]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/minloc0_8_i4.c
Merge tree-ssa-20020619-branch into mainline.
[thirdparty/gcc.git] / libgfortran / generated / minloc0_8_i4.c
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfor).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public
9 License as published by the Free Software Foundation; either
10 version 2.1 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU Lesser General Public License for more details.
16
17 You should have received a copy of the GNU Lesser General Public
18 License along with libgfor; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "config.h"
23 #include <stdlib.h>
24 #include <assert.h>
25 #include <float.h>
26 #include <limits.h>
27 #include "libgfortran.h"
28
29
30
31 void
32 __minloc0_8_i4 (gfc_array_i8 * retarray, gfc_array_i4 *array)
33 {
34 index_type count[GFC_MAX_DIMENSIONS];
35 index_type extent[GFC_MAX_DIMENSIONS];
36 index_type sstride[GFC_MAX_DIMENSIONS];
37 index_type dstride;
38 GFC_INTEGER_4 *base;
39 GFC_INTEGER_8 *dest;
40 index_type rank;
41 index_type n;
42
43 rank = GFC_DESCRIPTOR_RANK (array);
44 assert (rank > 0);
45 assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
46 assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
47 if (array->dim[0].stride == 0)
48 array->dim[0].stride = 1;
49 if (retarray->dim[0].stride == 0)
50 retarray->dim[0].stride = 1;
51
52 dstride = retarray->dim[0].stride;
53 dest = retarray->data;
54 for (n = 0; n < rank; n++)
55 {
56 sstride[n] = array->dim[n].stride;
57 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
58 count[n] = 0;
59 if (extent[n] <= 0)
60 {
61 /* Set the return value. */
62 for (n = 0; n < rank; n++)
63 dest[n * dstride] = 0;
64 return;
65 }
66 }
67
68 base = array->data;
69
70 /* Initialize the return value. */
71 for (n = 0; n < rank; n++)
72 dest[n * dstride] = 1;
73 {
74
75 GFC_INTEGER_4 minval;
76
77 minval = GFC_INTEGER_4_HUGE;
78
79 while (base)
80 {
81 {
82 /* Implementation start. */
83
84 if (*base < minval)
85 {
86 minval = *base;
87 for (n = 0; n < rank; n++)
88 dest[n * dstride] = count[n] + 1;
89 }
90 /* Implementation end. */
91 }
92 /* Advance to the next element. */
93 count[0]++;
94 base += sstride[0];
95 n = 0;
96 while (count[n] == extent[n])
97 {
98 /* When we get to the end of a dimension, reset it and increment
99 the next dimension. */
100 count[n] = 0;
101 /* We could precalculate these products, but this is a less
102 frequently used path so proabably not worth it. */
103 base -= sstride[n] * extent[n];
104 n++;
105 if (n == rank)
106 {
107 /* Break out of the loop. */
108 base = NULL;
109 break;
110 }
111 else
112 {
113 count[n]++;
114 base += sstride[n];
115 }
116 }
117 }
118 }
119 }
120
121 void
122 __mminloc0_8_i4 (gfc_array_i8 * retarray, gfc_array_i4 *array, gfc_array_l4 * mask)
123 {
124 index_type count[GFC_MAX_DIMENSIONS];
125 index_type extent[GFC_MAX_DIMENSIONS];
126 index_type sstride[GFC_MAX_DIMENSIONS];
127 index_type mstride[GFC_MAX_DIMENSIONS];
128 index_type dstride;
129 GFC_INTEGER_8 *dest;
130 GFC_INTEGER_4 *base;
131 GFC_LOGICAL_4 *mbase;
132 int rank;
133 index_type n;
134
135 rank = GFC_DESCRIPTOR_RANK (array);
136 assert (rank > 0);
137 assert (GFC_DESCRIPTOR_RANK (retarray) == 1);
138 assert (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound == rank);
139 assert (GFC_DESCRIPTOR_RANK (mask) == rank);
140
141 if (array->dim[0].stride == 0)
142 array->dim[0].stride = 1;
143 if (retarray->dim[0].stride == 0)
144 retarray->dim[0].stride = 1;
145 if (retarray->dim[0].stride == 0)
146 retarray->dim[0].stride = 1;
147
148 dstride = retarray->dim[0].stride;
149 dest = retarray->data;
150 for (n = 0; n < rank; n++)
151 {
152 sstride[n] = array->dim[n].stride;
153 mstride[n] = mask->dim[n].stride;
154 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
155 count[n] = 0;
156 if (extent[n] <= 0)
157 {
158 /* Set the return value. */
159 for (n = 0; n < rank; n++)
160 dest[n * dstride] = 0;
161 return;
162 }
163 }
164
165 base = array->data;
166 mbase = mask->data;
167
168 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
169 {
170 /* This allows the same loop to be used for all logical types. */
171 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
172 for (n = 0; n < rank; n++)
173 mstride[n] <<= 1;
174 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
175 }
176
177
178 /* Initialize the return value. */
179 for (n = 0; n < rank; n++)
180 dest[n * dstride] = 1;
181 {
182
183 GFC_INTEGER_4 minval;
184
185 minval = GFC_INTEGER_4_HUGE;
186
187 while (base)
188 {
189 {
190 /* Implementation start. */
191
192 if (*mbase && *base < minval)
193 {
194 minval = *base;
195 for (n = 0; n < rank; n++)
196 dest[n * dstride] = count[n] + 1;
197 }
198 /* Implementation end. */
199 }
200 /* Advance to the next element. */
201 count[0]++;
202 base += sstride[0];
203 mbase += mstride[0];
204 n = 0;
205 while (count[n] == extent[n])
206 {
207 /* When we get to the end of a dimension, reset it and increment
208 the next dimension. */
209 count[n] = 0;
210 /* We could precalculate these products, but this is a less
211 frequently used path so proabably not worth it. */
212 base -= sstride[n] * extent[n];
213 mbase -= mstride[n] * extent[n];
214 n++;
215 if (n == rank)
216 {
217 /* Break out of the loop. */
218 base = NULL;
219 break;
220 }
221 else
222 {
223 count[n]++;
224 base += sstride[n];
225 mbase += mstride[n];
226 }
227 }
228 }
229 }
230 }