]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgcc/config/epiphany/ieee-754/fast_div.S
Update copyright years.
[thirdparty/gcc.git] / libgcc / config / epiphany / ieee-754 / fast_div.S
1 /* Copyright (C) 2011-2016 Free Software Foundation, Inc.
2 Contributed by Embecosm on behalf of Adapteva, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 Under Section 7 of GPL version 3, you are granted additional
17 permissions described in the GCC Runtime Library Exception, version
18 3.1, as published by the Free Software Foundation.
19
20 You should have received a copy of the GNU General Public License and
21 a copy of the GCC Runtime Library Exception along with this program;
22 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 <http://www.gnu.org/licenses/>. */
24
25 #include "../epiphany-asm.h"
26
27 .section _fast_div_text,"a",@progbits;
28 .balign 8;
29 _fast_div_table:
30 .word 0x007fffff// mantissa mask
31 .word 0x40257ebb// hold constant a = 2.58586
32
33 .word 0x3f000000// hold constant 126 shifted to bits [30:23]
34 .word 0xc0ba2e88// hold constant b = -5.81818
35
36 .word 0x4087c1e8// hold constant c = 4.24242
37 .word 0x40000000// to hold constant 2 for Newton-Raphson iterations
38
39 .global SYM(__fast_recipsf2)
40 FUNC(__fast_recipsf2)
41 SYM(__fast_recipsf2):
42
43 //###################
44 //# input operands:
45 //###################
46 // Divisor
47 //R0
48 // Function address (used with negative offsets to read _fast_div_table)
49 //R1
50 /* Scratch registers: two single (TMP0/TMP5) and two pairs. */
51 #define P0L TMP1
52 #define P0H TMP2
53 #define P1L TMP3
54 #define P1H TMP4
55
56 //#########################################
57 //# Constants to be used in the algorithm
58 //#########################################
59 ldrd P0L , [ R1 , -3 ]
60
61 ldrd P1L , [ R1 , -2 ]
62
63
64
65 //#############################################################################
66 //# The Algorithm
67 //#
68 //# Operation: C=A/B
69 //# stage 1 - find the reciprocal 1/B according to the following scheme:
70 //# B = (2^E)*m (1<m<2, E=e-127)
71 //# 1/B = 1/((2^E)*m) = 1/((2^(E+1))*m1) (0.5<m1<1)
72 //# = (2^-(E+1))*(1/m1) = (2^E1)*(1/m1)
73 //#
74 //# Now we can find the new exponent:
75 //# e1 = E1+127 = -E-1+127 = -e+127-1+127 = 253-e **
76 //# 1/m1 alreadt has the exponent 127, so we have to add 126-e.
77 //# the exponent might underflow, which we can detect as a sign change.
78 //# Since the architeture uses flush-to-zero for subnormals, we can
79 //# give the result 0. then.
80 //#
81 //# The 1/m1 term with 0.5<m1<1 is approximated with the Chebyshev polynomial
82 //# 1/m1 = 2.58586*(m1^2) - 5.81818*m1 + 4.24242
83 //#
84 //# Next step is to use two iterations of Newton-Raphson algorithm to complete
85 //# the reciprocal calculation.
86 //#
87 //# Final result is achieved by multiplying A with 1/B
88 //#############################################################################
89
90
91
92 // R0 exponent and sign "replacement" into TMP0
93 AND TMP0,R0,P0L ;
94 ORR TMP0,TMP0,P1L
95 SUB TMP5,R0,TMP0 // R0 sign/exponent extraction into TMP5
96 // Calculate new mantissa
97 FMADD P1H,TMP0,P0H ;
98 // Calculate new exponent offset 126 - "old exponent"
99 SUB P1L,P1L,TMP5
100 ldrd P0L , [ R1 , -1 ]
101 FMADD P0L,TMP0,P1H ;
102 eor P1H,r0,P1L // check for overflow (N-BIT).
103 blt .Lret_0
104 // P0L exponent and sign "replacement"
105 sub P0L,P0L,TMP5
106
107 // Newton-Raphson iteration #1
108 MOV TMP0,P0H ;
109 FMSUB P0H,R0,P0L ;
110 FMUL P0L,P0H,P0L ;
111 // Newton-Raphson iteration #2
112 FMSUB TMP0,R0,P0L ;
113 FMUL R0,TMP0,P0L ;
114 jr lr
115 .Lret_0:ldrd P0L , [ R1 , -3 ]
116 lsr TMP0,r0,31 ; extract sign
117 lsl TMP0,TMP0,31
118 add P0L,P0L,r0 ; check for NaN input
119 eor P0L,P0L,r0
120 movgte r0,TMP0
121 jr lr
122 // Quotient calculation is expected by the caller: FMUL quotient,divident,R0
123 ;
124 ENDFUNC(__fast_recipsf2)