def_stmt = SSA_NAME_DEF_STMT (t);
4691
4692 /* Note we want to register the assert for the
4693 operand of the NOP_EXPR after SI, not after the
4694 conversion. */
4695 if (! has_single_use (t))
4696 {
4697 register_new_assert_for (t, t, comp_code, value,
4698 bb, NULL, si);
4699 need_assert = true;
4700 }
4701 }
4702 }
4703
4704 /* If OP is used only once, namely in this STMT, don't
4705 bother creating an ASSERT_EXPR for it. Such an
4706 ASSERT_EXPR would do nothing but increase compile time. */
4707 if (!has_single_use (op))
4708 {
4709 register_new_assert_for (op, op, comp_code, value,
4710 bb, NULL, si);
4711 need_assert = true;
4712 }
4713 }
4714 }
4715 }
4716
4717 /* Traverse all PHI nodes in BB marking used operands. */
4718 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4719 {
4720 use_operand_p arg_p;
4721 ssa_op_iter i;
4722 phi = gsi_stmt (si);
4723
4724 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4725 {
4726 tree arg = USE_FROM_PTR (arg_p);
4727 if (TREE_CODE (arg) == SSA_NAME)
4728 SET_BIT (live, SSA_NAME_VERSION (arg));
4729 }
4730 }
4731
4732 return need_assert;
4733 }
4734
4735 /* Do an RPO walk over the function computing SSA name liveness
4736 on-the-fly and deciding on assert expressions to insert.
4737 Returns true if there are assert expressions to be inserted. */
4738
4739 static bool
4740 find_assert_locations (void)
4741 {
4742 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4743 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4744 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4745 int rpo_cnt, i;
4746 bool need_asserts;
4747
4748 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4749 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4750 for (i = 0; i < rpo_cnt; ++i)
4751 bb_rpo[rpo[i]] = i;
4752
4753 need_asserts = false;
4754 for (i = rpo_cnt-1; i >= 0; --i)
4755 {
4756 basic_block bb = BASIC_BLOCK (rpo[i]);
4757 edge e;
4758 edge_iterator ei;
4759
4760 if (!live[rpo[i]])
4761 {
4762 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4763 sbitmap_zero (live[rpo[i]]);
4764 }
4765
4766 /* Process BB and update the live information with uses in
4767 this block. */
4768 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4769
4770 /* Merge liveness into the predecessor blocks and free it. */
4771 if (!sbitmap_empty_p (live[rpo[i]]))
4772 {
4773 int pred_rpo = i;
4774 FOR_EACH_EDGE (e, ei, bb->preds)
4775 {
4776 int pred = e->src->index;
4777 if (e->flags & EDGE_DFS_BACK)
4778 continue;
4779
4780 if (!live[pred])
4781 {
4782 live[pred] = sbitmap_alloc (num_ssa_names);
4783 sbitmap_zero (live[pred]);
4784 }
4785 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4786
4787 if (bb_rpo[pred] < pred_rpo)
4788 pred_rpo = bb_rpo[pred];
4789 }
4790
4791 /* Record the RPO number of the last visited block that needs
4792 live information from this block. */
4793 last_rpo[rpo[i]] = pred_rpo;
4794 }
4795 else
4796 {
4797 sbitmap_free (live[rpo[i]]);
4798 live[rpo[i]] = NULL;
4799 }
4800
4801 /* We can free all successors live bitmaps if all their
4802 predecessors have been visited already. */
4803 FOR_EACH_EDGE (e, ei, bb->succs)
4804 if (last_rpo[e->dest->index] == i
4805 && live[e->dest->index])
4806 {
4807 sbitmap_free (live[e->dest->index]);
4808 live[e->dest->index] = NULL;
4809 }
4810 }
4811
4812 XDELETEVEC (rpo);
4813 XDELETEVEC (bb_rpo);
4814 XDELETEVEC (last_rpo);
4815 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4816 if (live[i])
4817 sbitmap_free (live[i]);
4818 XDELETEVEC (live);
4819
4820 return need_asserts;
4821 }
4822
4823 /* Create an ASSERT_EXPR for NAME and insert it in the location
4824 indicated by LOC. Return true if we made any edge insertions. */
4825
4826 static bool
4827 process_assert_insertions_for (tree name, assert_locus_t loc)
4828 {
4829 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4830 gimple stmt;
4831 tree cond;
4832 gimple assert_stmt;
4833 edge_iterator ei;
4834 edge e;
4835
4836 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4837 assert_stmt = build_assert_expr_for (cond, name);
4838 if (loc->e)
4839 {
4840 /* We have been asked to insert the assertion on an edge. This
4841 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4842 #if defined ENABLE_CHECKING
4843 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4844 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4845 #endif
4846
4847 gsi_insert_on_edge (loc->e, assert_stmt);
4848 return true;
4849 }
4850
4851 /* Otherwise, we can insert right after LOC->SI iff the
4852 statement must not be the last statement in the block. */
4853 stmt = gsi_stmt (loc->si);
4854 if (!stmt_ends_bb_p (stmt))
4855 {
4856 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4857 return false;
4858 }
4859
4860 /* If STMT must be the last statement in BB, we can only insert new
4861 assertions on the non-abnormal edge out of BB. Note that since
4862 STMT is not control flow, there may only be one non-abnormal edge
4863 out of BB. */
4864 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4865 if (!(e->flags & EDGE_ABNORMAL))
4866 {
4867 gsi_insert_on_edge (e, assert_stmt);
4868 return true;
4869 }
4870
4871 gcc_unreachable ();
4872 }
4873
4874
4875 /* Process all the insertions registered for every name N_i registered
4876 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4877 found in ASSERTS_FOR[i]. */
4878
4879 static void
4880 process_assert_insertions (void)
4881 {
4882 unsigned i;
4883 bitmap_iterator bi;
4884 bool update_edges_p = false;
4885 int num_asserts = 0;
4886
4887 if (dump_file && (dump_flags & TDF_DETAILS))
4888 dump_all_asserts (dump_file);
4889
4890 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4891 {
4892 assert_locus_t loc = asserts_for[i];
4893 gcc_assert (loc);
4894
4895 while (loc)
4896 {
4897 assert_locus_t next = loc->next;
4898 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4899 free (loc);
4900 loc = next;
4901 num_asserts++;
4902 }
4903 }
4904
4905 if (update_edges_p)
4906 gsi_commit_edge_inserts ();
4907
4908 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4909 num_asserts);
4910 }
4911
4912
4913 /* Traverse the flowgraph looking for conditional jumps to insert range
4914 expressions. These range expressions are meant to provide information
4915 to optimizations that need to reason in terms of value ranges. They
4916 will not be expanded into RTL. For instance, given:
4917
4918 x = ...
4919 y = ...
4920 if (x < y)
4921 y = x - 2;
4922 else
4923 x = y + 3;
4924
4925 this pass will transform the code into:
4926
4927 x = ...
4928 y = ...
4929 if (x < y)
4930 {
4931 x = ASSERT_EXPR <x, x < y>
4932 y = x - 2
4933 }
4934 else
4935 {
4936 y = ASSERT_EXPR <y, x <= y>
4937 x = y + 3
4938 }
4939
4940 The idea is that once copy and constant propagation have run, other
4941 optimizations will be able to determine what ranges of values can 'x'
4942 take in different paths of the code, simply by checking the reaching
4943 definition of 'x'. */
4944
4945 static void
4946 insert_range_assertions (void)
4947 {
4948 need_assert_for = BITMAP_ALLOC (NULL);
4949 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4950
4951 calculate_dominance_info (CDI_DOMINATORS);
4952
4953 if (find_assert_locations ())
4954 {
4955 process_assert_insertions ();
4956 update_ssa (TODO_update_ssa_no_phi);
4957 }
4958
4959 if (dump_file && (dump_flags & TDF_DETAILS))
4960 {
4961 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4962 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4963 }
4964
4965 free (asserts_for);
4966 BITMAP_FREE (need_assert_for);
4967 }
4968
4969 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4970 and "struct" hacks. If VRP can determine that the
4971 array subscript is a constant, check if it is outside valid
4972 range. If the array subscript is a RANGE, warn if it is
4973 non-overlapping with valid range.
4974 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4975
4976 static void
4977 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
4978 {
4979 value_range_t* vr = NULL;
4980 tree low_sub, up_sub;
4981 tree low_bound, up_bound = array_ref_up_bound (ref);
4982
4983 low_sub = up_sub = TREE_OPERAND (ref, 1);
4984
4985 if (!up_bound || TREE_NO_WARNING (ref)
4986 || TREE_CODE (up_bound) != INTEGER_CST
4987 /* Can not check flexible arrays. */
4988 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4989 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4990 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4991 /* Accesses after the end of arrays of size 0 (gcc
4992 extension) and 1 are likely intentional ("struct
4993 hack"). */
4994 || compare_tree_int (up_bound, 1) <= 0)
4995 return;
4996
4997 low_bound = array_ref_low_bound (ref);
4998
4999 if (TREE_CODE (low_sub) == SSA_NAME)
5000 {
5001 vr = get_value_range (low_sub);
5002 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5003 {
5004 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5005 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5006 }
5007 }
5008
5009 if (vr && vr->type == VR_ANTI_RANGE)
5010 {
5011 if (TREE_CODE (up_sub) == INTEGER_CST
5012 && tree_int_cst_lt (up_bound, up_sub)
5013 && TREE_CODE (low_sub) == INTEGER_CST
5014 && tree_int_cst_lt (low_sub, low_bound))
5015 {
5016 warning_at (location, OPT_Warray_bounds,
5017 "array subscript is outside array bounds");
5018 TREE_NO_WARNING (ref) = 1;
5019 }
5020 }
5021 else if (TREE_CODE (up_sub) == INTEGER_CST
5022 && tree_int_cst_lt (up_bound, up_sub)
5023 && !tree_int_cst_equal (up_bound, up_sub)
5024 && (!ignore_off_by_one
5025 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
5026 up_bound,
5027 integer_one_node,
5028 0),
5029 up_sub)))
5030 {
5031 warning_at (location, OPT_Warray_bounds,
5032 "array subscript is above array bounds");
5033 TREE_NO_WARNING (ref) = 1;
5034 }
5035 else if (TREE_CODE (low_sub) == INTEGER_CST
5036 && tree_int_cst_lt (low_sub, low_bound))
5037 {
5038 warning_at (location, OPT_Warray_bounds,
5039 "array subscript is below array bounds");
5040 TREE_NO_WARNING (ref) = 1;
5041 }
5042 }
5043
5044 /* Searches if the expr T, located at LOCATION computes
5045 address of an ARRAY_REF, and call check_array_ref on it. */
5046
5047 static void
5048 search_for_addr_array (tree t, location_t location)
5049 {
5050 while (TREE_CODE (t) == SSA_NAME)
5051 {
5052 gimple g = SSA_NAME_DEF_STMT (t);
5053
5054 if (gimple_code (g) != GIMPLE_ASSIGN)
5055 return;
5056
5057 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5058 != GIMPLE_SINGLE_RHS)
5059 return;
5060
5061 t = gimple_assign_rhs1 (g);
5062 }
5063
5064
5065 /* We are only interested in addresses of ARRAY_REF's. */
5066 if (TREE_CODE (t) != ADDR_EXPR)
5067 return;
5068
5069 /* Check each ARRAY_REFs in the reference chain. */
5070 do
5071 {
5072 if (TREE_CODE (t) == ARRAY_REF)
5073 check_array_ref (location, t, true /*ignore_off_by_one*/);
5074
5075 t = TREE_OPERAND (t, 0);
5076 }
5077 while (handled_component_p (t));
5078 }
5079
5080 /* walk_tree() callback that checks if *TP is
5081 an ARRAY_REF inside an ADDR_EXPR (in which an array
5082 subscript one outside the valid range is allowed). Call
5083 check_array_ref for each ARRAY_REF found. The location is
5084 passed in DATA. */
5085
5086 static tree
5087 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5088 {
5089 tree t = *tp;
5090 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5091 location_t location;
5092
5093 if (EXPR_HAS_LOCATION (t))
5094 location = EXPR_LOCATION (t);
5095 else
5096 {
5097 location_t *locp = (location_t *) wi->info;
5098 location = *locp;
5099 }
5100
5101 *walk_subtree = TRUE;
5102
5103 if (TREE_CODE (t) == ARRAY_REF)
5104 check_array_ref (location, t, false /*ignore_off_by_one*/);
5105
5106 if (TREE_CODE (t) == INDIRECT_REF
5107 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5108 search_for_addr_array (TREE_OPERAND (t, 0), location);
5109
5110 if (TREE_CODE (t) == ADDR_EXPR)
5111 *walk_subtree = FALSE;
5112
5113 return NULL_TREE;
5114 }
5115
5116 /* Walk over all statements of all reachable BBs and call check_array_bounds
5117 on them. */
5118
5119 static void
5120 check_all_array_refs (void)
5121 {
5122 basic_block bb;
5123 gimple_stmt_iterator si;
5124
5125 FOR_EACH_BB (bb)
5126 {
5127 /* Skip bb's that are clearly unreachable. */
5128 if (single_pred_p (bb))
5129 {
5130 int i;
5131 bool reachable = true;
5132 edge e2;
5133 edge e = EDGE_PRED (bb, 0);
5134 basic_block pred_bb = e->src;
5135 gimple ls = NULL;
5136
5137 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e2); ++i)
5138 if (e == e2)
5139 {
5140 reachable = false;
5141 break;
5142 }
5143
5144 if (!reachable)
5145 continue;
5146
5147 if (!gsi_end_p (gsi_last_bb (pred_bb)))
5148 ls = gsi_stmt (gsi_last_bb (pred_bb));
5149
5150 if (ls && gimple_code (ls) == GIMPLE_COND
5151 && ((gimple_cond_false_p (ls)
5152 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
5153 || (gimple_cond_true_p (ls)
5154 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
5155 continue;
5156 }
5157 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5158 {
5159 gimple stmt = gsi_stmt (si);
5160 struct walk_stmt_info wi;
5161 if (!gimple_has_location (stmt))
5162 continue;
5163
5164 if (is_gimple_call (stmt))
5165 {
5166 size_t i;
5167 size_t n = gimple_call_num_args (stmt);
5168 for (i = 0; i < n; i++)
5169 {
5170 tree arg = gimple_call_arg (stmt, i);
5171 search_for_addr_array (arg, gimple_location (stmt));
5172 }
5173 }
5174 else
5175 {
5176 memset (&wi, 0, sizeof (wi));
5177 wi.info = CONST_CAST (void *, (const void *)
5178 gimple_location_ptr (stmt));
5179
5180 walk_gimple_op (gsi_stmt (si),
5181 check_array_bounds,
5182 &wi);
5183 }
5184 }
5185 }
5186 }
5187
5188 /* Convert range assertion expressions into the implied copies and
5189 copy propagate away the copies. Doing the trivial copy propagation
5190 here avoids the need to run the full copy propagation pass after
5191 VRP.
5192
5193 FIXME, this will eventually lead to copy propagation removing the
5194 names that had useful range information attached to them. For
5195 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5196 then N_i will have the range [3, +INF].
5197
5198 However, by converting the assertion into the implied copy
5199 operation N_i = N_j, we will then copy-propagate N_j into the uses
5200 of N_i and lose the range information. We may want to hold on to
5201 ASSERT_EXPRs a little while longer as the ranges could be used in
5202 things like jump threading.
5203
5204 The problem with keeping ASSERT_EXPRs around is that passes after
5205 VRP need to handle them appropriately.
5206
5207 Another approach would be to make the range information a first
5208 class property of the SSA_NAME so that it can be queried from
5209 any pass. This is made somewhat more complex by the need for
5210 multiple ranges to be associated with one SSA_NAME. */
5211
5212 static void
5213 remove_range_assertions (void)
5214 {
5215 basic_block bb;
5216 gimple_stmt_iterator si;
5217
5218 /* Note that the BSI iterator bump happens at the bottom of the
5219 loop and no bump is necessary if we're removing the statement
5220 referenced by the current BSI. */
5221 FOR_EACH_BB (bb)
5222 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5223 {
5224 gimple stmt = gsi_stmt (si);
5225 gimple use_stmt;
5226
5227 if (is_gimple_assign (stmt)
5228 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5229 {
5230 tree rhs = gimple_assign_rhs1 (stmt);
5231 tree var;
5232 tree cond = fold (ASSERT_EXPR_COND (rhs));
5233 use_operand_p use_p;
5234 imm_use_iterator iter;
5235
5236 gcc_assert (cond != boolean_false_node);
5237
5238 /* Propagate the RHS into every use of the LHS. */
5239 var = ASSERT_EXPR_VAR (rhs);
5240 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5241 gimple_assign_lhs (stmt))
5242 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5243 {
5244 SET_USE (use_p, var);
5245 gcc_assert (TREE_CODE (var) == SSA_NAME);
5246 }
5247
5248 /* And finally, remove the copy, it is not needed. */
5249 gsi_remove (&si, true);
5250 release_defs (stmt);
5251 }
5252 else
5253 gsi_next (&si);
5254 }
5255 }
5256
5257
5258 /* Return true if STMT is interesting for VRP. */
5259
5260 static bool
5261 stmt_interesting_for_vrp (gimple stmt)
5262 {
5263 if (gimple_code (stmt) == GIMPLE_PHI
5264 && is_gimple_reg (gimple_phi_result (stmt))
5265 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5266 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5267 return true;
5268 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5269 {
5270 tree lhs = gimple_get_lhs (stmt);
5271
5272 /* In general, assignments with virtual operands are not useful
5273 for deriving ranges, with the obvious exception of calls to
5274 builtin functions. */
5275 if (lhs && TREE_CODE (lhs) == SSA_NAME
5276 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5277 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5278 && ((is_gimple_call (stmt)
5279 && gimple_call_fndecl (stmt) != NULL_TREE
5280 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5281 || !gimple_vuse (stmt)))
5282 return true;
5283 }
5284 else if (gimple_code (stmt) == GIMPLE_COND
5285 || gimple_code (stmt) == GIMPLE_SWITCH)
5286 return true;
5287
5288 return false;
5289 }
5290
5291
5292 /* Initialize local data structures for VRP. */
5293
5294 static void
5295 vrp_initialize (void)
5296 {
5297 basic_block bb;
5298
5299 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5300 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5301
5302 FOR_EACH_BB (bb)
5303 {
5304 gimple_stmt_iterator si;
5305
5306 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5307 {
5308 gimple phi = gsi_stmt (si);
5309 if (!stmt_interesting_for_vrp (phi))
5310 {
5311 tree lhs = PHI_RESULT (phi);
5312 set_value_range_to_varying (get_value_range (lhs));
5313 prop_set_simulate_again (phi, false);
5314 }
5315 else
5316 prop_set_simulate_again (phi, true);
5317 }
5318
5319 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5320 {
5321 gimple stmt = gsi_stmt (si);
5322
5323 /* If the statement is a control insn, then we do not
5324 want to avoid simulating the statement once. Failure
5325 to do so means that those edges will never get added. */
5326 if (stmt_ends_bb_p (stmt))
5327 prop_set_simulate_again (stmt, true);
5328 else if (!stmt_interesting_for_vrp (stmt))
5329 {
5330 ssa_op_iter i;
5331 tree def;
5332 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5333 set_value_range_to_varying (get_value_range (def));
5334 prop_set_simulate_again (stmt, false);
5335 }
5336 else
5337 prop_set_simulate_again (stmt, true);
5338 }
5339 }
5340 }
5341
5342
5343 /* Visit assignment STMT. If it produces an interesting range, record
5344 the SSA name in *OUTPUT_P. */
5345
5346 static enum ssa_prop_result
5347 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5348 {
5349 tree def, lhs;
5350 ssa_op_iter iter;
5351 enum gimple_code code = gimple_code (stmt);
5352 lhs = gimple_get_lhs (stmt);
5353
5354 /* We only keep track of ranges in integral and pointer types. */
5355 if (TREE_CODE (lhs) == SSA_NAME
5356 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5357 /* It is valid to have NULL MIN/MAX values on a type. See
5358 build_range_type. */
5359 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5360 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5361 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5362 {
5363 struct loop *l;
5364 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5365
5366 if (code == GIMPLE_CALL)
5367 extract_range_basic (&new_vr, stmt);
5368 else
5369 extract_range_from_assignment (&new_vr, stmt);
5370
5371 /* If STMT is inside a loop, we may be able to know something
5372 else about the range of LHS by examining scalar evolution
5373 information. */
5374 if (current_loops && (l = loop_containing_stmt (stmt)))
5375 adjust_range_with_scev (&new_vr, l, stmt, lhs);
5376
5377 if (update_value_range (lhs, &new_vr))
5378 {
5379 *output_p = lhs;
5380
5381 if (dump_file && (dump_flags & TDF_DETAILS))
5382 {
5383 fprintf (dump_file, "Found new range for ");
5384 print_generic_expr (dump_file, lhs, 0);
5385 fprintf (dump_file, ": ");
5386 dump_value_range (dump_file, &new_vr);
5387 fprintf (dump_file, "\n\n");
5388 }
5389
5390 if (new_vr.type == VR_VARYING)
5391 return SSA_PROP_VARYING;
5392
5393 return SSA_PROP_INTERESTING;
5394 }
5395
5396 return SSA_PROP_NOT_INTERESTING;
5397 }
5398
5399 /* Every other statement produces no useful ranges. */
5400 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5401 set_value_range_to_varying (get_value_range (def));
5402
5403 return SSA_PROP_VARYING;
5404 }
5405
5406 /* Helper that gets the value range of the SSA_NAME with version I
5407 or a symbolic range containing the SSA_NAME only if the value range
5408 is varying or undefined. */
5409
5410 static inline value_range_t
5411 get_vr_for_comparison (int i)
5412 {
5413 value_range_t vr = *(vr_value[i]);
5414
5415 /* If name N_i does not have a valid range, use N_i as its own
5416 range. This allows us to compare against names that may
5417 have N_i in their ranges. */
5418 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5419 {
5420 vr.type = VR_RANGE;
5421 vr.min = ssa_name (i);
5422 vr.max = ssa_name (i);
5423 }
5424
5425 return vr;
5426 }
5427
5428 /* Compare all the value ranges for names equivalent to VAR with VAL
5429 using comparison code COMP. Return the same value returned by
5430 compare_range_with_value, including the setting of
5431 *STRICT_OVERFLOW_P. */
5432
5433 static tree
5434 compare_name_with_value (enum tree_code comp, tree var, tree val,
5435 bool *strict_overflow_p)
5436 {
5437 bitmap_iterator bi;
5438 unsigned i;
5439 bitmap e;
5440 tree retval, t;
5441 int used_strict_overflow;
5442 bool sop;
5443 value_range_t equiv_vr;
5444
5445 /* Get the set of equivalences for VAR. */
5446 e = get_value_range (var)->equiv;
5447
5448 /* Start at -1. Set it to 0 if we do a comparison without relying
5449 on overflow, or 1 if all comparisons rely on overflow. */
5450 used_strict_overflow = -1;
5451
5452 /* Compare vars' value range with val. */
5453 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5454 sop = false;
5455 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5456 if (retval)
5457 used_strict_overflow = sop ? 1 : 0;
5458
5459 /* If the equiv set is empty we have done all work we need to do. */
5460 if (e == NULL)
5461 {
5462 if (retval
5463 && used_strict_overflow > 0)
5464 *strict_overflow_p = true;
5465 return retval;
5466 }
5467
5468 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5469 {
5470 equiv_vr = get_vr_for_comparison (i);
5471 sop = false;
5472 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5473 if (t)
5474 {
5475 /* If we get different answers from different members
5476 of the equivalence set this check must be in a dead
5477 code region. Folding it to a trap representation
5478 would be correct here. For now just return don't-know. */
5479 if (retval != NULL
5480 && t != retval)
5481 {
5482 retval = NULL_TREE;
5483 break;
5484 }
5485 retval = t;
5486
5487 if (!sop)
5488 used_strict_overflow = 0;
5489 else if (used_strict_overflow < 0)
5490 used_strict_overflow = 1;
5491 }
5492 }
5493
5494 if (retval
5495 && used_strict_overflow > 0)
5496 *strict_overflow_p = true;
5497
5498 return retval;
5499 }
5500
5501
5502 /* Given a comparison code COMP and names N1 and N2, compare all the
5503 ranges equivalent to N1 against all the ranges equivalent to N2
5504 to determine the value of N1 COMP N2. Return the same value
5505 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5506 whether we relied on an overflow infinity in the comparison. */
5507
5508
5509 static tree
5510 compare_names (enum tree_code comp, tree n1, tree n2,
5511 bool *strict_overflow_p)
5512 {
5513 tree t, retval;
5514 bitmap e1, e2;
5515 bitmap_iterator bi1, bi2;
5516 unsigned i1, i2;
5517 int used_strict_overflow;
5518 static bitmap_obstack *s_obstack = NULL;
5519 static bitmap s_e1 = NULL, s_e2 = NULL;
5520
5521 /* Compare the ranges of every name equivalent to N1 against the
5522 ranges of every name equivalent to N2. */
5523 e1 = get_value_range (n1)->equiv;
5524 e2 = get_value_range (n2)->equiv;
5525
5526 /* Use the fake bitmaps if e1 or e2 are not available. */
5527 if (s_obstack == NULL)
5528 {
5529 s_obstack = XNEW (bitmap_obstack);
5530 bitmap_obstack_initialize (s_obstack);
5531 s_e1 = BITMAP_ALLOC (s_obstack);
5532 s_e2 = BITMAP_ALLOC (s_obstack);
5533 }
5534 if (e1 == NULL)
5535 e1 = s_e1;
5536 if (e2 == NULL)
5537 e2 = s_e2;
5538
5539 /* Add N1 and N2 to their own set of equivalences to avoid
5540 duplicating the body of the loop just to check N1 and N2
5541 ranges. */
5542 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5543 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5544
5545 /* If the equivalence sets have a common intersection, then the two
5546 names can be compared without checking their ranges. */
5547 if (bitmap_intersect_p (e1, e2))
5548 {
5549 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5550 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5551
5552 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5553 ? boolean_true_node
5554 : boolean_false_node;
5555 }
5556
5557 /* Start at -1. Set it to 0 if we do a comparison without relying
5558 on overflow, or 1 if all comparisons rely on overflow. */
5559 used_strict_overflow = -1;
5560
5561 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5562 N2 to their own set of equivalences to avoid duplicating the body
5563 of the loop just to check N1 and N2 ranges. */
5564 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5565 {
5566 value_range_t vr1 = get_vr_for_comparison (i1);
5567
5568 t = retval = NULL_TREE;
5569 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5570 {
5571 bool sop = false;
5572
5573 value_range_t vr2 = get_vr_for_comparison (i2);
5574
5575 t = compare_ranges (comp, &vr1, &vr2, &sop);
5576 if (t)
5577 {
5578 /* If we get different answers from different members
5579 of the equivalence set this check must be in a dead
5580 code region. Folding it to a trap representation
5581 would be correct here. For now just return don't-know. */
5582 if (retval != NULL
5583 && t != retval)
5584 {
5585 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5586 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5587 return NULL_TREE;
5588 }
5589 retval = t;
5590
5591 if (!sop)
5592 used_strict_overflow = 0;
5593 else if (used_strict_overflow < 0)
5594 used_strict_overflow = 1;
5595 }
5596 }
5597
5598 if (retval)
5599 {
5600 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5601 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5602 if (used_strict_overflow > 0)
5603 *strict_overflow_p = true;
5604 return retval;
5605 }
5606 }
5607
5608 /* None of the equivalent ranges are useful in computing this
5609 comparison. */
5610 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5611 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5612 return NULL_TREE;
5613 }
5614
5615 /* Helper function for vrp_evaluate_conditional_warnv. */
5616
5617 static tree
5618 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5619 tree op0, tree op1,
5620 bool * strict_overflow_p)
5621 {
5622 value_range_t *vr0, *vr1;
5623
5624 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5625 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5626
5627 if (vr0 && vr1)
5628 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5629 else if (vr0 && vr1 == NULL)
5630 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5631 else if (vr0 == NULL && vr1)
5632 return (compare_range_with_value
5633 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5634 return NULL;
5635 }
5636
5637 /* Helper function for vrp_evaluate_conditional_warnv. */
5638
5639 static tree
5640 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5641 tree op1, bool use_equiv_p,
5642 bool *strict_overflow_p, bool *only_ranges)
5643 {
5644 tree ret;
5645 if (only_ranges)
5646 *only_ranges = true;
5647
5648 /* We only deal with integral and pointer types. */
5649 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5650 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5651 return NULL_TREE;
5652
5653 if (use_equiv_p)
5654 {
5655 if (only_ranges
5656 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5657 (code, op0, op1, strict_overflow_p)))
5658 return ret;
5659 *only_ranges = false;
5660 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5661 return compare_names (code, op0, op1, strict_overflow_p);
5662 else if (TREE_CODE (op0) == SSA_NAME)
5663 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5664 else if (TREE_CODE (op1) == SSA_NAME)
5665 return (compare_name_with_value
5666 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5667 }
5668 else
5669 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5670 strict_overflow_p);
5671 return NULL_TREE;
5672 }
5673
5674 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5675 information. Return NULL if the conditional can not be evaluated.
5676 The ranges of all the names equivalent with the operands in COND
5677 will be used when trying to compute the value. If the result is
5678 based on undefined signed overflow, issue a warning if
5679 appropriate. */
5680
5681 tree
5682 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5683 {
5684 bool sop;
5685 tree ret;
5686 bool only_ranges;
5687
5688 /* Some passes and foldings leak constants with overflow flag set
5689 into the IL. Avoid doing wrong things with these and bail out. */
5690 if ((TREE_CODE (op0) == INTEGER_CST
5691 && TREE_OVERFLOW (op0))
5692 || (TREE_CODE (op1) == INTEGER_CST
5693 && TREE_OVERFLOW (op1)))
5694 return NULL_TREE;
5695
5696 sop = false;
5697 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5698 &only_ranges);
5699
5700 if (ret && sop)
5701 {
5702 enum warn_strict_overflow_code wc;
5703 const char* warnmsg;
5704
5705 if (is_gimple_min_invariant (ret))
5706 {
5707 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5708 warnmsg = G_("assuming signed overflow does not occur when "
5709 "simplifying conditional to constant");
5710 }
5711 else
5712 {
5713 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5714 warnmsg = G_("assuming signed overflow does not occur when "
5715 "simplifying conditional");
5716 }
5717
5718 if (issue_strict_overflow_warning (wc))
5719 {
5720 location_t location;
5721
5722 if (!gimple_has_location (stmt))
5723 location = input_location;
5724 else
5725 location = gimple_location (stmt);
5726 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
5727 }
5728 }
5729
5730 if (warn_type_limits
5731 && ret && only_ranges
5732 && TREE_CODE_CLASS (code) == tcc_comparison
5733 && TREE_CODE (op0) == SSA_NAME)
5734 {
5735 /* If the comparison is being folded and the operand on the LHS
5736 is being compared against a constant value that is outside of
5737 the natural range of OP0's type, then the predicate will
5738 always fold regardless of the value of OP0. If -Wtype-limits
5739 was specified, emit a warning. */
5740 tree type = TREE_TYPE (op0);
5741 value_range_t *vr0 = get_value_range (op0);
5742
5743 if (vr0->type != VR_VARYING
5744 && INTEGRAL_TYPE_P (type)
5745 && vrp_val_is_min (vr0->min)
5746 && vrp_val_is_max (vr0->max)
5747 && is_gimple_min_invariant (op1))
5748 {
5749 location_t location;
5750
5751 if (!gimple_has_location (stmt))
5752 location = input_location;
5753 else
5754 location = gimple_location (stmt);
5755
5756 warning_at (location, OPT_Wtype_limits,
5757 integer_zerop (ret)
5758 ? G_("comparison always false "
5759 "due to limited range of data type")
5760 : G_("comparison always true "
5761 "due to limited range of data type"));
5762 }
5763 }
5764
5765 return ret;
5766 }
5767
5768
5769 /* Visit conditional statement STMT. If we can determine which edge
5770 will be taken out of STMT's basic block, record it in
5771 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5772 SSA_PROP_VARYING. */
5773
5774 static enum ssa_prop_result
5775 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5776 {
5777 tree val;
5778 bool sop;
5779
5780 *taken_edge_p = NULL;
5781
5782 if (dump_file && (dump_flags & TDF_DETAILS))
5783 {
5784 tree use;
5785 ssa_op_iter i;
5786
5787 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5788 print_gimple_stmt (dump_file, stmt, 0, 0);
5789 fprintf (dump_file, "\nWith known ranges\n");
5790
5791 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5792 {
5793 fprintf (dump_file, "\t");
5794 print_generic_expr (dump_file, use, 0);
5795 fprintf (dump_file, ": ");
5796 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5797 }
5798
5799 fprintf (dump_file, "\n");
5800 }
5801
5802 /* Compute the value of the predicate COND by checking the known
5803 ranges of each of its operands.
5804
5805 Note that we cannot evaluate all the equivalent ranges here
5806 because those ranges may not yet be final and with the current
5807 propagation strategy, we cannot determine when the value ranges
5808 of the names in the equivalence set have changed.
5809
5810 For instance, given the following code fragment
5811
5812 i_5 = PHI <8, i_13>
5813 ...
5814 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5815 if (i_14 == 1)
5816 ...
5817
5818 Assume that on the first visit to i_14, i_5 has the temporary
5819 range [8, 8] because the second argument to the PHI function is
5820 not yet executable. We derive the range ~[0, 0] for i_14 and the
5821 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5822 the first time, since i_14 is equivalent to the range [8, 8], we
5823 determine that the predicate is always false.
5824
5825 On the next round of propagation, i_13 is determined to be
5826 VARYING, which causes i_5 to drop down to VARYING. So, another
5827 visit to i_14 is scheduled. In this second visit, we compute the
5828 exact same range and equivalence set for i_14, namely ~[0, 0] and
5829 { i_5 }. But we did not have the previous range for i_5
5830 registered, so vrp_visit_assignment thinks that the range for
5831 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5832 is not visited again, which stops propagation from visiting
5833 statements in the THEN clause of that if().
5834
5835 To properly fix this we would need to keep the previous range
5836 value for the names in the equivalence set. This way we would've
5837 discovered that from one visit to the other i_5 changed from
5838 range [8, 8] to VR_VARYING.
5839
5840 However, fixing this apparent limitation may not be worth the
5841 additional checking. Testing on several code bases (GCC, DLV,
5842 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5843 4 more predicates folded in SPEC. */
5844 sop = false;
5845
5846 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5847 gimple_cond_lhs (stmt),
5848 gimple_cond_rhs (stmt),
5849 false, &sop, NULL);
5850 if (val)
5851 {
5852 if (!sop)
5853 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5854 else
5855 {
5856 if (dump_file && (dump_flags & TDF_DETAILS))
5857 fprintf (dump_file,
5858 "\nIgnoring predicate evaluation because "
5859 "it assumes that signed overflow is undefined");
5860 val = NULL_TREE;
5861 }
5862 }
5863
5864 if (dump_file && (dump_flags & TDF_DETAILS))
5865 {
5866 fprintf (dump_file, "\nPredicate evaluates to: ");
5867 if (val == NULL_TREE)
5868 fprintf (dump_file, "DON'T KNOW\n");
5869 else
5870 print_generic_stmt (dump_file, val, 0);
5871 }
5872
5873 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5874 }
5875
5876 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5877 that includes the value VAL. The search is restricted to the range
5878 [START_IDX, n - 1] where n is the size of VEC.
5879
5880 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5881 returned.
5882
5883 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5884 it is placed in IDX and false is returned.
5885
5886 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5887 returned. */
5888
5889 static bool
5890 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5891 {
5892 size_t n = gimple_switch_num_labels (stmt);
5893 size_t low, high;
5894
5895 /* Find case label for minimum of the value range or the next one.
5896 At each iteration we are searching in [low, high - 1]. */
5897
5898 for (low = start_idx, high = n; high != low; )
5899 {
5900 tree t;
5901 int cmp;
5902 /* Note that i != high, so we never ask for n. */
5903 size_t i = (high + low) / 2;
5904 t = gimple_switch_label (stmt, i);
5905
5906 /* Cache the result of comparing CASE_LOW and val. */
5907 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5908
5909 if (cmp == 0)
5910 {
5911 /* Ranges cannot be empty. */
5912 *idx = i;
5913 return true;
5914 }
5915 else if (cmp > 0)
5916 high = i;
5917 else
5918 {
5919 low = i + 1;
5920 if (CASE_HIGH (t) != NULL
5921 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5922 {
5923 *idx = i;
5924 return true;
5925 }
5926 }
5927 }
5928
5929 *idx = high;
5930 return false;
5931 }
5932
5933 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5934 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5935 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5936 then MAX_IDX < MIN_IDX.
5937 Returns true if the default label is not needed. */
5938
5939 static bool
5940 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5941 size_t *max_idx)
5942 {
5943 size_t i, j;
5944 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5945 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5946
5947 if (i == j
5948 && min_take_default
5949 && max_take_default)
5950 {
5951 /* Only the default case label reached.
5952 Return an empty range. */
5953 *min_idx = 1;
5954 *max_idx = 0;
5955 return false;
5956 }
5957 else
5958 {
5959 bool take_default = min_take_default || max_take_default;
5960 tree low, high;
5961 size_t k;
5962
5963 if (max_take_default)
5964 j--;
5965
5966 /* If the case label range is continuous, we do not need
5967 the default case label. Verify that. */
5968 high = CASE_LOW (gimple_switch_label (stmt, i));
5969 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5970 high = CASE_HIGH (gimple_switch_label (stmt, i));
5971 for (k = i + 1; k <= j; ++k)
5972 {
5973 low = CASE_LOW (gimple_switch_label (stmt, k));
5974 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5975 {
5976 take_default = true;
5977 break;
5978 }
5979 high = low;
5980 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5981 high = CASE_HIGH (gimple_switch_label (stmt, k));
5982 }
5983
5984 *min_idx = i;
5985 *max_idx = j;
5986 return !take_default;
5987 }
5988 }
5989
5990 /* Visit switch statement STMT. If we can determine which edge
5991 will be taken out of STMT's basic block, record it in
5992 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5993 SSA_PROP_VARYING. */
5994
5995 static enum ssa_prop_result
5996 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
5997 {
5998 tree op, val;
5999 value_range_t *vr;
6000 size_t i = 0, j = 0, n;
6001 bool take_default;
6002
6003 *taken_edge_p = NULL;
6004 op = gimple_switch_index (stmt);
6005 if (TREE_CODE (op) != SSA_NAME)
6006 return SSA_PROP_VARYING;
6007
6008 vr = get_value_range (op);
6009 if (dump_file && (dump_flags & TDF_DETAILS))
6010 {
6011 fprintf (dump_file, "\nVisiting switch expression with operand ");
6012 print_generic_expr (dump_file, op, 0);
6013 fprintf (dump_file, " with known range ");
6014 dump_value_range (dump_file, vr);
6015 fprintf (dump_file, "\n");
6016 }
6017
6018 if (vr->type != VR_RANGE
6019 || symbolic_range_p (vr))
6020 return SSA_PROP_VARYING;
6021
6022 /* Find the single edge that is taken from the switch expression. */
6023 n = gimple_switch_num_labels (stmt);
6024
6025 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6026
6027 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6028 label */
6029 if (j < i)
6030 {
6031 gcc_assert (take_default);
6032 val = gimple_switch_default_label (stmt);
6033 }
6034 else
6035 {
6036 /* Check if labels with index i to j and maybe the default label
6037 are all reaching the same label. */
6038
6039 val = gimple_switch_label (stmt, i);
6040 if (take_default
6041 && CASE_LABEL (gimple_switch_default_label (stmt))
6042 != CASE_LABEL (val))
6043 {
6044 if (dump_file && (dump_flags & TDF_DETAILS))
6045 fprintf (dump_file, " not a single destination for this "
6046 "range\n");
6047 return SSA_PROP_VARYING;
6048 }
6049 for (++i; i <= j; ++i)
6050 {
6051 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6052 {
6053 if (dump_file && (dump_flags & TDF_DETAILS))
6054 fprintf (dump_file, " not a single destination for this "
6055 "range\n");
6056 return SSA_PROP_VARYING;
6057 }
6058 }
6059 }
6060
6061 *taken_edge_p = find_edge (gimple_bb (stmt),
6062 label_to_block (CASE_LABEL (val)));
6063
6064 if (dump_file && (dump_flags & TDF_DETAILS))
6065 {
6066 fprintf (dump_file, " will take edge to ");
6067 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6068 }
6069
6070 return SSA_PROP_INTERESTING;
6071 }
6072
6073
6074 /* Evaluate statement STMT. If the statement produces a useful range,
6075 return SSA_PROP_INTERESTING and record the SSA name with the
6076 interesting range into *OUTPUT_P.
6077
6078 If STMT is a conditional branch and we can determine its truth
6079 value, the taken edge is recorded in *TAKEN_EDGE_P.
6080
6081 If STMT produces a varying value, return SSA_PROP_VARYING. */
6082
6083 static enum ssa_prop_result
6084 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6085 {
6086 tree def;
6087 ssa_op_iter iter;
6088
6089 if (dump_file && (dump_flags & TDF_DETAILS))
6090 {
6091 fprintf (dump_file, "\nVisiting statement:\n");
6092 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6093 fprintf (dump_file, "\n");
6094 }
6095
6096 if (!stmt_interesting_for_vrp (stmt))
6097 gcc_assert (stmt_ends_bb_p (stmt));
6098 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6099 {
6100 /* In general, assignments with virtual operands are not useful
6101 for deriving ranges, with the obvious exception of calls to
6102 builtin functions. */
6103
6104 if ((is_gimple_call (stmt)
6105 && gimple_call_fndecl (stmt) != NULL_TREE
6106 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6107 || !gimple_vuse (stmt))
6108 return vrp_visit_assignment_or_call (stmt, output_p);
6109 }
6110 else if (gimple_code (stmt) == GIMPLE_COND)
6111 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6112 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6113 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6114
6115 /* All other statements produce nothing of interest for VRP, so mark
6116 their outputs varying and prevent further simulation. */
6117 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6118 set_value_range_to_varying (get_value_range (def));
6119
6120 return SSA_PROP_VARYING;
6121 }
6122
6123
6124 /* Meet operation for value ranges. Given two value ranges VR0 and
6125 VR1, store in VR0 a range that contains both VR0 and VR1. This
6126 may not be the smallest possible such range. */
6127
6128 static void
6129 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6130 {
6131 if (vr0->type == VR_UNDEFINED)
6132 {
6133 copy_value_range (vr0, vr1);
6134 return;
6135 }
6136
6137 if (vr1->type == VR_UNDEFINED)
6138 {
6139 /* Nothing to do. VR0 already has the resulting range. */
6140 return;
6141 }
6142
6143 if (vr0->type == VR_VARYING)
6144 {
6145 /* Nothing to do. VR0 already has the resulting range. */
6146 return;
6147 }
6148
6149 if (vr1->type == VR_VARYING)
6150 {
6151 set_value_range_to_varying (vr0);
6152 return;
6153 }
6154
6155 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6156 {
6157 int cmp;
6158 tree min, max;
6159
6160 /* Compute the convex hull of the ranges. The lower limit of
6161 the new range is the minimum of the two ranges. If they
6162 cannot be compared, then give up. */
6163 cmp = compare_values (vr0->min, vr1->min);
6164 if (cmp == 0 || cmp == 1)
6165 min = vr1->min;
6166 else if (cmp == -1)
6167 min = vr0->min;
6168 else
6169 goto give_up;
6170
6171 /* Similarly, the upper limit of the new range is the maximum
6172 of the two ranges. If they cannot be compared, then
6173 give up. */
6174 cmp = compare_values (vr0->max, vr1->max);
6175 if (cmp == 0 || cmp == -1)
6176 max = vr1->max;
6177 else if (cmp == 1)
6178 max = vr0->max;
6179 else
6180 goto give_up;
6181
6182 /* Check for useless ranges. */
6183 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6184 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6185 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6186 goto give_up;
6187
6188 /* The resulting set of equivalences is the intersection of
6189 the two sets. */
6190 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6191 bitmap_and_into (vr0->equiv, vr1->equiv);
6192 else if (vr0->equiv && !vr1->equiv)
6193 bitmap_clear (vr0->equiv);
6194
6195 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6196 }
6197 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6198 {
6199 /* Two anti-ranges meet only if their complements intersect.
6200 Only handle the case of identical ranges. */
6201 if (compare_values (vr0->min, vr1->min) == 0
6202 && compare_values (vr0->max, vr1->max) == 0
6203 && compare_values (vr0->min, vr0->max) == 0)
6204 {
6205 /* The resulting set of equivalences is the intersection of
6206 the two sets. */
6207 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6208 bitmap_and_into (vr0->equiv, vr1->equiv);
6209 else if (vr0->equiv && !vr1->equiv)
6210 bitmap_clear (vr0->equiv);
6211 }
6212 else
6213 goto give_up;
6214 }
6215 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6216 {
6217 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6218 only handle the case where the ranges have an empty intersection.
6219 The result of the meet operation is the anti-range. */
6220 if (!symbolic_range_p (vr0)
6221 && !symbolic_range_p (vr1)
6222 && !value_ranges_intersect_p (vr0, vr1))
6223 {
6224 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6225 set. We need to compute the intersection of the two
6226 equivalence sets. */
6227 if (vr1->type == VR_ANTI_RANGE)
6228 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6229
6230 /* The resulting set of equivalences is the intersection of
6231 the two sets. */
6232 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6233 bitmap_and_into (vr0->equiv, vr1->equiv);
6234 else if (vr0->equiv && !vr1->equiv)
6235 bitmap_clear (vr0->equiv);
6236 }
6237 else
6238 goto give_up;
6239 }
6240 else
6241 gcc_unreachable ();
6242
6243 return;
6244
6245 give_up:
6246 /* Failed to find an efficient meet. Before giving up and setting
6247 the result to VARYING, see if we can at least derive a useful
6248 anti-range. FIXME, all this nonsense about distinguishing
6249 anti-ranges from ranges is necessary because of the odd
6250 semantics of range_includes_zero_p and friends. */
6251 if (!symbolic_range_p (vr0)
6252 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6253 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6254 && !symbolic_range_p (vr1)
6255 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6256 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6257 {
6258 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6259
6260 /* Since this meet operation did not result from the meeting of
6261 two equivalent names, VR0 cannot have any equivalences. */
6262 if (vr0->equiv)
6263 bitmap_clear (vr0->equiv);
6264 }
6265 else
6266 set_value_range_to_varying (vr0);
6267 }
6268
6269
6270 /* Visit all arguments for PHI node PHI that flow through executable
6271 edges. If a valid value range can be derived from all the incoming
6272 value ranges, set a new range for the LHS of PHI. */
6273
6274 static enum ssa_prop_result
6275 vrp_visit_phi_node (gimple phi)
6276 {
6277 size_t i;
6278 tree lhs = PHI_RESULT (phi);
6279 value_range_t *lhs_vr = get_value_range (lhs);
6280 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6281 int edges, old_edges;
6282
6283 copy_value_range (&vr_result, lhs_vr);
6284
6285 if (dump_file && (dump_flags & TDF_DETAILS))
6286 {
6287 fprintf (dump_file, "\nVisiting PHI node: ");
6288 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6289 }
6290
6291 edges = 0;
6292 for (i = 0; i < gimple_phi_num_args (phi); i++)
6293 {
6294 edge e = gimple_phi_arg_edge (phi, i);
6295
6296 if (dump_file && (dump_flags & TDF_DETAILS))
6297 {
6298 fprintf (dump_file,
6299 "\n Argument #%d (%d -> %d %sexecutable)\n",
6300 (int) i, e->src->index, e->dest->index,
6301 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6302 }
6303
6304 if (e->flags & EDGE_EXECUTABLE)
6305 {
6306 tree arg = PHI_ARG_DEF (phi, i);
6307 value_range_t vr_arg;
6308
6309 ++edges;
6310
6311 if (TREE_CODE (arg) == SSA_NAME)
6312 {
6313 vr_arg = *(get_value_range (arg));
6314 }
6315 else
6316 {
6317 if (is_overflow_infinity (arg))
6318 {
6319 arg = copy_node (arg);
6320 TREE_OVERFLOW (arg) = 0;
6321 }
6322
6323 vr_arg.type = VR_RANGE;
6324 vr_arg.min = arg;
6325 vr_arg.max = arg;
6326 vr_arg.equiv = NULL;
6327 }
6328
6329 if (dump_file && (dump_flags & TDF_DETAILS))
6330 {
6331 fprintf (dump_file, "\t");
6332 print_generic_expr (dump_file, arg, dump_flags);
6333 fprintf (dump_file, "\n\tValue: ");
6334 dump_value_range (dump_file, &vr_arg);
6335 fprintf (dump_file, "\n");
6336 }
6337
6338 vrp_meet (&vr_result, &vr_arg);
6339
6340 if (vr_result.type == VR_VARYING)
6341 break;
6342 }
6343 }
6344
6345 if (vr_result.type == VR_VARYING)
6346 goto varying;
6347
6348 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6349 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6350
6351 /* To prevent infinite iterations in the algorithm, derive ranges
6352 when the new value is slightly bigger or smaller than the
6353 previous one. We don't do this if we have seen a new executable
6354 edge; this helps us avoid an overflow infinity for conditionals
6355 which are not in a loop. */
6356 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6357 && edges <= old_edges)
6358 {
6359 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6360 {
6361 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6362 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6363
6364 /* If the new minimum is smaller or larger than the previous
6365 one, go all the way to -INF. In the first case, to avoid
6366 iterating millions of times to reach -INF, and in the
6367 other case to avoid infinite bouncing between different
6368 minimums. */
6369 if (cmp_min > 0 || cmp_min < 0)
6370 {
6371 /* If we will end up with a (-INF, +INF) range, set it to
6372 VARYING. Same if the previous max value was invalid for
6373 the type and we'd end up with vr_result.min > vr_result.max. */
6374 if (vrp_val_is_max (vr_result.max)
6375 || compare_values (TYPE_MIN_VALUE (TREE_TYPE (vr_result.min)),
6376 vr_result.max) > 0)
6377 goto varying;
6378
6379 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6380 || !vrp_var_may_overflow (lhs, phi))
6381 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6382 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6383 vr_result.min =
6384 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6385 else
6386 goto varying;
6387 }
6388
6389 /* Similarly, if the new maximum is smaller or larger than
6390 the previous one, go all the way to +INF. */
6391 if (cmp_max < 0 || cmp_max > 0)
6392 {
6393 /* If we will end up with a (-INF, +INF) range, set it to
6394 VARYING. Same if the previous min value was invalid for
6395 the type and we'd end up with vr_result.max < vr_result.min. */
6396 if (vrp_val_is_min (vr_result.min)
6397 || compare_values (TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)),
6398 vr_result.min) < 0)
6399 goto varying;
6400
6401 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6402 || !vrp_var_may_overflow (lhs, phi))
6403 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6404 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6405 vr_result.max =
6406 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6407 else
6408 goto varying;
6409 }
6410 }
6411 }
6412
6413 /* If the new range is different than the previous value, keep
6414 iterating. */
6415 if (update_value_range (lhs, &vr_result))
6416 return SSA_PROP_INTERESTING;
6417
6418 /* Nothing changed, don't add outgoing edges. */
6419 return SSA_PROP_NOT_INTERESTING;
6420
6421 /* No match found. Set the LHS to VARYING. */
6422 varying:
6423 set_value_range_to_varying (lhs_vr);
6424 return SSA_PROP_VARYING;
6425 }
6426
6427 /* Simplify boolean operations if the source is known
6428 to be already a boolean. */
6429 static bool
6430 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6431 {
6432 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6433 tree val = NULL;
6434 tree op0, op1;
6435 value_range_t *vr;
6436 bool sop = false;
6437 bool need_conversion;
6438
6439 op0 = gimple_assign_rhs1 (stmt);
6440 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6441 {
6442 if (TREE_CODE (op0) != SSA_NAME)
6443 return false;
6444 vr = get_value_range (op0);
6445
6446 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6447 if (!val || !integer_onep (val))
6448 return false;
6449
6450 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6451 if (!val || !integer_onep (val))
6452 return false;
6453 }
6454
6455 if (rhs_code == TRUTH_NOT_EXPR)
6456 {
6457 rhs_code = NE_EXPR;
6458 op1 = build_int_cst (TREE_TYPE (op0), 1);
6459 }
6460 else
6461 {
6462 op1 = gimple_assign_rhs2 (stmt);
6463
6464 /* Reduce number of cases to handle. */
6465 if (is_gimple_min_invariant (op1))
6466 {
6467 /* Exclude anything that should have been already folded. */
6468 if (rhs_code != EQ_EXPR
6469 && rhs_code != NE_EXPR
6470 && rhs_code != TRUTH_XOR_EXPR)
6471 return false;
6472
6473 if (!integer_zerop (op1)
6474 && !integer_onep (op1)
6475 && !integer_all_onesp (op1))
6476 return false;
6477
6478 /* Limit the number of cases we have to consider. */
6479 if (rhs_code == EQ_EXPR)
6480 {
6481 rhs_code = NE_EXPR;
6482 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6483 }
6484 }
6485 else
6486 {
6487 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6488 if (rhs_code == EQ_EXPR)
6489 return false;
6490
6491 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6492 {
6493 vr = get_value_range (op1);
6494 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6495 if (!val || !integer_onep (val))
6496 return false;
6497
6498 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6499 if (!val || !integer_onep (val))
6500 return false;
6501 }
6502 }
6503 }
6504
6505 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6506 {
6507 location_t location;
6508
6509 if (!gimple_has_location (stmt))
6510 location = input_location;
6511 else
6512 location = gimple_location (stmt);
6513
6514 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6515 warning_at (location, OPT_Wstrict_overflow,
6516 _("assuming signed overflow does not occur when "
6517 "simplifying && or || to & or |"));
6518 else
6519 warning_at (location, OPT_Wstrict_overflow,
6520 _("assuming signed overflow does not occur when "
6521 "simplifying ==, != or ! to identity or ^"));
6522 }
6523
6524 need_conversion =
6525 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6526 TREE_TYPE (op0));
6527
6528 /* Make sure to not sign-extend -1 as a boolean value. */
6529 if (need_conversion
6530 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6531 && TYPE_PRECISION (TREE_TYPE (op0)) == 1)
6532 return false;
6533
6534 switch (rhs_code)
6535 {
6536 case TRUTH_AND_EXPR:
6537 rhs_code = BIT_AND_EXPR;
6538 break;
6539 case TRUTH_OR_EXPR:
6540 rhs_code = BIT_IOR_EXPR;
6541 break;
6542 case TRUTH_XOR_EXPR:
6543 case NE_EXPR:
6544 if (integer_zerop (op1))
6545 {
6546 gimple_assign_set_rhs_with_ops (gsi,
6547 need_conversion ? NOP_EXPR : SSA_NAME,
6548 op0, NULL);
6549 update_stmt (gsi_stmt (*gsi));
6550 return true;
6551 }
6552
6553 rhs_code = BIT_XOR_EXPR;
6554 break;
6555 default:
6556 gcc_unreachable ();
6557 }
6558
6559 if (need_conversion)
6560 return false;
6561
6562 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6563 update_stmt (gsi_stmt (*gsi));
6564 return true;
6565 }
6566
6567 /* Simplify a division or modulo operator to a right shift or
6568 bitwise and if the first operand is unsigned or is greater
6569 than zero and the second operand is an exact power of two. */
6570
6571 static bool
6572 simplify_div_or_mod_using_ranges (gimple stmt)
6573 {
6574 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6575 tree val = NULL;
6576 tree op0 = gimple_assign_rhs1 (stmt);
6577 tree op1 = gimple_assign_rhs2 (stmt);
6578 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6579
6580 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6581 {
6582 val = integer_one_node;
6583 }
6584 else
6585 {
6586 bool sop = false;
6587
6588 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6589
6590 if (val
6591 && sop
6592 && integer_onep (val)
6593 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6594 {
6595 location_t location;
6596
6597 if (!gimple_has_location (stmt))
6598 location = input_location;
6599 else
6600 location = gimple_location (stmt);
6601 warning_at (location, OPT_Wstrict_overflow,
6602 "assuming signed overflow does not occur when "
6603 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6604 }
6605 }
6606
6607 if (val && integer_onep (val))
6608 {
6609 tree t;
6610
6611 if (rhs_code == TRUNC_DIV_EXPR)
6612 {
6613 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6614 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6615 gimple_assign_set_rhs1 (stmt, op0);
6616 gimple_assign_set_rhs2 (stmt, t);
6617 }
6618 else
6619 {
6620 t = build_int_cst (TREE_TYPE (op1), 1);
6621 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6622 t = fold_convert (TREE_TYPE (op0), t);
6623
6624 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6625 gimple_assign_set_rhs1 (stmt, op0);
6626 gimple_assign_set_rhs2 (stmt, t);
6627 }
6628
6629 update_stmt (stmt);
6630 return true;
6631 }
6632
6633 return false;
6634 }
6635
6636 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6637 ABS_EXPR. If the operand is <= 0, then simplify the
6638 ABS_EXPR into a NEGATE_EXPR. */
6639
6640 static bool
6641 simplify_abs_using_ranges (gimple stmt)
6642 {
6643 tree val = NULL;
6644 tree op = gimple_assign_rhs1 (stmt);
6645 tree type = TREE_TYPE (op);
6646 value_range_t *vr = get_value_range (op);
6647
6648 if (TYPE_UNSIGNED (type))
6649 {
6650 val = integer_zero_node;
6651 }
6652 else if (vr)
6653 {
6654 bool sop = false;
6655
6656 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6657 if (!val)
6658 {
6659 sop = false;
6660 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6661 &sop);
6662
6663 if (val)
6664 {
6665 if (integer_zerop (val))
6666 val = integer_one_node;
6667 else if (integer_onep (val))
6668 val = integer_zero_node;
6669 }
6670 }
6671
6672 if (val
6673 && (integer_onep (val) || integer_zerop (val)))
6674 {
6675 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6676 {
6677 location_t location;
6678
6679 if (!gimple_has_location (stmt))
6680 location = input_location;
6681 else
6682 location = gimple_location (stmt);
6683 warning_at (location, OPT_Wstrict_overflow,
6684 "assuming signed overflow does not occur when "
6685 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6686 }
6687
6688 gimple_assign_set_rhs1 (stmt, op);
6689 if (integer_onep (val))
6690 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6691 else
6692 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6693 update_stmt (stmt);
6694 return true;
6695 }
6696 }
6697
6698 return false;
6699 }
6700
6701 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6702 a known value range VR.
6703
6704 If there is one and only one value which will satisfy the
6705 conditional, then return that value. Else return NULL. */
6706
6707 static tree
6708 test_for_singularity (enum tree_code cond_code, tree op0,
6709 tree op1, value_range_t *vr)
6710 {
6711 tree min = NULL;
6712 tree max = NULL;
6713
6714 /* Extract minimum/maximum values which satisfy the
6715 the conditional as it was written. */
6716 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6717 {
6718 /* This should not be negative infinity; there is no overflow
6719 here. */
6720 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6721
6722 max = op1;
6723 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6724 {
6725 tree one = build_int_cst (TREE_TYPE (op0), 1);
6726 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6727 if (EXPR_P (max))
6728 TREE_NO_WARNING (max) = 1;
6729 }
6730 }
6731 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6732 {
6733 /* This should not be positive infinity; there is no overflow
6734 here. */
6735 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6736
6737 min = op1;
6738 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6739 {
6740 tree one = build_int_cst (TREE_TYPE (op0), 1);
6741 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6742 if (EXPR_P (min))
6743 TREE_NO_WARNING (min) = 1;
6744 }
6745 }
6746
6747 /* Now refine the minimum and maximum values using any
6748 value range information we have for op0. */
6749 if (min && max)
6750 {
6751 if (compare_values (vr->min, min) == -1)
6752 min = min;
6753 else
6754 min = vr->min;
6755 if (compare_values (vr->max, max) == 1)
6756 max = max;
6757 else
6758 max = vr->max;
6759
6760 /* If the new min/max values have converged to a single value,
6761 then there is only one value which can satisfy the condition,
6762 return that value. */
6763 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6764 return min;
6765 }
6766 return NULL;
6767 }
6768
6769 /* Simplify a conditional using a relational operator to an equality
6770 test if the range information indicates only one value can satisfy
6771 the original conditional. */
6772
6773 static bool
6774 simplify_cond_using_ranges (gimple stmt)
6775 {
6776 tree op0 = gimple_cond_lhs (stmt);
6777 tree op1 = gimple_cond_rhs (stmt);
6778 enum tree_code cond_code = gimple_cond_code (stmt);
6779
6780 if (cond_code != NE_EXPR
6781 && cond_code != EQ_EXPR
6782 && TREE_CODE (op0) == SSA_NAME
6783 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6784 && is_gimple_min_invariant (op1))
6785 {
6786 value_range_t *vr = get_value_range (op0);
6787
6788 /* If we have range information for OP0, then we might be
6789 able to simplify this conditional. */
6790 if (vr->type == VR_RANGE)
6791 {
6792 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6793
6794 if (new_tree)
6795 {
6796 if (dump_file)
6797 {
6798 fprintf (dump_file, "Simplified relational ");
6799 print_gimple_stmt (dump_file, stmt, 0, 0);
6800 fprintf (dump_file, " into ");
6801 }
6802
6803 gimple_cond_set_code (stmt, EQ_EXPR);
6804 gimple_cond_set_lhs (stmt, op0);
6805 gimple_cond_set_rhs (stmt, new_tree);
6806
6807 update_stmt (stmt);
6808
6809 if (dump_file)
6810 {
6811 print_gimple_stmt (dump_file, stmt, 0, 0);
6812 fprintf (dump_file, "\n");
6813 }
6814
6815 return true;
6816 }
6817
6818 /* Try again after inverting the condition. We only deal
6819 with integral types here, so no need to worry about
6820 issues with inverting FP comparisons. */
6821 cond_code = invert_tree_comparison (cond_code, false);
6822 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6823
6824 if (new_tree)
6825 {
6826 if (dump_file)
6827 {
6828 fprintf (dump_file, "Simplified relational ");
6829 print_gimple_stmt (dump_file, stmt, 0, 0);
6830 fprintf (dump_file, " into ");
6831 }
6832
6833 gimple_cond_set_code (stmt, NE_EXPR);
6834 gimple_cond_set_lhs (stmt, op0);
6835 gimple_cond_set_rhs (stmt, new_tree);
6836
6837 update_stmt (stmt);
6838
6839 if (dump_file)
6840 {
6841 print_gimple_stmt (dump_file, stmt, 0, 0);
6842 fprintf (dump_file, "\n");
6843 }
6844
6845 return true;
6846 }
6847 }
6848 }
6849
6850 return false;
6851 }
6852
6853 /* Simplify a switch statement using the value range of the switch
6854 argument. */
6855
6856 static bool
6857 simplify_switch_using_ranges (gimple stmt)
6858 {
6859 tree op = gimple_switch_index (stmt);
6860 value_range_t *vr;
6861 bool take_default;
6862 edge e;
6863 edge_iterator ei;
6864 size_t i = 0, j = 0, n, n2;
6865 tree vec2;
6866 switch_update su;
6867
6868 if (TREE_CODE (op) == SSA_NAME)
6869 {
6870 vr = get_value_range (op);
6871
6872 /* We can only handle integer ranges. */
6873 if (vr->type != VR_RANGE
6874 || symbolic_range_p (vr))
6875 return false;
6876
6877 /* Find case label for min/max of the value range. */
6878 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6879 }
6880 else if (TREE_CODE (op) == INTEGER_CST)
6881 {
6882 take_default = !find_case_label_index (stmt, 1, op, &i);
6883 if (take_default)
6884 {
6885 i = 1;
6886 j = 0;
6887 }
6888 else
6889 {
6890 j = i;
6891 }
6892 }
6893 else
6894 return false;
6895
6896 n = gimple_switch_num_labels (stmt);
6897
6898 /* Bail out if this is just all edges taken. */
6899 if (i == 1
6900 && j == n - 1
6901 && take_default)
6902 return false;
6903
6904 /* Build a new vector of taken case labels. */
6905 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6906 n2 = 0;
6907
6908 /* Add the default edge, if necessary. */
6909 if (take_default)
6910 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6911
6912 for (; i <= j; ++i, ++n2)
6913 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6914
6915 /* Mark needed edges. */
6916 for (i = 0; i < n2; ++i)
6917 {
6918 e = find_edge (gimple_bb (stmt),
6919 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6920 e->aux = (void *)-1;
6921 }
6922
6923 /* Queue not needed edges for later removal. */
6924 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6925 {
6926 if (e->aux == (void *)-1)
6927 {
6928 e->aux = NULL;
6929 continue;
6930 }
6931
6932 if (dump_file && (dump_flags & TDF_DETAILS))
6933 {
6934 fprintf (dump_file, "removing unreachable case label\n");
6935 }
6936 VEC_safe_push (edge, heap, to_remove_edges, e);
6937 }
6938
6939 /* And queue an update for the stmt. */
6940 su.stmt = stmt;
6941 su.vec = vec2;
6942 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6943 return false;
6944 }
6945
6946 /* Simplify STMT using ranges if possible. */
6947
6948 bool
6949 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6950 {
6951 gimple stmt = gsi_stmt (*gsi);
6952 if (is_gimple_assign (stmt))
6953 {
6954 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6955
6956 switch (rhs_code)
6957 {
6958 case EQ_EXPR:
6959 case NE_EXPR:
6960 case TRUTH_NOT_EXPR:
6961 case TRUTH_AND_EXPR:
6962 case TRUTH_OR_EXPR:
6963 case TRUTH_XOR_EXPR:
6964 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6965 or identity if the RHS is zero or one, and the LHS are known
6966 to be boolean values. Transform all TRUTH_*_EXPR into
6967 BIT_*_EXPR if both arguments are known to be boolean values. */
6968 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6969 return simplify_truth_ops_using_ranges (gsi, stmt);
6970 break;
6971
6972 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6973 and BIT_AND_EXPR respectively if the first operand is greater
6974 than zero and the second operand is an exact power of two. */
6975 case TRUNC_DIV_EXPR:
6976 case TRUNC_MOD_EXPR:
6977 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6978 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6979 return simplify_div_or_mod_using_ranges (stmt);
6980 break;
6981
6982 /* Transform ABS (X) into X or -X as appropriate. */
6983 case ABS_EXPR:
6984 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6985 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6986 return simplify_abs_using_ranges (stmt);
6987 break;
6988
6989 default:
6990 break;
6991 }
6992 }
6993 else if (gimple_code (stmt) == GIMPLE_COND)
6994 return simplify_cond_using_ranges (stmt);
6995 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6996 return simplify_switch_using_ranges (stmt);
6997
6998 return false;
6999 }
7000
7001 /* Stack of dest,src equivalency pairs that need to be restored after
7002 each attempt to thread a block's incoming edge to an outgoing edge.
7003
7004 A NULL entry is used to mark the end of pairs which need to be
7005 restored. */
7006 static VEC(tree,heap) *stack;
7007
7008 /* A trivial wrapper so that we can present the generic jump threading
7009 code with a simple API for simplifying statements. STMT is the
7010 statement we want to simplify, WITHIN_STMT provides the location
7011 for any overflow warnings. */
7012
7013 static tree
7014 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7015 {
7016 /* We only use VRP information to simplify conditionals. This is
7017 overly conservative, but it's unclear if doing more would be
7018 worth the compile time cost. */
7019 if (gimple_code (stmt) != GIMPLE_COND)
7020 return NULL;
7021
7022 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7023 gimple_cond_lhs (stmt),
7024 gimple_cond_rhs (stmt), within_stmt);
7025 }
7026
7027 /* Blocks which have more than one predecessor and more than
7028 one successor present jump threading opportunities, i.e.,
7029 when the block is reached from a specific predecessor, we
7030 may be able to determine which of the outgoing edges will
7031 be traversed. When this optimization applies, we are able
7032 to avoid conditionals at runtime and we may expose secondary
7033 optimization opportunities.
7034
7035 This routine is effectively a driver for the generic jump
7036 threading code. It basically just presents the generic code
7037 with edges that may be suitable for jump threading.
7038
7039 Unlike DOM, we do not iterate VRP if jump threading was successful.
7040 While iterating may expose new opportunities for VRP, it is expected
7041 those opportunities would be very limited and the compile time cost
7042 to expose those opportunities would be significant.
7043
7044 As jump threading opportunities are discovered, they are registered
7045 for later realization. */
7046
7047 static void
7048 identify_jump_threads (void)
7049 {
7050 basic_block bb;
7051 gimple dummy;
7052 int i;
7053 edge e;
7054
7055 /* Ugh. When substituting values earlier in this pass we can
7056 wipe the dominance information. So rebuild the dominator
7057 information as we need it within the jump threading code. */
7058 calculate_dominance_info (CDI_DOMINATORS);
7059
7060 /* We do not allow VRP information to be used for jump threading
7061 across a back edge in the CFG. Otherwise it becomes too
7062 difficult to avoid eliminating loop exit tests. Of course
7063 EDGE_DFS_BACK is not accurate at this time so we have to
7064 recompute it. */
7065 mark_dfs_back_edges ();
7066
7067 /* Do not thread across edges we are about to remove. Just marking
7068 them as EDGE_DFS_BACK will do. */
7069 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7070 e->flags |= EDGE_DFS_BACK;
7071
7072 /* Allocate our unwinder stack to unwind any temporary equivalences
7073 that might be recorded. */
7074 stack = VEC_alloc (tree, heap, 20);
7075
7076 /* To avoid lots of silly node creation, we create a single
7077 conditional and just modify it in-place when attempting to
7078 thread jumps. */
7079 dummy = gimple_build_cond (EQ_EXPR,
7080 integer_zero_node, integer_zero_node,
7081 NULL, NULL);
7082
7083 /* Walk through all the blocks finding those which present a
7084 potential jump threading opportunity. We could set this up
7085 as a dominator walker and record data during the walk, but
7086 I doubt it's worth the effort for the classes of jump
7087 threading opportunities we are trying to identify at this
7088 point in compilation. */
7089 FOR_EACH_BB (bb)
7090 {
7091 gimple last;
7092
7093 /* If the generic jump threading code does not find this block
7094 interesting, then there is nothing to do. */
7095 if (! potentially_threadable_block (bb))
7096 continue;
7097
7098 /* We only care about blocks ending in a COND_EXPR. While there
7099 may be some value in handling SWITCH_EXPR here, I doubt it's
7100 terribly important. */
7101 last = gsi_stmt (gsi_last_bb (bb));
7102 if (gimple_code (last) != GIMPLE_COND)
7103 continue;
7104
7105 /* We're basically looking for any kind of conditional with
7106 integral type arguments. */
7107 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7108 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7109 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7110 || is_gimple_min_invariant (gimple_cond_rhs (last)))
7111 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
7112 {
7113 edge_iterator ei;
7114
7115 /* We've got a block with multiple predecessors and multiple
7116 successors which also ends in a suitable conditional. For
7117 each predecessor, see if we can thread it to a specific
7118 successor. */
7119 FOR_EACH_EDGE (e, ei, bb->preds)
7120 {
7121 /* Do not thread across back edges or abnormal edges
7122 in the CFG. */
7123 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7124 continue;
7125
7126 thread_across_edge (dummy, e, true, &stack,
7127 simplify_stmt_for_jump_threading);
7128 }
7129 }
7130 }
7131
7132 /* We do not actually update the CFG or SSA graphs at this point as
7133 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7134 handle ASSERT_EXPRs gracefully. */
7135 }
7136
7137 /* We identified all the jump threading opportunities earlier, but could
7138 not transform the CFG at that time. This routine transforms the
7139 CFG and arranges for the dominator tree to be rebuilt if necessary.
7140
7141 Note the SSA graph update will occur during the normal TODO
7142 processing by the pass manager. */
7143 static void
7144 finalize_jump_threads (void)
7145 {
7146 thread_through_all_blocks (false);
7147 VEC_free (tree, heap, stack);
7148 }
7149
7150
7151 /* Traverse all the blocks folding conditionals with known ranges. */
7152
7153 static void
7154 vrp_finalize (void)
7155 {
7156 size_t i;
7157 prop_value_t *single_val_range;
7158 bool do_value_subst_p;
7159
7160 if (dump_file)
7161 {
7162 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7163 dump_all_value_ranges (dump_file);
7164 fprintf (dump_file, "\n");
7165 }
7166
7167 /* We may have ended with ranges that have exactly one value. Those
7168 values can be substituted as any other copy/const propagated
7169 value using substitute_and_fold. */
7170 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7171
7172 do_value_subst_p = false;
7173 for (i = 0; i < num_ssa_names; i++)
7174 if (vr_value[i]
7175 && vr_value[i]->type == VR_RANGE
7176 && vr_value[i]->min == vr_value[i]->max)
7177 {
7178 single_val_range[i].value = vr_value[i]->min;
7179 do_value_subst_p = true;
7180 }
7181
7182 if (!do_value_subst_p)
7183 {
7184 /* We found no single-valued ranges, don't waste time trying to
7185 do single value substitution in substitute_and_fold. */
7186 free (single_val_range);
7187 single_val_range = NULL;
7188 }
7189
7190 substitute_and_fold (single_val_range, true);
7191
7192 if (warn_array_bounds)
7193 check_all_array_refs ();
7194
7195 /* We must identify jump threading opportunities before we release
7196 the datastructures built by VRP. */
7197 identify_jump_threads ();
7198
7199 /* Free allocated memory. */
7200 for (i = 0; i < num_ssa_names; i++)
7201 if (vr_value[i])
7202 {
7203 BITMAP_FREE (vr_value[i]->equiv);
7204 free (vr_value[i]);
7205 }
7206
7207 free (single_val_range);
7208 free (vr_value);
7209 free (vr_phi_edge_counts);
7210
7211 /* So that we can distinguish between VRP data being available
7212 and not available. */
7213 vr_value = NULL;
7214 vr_phi_edge_counts = NULL;
7215 }
7216
7217
7218 /* Main entry point to VRP (Value Range Propagation). This pass is
7219 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7220 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7221 Programming Language Design and Implementation, pp. 67-78, 1995.
7222 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7223
7224 This is essentially an SSA-CCP pass modified to deal with ranges
7225 instead of constants.
7226
7227 While propagating ranges, we may find that two or more SSA name
7228 have equivalent, though distinct ranges. For instance,
7229
7230 1 x_9 = p_3->a;
7231 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7232 3 if (p_4 == q_2)
7233 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7234 5 endif
7235 6 if (q_2)
7236
7237 In the code above, pointer p_5 has range [q_2, q_2], but from the
7238 code we can also determine that p_5 cannot be NULL and, if q_2 had
7239 a non-varying range, p_5's range should also be compatible with it.
7240
7241 These equivalences are created by two expressions: ASSERT_EXPR and
7242 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7243 result of another assertion, then we can use the fact that p_5 and
7244 p_4 are equivalent when evaluating p_5's range.
7245
7246 Together with value ranges, we also propagate these equivalences
7247 between names so that we can take advantage of information from
7248 multiple ranges when doing final replacement. Note that this
7249 equivalency relation is transitive but not symmetric.
7250
7251 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7252 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7253 in contexts where that assertion does not hold (e.g., in line 6).
7254
7255 TODO, the main difference between this pass and Patterson's is that
7256 we do not propagate edge probabilities. We only compute whether
7257 edges can be taken or not. That is, instead of having a spectrum
7258 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7259 DON'T KNOW. In the future, it may be worthwhile to propagate
7260 probabilities to aid branch prediction. */
7261
7262 static unsigned int
7263 execute_vrp (void)
7264 {
7265 int i;
7266 edge e;
7267 switch_update *su;
7268
7269 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7270 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7271 scev_initialize ();
7272
7273 insert_range_assertions ();
7274
7275 to_remove_edges = VEC_alloc (edge, heap, 10);
7276 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7277 threadedge_initialize_values ();
7278
7279 vrp_initialize ();
7280 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7281 vrp_finalize ();
7282
7283 /* ASSERT_EXPRs must be removed before finalizing jump threads
7284 as finalizing jump threads calls the CFG cleanup code which
7285 does not properly handle ASSERT_EXPRs. */
7286 remove_range_assertions ();
7287
7288 /* If we exposed any new variables, go ahead and put them into
7289 SSA form now, before we handle jump threading. This simplifies
7290 interactions between rewriting of _DECL nodes into SSA form
7291 and rewriting SSA_NAME nodes into SSA form after block
7292 duplication and CFG manipulation. */
7293 update_ssa (TODO_update_ssa);
7294
7295 finalize_jump_threads ();
7296
7297 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7298 CFG in a broken state and requires a cfg_cleanup run. */
7299 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7300 remove_edge (e);
7301 /* Update SWITCH_EXPR case label vector. */
7302 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7303 {
7304 size_t j;
7305 size_t n = TREE_VEC_LENGTH (su->vec);
7306 tree label;
7307 gimple_switch_set_num_labels (su->stmt, n);
7308 for (j = 0; j < n; j++)
7309 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7310 /* As we may have replaced the default label with a regular one
7311 make sure to make it a real default label again. This ensures
7312 optimal expansion. */
7313 label = gimple_switch_default_label (su->stmt);
7314 CASE_LOW (label) = NULL_TREE;
7315 CASE_HIGH (label) = NULL_TREE;
7316 }
7317
7318 if (VEC_length (edge, to_remove_edges) > 0)
7319 free_dominance_info (CDI_DOMINATORS);
7320
7321 VEC_free (edge, heap, to_remove_edges);
7322 VEC_free (switch_update, heap, to_update_switch_stmts);
7323 threadedge_finalize_values ();
7324
7325 scev_finalize ();
7326 loop_optimizer_finalize ();
7327 return 0;
7328 }
7329
7330 static bool
7331 gate_vrp (void)
7332 {
7333 return flag_tree_vrp != 0;
7334 }
7335
7336 struct gimple_opt_pass pass_vrp =
7337 {
7338 {
7339 GIMPLE_PASS,
7340 "vrp", /* name */
7341 gate_vrp, /* gate */
7342 execute_vrp, /* execute */
7343 NULL, /* sub */
7344 NULL, /* next */
7345 0, /* static_pass_number */
7346 TV_TREE_VRP, /* tv_id */
7347 PROP_ssa, /* properties_required */
7348 0, /* properties_provided */
7349 0, /* properties_destroyed */
7350 0, /* todo_flags_start */
7351 TODO_cleanup_cfg
7352 | TODO_ggc_collect
7353 | TODO_verify_ssa
7354 | TODO_dump_func
7355 | TODO_update_ssa /* todo_flags_finish */
7356 }
7357 };