]> git.ipfire.org Git - thirdparty/gcc.git/blob - libcpp/expr.cc
middle-end, c++, i386, libgcc: std::bfloat16_t and __bf16 arithmetic support
[thirdparty/gcc.git] / libcpp / expr.cc
1 /* Parse C expressions for cpplib.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
3 Contributed by Per Bothner, 1994.
4
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of the GNU General Public License as published by the
7 Free Software Foundation; either version 3, or (at your option) any
8 later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; see the file COPYING3. If not see
17 <http://www.gnu.org/licenses/>. */
18
19 #include "config.h"
20 #include "system.h"
21 #include "cpplib.h"
22 #include "internal.h"
23
24 #define PART_PRECISION (sizeof (cpp_num_part) * CHAR_BIT)
25 #define HALF_MASK (~(cpp_num_part) 0 >> (PART_PRECISION / 2))
26 #define LOW_PART(num_part) (num_part & HALF_MASK)
27 #define HIGH_PART(num_part) (num_part >> (PART_PRECISION / 2))
28
29 struct op
30 {
31 const cpp_token *token; /* The token forming op (for diagnostics). */
32 cpp_num value; /* The value logically "right" of op. */
33 location_t loc; /* The location of this value. */
34 enum cpp_ttype op;
35 };
36
37 /* Some simple utility routines on double integers. */
38 #define num_zerop(num) ((num.low | num.high) == 0)
39 #define num_eq(num1, num2) (num1.low == num2.low && num1.high == num2.high)
40 static bool num_positive (cpp_num, size_t);
41 static bool num_greater_eq (cpp_num, cpp_num, size_t);
42 static cpp_num num_trim (cpp_num, size_t);
43 static cpp_num num_part_mul (cpp_num_part, cpp_num_part);
44
45 static cpp_num num_unary_op (cpp_reader *, cpp_num, enum cpp_ttype);
46 static cpp_num num_binary_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype);
47 static cpp_num num_negate (cpp_num, size_t);
48 static cpp_num num_bitwise_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype);
49 static cpp_num num_inequality_op (cpp_reader *, cpp_num, cpp_num,
50 enum cpp_ttype);
51 static cpp_num num_equality_op (cpp_reader *, cpp_num, cpp_num,
52 enum cpp_ttype);
53 static cpp_num num_mul (cpp_reader *, cpp_num, cpp_num);
54 static cpp_num num_div_op (cpp_reader *, cpp_num, cpp_num, enum cpp_ttype,
55 location_t);
56 static cpp_num num_lshift (cpp_num, size_t, size_t);
57 static cpp_num num_rshift (cpp_num, size_t, size_t);
58
59 static cpp_num append_digit (cpp_num, int, int, size_t);
60 static cpp_num parse_defined (cpp_reader *);
61 static cpp_num eval_token (cpp_reader *, const cpp_token *, location_t);
62 static struct op *reduce (cpp_reader *, struct op *, enum cpp_ttype);
63 static unsigned int interpret_float_suffix (cpp_reader *, const uchar *, size_t);
64 static unsigned int interpret_int_suffix (cpp_reader *, const uchar *, size_t);
65 static void check_promotion (cpp_reader *, const struct op *);
66
67 /* Token type abuse to create unary plus and minus operators. */
68 #define CPP_UPLUS ((enum cpp_ttype) (CPP_LAST_CPP_OP + 1))
69 #define CPP_UMINUS ((enum cpp_ttype) (CPP_LAST_CPP_OP + 2))
70
71 /* With -O2, gcc appears to produce nice code, moving the error
72 message load and subsequent jump completely out of the main path. */
73 #define SYNTAX_ERROR(msgid) \
74 do { cpp_error (pfile, CPP_DL_ERROR, msgid); goto syntax_error; } while(0)
75 #define SYNTAX_ERROR2(msgid, arg) \
76 do { cpp_error (pfile, CPP_DL_ERROR, msgid, arg); goto syntax_error; } \
77 while(0)
78 #define SYNTAX_ERROR_AT(loc, msgid) \
79 do { cpp_error_with_line (pfile, CPP_DL_ERROR, (loc), 0, msgid); goto syntax_error; } \
80 while(0)
81 #define SYNTAX_ERROR2_AT(loc, msgid, arg) \
82 do { cpp_error_with_line (pfile, CPP_DL_ERROR, (loc), 0, msgid, arg); goto syntax_error; } \
83 while(0)
84
85 /* Subroutine of cpp_classify_number. S points to a float suffix of
86 length LEN, possibly zero. Returns 0 for an invalid suffix, or a
87 flag vector (of CPP_N_* bits) describing the suffix. */
88 static unsigned int
89 interpret_float_suffix (cpp_reader *pfile, const uchar *s, size_t len)
90 {
91 size_t orig_len = len;
92 const uchar *orig_s = s;
93 size_t flags;
94 size_t f, d, l, w, q, i, fn, fnx, fn_bits, bf16;
95
96 flags = 0;
97 f = d = l = w = q = i = fn = fnx = fn_bits = bf16 = 0;
98
99 /* The following decimal float suffixes, from TR 24732:2009, TS
100 18661-2:2015 and C2X, are supported:
101
102 df, DF - _Decimal32.
103 dd, DD - _Decimal64.
104 dl, DL - _Decimal128.
105
106 The dN and DN suffixes for _DecimalN, and dNx and DNx for
107 _DecimalNx, defined in TS 18661-3:2015, are not supported.
108
109 Fixed-point suffixes, from TR 18037:2008, are supported. They
110 consist of three parts, in order:
111
112 (i) An optional u or U, for unsigned types.
113
114 (ii) An optional h or H, for short types, or l or L, for long
115 types, or ll or LL, for long long types. Use of ll or LL is a
116 GNU extension.
117
118 (iii) r or R, for _Fract types, or k or K, for _Accum types.
119
120 Otherwise the suffix is for a binary or standard floating-point
121 type. Such a suffix, or the absence of a suffix, may be preceded
122 or followed by i, I, j or J, to indicate an imaginary number with
123 the corresponding complex type. The following suffixes for
124 binary or standard floating-point types are supported:
125
126 f, F - float (ISO C and C++).
127 l, L - long double (ISO C and C++).
128 d, D - double, even with the FLOAT_CONST_DECIMAL64 pragma in
129 operation (from TR 24732:2009; the pragma and the suffix
130 are not included in TS 18661-2:2015).
131 w, W - machine-specific type such as __float80 (GNU extension).
132 q, Q - machine-specific type such as __float128 (GNU extension).
133 fN, FN - _FloatN (TS 18661-3:2015).
134 fNx, FNx - _FloatNx (TS 18661-3:2015).
135 bf16, BF16 - std::bfloat16_t (ISO C++23). */
136
137 /* Process decimal float suffixes, which are two letters starting
138 with d or D. Order and case are significant. */
139 if (len == 2 && (*s == 'd' || *s == 'D'))
140 {
141 bool uppercase = (*s == 'D');
142 switch (s[1])
143 {
144 case 'f': return (!uppercase ? (CPP_N_DFLOAT | CPP_N_SMALL): 0); break;
145 case 'F': return (uppercase ? (CPP_N_DFLOAT | CPP_N_SMALL) : 0); break;
146 case 'd': return (!uppercase ? (CPP_N_DFLOAT | CPP_N_MEDIUM): 0); break;
147 case 'D': return (uppercase ? (CPP_N_DFLOAT | CPP_N_MEDIUM) : 0); break;
148 case 'l': return (!uppercase ? (CPP_N_DFLOAT | CPP_N_LARGE) : 0); break;
149 case 'L': return (uppercase ? (CPP_N_DFLOAT | CPP_N_LARGE) : 0); break;
150 default:
151 /* Additional two-character suffixes beginning with D are not
152 for decimal float constants. */
153 break;
154 }
155 }
156
157 if (CPP_OPTION (pfile, ext_numeric_literals))
158 {
159 /* Recognize a fixed-point suffix. */
160 if (len != 0)
161 switch (s[len-1])
162 {
163 case 'k': case 'K': flags = CPP_N_ACCUM; break;
164 case 'r': case 'R': flags = CPP_N_FRACT; break;
165 default: break;
166 }
167
168 /* Continue processing a fixed-point suffix. The suffix is case
169 insensitive except for ll or LL. Order is significant. */
170 if (flags)
171 {
172 if (len == 1)
173 return flags;
174 len--;
175
176 if (*s == 'u' || *s == 'U')
177 {
178 flags |= CPP_N_UNSIGNED;
179 if (len == 1)
180 return flags;
181 len--;
182 s++;
183 }
184
185 switch (*s)
186 {
187 case 'h': case 'H':
188 if (len == 1)
189 return flags |= CPP_N_SMALL;
190 break;
191 case 'l':
192 if (len == 1)
193 return flags |= CPP_N_MEDIUM;
194 if (len == 2 && s[1] == 'l')
195 return flags |= CPP_N_LARGE;
196 break;
197 case 'L':
198 if (len == 1)
199 return flags |= CPP_N_MEDIUM;
200 if (len == 2 && s[1] == 'L')
201 return flags |= CPP_N_LARGE;
202 break;
203 default:
204 break;
205 }
206 /* Anything left at this point is invalid. */
207 return 0;
208 }
209 }
210
211 /* In any remaining valid suffix, the case and order don't matter. */
212 while (len--)
213 {
214 switch (s[0])
215 {
216 case 'f': case 'F':
217 f++;
218 if (len > 0
219 && s[1] >= '1'
220 && s[1] <= '9'
221 && fn_bits == 0)
222 {
223 f--;
224 while (len > 0
225 && s[1] >= '0'
226 && s[1] <= '9'
227 && fn_bits < CPP_FLOATN_MAX)
228 {
229 fn_bits = fn_bits * 10 + (s[1] - '0');
230 len--;
231 s++;
232 }
233 if (len > 0 && s[1] == 'x')
234 {
235 fnx++;
236 len--;
237 s++;
238 }
239 else
240 fn++;
241 }
242 break;
243 case 'b': case 'B':
244 if (len > 2
245 /* Except for bf16 / BF16 where case is significant. */
246 && s[1] == (s[0] == 'b' ? 'f' : 'F')
247 && s[2] == '1'
248 && s[3] == '6')
249 {
250 bf16++;
251 len -= 3;
252 s += 3;
253 break;
254 }
255 return 0;
256 case 'd': case 'D': d++; break;
257 case 'l': case 'L': l++; break;
258 case 'w': case 'W': w++; break;
259 case 'q': case 'Q': q++; break;
260 case 'i': case 'I':
261 case 'j': case 'J': i++; break;
262 default:
263 return 0;
264 }
265 s++;
266 }
267
268 /* Reject any case of multiple suffixes specifying types, multiple
269 suffixes specifying an imaginary constant, _FloatN or _FloatNx
270 suffixes for invalid values of N, and _FloatN suffixes for values
271 of N larger than can be represented in the return value. The
272 caller is responsible for rejecting _FloatN suffixes where
273 _FloatN is not supported on the chosen target. */
274 if (f + d + l + w + q + fn + fnx + bf16 > 1 || i > 1)
275 return 0;
276 if (fn_bits > CPP_FLOATN_MAX)
277 return 0;
278 if (fnx && fn_bits != 32 && fn_bits != 64 && fn_bits != 128)
279 return 0;
280 if (fn && fn_bits != 16 && fn_bits % 32 != 0)
281 return 0;
282 if (fn && fn_bits == 96)
283 return 0;
284
285 if (i)
286 {
287 if (!CPP_OPTION (pfile, ext_numeric_literals))
288 return 0;
289
290 /* In C++14 and up these suffixes are in the standard library, so treat
291 them as user-defined literals. */
292 if (CPP_OPTION (pfile, cplusplus)
293 && CPP_OPTION (pfile, lang) > CLK_CXX11
294 && orig_s[0] == 'i'
295 && (orig_len == 1
296 || (orig_len == 2
297 && (orig_s[1] == 'f' || orig_s[1] == 'l'))))
298 return 0;
299 }
300
301 if ((w || q) && !CPP_OPTION (pfile, ext_numeric_literals))
302 return 0;
303
304 return ((i ? CPP_N_IMAGINARY : 0)
305 | (f ? CPP_N_SMALL :
306 d ? CPP_N_MEDIUM :
307 l ? CPP_N_LARGE :
308 w ? CPP_N_MD_W :
309 q ? CPP_N_MD_Q :
310 fn ? CPP_N_FLOATN | (fn_bits << CPP_FLOATN_SHIFT) :
311 fnx ? CPP_N_FLOATNX | (fn_bits << CPP_FLOATN_SHIFT) :
312 bf16 ? CPP_N_BFLOAT16 :
313 CPP_N_DEFAULT));
314 }
315
316 /* Return the classification flags for a float suffix. */
317 unsigned int
318 cpp_interpret_float_suffix (cpp_reader *pfile, const char *s, size_t len)
319 {
320 return interpret_float_suffix (pfile, (const unsigned char *)s, len);
321 }
322
323 /* Subroutine of cpp_classify_number. S points to an integer suffix
324 of length LEN, possibly zero. Returns 0 for an invalid suffix, or a
325 flag vector describing the suffix. */
326 static unsigned int
327 interpret_int_suffix (cpp_reader *pfile, const uchar *s, size_t len)
328 {
329 size_t orig_len = len;
330 size_t u, l, i, z;
331
332 u = l = i = z = 0;
333
334 while (len--)
335 switch (s[len])
336 {
337 case 'z': case 'Z': z++; break;
338 case 'u': case 'U': u++; break;
339 case 'i': case 'I':
340 case 'j': case 'J': i++; break;
341 case 'l': case 'L': l++;
342 /* If there are two Ls, they must be adjacent and the same case. */
343 if (l == 2 && s[len] != s[len + 1])
344 return 0;
345 break;
346 default:
347 return 0;
348 }
349
350 if (l > 2 || u > 1 || i > 1 || z > 1)
351 return 0;
352
353 if (z)
354 {
355 if (l > 0 || i > 0)
356 return 0;
357 if (!CPP_OPTION (pfile, cplusplus))
358 return 0;
359 }
360
361 if (i)
362 {
363 if (!CPP_OPTION (pfile, ext_numeric_literals))
364 return 0;
365
366 /* In C++14 and up these suffixes are in the standard library, so treat
367 them as user-defined literals. */
368 if (CPP_OPTION (pfile, cplusplus)
369 && CPP_OPTION (pfile, lang) > CLK_CXX11
370 && s[0] == 'i'
371 && (orig_len == 1 || (orig_len == 2 && s[1] == 'l')))
372 return 0;
373 }
374
375 return ((i ? CPP_N_IMAGINARY : 0)
376 | (u ? CPP_N_UNSIGNED : 0)
377 | ((l == 0) ? CPP_N_SMALL
378 : (l == 1) ? CPP_N_MEDIUM : CPP_N_LARGE)
379 | (z ? CPP_N_SIZE_T : 0));
380 }
381
382 /* Return the classification flags for an int suffix. */
383 unsigned int
384 cpp_interpret_int_suffix (cpp_reader *pfile, const char *s, size_t len)
385 {
386 return interpret_int_suffix (pfile, (const unsigned char *)s, len);
387 }
388
389 /* Return the string type corresponding to the the input user-defined string
390 literal type. If the input type is not a user-defined string literal
391 type return the input type. */
392 enum cpp_ttype
393 cpp_userdef_string_remove_type (enum cpp_ttype type)
394 {
395 if (type == CPP_STRING_USERDEF)
396 return CPP_STRING;
397 else if (type == CPP_WSTRING_USERDEF)
398 return CPP_WSTRING;
399 else if (type == CPP_STRING16_USERDEF)
400 return CPP_STRING16;
401 else if (type == CPP_STRING32_USERDEF)
402 return CPP_STRING32;
403 else if (type == CPP_UTF8STRING_USERDEF)
404 return CPP_UTF8STRING;
405 else
406 return type;
407 }
408
409 /* Return the user-defined string literal type corresponding to the input
410 string type. If the input type is not a string type return the input
411 type. */
412 enum cpp_ttype
413 cpp_userdef_string_add_type (enum cpp_ttype type)
414 {
415 if (type == CPP_STRING)
416 return CPP_STRING_USERDEF;
417 else if (type == CPP_WSTRING)
418 return CPP_WSTRING_USERDEF;
419 else if (type == CPP_STRING16)
420 return CPP_STRING16_USERDEF;
421 else if (type == CPP_STRING32)
422 return CPP_STRING32_USERDEF;
423 else if (type == CPP_UTF8STRING)
424 return CPP_UTF8STRING_USERDEF;
425 else
426 return type;
427 }
428
429 /* Return the char type corresponding to the the input user-defined char
430 literal type. If the input type is not a user-defined char literal
431 type return the input type. */
432 enum cpp_ttype
433 cpp_userdef_char_remove_type (enum cpp_ttype type)
434 {
435 if (type == CPP_CHAR_USERDEF)
436 return CPP_CHAR;
437 else if (type == CPP_WCHAR_USERDEF)
438 return CPP_WCHAR;
439 else if (type == CPP_CHAR16_USERDEF)
440 return CPP_CHAR16;
441 else if (type == CPP_CHAR32_USERDEF)
442 return CPP_CHAR32;
443 else if (type == CPP_UTF8CHAR_USERDEF)
444 return CPP_UTF8CHAR;
445 else
446 return type;
447 }
448
449 /* Return the user-defined char literal type corresponding to the input
450 char type. If the input type is not a char type return the input
451 type. */
452 enum cpp_ttype
453 cpp_userdef_char_add_type (enum cpp_ttype type)
454 {
455 if (type == CPP_CHAR)
456 return CPP_CHAR_USERDEF;
457 else if (type == CPP_WCHAR)
458 return CPP_WCHAR_USERDEF;
459 else if (type == CPP_CHAR16)
460 return CPP_CHAR16_USERDEF;
461 else if (type == CPP_CHAR32)
462 return CPP_CHAR32_USERDEF;
463 else if (type == CPP_UTF8CHAR)
464 return CPP_UTF8CHAR_USERDEF;
465 else
466 return type;
467 }
468
469 /* Return true if the token type is a user-defined string literal. */
470 bool
471 cpp_userdef_string_p (enum cpp_ttype type)
472 {
473 if (type == CPP_STRING_USERDEF
474 || type == CPP_WSTRING_USERDEF
475 || type == CPP_STRING16_USERDEF
476 || type == CPP_STRING32_USERDEF
477 || type == CPP_UTF8STRING_USERDEF)
478 return true;
479 else
480 return false;
481 }
482
483 /* Return true if the token type is a user-defined char literal. */
484 bool
485 cpp_userdef_char_p (enum cpp_ttype type)
486 {
487 if (type == CPP_CHAR_USERDEF
488 || type == CPP_WCHAR_USERDEF
489 || type == CPP_CHAR16_USERDEF
490 || type == CPP_CHAR32_USERDEF
491 || type == CPP_UTF8CHAR_USERDEF)
492 return true;
493 else
494 return false;
495 }
496
497 /* Extract the suffix from a user-defined literal string or char. */
498 const char *
499 cpp_get_userdef_suffix (const cpp_token *tok)
500 {
501 unsigned int len = tok->val.str.len;
502 const char *text = (const char *)tok->val.str.text;
503 char delim;
504 unsigned int i;
505 for (i = 0; i < len; ++i)
506 if (text[i] == '\'' || text[i] == '"')
507 break;
508 if (i == len)
509 return text + len;
510 delim = text[i];
511 for (i = len; i > 0; --i)
512 if (text[i - 1] == delim)
513 break;
514 return text + i;
515 }
516
517 /* Categorize numeric constants according to their field (integer,
518 floating point, or invalid), radix (decimal, octal, hexadecimal),
519 and type suffixes.
520
521 TOKEN is the token that represents the numeric constant to
522 classify.
523
524 In C++0X if UD_SUFFIX is non null it will be assigned
525 any unrecognized suffix for a user-defined literal.
526
527 VIRTUAL_LOCATION is the virtual location for TOKEN. */
528 unsigned int
529 cpp_classify_number (cpp_reader *pfile, const cpp_token *token,
530 const char **ud_suffix, location_t virtual_location)
531 {
532 const uchar *str = token->val.str.text;
533 const uchar *limit;
534 unsigned int max_digit, result, radix;
535 enum {NOT_FLOAT = 0, AFTER_POINT, AFTER_EXPON} float_flag;
536 bool seen_digit;
537 bool seen_digit_sep;
538
539 if (ud_suffix)
540 *ud_suffix = NULL;
541
542 /* If the lexer has done its job, length one can only be a single
543 digit. Fast-path this very common case. */
544 if (token->val.str.len == 1)
545 return CPP_N_INTEGER | CPP_N_SMALL | CPP_N_DECIMAL;
546
547 limit = str + token->val.str.len;
548 float_flag = NOT_FLOAT;
549 max_digit = 0;
550 radix = 10;
551 seen_digit = false;
552 seen_digit_sep = false;
553
554 /* First, interpret the radix. */
555 if (*str == '0')
556 {
557 radix = 8;
558 str++;
559
560 /* Require at least one hex digit to classify it as hex. */
561 if (*str == 'x' || *str == 'X')
562 {
563 if (str[1] == '.' || ISXDIGIT (str[1]))
564 {
565 radix = 16;
566 str++;
567 }
568 else if (DIGIT_SEP (str[1]))
569 SYNTAX_ERROR_AT (virtual_location,
570 "digit separator after base indicator");
571 }
572 else if (*str == 'b' || *str == 'B')
573 {
574 if (str[1] == '0' || str[1] == '1')
575 {
576 radix = 2;
577 str++;
578 }
579 else if (DIGIT_SEP (str[1]))
580 SYNTAX_ERROR_AT (virtual_location,
581 "digit separator after base indicator");
582 }
583 }
584
585 /* Now scan for a well-formed integer or float. */
586 for (;;)
587 {
588 unsigned int c = *str++;
589
590 if (ISDIGIT (c) || (ISXDIGIT (c) && radix == 16))
591 {
592 seen_digit_sep = false;
593 seen_digit = true;
594 c = hex_value (c);
595 if (c > max_digit)
596 max_digit = c;
597 }
598 else if (DIGIT_SEP (c))
599 seen_digit_sep = true;
600 else if (c == '.')
601 {
602 if (seen_digit_sep || DIGIT_SEP (*str))
603 SYNTAX_ERROR_AT (virtual_location,
604 "digit separator adjacent to decimal point");
605 seen_digit_sep = false;
606 if (float_flag == NOT_FLOAT)
607 float_flag = AFTER_POINT;
608 else
609 SYNTAX_ERROR_AT (virtual_location,
610 "too many decimal points in number");
611 }
612 else if ((radix <= 10 && (c == 'e' || c == 'E'))
613 || (radix == 16 && (c == 'p' || c == 'P')))
614 {
615 if (seen_digit_sep || DIGIT_SEP (*str))
616 SYNTAX_ERROR_AT (virtual_location,
617 "digit separator adjacent to exponent");
618 float_flag = AFTER_EXPON;
619 break;
620 }
621 else
622 {
623 /* Start of suffix. */
624 str--;
625 break;
626 }
627 }
628
629 if (seen_digit_sep && float_flag != AFTER_EXPON)
630 SYNTAX_ERROR_AT (virtual_location,
631 "digit separator outside digit sequence");
632
633 /* The suffix may be for decimal fixed-point constants without exponent. */
634 if (radix != 16 && float_flag == NOT_FLOAT)
635 {
636 result = interpret_float_suffix (pfile, str, limit - str);
637 if ((result & CPP_N_FRACT) || (result & CPP_N_ACCUM))
638 {
639 result |= CPP_N_FLOATING;
640 /* We need to restore the radix to 10, if the radix is 8. */
641 if (radix == 8)
642 radix = 10;
643
644 if (CPP_PEDANTIC (pfile))
645 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
646 "fixed-point constants are a GCC extension");
647 goto syntax_ok;
648 }
649 else
650 result = 0;
651 }
652
653 if (float_flag != NOT_FLOAT && radix == 8)
654 radix = 10;
655
656 if (max_digit >= radix)
657 {
658 if (radix == 2)
659 SYNTAX_ERROR2_AT (virtual_location,
660 "invalid digit \"%c\" in binary constant", '0' + max_digit);
661 else
662 SYNTAX_ERROR2_AT (virtual_location,
663 "invalid digit \"%c\" in octal constant", '0' + max_digit);
664 }
665
666 if (float_flag != NOT_FLOAT)
667 {
668 if (radix == 2)
669 {
670 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
671 "invalid prefix \"0b\" for floating constant");
672 return CPP_N_INVALID;
673 }
674
675 if (radix == 16 && !seen_digit)
676 SYNTAX_ERROR_AT (virtual_location,
677 "no digits in hexadecimal floating constant");
678
679 if (radix == 16 && CPP_PEDANTIC (pfile)
680 && !CPP_OPTION (pfile, extended_numbers))
681 {
682 if (CPP_OPTION (pfile, cplusplus))
683 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
684 "use of C++17 hexadecimal floating constant");
685 else
686 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
687 "use of C99 hexadecimal floating constant");
688 }
689
690 if (float_flag == AFTER_EXPON)
691 {
692 if (*str == '+' || *str == '-')
693 str++;
694
695 /* Exponent is decimal, even if string is a hex float. */
696 if (!ISDIGIT (*str))
697 {
698 if (DIGIT_SEP (*str))
699 SYNTAX_ERROR_AT (virtual_location,
700 "digit separator adjacent to exponent");
701 else
702 SYNTAX_ERROR_AT (virtual_location, "exponent has no digits");
703 }
704 do
705 {
706 seen_digit_sep = DIGIT_SEP (*str);
707 str++;
708 }
709 while (ISDIGIT (*str) || DIGIT_SEP (*str));
710 }
711 else if (radix == 16)
712 SYNTAX_ERROR_AT (virtual_location,
713 "hexadecimal floating constants require an exponent");
714
715 if (seen_digit_sep)
716 SYNTAX_ERROR_AT (virtual_location,
717 "digit separator outside digit sequence");
718
719 result = interpret_float_suffix (pfile, str, limit - str);
720 if (result == 0)
721 {
722 if (CPP_OPTION (pfile, user_literals))
723 {
724 if (ud_suffix)
725 *ud_suffix = (const char *) str;
726 result = CPP_N_LARGE | CPP_N_USERDEF;
727 }
728 else
729 {
730 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
731 "invalid suffix \"%.*s\" on floating constant",
732 (int) (limit - str), str);
733 return CPP_N_INVALID;
734 }
735 }
736
737 /* Traditional C didn't accept any floating suffixes. */
738 if (limit != str
739 && CPP_WTRADITIONAL (pfile)
740 && ! cpp_sys_macro_p (pfile))
741 cpp_warning_with_line (pfile, CPP_W_TRADITIONAL, virtual_location, 0,
742 "traditional C rejects the \"%.*s\" suffix",
743 (int) (limit - str), str);
744
745 /* A suffix for double is a GCC extension via decimal float support.
746 If the suffix also specifies an imaginary value we'll catch that
747 later. */
748 if ((result == CPP_N_MEDIUM) && CPP_PEDANTIC (pfile))
749 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
750 "suffix for double constant is a GCC extension");
751
752 /* Radix must be 10 for decimal floats. */
753 if ((result & CPP_N_DFLOAT) && radix != 10)
754 {
755 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
756 "invalid suffix \"%.*s\" with hexadecimal floating constant",
757 (int) (limit - str), str);
758 return CPP_N_INVALID;
759 }
760
761 if ((result & (CPP_N_FRACT | CPP_N_ACCUM)) && CPP_PEDANTIC (pfile))
762 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
763 "fixed-point constants are a GCC extension");
764
765 if (result & CPP_N_DFLOAT)
766 {
767 if (CPP_PEDANTIC (pfile) && !CPP_OPTION (pfile, dfp_constants))
768 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
769 "decimal float constants are a C2X feature");
770 else if (CPP_OPTION (pfile, cpp_warn_c11_c2x_compat) > 0)
771 cpp_warning_with_line (pfile, CPP_W_C11_C2X_COMPAT,
772 virtual_location, 0,
773 "decimal float constants are a C2X feature");
774 }
775
776 result |= CPP_N_FLOATING;
777 }
778 else
779 {
780 result = interpret_int_suffix (pfile, str, limit - str);
781 if (result == 0)
782 {
783 if (CPP_OPTION (pfile, user_literals))
784 {
785 if (ud_suffix)
786 *ud_suffix = (const char *) str;
787 result = CPP_N_UNSIGNED | CPP_N_LARGE | CPP_N_USERDEF;
788 }
789 else
790 {
791 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
792 "invalid suffix \"%.*s\" on integer constant",
793 (int) (limit - str), str);
794 return CPP_N_INVALID;
795 }
796 }
797
798 /* Traditional C only accepted the 'L' suffix.
799 Suppress warning about 'LL' with -Wno-long-long. */
800 if (CPP_WTRADITIONAL (pfile) && ! cpp_sys_macro_p (pfile))
801 {
802 int u_or_i = (result & (CPP_N_UNSIGNED|CPP_N_IMAGINARY));
803 int large = (result & CPP_N_WIDTH) == CPP_N_LARGE
804 && CPP_OPTION (pfile, cpp_warn_long_long);
805
806 if (u_or_i || large)
807 cpp_warning_with_line (pfile, large ? CPP_W_LONG_LONG : CPP_W_TRADITIONAL,
808 virtual_location, 0,
809 "traditional C rejects the \"%.*s\" suffix",
810 (int) (limit - str), str);
811 }
812
813 if ((result & CPP_N_WIDTH) == CPP_N_LARGE
814 && CPP_OPTION (pfile, cpp_warn_long_long))
815 {
816 const char *message = CPP_OPTION (pfile, cplusplus)
817 ? N_("use of C++11 long long integer constant")
818 : N_("use of C99 long long integer constant");
819
820 if (CPP_OPTION (pfile, c99))
821 cpp_warning_with_line (pfile, CPP_W_LONG_LONG, virtual_location,
822 0, message);
823 else
824 cpp_pedwarning_with_line (pfile, CPP_W_LONG_LONG,
825 virtual_location, 0, message);
826 }
827
828 if ((result & CPP_N_SIZE_T) == CPP_N_SIZE_T
829 && !CPP_OPTION (pfile, size_t_literals))
830 {
831 const char *message = (result & CPP_N_UNSIGNED) == CPP_N_UNSIGNED
832 ? N_("use of C++23 %<size_t%> integer constant")
833 : N_("use of C++23 %<make_signed_t<size_t>%> integer constant");
834 cpp_warning_with_line (pfile, CPP_W_SIZE_T_LITERALS,
835 virtual_location, 0, message);
836 }
837
838 result |= CPP_N_INTEGER;
839 }
840
841 syntax_ok:
842 if ((result & CPP_N_IMAGINARY) && CPP_PEDANTIC (pfile))
843 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
844 "imaginary constants are a GCC extension");
845 if (radix == 2)
846 {
847 if (!CPP_OPTION (pfile, binary_constants)
848 && CPP_PEDANTIC (pfile))
849 cpp_error_with_line (pfile, CPP_DL_PEDWARN, virtual_location, 0,
850 CPP_OPTION (pfile, cplusplus)
851 ? N_("binary constants are a C++14 feature "
852 "or GCC extension")
853 : N_("binary constants are a C2X feature "
854 "or GCC extension"));
855 else if (CPP_OPTION (pfile, cpp_warn_c11_c2x_compat) > 0)
856 cpp_warning_with_line (pfile, CPP_W_C11_C2X_COMPAT,
857 virtual_location, 0,
858 "binary constants are a C2X feature");
859 }
860
861 if (radix == 10)
862 result |= CPP_N_DECIMAL;
863 else if (radix == 16)
864 result |= CPP_N_HEX;
865 else if (radix == 2)
866 result |= CPP_N_BINARY;
867 else
868 result |= CPP_N_OCTAL;
869
870 return result;
871
872 syntax_error:
873 return CPP_N_INVALID;
874 }
875
876 /* cpp_interpret_integer converts an integer constant into a cpp_num,
877 of precision options->precision.
878
879 We do not provide any interface for decimal->float conversion,
880 because the preprocessor doesn't need it and we don't want to
881 drag in GCC's floating point emulator. */
882 cpp_num
883 cpp_interpret_integer (cpp_reader *pfile, const cpp_token *token,
884 unsigned int type)
885 {
886 const uchar *p, *end;
887 cpp_num result;
888
889 result.low = 0;
890 result.high = 0;
891 result.unsignedp = !!(type & CPP_N_UNSIGNED);
892 result.overflow = false;
893
894 p = token->val.str.text;
895 end = p + token->val.str.len;
896
897 /* Common case of a single digit. */
898 if (token->val.str.len == 1)
899 result.low = p[0] - '0';
900 else
901 {
902 cpp_num_part max;
903 size_t precision = CPP_OPTION (pfile, precision);
904 unsigned int base = 10, c = 0;
905 bool overflow = false;
906
907 if ((type & CPP_N_RADIX) == CPP_N_OCTAL)
908 {
909 base = 8;
910 p++;
911 }
912 else if ((type & CPP_N_RADIX) == CPP_N_HEX)
913 {
914 base = 16;
915 p += 2;
916 }
917 else if ((type & CPP_N_RADIX) == CPP_N_BINARY)
918 {
919 base = 2;
920 p += 2;
921 }
922
923 /* We can add a digit to numbers strictly less than this without
924 needing the precision and slowness of double integers. */
925 max = ~(cpp_num_part) 0;
926 if (precision < PART_PRECISION)
927 max >>= PART_PRECISION - precision;
928 max = (max - base + 1) / base + 1;
929
930 for (; p < end; p++)
931 {
932 c = *p;
933
934 if (ISDIGIT (c) || (base == 16 && ISXDIGIT (c)))
935 c = hex_value (c);
936 else if (DIGIT_SEP (c))
937 continue;
938 else
939 break;
940
941 /* Strict inequality for when max is set to zero. */
942 if (result.low < max)
943 result.low = result.low * base + c;
944 else
945 {
946 result = append_digit (result, c, base, precision);
947 overflow |= result.overflow;
948 max = 0;
949 }
950 }
951
952 if (overflow && !(type & CPP_N_USERDEF))
953 cpp_error (pfile, CPP_DL_PEDWARN,
954 "integer constant is too large for its type");
955 /* If too big to be signed, consider it unsigned. Only warn for
956 decimal numbers. Traditional numbers were always signed (but
957 we still honor an explicit U suffix); but we only have
958 traditional semantics in directives. */
959 else if (!result.unsignedp
960 && !(CPP_OPTION (pfile, traditional)
961 && pfile->state.in_directive)
962 && !num_positive (result, precision))
963 {
964 /* This is for constants within the range of uintmax_t but
965 not that of intmax_t. For such decimal constants, a
966 diagnostic is required for C99 as the selected type must
967 be signed and not having a type is a constraint violation
968 (DR#298, TC3), so this must be a pedwarn. For C90,
969 unsigned long is specified to be used for a constant that
970 does not fit in signed long; if uintmax_t has the same
971 range as unsigned long this means only a warning is
972 appropriate here. C90 permits the preprocessor to use a
973 wider range than unsigned long in the compiler, so if
974 uintmax_t is wider than unsigned long no diagnostic is
975 required for such constants in preprocessor #if
976 expressions and the compiler will pedwarn for such
977 constants outside the range of unsigned long that reach
978 the compiler so a diagnostic is not required there
979 either; thus, pedwarn for C99 but use a plain warning for
980 C90. */
981 if (base == 10)
982 cpp_error (pfile, (CPP_OPTION (pfile, c99)
983 ? CPP_DL_PEDWARN
984 : CPP_DL_WARNING),
985 "integer constant is so large that it is unsigned");
986 result.unsignedp = true;
987 }
988 }
989
990 return result;
991 }
992
993 /* Append DIGIT to NUM, a number of PRECISION bits being read in base BASE. */
994 static cpp_num
995 append_digit (cpp_num num, int digit, int base, size_t precision)
996 {
997 cpp_num result;
998 unsigned int shift;
999 bool overflow;
1000 cpp_num_part add_high, add_low;
1001
1002 /* Multiply by 2, 8 or 16. Catching this overflow here means we don't
1003 need to worry about add_high overflowing. */
1004 switch (base)
1005 {
1006 case 2:
1007 shift = 1;
1008 break;
1009
1010 case 16:
1011 shift = 4;
1012 break;
1013
1014 default:
1015 shift = 3;
1016 }
1017 overflow = !!(num.high >> (PART_PRECISION - shift));
1018 result.high = num.high << shift;
1019 result.low = num.low << shift;
1020 result.high |= num.low >> (PART_PRECISION - shift);
1021 result.unsignedp = num.unsignedp;
1022
1023 if (base == 10)
1024 {
1025 add_low = num.low << 1;
1026 add_high = (num.high << 1) + (num.low >> (PART_PRECISION - 1));
1027 }
1028 else
1029 add_high = add_low = 0;
1030
1031 if (add_low + digit < add_low)
1032 add_high++;
1033 add_low += digit;
1034
1035 if (result.low + add_low < result.low)
1036 add_high++;
1037 if (result.high + add_high < result.high)
1038 overflow = true;
1039
1040 result.low += add_low;
1041 result.high += add_high;
1042 result.overflow = overflow;
1043
1044 /* The above code catches overflow of a cpp_num type. This catches
1045 overflow of the (possibly shorter) target precision. */
1046 num.low = result.low;
1047 num.high = result.high;
1048 result = num_trim (result, precision);
1049 if (!num_eq (result, num))
1050 result.overflow = true;
1051
1052 return result;
1053 }
1054
1055 /* Handle meeting "defined" in a preprocessor expression. */
1056 static cpp_num
1057 parse_defined (cpp_reader *pfile)
1058 {
1059 cpp_num result;
1060 int paren = 0;
1061 cpp_hashnode *node = 0;
1062 const cpp_token *token;
1063 cpp_context *initial_context = pfile->context;
1064
1065 /* Don't expand macros. */
1066 pfile->state.prevent_expansion++;
1067
1068 token = cpp_get_token (pfile);
1069 if (token->type == CPP_OPEN_PAREN)
1070 {
1071 paren = 1;
1072 token = cpp_get_token (pfile);
1073 }
1074
1075 if (token->type == CPP_NAME)
1076 {
1077 node = token->val.node.node;
1078 if (paren && cpp_get_token (pfile)->type != CPP_CLOSE_PAREN)
1079 {
1080 cpp_error (pfile, CPP_DL_ERROR, "missing ')' after \"defined\"");
1081 node = 0;
1082 }
1083 }
1084 else
1085 {
1086 cpp_error (pfile, CPP_DL_ERROR,
1087 "operator \"defined\" requires an identifier");
1088 if (token->flags & NAMED_OP)
1089 {
1090 cpp_token op;
1091
1092 op.flags = 0;
1093 op.type = token->type;
1094 cpp_error (pfile, CPP_DL_ERROR,
1095 "(\"%s\" is an alternative token for \"%s\" in C++)",
1096 cpp_token_as_text (pfile, token),
1097 cpp_token_as_text (pfile, &op));
1098 }
1099 }
1100
1101 bool is_defined = false;
1102 if (node)
1103 {
1104 if ((pfile->context != initial_context
1105 || initial_context != &pfile->base_context)
1106 && CPP_OPTION (pfile, warn_expansion_to_defined))
1107 cpp_pedwarning (pfile, CPP_W_EXPANSION_TO_DEFINED,
1108 "this use of \"defined\" may not be portable");
1109 is_defined = _cpp_defined_macro_p (node);
1110 if (!_cpp_maybe_notify_macro_use (pfile, node, token->src_loc))
1111 /* It wasn't a macro after all. */
1112 is_defined = false;
1113 _cpp_mark_macro_used (node);
1114
1115 /* A possible controlling macro of the form #if !defined ().
1116 _cpp_parse_expr checks there was no other junk on the line. */
1117 pfile->mi_ind_cmacro = node;
1118 }
1119
1120 pfile->state.prevent_expansion--;
1121
1122 /* Do not treat conditional macros as being defined. This is due to the
1123 powerpc port using conditional macros for 'vector', 'bool', and 'pixel'
1124 to act as conditional keywords. This messes up tests like #ifndef
1125 bool. */
1126 result.unsignedp = false;
1127 result.high = 0;
1128 result.overflow = false;
1129 result.low = is_defined;
1130 return result;
1131 }
1132
1133 /* Convert a token into a CPP_NUMBER (an interpreted preprocessing
1134 number or character constant, or the result of the "defined" or "#"
1135 operators). */
1136 static cpp_num
1137 eval_token (cpp_reader *pfile, const cpp_token *token,
1138 location_t virtual_location)
1139 {
1140 cpp_num result;
1141 unsigned int temp;
1142 int unsignedp = 0;
1143
1144 result.unsignedp = false;
1145 result.overflow = false;
1146
1147 switch (token->type)
1148 {
1149 case CPP_NUMBER:
1150 temp = cpp_classify_number (pfile, token, NULL, virtual_location);
1151 if (temp & CPP_N_USERDEF)
1152 cpp_error (pfile, CPP_DL_ERROR,
1153 "user-defined literal in preprocessor expression");
1154 switch (temp & CPP_N_CATEGORY)
1155 {
1156 case CPP_N_FLOATING:
1157 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
1158 "floating constant in preprocessor expression");
1159 break;
1160 case CPP_N_INTEGER:
1161 if (!(temp & CPP_N_IMAGINARY))
1162 return cpp_interpret_integer (pfile, token, temp);
1163 cpp_error_with_line (pfile, CPP_DL_ERROR, virtual_location, 0,
1164 "imaginary number in preprocessor expression");
1165 break;
1166
1167 case CPP_N_INVALID:
1168 /* Error already issued. */
1169 break;
1170 }
1171 result.high = result.low = 0;
1172 break;
1173
1174 case CPP_WCHAR:
1175 case CPP_CHAR:
1176 case CPP_CHAR16:
1177 case CPP_CHAR32:
1178 case CPP_UTF8CHAR:
1179 {
1180 cppchar_t cc = cpp_interpret_charconst (pfile, token,
1181 &temp, &unsignedp);
1182
1183 result.high = 0;
1184 result.low = cc;
1185 /* Sign-extend the result if necessary. */
1186 if (!unsignedp && (cppchar_signed_t) cc < 0)
1187 {
1188 if (PART_PRECISION > BITS_PER_CPPCHAR_T)
1189 result.low |= ~(~(cpp_num_part) 0
1190 >> (PART_PRECISION - BITS_PER_CPPCHAR_T));
1191 result.high = ~(cpp_num_part) 0;
1192 result = num_trim (result, CPP_OPTION (pfile, precision));
1193 }
1194 }
1195 break;
1196
1197 case CPP_NAME:
1198 if (token->val.node.node == pfile->spec_nodes.n_defined)
1199 return parse_defined (pfile);
1200 else if (CPP_OPTION (pfile, true_false)
1201 && (token->val.node.node == pfile->spec_nodes.n_true
1202 || token->val.node.node == pfile->spec_nodes.n_false))
1203 {
1204 result.high = 0;
1205 result.low = (token->val.node.node == pfile->spec_nodes.n_true);
1206 }
1207 else
1208 {
1209 result.high = 0;
1210 result.low = 0;
1211 if (CPP_OPTION (pfile, warn_undef) && !pfile->state.skip_eval)
1212 cpp_warning_with_line (pfile, CPP_W_UNDEF, virtual_location, 0,
1213 "\"%s\" is not defined, evaluates to 0",
1214 NODE_NAME (token->val.node.node));
1215 }
1216 break;
1217
1218 case CPP_HASH:
1219 if (!pfile->state.skipping)
1220 {
1221 /* A pedantic warning takes precedence over a deprecated
1222 warning here. */
1223 if (CPP_PEDANTIC (pfile))
1224 cpp_error_with_line (pfile, CPP_DL_PEDWARN,
1225 virtual_location, 0,
1226 "assertions are a GCC extension");
1227 else if (CPP_OPTION (pfile, cpp_warn_deprecated))
1228 cpp_warning_with_line (pfile, CPP_W_DEPRECATED, virtual_location, 0,
1229 "assertions are a deprecated extension");
1230 }
1231 _cpp_test_assertion (pfile, &temp);
1232 result.high = 0;
1233 result.low = temp;
1234 break;
1235
1236 default:
1237 abort ();
1238 }
1239
1240 result.unsignedp = !!unsignedp;
1241 return result;
1242 }
1243 \f
1244 /* Operator precedence and flags table.
1245
1246 After an operator is returned from the lexer, if it has priority less
1247 than the operator on the top of the stack, we reduce the stack by one
1248 operator and repeat the test. Since equal priorities do not reduce,
1249 this is naturally right-associative.
1250
1251 We handle left-associative operators by decrementing the priority of
1252 just-lexed operators by one, but retaining the priority of operators
1253 already on the stack.
1254
1255 The remaining cases are '(' and ')'. We handle '(' by skipping the
1256 reduction phase completely. ')' is given lower priority than
1257 everything else, including '(', effectively forcing a reduction of the
1258 parenthesized expression. If there is a matching '(', the routine
1259 reduce() exits immediately. If the normal exit route sees a ')', then
1260 there cannot have been a matching '(' and an error message is output.
1261
1262 The parser assumes all shifted operators require a left operand unless
1263 the flag NO_L_OPERAND is set. These semantics are automatic; any
1264 extra semantics need to be handled with operator-specific code. */
1265
1266 /* Flags. If CHECK_PROMOTION, we warn if the effective sign of an
1267 operand changes because of integer promotions. */
1268 #define NO_L_OPERAND (1 << 0)
1269 #define LEFT_ASSOC (1 << 1)
1270 #define CHECK_PROMOTION (1 << 2)
1271
1272 /* Operator to priority map. Must be in the same order as the first
1273 N entries of enum cpp_ttype. */
1274 static const struct cpp_operator
1275 {
1276 uchar prio;
1277 uchar flags;
1278 } optab[] =
1279 {
1280 /* EQ */ {0, 0}, /* Shouldn't happen. */
1281 /* NOT */ {16, NO_L_OPERAND},
1282 /* GREATER */ {12, LEFT_ASSOC | CHECK_PROMOTION},
1283 /* LESS */ {12, LEFT_ASSOC | CHECK_PROMOTION},
1284 /* PLUS */ {14, LEFT_ASSOC | CHECK_PROMOTION},
1285 /* MINUS */ {14, LEFT_ASSOC | CHECK_PROMOTION},
1286 /* MULT */ {15, LEFT_ASSOC | CHECK_PROMOTION},
1287 /* DIV */ {15, LEFT_ASSOC | CHECK_PROMOTION},
1288 /* MOD */ {15, LEFT_ASSOC | CHECK_PROMOTION},
1289 /* AND */ {9, LEFT_ASSOC | CHECK_PROMOTION},
1290 /* OR */ {7, LEFT_ASSOC | CHECK_PROMOTION},
1291 /* XOR */ {8, LEFT_ASSOC | CHECK_PROMOTION},
1292 /* RSHIFT */ {13, LEFT_ASSOC},
1293 /* LSHIFT */ {13, LEFT_ASSOC},
1294
1295 /* COMPL */ {16, NO_L_OPERAND},
1296 /* AND_AND */ {6, LEFT_ASSOC},
1297 /* OR_OR */ {5, LEFT_ASSOC},
1298 /* Note that QUERY, COLON, and COMMA must have the same precedence.
1299 However, there are some special cases for these in reduce(). */
1300 /* QUERY */ {4, 0},
1301 /* COLON */ {4, LEFT_ASSOC | CHECK_PROMOTION},
1302 /* COMMA */ {4, LEFT_ASSOC},
1303 /* OPEN_PAREN */ {1, NO_L_OPERAND},
1304 /* CLOSE_PAREN */ {0, 0},
1305 /* EOF */ {0, 0},
1306 /* EQ_EQ */ {11, LEFT_ASSOC},
1307 /* NOT_EQ */ {11, LEFT_ASSOC},
1308 /* GREATER_EQ */ {12, LEFT_ASSOC | CHECK_PROMOTION},
1309 /* LESS_EQ */ {12, LEFT_ASSOC | CHECK_PROMOTION},
1310 /* UPLUS */ {16, NO_L_OPERAND},
1311 /* UMINUS */ {16, NO_L_OPERAND}
1312 };
1313
1314 /* Parse and evaluate a C expression, reading from PFILE.
1315 Returns the truth value of the expression.
1316
1317 The implementation is an operator precedence parser, i.e. a
1318 bottom-up parser, using a stack for not-yet-reduced tokens.
1319
1320 The stack base is op_stack, and the current stack pointer is 'top'.
1321 There is a stack element for each operator (only), and the most
1322 recently pushed operator is 'top->op'. An operand (value) is
1323 stored in the 'value' field of the stack element of the operator
1324 that precedes it. */
1325 bool
1326 _cpp_parse_expr (cpp_reader *pfile, bool is_if)
1327 {
1328 struct op *top = pfile->op_stack;
1329 unsigned int lex_count;
1330 bool saw_leading_not, want_value = true;
1331 location_t virtual_location = 0;
1332
1333 pfile->state.skip_eval = 0;
1334
1335 /* Set up detection of #if ! defined(). */
1336 pfile->mi_ind_cmacro = 0;
1337 saw_leading_not = false;
1338 lex_count = 0;
1339
1340 /* Lowest priority operator prevents further reductions. */
1341 top->op = CPP_EOF;
1342
1343 for (;;)
1344 {
1345 struct op op;
1346
1347 lex_count++;
1348 op.token = cpp_get_token_with_location (pfile, &virtual_location);
1349 op.op = op.token->type;
1350 op.loc = virtual_location;
1351
1352 switch (op.op)
1353 {
1354 /* These tokens convert into values. */
1355 case CPP_NUMBER:
1356 case CPP_CHAR:
1357 case CPP_WCHAR:
1358 case CPP_CHAR16:
1359 case CPP_CHAR32:
1360 case CPP_UTF8CHAR:
1361 case CPP_NAME:
1362 case CPP_HASH:
1363 if (!want_value)
1364 SYNTAX_ERROR2_AT (op.loc,
1365 "missing binary operator before token \"%s\"",
1366 cpp_token_as_text (pfile, op.token));
1367 want_value = false;
1368 top->value = eval_token (pfile, op.token, op.loc);
1369 continue;
1370
1371 case CPP_NOT:
1372 saw_leading_not = lex_count == 1;
1373 break;
1374 case CPP_PLUS:
1375 if (want_value)
1376 op.op = CPP_UPLUS;
1377 break;
1378 case CPP_MINUS:
1379 if (want_value)
1380 op.op = CPP_UMINUS;
1381 break;
1382
1383 case CPP_PADDING:
1384 lex_count--;
1385 continue;
1386
1387 default:
1388 if ((int) op.op <= (int) CPP_EQ || (int) op.op >= (int) CPP_PLUS_EQ)
1389 SYNTAX_ERROR2_AT (op.loc,
1390 "token \"%s\" is not valid in preprocessor expressions",
1391 cpp_token_as_text (pfile, op.token));
1392 break;
1393 }
1394
1395 /* Check we have a value or operator as appropriate. */
1396 if (optab[op.op].flags & NO_L_OPERAND)
1397 {
1398 if (!want_value)
1399 SYNTAX_ERROR2_AT (op.loc,
1400 "missing binary operator before token \"%s\"",
1401 cpp_token_as_text (pfile, op.token));
1402 }
1403 else if (want_value)
1404 {
1405 /* We want a number (or expression) and haven't got one.
1406 Try to emit a specific diagnostic. */
1407 if (op.op == CPP_CLOSE_PAREN && top->op == CPP_OPEN_PAREN)
1408 SYNTAX_ERROR_AT (op.loc,
1409 "missing expression between '(' and ')'");
1410
1411 if (op.op == CPP_EOF && top->op == CPP_EOF)
1412 SYNTAX_ERROR2_AT (op.loc,
1413 "%s with no expression", is_if ? "#if" : "#elif");
1414
1415 if (top->op != CPP_EOF && top->op != CPP_OPEN_PAREN)
1416 SYNTAX_ERROR2_AT (op.loc,
1417 "operator '%s' has no right operand",
1418 cpp_token_as_text (pfile, top->token));
1419 else if (op.op == CPP_CLOSE_PAREN || op.op == CPP_EOF)
1420 /* Complain about missing paren during reduction. */;
1421 else
1422 SYNTAX_ERROR2_AT (op.loc,
1423 "operator '%s' has no left operand",
1424 cpp_token_as_text (pfile, op.token));
1425 }
1426
1427 top = reduce (pfile, top, op.op);
1428 if (!top)
1429 goto syntax_error;
1430
1431 if (op.op == CPP_EOF)
1432 break;
1433
1434 switch (op.op)
1435 {
1436 case CPP_CLOSE_PAREN:
1437 continue;
1438 case CPP_OR_OR:
1439 if (!num_zerop (top->value))
1440 pfile->state.skip_eval++;
1441 break;
1442 case CPP_AND_AND:
1443 case CPP_QUERY:
1444 if (num_zerop (top->value))
1445 pfile->state.skip_eval++;
1446 break;
1447 case CPP_COLON:
1448 if (top->op != CPP_QUERY)
1449 SYNTAX_ERROR_AT (op.loc,
1450 " ':' without preceding '?'");
1451 if (!num_zerop (top[-1].value)) /* Was '?' condition true? */
1452 pfile->state.skip_eval++;
1453 else
1454 pfile->state.skip_eval--;
1455 default:
1456 break;
1457 }
1458
1459 want_value = true;
1460
1461 /* Check for and handle stack overflow. */
1462 if (++top == pfile->op_limit)
1463 top = _cpp_expand_op_stack (pfile);
1464
1465 top->op = op.op;
1466 top->token = op.token;
1467 top->loc = op.loc;
1468 }
1469
1470 /* The controlling macro expression is only valid if we called lex 3
1471 times: <!> <defined expression> and <EOF>. push_conditional ()
1472 checks that we are at top-of-file. */
1473 if (pfile->mi_ind_cmacro && !(saw_leading_not && lex_count == 3))
1474 pfile->mi_ind_cmacro = 0;
1475
1476 if (top != pfile->op_stack)
1477 {
1478 cpp_error_with_line (pfile, CPP_DL_ICE, top->loc, 0,
1479 "unbalanced stack in %s",
1480 is_if ? "#if" : "#elif");
1481 syntax_error:
1482 return false; /* Return false on syntax error. */
1483 }
1484
1485 return !num_zerop (top->value);
1486 }
1487
1488 /* Reduce the operator / value stack if possible, in preparation for
1489 pushing operator OP. Returns NULL on error, otherwise the top of
1490 the stack. */
1491 static struct op *
1492 reduce (cpp_reader *pfile, struct op *top, enum cpp_ttype op)
1493 {
1494 unsigned int prio;
1495
1496 if (top->op <= CPP_EQ || top->op > CPP_LAST_CPP_OP + 2)
1497 {
1498 bad_op:
1499 cpp_error (pfile, CPP_DL_ICE, "impossible operator '%u'", top->op);
1500 return 0;
1501 }
1502
1503 if (op == CPP_OPEN_PAREN)
1504 return top;
1505
1506 /* Decrement the priority of left-associative operators to force a
1507 reduction with operators of otherwise equal priority. */
1508 prio = optab[op].prio - ((optab[op].flags & LEFT_ASSOC) != 0);
1509 while (prio < optab[top->op].prio)
1510 {
1511 if (CPP_OPTION (pfile, warn_num_sign_change)
1512 && optab[top->op].flags & CHECK_PROMOTION)
1513 check_promotion (pfile, top);
1514
1515 switch (top->op)
1516 {
1517 case CPP_UPLUS:
1518 case CPP_UMINUS:
1519 case CPP_NOT:
1520 case CPP_COMPL:
1521 top[-1].value = num_unary_op (pfile, top->value, top->op);
1522 top[-1].loc = top->loc;
1523 break;
1524
1525 case CPP_PLUS:
1526 case CPP_MINUS:
1527 case CPP_RSHIFT:
1528 case CPP_LSHIFT:
1529 case CPP_COMMA:
1530 top[-1].value = num_binary_op (pfile, top[-1].value,
1531 top->value, top->op);
1532 top[-1].loc = top->loc;
1533 break;
1534
1535 case CPP_GREATER:
1536 case CPP_LESS:
1537 case CPP_GREATER_EQ:
1538 case CPP_LESS_EQ:
1539 top[-1].value
1540 = num_inequality_op (pfile, top[-1].value, top->value, top->op);
1541 top[-1].loc = top->loc;
1542 break;
1543
1544 case CPP_EQ_EQ:
1545 case CPP_NOT_EQ:
1546 top[-1].value
1547 = num_equality_op (pfile, top[-1].value, top->value, top->op);
1548 top[-1].loc = top->loc;
1549 break;
1550
1551 case CPP_AND:
1552 case CPP_OR:
1553 case CPP_XOR:
1554 top[-1].value
1555 = num_bitwise_op (pfile, top[-1].value, top->value, top->op);
1556 top[-1].loc = top->loc;
1557 break;
1558
1559 case CPP_MULT:
1560 top[-1].value = num_mul (pfile, top[-1].value, top->value);
1561 top[-1].loc = top->loc;
1562 break;
1563
1564 case CPP_DIV:
1565 case CPP_MOD:
1566 top[-1].value = num_div_op (pfile, top[-1].value,
1567 top->value, top->op, top->loc);
1568 top[-1].loc = top->loc;
1569 break;
1570
1571 case CPP_OR_OR:
1572 top--;
1573 if (!num_zerop (top->value))
1574 pfile->state.skip_eval--;
1575 top->value.low = (!num_zerop (top->value)
1576 || !num_zerop (top[1].value));
1577 top->value.high = 0;
1578 top->value.unsignedp = false;
1579 top->value.overflow = false;
1580 top->loc = top[1].loc;
1581 continue;
1582
1583 case CPP_AND_AND:
1584 top--;
1585 if (num_zerop (top->value))
1586 pfile->state.skip_eval--;
1587 top->value.low = (!num_zerop (top->value)
1588 && !num_zerop (top[1].value));
1589 top->value.high = 0;
1590 top->value.unsignedp = false;
1591 top->value.overflow = false;
1592 top->loc = top[1].loc;
1593 continue;
1594
1595 case CPP_OPEN_PAREN:
1596 if (op != CPP_CLOSE_PAREN)
1597 {
1598 cpp_error_with_line (pfile, CPP_DL_ERROR,
1599 top->token->src_loc,
1600 0, "missing ')' in expression");
1601 return 0;
1602 }
1603 top--;
1604 top->value = top[1].value;
1605 top->loc = top[1].loc;
1606 return top;
1607
1608 case CPP_COLON:
1609 top -= 2;
1610 if (!num_zerop (top->value))
1611 {
1612 pfile->state.skip_eval--;
1613 top->value = top[1].value;
1614 top->loc = top[1].loc;
1615 }
1616 else
1617 {
1618 top->value = top[2].value;
1619 top->loc = top[2].loc;
1620 }
1621 top->value.unsignedp = (top[1].value.unsignedp
1622 || top[2].value.unsignedp);
1623 continue;
1624
1625 case CPP_QUERY:
1626 /* COMMA and COLON should not reduce a QUERY operator. */
1627 if (op == CPP_COMMA || op == CPP_COLON)
1628 return top;
1629 cpp_error (pfile, CPP_DL_ERROR, "'?' without following ':'");
1630 return 0;
1631
1632 default:
1633 goto bad_op;
1634 }
1635
1636 top--;
1637 if (top->value.overflow && !pfile->state.skip_eval)
1638 cpp_error (pfile, CPP_DL_PEDWARN,
1639 "integer overflow in preprocessor expression");
1640 }
1641
1642 if (op == CPP_CLOSE_PAREN)
1643 {
1644 cpp_error (pfile, CPP_DL_ERROR, "missing '(' in expression");
1645 return 0;
1646 }
1647
1648 return top;
1649 }
1650
1651 /* Returns the position of the old top of stack after expansion. */
1652 struct op *
1653 _cpp_expand_op_stack (cpp_reader *pfile)
1654 {
1655 size_t old_size = (size_t) (pfile->op_limit - pfile->op_stack);
1656 size_t new_size = old_size * 2 + 20;
1657
1658 pfile->op_stack = XRESIZEVEC (struct op, pfile->op_stack, new_size);
1659 pfile->op_limit = pfile->op_stack + new_size;
1660
1661 return pfile->op_stack + old_size;
1662 }
1663
1664 /* Emits a warning if the effective sign of either operand of OP
1665 changes because of integer promotions. */
1666 static void
1667 check_promotion (cpp_reader *pfile, const struct op *op)
1668 {
1669 if (op->value.unsignedp == op[-1].value.unsignedp)
1670 return;
1671
1672 if (op->value.unsignedp)
1673 {
1674 if (!num_positive (op[-1].value, CPP_OPTION (pfile, precision)))
1675 cpp_error_with_line (pfile, CPP_DL_WARNING, op[-1].loc, 0,
1676 "the left operand of \"%s\" changes sign when promoted",
1677 cpp_token_as_text (pfile, op->token));
1678 }
1679 else if (!num_positive (op->value, CPP_OPTION (pfile, precision)))
1680 cpp_error_with_line (pfile, CPP_DL_WARNING, op->loc, 0,
1681 "the right operand of \"%s\" changes sign when promoted",
1682 cpp_token_as_text (pfile, op->token));
1683 }
1684
1685 /* Clears the unused high order bits of the number pointed to by PNUM. */
1686 static cpp_num
1687 num_trim (cpp_num num, size_t precision)
1688 {
1689 if (precision > PART_PRECISION)
1690 {
1691 precision -= PART_PRECISION;
1692 if (precision < PART_PRECISION)
1693 num.high &= ((cpp_num_part) 1 << precision) - 1;
1694 }
1695 else
1696 {
1697 if (precision < PART_PRECISION)
1698 num.low &= ((cpp_num_part) 1 << precision) - 1;
1699 num.high = 0;
1700 }
1701
1702 return num;
1703 }
1704
1705 /* True iff A (presumed signed) >= 0. */
1706 static bool
1707 num_positive (cpp_num num, size_t precision)
1708 {
1709 if (precision > PART_PRECISION)
1710 {
1711 precision -= PART_PRECISION;
1712 return (num.high & (cpp_num_part) 1 << (precision - 1)) == 0;
1713 }
1714
1715 return (num.low & (cpp_num_part) 1 << (precision - 1)) == 0;
1716 }
1717
1718 /* Sign extend a number, with PRECISION significant bits and all
1719 others assumed clear, to fill out a cpp_num structure. */
1720 cpp_num
1721 cpp_num_sign_extend (cpp_num num, size_t precision)
1722 {
1723 if (!num.unsignedp)
1724 {
1725 if (precision > PART_PRECISION)
1726 {
1727 precision -= PART_PRECISION;
1728 if (precision < PART_PRECISION
1729 && (num.high & (cpp_num_part) 1 << (precision - 1)))
1730 num.high |= ~(~(cpp_num_part) 0 >> (PART_PRECISION - precision));
1731 }
1732 else if (num.low & (cpp_num_part) 1 << (precision - 1))
1733 {
1734 if (precision < PART_PRECISION)
1735 num.low |= ~(~(cpp_num_part) 0 >> (PART_PRECISION - precision));
1736 num.high = ~(cpp_num_part) 0;
1737 }
1738 }
1739
1740 return num;
1741 }
1742
1743 /* Returns the negative of NUM. */
1744 static cpp_num
1745 num_negate (cpp_num num, size_t precision)
1746 {
1747 cpp_num copy;
1748
1749 copy = num;
1750 num.high = ~num.high;
1751 num.low = ~num.low;
1752 if (++num.low == 0)
1753 num.high++;
1754 num = num_trim (num, precision);
1755 num.overflow = (!num.unsignedp && num_eq (num, copy) && !num_zerop (num));
1756
1757 return num;
1758 }
1759
1760 /* Returns true if A >= B. */
1761 static bool
1762 num_greater_eq (cpp_num pa, cpp_num pb, size_t precision)
1763 {
1764 bool unsignedp;
1765
1766 unsignedp = pa.unsignedp || pb.unsignedp;
1767
1768 if (!unsignedp)
1769 {
1770 /* Both numbers have signed type. If they are of different
1771 sign, the answer is the sign of A. */
1772 unsignedp = num_positive (pa, precision);
1773
1774 if (unsignedp != num_positive (pb, precision))
1775 return unsignedp;
1776
1777 /* Otherwise we can do an unsigned comparison. */
1778 }
1779
1780 return (pa.high > pb.high) || (pa.high == pb.high && pa.low >= pb.low);
1781 }
1782
1783 /* Returns LHS OP RHS, where OP is a bit-wise operation. */
1784 static cpp_num
1785 num_bitwise_op (cpp_reader *pfile ATTRIBUTE_UNUSED,
1786 cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
1787 {
1788 lhs.overflow = false;
1789 lhs.unsignedp = lhs.unsignedp || rhs.unsignedp;
1790
1791 /* As excess precision is zeroed, there is no need to num_trim () as
1792 these operations cannot introduce a set bit there. */
1793 if (op == CPP_AND)
1794 {
1795 lhs.low &= rhs.low;
1796 lhs.high &= rhs.high;
1797 }
1798 else if (op == CPP_OR)
1799 {
1800 lhs.low |= rhs.low;
1801 lhs.high |= rhs.high;
1802 }
1803 else
1804 {
1805 lhs.low ^= rhs.low;
1806 lhs.high ^= rhs.high;
1807 }
1808
1809 return lhs;
1810 }
1811
1812 /* Returns LHS OP RHS, where OP is an inequality. */
1813 static cpp_num
1814 num_inequality_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs,
1815 enum cpp_ttype op)
1816 {
1817 bool gte = num_greater_eq (lhs, rhs, CPP_OPTION (pfile, precision));
1818
1819 if (op == CPP_GREATER_EQ)
1820 lhs.low = gte;
1821 else if (op == CPP_LESS)
1822 lhs.low = !gte;
1823 else if (op == CPP_GREATER)
1824 lhs.low = gte && !num_eq (lhs, rhs);
1825 else /* CPP_LESS_EQ. */
1826 lhs.low = !gte || num_eq (lhs, rhs);
1827
1828 lhs.high = 0;
1829 lhs.overflow = false;
1830 lhs.unsignedp = false;
1831 return lhs;
1832 }
1833
1834 /* Returns LHS OP RHS, where OP is == or !=. */
1835 static cpp_num
1836 num_equality_op (cpp_reader *pfile ATTRIBUTE_UNUSED,
1837 cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
1838 {
1839 /* Work around a 3.0.4 bug; see PR 6950. */
1840 bool eq = num_eq (lhs, rhs);
1841 if (op == CPP_NOT_EQ)
1842 eq = !eq;
1843 lhs.low = eq;
1844 lhs.high = 0;
1845 lhs.overflow = false;
1846 lhs.unsignedp = false;
1847 return lhs;
1848 }
1849
1850 /* Shift NUM, of width PRECISION, right by N bits. */
1851 static cpp_num
1852 num_rshift (cpp_num num, size_t precision, size_t n)
1853 {
1854 cpp_num_part sign_mask;
1855 bool x = num_positive (num, precision);
1856
1857 if (num.unsignedp || x)
1858 sign_mask = 0;
1859 else
1860 sign_mask = ~(cpp_num_part) 0;
1861
1862 if (n >= precision)
1863 num.high = num.low = sign_mask;
1864 else
1865 {
1866 /* Sign-extend. */
1867 if (precision < PART_PRECISION)
1868 num.high = sign_mask, num.low |= sign_mask << precision;
1869 else if (precision < 2 * PART_PRECISION)
1870 num.high |= sign_mask << (precision - PART_PRECISION);
1871
1872 if (n >= PART_PRECISION)
1873 {
1874 n -= PART_PRECISION;
1875 num.low = num.high;
1876 num.high = sign_mask;
1877 }
1878
1879 if (n)
1880 {
1881 num.low = (num.low >> n) | (num.high << (PART_PRECISION - n));
1882 num.high = (num.high >> n) | (sign_mask << (PART_PRECISION - n));
1883 }
1884 }
1885
1886 num = num_trim (num, precision);
1887 num.overflow = false;
1888 return num;
1889 }
1890
1891 /* Shift NUM, of width PRECISION, left by N bits. */
1892 static cpp_num
1893 num_lshift (cpp_num num, size_t precision, size_t n)
1894 {
1895 if (n >= precision)
1896 {
1897 num.overflow = !num.unsignedp && !num_zerop (num);
1898 num.high = num.low = 0;
1899 }
1900 else
1901 {
1902 cpp_num orig, maybe_orig;
1903 size_t m = n;
1904
1905 orig = num;
1906 if (m >= PART_PRECISION)
1907 {
1908 m -= PART_PRECISION;
1909 num.high = num.low;
1910 num.low = 0;
1911 }
1912 if (m)
1913 {
1914 num.high = (num.high << m) | (num.low >> (PART_PRECISION - m));
1915 num.low <<= m;
1916 }
1917 num = num_trim (num, precision);
1918
1919 if (num.unsignedp)
1920 num.overflow = false;
1921 else
1922 {
1923 maybe_orig = num_rshift (num, precision, n);
1924 num.overflow = !num_eq (orig, maybe_orig);
1925 }
1926 }
1927
1928 return num;
1929 }
1930
1931 /* The four unary operators: +, -, ! and ~. */
1932 static cpp_num
1933 num_unary_op (cpp_reader *pfile, cpp_num num, enum cpp_ttype op)
1934 {
1935 switch (op)
1936 {
1937 case CPP_UPLUS:
1938 if (CPP_WTRADITIONAL (pfile) && !pfile->state.skip_eval)
1939 cpp_warning (pfile, CPP_W_TRADITIONAL,
1940 "traditional C rejects the unary plus operator");
1941 num.overflow = false;
1942 break;
1943
1944 case CPP_UMINUS:
1945 num = num_negate (num, CPP_OPTION (pfile, precision));
1946 break;
1947
1948 case CPP_COMPL:
1949 num.high = ~num.high;
1950 num.low = ~num.low;
1951 num = num_trim (num, CPP_OPTION (pfile, precision));
1952 num.overflow = false;
1953 break;
1954
1955 default: /* case CPP_NOT: */
1956 num.low = num_zerop (num);
1957 num.high = 0;
1958 num.overflow = false;
1959 num.unsignedp = false;
1960 break;
1961 }
1962
1963 return num;
1964 }
1965
1966 /* The various binary operators. */
1967 static cpp_num
1968 num_binary_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs, enum cpp_ttype op)
1969 {
1970 cpp_num result;
1971 size_t precision = CPP_OPTION (pfile, precision);
1972 size_t n;
1973
1974 switch (op)
1975 {
1976 /* Shifts. */
1977 case CPP_LSHIFT:
1978 case CPP_RSHIFT:
1979 if (!rhs.unsignedp && !num_positive (rhs, precision))
1980 {
1981 /* A negative shift is a positive shift the other way. */
1982 if (op == CPP_LSHIFT)
1983 op = CPP_RSHIFT;
1984 else
1985 op = CPP_LSHIFT;
1986 rhs = num_negate (rhs, precision);
1987 }
1988 if (rhs.high)
1989 n = ~0; /* Maximal. */
1990 else
1991 n = rhs.low;
1992 if (op == CPP_LSHIFT)
1993 lhs = num_lshift (lhs, precision, n);
1994 else
1995 lhs = num_rshift (lhs, precision, n);
1996 break;
1997
1998 /* Arithmetic. */
1999 case CPP_MINUS:
2000 result.low = lhs.low - rhs.low;
2001 result.high = lhs.high - rhs.high;
2002 if (result.low > lhs.low)
2003 result.high--;
2004 result.unsignedp = lhs.unsignedp || rhs.unsignedp;
2005 result.overflow = false;
2006
2007 result = num_trim (result, precision);
2008 if (!result.unsignedp)
2009 {
2010 bool lhsp = num_positive (lhs, precision);
2011 result.overflow = (lhsp != num_positive (rhs, precision)
2012 && lhsp != num_positive (result, precision));
2013 }
2014 return result;
2015
2016 case CPP_PLUS:
2017 result.low = lhs.low + rhs.low;
2018 result.high = lhs.high + rhs.high;
2019 if (result.low < lhs.low)
2020 result.high++;
2021 result.unsignedp = lhs.unsignedp || rhs.unsignedp;
2022 result.overflow = false;
2023
2024 result = num_trim (result, precision);
2025 if (!result.unsignedp)
2026 {
2027 bool lhsp = num_positive (lhs, precision);
2028 result.overflow = (lhsp == num_positive (rhs, precision)
2029 && lhsp != num_positive (result, precision));
2030 }
2031 return result;
2032
2033 /* Comma. */
2034 default: /* case CPP_COMMA: */
2035 if (CPP_PEDANTIC (pfile) && (!CPP_OPTION (pfile, c99)
2036 || !pfile->state.skip_eval))
2037 cpp_pedwarning (pfile, CPP_W_PEDANTIC,
2038 "comma operator in operand of #if");
2039 lhs = rhs;
2040 break;
2041 }
2042
2043 return lhs;
2044 }
2045
2046 /* Multiplies two unsigned cpp_num_parts to give a cpp_num. This
2047 cannot overflow. */
2048 static cpp_num
2049 num_part_mul (cpp_num_part lhs, cpp_num_part rhs)
2050 {
2051 cpp_num result;
2052 cpp_num_part middle[2], temp;
2053
2054 result.low = LOW_PART (lhs) * LOW_PART (rhs);
2055 result.high = HIGH_PART (lhs) * HIGH_PART (rhs);
2056
2057 middle[0] = LOW_PART (lhs) * HIGH_PART (rhs);
2058 middle[1] = HIGH_PART (lhs) * LOW_PART (rhs);
2059
2060 temp = result.low;
2061 result.low += LOW_PART (middle[0]) << (PART_PRECISION / 2);
2062 if (result.low < temp)
2063 result.high++;
2064
2065 temp = result.low;
2066 result.low += LOW_PART (middle[1]) << (PART_PRECISION / 2);
2067 if (result.low < temp)
2068 result.high++;
2069
2070 result.high += HIGH_PART (middle[0]);
2071 result.high += HIGH_PART (middle[1]);
2072 result.unsignedp = true;
2073 result.overflow = false;
2074
2075 return result;
2076 }
2077
2078 /* Multiply two preprocessing numbers. */
2079 static cpp_num
2080 num_mul (cpp_reader *pfile, cpp_num lhs, cpp_num rhs)
2081 {
2082 cpp_num result, temp;
2083 bool unsignedp = lhs.unsignedp || rhs.unsignedp;
2084 bool overflow, negate = false;
2085 size_t precision = CPP_OPTION (pfile, precision);
2086
2087 /* Prepare for unsigned multiplication. */
2088 if (!unsignedp)
2089 {
2090 if (!num_positive (lhs, precision))
2091 negate = !negate, lhs = num_negate (lhs, precision);
2092 if (!num_positive (rhs, precision))
2093 negate = !negate, rhs = num_negate (rhs, precision);
2094 }
2095
2096 overflow = lhs.high && rhs.high;
2097 result = num_part_mul (lhs.low, rhs.low);
2098
2099 temp = num_part_mul (lhs.high, rhs.low);
2100 result.high += temp.low;
2101 if (temp.high)
2102 overflow = true;
2103
2104 temp = num_part_mul (lhs.low, rhs.high);
2105 result.high += temp.low;
2106 if (temp.high)
2107 overflow = true;
2108
2109 temp.low = result.low, temp.high = result.high;
2110 result = num_trim (result, precision);
2111 if (!num_eq (result, temp))
2112 overflow = true;
2113
2114 if (negate)
2115 result = num_negate (result, precision);
2116
2117 if (unsignedp)
2118 result.overflow = false;
2119 else
2120 result.overflow = overflow || (num_positive (result, precision) ^ !negate
2121 && !num_zerop (result));
2122 result.unsignedp = unsignedp;
2123
2124 return result;
2125 }
2126
2127 /* Divide two preprocessing numbers, LHS and RHS, returning the answer
2128 or the remainder depending upon OP. LOCATION is the source location
2129 of this operator (for diagnostics). */
2130
2131 static cpp_num
2132 num_div_op (cpp_reader *pfile, cpp_num lhs, cpp_num rhs, enum cpp_ttype op,
2133 location_t location)
2134 {
2135 cpp_num result, sub;
2136 cpp_num_part mask;
2137 bool unsignedp = lhs.unsignedp || rhs.unsignedp;
2138 bool negate = false, lhs_neg = false;
2139 size_t i, precision = CPP_OPTION (pfile, precision);
2140
2141 /* Prepare for unsigned division. */
2142 if (!unsignedp)
2143 {
2144 if (!num_positive (lhs, precision))
2145 negate = !negate, lhs_neg = true, lhs = num_negate (lhs, precision);
2146 if (!num_positive (rhs, precision))
2147 negate = !negate, rhs = num_negate (rhs, precision);
2148 }
2149
2150 /* Find the high bit. */
2151 if (rhs.high)
2152 {
2153 i = precision - 1;
2154 mask = (cpp_num_part) 1 << (i - PART_PRECISION);
2155 for (; ; i--, mask >>= 1)
2156 if (rhs.high & mask)
2157 break;
2158 }
2159 else if (rhs.low)
2160 {
2161 if (precision > PART_PRECISION)
2162 i = precision - PART_PRECISION - 1;
2163 else
2164 i = precision - 1;
2165 mask = (cpp_num_part) 1 << i;
2166 for (; ; i--, mask >>= 1)
2167 if (rhs.low & mask)
2168 break;
2169 }
2170 else
2171 {
2172 if (!pfile->state.skip_eval)
2173 cpp_error_with_line (pfile, CPP_DL_ERROR, location, 0,
2174 "division by zero in #if");
2175 return lhs;
2176 }
2177
2178 /* First nonzero bit of RHS is bit I. Do naive division by
2179 shifting the RHS fully left, and subtracting from LHS if LHS is
2180 at least as big, and then repeating but with one less shift.
2181 This is not very efficient, but is easy to understand. */
2182
2183 rhs.unsignedp = true;
2184 lhs.unsignedp = true;
2185 i = precision - i - 1;
2186 sub = num_lshift (rhs, precision, i);
2187
2188 result.high = result.low = 0;
2189 for (;;)
2190 {
2191 if (num_greater_eq (lhs, sub, precision))
2192 {
2193 lhs = num_binary_op (pfile, lhs, sub, CPP_MINUS);
2194 if (i >= PART_PRECISION)
2195 result.high |= (cpp_num_part) 1 << (i - PART_PRECISION);
2196 else
2197 result.low |= (cpp_num_part) 1 << i;
2198 }
2199 if (i-- == 0)
2200 break;
2201 sub.low = (sub.low >> 1) | (sub.high << (PART_PRECISION - 1));
2202 sub.high >>= 1;
2203 }
2204
2205 /* We divide so that the remainder has the sign of the LHS. */
2206 if (op == CPP_DIV)
2207 {
2208 result.unsignedp = unsignedp;
2209 result.overflow = false;
2210 if (!unsignedp)
2211 {
2212 if (negate)
2213 result = num_negate (result, precision);
2214 result.overflow = (num_positive (result, precision) ^ !negate
2215 && !num_zerop (result));
2216 }
2217
2218 return result;
2219 }
2220
2221 /* CPP_MOD. */
2222 lhs.unsignedp = unsignedp;
2223 lhs.overflow = false;
2224 if (lhs_neg)
2225 lhs = num_negate (lhs, precision);
2226
2227 return lhs;
2228 }
2229