]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/maxloc1_8_r8.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / libgfortran / generated / maxloc1_8_r8.c
1 /* Implementation of the MAXLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include <limits.h>
27 #include "libgfortran.h"
28
29
30 void
31 __maxloc1_8_r8 (gfc_array_i8 * retarray, gfc_array_r8 *array, index_type *pdim)
32 {
33 index_type count[GFC_MAX_DIMENSIONS - 1];
34 index_type extent[GFC_MAX_DIMENSIONS - 1];
35 index_type sstride[GFC_MAX_DIMENSIONS - 1];
36 index_type dstride[GFC_MAX_DIMENSIONS - 1];
37 GFC_REAL_8 *base;
38 GFC_INTEGER_8 *dest;
39 index_type rank;
40 index_type n;
41 index_type len;
42 index_type delta;
43 index_type dim;
44
45 /* Make dim zero based to avoid confusion. */
46 dim = (*pdim) - 1;
47 rank = GFC_DESCRIPTOR_RANK (array) - 1;
48 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
49 if (array->dim[0].stride == 0)
50 array->dim[0].stride = 1;
51 if (retarray->dim[0].stride == 0)
52 retarray->dim[0].stride = 1;
53
54 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
55 delta = array->dim[dim].stride;
56
57 for (n = 0; n < dim; n++)
58 {
59 sstride[n] = array->dim[n].stride;
60 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
61 }
62 for (n = dim; n < rank; n++)
63 {
64 sstride[n] = array->dim[n + 1].stride;
65 extent[n] =
66 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
67 }
68
69 for (n = 0; n < rank; n++)
70 {
71 count[n] = 0;
72 dstride[n] = retarray->dim[n].stride;
73 if (extent[n] <= 0)
74 len = 0;
75 }
76
77 base = array->data;
78 dest = retarray->data;
79
80 while (base)
81 {
82 GFC_REAL_8 *src;
83 GFC_INTEGER_8 result;
84 src = base;
85 {
86
87 GFC_REAL_8 maxval;
88 maxval = -GFC_REAL_8_HUGE;
89 result = 1;
90 if (len <= 0)
91 *dest = 0;
92 else
93 {
94 for (n = 0; n < len; n++, src += delta)
95 {
96
97 if (*src > maxval)
98 {
99 maxval = *src;
100 result = (GFC_INTEGER_8)n + 1;
101 }
102 }
103 *dest = result;
104 }
105 }
106 /* Advance to the next element. */
107 count[0]++;
108 base += sstride[0];
109 dest += dstride[0];
110 n = 0;
111 while (count[n] == extent[n])
112 {
113 /* When we get to the end of a dimension, reset it and increment
114 the next dimension. */
115 count[n] = 0;
116 /* We could precalculate these products, but this is a less
117 frequently used path so proabably not worth it. */
118 base -= sstride[n] * extent[n];
119 dest -= dstride[n] * extent[n];
120 n++;
121 if (n == rank)
122 {
123 /* Break out of the look. */
124 base = NULL;
125 break;
126 }
127 else
128 {
129 count[n]++;
130 base += sstride[n];
131 dest += dstride[n];
132 }
133 }
134 }
135 }
136
137 void
138 __mmaxloc1_8_r8 (gfc_array_i8 * retarray, gfc_array_r8 * array, index_type *pdim, gfc_array_l4 * mask)
139 {
140 index_type count[GFC_MAX_DIMENSIONS - 1];
141 index_type extent[GFC_MAX_DIMENSIONS - 1];
142 index_type sstride[GFC_MAX_DIMENSIONS - 1];
143 index_type dstride[GFC_MAX_DIMENSIONS - 1];
144 index_type mstride[GFC_MAX_DIMENSIONS - 1];
145 GFC_INTEGER_8 *dest;
146 GFC_REAL_8 *base;
147 GFC_LOGICAL_4 *mbase;
148 int rank;
149 int dim;
150 index_type n;
151 index_type len;
152 index_type delta;
153 index_type mdelta;
154
155 dim = (*pdim) - 1;
156 rank = GFC_DESCRIPTOR_RANK (array) - 1;
157 assert (rank == GFC_DESCRIPTOR_RANK (retarray));
158 if (array->dim[0].stride == 0)
159 array->dim[0].stride = 1;
160 if (retarray->dim[0].stride == 0)
161 retarray->dim[0].stride = 1;
162
163 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
164 if (len <= 0)
165 return;
166 delta = array->dim[dim].stride;
167 mdelta = mask->dim[dim].stride;
168
169 for (n = 0; n < dim; n++)
170 {
171 sstride[n] = array->dim[n].stride;
172 mstride[n] = mask->dim[n].stride;
173 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
174 }
175 for (n = dim; n < rank; n++)
176 {
177 sstride[n] = array->dim[n + 1].stride;
178 mstride[n] = mask->dim[n + 1].stride;
179 extent[n] =
180 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
181 }
182
183 for (n = 0; n < rank; n++)
184 {
185 count[n] = 0;
186 dstride[n] = retarray->dim[n].stride;
187 if (extent[n] <= 0)
188 return;
189 }
190
191 dest = retarray->data;
192 base = array->data;
193 mbase = mask->data;
194
195 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
196 {
197 /* This allows the same loop to be used for all logical types. */
198 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
199 for (n = 0; n < rank; n++)
200 mstride[n] <<= 1;
201 mdelta <<= 1;
202 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
203 }
204
205 while (base)
206 {
207 GFC_REAL_8 *src;
208 GFC_LOGICAL_4 *msrc;
209 GFC_INTEGER_8 result;
210 src = base;
211 msrc = mbase;
212 {
213
214 GFC_REAL_8 maxval;
215 maxval = -GFC_REAL_8_HUGE;
216 result = 1;
217 if (len <= 0)
218 *dest = 0;
219 else
220 {
221 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
222 {
223
224 if (*msrc && *src > maxval)
225 {
226 maxval = *src;
227 result = (GFC_INTEGER_8)n + 1;
228 }
229 }
230 *dest = result;
231 }
232 }
233 /* Advance to the next element. */
234 count[0]++;
235 base += sstride[0];
236 mbase += mstride[0];
237 dest += dstride[0];
238 n = 0;
239 while (count[n] == extent[n])
240 {
241 /* When we get to the end of a dimension, reset it and increment
242 the next dimension. */
243 count[n] = 0;
244 /* We could precalculate these products, but this is a less
245 frequently used path so proabably not worth it. */
246 base -= sstride[n] * extent[n];
247 mbase -= mstride[n] * extent[n];
248 dest -= dstride[n] * extent[n];
249 n++;
250 if (n == rank)
251 {
252 /* Break out of the look. */
253 base = NULL;
254 break;
255 }
256 else
257 {
258 count[n]++;
259 base += sstride[n];
260 mbase += mstride[n];
261 dest += dstride[n];
262 }
263 }
264 }
265 }
266