]> git.ipfire.org Git - thirdparty/gcc.git/blob - libgomp/libgomp.texi
[Ada] Minor tweaks in commentary
[thirdparty/gcc.git] / libgomp / libgomp.texi
1 \input texinfo @c -*-texinfo-*-
2
3 @c %**start of header
4 @setfilename libgomp.info
5 @settitle GNU libgomp
6 @c %**end of header
7
8
9 @copying
10 Copyright @copyright{} 2006-2020 Free Software Foundation, Inc.
11
12 Permission is granted to copy, distribute and/or modify this document
13 under the terms of the GNU Free Documentation License, Version 1.3 or
14 any later version published by the Free Software Foundation; with the
15 Invariant Sections being ``Funding Free Software'', the Front-Cover
16 texts being (a) (see below), and with the Back-Cover Texts being (b)
17 (see below). A copy of the license is included in the section entitled
18 ``GNU Free Documentation License''.
19
20 (a) The FSF's Front-Cover Text is:
21
22 A GNU Manual
23
24 (b) The FSF's Back-Cover Text is:
25
26 You have freedom to copy and modify this GNU Manual, like GNU
27 software. Copies published by the Free Software Foundation raise
28 funds for GNU development.
29 @end copying
30
31 @ifinfo
32 @dircategory GNU Libraries
33 @direntry
34 * libgomp: (libgomp). GNU Offloading and Multi Processing Runtime Library.
35 @end direntry
36
37 This manual documents libgomp, the GNU Offloading and Multi Processing
38 Runtime library. This is the GNU implementation of the OpenMP and
39 OpenACC APIs for parallel and accelerator programming in C/C++ and
40 Fortran.
41
42 Published by the Free Software Foundation
43 51 Franklin Street, Fifth Floor
44 Boston, MA 02110-1301 USA
45
46 @insertcopying
47 @end ifinfo
48
49
50 @setchapternewpage odd
51
52 @titlepage
53 @title GNU Offloading and Multi Processing Runtime Library
54 @subtitle The GNU OpenMP and OpenACC Implementation
55 @page
56 @vskip 0pt plus 1filll
57 @comment For the @value{version-GCC} Version*
58 @sp 1
59 Published by the Free Software Foundation @*
60 51 Franklin Street, Fifth Floor@*
61 Boston, MA 02110-1301, USA@*
62 @sp 1
63 @insertcopying
64 @end titlepage
65
66 @summarycontents
67 @contents
68 @page
69
70
71 @node Top
72 @top Introduction
73 @cindex Introduction
74
75 This manual documents the usage of libgomp, the GNU Offloading and
76 Multi Processing Runtime Library. This includes the GNU
77 implementation of the @uref{https://www.openmp.org, OpenMP} Application
78 Programming Interface (API) for multi-platform shared-memory parallel
79 programming in C/C++ and Fortran, and the GNU implementation of the
80 @uref{https://www.openacc.org, OpenACC} Application Programming
81 Interface (API) for offloading of code to accelerator devices in C/C++
82 and Fortran.
83
84 Originally, libgomp implemented the GNU OpenMP Runtime Library. Based
85 on this, support for OpenACC and offloading (both OpenACC and OpenMP
86 4's target construct) has been added later on, and the library's name
87 changed to GNU Offloading and Multi Processing Runtime Library.
88
89
90
91 @comment
92 @comment When you add a new menu item, please keep the right hand
93 @comment aligned to the same column. Do not use tabs. This provides
94 @comment better formatting.
95 @comment
96 @menu
97 * Enabling OpenMP:: How to enable OpenMP for your applications.
98 * OpenMP Runtime Library Routines: Runtime Library Routines.
99 The OpenMP runtime application programming
100 interface.
101 * OpenMP Environment Variables: Environment Variables.
102 Influencing OpenMP runtime behavior with
103 environment variables.
104 * Enabling OpenACC:: How to enable OpenACC for your
105 applications.
106 * OpenACC Runtime Library Routines:: The OpenACC runtime application
107 programming interface.
108 * OpenACC Environment Variables:: Influencing OpenACC runtime behavior with
109 environment variables.
110 * CUDA Streams Usage:: Notes on the implementation of
111 asynchronous operations.
112 * OpenACC Library Interoperability:: OpenACC library interoperability with the
113 NVIDIA CUBLAS library.
114 * OpenACC Profiling Interface::
115 * The libgomp ABI:: Notes on the external ABI presented by libgomp.
116 * Reporting Bugs:: How to report bugs in the GNU Offloading and
117 Multi Processing Runtime Library.
118 * Copying:: GNU general public license says
119 how you can copy and share libgomp.
120 * GNU Free Documentation License::
121 How you can copy and share this manual.
122 * Funding:: How to help assure continued work for free
123 software.
124 * Library Index:: Index of this documentation.
125 @end menu
126
127
128 @c ---------------------------------------------------------------------
129 @c Enabling OpenMP
130 @c ---------------------------------------------------------------------
131
132 @node Enabling OpenMP
133 @chapter Enabling OpenMP
134
135 To activate the OpenMP extensions for C/C++ and Fortran, the compile-time
136 flag @command{-fopenmp} must be specified. This enables the OpenMP directive
137 @code{#pragma omp} in C/C++ and @code{!$omp} directives in free form,
138 @code{c$omp}, @code{*$omp} and @code{!$omp} directives in fixed form,
139 @code{!$} conditional compilation sentinels in free form and @code{c$},
140 @code{*$} and @code{!$} sentinels in fixed form, for Fortran. The flag also
141 arranges for automatic linking of the OpenMP runtime library
142 (@ref{Runtime Library Routines}).
143
144 A complete description of all OpenMP directives accepted may be found in
145 the @uref{https://www.openmp.org, OpenMP Application Program Interface} manual,
146 version 4.5.
147
148
149 @c ---------------------------------------------------------------------
150 @c OpenMP Runtime Library Routines
151 @c ---------------------------------------------------------------------
152
153 @node Runtime Library Routines
154 @chapter OpenMP Runtime Library Routines
155
156 The runtime routines described here are defined by Section 3 of the OpenMP
157 specification in version 4.5. The routines are structured in following
158 three parts:
159
160 @menu
161 Control threads, processors and the parallel environment. They have C
162 linkage, and do not throw exceptions.
163
164 * omp_get_active_level:: Number of active parallel regions
165 * omp_get_ancestor_thread_num:: Ancestor thread ID
166 * omp_get_cancellation:: Whether cancellation support is enabled
167 * omp_get_default_device:: Get the default device for target regions
168 * omp_get_dynamic:: Dynamic teams setting
169 * omp_get_level:: Number of parallel regions
170 * omp_get_max_active_levels:: Maximum number of active regions
171 * omp_get_max_task_priority:: Maximum task priority value that can be set
172 * omp_get_max_threads:: Maximum number of threads of parallel region
173 * omp_get_nested:: Nested parallel regions
174 * omp_get_num_devices:: Number of target devices
175 * omp_get_num_procs:: Number of processors online
176 * omp_get_num_teams:: Number of teams
177 * omp_get_num_threads:: Size of the active team
178 * omp_get_proc_bind:: Whether theads may be moved between CPUs
179 * omp_get_schedule:: Obtain the runtime scheduling method
180 * omp_get_team_num:: Get team number
181 * omp_get_team_size:: Number of threads in a team
182 * omp_get_thread_limit:: Maximum number of threads
183 * omp_get_thread_num:: Current thread ID
184 * omp_in_parallel:: Whether a parallel region is active
185 * omp_in_final:: Whether in final or included task region
186 * omp_is_initial_device:: Whether executing on the host device
187 * omp_set_default_device:: Set the default device for target regions
188 * omp_set_dynamic:: Enable/disable dynamic teams
189 * omp_set_max_active_levels:: Limits the number of active parallel regions
190 * omp_set_nested:: Enable/disable nested parallel regions
191 * omp_set_num_threads:: Set upper team size limit
192 * omp_set_schedule:: Set the runtime scheduling method
193
194 Initialize, set, test, unset and destroy simple and nested locks.
195
196 * omp_init_lock:: Initialize simple lock
197 * omp_set_lock:: Wait for and set simple lock
198 * omp_test_lock:: Test and set simple lock if available
199 * omp_unset_lock:: Unset simple lock
200 * omp_destroy_lock:: Destroy simple lock
201 * omp_init_nest_lock:: Initialize nested lock
202 * omp_set_nest_lock:: Wait for and set simple lock
203 * omp_test_nest_lock:: Test and set nested lock if available
204 * omp_unset_nest_lock:: Unset nested lock
205 * omp_destroy_nest_lock:: Destroy nested lock
206
207 Portable, thread-based, wall clock timer.
208
209 * omp_get_wtick:: Get timer precision.
210 * omp_get_wtime:: Elapsed wall clock time.
211 @end menu
212
213
214
215 @node omp_get_active_level
216 @section @code{omp_get_active_level} -- Number of parallel regions
217 @table @asis
218 @item @emph{Description}:
219 This function returns the nesting level for the active parallel blocks,
220 which enclose the calling call.
221
222 @item @emph{C/C++}
223 @multitable @columnfractions .20 .80
224 @item @emph{Prototype}: @tab @code{int omp_get_active_level(void);}
225 @end multitable
226
227 @item @emph{Fortran}:
228 @multitable @columnfractions .20 .80
229 @item @emph{Interface}: @tab @code{integer function omp_get_active_level()}
230 @end multitable
231
232 @item @emph{See also}:
233 @ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}
234
235 @item @emph{Reference}:
236 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.20.
237 @end table
238
239
240
241 @node omp_get_ancestor_thread_num
242 @section @code{omp_get_ancestor_thread_num} -- Ancestor thread ID
243 @table @asis
244 @item @emph{Description}:
245 This function returns the thread identification number for the given
246 nesting level of the current thread. For values of @var{level} outside
247 zero to @code{omp_get_level} -1 is returned; if @var{level} is
248 @code{omp_get_level} the result is identical to @code{omp_get_thread_num}.
249
250 @item @emph{C/C++}
251 @multitable @columnfractions .20 .80
252 @item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);}
253 @end multitable
254
255 @item @emph{Fortran}:
256 @multitable @columnfractions .20 .80
257 @item @emph{Interface}: @tab @code{integer function omp_get_ancestor_thread_num(level)}
258 @item @tab @code{integer level}
259 @end multitable
260
261 @item @emph{See also}:
262 @ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size}
263
264 @item @emph{Reference}:
265 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.18.
266 @end table
267
268
269
270 @node omp_get_cancellation
271 @section @code{omp_get_cancellation} -- Whether cancellation support is enabled
272 @table @asis
273 @item @emph{Description}:
274 This function returns @code{true} if cancellation is activated, @code{false}
275 otherwise. Here, @code{true} and @code{false} represent their language-specific
276 counterparts. Unless @env{OMP_CANCELLATION} is set true, cancellations are
277 deactivated.
278
279 @item @emph{C/C++}:
280 @multitable @columnfractions .20 .80
281 @item @emph{Prototype}: @tab @code{int omp_get_cancellation(void);}
282 @end multitable
283
284 @item @emph{Fortran}:
285 @multitable @columnfractions .20 .80
286 @item @emph{Interface}: @tab @code{logical function omp_get_cancellation()}
287 @end multitable
288
289 @item @emph{See also}:
290 @ref{OMP_CANCELLATION}
291
292 @item @emph{Reference}:
293 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.9.
294 @end table
295
296
297
298 @node omp_get_default_device
299 @section @code{omp_get_default_device} -- Get the default device for target regions
300 @table @asis
301 @item @emph{Description}:
302 Get the default device for target regions without device clause.
303
304 @item @emph{C/C++}:
305 @multitable @columnfractions .20 .80
306 @item @emph{Prototype}: @tab @code{int omp_get_default_device(void);}
307 @end multitable
308
309 @item @emph{Fortran}:
310 @multitable @columnfractions .20 .80
311 @item @emph{Interface}: @tab @code{integer function omp_get_default_device()}
312 @end multitable
313
314 @item @emph{See also}:
315 @ref{OMP_DEFAULT_DEVICE}, @ref{omp_set_default_device}
316
317 @item @emph{Reference}:
318 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.30.
319 @end table
320
321
322
323 @node omp_get_dynamic
324 @section @code{omp_get_dynamic} -- Dynamic teams setting
325 @table @asis
326 @item @emph{Description}:
327 This function returns @code{true} if enabled, @code{false} otherwise.
328 Here, @code{true} and @code{false} represent their language-specific
329 counterparts.
330
331 The dynamic team setting may be initialized at startup by the
332 @env{OMP_DYNAMIC} environment variable or at runtime using
333 @code{omp_set_dynamic}. If undefined, dynamic adjustment is
334 disabled by default.
335
336 @item @emph{C/C++}:
337 @multitable @columnfractions .20 .80
338 @item @emph{Prototype}: @tab @code{int omp_get_dynamic(void);}
339 @end multitable
340
341 @item @emph{Fortran}:
342 @multitable @columnfractions .20 .80
343 @item @emph{Interface}: @tab @code{logical function omp_get_dynamic()}
344 @end multitable
345
346 @item @emph{See also}:
347 @ref{omp_set_dynamic}, @ref{OMP_DYNAMIC}
348
349 @item @emph{Reference}:
350 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.8.
351 @end table
352
353
354
355 @node omp_get_level
356 @section @code{omp_get_level} -- Obtain the current nesting level
357 @table @asis
358 @item @emph{Description}:
359 This function returns the nesting level for the parallel blocks,
360 which enclose the calling call.
361
362 @item @emph{C/C++}
363 @multitable @columnfractions .20 .80
364 @item @emph{Prototype}: @tab @code{int omp_get_level(void);}
365 @end multitable
366
367 @item @emph{Fortran}:
368 @multitable @columnfractions .20 .80
369 @item @emph{Interface}: @tab @code{integer function omp_level()}
370 @end multitable
371
372 @item @emph{See also}:
373 @ref{omp_get_active_level}
374
375 @item @emph{Reference}:
376 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.17.
377 @end table
378
379
380
381 @node omp_get_max_active_levels
382 @section @code{omp_get_max_active_levels} -- Maximum number of active regions
383 @table @asis
384 @item @emph{Description}:
385 This function obtains the maximum allowed number of nested, active parallel regions.
386
387 @item @emph{C/C++}
388 @multitable @columnfractions .20 .80
389 @item @emph{Prototype}: @tab @code{int omp_get_max_active_levels(void);}
390 @end multitable
391
392 @item @emph{Fortran}:
393 @multitable @columnfractions .20 .80
394 @item @emph{Interface}: @tab @code{integer function omp_get_max_active_levels()}
395 @end multitable
396
397 @item @emph{See also}:
398 @ref{omp_set_max_active_levels}, @ref{omp_get_active_level}
399
400 @item @emph{Reference}:
401 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.16.
402 @end table
403
404
405 @node omp_get_max_task_priority
406 @section @code{omp_get_max_task_priority} -- Maximum priority value
407 that can be set for tasks.
408 @table @asis
409 @item @emph{Description}:
410 This function obtains the maximum allowed priority number for tasks.
411
412 @item @emph{C/C++}
413 @multitable @columnfractions .20 .80
414 @item @emph{Prototype}: @tab @code{int omp_get_max_task_priority(void);}
415 @end multitable
416
417 @item @emph{Fortran}:
418 @multitable @columnfractions .20 .80
419 @item @emph{Interface}: @tab @code{integer function omp_get_max_task_priority()}
420 @end multitable
421
422 @item @emph{Reference}:
423 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
424 @end table
425
426
427 @node omp_get_max_threads
428 @section @code{omp_get_max_threads} -- Maximum number of threads of parallel region
429 @table @asis
430 @item @emph{Description}:
431 Return the maximum number of threads used for the current parallel region
432 that does not use the clause @code{num_threads}.
433
434 @item @emph{C/C++}:
435 @multitable @columnfractions .20 .80
436 @item @emph{Prototype}: @tab @code{int omp_get_max_threads(void);}
437 @end multitable
438
439 @item @emph{Fortran}:
440 @multitable @columnfractions .20 .80
441 @item @emph{Interface}: @tab @code{integer function omp_get_max_threads()}
442 @end multitable
443
444 @item @emph{See also}:
445 @ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit}
446
447 @item @emph{Reference}:
448 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.3.
449 @end table
450
451
452
453 @node omp_get_nested
454 @section @code{omp_get_nested} -- Nested parallel regions
455 @table @asis
456 @item @emph{Description}:
457 This function returns @code{true} if nested parallel regions are
458 enabled, @code{false} otherwise. Here, @code{true} and @code{false}
459 represent their language-specific counterparts.
460
461 Nested parallel regions may be initialized at startup by the
462 @env{OMP_NESTED} environment variable or at runtime using
463 @code{omp_set_nested}. If undefined, nested parallel regions are
464 disabled by default.
465
466 @item @emph{C/C++}:
467 @multitable @columnfractions .20 .80
468 @item @emph{Prototype}: @tab @code{int omp_get_nested(void);}
469 @end multitable
470
471 @item @emph{Fortran}:
472 @multitable @columnfractions .20 .80
473 @item @emph{Interface}: @tab @code{logical function omp_get_nested()}
474 @end multitable
475
476 @item @emph{See also}:
477 @ref{omp_set_nested}, @ref{OMP_NESTED}
478
479 @item @emph{Reference}:
480 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.11.
481 @end table
482
483
484
485 @node omp_get_num_devices
486 @section @code{omp_get_num_devices} -- Number of target devices
487 @table @asis
488 @item @emph{Description}:
489 Returns the number of target devices.
490
491 @item @emph{C/C++}:
492 @multitable @columnfractions .20 .80
493 @item @emph{Prototype}: @tab @code{int omp_get_num_devices(void);}
494 @end multitable
495
496 @item @emph{Fortran}:
497 @multitable @columnfractions .20 .80
498 @item @emph{Interface}: @tab @code{integer function omp_get_num_devices()}
499 @end multitable
500
501 @item @emph{Reference}:
502 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.31.
503 @end table
504
505
506
507 @node omp_get_num_procs
508 @section @code{omp_get_num_procs} -- Number of processors online
509 @table @asis
510 @item @emph{Description}:
511 Returns the number of processors online on that device.
512
513 @item @emph{C/C++}:
514 @multitable @columnfractions .20 .80
515 @item @emph{Prototype}: @tab @code{int omp_get_num_procs(void);}
516 @end multitable
517
518 @item @emph{Fortran}:
519 @multitable @columnfractions .20 .80
520 @item @emph{Interface}: @tab @code{integer function omp_get_num_procs()}
521 @end multitable
522
523 @item @emph{Reference}:
524 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.5.
525 @end table
526
527
528
529 @node omp_get_num_teams
530 @section @code{omp_get_num_teams} -- Number of teams
531 @table @asis
532 @item @emph{Description}:
533 Returns the number of teams in the current team region.
534
535 @item @emph{C/C++}:
536 @multitable @columnfractions .20 .80
537 @item @emph{Prototype}: @tab @code{int omp_get_num_teams(void);}
538 @end multitable
539
540 @item @emph{Fortran}:
541 @multitable @columnfractions .20 .80
542 @item @emph{Interface}: @tab @code{integer function omp_get_num_teams()}
543 @end multitable
544
545 @item @emph{Reference}:
546 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.32.
547 @end table
548
549
550
551 @node omp_get_num_threads
552 @section @code{omp_get_num_threads} -- Size of the active team
553 @table @asis
554 @item @emph{Description}:
555 Returns the number of threads in the current team. In a sequential section of
556 the program @code{omp_get_num_threads} returns 1.
557
558 The default team size may be initialized at startup by the
559 @env{OMP_NUM_THREADS} environment variable. At runtime, the size
560 of the current team may be set either by the @code{NUM_THREADS}
561 clause or by @code{omp_set_num_threads}. If none of the above were
562 used to define a specific value and @env{OMP_DYNAMIC} is disabled,
563 one thread per CPU online is used.
564
565 @item @emph{C/C++}:
566 @multitable @columnfractions .20 .80
567 @item @emph{Prototype}: @tab @code{int omp_get_num_threads(void);}
568 @end multitable
569
570 @item @emph{Fortran}:
571 @multitable @columnfractions .20 .80
572 @item @emph{Interface}: @tab @code{integer function omp_get_num_threads()}
573 @end multitable
574
575 @item @emph{See also}:
576 @ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS}
577
578 @item @emph{Reference}:
579 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.2.
580 @end table
581
582
583
584 @node omp_get_proc_bind
585 @section @code{omp_get_proc_bind} -- Whether theads may be moved between CPUs
586 @table @asis
587 @item @emph{Description}:
588 This functions returns the currently active thread affinity policy, which is
589 set via @env{OMP_PROC_BIND}. Possible values are @code{omp_proc_bind_false},
590 @code{omp_proc_bind_true}, @code{omp_proc_bind_master},
591 @code{omp_proc_bind_close} and @code{omp_proc_bind_spread}.
592
593 @item @emph{C/C++}:
594 @multitable @columnfractions .20 .80
595 @item @emph{Prototype}: @tab @code{omp_proc_bind_t omp_get_proc_bind(void);}
596 @end multitable
597
598 @item @emph{Fortran}:
599 @multitable @columnfractions .20 .80
600 @item @emph{Interface}: @tab @code{integer(kind=omp_proc_bind_kind) function omp_get_proc_bind()}
601 @end multitable
602
603 @item @emph{See also}:
604 @ref{OMP_PROC_BIND}, @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY},
605
606 @item @emph{Reference}:
607 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.22.
608 @end table
609
610
611
612 @node omp_get_schedule
613 @section @code{omp_get_schedule} -- Obtain the runtime scheduling method
614 @table @asis
615 @item @emph{Description}:
616 Obtain the runtime scheduling method. The @var{kind} argument will be
617 set to the value @code{omp_sched_static}, @code{omp_sched_dynamic},
618 @code{omp_sched_guided} or @code{omp_sched_auto}. The second argument,
619 @var{chunk_size}, is set to the chunk size.
620
621 @item @emph{C/C++}
622 @multitable @columnfractions .20 .80
623 @item @emph{Prototype}: @tab @code{void omp_get_schedule(omp_sched_t *kind, int *chunk_size);}
624 @end multitable
625
626 @item @emph{Fortran}:
627 @multitable @columnfractions .20 .80
628 @item @emph{Interface}: @tab @code{subroutine omp_get_schedule(kind, chunk_size)}
629 @item @tab @code{integer(kind=omp_sched_kind) kind}
630 @item @tab @code{integer chunk_size}
631 @end multitable
632
633 @item @emph{See also}:
634 @ref{omp_set_schedule}, @ref{OMP_SCHEDULE}
635
636 @item @emph{Reference}:
637 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.13.
638 @end table
639
640
641
642 @node omp_get_team_num
643 @section @code{omp_get_team_num} -- Get team number
644 @table @asis
645 @item @emph{Description}:
646 Returns the team number of the calling thread.
647
648 @item @emph{C/C++}:
649 @multitable @columnfractions .20 .80
650 @item @emph{Prototype}: @tab @code{int omp_get_team_num(void);}
651 @end multitable
652
653 @item @emph{Fortran}:
654 @multitable @columnfractions .20 .80
655 @item @emph{Interface}: @tab @code{integer function omp_get_team_num()}
656 @end multitable
657
658 @item @emph{Reference}:
659 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.33.
660 @end table
661
662
663
664 @node omp_get_team_size
665 @section @code{omp_get_team_size} -- Number of threads in a team
666 @table @asis
667 @item @emph{Description}:
668 This function returns the number of threads in a thread team to which
669 either the current thread or its ancestor belongs. For values of @var{level}
670 outside zero to @code{omp_get_level}, -1 is returned; if @var{level} is zero,
671 1 is returned, and for @code{omp_get_level}, the result is identical
672 to @code{omp_get_num_threads}.
673
674 @item @emph{C/C++}:
675 @multitable @columnfractions .20 .80
676 @item @emph{Prototype}: @tab @code{int omp_get_team_size(int level);}
677 @end multitable
678
679 @item @emph{Fortran}:
680 @multitable @columnfractions .20 .80
681 @item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)}
682 @item @tab @code{integer level}
683 @end multitable
684
685 @item @emph{See also}:
686 @ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num}
687
688 @item @emph{Reference}:
689 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.19.
690 @end table
691
692
693
694 @node omp_get_thread_limit
695 @section @code{omp_get_thread_limit} -- Maximum number of threads
696 @table @asis
697 @item @emph{Description}:
698 Return the maximum number of threads of the program.
699
700 @item @emph{C/C++}:
701 @multitable @columnfractions .20 .80
702 @item @emph{Prototype}: @tab @code{int omp_get_thread_limit(void);}
703 @end multitable
704
705 @item @emph{Fortran}:
706 @multitable @columnfractions .20 .80
707 @item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()}
708 @end multitable
709
710 @item @emph{See also}:
711 @ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT}
712
713 @item @emph{Reference}:
714 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.14.
715 @end table
716
717
718
719 @node omp_get_thread_num
720 @section @code{omp_get_thread_num} -- Current thread ID
721 @table @asis
722 @item @emph{Description}:
723 Returns a unique thread identification number within the current team.
724 In a sequential parts of the program, @code{omp_get_thread_num}
725 always returns 0. In parallel regions the return value varies
726 from 0 to @code{omp_get_num_threads}-1 inclusive. The return
727 value of the master thread of a team is always 0.
728
729 @item @emph{C/C++}:
730 @multitable @columnfractions .20 .80
731 @item @emph{Prototype}: @tab @code{int omp_get_thread_num(void);}
732 @end multitable
733
734 @item @emph{Fortran}:
735 @multitable @columnfractions .20 .80
736 @item @emph{Interface}: @tab @code{integer function omp_get_thread_num()}
737 @end multitable
738
739 @item @emph{See also}:
740 @ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num}
741
742 @item @emph{Reference}:
743 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.4.
744 @end table
745
746
747
748 @node omp_in_parallel
749 @section @code{omp_in_parallel} -- Whether a parallel region is active
750 @table @asis
751 @item @emph{Description}:
752 This function returns @code{true} if currently running in parallel,
753 @code{false} otherwise. Here, @code{true} and @code{false} represent
754 their language-specific counterparts.
755
756 @item @emph{C/C++}:
757 @multitable @columnfractions .20 .80
758 @item @emph{Prototype}: @tab @code{int omp_in_parallel(void);}
759 @end multitable
760
761 @item @emph{Fortran}:
762 @multitable @columnfractions .20 .80
763 @item @emph{Interface}: @tab @code{logical function omp_in_parallel()}
764 @end multitable
765
766 @item @emph{Reference}:
767 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.6.
768 @end table
769
770
771 @node omp_in_final
772 @section @code{omp_in_final} -- Whether in final or included task region
773 @table @asis
774 @item @emph{Description}:
775 This function returns @code{true} if currently running in a final
776 or included task region, @code{false} otherwise. Here, @code{true}
777 and @code{false} represent their language-specific counterparts.
778
779 @item @emph{C/C++}:
780 @multitable @columnfractions .20 .80
781 @item @emph{Prototype}: @tab @code{int omp_in_final(void);}
782 @end multitable
783
784 @item @emph{Fortran}:
785 @multitable @columnfractions .20 .80
786 @item @emph{Interface}: @tab @code{logical function omp_in_final()}
787 @end multitable
788
789 @item @emph{Reference}:
790 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.21.
791 @end table
792
793
794
795 @node omp_is_initial_device
796 @section @code{omp_is_initial_device} -- Whether executing on the host device
797 @table @asis
798 @item @emph{Description}:
799 This function returns @code{true} if currently running on the host device,
800 @code{false} otherwise. Here, @code{true} and @code{false} represent
801 their language-specific counterparts.
802
803 @item @emph{C/C++}:
804 @multitable @columnfractions .20 .80
805 @item @emph{Prototype}: @tab @code{int omp_is_initial_device(void);}
806 @end multitable
807
808 @item @emph{Fortran}:
809 @multitable @columnfractions .20 .80
810 @item @emph{Interface}: @tab @code{logical function omp_is_initial_device()}
811 @end multitable
812
813 @item @emph{Reference}:
814 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.34.
815 @end table
816
817
818
819 @node omp_set_default_device
820 @section @code{omp_set_default_device} -- Set the default device for target regions
821 @table @asis
822 @item @emph{Description}:
823 Set the default device for target regions without device clause. The argument
824 shall be a nonnegative device number.
825
826 @item @emph{C/C++}:
827 @multitable @columnfractions .20 .80
828 @item @emph{Prototype}: @tab @code{void omp_set_default_device(int device_num);}
829 @end multitable
830
831 @item @emph{Fortran}:
832 @multitable @columnfractions .20 .80
833 @item @emph{Interface}: @tab @code{subroutine omp_set_default_device(device_num)}
834 @item @tab @code{integer device_num}
835 @end multitable
836
837 @item @emph{See also}:
838 @ref{OMP_DEFAULT_DEVICE}, @ref{omp_get_default_device}
839
840 @item @emph{Reference}:
841 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
842 @end table
843
844
845
846 @node omp_set_dynamic
847 @section @code{omp_set_dynamic} -- Enable/disable dynamic teams
848 @table @asis
849 @item @emph{Description}:
850 Enable or disable the dynamic adjustment of the number of threads
851 within a team. The function takes the language-specific equivalent
852 of @code{true} and @code{false}, where @code{true} enables dynamic
853 adjustment of team sizes and @code{false} disables it.
854
855 @item @emph{C/C++}:
856 @multitable @columnfractions .20 .80
857 @item @emph{Prototype}: @tab @code{void omp_set_dynamic(int dynamic_threads);}
858 @end multitable
859
860 @item @emph{Fortran}:
861 @multitable @columnfractions .20 .80
862 @item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(dynamic_threads)}
863 @item @tab @code{logical, intent(in) :: dynamic_threads}
864 @end multitable
865
866 @item @emph{See also}:
867 @ref{OMP_DYNAMIC}, @ref{omp_get_dynamic}
868
869 @item @emph{Reference}:
870 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.7.
871 @end table
872
873
874
875 @node omp_set_max_active_levels
876 @section @code{omp_set_max_active_levels} -- Limits the number of active parallel regions
877 @table @asis
878 @item @emph{Description}:
879 This function limits the maximum allowed number of nested, active
880 parallel regions.
881
882 @item @emph{C/C++}
883 @multitable @columnfractions .20 .80
884 @item @emph{Prototype}: @tab @code{void omp_set_max_active_levels(int max_levels);}
885 @end multitable
886
887 @item @emph{Fortran}:
888 @multitable @columnfractions .20 .80
889 @item @emph{Interface}: @tab @code{subroutine omp_set_max_active_levels(max_levels)}
890 @item @tab @code{integer max_levels}
891 @end multitable
892
893 @item @emph{See also}:
894 @ref{omp_get_max_active_levels}, @ref{omp_get_active_level}
895
896 @item @emph{Reference}:
897 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.15.
898 @end table
899
900
901
902 @node omp_set_nested
903 @section @code{omp_set_nested} -- Enable/disable nested parallel regions
904 @table @asis
905 @item @emph{Description}:
906 Enable or disable nested parallel regions, i.e., whether team members
907 are allowed to create new teams. The function takes the language-specific
908 equivalent of @code{true} and @code{false}, where @code{true} enables
909 dynamic adjustment of team sizes and @code{false} disables it.
910
911 @item @emph{C/C++}:
912 @multitable @columnfractions .20 .80
913 @item @emph{Prototype}: @tab @code{void omp_set_nested(int nested);}
914 @end multitable
915
916 @item @emph{Fortran}:
917 @multitable @columnfractions .20 .80
918 @item @emph{Interface}: @tab @code{subroutine omp_set_nested(nested)}
919 @item @tab @code{logical, intent(in) :: nested}
920 @end multitable
921
922 @item @emph{See also}:
923 @ref{OMP_NESTED}, @ref{omp_get_nested}
924
925 @item @emph{Reference}:
926 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.10.
927 @end table
928
929
930
931 @node omp_set_num_threads
932 @section @code{omp_set_num_threads} -- Set upper team size limit
933 @table @asis
934 @item @emph{Description}:
935 Specifies the number of threads used by default in subsequent parallel
936 sections, if those do not specify a @code{num_threads} clause. The
937 argument of @code{omp_set_num_threads} shall be a positive integer.
938
939 @item @emph{C/C++}:
940 @multitable @columnfractions .20 .80
941 @item @emph{Prototype}: @tab @code{void omp_set_num_threads(int num_threads);}
942 @end multitable
943
944 @item @emph{Fortran}:
945 @multitable @columnfractions .20 .80
946 @item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(num_threads)}
947 @item @tab @code{integer, intent(in) :: num_threads}
948 @end multitable
949
950 @item @emph{See also}:
951 @ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads}
952
953 @item @emph{Reference}:
954 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.1.
955 @end table
956
957
958
959 @node omp_set_schedule
960 @section @code{omp_set_schedule} -- Set the runtime scheduling method
961 @table @asis
962 @item @emph{Description}:
963 Sets the runtime scheduling method. The @var{kind} argument can have the
964 value @code{omp_sched_static}, @code{omp_sched_dynamic},
965 @code{omp_sched_guided} or @code{omp_sched_auto}. Except for
966 @code{omp_sched_auto}, the chunk size is set to the value of
967 @var{chunk_size} if positive, or to the default value if zero or negative.
968 For @code{omp_sched_auto} the @var{chunk_size} argument is ignored.
969
970 @item @emph{C/C++}
971 @multitable @columnfractions .20 .80
972 @item @emph{Prototype}: @tab @code{void omp_set_schedule(omp_sched_t kind, int chunk_size);}
973 @end multitable
974
975 @item @emph{Fortran}:
976 @multitable @columnfractions .20 .80
977 @item @emph{Interface}: @tab @code{subroutine omp_set_schedule(kind, chunk_size)}
978 @item @tab @code{integer(kind=omp_sched_kind) kind}
979 @item @tab @code{integer chunk_size}
980 @end multitable
981
982 @item @emph{See also}:
983 @ref{omp_get_schedule}
984 @ref{OMP_SCHEDULE}
985
986 @item @emph{Reference}:
987 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.12.
988 @end table
989
990
991
992 @node omp_init_lock
993 @section @code{omp_init_lock} -- Initialize simple lock
994 @table @asis
995 @item @emph{Description}:
996 Initialize a simple lock. After initialization, the lock is in
997 an unlocked state.
998
999 @item @emph{C/C++}:
1000 @multitable @columnfractions .20 .80
1001 @item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);}
1002 @end multitable
1003
1004 @item @emph{Fortran}:
1005 @multitable @columnfractions .20 .80
1006 @item @emph{Interface}: @tab @code{subroutine omp_init_lock(svar)}
1007 @item @tab @code{integer(omp_lock_kind), intent(out) :: svar}
1008 @end multitable
1009
1010 @item @emph{See also}:
1011 @ref{omp_destroy_lock}
1012
1013 @item @emph{Reference}:
1014 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
1015 @end table
1016
1017
1018
1019 @node omp_set_lock
1020 @section @code{omp_set_lock} -- Wait for and set simple lock
1021 @table @asis
1022 @item @emph{Description}:
1023 Before setting a simple lock, the lock variable must be initialized by
1024 @code{omp_init_lock}. The calling thread is blocked until the lock
1025 is available. If the lock is already held by the current thread,
1026 a deadlock occurs.
1027
1028 @item @emph{C/C++}:
1029 @multitable @columnfractions .20 .80
1030 @item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);}
1031 @end multitable
1032
1033 @item @emph{Fortran}:
1034 @multitable @columnfractions .20 .80
1035 @item @emph{Interface}: @tab @code{subroutine omp_set_lock(svar)}
1036 @item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
1037 @end multitable
1038
1039 @item @emph{See also}:
1040 @ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock}
1041
1042 @item @emph{Reference}:
1043 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
1044 @end table
1045
1046
1047
1048 @node omp_test_lock
1049 @section @code{omp_test_lock} -- Test and set simple lock if available
1050 @table @asis
1051 @item @emph{Description}:
1052 Before setting a simple lock, the lock variable must be initialized by
1053 @code{omp_init_lock}. Contrary to @code{omp_set_lock}, @code{omp_test_lock}
1054 does not block if the lock is not available. This function returns
1055 @code{true} upon success, @code{false} otherwise. Here, @code{true} and
1056 @code{false} represent their language-specific counterparts.
1057
1058 @item @emph{C/C++}:
1059 @multitable @columnfractions .20 .80
1060 @item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);}
1061 @end multitable
1062
1063 @item @emph{Fortran}:
1064 @multitable @columnfractions .20 .80
1065 @item @emph{Interface}: @tab @code{logical function omp_test_lock(svar)}
1066 @item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
1067 @end multitable
1068
1069 @item @emph{See also}:
1070 @ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}
1071
1072 @item @emph{Reference}:
1073 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
1074 @end table
1075
1076
1077
1078 @node omp_unset_lock
1079 @section @code{omp_unset_lock} -- Unset simple lock
1080 @table @asis
1081 @item @emph{Description}:
1082 A simple lock about to be unset must have been locked by @code{omp_set_lock}
1083 or @code{omp_test_lock} before. In addition, the lock must be held by the
1084 thread calling @code{omp_unset_lock}. Then, the lock becomes unlocked. If one
1085 or more threads attempted to set the lock before, one of them is chosen to,
1086 again, set the lock to itself.
1087
1088 @item @emph{C/C++}:
1089 @multitable @columnfractions .20 .80
1090 @item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);}
1091 @end multitable
1092
1093 @item @emph{Fortran}:
1094 @multitable @columnfractions .20 .80
1095 @item @emph{Interface}: @tab @code{subroutine omp_unset_lock(svar)}
1096 @item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
1097 @end multitable
1098
1099 @item @emph{See also}:
1100 @ref{omp_set_lock}, @ref{omp_test_lock}
1101
1102 @item @emph{Reference}:
1103 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
1104 @end table
1105
1106
1107
1108 @node omp_destroy_lock
1109 @section @code{omp_destroy_lock} -- Destroy simple lock
1110 @table @asis
1111 @item @emph{Description}:
1112 Destroy a simple lock. In order to be destroyed, a simple lock must be
1113 in the unlocked state.
1114
1115 @item @emph{C/C++}:
1116 @multitable @columnfractions .20 .80
1117 @item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *lock);}
1118 @end multitable
1119
1120 @item @emph{Fortran}:
1121 @multitable @columnfractions .20 .80
1122 @item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(svar)}
1123 @item @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
1124 @end multitable
1125
1126 @item @emph{See also}:
1127 @ref{omp_init_lock}
1128
1129 @item @emph{Reference}:
1130 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
1131 @end table
1132
1133
1134
1135 @node omp_init_nest_lock
1136 @section @code{omp_init_nest_lock} -- Initialize nested lock
1137 @table @asis
1138 @item @emph{Description}:
1139 Initialize a nested lock. After initialization, the lock is in
1140 an unlocked state and the nesting count is set to zero.
1141
1142 @item @emph{C/C++}:
1143 @multitable @columnfractions .20 .80
1144 @item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);}
1145 @end multitable
1146
1147 @item @emph{Fortran}:
1148 @multitable @columnfractions .20 .80
1149 @item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(nvar)}
1150 @item @tab @code{integer(omp_nest_lock_kind), intent(out) :: nvar}
1151 @end multitable
1152
1153 @item @emph{See also}:
1154 @ref{omp_destroy_nest_lock}
1155
1156 @item @emph{Reference}:
1157 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
1158 @end table
1159
1160
1161 @node omp_set_nest_lock
1162 @section @code{omp_set_nest_lock} -- Wait for and set nested lock
1163 @table @asis
1164 @item @emph{Description}:
1165 Before setting a nested lock, the lock variable must be initialized by
1166 @code{omp_init_nest_lock}. The calling thread is blocked until the lock
1167 is available. If the lock is already held by the current thread, the
1168 nesting count for the lock is incremented.
1169
1170 @item @emph{C/C++}:
1171 @multitable @columnfractions .20 .80
1172 @item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);}
1173 @end multitable
1174
1175 @item @emph{Fortran}:
1176 @multitable @columnfractions .20 .80
1177 @item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(nvar)}
1178 @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
1179 @end multitable
1180
1181 @item @emph{See also}:
1182 @ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock}
1183
1184 @item @emph{Reference}:
1185 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
1186 @end table
1187
1188
1189
1190 @node omp_test_nest_lock
1191 @section @code{omp_test_nest_lock} -- Test and set nested lock if available
1192 @table @asis
1193 @item @emph{Description}:
1194 Before setting a nested lock, the lock variable must be initialized by
1195 @code{omp_init_nest_lock}. Contrary to @code{omp_set_nest_lock},
1196 @code{omp_test_nest_lock} does not block if the lock is not available.
1197 If the lock is already held by the current thread, the new nesting count
1198 is returned. Otherwise, the return value equals zero.
1199
1200 @item @emph{C/C++}:
1201 @multitable @columnfractions .20 .80
1202 @item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);}
1203 @end multitable
1204
1205 @item @emph{Fortran}:
1206 @multitable @columnfractions .20 .80
1207 @item @emph{Interface}: @tab @code{logical function omp_test_nest_lock(nvar)}
1208 @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
1209 @end multitable
1210
1211
1212 @item @emph{See also}:
1213 @ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}
1214
1215 @item @emph{Reference}:
1216 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
1217 @end table
1218
1219
1220
1221 @node omp_unset_nest_lock
1222 @section @code{omp_unset_nest_lock} -- Unset nested lock
1223 @table @asis
1224 @item @emph{Description}:
1225 A nested lock about to be unset must have been locked by @code{omp_set_nested_lock}
1226 or @code{omp_test_nested_lock} before. In addition, the lock must be held by the
1227 thread calling @code{omp_unset_nested_lock}. If the nesting count drops to zero, the
1228 lock becomes unlocked. If one ore more threads attempted to set the lock before,
1229 one of them is chosen to, again, set the lock to itself.
1230
1231 @item @emph{C/C++}:
1232 @multitable @columnfractions .20 .80
1233 @item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);}
1234 @end multitable
1235
1236 @item @emph{Fortran}:
1237 @multitable @columnfractions .20 .80
1238 @item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(nvar)}
1239 @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
1240 @end multitable
1241
1242 @item @emph{See also}:
1243 @ref{omp_set_nest_lock}
1244
1245 @item @emph{Reference}:
1246 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
1247 @end table
1248
1249
1250
1251 @node omp_destroy_nest_lock
1252 @section @code{omp_destroy_nest_lock} -- Destroy nested lock
1253 @table @asis
1254 @item @emph{Description}:
1255 Destroy a nested lock. In order to be destroyed, a nested lock must be
1256 in the unlocked state and its nesting count must equal zero.
1257
1258 @item @emph{C/C++}:
1259 @multitable @columnfractions .20 .80
1260 @item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);}
1261 @end multitable
1262
1263 @item @emph{Fortran}:
1264 @multitable @columnfractions .20 .80
1265 @item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(nvar)}
1266 @item @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
1267 @end multitable
1268
1269 @item @emph{See also}:
1270 @ref{omp_init_lock}
1271
1272 @item @emph{Reference}:
1273 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
1274 @end table
1275
1276
1277
1278 @node omp_get_wtick
1279 @section @code{omp_get_wtick} -- Get timer precision
1280 @table @asis
1281 @item @emph{Description}:
1282 Gets the timer precision, i.e., the number of seconds between two
1283 successive clock ticks.
1284
1285 @item @emph{C/C++}:
1286 @multitable @columnfractions .20 .80
1287 @item @emph{Prototype}: @tab @code{double omp_get_wtick(void);}
1288 @end multitable
1289
1290 @item @emph{Fortran}:
1291 @multitable @columnfractions .20 .80
1292 @item @emph{Interface}: @tab @code{double precision function omp_get_wtick()}
1293 @end multitable
1294
1295 @item @emph{See also}:
1296 @ref{omp_get_wtime}
1297
1298 @item @emph{Reference}:
1299 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.2.
1300 @end table
1301
1302
1303
1304 @node omp_get_wtime
1305 @section @code{omp_get_wtime} -- Elapsed wall clock time
1306 @table @asis
1307 @item @emph{Description}:
1308 Elapsed wall clock time in seconds. The time is measured per thread, no
1309 guarantee can be made that two distinct threads measure the same time.
1310 Time is measured from some "time in the past", which is an arbitrary time
1311 guaranteed not to change during the execution of the program.
1312
1313 @item @emph{C/C++}:
1314 @multitable @columnfractions .20 .80
1315 @item @emph{Prototype}: @tab @code{double omp_get_wtime(void);}
1316 @end multitable
1317
1318 @item @emph{Fortran}:
1319 @multitable @columnfractions .20 .80
1320 @item @emph{Interface}: @tab @code{double precision function omp_get_wtime()}
1321 @end multitable
1322
1323 @item @emph{See also}:
1324 @ref{omp_get_wtick}
1325
1326 @item @emph{Reference}:
1327 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.1.
1328 @end table
1329
1330
1331
1332 @c ---------------------------------------------------------------------
1333 @c OpenMP Environment Variables
1334 @c ---------------------------------------------------------------------
1335
1336 @node Environment Variables
1337 @chapter OpenMP Environment Variables
1338
1339 The environment variables which beginning with @env{OMP_} are defined by
1340 section 4 of the OpenMP specification in version 4.5, while those
1341 beginning with @env{GOMP_} are GNU extensions.
1342
1343 @menu
1344 * OMP_CANCELLATION:: Set whether cancellation is activated
1345 * OMP_DISPLAY_ENV:: Show OpenMP version and environment variables
1346 * OMP_DEFAULT_DEVICE:: Set the device used in target regions
1347 * OMP_DYNAMIC:: Dynamic adjustment of threads
1348 * OMP_MAX_ACTIVE_LEVELS:: Set the maximum number of nested parallel regions
1349 * OMP_MAX_TASK_PRIORITY:: Set the maximum task priority value
1350 * OMP_NESTED:: Nested parallel regions
1351 * OMP_NUM_THREADS:: Specifies the number of threads to use
1352 * OMP_PROC_BIND:: Whether theads may be moved between CPUs
1353 * OMP_PLACES:: Specifies on which CPUs the theads should be placed
1354 * OMP_STACKSIZE:: Set default thread stack size
1355 * OMP_SCHEDULE:: How threads are scheduled
1356 * OMP_THREAD_LIMIT:: Set the maximum number of threads
1357 * OMP_WAIT_POLICY:: How waiting threads are handled
1358 * GOMP_CPU_AFFINITY:: Bind threads to specific CPUs
1359 * GOMP_DEBUG:: Enable debugging output
1360 * GOMP_STACKSIZE:: Set default thread stack size
1361 * GOMP_SPINCOUNT:: Set the busy-wait spin count
1362 * GOMP_RTEMS_THREAD_POOLS:: Set the RTEMS specific thread pools
1363 @end menu
1364
1365
1366 @node OMP_CANCELLATION
1367 @section @env{OMP_CANCELLATION} -- Set whether cancellation is activated
1368 @cindex Environment Variable
1369 @table @asis
1370 @item @emph{Description}:
1371 If set to @code{TRUE}, the cancellation is activated. If set to @code{FALSE} or
1372 if unset, cancellation is disabled and the @code{cancel} construct is ignored.
1373
1374 @item @emph{See also}:
1375 @ref{omp_get_cancellation}
1376
1377 @item @emph{Reference}:
1378 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.11
1379 @end table
1380
1381
1382
1383 @node OMP_DISPLAY_ENV
1384 @section @env{OMP_DISPLAY_ENV} -- Show OpenMP version and environment variables
1385 @cindex Environment Variable
1386 @table @asis
1387 @item @emph{Description}:
1388 If set to @code{TRUE}, the OpenMP version number and the values
1389 associated with the OpenMP environment variables are printed to @code{stderr}.
1390 If set to @code{VERBOSE}, it additionally shows the value of the environment
1391 variables which are GNU extensions. If undefined or set to @code{FALSE},
1392 this information will not be shown.
1393
1394
1395 @item @emph{Reference}:
1396 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.12
1397 @end table
1398
1399
1400
1401 @node OMP_DEFAULT_DEVICE
1402 @section @env{OMP_DEFAULT_DEVICE} -- Set the device used in target regions
1403 @cindex Environment Variable
1404 @table @asis
1405 @item @emph{Description}:
1406 Set to choose the device which is used in a @code{target} region, unless the
1407 value is overridden by @code{omp_set_default_device} or by a @code{device}
1408 clause. The value shall be the nonnegative device number. If no device with
1409 the given device number exists, the code is executed on the host. If unset,
1410 device number 0 will be used.
1411
1412
1413 @item @emph{See also}:
1414 @ref{omp_get_default_device}, @ref{omp_set_default_device},
1415
1416 @item @emph{Reference}:
1417 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.13
1418 @end table
1419
1420
1421
1422 @node OMP_DYNAMIC
1423 @section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads
1424 @cindex Environment Variable
1425 @table @asis
1426 @item @emph{Description}:
1427 Enable or disable the dynamic adjustment of the number of threads
1428 within a team. The value of this environment variable shall be
1429 @code{TRUE} or @code{FALSE}. If undefined, dynamic adjustment is
1430 disabled by default.
1431
1432 @item @emph{See also}:
1433 @ref{omp_set_dynamic}
1434
1435 @item @emph{Reference}:
1436 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.3
1437 @end table
1438
1439
1440
1441 @node OMP_MAX_ACTIVE_LEVELS
1442 @section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximum number of nested parallel regions
1443 @cindex Environment Variable
1444 @table @asis
1445 @item @emph{Description}:
1446 Specifies the initial value for the maximum number of nested parallel
1447 regions. The value of this variable shall be a positive integer.
1448 If undefined, the number of active levels is unlimited.
1449
1450 @item @emph{See also}:
1451 @ref{omp_set_max_active_levels}
1452
1453 @item @emph{Reference}:
1454 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.9
1455 @end table
1456
1457
1458
1459 @node OMP_MAX_TASK_PRIORITY
1460 @section @env{OMP_MAX_TASK_PRIORITY} -- Set the maximum priority
1461 number that can be set for a task.
1462 @cindex Environment Variable
1463 @table @asis
1464 @item @emph{Description}:
1465 Specifies the initial value for the maximum priority value that can be
1466 set for a task. The value of this variable shall be a non-negative
1467 integer, and zero is allowed. If undefined, the default priority is
1468 0.
1469
1470 @item @emph{See also}:
1471 @ref{omp_get_max_task_priority}
1472
1473 @item @emph{Reference}:
1474 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.14
1475 @end table
1476
1477
1478
1479 @node OMP_NESTED
1480 @section @env{OMP_NESTED} -- Nested parallel regions
1481 @cindex Environment Variable
1482 @cindex Implementation specific setting
1483 @table @asis
1484 @item @emph{Description}:
1485 Enable or disable nested parallel regions, i.e., whether team members
1486 are allowed to create new teams. The value of this environment variable
1487 shall be @code{TRUE} or @code{FALSE}. If undefined, nested parallel
1488 regions are disabled by default.
1489
1490 @item @emph{See also}:
1491 @ref{omp_set_nested}
1492
1493 @item @emph{Reference}:
1494 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.6
1495 @end table
1496
1497
1498
1499 @node OMP_NUM_THREADS
1500 @section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use
1501 @cindex Environment Variable
1502 @cindex Implementation specific setting
1503 @table @asis
1504 @item @emph{Description}:
1505 Specifies the default number of threads to use in parallel regions. The
1506 value of this variable shall be a comma-separated list of positive integers;
1507 the value specified the number of threads to use for the corresponding nested
1508 level. If undefined one thread per CPU is used.
1509
1510 @item @emph{See also}:
1511 @ref{omp_set_num_threads}
1512
1513 @item @emph{Reference}:
1514 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.2
1515 @end table
1516
1517
1518
1519 @node OMP_PROC_BIND
1520 @section @env{OMP_PROC_BIND} -- Whether theads may be moved between CPUs
1521 @cindex Environment Variable
1522 @table @asis
1523 @item @emph{Description}:
1524 Specifies whether threads may be moved between processors. If set to
1525 @code{TRUE}, OpenMP theads should not be moved; if set to @code{FALSE}
1526 they may be moved. Alternatively, a comma separated list with the
1527 values @code{MASTER}, @code{CLOSE} and @code{SPREAD} can be used to specify
1528 the thread affinity policy for the corresponding nesting level. With
1529 @code{MASTER} the worker threads are in the same place partition as the
1530 master thread. With @code{CLOSE} those are kept close to the master thread
1531 in contiguous place partitions. And with @code{SPREAD} a sparse distribution
1532 across the place partitions is used.
1533
1534 When undefined, @env{OMP_PROC_BIND} defaults to @code{TRUE} when
1535 @env{OMP_PLACES} or @env{GOMP_CPU_AFFINITY} is set and @code{FALSE} otherwise.
1536
1537 @item @emph{See also}:
1538 @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind}
1539
1540 @item @emph{Reference}:
1541 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.4
1542 @end table
1543
1544
1545
1546 @node OMP_PLACES
1547 @section @env{OMP_PLACES} -- Specifies on which CPUs the theads should be placed
1548 @cindex Environment Variable
1549 @table @asis
1550 @item @emph{Description}:
1551 The thread placement can be either specified using an abstract name or by an
1552 explicit list of the places. The abstract names @code{threads}, @code{cores}
1553 and @code{sockets} can be optionally followed by a positive number in
1554 parentheses, which denotes the how many places shall be created. With
1555 @code{threads} each place corresponds to a single hardware thread; @code{cores}
1556 to a single core with the corresponding number of hardware threads; and with
1557 @code{sockets} the place corresponds to a single socket. The resulting
1558 placement can be shown by setting the @env{OMP_DISPLAY_ENV} environment
1559 variable.
1560
1561 Alternatively, the placement can be specified explicitly as comma-separated
1562 list of places. A place is specified by set of nonnegative numbers in curly
1563 braces, denoting the denoting the hardware threads. The hardware threads
1564 belonging to a place can either be specified as comma-separated list of
1565 nonnegative thread numbers or using an interval. Multiple places can also be
1566 either specified by a comma-separated list of places or by an interval. To
1567 specify an interval, a colon followed by the count is placed after after
1568 the hardware thread number or the place. Optionally, the length can be
1569 followed by a colon and the stride number -- otherwise a unit stride is
1570 assumed. For instance, the following specifies the same places list:
1571 @code{"@{0,1,2@}, @{3,4,6@}, @{7,8,9@}, @{10,11,12@}"};
1572 @code{"@{0:3@}, @{3:3@}, @{7:3@}, @{10:3@}"}; and @code{"@{0:2@}:4:3"}.
1573
1574 If @env{OMP_PLACES} and @env{GOMP_CPU_AFFINITY} are unset and
1575 @env{OMP_PROC_BIND} is either unset or @code{false}, threads may be moved
1576 between CPUs following no placement policy.
1577
1578 @item @emph{See also}:
1579 @ref{OMP_PROC_BIND}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind},
1580 @ref{OMP_DISPLAY_ENV}
1581
1582 @item @emph{Reference}:
1583 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.5
1584 @end table
1585
1586
1587
1588 @node OMP_STACKSIZE
1589 @section @env{OMP_STACKSIZE} -- Set default thread stack size
1590 @cindex Environment Variable
1591 @table @asis
1592 @item @emph{Description}:
1593 Set the default thread stack size in kilobytes, unless the number
1594 is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which
1595 case the size is, respectively, in bytes, kilobytes, megabytes
1596 or gigabytes. This is different from @code{pthread_attr_setstacksize}
1597 which gets the number of bytes as an argument. If the stack size cannot
1598 be set due to system constraints, an error is reported and the initial
1599 stack size is left unchanged. If undefined, the stack size is system
1600 dependent.
1601
1602 @item @emph{Reference}:
1603 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.7
1604 @end table
1605
1606
1607
1608 @node OMP_SCHEDULE
1609 @section @env{OMP_SCHEDULE} -- How threads are scheduled
1610 @cindex Environment Variable
1611 @cindex Implementation specific setting
1612 @table @asis
1613 @item @emph{Description}:
1614 Allows to specify @code{schedule type} and @code{chunk size}.
1615 The value of the variable shall have the form: @code{type[,chunk]} where
1616 @code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto}
1617 The optional @code{chunk} size shall be a positive integer. If undefined,
1618 dynamic scheduling and a chunk size of 1 is used.
1619
1620 @item @emph{See also}:
1621 @ref{omp_set_schedule}
1622
1623 @item @emph{Reference}:
1624 @uref{https://www.openmp.org, OpenMP specification v4.5}, Sections 2.7.1.1 and 4.1
1625 @end table
1626
1627
1628
1629 @node OMP_THREAD_LIMIT
1630 @section @env{OMP_THREAD_LIMIT} -- Set the maximum number of threads
1631 @cindex Environment Variable
1632 @table @asis
1633 @item @emph{Description}:
1634 Specifies the number of threads to use for the whole program. The
1635 value of this variable shall be a positive integer. If undefined,
1636 the number of threads is not limited.
1637
1638 @item @emph{See also}:
1639 @ref{OMP_NUM_THREADS}, @ref{omp_get_thread_limit}
1640
1641 @item @emph{Reference}:
1642 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.10
1643 @end table
1644
1645
1646
1647 @node OMP_WAIT_POLICY
1648 @section @env{OMP_WAIT_POLICY} -- How waiting threads are handled
1649 @cindex Environment Variable
1650 @table @asis
1651 @item @emph{Description}:
1652 Specifies whether waiting threads should be active or passive. If
1653 the value is @code{PASSIVE}, waiting threads should not consume CPU
1654 power while waiting; while the value is @code{ACTIVE} specifies that
1655 they should. If undefined, threads wait actively for a short time
1656 before waiting passively.
1657
1658 @item @emph{See also}:
1659 @ref{GOMP_SPINCOUNT}
1660
1661 @item @emph{Reference}:
1662 @uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.8
1663 @end table
1664
1665
1666
1667 @node GOMP_CPU_AFFINITY
1668 @section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs
1669 @cindex Environment Variable
1670 @table @asis
1671 @item @emph{Description}:
1672 Binds threads to specific CPUs. The variable should contain a space-separated
1673 or comma-separated list of CPUs. This list may contain different kinds of
1674 entries: either single CPU numbers in any order, a range of CPUs (M-N)
1675 or a range with some stride (M-N:S). CPU numbers are zero based. For example,
1676 @code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} will bind the initial thread
1677 to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to
1678 CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12,
1679 and 14 respectively and then start assigning back from the beginning of
1680 the list. @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0.
1681
1682 There is no libgomp library routine to determine whether a CPU affinity
1683 specification is in effect. As a workaround, language-specific library
1684 functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in
1685 Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY}
1686 environment variable. A defined CPU affinity on startup cannot be changed
1687 or disabled during the runtime of the application.
1688
1689 If both @env{GOMP_CPU_AFFINITY} and @env{OMP_PROC_BIND} are set,
1690 @env{OMP_PROC_BIND} has a higher precedence. If neither has been set and
1691 @env{OMP_PROC_BIND} is unset, or when @env{OMP_PROC_BIND} is set to
1692 @code{FALSE}, the host system will handle the assignment of threads to CPUs.
1693
1694 @item @emph{See also}:
1695 @ref{OMP_PLACES}, @ref{OMP_PROC_BIND}
1696 @end table
1697
1698
1699
1700 @node GOMP_DEBUG
1701 @section @env{GOMP_DEBUG} -- Enable debugging output
1702 @cindex Environment Variable
1703 @table @asis
1704 @item @emph{Description}:
1705 Enable debugging output. The variable should be set to @code{0}
1706 (disabled, also the default if not set), or @code{1} (enabled).
1707
1708 If enabled, some debugging output will be printed during execution.
1709 This is currently not specified in more detail, and subject to change.
1710 @end table
1711
1712
1713
1714 @node GOMP_STACKSIZE
1715 @section @env{GOMP_STACKSIZE} -- Set default thread stack size
1716 @cindex Environment Variable
1717 @cindex Implementation specific setting
1718 @table @asis
1719 @item @emph{Description}:
1720 Set the default thread stack size in kilobytes. This is different from
1721 @code{pthread_attr_setstacksize} which gets the number of bytes as an
1722 argument. If the stack size cannot be set due to system constraints, an
1723 error is reported and the initial stack size is left unchanged. If undefined,
1724 the stack size is system dependent.
1725
1726 @item @emph{See also}:
1727 @ref{OMP_STACKSIZE}
1728
1729 @item @emph{Reference}:
1730 @uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html,
1731 GCC Patches Mailinglist},
1732 @uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html,
1733 GCC Patches Mailinglist}
1734 @end table
1735
1736
1737
1738 @node GOMP_SPINCOUNT
1739 @section @env{GOMP_SPINCOUNT} -- Set the busy-wait spin count
1740 @cindex Environment Variable
1741 @cindex Implementation specific setting
1742 @table @asis
1743 @item @emph{Description}:
1744 Determines how long a threads waits actively with consuming CPU power
1745 before waiting passively without consuming CPU power. The value may be
1746 either @code{INFINITE}, @code{INFINITY} to always wait actively or an
1747 integer which gives the number of spins of the busy-wait loop. The
1748 integer may optionally be followed by the following suffixes acting
1749 as multiplication factors: @code{k} (kilo, thousand), @code{M} (mega,
1750 million), @code{G} (giga, billion), or @code{T} (tera, trillion).
1751 If undefined, 0 is used when @env{OMP_WAIT_POLICY} is @code{PASSIVE},
1752 300,000 is used when @env{OMP_WAIT_POLICY} is undefined and
1753 30 billion is used when @env{OMP_WAIT_POLICY} is @code{ACTIVE}.
1754 If there are more OpenMP threads than available CPUs, 1000 and 100
1755 spins are used for @env{OMP_WAIT_POLICY} being @code{ACTIVE} or
1756 undefined, respectively; unless the @env{GOMP_SPINCOUNT} is lower
1757 or @env{OMP_WAIT_POLICY} is @code{PASSIVE}.
1758
1759 @item @emph{See also}:
1760 @ref{OMP_WAIT_POLICY}
1761 @end table
1762
1763
1764
1765 @node GOMP_RTEMS_THREAD_POOLS
1766 @section @env{GOMP_RTEMS_THREAD_POOLS} -- Set the RTEMS specific thread pools
1767 @cindex Environment Variable
1768 @cindex Implementation specific setting
1769 @table @asis
1770 @item @emph{Description}:
1771 This environment variable is only used on the RTEMS real-time operating system.
1772 It determines the scheduler instance specific thread pools. The format for
1773 @env{GOMP_RTEMS_THREAD_POOLS} is a list of optional
1774 @code{<thread-pool-count>[$<priority>]@@<scheduler-name>} configurations
1775 separated by @code{:} where:
1776 @itemize @bullet
1777 @item @code{<thread-pool-count>} is the thread pool count for this scheduler
1778 instance.
1779 @item @code{$<priority>} is an optional priority for the worker threads of a
1780 thread pool according to @code{pthread_setschedparam}. In case a priority
1781 value is omitted, then a worker thread will inherit the priority of the OpenMP
1782 master thread that created it. The priority of the worker thread is not
1783 changed after creation, even if a new OpenMP master thread using the worker has
1784 a different priority.
1785 @item @code{@@<scheduler-name>} is the scheduler instance name according to the
1786 RTEMS application configuration.
1787 @end itemize
1788 In case no thread pool configuration is specified for a scheduler instance,
1789 then each OpenMP master thread of this scheduler instance will use its own
1790 dynamically allocated thread pool. To limit the worker thread count of the
1791 thread pools, each OpenMP master thread must call @code{omp_set_num_threads}.
1792 @item @emph{Example}:
1793 Lets suppose we have three scheduler instances @code{IO}, @code{WRK0}, and
1794 @code{WRK1} with @env{GOMP_RTEMS_THREAD_POOLS} set to
1795 @code{"1@@WRK0:3$4@@WRK1"}. Then there are no thread pool restrictions for
1796 scheduler instance @code{IO}. In the scheduler instance @code{WRK0} there is
1797 one thread pool available. Since no priority is specified for this scheduler
1798 instance, the worker thread inherits the priority of the OpenMP master thread
1799 that created it. In the scheduler instance @code{WRK1} there are three thread
1800 pools available and their worker threads run at priority four.
1801 @end table
1802
1803
1804
1805 @c ---------------------------------------------------------------------
1806 @c Enabling OpenACC
1807 @c ---------------------------------------------------------------------
1808
1809 @node Enabling OpenACC
1810 @chapter Enabling OpenACC
1811
1812 To activate the OpenACC extensions for C/C++ and Fortran, the compile-time
1813 flag @option{-fopenacc} must be specified. This enables the OpenACC directive
1814 @code{#pragma acc} in C/C++ and @code{!$acc} directives in free form,
1815 @code{c$acc}, @code{*$acc} and @code{!$acc} directives in fixed form,
1816 @code{!$} conditional compilation sentinels in free form and @code{c$},
1817 @code{*$} and @code{!$} sentinels in fixed form, for Fortran. The flag also
1818 arranges for automatic linking of the OpenACC runtime library
1819 (@ref{OpenACC Runtime Library Routines}).
1820
1821 See @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.
1822
1823 A complete description of all OpenACC directives accepted may be found in
1824 the @uref{https://www.openacc.org, OpenACC} Application Programming
1825 Interface manual, version 2.6.
1826
1827
1828
1829 @c ---------------------------------------------------------------------
1830 @c OpenACC Runtime Library Routines
1831 @c ---------------------------------------------------------------------
1832
1833 @node OpenACC Runtime Library Routines
1834 @chapter OpenACC Runtime Library Routines
1835
1836 The runtime routines described here are defined by section 3 of the OpenACC
1837 specifications in version 2.6.
1838 They have C linkage, and do not throw exceptions.
1839 Generally, they are available only for the host, with the exception of
1840 @code{acc_on_device}, which is available for both the host and the
1841 acceleration device.
1842
1843 @menu
1844 * acc_get_num_devices:: Get number of devices for the given device
1845 type.
1846 * acc_set_device_type:: Set type of device accelerator to use.
1847 * acc_get_device_type:: Get type of device accelerator to be used.
1848 * acc_set_device_num:: Set device number to use.
1849 * acc_get_device_num:: Get device number to be used.
1850 * acc_get_property:: Get device property.
1851 * acc_async_test:: Tests for completion of a specific asynchronous
1852 operation.
1853 * acc_async_test_all:: Tests for completion of all asynchronous
1854 operations.
1855 * acc_wait:: Wait for completion of a specific asynchronous
1856 operation.
1857 * acc_wait_all:: Waits for completion of all asynchronous
1858 operations.
1859 * acc_wait_all_async:: Wait for completion of all asynchronous
1860 operations.
1861 * acc_wait_async:: Wait for completion of asynchronous operations.
1862 * acc_init:: Initialize runtime for a specific device type.
1863 * acc_shutdown:: Shuts down the runtime for a specific device
1864 type.
1865 * acc_on_device:: Whether executing on a particular device
1866 * acc_malloc:: Allocate device memory.
1867 * acc_free:: Free device memory.
1868 * acc_copyin:: Allocate device memory and copy host memory to
1869 it.
1870 * acc_present_or_copyin:: If the data is not present on the device,
1871 allocate device memory and copy from host
1872 memory.
1873 * acc_create:: Allocate device memory and map it to host
1874 memory.
1875 * acc_present_or_create:: If the data is not present on the device,
1876 allocate device memory and map it to host
1877 memory.
1878 * acc_copyout:: Copy device memory to host memory.
1879 * acc_delete:: Free device memory.
1880 * acc_update_device:: Update device memory from mapped host memory.
1881 * acc_update_self:: Update host memory from mapped device memory.
1882 * acc_map_data:: Map previously allocated device memory to host
1883 memory.
1884 * acc_unmap_data:: Unmap device memory from host memory.
1885 * acc_deviceptr:: Get device pointer associated with specific
1886 host address.
1887 * acc_hostptr:: Get host pointer associated with specific
1888 device address.
1889 * acc_is_present:: Indicate whether host variable / array is
1890 present on device.
1891 * acc_memcpy_to_device:: Copy host memory to device memory.
1892 * acc_memcpy_from_device:: Copy device memory to host memory.
1893 * acc_attach:: Let device pointer point to device-pointer target.
1894 * acc_detach:: Let device pointer point to host-pointer target.
1895
1896 API routines for target platforms.
1897
1898 * acc_get_current_cuda_device:: Get CUDA device handle.
1899 * acc_get_current_cuda_context::Get CUDA context handle.
1900 * acc_get_cuda_stream:: Get CUDA stream handle.
1901 * acc_set_cuda_stream:: Set CUDA stream handle.
1902
1903 API routines for the OpenACC Profiling Interface.
1904
1905 * acc_prof_register:: Register callbacks.
1906 * acc_prof_unregister:: Unregister callbacks.
1907 * acc_prof_lookup:: Obtain inquiry functions.
1908 * acc_register_library:: Library registration.
1909 @end menu
1910
1911
1912
1913 @node acc_get_num_devices
1914 @section @code{acc_get_num_devices} -- Get number of devices for given device type
1915 @table @asis
1916 @item @emph{Description}
1917 This function returns a value indicating the number of devices available
1918 for the device type specified in @var{devicetype}.
1919
1920 @item @emph{C/C++}:
1921 @multitable @columnfractions .20 .80
1922 @item @emph{Prototype}: @tab @code{int acc_get_num_devices(acc_device_t devicetype);}
1923 @end multitable
1924
1925 @item @emph{Fortran}:
1926 @multitable @columnfractions .20 .80
1927 @item @emph{Interface}: @tab @code{integer function acc_get_num_devices(devicetype)}
1928 @item @tab @code{integer(kind=acc_device_kind) devicetype}
1929 @end multitable
1930
1931 @item @emph{Reference}:
1932 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
1933 3.2.1.
1934 @end table
1935
1936
1937
1938 @node acc_set_device_type
1939 @section @code{acc_set_device_type} -- Set type of device accelerator to use.
1940 @table @asis
1941 @item @emph{Description}
1942 This function indicates to the runtime library which device type, specified
1943 in @var{devicetype}, to use when executing a parallel or kernels region.
1944
1945 @item @emph{C/C++}:
1946 @multitable @columnfractions .20 .80
1947 @item @emph{Prototype}: @tab @code{acc_set_device_type(acc_device_t devicetype);}
1948 @end multitable
1949
1950 @item @emph{Fortran}:
1951 @multitable @columnfractions .20 .80
1952 @item @emph{Interface}: @tab @code{subroutine acc_set_device_type(devicetype)}
1953 @item @tab @code{integer(kind=acc_device_kind) devicetype}
1954 @end multitable
1955
1956 @item @emph{Reference}:
1957 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
1958 3.2.2.
1959 @end table
1960
1961
1962
1963 @node acc_get_device_type
1964 @section @code{acc_get_device_type} -- Get type of device accelerator to be used.
1965 @table @asis
1966 @item @emph{Description}
1967 This function returns what device type will be used when executing a
1968 parallel or kernels region.
1969
1970 @item @emph{C/C++}:
1971 @multitable @columnfractions .20 .80
1972 @item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
1973 @end multitable
1974
1975 @item @emph{Fortran}:
1976 @multitable @columnfractions .20 .80
1977 @item @emph{Interface}: @tab @code{function acc_get_device_type(void)}
1978 @item @tab @code{integer(kind=acc_device_kind) acc_get_device_type}
1979 @end multitable
1980
1981 @item @emph{Reference}:
1982 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
1983 3.2.3.
1984 @end table
1985
1986
1987
1988 @node acc_set_device_num
1989 @section @code{acc_set_device_num} -- Set device number to use.
1990 @table @asis
1991 @item @emph{Description}
1992 This function will indicate to the runtime which device number,
1993 specified by @var{devicenum}, associated with the specified device
1994 type @var{devicetype}.
1995
1996 @item @emph{C/C++}:
1997 @multitable @columnfractions .20 .80
1998 @item @emph{Prototype}: @tab @code{acc_set_device_num(int devicenum, acc_device_t devicetype);}
1999 @end multitable
2000
2001 @item @emph{Fortran}:
2002 @multitable @columnfractions .20 .80
2003 @item @emph{Interface}: @tab @code{subroutine acc_set_device_num(devicenum, devicetype)}
2004 @item @tab @code{integer devicenum}
2005 @item @tab @code{integer(kind=acc_device_kind) devicetype}
2006 @end multitable
2007
2008 @item @emph{Reference}:
2009 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2010 3.2.4.
2011 @end table
2012
2013
2014
2015 @node acc_get_device_num
2016 @section @code{acc_get_device_num} -- Get device number to be used.
2017 @table @asis
2018 @item @emph{Description}
2019 This function returns which device number associated with the specified device
2020 type @var{devicetype}, will be used when executing a parallel or kernels
2021 region.
2022
2023 @item @emph{C/C++}:
2024 @multitable @columnfractions .20 .80
2025 @item @emph{Prototype}: @tab @code{int acc_get_device_num(acc_device_t devicetype);}
2026 @end multitable
2027
2028 @item @emph{Fortran}:
2029 @multitable @columnfractions .20 .80
2030 @item @emph{Interface}: @tab @code{function acc_get_device_num(devicetype)}
2031 @item @tab @code{integer(kind=acc_device_kind) devicetype}
2032 @item @tab @code{integer acc_get_device_num}
2033 @end multitable
2034
2035 @item @emph{Reference}:
2036 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2037 3.2.5.
2038 @end table
2039
2040
2041
2042 @node acc_get_property
2043 @section @code{acc_get_property} -- Get device property.
2044 @cindex acc_get_property
2045 @cindex acc_get_property_string
2046 @table @asis
2047 @item @emph{Description}
2048 These routines return the value of the specified @var{property} for the
2049 device being queried according to @var{devicenum} and @var{devicetype}.
2050 Integer-valued and string-valued properties are returned by
2051 @code{acc_get_property} and @code{acc_get_property_string} respectively.
2052 The Fortran @code{acc_get_property_string} subroutine returns the string
2053 retrieved in its fourth argument while the remaining entry points are
2054 functions, which pass the return value as their result.
2055
2056 Note for Fortran, only: the OpenACC technical committee corrected and, hence,
2057 modified the interface introduced in OpenACC 2.6. The kind-value parameter
2058 @code{acc_device_property} has been renamed to @code{acc_device_property_kind}
2059 for consistency and the return type of the @code{acc_get_property} function is
2060 now a @code{c_size_t} integer instead of a @code{acc_device_property} integer.
2061 The parameter @code{acc_device_property} will continue to be provided,
2062 but might be removed in a future version of GCC.
2063
2064 @item @emph{C/C++}:
2065 @multitable @columnfractions .20 .80
2066 @item @emph{Prototype}: @tab @code{size_t acc_get_property(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
2067 @item @emph{Prototype}: @tab @code{const char *acc_get_property_string(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
2068 @end multitable
2069
2070 @item @emph{Fortran}:
2071 @multitable @columnfractions .20 .80
2072 @item @emph{Interface}: @tab @code{function acc_get_property(devicenum, devicetype, property)}
2073 @item @emph{Interface}: @tab @code{subroutine acc_get_property_string(devicenum, devicetype, property, string)}
2074 @item @tab @code{use ISO_C_Binding, only: c_size_t}
2075 @item @tab @code{integer devicenum}
2076 @item @tab @code{integer(kind=acc_device_kind) devicetype}
2077 @item @tab @code{integer(kind=acc_device_property_kind) property}
2078 @item @tab @code{integer(kind=c_size_t) acc_get_property}
2079 @item @tab @code{character(*) string}
2080 @end multitable
2081
2082 @item @emph{Reference}:
2083 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2084 3.2.6.
2085 @end table
2086
2087
2088
2089 @node acc_async_test
2090 @section @code{acc_async_test} -- Test for completion of a specific asynchronous operation.
2091 @table @asis
2092 @item @emph{Description}
2093 This function tests for completion of the asynchronous operation specified
2094 in @var{arg}. In C/C++, a non-zero value will be returned to indicate
2095 the specified asynchronous operation has completed. While Fortran will return
2096 a @code{true}. If the asynchronous operation has not completed, C/C++ returns
2097 a zero and Fortran returns a @code{false}.
2098
2099 @item @emph{C/C++}:
2100 @multitable @columnfractions .20 .80
2101 @item @emph{Prototype}: @tab @code{int acc_async_test(int arg);}
2102 @end multitable
2103
2104 @item @emph{Fortran}:
2105 @multitable @columnfractions .20 .80
2106 @item @emph{Interface}: @tab @code{function acc_async_test(arg)}
2107 @item @tab @code{integer(kind=acc_handle_kind) arg}
2108 @item @tab @code{logical acc_async_test}
2109 @end multitable
2110
2111 @item @emph{Reference}:
2112 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2113 3.2.9.
2114 @end table
2115
2116
2117
2118 @node acc_async_test_all
2119 @section @code{acc_async_test_all} -- Tests for completion of all asynchronous operations.
2120 @table @asis
2121 @item @emph{Description}
2122 This function tests for completion of all asynchronous operations.
2123 In C/C++, a non-zero value will be returned to indicate all asynchronous
2124 operations have completed. While Fortran will return a @code{true}. If
2125 any asynchronous operation has not completed, C/C++ returns a zero and
2126 Fortran returns a @code{false}.
2127
2128 @item @emph{C/C++}:
2129 @multitable @columnfractions .20 .80
2130 @item @emph{Prototype}: @tab @code{int acc_async_test_all(void);}
2131 @end multitable
2132
2133 @item @emph{Fortran}:
2134 @multitable @columnfractions .20 .80
2135 @item @emph{Interface}: @tab @code{function acc_async_test()}
2136 @item @tab @code{logical acc_get_device_num}
2137 @end multitable
2138
2139 @item @emph{Reference}:
2140 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2141 3.2.10.
2142 @end table
2143
2144
2145
2146 @node acc_wait
2147 @section @code{acc_wait} -- Wait for completion of a specific asynchronous operation.
2148 @table @asis
2149 @item @emph{Description}
2150 This function waits for completion of the asynchronous operation
2151 specified in @var{arg}.
2152
2153 @item @emph{C/C++}:
2154 @multitable @columnfractions .20 .80
2155 @item @emph{Prototype}: @tab @code{acc_wait(arg);}
2156 @item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait(arg);}
2157 @end multitable
2158
2159 @item @emph{Fortran}:
2160 @multitable @columnfractions .20 .80
2161 @item @emph{Interface}: @tab @code{subroutine acc_wait(arg)}
2162 @item @tab @code{integer(acc_handle_kind) arg}
2163 @item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait(arg)}
2164 @item @tab @code{integer(acc_handle_kind) arg}
2165 @end multitable
2166
2167 @item @emph{Reference}:
2168 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2169 3.2.11.
2170 @end table
2171
2172
2173
2174 @node acc_wait_all
2175 @section @code{acc_wait_all} -- Waits for completion of all asynchronous operations.
2176 @table @asis
2177 @item @emph{Description}
2178 This function waits for the completion of all asynchronous operations.
2179
2180 @item @emph{C/C++}:
2181 @multitable @columnfractions .20 .80
2182 @item @emph{Prototype}: @tab @code{acc_wait_all(void);}
2183 @item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait_all(void);}
2184 @end multitable
2185
2186 @item @emph{Fortran}:
2187 @multitable @columnfractions .20 .80
2188 @item @emph{Interface}: @tab @code{subroutine acc_wait_all()}
2189 @item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait_all()}
2190 @end multitable
2191
2192 @item @emph{Reference}:
2193 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2194 3.2.13.
2195 @end table
2196
2197
2198
2199 @node acc_wait_all_async
2200 @section @code{acc_wait_all_async} -- Wait for completion of all asynchronous operations.
2201 @table @asis
2202 @item @emph{Description}
2203 This function enqueues a wait operation on the queue @var{async} for any
2204 and all asynchronous operations that have been previously enqueued on
2205 any queue.
2206
2207 @item @emph{C/C++}:
2208 @multitable @columnfractions .20 .80
2209 @item @emph{Prototype}: @tab @code{acc_wait_all_async(int async);}
2210 @end multitable
2211
2212 @item @emph{Fortran}:
2213 @multitable @columnfractions .20 .80
2214 @item @emph{Interface}: @tab @code{subroutine acc_wait_all_async(async)}
2215 @item @tab @code{integer(acc_handle_kind) async}
2216 @end multitable
2217
2218 @item @emph{Reference}:
2219 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2220 3.2.14.
2221 @end table
2222
2223
2224
2225 @node acc_wait_async
2226 @section @code{acc_wait_async} -- Wait for completion of asynchronous operations.
2227 @table @asis
2228 @item @emph{Description}
2229 This function enqueues a wait operation on queue @var{async} for any and all
2230 asynchronous operations enqueued on queue @var{arg}.
2231
2232 @item @emph{C/C++}:
2233 @multitable @columnfractions .20 .80
2234 @item @emph{Prototype}: @tab @code{acc_wait_async(int arg, int async);}
2235 @end multitable
2236
2237 @item @emph{Fortran}:
2238 @multitable @columnfractions .20 .80
2239 @item @emph{Interface}: @tab @code{subroutine acc_wait_async(arg, async)}
2240 @item @tab @code{integer(acc_handle_kind) arg, async}
2241 @end multitable
2242
2243 @item @emph{Reference}:
2244 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2245 3.2.12.
2246 @end table
2247
2248
2249
2250 @node acc_init
2251 @section @code{acc_init} -- Initialize runtime for a specific device type.
2252 @table @asis
2253 @item @emph{Description}
2254 This function initializes the runtime for the device type specified in
2255 @var{devicetype}.
2256
2257 @item @emph{C/C++}:
2258 @multitable @columnfractions .20 .80
2259 @item @emph{Prototype}: @tab @code{acc_init(acc_device_t devicetype);}
2260 @end multitable
2261
2262 @item @emph{Fortran}:
2263 @multitable @columnfractions .20 .80
2264 @item @emph{Interface}: @tab @code{subroutine acc_init(devicetype)}
2265 @item @tab @code{integer(acc_device_kind) devicetype}
2266 @end multitable
2267
2268 @item @emph{Reference}:
2269 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2270 3.2.7.
2271 @end table
2272
2273
2274
2275 @node acc_shutdown
2276 @section @code{acc_shutdown} -- Shuts down the runtime for a specific device type.
2277 @table @asis
2278 @item @emph{Description}
2279 This function shuts down the runtime for the device type specified in
2280 @var{devicetype}.
2281
2282 @item @emph{C/C++}:
2283 @multitable @columnfractions .20 .80
2284 @item @emph{Prototype}: @tab @code{acc_shutdown(acc_device_t devicetype);}
2285 @end multitable
2286
2287 @item @emph{Fortran}:
2288 @multitable @columnfractions .20 .80
2289 @item @emph{Interface}: @tab @code{subroutine acc_shutdown(devicetype)}
2290 @item @tab @code{integer(acc_device_kind) devicetype}
2291 @end multitable
2292
2293 @item @emph{Reference}:
2294 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2295 3.2.8.
2296 @end table
2297
2298
2299
2300 @node acc_on_device
2301 @section @code{acc_on_device} -- Whether executing on a particular device
2302 @table @asis
2303 @item @emph{Description}:
2304 This function returns whether the program is executing on a particular
2305 device specified in @var{devicetype}. In C/C++ a non-zero value is
2306 returned to indicate the device is executing on the specified device type.
2307 In Fortran, @code{true} will be returned. If the program is not executing
2308 on the specified device type C/C++ will return a zero, while Fortran will
2309 return @code{false}.
2310
2311 @item @emph{C/C++}:
2312 @multitable @columnfractions .20 .80
2313 @item @emph{Prototype}: @tab @code{acc_on_device(acc_device_t devicetype);}
2314 @end multitable
2315
2316 @item @emph{Fortran}:
2317 @multitable @columnfractions .20 .80
2318 @item @emph{Interface}: @tab @code{function acc_on_device(devicetype)}
2319 @item @tab @code{integer(acc_device_kind) devicetype}
2320 @item @tab @code{logical acc_on_device}
2321 @end multitable
2322
2323
2324 @item @emph{Reference}:
2325 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2326 3.2.17.
2327 @end table
2328
2329
2330
2331 @node acc_malloc
2332 @section @code{acc_malloc} -- Allocate device memory.
2333 @table @asis
2334 @item @emph{Description}
2335 This function allocates @var{len} bytes of device memory. It returns
2336 the device address of the allocated memory.
2337
2338 @item @emph{C/C++}:
2339 @multitable @columnfractions .20 .80
2340 @item @emph{Prototype}: @tab @code{d_void* acc_malloc(size_t len);}
2341 @end multitable
2342
2343 @item @emph{Reference}:
2344 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2345 3.2.18.
2346 @end table
2347
2348
2349
2350 @node acc_free
2351 @section @code{acc_free} -- Free device memory.
2352 @table @asis
2353 @item @emph{Description}
2354 Free previously allocated device memory at the device address @code{a}.
2355
2356 @item @emph{C/C++}:
2357 @multitable @columnfractions .20 .80
2358 @item @emph{Prototype}: @tab @code{acc_free(d_void *a);}
2359 @end multitable
2360
2361 @item @emph{Reference}:
2362 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2363 3.2.19.
2364 @end table
2365
2366
2367
2368 @node acc_copyin
2369 @section @code{acc_copyin} -- Allocate device memory and copy host memory to it.
2370 @table @asis
2371 @item @emph{Description}
2372 In C/C++, this function allocates @var{len} bytes of device memory
2373 and maps it to the specified host address in @var{a}. The device
2374 address of the newly allocated device memory is returned.
2375
2376 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2377 a contiguous array section. The second form @var{a} specifies a
2378 variable or array element and @var{len} specifies the length in bytes.
2379
2380 @item @emph{C/C++}:
2381 @multitable @columnfractions .20 .80
2382 @item @emph{Prototype}: @tab @code{void *acc_copyin(h_void *a, size_t len);}
2383 @item @emph{Prototype}: @tab @code{void *acc_copyin_async(h_void *a, size_t len, int async);}
2384 @end multitable
2385
2386 @item @emph{Fortran}:
2387 @multitable @columnfractions .20 .80
2388 @item @emph{Interface}: @tab @code{subroutine acc_copyin(a)}
2389 @item @tab @code{type, dimension(:[,:]...) :: a}
2390 @item @emph{Interface}: @tab @code{subroutine acc_copyin(a, len)}
2391 @item @tab @code{type, dimension(:[,:]...) :: a}
2392 @item @tab @code{integer len}
2393 @item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, async)}
2394 @item @tab @code{type, dimension(:[,:]...) :: a}
2395 @item @tab @code{integer(acc_handle_kind) :: async}
2396 @item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, len, async)}
2397 @item @tab @code{type, dimension(:[,:]...) :: a}
2398 @item @tab @code{integer len}
2399 @item @tab @code{integer(acc_handle_kind) :: async}
2400 @end multitable
2401
2402 @item @emph{Reference}:
2403 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2404 3.2.20.
2405 @end table
2406
2407
2408
2409 @node acc_present_or_copyin
2410 @section @code{acc_present_or_copyin} -- If the data is not present on the device, allocate device memory and copy from host memory.
2411 @table @asis
2412 @item @emph{Description}
2413 This function tests if the host data specified by @var{a} and of length
2414 @var{len} is present or not. If it is not present, then device memory
2415 will be allocated and the host memory copied. The device address of
2416 the newly allocated device memory is returned.
2417
2418 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2419 a contiguous array section. The second form @var{a} specifies a variable or
2420 array element and @var{len} specifies the length in bytes.
2421
2422 Note that @code{acc_present_or_copyin} and @code{acc_pcopyin} exist for
2423 backward compatibility with OpenACC 2.0; use @ref{acc_copyin} instead.
2424
2425 @item @emph{C/C++}:
2426 @multitable @columnfractions .20 .80
2427 @item @emph{Prototype}: @tab @code{void *acc_present_or_copyin(h_void *a, size_t len);}
2428 @item @emph{Prototype}: @tab @code{void *acc_pcopyin(h_void *a, size_t len);}
2429 @end multitable
2430
2431 @item @emph{Fortran}:
2432 @multitable @columnfractions .20 .80
2433 @item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a)}
2434 @item @tab @code{type, dimension(:[,:]...) :: a}
2435 @item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a, len)}
2436 @item @tab @code{type, dimension(:[,:]...) :: a}
2437 @item @tab @code{integer len}
2438 @item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a)}
2439 @item @tab @code{type, dimension(:[,:]...) :: a}
2440 @item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a, len)}
2441 @item @tab @code{type, dimension(:[,:]...) :: a}
2442 @item @tab @code{integer len}
2443 @end multitable
2444
2445 @item @emph{Reference}:
2446 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2447 3.2.20.
2448 @end table
2449
2450
2451
2452 @node acc_create
2453 @section @code{acc_create} -- Allocate device memory and map it to host memory.
2454 @table @asis
2455 @item @emph{Description}
2456 This function allocates device memory and maps it to host memory specified
2457 by the host address @var{a} with a length of @var{len} bytes. In C/C++,
2458 the function returns the device address of the allocated device memory.
2459
2460 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2461 a contiguous array section. The second form @var{a} specifies a variable or
2462 array element and @var{len} specifies the length in bytes.
2463
2464 @item @emph{C/C++}:
2465 @multitable @columnfractions .20 .80
2466 @item @emph{Prototype}: @tab @code{void *acc_create(h_void *a, size_t len);}
2467 @item @emph{Prototype}: @tab @code{void *acc_create_async(h_void *a, size_t len, int async);}
2468 @end multitable
2469
2470 @item @emph{Fortran}:
2471 @multitable @columnfractions .20 .80
2472 @item @emph{Interface}: @tab @code{subroutine acc_create(a)}
2473 @item @tab @code{type, dimension(:[,:]...) :: a}
2474 @item @emph{Interface}: @tab @code{subroutine acc_create(a, len)}
2475 @item @tab @code{type, dimension(:[,:]...) :: a}
2476 @item @tab @code{integer len}
2477 @item @emph{Interface}: @tab @code{subroutine acc_create_async(a, async)}
2478 @item @tab @code{type, dimension(:[,:]...) :: a}
2479 @item @tab @code{integer(acc_handle_kind) :: async}
2480 @item @emph{Interface}: @tab @code{subroutine acc_create_async(a, len, async)}
2481 @item @tab @code{type, dimension(:[,:]...) :: a}
2482 @item @tab @code{integer len}
2483 @item @tab @code{integer(acc_handle_kind) :: async}
2484 @end multitable
2485
2486 @item @emph{Reference}:
2487 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2488 3.2.21.
2489 @end table
2490
2491
2492
2493 @node acc_present_or_create
2494 @section @code{acc_present_or_create} -- If the data is not present on the device, allocate device memory and map it to host memory.
2495 @table @asis
2496 @item @emph{Description}
2497 This function tests if the host data specified by @var{a} and of length
2498 @var{len} is present or not. If it is not present, then device memory
2499 will be allocated and mapped to host memory. In C/C++, the device address
2500 of the newly allocated device memory is returned.
2501
2502 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2503 a contiguous array section. The second form @var{a} specifies a variable or
2504 array element and @var{len} specifies the length in bytes.
2505
2506 Note that @code{acc_present_or_create} and @code{acc_pcreate} exist for
2507 backward compatibility with OpenACC 2.0; use @ref{acc_create} instead.
2508
2509 @item @emph{C/C++}:
2510 @multitable @columnfractions .20 .80
2511 @item @emph{Prototype}: @tab @code{void *acc_present_or_create(h_void *a, size_t len)}
2512 @item @emph{Prototype}: @tab @code{void *acc_pcreate(h_void *a, size_t len)}
2513 @end multitable
2514
2515 @item @emph{Fortran}:
2516 @multitable @columnfractions .20 .80
2517 @item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a)}
2518 @item @tab @code{type, dimension(:[,:]...) :: a}
2519 @item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a, len)}
2520 @item @tab @code{type, dimension(:[,:]...) :: a}
2521 @item @tab @code{integer len}
2522 @item @emph{Interface}: @tab @code{subroutine acc_pcreate(a)}
2523 @item @tab @code{type, dimension(:[,:]...) :: a}
2524 @item @emph{Interface}: @tab @code{subroutine acc_pcreate(a, len)}
2525 @item @tab @code{type, dimension(:[,:]...) :: a}
2526 @item @tab @code{integer len}
2527 @end multitable
2528
2529 @item @emph{Reference}:
2530 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2531 3.2.21.
2532 @end table
2533
2534
2535
2536 @node acc_copyout
2537 @section @code{acc_copyout} -- Copy device memory to host memory.
2538 @table @asis
2539 @item @emph{Description}
2540 This function copies mapped device memory to host memory which is specified
2541 by host address @var{a} for a length @var{len} bytes in C/C++.
2542
2543 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2544 a contiguous array section. The second form @var{a} specifies a variable or
2545 array element and @var{len} specifies the length in bytes.
2546
2547 @item @emph{C/C++}:
2548 @multitable @columnfractions .20 .80
2549 @item @emph{Prototype}: @tab @code{acc_copyout(h_void *a, size_t len);}
2550 @item @emph{Prototype}: @tab @code{acc_copyout_async(h_void *a, size_t len, int async);}
2551 @item @emph{Prototype}: @tab @code{acc_copyout_finalize(h_void *a, size_t len);}
2552 @item @emph{Prototype}: @tab @code{acc_copyout_finalize_async(h_void *a, size_t len, int async);}
2553 @end multitable
2554
2555 @item @emph{Fortran}:
2556 @multitable @columnfractions .20 .80
2557 @item @emph{Interface}: @tab @code{subroutine acc_copyout(a)}
2558 @item @tab @code{type, dimension(:[,:]...) :: a}
2559 @item @emph{Interface}: @tab @code{subroutine acc_copyout(a, len)}
2560 @item @tab @code{type, dimension(:[,:]...) :: a}
2561 @item @tab @code{integer len}
2562 @item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, async)}
2563 @item @tab @code{type, dimension(:[,:]...) :: a}
2564 @item @tab @code{integer(acc_handle_kind) :: async}
2565 @item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, len, async)}
2566 @item @tab @code{type, dimension(:[,:]...) :: a}
2567 @item @tab @code{integer len}
2568 @item @tab @code{integer(acc_handle_kind) :: async}
2569 @item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a)}
2570 @item @tab @code{type, dimension(:[,:]...) :: a}
2571 @item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a, len)}
2572 @item @tab @code{type, dimension(:[,:]...) :: a}
2573 @item @tab @code{integer len}
2574 @item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, async)}
2575 @item @tab @code{type, dimension(:[,:]...) :: a}
2576 @item @tab @code{integer(acc_handle_kind) :: async}
2577 @item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, len, async)}
2578 @item @tab @code{type, dimension(:[,:]...) :: a}
2579 @item @tab @code{integer len}
2580 @item @tab @code{integer(acc_handle_kind) :: async}
2581 @end multitable
2582
2583 @item @emph{Reference}:
2584 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2585 3.2.22.
2586 @end table
2587
2588
2589
2590 @node acc_delete
2591 @section @code{acc_delete} -- Free device memory.
2592 @table @asis
2593 @item @emph{Description}
2594 This function frees previously allocated device memory specified by
2595 the device address @var{a} and the length of @var{len} bytes.
2596
2597 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2598 a contiguous array section. The second form @var{a} specifies a variable or
2599 array element and @var{len} specifies the length in bytes.
2600
2601 @item @emph{C/C++}:
2602 @multitable @columnfractions .20 .80
2603 @item @emph{Prototype}: @tab @code{acc_delete(h_void *a, size_t len);}
2604 @item @emph{Prototype}: @tab @code{acc_delete_async(h_void *a, size_t len, int async);}
2605 @item @emph{Prototype}: @tab @code{acc_delete_finalize(h_void *a, size_t len);}
2606 @item @emph{Prototype}: @tab @code{acc_delete_finalize_async(h_void *a, size_t len, int async);}
2607 @end multitable
2608
2609 @item @emph{Fortran}:
2610 @multitable @columnfractions .20 .80
2611 @item @emph{Interface}: @tab @code{subroutine acc_delete(a)}
2612 @item @tab @code{type, dimension(:[,:]...) :: a}
2613 @item @emph{Interface}: @tab @code{subroutine acc_delete(a, len)}
2614 @item @tab @code{type, dimension(:[,:]...) :: a}
2615 @item @tab @code{integer len}
2616 @item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, async)}
2617 @item @tab @code{type, dimension(:[,:]...) :: a}
2618 @item @tab @code{integer(acc_handle_kind) :: async}
2619 @item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, len, async)}
2620 @item @tab @code{type, dimension(:[,:]...) :: a}
2621 @item @tab @code{integer len}
2622 @item @tab @code{integer(acc_handle_kind) :: async}
2623 @item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a)}
2624 @item @tab @code{type, dimension(:[,:]...) :: a}
2625 @item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a, len)}
2626 @item @tab @code{type, dimension(:[,:]...) :: a}
2627 @item @tab @code{integer len}
2628 @item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, async)}
2629 @item @tab @code{type, dimension(:[,:]...) :: a}
2630 @item @tab @code{integer(acc_handle_kind) :: async}
2631 @item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, len, async)}
2632 @item @tab @code{type, dimension(:[,:]...) :: a}
2633 @item @tab @code{integer len}
2634 @item @tab @code{integer(acc_handle_kind) :: async}
2635 @end multitable
2636
2637 @item @emph{Reference}:
2638 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2639 3.2.23.
2640 @end table
2641
2642
2643
2644 @node acc_update_device
2645 @section @code{acc_update_device} -- Update device memory from mapped host memory.
2646 @table @asis
2647 @item @emph{Description}
2648 This function updates the device copy from the previously mapped host memory.
2649 The host memory is specified with the host address @var{a} and a length of
2650 @var{len} bytes.
2651
2652 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2653 a contiguous array section. The second form @var{a} specifies a variable or
2654 array element and @var{len} specifies the length in bytes.
2655
2656 @item @emph{C/C++}:
2657 @multitable @columnfractions .20 .80
2658 @item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len);}
2659 @item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len, async);}
2660 @end multitable
2661
2662 @item @emph{Fortran}:
2663 @multitable @columnfractions .20 .80
2664 @item @emph{Interface}: @tab @code{subroutine acc_update_device(a)}
2665 @item @tab @code{type, dimension(:[,:]...) :: a}
2666 @item @emph{Interface}: @tab @code{subroutine acc_update_device(a, len)}
2667 @item @tab @code{type, dimension(:[,:]...) :: a}
2668 @item @tab @code{integer len}
2669 @item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, async)}
2670 @item @tab @code{type, dimension(:[,:]...) :: a}
2671 @item @tab @code{integer(acc_handle_kind) :: async}
2672 @item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, len, async)}
2673 @item @tab @code{type, dimension(:[,:]...) :: a}
2674 @item @tab @code{integer len}
2675 @item @tab @code{integer(acc_handle_kind) :: async}
2676 @end multitable
2677
2678 @item @emph{Reference}:
2679 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2680 3.2.24.
2681 @end table
2682
2683
2684
2685 @node acc_update_self
2686 @section @code{acc_update_self} -- Update host memory from mapped device memory.
2687 @table @asis
2688 @item @emph{Description}
2689 This function updates the host copy from the previously mapped device memory.
2690 The host memory is specified with the host address @var{a} and a length of
2691 @var{len} bytes.
2692
2693 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2694 a contiguous array section. The second form @var{a} specifies a variable or
2695 array element and @var{len} specifies the length in bytes.
2696
2697 @item @emph{C/C++}:
2698 @multitable @columnfractions .20 .80
2699 @item @emph{Prototype}: @tab @code{acc_update_self(h_void *a, size_t len);}
2700 @item @emph{Prototype}: @tab @code{acc_update_self_async(h_void *a, size_t len, int async);}
2701 @end multitable
2702
2703 @item @emph{Fortran}:
2704 @multitable @columnfractions .20 .80
2705 @item @emph{Interface}: @tab @code{subroutine acc_update_self(a)}
2706 @item @tab @code{type, dimension(:[,:]...) :: a}
2707 @item @emph{Interface}: @tab @code{subroutine acc_update_self(a, len)}
2708 @item @tab @code{type, dimension(:[,:]...) :: a}
2709 @item @tab @code{integer len}
2710 @item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, async)}
2711 @item @tab @code{type, dimension(:[,:]...) :: a}
2712 @item @tab @code{integer(acc_handle_kind) :: async}
2713 @item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, len, async)}
2714 @item @tab @code{type, dimension(:[,:]...) :: a}
2715 @item @tab @code{integer len}
2716 @item @tab @code{integer(acc_handle_kind) :: async}
2717 @end multitable
2718
2719 @item @emph{Reference}:
2720 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2721 3.2.25.
2722 @end table
2723
2724
2725
2726 @node acc_map_data
2727 @section @code{acc_map_data} -- Map previously allocated device memory to host memory.
2728 @table @asis
2729 @item @emph{Description}
2730 This function maps previously allocated device and host memory. The device
2731 memory is specified with the device address @var{d}. The host memory is
2732 specified with the host address @var{h} and a length of @var{len}.
2733
2734 @item @emph{C/C++}:
2735 @multitable @columnfractions .20 .80
2736 @item @emph{Prototype}: @tab @code{acc_map_data(h_void *h, d_void *d, size_t len);}
2737 @end multitable
2738
2739 @item @emph{Reference}:
2740 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2741 3.2.26.
2742 @end table
2743
2744
2745
2746 @node acc_unmap_data
2747 @section @code{acc_unmap_data} -- Unmap device memory from host memory.
2748 @table @asis
2749 @item @emph{Description}
2750 This function unmaps previously mapped device and host memory. The latter
2751 specified by @var{h}.
2752
2753 @item @emph{C/C++}:
2754 @multitable @columnfractions .20 .80
2755 @item @emph{Prototype}: @tab @code{acc_unmap_data(h_void *h);}
2756 @end multitable
2757
2758 @item @emph{Reference}:
2759 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2760 3.2.27.
2761 @end table
2762
2763
2764
2765 @node acc_deviceptr
2766 @section @code{acc_deviceptr} -- Get device pointer associated with specific host address.
2767 @table @asis
2768 @item @emph{Description}
2769 This function returns the device address that has been mapped to the
2770 host address specified by @var{h}.
2771
2772 @item @emph{C/C++}:
2773 @multitable @columnfractions .20 .80
2774 @item @emph{Prototype}: @tab @code{void *acc_deviceptr(h_void *h);}
2775 @end multitable
2776
2777 @item @emph{Reference}:
2778 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2779 3.2.28.
2780 @end table
2781
2782
2783
2784 @node acc_hostptr
2785 @section @code{acc_hostptr} -- Get host pointer associated with specific device address.
2786 @table @asis
2787 @item @emph{Description}
2788 This function returns the host address that has been mapped to the
2789 device address specified by @var{d}.
2790
2791 @item @emph{C/C++}:
2792 @multitable @columnfractions .20 .80
2793 @item @emph{Prototype}: @tab @code{void *acc_hostptr(d_void *d);}
2794 @end multitable
2795
2796 @item @emph{Reference}:
2797 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2798 3.2.29.
2799 @end table
2800
2801
2802
2803 @node acc_is_present
2804 @section @code{acc_is_present} -- Indicate whether host variable / array is present on device.
2805 @table @asis
2806 @item @emph{Description}
2807 This function indicates whether the specified host address in @var{a} and a
2808 length of @var{len} bytes is present on the device. In C/C++, a non-zero
2809 value is returned to indicate the presence of the mapped memory on the
2810 device. A zero is returned to indicate the memory is not mapped on the
2811 device.
2812
2813 In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
2814 a contiguous array section. The second form @var{a} specifies a variable or
2815 array element and @var{len} specifies the length in bytes. If the host
2816 memory is mapped to device memory, then a @code{true} is returned. Otherwise,
2817 a @code{false} is return to indicate the mapped memory is not present.
2818
2819 @item @emph{C/C++}:
2820 @multitable @columnfractions .20 .80
2821 @item @emph{Prototype}: @tab @code{int acc_is_present(h_void *a, size_t len);}
2822 @end multitable
2823
2824 @item @emph{Fortran}:
2825 @multitable @columnfractions .20 .80
2826 @item @emph{Interface}: @tab @code{function acc_is_present(a)}
2827 @item @tab @code{type, dimension(:[,:]...) :: a}
2828 @item @tab @code{logical acc_is_present}
2829 @item @emph{Interface}: @tab @code{function acc_is_present(a, len)}
2830 @item @tab @code{type, dimension(:[,:]...) :: a}
2831 @item @tab @code{integer len}
2832 @item @tab @code{logical acc_is_present}
2833 @end multitable
2834
2835 @item @emph{Reference}:
2836 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2837 3.2.30.
2838 @end table
2839
2840
2841
2842 @node acc_memcpy_to_device
2843 @section @code{acc_memcpy_to_device} -- Copy host memory to device memory.
2844 @table @asis
2845 @item @emph{Description}
2846 This function copies host memory specified by host address of @var{src} to
2847 device memory specified by the device address @var{dest} for a length of
2848 @var{bytes} bytes.
2849
2850 @item @emph{C/C++}:
2851 @multitable @columnfractions .20 .80
2852 @item @emph{Prototype}: @tab @code{acc_memcpy_to_device(d_void *dest, h_void *src, size_t bytes);}
2853 @end multitable
2854
2855 @item @emph{Reference}:
2856 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2857 3.2.31.
2858 @end table
2859
2860
2861
2862 @node acc_memcpy_from_device
2863 @section @code{acc_memcpy_from_device} -- Copy device memory to host memory.
2864 @table @asis
2865 @item @emph{Description}
2866 This function copies host memory specified by host address of @var{src} from
2867 device memory specified by the device address @var{dest} for a length of
2868 @var{bytes} bytes.
2869
2870 @item @emph{C/C++}:
2871 @multitable @columnfractions .20 .80
2872 @item @emph{Prototype}: @tab @code{acc_memcpy_from_device(d_void *dest, h_void *src, size_t bytes);}
2873 @end multitable
2874
2875 @item @emph{Reference}:
2876 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2877 3.2.32.
2878 @end table
2879
2880
2881
2882 @node acc_attach
2883 @section @code{acc_attach} -- Let device pointer point to device-pointer target.
2884 @table @asis
2885 @item @emph{Description}
2886 This function updates a pointer on the device from pointing to a host-pointer
2887 address to pointing to the corresponding device data.
2888
2889 @item @emph{C/C++}:
2890 @multitable @columnfractions .20 .80
2891 @item @emph{Prototype}: @tab @code{acc_attach(h_void **ptr);}
2892 @item @emph{Prototype}: @tab @code{acc_attach_async(h_void **ptr, int async);}
2893 @end multitable
2894
2895 @item @emph{Reference}:
2896 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2897 3.2.34.
2898 @end table
2899
2900
2901
2902 @node acc_detach
2903 @section @code{acc_detach} -- Let device pointer point to host-pointer target.
2904 @table @asis
2905 @item @emph{Description}
2906 This function updates a pointer on the device from pointing to a device-pointer
2907 address to pointing to the corresponding host data.
2908
2909 @item @emph{C/C++}:
2910 @multitable @columnfractions .20 .80
2911 @item @emph{Prototype}: @tab @code{acc_detach(h_void **ptr);}
2912 @item @emph{Prototype}: @tab @code{acc_detach_async(h_void **ptr, int async);}
2913 @item @emph{Prototype}: @tab @code{acc_detach_finalize(h_void **ptr);}
2914 @item @emph{Prototype}: @tab @code{acc_detach_finalize_async(h_void **ptr, int async);}
2915 @end multitable
2916
2917 @item @emph{Reference}:
2918 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2919 3.2.35.
2920 @end table
2921
2922
2923
2924 @node acc_get_current_cuda_device
2925 @section @code{acc_get_current_cuda_device} -- Get CUDA device handle.
2926 @table @asis
2927 @item @emph{Description}
2928 This function returns the CUDA device handle. This handle is the same
2929 as used by the CUDA Runtime or Driver API's.
2930
2931 @item @emph{C/C++}:
2932 @multitable @columnfractions .20 .80
2933 @item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_device(void);}
2934 @end multitable
2935
2936 @item @emph{Reference}:
2937 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2938 A.2.1.1.
2939 @end table
2940
2941
2942
2943 @node acc_get_current_cuda_context
2944 @section @code{acc_get_current_cuda_context} -- Get CUDA context handle.
2945 @table @asis
2946 @item @emph{Description}
2947 This function returns the CUDA context handle. This handle is the same
2948 as used by the CUDA Runtime or Driver API's.
2949
2950 @item @emph{C/C++}:
2951 @multitable @columnfractions .20 .80
2952 @item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_context(void);}
2953 @end multitable
2954
2955 @item @emph{Reference}:
2956 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2957 A.2.1.2.
2958 @end table
2959
2960
2961
2962 @node acc_get_cuda_stream
2963 @section @code{acc_get_cuda_stream} -- Get CUDA stream handle.
2964 @table @asis
2965 @item @emph{Description}
2966 This function returns the CUDA stream handle for the queue @var{async}.
2967 This handle is the same as used by the CUDA Runtime or Driver API's.
2968
2969 @item @emph{C/C++}:
2970 @multitable @columnfractions .20 .80
2971 @item @emph{Prototype}: @tab @code{void *acc_get_cuda_stream(int async);}
2972 @end multitable
2973
2974 @item @emph{Reference}:
2975 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
2976 A.2.1.3.
2977 @end table
2978
2979
2980
2981 @node acc_set_cuda_stream
2982 @section @code{acc_set_cuda_stream} -- Set CUDA stream handle.
2983 @table @asis
2984 @item @emph{Description}
2985 This function associates the stream handle specified by @var{stream} with
2986 the queue @var{async}.
2987
2988 This cannot be used to change the stream handle associated with
2989 @code{acc_async_sync}.
2990
2991 The return value is not specified.
2992
2993 @item @emph{C/C++}:
2994 @multitable @columnfractions .20 .80
2995 @item @emph{Prototype}: @tab @code{int acc_set_cuda_stream(int async, void *stream);}
2996 @end multitable
2997
2998 @item @emph{Reference}:
2999 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3000 A.2.1.4.
3001 @end table
3002
3003
3004
3005 @node acc_prof_register
3006 @section @code{acc_prof_register} -- Register callbacks.
3007 @table @asis
3008 @item @emph{Description}:
3009 This function registers callbacks.
3010
3011 @item @emph{C/C++}:
3012 @multitable @columnfractions .20 .80
3013 @item @emph{Prototype}: @tab @code{void acc_prof_register (acc_event_t, acc_prof_callback, acc_register_t);}
3014 @end multitable
3015
3016 @item @emph{See also}:
3017 @ref{OpenACC Profiling Interface}
3018
3019 @item @emph{Reference}:
3020 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3021 5.3.
3022 @end table
3023
3024
3025
3026 @node acc_prof_unregister
3027 @section @code{acc_prof_unregister} -- Unregister callbacks.
3028 @table @asis
3029 @item @emph{Description}:
3030 This function unregisters callbacks.
3031
3032 @item @emph{C/C++}:
3033 @multitable @columnfractions .20 .80
3034 @item @emph{Prototype}: @tab @code{void acc_prof_unregister (acc_event_t, acc_prof_callback, acc_register_t);}
3035 @end multitable
3036
3037 @item @emph{See also}:
3038 @ref{OpenACC Profiling Interface}
3039
3040 @item @emph{Reference}:
3041 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3042 5.3.
3043 @end table
3044
3045
3046
3047 @node acc_prof_lookup
3048 @section @code{acc_prof_lookup} -- Obtain inquiry functions.
3049 @table @asis
3050 @item @emph{Description}:
3051 Function to obtain inquiry functions.
3052
3053 @item @emph{C/C++}:
3054 @multitable @columnfractions .20 .80
3055 @item @emph{Prototype}: @tab @code{acc_query_fn acc_prof_lookup (const char *);}
3056 @end multitable
3057
3058 @item @emph{See also}:
3059 @ref{OpenACC Profiling Interface}
3060
3061 @item @emph{Reference}:
3062 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3063 5.3.
3064 @end table
3065
3066
3067
3068 @node acc_register_library
3069 @section @code{acc_register_library} -- Library registration.
3070 @table @asis
3071 @item @emph{Description}:
3072 Function for library registration.
3073
3074 @item @emph{C/C++}:
3075 @multitable @columnfractions .20 .80
3076 @item @emph{Prototype}: @tab @code{void acc_register_library (acc_prof_reg, acc_prof_reg, acc_prof_lookup_func);}
3077 @end multitable
3078
3079 @item @emph{See also}:
3080 @ref{OpenACC Profiling Interface}, @ref{ACC_PROFLIB}
3081
3082 @item @emph{Reference}:
3083 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3084 5.3.
3085 @end table
3086
3087
3088
3089 @c ---------------------------------------------------------------------
3090 @c OpenACC Environment Variables
3091 @c ---------------------------------------------------------------------
3092
3093 @node OpenACC Environment Variables
3094 @chapter OpenACC Environment Variables
3095
3096 The variables @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}
3097 are defined by section 4 of the OpenACC specification in version 2.0.
3098 The variable @env{ACC_PROFLIB}
3099 is defined by section 4 of the OpenACC specification in version 2.6.
3100 The variable @env{GCC_ACC_NOTIFY} is used for diagnostic purposes.
3101
3102 @menu
3103 * ACC_DEVICE_TYPE::
3104 * ACC_DEVICE_NUM::
3105 * ACC_PROFLIB::
3106 * GCC_ACC_NOTIFY::
3107 @end menu
3108
3109
3110
3111 @node ACC_DEVICE_TYPE
3112 @section @code{ACC_DEVICE_TYPE}
3113 @table @asis
3114 @item @emph{Reference}:
3115 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3116 4.1.
3117 @end table
3118
3119
3120
3121 @node ACC_DEVICE_NUM
3122 @section @code{ACC_DEVICE_NUM}
3123 @table @asis
3124 @item @emph{Reference}:
3125 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3126 4.2.
3127 @end table
3128
3129
3130
3131 @node ACC_PROFLIB
3132 @section @code{ACC_PROFLIB}
3133 @table @asis
3134 @item @emph{See also}:
3135 @ref{acc_register_library}, @ref{OpenACC Profiling Interface}
3136
3137 @item @emph{Reference}:
3138 @uref{https://www.openacc.org, OpenACC specification v2.6}, section
3139 4.3.
3140 @end table
3141
3142
3143
3144 @node GCC_ACC_NOTIFY
3145 @section @code{GCC_ACC_NOTIFY}
3146 @table @asis
3147 @item @emph{Description}:
3148 Print debug information pertaining to the accelerator.
3149 @end table
3150
3151
3152
3153 @c ---------------------------------------------------------------------
3154 @c CUDA Streams Usage
3155 @c ---------------------------------------------------------------------
3156
3157 @node CUDA Streams Usage
3158 @chapter CUDA Streams Usage
3159
3160 This applies to the @code{nvptx} plugin only.
3161
3162 The library provides elements that perform asynchronous movement of
3163 data and asynchronous operation of computing constructs. This
3164 asynchronous functionality is implemented by making use of CUDA
3165 streams@footnote{See "Stream Management" in "CUDA Driver API",
3166 TRM-06703-001, Version 5.5, for additional information}.
3167
3168 The primary means by that the asynchronous functionality is accessed
3169 is through the use of those OpenACC directives which make use of the
3170 @code{async} and @code{wait} clauses. When the @code{async} clause is
3171 first used with a directive, it creates a CUDA stream. If an
3172 @code{async-argument} is used with the @code{async} clause, then the
3173 stream is associated with the specified @code{async-argument}.
3174
3175 Following the creation of an association between a CUDA stream and the
3176 @code{async-argument} of an @code{async} clause, both the @code{wait}
3177 clause and the @code{wait} directive can be used. When either the
3178 clause or directive is used after stream creation, it creates a
3179 rendezvous point whereby execution waits until all operations
3180 associated with the @code{async-argument}, that is, stream, have
3181 completed.
3182
3183 Normally, the management of the streams that are created as a result of
3184 using the @code{async} clause, is done without any intervention by the
3185 caller. This implies the association between the @code{async-argument}
3186 and the CUDA stream will be maintained for the lifetime of the program.
3187 However, this association can be changed through the use of the library
3188 function @code{acc_set_cuda_stream}. When the function
3189 @code{acc_set_cuda_stream} is called, the CUDA stream that was
3190 originally associated with the @code{async} clause will be destroyed.
3191 Caution should be taken when changing the association as subsequent
3192 references to the @code{async-argument} refer to a different
3193 CUDA stream.
3194
3195
3196
3197 @c ---------------------------------------------------------------------
3198 @c OpenACC Library Interoperability
3199 @c ---------------------------------------------------------------------
3200
3201 @node OpenACC Library Interoperability
3202 @chapter OpenACC Library Interoperability
3203
3204 @section Introduction
3205
3206 The OpenACC library uses the CUDA Driver API, and may interact with
3207 programs that use the Runtime library directly, or another library
3208 based on the Runtime library, e.g., CUBLAS@footnote{See section 2.26,
3209 "Interactions with the CUDA Driver API" in
3210 "CUDA Runtime API", Version 5.5, and section 2.27, "VDPAU
3211 Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5,
3212 for additional information on library interoperability.}.
3213 This chapter describes the use cases and what changes are
3214 required in order to use both the OpenACC library and the CUBLAS and Runtime
3215 libraries within a program.
3216
3217 @section First invocation: NVIDIA CUBLAS library API
3218
3219 In this first use case (see below), a function in the CUBLAS library is called
3220 prior to any of the functions in the OpenACC library. More specifically, the
3221 function @code{cublasCreate()}.
3222
3223 When invoked, the function initializes the library and allocates the
3224 hardware resources on the host and the device on behalf of the caller. Once
3225 the initialization and allocation has completed, a handle is returned to the
3226 caller. The OpenACC library also requires initialization and allocation of
3227 hardware resources. Since the CUBLAS library has already allocated the
3228 hardware resources for the device, all that is left to do is to initialize
3229 the OpenACC library and acquire the hardware resources on the host.
3230
3231 Prior to calling the OpenACC function that initializes the library and
3232 allocate the host hardware resources, you need to acquire the device number
3233 that was allocated during the call to @code{cublasCreate()}. The invoking of the
3234 runtime library function @code{cudaGetDevice()} accomplishes this. Once
3235 acquired, the device number is passed along with the device type as
3236 parameters to the OpenACC library function @code{acc_set_device_num()}.
3237
3238 Once the call to @code{acc_set_device_num()} has completed, the OpenACC
3239 library uses the context that was created during the call to
3240 @code{cublasCreate()}. In other words, both libraries will be sharing the
3241 same context.
3242
3243 @smallexample
3244 /* Create the handle */
3245 s = cublasCreate(&h);
3246 if (s != CUBLAS_STATUS_SUCCESS)
3247 @{
3248 fprintf(stderr, "cublasCreate failed %d\n", s);
3249 exit(EXIT_FAILURE);
3250 @}
3251
3252 /* Get the device number */
3253 e = cudaGetDevice(&dev);
3254 if (e != cudaSuccess)
3255 @{
3256 fprintf(stderr, "cudaGetDevice failed %d\n", e);
3257 exit(EXIT_FAILURE);
3258 @}
3259
3260 /* Initialize OpenACC library and use device 'dev' */
3261 acc_set_device_num(dev, acc_device_nvidia);
3262
3263 @end smallexample
3264 @center Use Case 1
3265
3266 @section First invocation: OpenACC library API
3267
3268 In this second use case (see below), a function in the OpenACC library is
3269 called prior to any of the functions in the CUBLAS library. More specificially,
3270 the function @code{acc_set_device_num()}.
3271
3272 In the use case presented here, the function @code{acc_set_device_num()}
3273 is used to both initialize the OpenACC library and allocate the hardware
3274 resources on the host and the device. In the call to the function, the
3275 call parameters specify which device to use and what device
3276 type to use, i.e., @code{acc_device_nvidia}. It should be noted that this
3277 is but one method to initialize the OpenACC library and allocate the
3278 appropriate hardware resources. Other methods are available through the
3279 use of environment variables and these will be discussed in the next section.
3280
3281 Once the call to @code{acc_set_device_num()} has completed, other OpenACC
3282 functions can be called as seen with multiple calls being made to
3283 @code{acc_copyin()}. In addition, calls can be made to functions in the
3284 CUBLAS library. In the use case a call to @code{cublasCreate()} is made
3285 subsequent to the calls to @code{acc_copyin()}.
3286 As seen in the previous use case, a call to @code{cublasCreate()}
3287 initializes the CUBLAS library and allocates the hardware resources on the
3288 host and the device. However, since the device has already been allocated,
3289 @code{cublasCreate()} will only initialize the CUBLAS library and allocate
3290 the appropriate hardware resources on the host. The context that was created
3291 as part of the OpenACC initialization is shared with the CUBLAS library,
3292 similarly to the first use case.
3293
3294 @smallexample
3295 dev = 0;
3296
3297 acc_set_device_num(dev, acc_device_nvidia);
3298
3299 /* Copy the first set to the device */
3300 d_X = acc_copyin(&h_X[0], N * sizeof (float));
3301 if (d_X == NULL)
3302 @{
3303 fprintf(stderr, "copyin error h_X\n");
3304 exit(EXIT_FAILURE);
3305 @}
3306
3307 /* Copy the second set to the device */
3308 d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));
3309 if (d_Y == NULL)
3310 @{
3311 fprintf(stderr, "copyin error h_Y1\n");
3312 exit(EXIT_FAILURE);
3313 @}
3314
3315 /* Create the handle */
3316 s = cublasCreate(&h);
3317 if (s != CUBLAS_STATUS_SUCCESS)
3318 @{
3319 fprintf(stderr, "cublasCreate failed %d\n", s);
3320 exit(EXIT_FAILURE);
3321 @}
3322
3323 /* Perform saxpy using CUBLAS library function */
3324 s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);
3325 if (s != CUBLAS_STATUS_SUCCESS)
3326 @{
3327 fprintf(stderr, "cublasSaxpy failed %d\n", s);
3328 exit(EXIT_FAILURE);
3329 @}
3330
3331 /* Copy the results from the device */
3332 acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));
3333
3334 @end smallexample
3335 @center Use Case 2
3336
3337 @section OpenACC library and environment variables
3338
3339 There are two environment variables associated with the OpenACC library
3340 that may be used to control the device type and device number:
3341 @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}, respectively. These two
3342 environment variables can be used as an alternative to calling
3343 @code{acc_set_device_num()}. As seen in the second use case, the device
3344 type and device number were specified using @code{acc_set_device_num()}.
3345 If however, the aforementioned environment variables were set, then the
3346 call to @code{acc_set_device_num()} would not be required.
3347
3348
3349 The use of the environment variables is only relevant when an OpenACC function
3350 is called prior to a call to @code{cudaCreate()}. If @code{cudaCreate()}
3351 is called prior to a call to an OpenACC function, then you must call
3352 @code{acc_set_device_num()}@footnote{More complete information
3353 about @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM} can be found in
3354 sections 4.1 and 4.2 of the @uref{https://www.openacc.org, OpenACC}
3355 Application Programming Interface”, Version 2.6.}
3356
3357
3358
3359 @c ---------------------------------------------------------------------
3360 @c OpenACC Profiling Interface
3361 @c ---------------------------------------------------------------------
3362
3363 @node OpenACC Profiling Interface
3364 @chapter OpenACC Profiling Interface
3365
3366 @section Implementation Status and Implementation-Defined Behavior
3367
3368 We're implementing the OpenACC Profiling Interface as defined by the
3369 OpenACC 2.6 specification. We're clarifying some aspects here as
3370 @emph{implementation-defined behavior}, while they're still under
3371 discussion within the OpenACC Technical Committee.
3372
3373 This implementation is tuned to keep the performance impact as low as
3374 possible for the (very common) case that the Profiling Interface is
3375 not enabled. This is relevant, as the Profiling Interface affects all
3376 the @emph{hot} code paths (in the target code, not in the offloaded
3377 code). Users of the OpenACC Profiling Interface can be expected to
3378 understand that performance will be impacted to some degree once the
3379 Profiling Interface has gotten enabled: for example, because of the
3380 @emph{runtime} (libgomp) calling into a third-party @emph{library} for
3381 every event that has been registered.
3382
3383 We're not yet accounting for the fact that @cite{OpenACC events may
3384 occur during event processing}.
3385
3386 We're not yet implementing initialization via a
3387 @code{acc_register_library} function that is either statically linked
3388 in, or dynamically via @env{LD_PRELOAD}.
3389 Initialization via @code{acc_register_library} functions dynamically
3390 loaded via the @env{ACC_PROFLIB} environment variable does work, as
3391 does directly calling @code{acc_prof_register},
3392 @code{acc_prof_unregister}, @code{acc_prof_lookup}.
3393
3394 As currently there are no inquiry functions defined, calls to
3395 @code{acc_prof_lookup} will always return @code{NULL}.
3396
3397 There aren't separate @emph{start}, @emph{stop} events defined for the
3398 event types @code{acc_ev_create}, @code{acc_ev_delete},
3399 @code{acc_ev_alloc}, @code{acc_ev_free}. It's not clear if these
3400 should be triggered before or after the actual device-specific call is
3401 made. We trigger them after.
3402
3403 Remarks about data provided to callbacks:
3404
3405 @table @asis
3406
3407 @item @code{acc_prof_info.event_type}
3408 It's not clear if for @emph{nested} event callbacks (for example,
3409 @code{acc_ev_enqueue_launch_start} as part of a parent compute
3410 construct), this should be set for the nested event
3411 (@code{acc_ev_enqueue_launch_start}), or if the value of the parent
3412 construct should remain (@code{acc_ev_compute_construct_start}). In
3413 this implementation, the value will generally correspond to the
3414 innermost nested event type.
3415
3416 @item @code{acc_prof_info.device_type}
3417 @itemize
3418
3419 @item
3420 For @code{acc_ev_compute_construct_start}, and in presence of an
3421 @code{if} clause with @emph{false} argument, this will still refer to
3422 the offloading device type.
3423 It's not clear if that's the expected behavior.
3424
3425 @item
3426 Complementary to the item before, for
3427 @code{acc_ev_compute_construct_end}, this is set to
3428 @code{acc_device_host} in presence of an @code{if} clause with
3429 @emph{false} argument.
3430 It's not clear if that's the expected behavior.
3431
3432 @end itemize
3433
3434 @item @code{acc_prof_info.thread_id}
3435 Always @code{-1}; not yet implemented.
3436
3437 @item @code{acc_prof_info.async}
3438 @itemize
3439
3440 @item
3441 Not yet implemented correctly for
3442 @code{acc_ev_compute_construct_start}.
3443
3444 @item
3445 In a compute construct, for host-fallback
3446 execution/@code{acc_device_host} it will always be
3447 @code{acc_async_sync}.
3448 It's not clear if that's the expected behavior.
3449
3450 @item
3451 For @code{acc_ev_device_init_start} and @code{acc_ev_device_init_end},
3452 it will always be @code{acc_async_sync}.
3453 It's not clear if that's the expected behavior.
3454
3455 @end itemize
3456
3457 @item @code{acc_prof_info.async_queue}
3458 There is no @cite{limited number of asynchronous queues} in libgomp.
3459 This will always have the same value as @code{acc_prof_info.async}.
3460
3461 @item @code{acc_prof_info.src_file}
3462 Always @code{NULL}; not yet implemented.
3463
3464 @item @code{acc_prof_info.func_name}
3465 Always @code{NULL}; not yet implemented.
3466
3467 @item @code{acc_prof_info.line_no}
3468 Always @code{-1}; not yet implemented.
3469
3470 @item @code{acc_prof_info.end_line_no}
3471 Always @code{-1}; not yet implemented.
3472
3473 @item @code{acc_prof_info.func_line_no}
3474 Always @code{-1}; not yet implemented.
3475
3476 @item @code{acc_prof_info.func_end_line_no}
3477 Always @code{-1}; not yet implemented.
3478
3479 @item @code{acc_event_info.event_type}, @code{acc_event_info.*.event_type}
3480 Relating to @code{acc_prof_info.event_type} discussed above, in this
3481 implementation, this will always be the same value as
3482 @code{acc_prof_info.event_type}.
3483
3484 @item @code{acc_event_info.*.parent_construct}
3485 @itemize
3486
3487 @item
3488 Will be @code{acc_construct_parallel} for all OpenACC compute
3489 constructs as well as many OpenACC Runtime API calls; should be the
3490 one matching the actual construct, or
3491 @code{acc_construct_runtime_api}, respectively.
3492
3493 @item
3494 Will be @code{acc_construct_enter_data} or
3495 @code{acc_construct_exit_data} when processing variable mappings
3496 specified in OpenACC @emph{declare} directives; should be
3497 @code{acc_construct_declare}.
3498
3499 @item
3500 For implicit @code{acc_ev_device_init_start},
3501 @code{acc_ev_device_init_end}, and explicit as well as implicit
3502 @code{acc_ev_alloc}, @code{acc_ev_free},
3503 @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
3504 @code{acc_ev_enqueue_download_start}, and
3505 @code{acc_ev_enqueue_download_end}, will be
3506 @code{acc_construct_parallel}; should reflect the real parent
3507 construct.
3508
3509 @end itemize
3510
3511 @item @code{acc_event_info.*.implicit}
3512 For @code{acc_ev_alloc}, @code{acc_ev_free},
3513 @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
3514 @code{acc_ev_enqueue_download_start}, and
3515 @code{acc_ev_enqueue_download_end}, this currently will be @code{1}
3516 also for explicit usage.
3517
3518 @item @code{acc_event_info.data_event.var_name}
3519 Always @code{NULL}; not yet implemented.
3520
3521 @item @code{acc_event_info.data_event.host_ptr}
3522 For @code{acc_ev_alloc}, and @code{acc_ev_free}, this is always
3523 @code{NULL}.
3524
3525 @item @code{typedef union acc_api_info}
3526 @dots{} as printed in @cite{5.2.3. Third Argument: API-Specific
3527 Information}. This should obviously be @code{typedef @emph{struct}
3528 acc_api_info}.
3529
3530 @item @code{acc_api_info.device_api}
3531 Possibly not yet implemented correctly for
3532 @code{acc_ev_compute_construct_start},
3533 @code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}:
3534 will always be @code{acc_device_api_none} for these event types.
3535 For @code{acc_ev_enter_data_start}, it will be
3536 @code{acc_device_api_none} in some cases.
3537
3538 @item @code{acc_api_info.device_type}
3539 Always the same as @code{acc_prof_info.device_type}.
3540
3541 @item @code{acc_api_info.vendor}
3542 Always @code{-1}; not yet implemented.
3543
3544 @item @code{acc_api_info.device_handle}
3545 Always @code{NULL}; not yet implemented.
3546
3547 @item @code{acc_api_info.context_handle}
3548 Always @code{NULL}; not yet implemented.
3549
3550 @item @code{acc_api_info.async_handle}
3551 Always @code{NULL}; not yet implemented.
3552
3553 @end table
3554
3555 Remarks about certain event types:
3556
3557 @table @asis
3558
3559 @item @code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
3560 @itemize
3561
3562 @item
3563 @c See 'DEVICE_INIT_INSIDE_COMPUTE_CONSTRUCT' in
3564 @c 'libgomp.oacc-c-c++-common/acc_prof-kernels-1.c',
3565 @c 'libgomp.oacc-c-c++-common/acc_prof-parallel-1.c'.
3566 Whan a compute construct triggers implicit
3567 @code{acc_ev_device_init_start} and @code{acc_ev_device_init_end}
3568 events, they currently aren't @emph{nested within} the corresponding
3569 @code{acc_ev_compute_construct_start} and
3570 @code{acc_ev_compute_construct_end}, but they're currently observed
3571 @emph{before} @code{acc_ev_compute_construct_start}.
3572 It's not clear what to do: the standard asks us provide a lot of
3573 details to the @code{acc_ev_compute_construct_start} callback, without
3574 (implicitly) initializing a device before?
3575
3576 @item
3577 Callbacks for these event types will not be invoked for calls to the
3578 @code{acc_set_device_type} and @code{acc_set_device_num} functions.
3579 It's not clear if they should be.
3580
3581 @end itemize
3582
3583 @item @code{acc_ev_enter_data_start}, @code{acc_ev_enter_data_end}, @code{acc_ev_exit_data_start}, @code{acc_ev_exit_data_end}
3584 @itemize
3585
3586 @item
3587 Callbacks for these event types will also be invoked for OpenACC
3588 @emph{host_data} constructs.
3589 It's not clear if they should be.
3590
3591 @item
3592 Callbacks for these event types will also be invoked when processing
3593 variable mappings specified in OpenACC @emph{declare} directives.
3594 It's not clear if they should be.
3595
3596 @end itemize
3597
3598 @end table
3599
3600 Callbacks for the following event types will be invoked, but dispatch
3601 and information provided therein has not yet been thoroughly reviewed:
3602
3603 @itemize
3604 @item @code{acc_ev_alloc}
3605 @item @code{acc_ev_free}
3606 @item @code{acc_ev_update_start}, @code{acc_ev_update_end}
3607 @item @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end}
3608 @item @code{acc_ev_enqueue_download_start}, @code{acc_ev_enqueue_download_end}
3609 @end itemize
3610
3611 During device initialization, and finalization, respectively,
3612 callbacks for the following event types will not yet be invoked:
3613
3614 @itemize
3615 @item @code{acc_ev_alloc}
3616 @item @code{acc_ev_free}
3617 @end itemize
3618
3619 Callbacks for the following event types have not yet been implemented,
3620 so currently won't be invoked:
3621
3622 @itemize
3623 @item @code{acc_ev_device_shutdown_start}, @code{acc_ev_device_shutdown_end}
3624 @item @code{acc_ev_runtime_shutdown}
3625 @item @code{acc_ev_create}, @code{acc_ev_delete}
3626 @item @code{acc_ev_wait_start}, @code{acc_ev_wait_end}
3627 @end itemize
3628
3629 For the following runtime library functions, not all expected
3630 callbacks will be invoked (mostly concerning implicit device
3631 initialization):
3632
3633 @itemize
3634 @item @code{acc_get_num_devices}
3635 @item @code{acc_set_device_type}
3636 @item @code{acc_get_device_type}
3637 @item @code{acc_set_device_num}
3638 @item @code{acc_get_device_num}
3639 @item @code{acc_init}
3640 @item @code{acc_shutdown}
3641 @end itemize
3642
3643 Aside from implicit device initialization, for the following runtime
3644 library functions, no callbacks will be invoked for shared-memory
3645 offloading devices (it's not clear if they should be):
3646
3647 @itemize
3648 @item @code{acc_malloc}
3649 @item @code{acc_free}
3650 @item @code{acc_copyin}, @code{acc_present_or_copyin}, @code{acc_copyin_async}
3651 @item @code{acc_create}, @code{acc_present_or_create}, @code{acc_create_async}
3652 @item @code{acc_copyout}, @code{acc_copyout_async}, @code{acc_copyout_finalize}, @code{acc_copyout_finalize_async}
3653 @item @code{acc_delete}, @code{acc_delete_async}, @code{acc_delete_finalize}, @code{acc_delete_finalize_async}
3654 @item @code{acc_update_device}, @code{acc_update_device_async}
3655 @item @code{acc_update_self}, @code{acc_update_self_async}
3656 @item @code{acc_map_data}, @code{acc_unmap_data}
3657 @item @code{acc_memcpy_to_device}, @code{acc_memcpy_to_device_async}
3658 @item @code{acc_memcpy_from_device}, @code{acc_memcpy_from_device_async}
3659 @end itemize
3660
3661
3662
3663 @c ---------------------------------------------------------------------
3664 @c The libgomp ABI
3665 @c ---------------------------------------------------------------------
3666
3667 @node The libgomp ABI
3668 @chapter The libgomp ABI
3669
3670 The following sections present notes on the external ABI as
3671 presented by libgomp. Only maintainers should need them.
3672
3673 @menu
3674 * Implementing MASTER construct::
3675 * Implementing CRITICAL construct::
3676 * Implementing ATOMIC construct::
3677 * Implementing FLUSH construct::
3678 * Implementing BARRIER construct::
3679 * Implementing THREADPRIVATE construct::
3680 * Implementing PRIVATE clause::
3681 * Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses::
3682 * Implementing REDUCTION clause::
3683 * Implementing PARALLEL construct::
3684 * Implementing FOR construct::
3685 * Implementing ORDERED construct::
3686 * Implementing SECTIONS construct::
3687 * Implementing SINGLE construct::
3688 * Implementing OpenACC's PARALLEL construct::
3689 @end menu
3690
3691
3692 @node Implementing MASTER construct
3693 @section Implementing MASTER construct
3694
3695 @smallexample
3696 if (omp_get_thread_num () == 0)
3697 block
3698 @end smallexample
3699
3700 Alternately, we generate two copies of the parallel subfunction
3701 and only include this in the version run by the master thread.
3702 Surely this is not worthwhile though...
3703
3704
3705
3706 @node Implementing CRITICAL construct
3707 @section Implementing CRITICAL construct
3708
3709 Without a specified name,
3710
3711 @smallexample
3712 void GOMP_critical_start (void);
3713 void GOMP_critical_end (void);
3714 @end smallexample
3715
3716 so that we don't get COPY relocations from libgomp to the main
3717 application.
3718
3719 With a specified name, use omp_set_lock and omp_unset_lock with
3720 name being transformed into a variable declared like
3721
3722 @smallexample
3723 omp_lock_t gomp_critical_user_<name> __attribute__((common))
3724 @end smallexample
3725
3726 Ideally the ABI would specify that all zero is a valid unlocked
3727 state, and so we wouldn't need to initialize this at
3728 startup.
3729
3730
3731
3732 @node Implementing ATOMIC construct
3733 @section Implementing ATOMIC construct
3734
3735 The target should implement the @code{__sync} builtins.
3736
3737 Failing that we could add
3738
3739 @smallexample
3740 void GOMP_atomic_enter (void)
3741 void GOMP_atomic_exit (void)
3742 @end smallexample
3743
3744 which reuses the regular lock code, but with yet another lock
3745 object private to the library.
3746
3747
3748
3749 @node Implementing FLUSH construct
3750 @section Implementing FLUSH construct
3751
3752 Expands to the @code{__sync_synchronize} builtin.
3753
3754
3755
3756 @node Implementing BARRIER construct
3757 @section Implementing BARRIER construct
3758
3759 @smallexample
3760 void GOMP_barrier (void)
3761 @end smallexample
3762
3763
3764 @node Implementing THREADPRIVATE construct
3765 @section Implementing THREADPRIVATE construct
3766
3767 In _most_ cases we can map this directly to @code{__thread}. Except
3768 that OMP allows constructors for C++ objects. We can either
3769 refuse to support this (how often is it used?) or we can
3770 implement something akin to .ctors.
3771
3772 Even more ideally, this ctor feature is handled by extensions
3773 to the main pthreads library. Failing that, we can have a set
3774 of entry points to register ctor functions to be called.
3775
3776
3777
3778 @node Implementing PRIVATE clause
3779 @section Implementing PRIVATE clause
3780
3781 In association with a PARALLEL, or within the lexical extent
3782 of a PARALLEL block, the variable becomes a local variable in
3783 the parallel subfunction.
3784
3785 In association with FOR or SECTIONS blocks, create a new
3786 automatic variable within the current function. This preserves
3787 the semantic of new variable creation.
3788
3789
3790
3791 @node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
3792 @section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
3793
3794 This seems simple enough for PARALLEL blocks. Create a private
3795 struct for communicating between the parent and subfunction.
3796 In the parent, copy in values for scalar and "small" structs;
3797 copy in addresses for others TREE_ADDRESSABLE types. In the
3798 subfunction, copy the value into the local variable.
3799
3800 It is not clear what to do with bare FOR or SECTION blocks.
3801 The only thing I can figure is that we do something like:
3802
3803 @smallexample
3804 #pragma omp for firstprivate(x) lastprivate(y)
3805 for (int i = 0; i < n; ++i)
3806 body;
3807 @end smallexample
3808
3809 which becomes
3810
3811 @smallexample
3812 @{
3813 int x = x, y;
3814
3815 // for stuff
3816
3817 if (i == n)
3818 y = y;
3819 @}
3820 @end smallexample
3821
3822 where the "x=x" and "y=y" assignments actually have different
3823 uids for the two variables, i.e. not something you could write
3824 directly in C. Presumably this only makes sense if the "outer"
3825 x and y are global variables.
3826
3827 COPYPRIVATE would work the same way, except the structure
3828 broadcast would have to happen via SINGLE machinery instead.
3829
3830
3831
3832 @node Implementing REDUCTION clause
3833 @section Implementing REDUCTION clause
3834
3835 The private struct mentioned in the previous section should have
3836 a pointer to an array of the type of the variable, indexed by the
3837 thread's @var{team_id}. The thread stores its final value into the
3838 array, and after the barrier, the master thread iterates over the
3839 array to collect the values.
3840
3841
3842 @node Implementing PARALLEL construct
3843 @section Implementing PARALLEL construct
3844
3845 @smallexample
3846 #pragma omp parallel
3847 @{
3848 body;
3849 @}
3850 @end smallexample
3851
3852 becomes
3853
3854 @smallexample
3855 void subfunction (void *data)
3856 @{
3857 use data;
3858 body;
3859 @}
3860
3861 setup data;
3862 GOMP_parallel_start (subfunction, &data, num_threads);
3863 subfunction (&data);
3864 GOMP_parallel_end ();
3865 @end smallexample
3866
3867 @smallexample
3868 void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
3869 @end smallexample
3870
3871 The @var{FN} argument is the subfunction to be run in parallel.
3872
3873 The @var{DATA} argument is a pointer to a structure used to
3874 communicate data in and out of the subfunction, as discussed
3875 above with respect to FIRSTPRIVATE et al.
3876
3877 The @var{NUM_THREADS} argument is 1 if an IF clause is present
3878 and false, or the value of the NUM_THREADS clause, if
3879 present, or 0.
3880
3881 The function needs to create the appropriate number of
3882 threads and/or launch them from the dock. It needs to
3883 create the team structure and assign team ids.
3884
3885 @smallexample
3886 void GOMP_parallel_end (void)
3887 @end smallexample
3888
3889 Tears down the team and returns us to the previous @code{omp_in_parallel()} state.
3890
3891
3892
3893 @node Implementing FOR construct
3894 @section Implementing FOR construct
3895
3896 @smallexample
3897 #pragma omp parallel for
3898 for (i = lb; i <= ub; i++)
3899 body;
3900 @end smallexample
3901
3902 becomes
3903
3904 @smallexample
3905 void subfunction (void *data)
3906 @{
3907 long _s0, _e0;
3908 while (GOMP_loop_static_next (&_s0, &_e0))
3909 @{
3910 long _e1 = _e0, i;
3911 for (i = _s0; i < _e1; i++)
3912 body;
3913 @}
3914 GOMP_loop_end_nowait ();
3915 @}
3916
3917 GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);
3918 subfunction (NULL);
3919 GOMP_parallel_end ();
3920 @end smallexample
3921
3922 @smallexample
3923 #pragma omp for schedule(runtime)
3924 for (i = 0; i < n; i++)
3925 body;
3926 @end smallexample
3927
3928 becomes
3929
3930 @smallexample
3931 @{
3932 long i, _s0, _e0;
3933 if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))
3934 do @{
3935 long _e1 = _e0;
3936 for (i = _s0, i < _e0; i++)
3937 body;
3938 @} while (GOMP_loop_runtime_next (&_s0, _&e0));
3939 GOMP_loop_end ();
3940 @}
3941 @end smallexample
3942
3943 Note that while it looks like there is trickiness to propagating
3944 a non-constant STEP, there isn't really. We're explicitly allowed
3945 to evaluate it as many times as we want, and any variables involved
3946 should automatically be handled as PRIVATE or SHARED like any other
3947 variables. So the expression should remain evaluable in the
3948 subfunction. We can also pull it into a local variable if we like,
3949 but since its supposed to remain unchanged, we can also not if we like.
3950
3951 If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be
3952 able to get away with no work-sharing context at all, since we can
3953 simply perform the arithmetic directly in each thread to divide up
3954 the iterations. Which would mean that we wouldn't need to call any
3955 of these routines.
3956
3957 There are separate routines for handling loops with an ORDERED
3958 clause. Bookkeeping for that is non-trivial...
3959
3960
3961
3962 @node Implementing ORDERED construct
3963 @section Implementing ORDERED construct
3964
3965 @smallexample
3966 void GOMP_ordered_start (void)
3967 void GOMP_ordered_end (void)
3968 @end smallexample
3969
3970
3971
3972 @node Implementing SECTIONS construct
3973 @section Implementing SECTIONS construct
3974
3975 A block as
3976
3977 @smallexample
3978 #pragma omp sections
3979 @{
3980 #pragma omp section
3981 stmt1;
3982 #pragma omp section
3983 stmt2;
3984 #pragma omp section
3985 stmt3;
3986 @}
3987 @end smallexample
3988
3989 becomes
3990
3991 @smallexample
3992 for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
3993 switch (i)
3994 @{
3995 case 1:
3996 stmt1;
3997 break;
3998 case 2:
3999 stmt2;
4000 break;
4001 case 3:
4002 stmt3;
4003 break;
4004 @}
4005 GOMP_barrier ();
4006 @end smallexample
4007
4008
4009 @node Implementing SINGLE construct
4010 @section Implementing SINGLE construct
4011
4012 A block like
4013
4014 @smallexample
4015 #pragma omp single
4016 @{
4017 body;
4018 @}
4019 @end smallexample
4020
4021 becomes
4022
4023 @smallexample
4024 if (GOMP_single_start ())
4025 body;
4026 GOMP_barrier ();
4027 @end smallexample
4028
4029 while
4030
4031 @smallexample
4032 #pragma omp single copyprivate(x)
4033 body;
4034 @end smallexample
4035
4036 becomes
4037
4038 @smallexample
4039 datap = GOMP_single_copy_start ();
4040 if (datap == NULL)
4041 @{
4042 body;
4043 data.x = x;
4044 GOMP_single_copy_end (&data);
4045 @}
4046 else
4047 x = datap->x;
4048 GOMP_barrier ();
4049 @end smallexample
4050
4051
4052
4053 @node Implementing OpenACC's PARALLEL construct
4054 @section Implementing OpenACC's PARALLEL construct
4055
4056 @smallexample
4057 void GOACC_parallel ()
4058 @end smallexample
4059
4060
4061
4062 @c ---------------------------------------------------------------------
4063 @c Reporting Bugs
4064 @c ---------------------------------------------------------------------
4065
4066 @node Reporting Bugs
4067 @chapter Reporting Bugs
4068
4069 Bugs in the GNU Offloading and Multi Processing Runtime Library should
4070 be reported via @uref{https://gcc.gnu.org/bugzilla/, Bugzilla}. Please add
4071 "openacc", or "openmp", or both to the keywords field in the bug
4072 report, as appropriate.
4073
4074
4075
4076 @c ---------------------------------------------------------------------
4077 @c GNU General Public License
4078 @c ---------------------------------------------------------------------
4079
4080 @include gpl_v3.texi
4081
4082
4083
4084 @c ---------------------------------------------------------------------
4085 @c GNU Free Documentation License
4086 @c ---------------------------------------------------------------------
4087
4088 @include fdl.texi
4089
4090
4091
4092 @c ---------------------------------------------------------------------
4093 @c Funding Free Software
4094 @c ---------------------------------------------------------------------
4095
4096 @include funding.texi
4097
4098 @c ---------------------------------------------------------------------
4099 @c Index
4100 @c ---------------------------------------------------------------------
4101
4102 @node Library Index
4103 @unnumbered Library Index
4104
4105 @printindex cp
4106
4107 @bye