]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgfortran/generated/sum_c17.c
Update copyright years.
[thirdparty/gcc.git] / libgfortran / generated / sum_c17.c
1 /* Implementation of the SUM intrinsic
2 Copyright (C) 2002-2024 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
4
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
6
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
11
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
20
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
25
26 #include "libgfortran.h"
27
28
29 #if defined (HAVE_GFC_COMPLEX_17) && defined (HAVE_GFC_COMPLEX_17)
30
31
32 extern void sum_c17 (gfc_array_c17 * const restrict,
33 gfc_array_c17 * const restrict, const index_type * const restrict);
34 export_proto(sum_c17);
35
36 void
37 sum_c17 (gfc_array_c17 * const restrict retarray,
38 gfc_array_c17 * const restrict array,
39 const index_type * const restrict pdim)
40 {
41 index_type count[GFC_MAX_DIMENSIONS];
42 index_type extent[GFC_MAX_DIMENSIONS];
43 index_type sstride[GFC_MAX_DIMENSIONS];
44 index_type dstride[GFC_MAX_DIMENSIONS];
45 const GFC_COMPLEX_17 * restrict base;
46 GFC_COMPLEX_17 * restrict dest;
47 index_type rank;
48 index_type n;
49 index_type len;
50 index_type delta;
51 index_type dim;
52 int continue_loop;
53
54 /* Make dim zero based to avoid confusion. */
55 rank = GFC_DESCRIPTOR_RANK (array) - 1;
56 dim = (*pdim) - 1;
57
58 if (unlikely (dim < 0 || dim > rank))
59 {
60 runtime_error ("Dim argument incorrect in SUM intrinsic: "
61 "is %ld, should be between 1 and %ld",
62 (long int) dim + 1, (long int) rank + 1);
63 }
64
65 len = GFC_DESCRIPTOR_EXTENT(array,dim);
66 if (len < 0)
67 len = 0;
68 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
69
70 for (n = 0; n < dim; n++)
71 {
72 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
73 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
74
75 if (extent[n] < 0)
76 extent[n] = 0;
77 }
78 for (n = dim; n < rank; n++)
79 {
80 sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1);
81 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
82
83 if (extent[n] < 0)
84 extent[n] = 0;
85 }
86
87 if (retarray->base_addr == NULL)
88 {
89 size_t alloc_size, str;
90
91 for (n = 0; n < rank; n++)
92 {
93 if (n == 0)
94 str = 1;
95 else
96 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
97
98 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
99
100 }
101
102 retarray->offset = 0;
103 retarray->dtype.rank = rank;
104
105 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
106
107 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
108 if (alloc_size == 0)
109 return;
110 }
111 else
112 {
113 if (rank != GFC_DESCRIPTOR_RANK (retarray))
114 runtime_error ("rank of return array incorrect in"
115 " SUM intrinsic: is %ld, should be %ld",
116 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
117 (long int) rank);
118
119 if (unlikely (compile_options.bounds_check))
120 bounds_ifunction_return ((array_t *) retarray, extent,
121 "return value", "SUM");
122 }
123
124 for (n = 0; n < rank; n++)
125 {
126 count[n] = 0;
127 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
128 if (extent[n] <= 0)
129 return;
130 }
131
132 base = array->base_addr;
133 dest = retarray->base_addr;
134
135 continue_loop = 1;
136 while (continue_loop)
137 {
138 const GFC_COMPLEX_17 * restrict src;
139 GFC_COMPLEX_17 result;
140 src = base;
141 {
142
143 result = 0;
144 if (len <= 0)
145 *dest = 0;
146 else
147 {
148 #if ! defined HAVE_BACK_ARG
149 for (n = 0; n < len; n++, src += delta)
150 {
151 #endif
152
153 result += *src;
154 }
155
156 *dest = result;
157 }
158 }
159 /* Advance to the next element. */
160 count[0]++;
161 base += sstride[0];
162 dest += dstride[0];
163 n = 0;
164 while (count[n] == extent[n])
165 {
166 /* When we get to the end of a dimension, reset it and increment
167 the next dimension. */
168 count[n] = 0;
169 /* We could precalculate these products, but this is a less
170 frequently used path so probably not worth it. */
171 base -= sstride[n] * extent[n];
172 dest -= dstride[n] * extent[n];
173 n++;
174 if (n >= rank)
175 {
176 /* Break out of the loop. */
177 continue_loop = 0;
178 break;
179 }
180 else
181 {
182 count[n]++;
183 base += sstride[n];
184 dest += dstride[n];
185 }
186 }
187 }
188 }
189
190
191 extern void msum_c17 (gfc_array_c17 * const restrict,
192 gfc_array_c17 * const restrict, const index_type * const restrict,
193 gfc_array_l1 * const restrict);
194 export_proto(msum_c17);
195
196 void
197 msum_c17 (gfc_array_c17 * const restrict retarray,
198 gfc_array_c17 * const restrict array,
199 const index_type * const restrict pdim,
200 gfc_array_l1 * const restrict mask)
201 {
202 index_type count[GFC_MAX_DIMENSIONS];
203 index_type extent[GFC_MAX_DIMENSIONS];
204 index_type sstride[GFC_MAX_DIMENSIONS];
205 index_type dstride[GFC_MAX_DIMENSIONS];
206 index_type mstride[GFC_MAX_DIMENSIONS];
207 GFC_COMPLEX_17 * restrict dest;
208 const GFC_COMPLEX_17 * restrict base;
209 const GFC_LOGICAL_1 * restrict mbase;
210 index_type rank;
211 index_type dim;
212 index_type n;
213 index_type len;
214 index_type delta;
215 index_type mdelta;
216 int mask_kind;
217
218 if (mask == NULL)
219 {
220 #ifdef HAVE_BACK_ARG
221 sum_c17 (retarray, array, pdim, back);
222 #else
223 sum_c17 (retarray, array, pdim);
224 #endif
225 return;
226 }
227
228 dim = (*pdim) - 1;
229 rank = GFC_DESCRIPTOR_RANK (array) - 1;
230
231
232 if (unlikely (dim < 0 || dim > rank))
233 {
234 runtime_error ("Dim argument incorrect in SUM intrinsic: "
235 "is %ld, should be between 1 and %ld",
236 (long int) dim + 1, (long int) rank + 1);
237 }
238
239 len = GFC_DESCRIPTOR_EXTENT(array,dim);
240 if (len < 0)
241 len = 0;
242
243 mbase = mask->base_addr;
244
245 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
246
247 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
248 #ifdef HAVE_GFC_LOGICAL_16
249 || mask_kind == 16
250 #endif
251 )
252 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
253 else
254 runtime_error ("Funny sized logical array");
255
256 delta = GFC_DESCRIPTOR_STRIDE(array,dim);
257 mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
258
259 for (n = 0; n < dim; n++)
260 {
261 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
262 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
263 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
264
265 if (extent[n] < 0)
266 extent[n] = 0;
267
268 }
269 for (n = dim; n < rank; n++)
270 {
271 sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1);
272 mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
273 extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
274
275 if (extent[n] < 0)
276 extent[n] = 0;
277 }
278
279 if (retarray->base_addr == NULL)
280 {
281 size_t alloc_size, str;
282
283 for (n = 0; n < rank; n++)
284 {
285 if (n == 0)
286 str = 1;
287 else
288 str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
289
290 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
291
292 }
293
294 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
295
296 retarray->offset = 0;
297 retarray->dtype.rank = rank;
298
299 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
300 if (alloc_size == 0)
301 return;
302 }
303 else
304 {
305 if (rank != GFC_DESCRIPTOR_RANK (retarray))
306 runtime_error ("rank of return array incorrect in SUM intrinsic");
307
308 if (unlikely (compile_options.bounds_check))
309 {
310 bounds_ifunction_return ((array_t *) retarray, extent,
311 "return value", "SUM");
312 bounds_equal_extents ((array_t *) mask, (array_t *) array,
313 "MASK argument", "SUM");
314 }
315 }
316
317 for (n = 0; n < rank; n++)
318 {
319 count[n] = 0;
320 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
321 if (extent[n] <= 0)
322 return;
323 }
324
325 dest = retarray->base_addr;
326 base = array->base_addr;
327
328 while (base)
329 {
330 const GFC_COMPLEX_17 * restrict src;
331 const GFC_LOGICAL_1 * restrict msrc;
332 GFC_COMPLEX_17 result;
333 src = base;
334 msrc = mbase;
335 {
336
337 result = 0;
338 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
339 {
340
341 if (*msrc)
342 result += *src;
343 }
344 *dest = result;
345 }
346 /* Advance to the next element. */
347 count[0]++;
348 base += sstride[0];
349 mbase += mstride[0];
350 dest += dstride[0];
351 n = 0;
352 while (count[n] == extent[n])
353 {
354 /* When we get to the end of a dimension, reset it and increment
355 the next dimension. */
356 count[n] = 0;
357 /* We could precalculate these products, but this is a less
358 frequently used path so probably not worth it. */
359 base -= sstride[n] * extent[n];
360 mbase -= mstride[n] * extent[n];
361 dest -= dstride[n] * extent[n];
362 n++;
363 if (n >= rank)
364 {
365 /* Break out of the loop. */
366 base = NULL;
367 break;
368 }
369 else
370 {
371 count[n]++;
372 base += sstride[n];
373 mbase += mstride[n];
374 dest += dstride[n];
375 }
376 }
377 }
378 }
379
380
381 extern void ssum_c17 (gfc_array_c17 * const restrict,
382 gfc_array_c17 * const restrict, const index_type * const restrict,
383 GFC_LOGICAL_4 *);
384 export_proto(ssum_c17);
385
386 void
387 ssum_c17 (gfc_array_c17 * const restrict retarray,
388 gfc_array_c17 * const restrict array,
389 const index_type * const restrict pdim,
390 GFC_LOGICAL_4 * mask)
391 {
392 index_type count[GFC_MAX_DIMENSIONS];
393 index_type extent[GFC_MAX_DIMENSIONS];
394 index_type dstride[GFC_MAX_DIMENSIONS];
395 GFC_COMPLEX_17 * restrict dest;
396 index_type rank;
397 index_type n;
398 index_type dim;
399
400
401 if (mask == NULL || *mask)
402 {
403 #ifdef HAVE_BACK_ARG
404 sum_c17 (retarray, array, pdim, back);
405 #else
406 sum_c17 (retarray, array, pdim);
407 #endif
408 return;
409 }
410 /* Make dim zero based to avoid confusion. */
411 dim = (*pdim) - 1;
412 rank = GFC_DESCRIPTOR_RANK (array) - 1;
413
414 if (unlikely (dim < 0 || dim > rank))
415 {
416 runtime_error ("Dim argument incorrect in SUM intrinsic: "
417 "is %ld, should be between 1 and %ld",
418 (long int) dim + 1, (long int) rank + 1);
419 }
420
421 for (n = 0; n < dim; n++)
422 {
423 extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
424
425 if (extent[n] <= 0)
426 extent[n] = 0;
427 }
428
429 for (n = dim; n < rank; n++)
430 {
431 extent[n] =
432 GFC_DESCRIPTOR_EXTENT(array,n + 1);
433
434 if (extent[n] <= 0)
435 extent[n] = 0;
436 }
437
438 if (retarray->base_addr == NULL)
439 {
440 size_t alloc_size, str;
441
442 for (n = 0; n < rank; n++)
443 {
444 if (n == 0)
445 str = 1;
446 else
447 str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
448
449 GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
450
451 }
452
453 retarray->offset = 0;
454 retarray->dtype.rank = rank;
455
456 alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
457
458 retarray->base_addr = xmallocarray (alloc_size, sizeof (GFC_COMPLEX_17));
459 if (alloc_size == 0)
460 return;
461 }
462 else
463 {
464 if (rank != GFC_DESCRIPTOR_RANK (retarray))
465 runtime_error ("rank of return array incorrect in"
466 " SUM intrinsic: is %ld, should be %ld",
467 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
468 (long int) rank);
469
470 if (unlikely (compile_options.bounds_check))
471 {
472 for (n=0; n < rank; n++)
473 {
474 index_type ret_extent;
475
476 ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
477 if (extent[n] != ret_extent)
478 runtime_error ("Incorrect extent in return value of"
479 " SUM intrinsic in dimension %ld:"
480 " is %ld, should be %ld", (long int) n + 1,
481 (long int) ret_extent, (long int) extent[n]);
482 }
483 }
484 }
485
486 for (n = 0; n < rank; n++)
487 {
488 count[n] = 0;
489 dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
490 }
491
492 dest = retarray->base_addr;
493
494 while(1)
495 {
496 *dest = 0;
497 count[0]++;
498 dest += dstride[0];
499 n = 0;
500 while (count[n] == extent[n])
501 {
502 /* When we get to the end of a dimension, reset it and increment
503 the next dimension. */
504 count[n] = 0;
505 /* We could precalculate these products, but this is a less
506 frequently used path so probably not worth it. */
507 dest -= dstride[n] * extent[n];
508 n++;
509 if (n >= rank)
510 return;
511 else
512 {
513 count[n]++;
514 dest += dstride[n];
515 }
516 }
517 }
518 }
519
520 #endif