]> git.ipfire.org Git - thirdparty/gcc.git/blob - libsanitizer/sanitizer_common/sanitizer_allocator_primary64.h
Libsanitizer: merge from master.
[thirdparty/gcc.git] / libsanitizer / sanitizer_common / sanitizer_allocator_primary64.h
1 //===-- sanitizer_allocator_primary64.h -------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Part of the Sanitizer Allocator.
10 //
11 //===----------------------------------------------------------------------===//
12 #ifndef SANITIZER_ALLOCATOR_H
13 #error This file must be included inside sanitizer_allocator.h
14 #endif
15
16 template<class SizeClassAllocator> struct SizeClassAllocator64LocalCache;
17
18 // SizeClassAllocator64 -- allocator for 64-bit address space.
19 // The template parameter Params is a class containing the actual parameters.
20 //
21 // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg.
22 // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap.
23 // Otherwise SpaceBeg=kSpaceBeg (fixed address).
24 // kSpaceSize is a power of two.
25 // At the beginning the entire space is mprotect-ed, then small parts of it
26 // are mapped on demand.
27 //
28 // Region: a part of Space dedicated to a single size class.
29 // There are kNumClasses Regions of equal size.
30 //
31 // UserChunk: a piece of memory returned to user.
32 // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk.
33
34 // FreeArray is an array free-d chunks (stored as 4-byte offsets)
35 //
36 // A Region looks like this:
37 // UserChunk1 ... UserChunkN <gap> MetaChunkN ... MetaChunk1 FreeArray
38
39 struct SizeClassAllocator64FlagMasks { // Bit masks.
40 enum {
41 kRandomShuffleChunks = 1,
42 };
43 };
44
45 template <class Params>
46 class SizeClassAllocator64 {
47 public:
48 using AddressSpaceView = typename Params::AddressSpaceView;
49 static const uptr kSpaceBeg = Params::kSpaceBeg;
50 static const uptr kSpaceSize = Params::kSpaceSize;
51 static const uptr kMetadataSize = Params::kMetadataSize;
52 typedef typename Params::SizeClassMap SizeClassMap;
53 typedef typename Params::MapUnmapCallback MapUnmapCallback;
54
55 static const bool kRandomShuffleChunks =
56 Params::kFlags & SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
57
58 typedef SizeClassAllocator64<Params> ThisT;
59 typedef SizeClassAllocator64LocalCache<ThisT> AllocatorCache;
60
61 // When we know the size class (the region base) we can represent a pointer
62 // as a 4-byte integer (offset from the region start shifted right by 4).
63 typedef u32 CompactPtrT;
64 static const uptr kCompactPtrScale = 4;
65 CompactPtrT PointerToCompactPtr(uptr base, uptr ptr) const {
66 return static_cast<CompactPtrT>((ptr - base) >> kCompactPtrScale);
67 }
68 uptr CompactPtrToPointer(uptr base, CompactPtrT ptr32) const {
69 return base + (static_cast<uptr>(ptr32) << kCompactPtrScale);
70 }
71
72 void Init(s32 release_to_os_interval_ms) {
73 uptr TotalSpaceSize = kSpaceSize + AdditionalSize();
74 if (kUsingConstantSpaceBeg) {
75 CHECK(IsAligned(kSpaceBeg, SizeClassMap::kMaxSize));
76 CHECK_EQ(kSpaceBeg, address_range.Init(TotalSpaceSize,
77 PrimaryAllocatorName, kSpaceBeg));
78 } else {
79 // Combined allocator expects that an 2^N allocation is always aligned to
80 // 2^N. For this to work, the start of the space needs to be aligned as
81 // high as the largest size class (which also needs to be a power of 2).
82 NonConstSpaceBeg = address_range.InitAligned(
83 TotalSpaceSize, SizeClassMap::kMaxSize, PrimaryAllocatorName);
84 CHECK_NE(NonConstSpaceBeg, ~(uptr)0);
85 }
86 SetReleaseToOSIntervalMs(release_to_os_interval_ms);
87 MapWithCallbackOrDie(SpaceEnd(), AdditionalSize(),
88 "SizeClassAllocator: region info");
89 // Check that the RegionInfo array is aligned on the CacheLine size.
90 DCHECK_EQ(SpaceEnd() % kCacheLineSize, 0);
91 }
92
93 s32 ReleaseToOSIntervalMs() const {
94 return atomic_load(&release_to_os_interval_ms_, memory_order_relaxed);
95 }
96
97 void SetReleaseToOSIntervalMs(s32 release_to_os_interval_ms) {
98 atomic_store(&release_to_os_interval_ms_, release_to_os_interval_ms,
99 memory_order_relaxed);
100 }
101
102 void ForceReleaseToOS() {
103 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
104 BlockingMutexLock l(&GetRegionInfo(class_id)->mutex);
105 MaybeReleaseToOS(class_id, true /*force*/);
106 }
107 }
108
109 static bool CanAllocate(uptr size, uptr alignment) {
110 return size <= SizeClassMap::kMaxSize &&
111 alignment <= SizeClassMap::kMaxSize;
112 }
113
114 NOINLINE void ReturnToAllocator(AllocatorStats *stat, uptr class_id,
115 const CompactPtrT *chunks, uptr n_chunks) {
116 RegionInfo *region = GetRegionInfo(class_id);
117 uptr region_beg = GetRegionBeginBySizeClass(class_id);
118 CompactPtrT *free_array = GetFreeArray(region_beg);
119
120 BlockingMutexLock l(&region->mutex);
121 uptr old_num_chunks = region->num_freed_chunks;
122 uptr new_num_freed_chunks = old_num_chunks + n_chunks;
123 // Failure to allocate free array space while releasing memory is non
124 // recoverable.
125 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg,
126 new_num_freed_chunks))) {
127 Report("FATAL: Internal error: %s's allocator exhausted the free list "
128 "space for size class %zd (%zd bytes).\n", SanitizerToolName,
129 class_id, ClassIdToSize(class_id));
130 Die();
131 }
132 for (uptr i = 0; i < n_chunks; i++)
133 free_array[old_num_chunks + i] = chunks[i];
134 region->num_freed_chunks = new_num_freed_chunks;
135 region->stats.n_freed += n_chunks;
136
137 MaybeReleaseToOS(class_id, false /*force*/);
138 }
139
140 NOINLINE bool GetFromAllocator(AllocatorStats *stat, uptr class_id,
141 CompactPtrT *chunks, uptr n_chunks) {
142 RegionInfo *region = GetRegionInfo(class_id);
143 uptr region_beg = GetRegionBeginBySizeClass(class_id);
144 CompactPtrT *free_array = GetFreeArray(region_beg);
145
146 BlockingMutexLock l(&region->mutex);
147 if (UNLIKELY(region->num_freed_chunks < n_chunks)) {
148 if (UNLIKELY(!PopulateFreeArray(stat, class_id, region,
149 n_chunks - region->num_freed_chunks)))
150 return false;
151 CHECK_GE(region->num_freed_chunks, n_chunks);
152 }
153 region->num_freed_chunks -= n_chunks;
154 uptr base_idx = region->num_freed_chunks;
155 for (uptr i = 0; i < n_chunks; i++)
156 chunks[i] = free_array[base_idx + i];
157 region->stats.n_allocated += n_chunks;
158 return true;
159 }
160
161 bool PointerIsMine(const void *p) const {
162 uptr P = reinterpret_cast<uptr>(p);
163 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
164 return P / kSpaceSize == kSpaceBeg / kSpaceSize;
165 return P >= SpaceBeg() && P < SpaceEnd();
166 }
167
168 uptr GetRegionBegin(const void *p) {
169 if (kUsingConstantSpaceBeg)
170 return reinterpret_cast<uptr>(p) & ~(kRegionSize - 1);
171 uptr space_beg = SpaceBeg();
172 return ((reinterpret_cast<uptr>(p) - space_beg) & ~(kRegionSize - 1)) +
173 space_beg;
174 }
175
176 uptr GetRegionBeginBySizeClass(uptr class_id) const {
177 return SpaceBeg() + kRegionSize * class_id;
178 }
179
180 uptr GetSizeClass(const void *p) {
181 if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0)
182 return ((reinterpret_cast<uptr>(p)) / kRegionSize) % kNumClassesRounded;
183 return ((reinterpret_cast<uptr>(p) - SpaceBeg()) / kRegionSize) %
184 kNumClassesRounded;
185 }
186
187 void *GetBlockBegin(const void *p) {
188 uptr class_id = GetSizeClass(p);
189 uptr size = ClassIdToSize(class_id);
190 if (!size) return nullptr;
191 uptr chunk_idx = GetChunkIdx((uptr)p, size);
192 uptr reg_beg = GetRegionBegin(p);
193 uptr beg = chunk_idx * size;
194 uptr next_beg = beg + size;
195 if (class_id >= kNumClasses) return nullptr;
196 const RegionInfo *region = AddressSpaceView::Load(GetRegionInfo(class_id));
197 if (region->mapped_user >= next_beg)
198 return reinterpret_cast<void*>(reg_beg + beg);
199 return nullptr;
200 }
201
202 uptr GetActuallyAllocatedSize(void *p) {
203 CHECK(PointerIsMine(p));
204 return ClassIdToSize(GetSizeClass(p));
205 }
206
207 static uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); }
208
209 void *GetMetaData(const void *p) {
210 uptr class_id = GetSizeClass(p);
211 uptr size = ClassIdToSize(class_id);
212 uptr chunk_idx = GetChunkIdx(reinterpret_cast<uptr>(p), size);
213 uptr region_beg = GetRegionBeginBySizeClass(class_id);
214 return reinterpret_cast<void *>(GetMetadataEnd(region_beg) -
215 (1 + chunk_idx) * kMetadataSize);
216 }
217
218 uptr TotalMemoryUsed() {
219 uptr res = 0;
220 for (uptr i = 0; i < kNumClasses; i++)
221 res += GetRegionInfo(i)->allocated_user;
222 return res;
223 }
224
225 // Test-only.
226 void TestOnlyUnmap() {
227 UnmapWithCallbackOrDie((uptr)address_range.base(), address_range.size());
228 }
229
230 static void FillMemoryProfile(uptr start, uptr rss, bool file, uptr *stats,
231 uptr stats_size) {
232 for (uptr class_id = 0; class_id < stats_size; class_id++)
233 if (stats[class_id] == start)
234 stats[class_id] = rss;
235 }
236
237 void PrintStats(uptr class_id, uptr rss) {
238 RegionInfo *region = GetRegionInfo(class_id);
239 if (region->mapped_user == 0) return;
240 uptr in_use = region->stats.n_allocated - region->stats.n_freed;
241 uptr avail_chunks = region->allocated_user / ClassIdToSize(class_id);
242 Printf(
243 "%s %02zd (%6zd): mapped: %6zdK allocs: %7zd frees: %7zd inuse: %6zd "
244 "num_freed_chunks %7zd avail: %6zd rss: %6zdK releases: %6zd "
245 "last released: %6zdK region: 0x%zx\n",
246 region->exhausted ? "F" : " ", class_id, ClassIdToSize(class_id),
247 region->mapped_user >> 10, region->stats.n_allocated,
248 region->stats.n_freed, in_use, region->num_freed_chunks, avail_chunks,
249 rss >> 10, region->rtoi.num_releases,
250 region->rtoi.last_released_bytes >> 10,
251 SpaceBeg() + kRegionSize * class_id);
252 }
253
254 void PrintStats() {
255 uptr rss_stats[kNumClasses];
256 for (uptr class_id = 0; class_id < kNumClasses; class_id++)
257 rss_stats[class_id] = SpaceBeg() + kRegionSize * class_id;
258 GetMemoryProfile(FillMemoryProfile, rss_stats, kNumClasses);
259
260 uptr total_mapped = 0;
261 uptr total_rss = 0;
262 uptr n_allocated = 0;
263 uptr n_freed = 0;
264 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
265 RegionInfo *region = GetRegionInfo(class_id);
266 if (region->mapped_user != 0) {
267 total_mapped += region->mapped_user;
268 total_rss += rss_stats[class_id];
269 }
270 n_allocated += region->stats.n_allocated;
271 n_freed += region->stats.n_freed;
272 }
273
274 Printf("Stats: SizeClassAllocator64: %zdM mapped (%zdM rss) in "
275 "%zd allocations; remains %zd\n", total_mapped >> 20,
276 total_rss >> 20, n_allocated, n_allocated - n_freed);
277 for (uptr class_id = 1; class_id < kNumClasses; class_id++)
278 PrintStats(class_id, rss_stats[class_id]);
279 }
280
281 // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone
282 // introspection API.
283 void ForceLock() {
284 for (uptr i = 0; i < kNumClasses; i++) {
285 GetRegionInfo(i)->mutex.Lock();
286 }
287 }
288
289 void ForceUnlock() {
290 for (int i = (int)kNumClasses - 1; i >= 0; i--) {
291 GetRegionInfo(i)->mutex.Unlock();
292 }
293 }
294
295 // Iterate over all existing chunks.
296 // The allocator must be locked when calling this function.
297 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
298 for (uptr class_id = 1; class_id < kNumClasses; class_id++) {
299 RegionInfo *region = GetRegionInfo(class_id);
300 uptr chunk_size = ClassIdToSize(class_id);
301 uptr region_beg = SpaceBeg() + class_id * kRegionSize;
302 uptr region_allocated_user_size =
303 AddressSpaceView::Load(region)->allocated_user;
304 for (uptr chunk = region_beg;
305 chunk < region_beg + region_allocated_user_size;
306 chunk += chunk_size) {
307 // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk));
308 callback(chunk, arg);
309 }
310 }
311 }
312
313 static uptr ClassIdToSize(uptr class_id) {
314 return SizeClassMap::Size(class_id);
315 }
316
317 static uptr AdditionalSize() {
318 return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded,
319 GetPageSizeCached());
320 }
321
322 typedef SizeClassMap SizeClassMapT;
323 static const uptr kNumClasses = SizeClassMap::kNumClasses;
324 static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded;
325
326 // A packed array of counters. Each counter occupies 2^n bits, enough to store
327 // counter's max_value. Ctor will try to allocate the required buffer via
328 // mapper->MapPackedCounterArrayBuffer and the caller is expected to check
329 // whether the initialization was successful by checking IsAllocated() result.
330 // For the performance sake, none of the accessors check the validity of the
331 // arguments, it is assumed that index is always in [0, n) range and the value
332 // is not incremented past max_value.
333 template<class MemoryMapperT>
334 class PackedCounterArray {
335 public:
336 PackedCounterArray(u64 num_counters, u64 max_value, MemoryMapperT *mapper)
337 : n(num_counters), memory_mapper(mapper) {
338 CHECK_GT(num_counters, 0);
339 CHECK_GT(max_value, 0);
340 constexpr u64 kMaxCounterBits = sizeof(*buffer) * 8ULL;
341 // Rounding counter storage size up to the power of two allows for using
342 // bit shifts calculating particular counter's index and offset.
343 uptr counter_size_bits =
344 RoundUpToPowerOfTwo(MostSignificantSetBitIndex(max_value) + 1);
345 CHECK_LE(counter_size_bits, kMaxCounterBits);
346 counter_size_bits_log = Log2(counter_size_bits);
347 counter_mask = ~0ULL >> (kMaxCounterBits - counter_size_bits);
348
349 uptr packing_ratio = kMaxCounterBits >> counter_size_bits_log;
350 CHECK_GT(packing_ratio, 0);
351 packing_ratio_log = Log2(packing_ratio);
352 bit_offset_mask = packing_ratio - 1;
353
354 buffer_size =
355 (RoundUpTo(n, 1ULL << packing_ratio_log) >> packing_ratio_log) *
356 sizeof(*buffer);
357 buffer = reinterpret_cast<u64*>(
358 memory_mapper->MapPackedCounterArrayBuffer(buffer_size));
359 }
360 ~PackedCounterArray() {
361 if (buffer) {
362 memory_mapper->UnmapPackedCounterArrayBuffer(
363 reinterpret_cast<uptr>(buffer), buffer_size);
364 }
365 }
366
367 bool IsAllocated() const {
368 return !!buffer;
369 }
370
371 u64 GetCount() const {
372 return n;
373 }
374
375 uptr Get(uptr i) const {
376 DCHECK_LT(i, n);
377 uptr index = i >> packing_ratio_log;
378 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
379 return (buffer[index] >> bit_offset) & counter_mask;
380 }
381
382 void Inc(uptr i) const {
383 DCHECK_LT(Get(i), counter_mask);
384 uptr index = i >> packing_ratio_log;
385 uptr bit_offset = (i & bit_offset_mask) << counter_size_bits_log;
386 buffer[index] += 1ULL << bit_offset;
387 }
388
389 void IncRange(uptr from, uptr to) const {
390 DCHECK_LE(from, to);
391 for (uptr i = from; i <= to; i++)
392 Inc(i);
393 }
394
395 private:
396 const u64 n;
397 u64 counter_size_bits_log;
398 u64 counter_mask;
399 u64 packing_ratio_log;
400 u64 bit_offset_mask;
401
402 MemoryMapperT* const memory_mapper;
403 u64 buffer_size;
404 u64* buffer;
405 };
406
407 template<class MemoryMapperT>
408 class FreePagesRangeTracker {
409 public:
410 explicit FreePagesRangeTracker(MemoryMapperT* mapper)
411 : memory_mapper(mapper),
412 page_size_scaled_log(Log2(GetPageSizeCached() >> kCompactPtrScale)),
413 in_the_range(false), current_page(0), current_range_start_page(0) {}
414
415 void NextPage(bool freed) {
416 if (freed) {
417 if (!in_the_range) {
418 current_range_start_page = current_page;
419 in_the_range = true;
420 }
421 } else {
422 CloseOpenedRange();
423 }
424 current_page++;
425 }
426
427 void Done() {
428 CloseOpenedRange();
429 }
430
431 private:
432 void CloseOpenedRange() {
433 if (in_the_range) {
434 memory_mapper->ReleasePageRangeToOS(
435 current_range_start_page << page_size_scaled_log,
436 current_page << page_size_scaled_log);
437 in_the_range = false;
438 }
439 }
440
441 MemoryMapperT* const memory_mapper;
442 const uptr page_size_scaled_log;
443 bool in_the_range;
444 uptr current_page;
445 uptr current_range_start_page;
446 };
447
448 // Iterates over the free_array to identify memory pages containing freed
449 // chunks only and returns these pages back to OS.
450 // allocated_pages_count is the total number of pages allocated for the
451 // current bucket.
452 template<class MemoryMapperT>
453 static void ReleaseFreeMemoryToOS(CompactPtrT *free_array,
454 uptr free_array_count, uptr chunk_size,
455 uptr allocated_pages_count,
456 MemoryMapperT *memory_mapper) {
457 const uptr page_size = GetPageSizeCached();
458
459 // Figure out the number of chunks per page and whether we can take a fast
460 // path (the number of chunks per page is the same for all pages).
461 uptr full_pages_chunk_count_max;
462 bool same_chunk_count_per_page;
463 if (chunk_size <= page_size && page_size % chunk_size == 0) {
464 // Same number of chunks per page, no cross overs.
465 full_pages_chunk_count_max = page_size / chunk_size;
466 same_chunk_count_per_page = true;
467 } else if (chunk_size <= page_size && page_size % chunk_size != 0 &&
468 chunk_size % (page_size % chunk_size) == 0) {
469 // Some chunks are crossing page boundaries, which means that the page
470 // contains one or two partial chunks, but all pages contain the same
471 // number of chunks.
472 full_pages_chunk_count_max = page_size / chunk_size + 1;
473 same_chunk_count_per_page = true;
474 } else if (chunk_size <= page_size) {
475 // Some chunks are crossing page boundaries, which means that the page
476 // contains one or two partial chunks.
477 full_pages_chunk_count_max = page_size / chunk_size + 2;
478 same_chunk_count_per_page = false;
479 } else if (chunk_size > page_size && chunk_size % page_size == 0) {
480 // One chunk covers multiple pages, no cross overs.
481 full_pages_chunk_count_max = 1;
482 same_chunk_count_per_page = true;
483 } else if (chunk_size > page_size) {
484 // One chunk covers multiple pages, Some chunks are crossing page
485 // boundaries. Some pages contain one chunk, some contain two.
486 full_pages_chunk_count_max = 2;
487 same_chunk_count_per_page = false;
488 } else {
489 UNREACHABLE("All chunk_size/page_size ratios must be handled.");
490 }
491
492 PackedCounterArray<MemoryMapperT> counters(allocated_pages_count,
493 full_pages_chunk_count_max,
494 memory_mapper);
495 if (!counters.IsAllocated())
496 return;
497
498 const uptr chunk_size_scaled = chunk_size >> kCompactPtrScale;
499 const uptr page_size_scaled = page_size >> kCompactPtrScale;
500 const uptr page_size_scaled_log = Log2(page_size_scaled);
501
502 // Iterate over free chunks and count how many free chunks affect each
503 // allocated page.
504 if (chunk_size <= page_size && page_size % chunk_size == 0) {
505 // Each chunk affects one page only.
506 for (uptr i = 0; i < free_array_count; i++)
507 counters.Inc(free_array[i] >> page_size_scaled_log);
508 } else {
509 // In all other cases chunks might affect more than one page.
510 for (uptr i = 0; i < free_array_count; i++) {
511 counters.IncRange(
512 free_array[i] >> page_size_scaled_log,
513 (free_array[i] + chunk_size_scaled - 1) >> page_size_scaled_log);
514 }
515 }
516
517 // Iterate over pages detecting ranges of pages with chunk counters equal
518 // to the expected number of chunks for the particular page.
519 FreePagesRangeTracker<MemoryMapperT> range_tracker(memory_mapper);
520 if (same_chunk_count_per_page) {
521 // Fast path, every page has the same number of chunks affecting it.
522 for (uptr i = 0; i < counters.GetCount(); i++)
523 range_tracker.NextPage(counters.Get(i) == full_pages_chunk_count_max);
524 } else {
525 // Show path, go through the pages keeping count how many chunks affect
526 // each page.
527 const uptr pn =
528 chunk_size < page_size ? page_size_scaled / chunk_size_scaled : 1;
529 const uptr pnc = pn * chunk_size_scaled;
530 // The idea is to increment the current page pointer by the first chunk
531 // size, middle portion size (the portion of the page covered by chunks
532 // except the first and the last one) and then the last chunk size, adding
533 // up the number of chunks on the current page and checking on every step
534 // whether the page boundary was crossed.
535 uptr prev_page_boundary = 0;
536 uptr current_boundary = 0;
537 for (uptr i = 0; i < counters.GetCount(); i++) {
538 uptr page_boundary = prev_page_boundary + page_size_scaled;
539 uptr chunks_per_page = pn;
540 if (current_boundary < page_boundary) {
541 if (current_boundary > prev_page_boundary)
542 chunks_per_page++;
543 current_boundary += pnc;
544 if (current_boundary < page_boundary) {
545 chunks_per_page++;
546 current_boundary += chunk_size_scaled;
547 }
548 }
549 prev_page_boundary = page_boundary;
550
551 range_tracker.NextPage(counters.Get(i) == chunks_per_page);
552 }
553 }
554 range_tracker.Done();
555 }
556
557 private:
558 friend class MemoryMapper;
559
560 ReservedAddressRange address_range;
561
562 static const uptr kRegionSize = kSpaceSize / kNumClassesRounded;
563 // FreeArray is the array of free-d chunks (stored as 4-byte offsets).
564 // In the worst case it may reguire kRegionSize/SizeClassMap::kMinSize
565 // elements, but in reality this will not happen. For simplicity we
566 // dedicate 1/8 of the region's virtual space to FreeArray.
567 static const uptr kFreeArraySize = kRegionSize / 8;
568
569 static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0;
570 uptr NonConstSpaceBeg;
571 uptr SpaceBeg() const {
572 return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg;
573 }
574 uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; }
575 // kRegionSize must be >= 2^32.
576 COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2)));
577 // kRegionSize must be <= 2^36, see CompactPtrT.
578 COMPILER_CHECK((kRegionSize) <= (1ULL << (SANITIZER_WORDSIZE / 2 + 4)));
579 // Call mmap for user memory with at least this size.
580 static const uptr kUserMapSize = 1 << 16;
581 // Call mmap for metadata memory with at least this size.
582 static const uptr kMetaMapSize = 1 << 16;
583 // Call mmap for free array memory with at least this size.
584 static const uptr kFreeArrayMapSize = 1 << 16;
585
586 atomic_sint32_t release_to_os_interval_ms_;
587
588 struct Stats {
589 uptr n_allocated;
590 uptr n_freed;
591 };
592
593 struct ReleaseToOsInfo {
594 uptr n_freed_at_last_release;
595 uptr num_releases;
596 u64 last_release_at_ns;
597 u64 last_released_bytes;
598 };
599
600 struct ALIGNED(SANITIZER_CACHE_LINE_SIZE) RegionInfo {
601 BlockingMutex mutex;
602 uptr num_freed_chunks; // Number of elements in the freearray.
603 uptr mapped_free_array; // Bytes mapped for freearray.
604 uptr allocated_user; // Bytes allocated for user memory.
605 uptr allocated_meta; // Bytes allocated for metadata.
606 uptr mapped_user; // Bytes mapped for user memory.
607 uptr mapped_meta; // Bytes mapped for metadata.
608 u32 rand_state; // Seed for random shuffle, used if kRandomShuffleChunks.
609 bool exhausted; // Whether region is out of space for new chunks.
610 Stats stats;
611 ReleaseToOsInfo rtoi;
612 };
613 COMPILER_CHECK(sizeof(RegionInfo) % kCacheLineSize == 0);
614
615 RegionInfo *GetRegionInfo(uptr class_id) const {
616 DCHECK_LT(class_id, kNumClasses);
617 RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
618 return &regions[class_id];
619 }
620
621 uptr GetMetadataEnd(uptr region_beg) const {
622 return region_beg + kRegionSize - kFreeArraySize;
623 }
624
625 uptr GetChunkIdx(uptr chunk, uptr size) const {
626 if (!kUsingConstantSpaceBeg)
627 chunk -= SpaceBeg();
628
629 uptr offset = chunk % kRegionSize;
630 // Here we divide by a non-constant. This is costly.
631 // size always fits into 32-bits. If the offset fits too, use 32-bit div.
632 if (offset >> (SANITIZER_WORDSIZE / 2))
633 return offset / size;
634 return (u32)offset / (u32)size;
635 }
636
637 CompactPtrT *GetFreeArray(uptr region_beg) const {
638 return reinterpret_cast<CompactPtrT *>(GetMetadataEnd(region_beg));
639 }
640
641 bool MapWithCallback(uptr beg, uptr size, const char *name) {
642 uptr mapped = address_range.Map(beg, size, name);
643 if (UNLIKELY(!mapped))
644 return false;
645 CHECK_EQ(beg, mapped);
646 MapUnmapCallback().OnMap(beg, size);
647 return true;
648 }
649
650 void MapWithCallbackOrDie(uptr beg, uptr size, const char *name) {
651 CHECK_EQ(beg, address_range.MapOrDie(beg, size, name));
652 MapUnmapCallback().OnMap(beg, size);
653 }
654
655 void UnmapWithCallbackOrDie(uptr beg, uptr size) {
656 MapUnmapCallback().OnUnmap(beg, size);
657 address_range.Unmap(beg, size);
658 }
659
660 bool EnsureFreeArraySpace(RegionInfo *region, uptr region_beg,
661 uptr num_freed_chunks) {
662 uptr needed_space = num_freed_chunks * sizeof(CompactPtrT);
663 if (region->mapped_free_array < needed_space) {
664 uptr new_mapped_free_array = RoundUpTo(needed_space, kFreeArrayMapSize);
665 CHECK_LE(new_mapped_free_array, kFreeArraySize);
666 uptr current_map_end = reinterpret_cast<uptr>(GetFreeArray(region_beg)) +
667 region->mapped_free_array;
668 uptr new_map_size = new_mapped_free_array - region->mapped_free_array;
669 if (UNLIKELY(!MapWithCallback(current_map_end, new_map_size,
670 "SizeClassAllocator: freearray")))
671 return false;
672 region->mapped_free_array = new_mapped_free_array;
673 }
674 return true;
675 }
676
677 // Check whether this size class is exhausted.
678 bool IsRegionExhausted(RegionInfo *region, uptr class_id,
679 uptr additional_map_size) {
680 if (LIKELY(region->mapped_user + region->mapped_meta +
681 additional_map_size <= kRegionSize - kFreeArraySize))
682 return false;
683 if (!region->exhausted) {
684 region->exhausted = true;
685 Printf("%s: Out of memory. ", SanitizerToolName);
686 Printf("The process has exhausted %zuMB for size class %zu.\n",
687 kRegionSize >> 20, ClassIdToSize(class_id));
688 }
689 return true;
690 }
691
692 NOINLINE bool PopulateFreeArray(AllocatorStats *stat, uptr class_id,
693 RegionInfo *region, uptr requested_count) {
694 // region->mutex is held.
695 const uptr region_beg = GetRegionBeginBySizeClass(class_id);
696 const uptr size = ClassIdToSize(class_id);
697
698 const uptr total_user_bytes =
699 region->allocated_user + requested_count * size;
700 // Map more space for chunks, if necessary.
701 if (LIKELY(total_user_bytes > region->mapped_user)) {
702 if (UNLIKELY(region->mapped_user == 0)) {
703 if (!kUsingConstantSpaceBeg && kRandomShuffleChunks)
704 // The random state is initialized from ASLR.
705 region->rand_state = static_cast<u32>(region_beg >> 12);
706 // Postpone the first release to OS attempt for ReleaseToOSIntervalMs,
707 // preventing just allocated memory from being released sooner than
708 // necessary and also preventing extraneous ReleaseMemoryPagesToOS calls
709 // for short lived processes.
710 // Do it only when the feature is turned on, to avoid a potentially
711 // extraneous syscall.
712 if (ReleaseToOSIntervalMs() >= 0)
713 region->rtoi.last_release_at_ns = MonotonicNanoTime();
714 }
715 // Do the mmap for the user memory.
716 const uptr user_map_size =
717 RoundUpTo(total_user_bytes - region->mapped_user, kUserMapSize);
718 if (UNLIKELY(IsRegionExhausted(region, class_id, user_map_size)))
719 return false;
720 if (UNLIKELY(!MapWithCallback(region_beg + region->mapped_user,
721 user_map_size,
722 "SizeClassAllocator: region data")))
723 return false;
724 stat->Add(AllocatorStatMapped, user_map_size);
725 region->mapped_user += user_map_size;
726 }
727 const uptr new_chunks_count =
728 (region->mapped_user - region->allocated_user) / size;
729
730 if (kMetadataSize) {
731 // Calculate the required space for metadata.
732 const uptr total_meta_bytes =
733 region->allocated_meta + new_chunks_count * kMetadataSize;
734 const uptr meta_map_size = (total_meta_bytes > region->mapped_meta) ?
735 RoundUpTo(total_meta_bytes - region->mapped_meta, kMetaMapSize) : 0;
736 // Map more space for metadata, if necessary.
737 if (meta_map_size) {
738 if (UNLIKELY(IsRegionExhausted(region, class_id, meta_map_size)))
739 return false;
740 if (UNLIKELY(!MapWithCallback(
741 GetMetadataEnd(region_beg) - region->mapped_meta - meta_map_size,
742 meta_map_size, "SizeClassAllocator: region metadata")))
743 return false;
744 region->mapped_meta += meta_map_size;
745 }
746 }
747
748 // If necessary, allocate more space for the free array and populate it with
749 // newly allocated chunks.
750 const uptr total_freed_chunks = region->num_freed_chunks + new_chunks_count;
751 if (UNLIKELY(!EnsureFreeArraySpace(region, region_beg, total_freed_chunks)))
752 return false;
753 CompactPtrT *free_array = GetFreeArray(region_beg);
754 for (uptr i = 0, chunk = region->allocated_user; i < new_chunks_count;
755 i++, chunk += size)
756 free_array[total_freed_chunks - 1 - i] = PointerToCompactPtr(0, chunk);
757 if (kRandomShuffleChunks)
758 RandomShuffle(&free_array[region->num_freed_chunks], new_chunks_count,
759 &region->rand_state);
760
761 // All necessary memory is mapped and now it is safe to advance all
762 // 'allocated_*' counters.
763 region->num_freed_chunks += new_chunks_count;
764 region->allocated_user += new_chunks_count * size;
765 CHECK_LE(region->allocated_user, region->mapped_user);
766 region->allocated_meta += new_chunks_count * kMetadataSize;
767 CHECK_LE(region->allocated_meta, region->mapped_meta);
768 region->exhausted = false;
769
770 // TODO(alekseyshl): Consider bumping last_release_at_ns here to prevent
771 // MaybeReleaseToOS from releasing just allocated pages or protect these
772 // not yet used chunks some other way.
773
774 return true;
775 }
776
777 class MemoryMapper {
778 public:
779 MemoryMapper(const ThisT& base_allocator, uptr class_id)
780 : allocator(base_allocator),
781 region_base(base_allocator.GetRegionBeginBySizeClass(class_id)),
782 released_ranges_count(0),
783 released_bytes(0) {
784 }
785
786 uptr GetReleasedRangesCount() const {
787 return released_ranges_count;
788 }
789
790 uptr GetReleasedBytes() const {
791 return released_bytes;
792 }
793
794 uptr MapPackedCounterArrayBuffer(uptr buffer_size) {
795 // TODO(alekseyshl): The idea to explore is to check if we have enough
796 // space between num_freed_chunks*sizeof(CompactPtrT) and
797 // mapped_free_array to fit buffer_size bytes and use that space instead
798 // of mapping a temporary one.
799 return reinterpret_cast<uptr>(
800 MmapOrDieOnFatalError(buffer_size, "ReleaseToOSPageCounters"));
801 }
802
803 void UnmapPackedCounterArrayBuffer(uptr buffer, uptr buffer_size) {
804 UnmapOrDie(reinterpret_cast<void *>(buffer), buffer_size);
805 }
806
807 // Releases [from, to) range of pages back to OS.
808 void ReleasePageRangeToOS(CompactPtrT from, CompactPtrT to) {
809 const uptr from_page = allocator.CompactPtrToPointer(region_base, from);
810 const uptr to_page = allocator.CompactPtrToPointer(region_base, to);
811 ReleaseMemoryPagesToOS(from_page, to_page);
812 released_ranges_count++;
813 released_bytes += to_page - from_page;
814 }
815
816 private:
817 const ThisT& allocator;
818 const uptr region_base;
819 uptr released_ranges_count;
820 uptr released_bytes;
821 };
822
823 // Attempts to release RAM occupied by freed chunks back to OS. The region is
824 // expected to be locked.
825 void MaybeReleaseToOS(uptr class_id, bool force) {
826 RegionInfo *region = GetRegionInfo(class_id);
827 const uptr chunk_size = ClassIdToSize(class_id);
828 const uptr page_size = GetPageSizeCached();
829
830 uptr n = region->num_freed_chunks;
831 if (n * chunk_size < page_size)
832 return; // No chance to release anything.
833 if ((region->stats.n_freed -
834 region->rtoi.n_freed_at_last_release) * chunk_size < page_size) {
835 return; // Nothing new to release.
836 }
837
838 if (!force) {
839 s32 interval_ms = ReleaseToOSIntervalMs();
840 if (interval_ms < 0)
841 return;
842
843 if (region->rtoi.last_release_at_ns + interval_ms * 1000000ULL >
844 MonotonicNanoTime()) {
845 return; // Memory was returned recently.
846 }
847 }
848
849 MemoryMapper memory_mapper(*this, class_id);
850
851 ReleaseFreeMemoryToOS<MemoryMapper>(
852 GetFreeArray(GetRegionBeginBySizeClass(class_id)), n, chunk_size,
853 RoundUpTo(region->allocated_user, page_size) / page_size,
854 &memory_mapper);
855
856 if (memory_mapper.GetReleasedRangesCount() > 0) {
857 region->rtoi.n_freed_at_last_release = region->stats.n_freed;
858 region->rtoi.num_releases += memory_mapper.GetReleasedRangesCount();
859 region->rtoi.last_released_bytes = memory_mapper.GetReleasedBytes();
860 }
861 region->rtoi.last_release_at_ns = MonotonicNanoTime();
862 }
863 };