]> git.ipfire.org Git - thirdparty/gcc.git/blob - libsanitizer/tsan/tsan_rtl.cpp
Libsanitizer: merge from master.
[thirdparty/gcc.git] / libsanitizer / tsan / tsan_rtl.cpp
1 //===-- tsan_rtl.cpp ------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // Main file (entry points) for the TSan run-time.
12 //===----------------------------------------------------------------------===//
13
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_common.h"
16 #include "sanitizer_common/sanitizer_file.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_stackdepot.h"
19 #include "sanitizer_common/sanitizer_placement_new.h"
20 #include "sanitizer_common/sanitizer_symbolizer.h"
21 #include "tsan_defs.h"
22 #include "tsan_platform.h"
23 #include "tsan_rtl.h"
24 #include "tsan_mman.h"
25 #include "tsan_suppressions.h"
26 #include "tsan_symbolize.h"
27 #include "ubsan/ubsan_init.h"
28
29 #ifdef __SSE3__
30 // <emmintrin.h> transitively includes <stdlib.h>,
31 // and it's prohibited to include std headers into tsan runtime.
32 // So we do this dirty trick.
33 #define _MM_MALLOC_H_INCLUDED
34 #define __MM_MALLOC_H
35 #include <emmintrin.h>
36 typedef __m128i m128;
37 #endif
38
39 volatile int __tsan_resumed = 0;
40
41 extern "C" void __tsan_resume() {
42 __tsan_resumed = 1;
43 }
44
45 namespace __tsan {
46
47 #if !SANITIZER_GO && !SANITIZER_MAC
48 __attribute__((tls_model("initial-exec")))
49 THREADLOCAL char cur_thread_placeholder[sizeof(ThreadState)] ALIGNED(64);
50 #endif
51 static char ctx_placeholder[sizeof(Context)] ALIGNED(64);
52 Context *ctx;
53
54 // Can be overriden by a front-end.
55 #ifdef TSAN_EXTERNAL_HOOKS
56 bool OnFinalize(bool failed);
57 void OnInitialize();
58 #else
59 SANITIZER_WEAK_CXX_DEFAULT_IMPL
60 bool OnFinalize(bool failed) {
61 return failed;
62 }
63 SANITIZER_WEAK_CXX_DEFAULT_IMPL
64 void OnInitialize() {}
65 #endif
66
67 static char thread_registry_placeholder[sizeof(ThreadRegistry)];
68
69 static ThreadContextBase *CreateThreadContext(u32 tid) {
70 // Map thread trace when context is created.
71 char name[50];
72 internal_snprintf(name, sizeof(name), "trace %u", tid);
73 MapThreadTrace(GetThreadTrace(tid), TraceSize() * sizeof(Event), name);
74 const uptr hdr = GetThreadTraceHeader(tid);
75 internal_snprintf(name, sizeof(name), "trace header %u", tid);
76 MapThreadTrace(hdr, sizeof(Trace), name);
77 new((void*)hdr) Trace();
78 // We are going to use only a small part of the trace with the default
79 // value of history_size. However, the constructor writes to the whole trace.
80 // Unmap the unused part.
81 uptr hdr_end = hdr + sizeof(Trace);
82 hdr_end -= sizeof(TraceHeader) * (kTraceParts - TraceParts());
83 hdr_end = RoundUp(hdr_end, GetPageSizeCached());
84 if (hdr_end < hdr + sizeof(Trace))
85 UnmapOrDie((void*)hdr_end, hdr + sizeof(Trace) - hdr_end);
86 void *mem = internal_alloc(MBlockThreadContex, sizeof(ThreadContext));
87 return new(mem) ThreadContext(tid);
88 }
89
90 #if !SANITIZER_GO
91 static const u32 kThreadQuarantineSize = 16;
92 #else
93 static const u32 kThreadQuarantineSize = 64;
94 #endif
95
96 Context::Context()
97 : initialized()
98 , report_mtx(MutexTypeReport, StatMtxReport)
99 , nreported()
100 , nmissed_expected()
101 , thread_registry(new(thread_registry_placeholder) ThreadRegistry(
102 CreateThreadContext, kMaxTid, kThreadQuarantineSize, kMaxTidReuse))
103 , racy_mtx(MutexTypeRacy, StatMtxRacy)
104 , racy_stacks()
105 , racy_addresses()
106 , fired_suppressions_mtx(MutexTypeFired, StatMtxFired)
107 , clock_alloc("clock allocator") {
108 fired_suppressions.reserve(8);
109 }
110
111 // The objects are allocated in TLS, so one may rely on zero-initialization.
112 ThreadState::ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
113 unsigned reuse_count,
114 uptr stk_addr, uptr stk_size,
115 uptr tls_addr, uptr tls_size)
116 : fast_state(tid, epoch)
117 // Do not touch these, rely on zero initialization,
118 // they may be accessed before the ctor.
119 // , ignore_reads_and_writes()
120 // , ignore_interceptors()
121 , clock(tid, reuse_count)
122 #if !SANITIZER_GO
123 , jmp_bufs()
124 #endif
125 , tid(tid)
126 , unique_id(unique_id)
127 , stk_addr(stk_addr)
128 , stk_size(stk_size)
129 , tls_addr(tls_addr)
130 , tls_size(tls_size)
131 #if !SANITIZER_GO
132 , last_sleep_clock(tid)
133 #endif
134 {
135 }
136
137 #if !SANITIZER_GO
138 static void MemoryProfiler(Context *ctx, fd_t fd, int i) {
139 uptr n_threads;
140 uptr n_running_threads;
141 ctx->thread_registry->GetNumberOfThreads(&n_threads, &n_running_threads);
142 InternalMmapVector<char> buf(4096);
143 WriteMemoryProfile(buf.data(), buf.size(), n_threads, n_running_threads);
144 WriteToFile(fd, buf.data(), internal_strlen(buf.data()));
145 }
146
147 static void *BackgroundThread(void *arg) {
148 // This is a non-initialized non-user thread, nothing to see here.
149 // We don't use ScopedIgnoreInterceptors, because we want ignores to be
150 // enabled even when the thread function exits (e.g. during pthread thread
151 // shutdown code).
152 cur_thread_init();
153 cur_thread()->ignore_interceptors++;
154 const u64 kMs2Ns = 1000 * 1000;
155
156 fd_t mprof_fd = kInvalidFd;
157 if (flags()->profile_memory && flags()->profile_memory[0]) {
158 if (internal_strcmp(flags()->profile_memory, "stdout") == 0) {
159 mprof_fd = 1;
160 } else if (internal_strcmp(flags()->profile_memory, "stderr") == 0) {
161 mprof_fd = 2;
162 } else {
163 InternalScopedString filename(kMaxPathLength);
164 filename.append("%s.%d", flags()->profile_memory, (int)internal_getpid());
165 fd_t fd = OpenFile(filename.data(), WrOnly);
166 if (fd == kInvalidFd) {
167 Printf("ThreadSanitizer: failed to open memory profile file '%s'\n",
168 &filename[0]);
169 } else {
170 mprof_fd = fd;
171 }
172 }
173 }
174
175 u64 last_flush = NanoTime();
176 uptr last_rss = 0;
177 for (int i = 0;
178 atomic_load(&ctx->stop_background_thread, memory_order_relaxed) == 0;
179 i++) {
180 SleepForMillis(100);
181 u64 now = NanoTime();
182
183 // Flush memory if requested.
184 if (flags()->flush_memory_ms > 0) {
185 if (last_flush + flags()->flush_memory_ms * kMs2Ns < now) {
186 VPrintf(1, "ThreadSanitizer: periodic memory flush\n");
187 FlushShadowMemory();
188 last_flush = NanoTime();
189 }
190 }
191 // GetRSS can be expensive on huge programs, so don't do it every 100ms.
192 if (flags()->memory_limit_mb > 0) {
193 uptr rss = GetRSS();
194 uptr limit = uptr(flags()->memory_limit_mb) << 20;
195 VPrintf(1, "ThreadSanitizer: memory flush check"
196 " RSS=%llu LAST=%llu LIMIT=%llu\n",
197 (u64)rss >> 20, (u64)last_rss >> 20, (u64)limit >> 20);
198 if (2 * rss > limit + last_rss) {
199 VPrintf(1, "ThreadSanitizer: flushing memory due to RSS\n");
200 FlushShadowMemory();
201 rss = GetRSS();
202 VPrintf(1, "ThreadSanitizer: memory flushed RSS=%llu\n", (u64)rss>>20);
203 }
204 last_rss = rss;
205 }
206
207 // Write memory profile if requested.
208 if (mprof_fd != kInvalidFd)
209 MemoryProfiler(ctx, mprof_fd, i);
210
211 // Flush symbolizer cache if requested.
212 if (flags()->flush_symbolizer_ms > 0) {
213 u64 last = atomic_load(&ctx->last_symbolize_time_ns,
214 memory_order_relaxed);
215 if (last != 0 && last + flags()->flush_symbolizer_ms * kMs2Ns < now) {
216 Lock l(&ctx->report_mtx);
217 ScopedErrorReportLock l2;
218 SymbolizeFlush();
219 atomic_store(&ctx->last_symbolize_time_ns, 0, memory_order_relaxed);
220 }
221 }
222 }
223 return nullptr;
224 }
225
226 static void StartBackgroundThread() {
227 ctx->background_thread = internal_start_thread(&BackgroundThread, 0);
228 }
229
230 #ifndef __mips__
231 static void StopBackgroundThread() {
232 atomic_store(&ctx->stop_background_thread, 1, memory_order_relaxed);
233 internal_join_thread(ctx->background_thread);
234 ctx->background_thread = 0;
235 }
236 #endif
237 #endif
238
239 void DontNeedShadowFor(uptr addr, uptr size) {
240 ReleaseMemoryPagesToOS(MemToShadow(addr), MemToShadow(addr + size));
241 }
242
243 #if !SANITIZER_GO
244 void UnmapShadow(ThreadState *thr, uptr addr, uptr size) {
245 if (size == 0) return;
246 DontNeedShadowFor(addr, size);
247 ScopedGlobalProcessor sgp;
248 ctx->metamap.ResetRange(thr->proc(), addr, size);
249 }
250 #endif
251
252 void MapShadow(uptr addr, uptr size) {
253 // Global data is not 64K aligned, but there are no adjacent mappings,
254 // so we can get away with unaligned mapping.
255 // CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
256 const uptr kPageSize = GetPageSizeCached();
257 uptr shadow_begin = RoundDownTo((uptr)MemToShadow(addr), kPageSize);
258 uptr shadow_end = RoundUpTo((uptr)MemToShadow(addr + size), kPageSize);
259 if (!MmapFixedNoReserve(shadow_begin, shadow_end - shadow_begin, "shadow"))
260 Die();
261
262 // Meta shadow is 2:1, so tread carefully.
263 static bool data_mapped = false;
264 static uptr mapped_meta_end = 0;
265 uptr meta_begin = (uptr)MemToMeta(addr);
266 uptr meta_end = (uptr)MemToMeta(addr + size);
267 meta_begin = RoundDownTo(meta_begin, 64 << 10);
268 meta_end = RoundUpTo(meta_end, 64 << 10);
269 if (!data_mapped) {
270 // First call maps data+bss.
271 data_mapped = true;
272 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
273 Die();
274 } else {
275 // Mapping continous heap.
276 // Windows wants 64K alignment.
277 meta_begin = RoundDownTo(meta_begin, 64 << 10);
278 meta_end = RoundUpTo(meta_end, 64 << 10);
279 if (meta_end <= mapped_meta_end)
280 return;
281 if (meta_begin < mapped_meta_end)
282 meta_begin = mapped_meta_end;
283 if (!MmapFixedNoReserve(meta_begin, meta_end - meta_begin, "meta shadow"))
284 Die();
285 mapped_meta_end = meta_end;
286 }
287 VPrintf(2, "mapped meta shadow for (%p-%p) at (%p-%p)\n",
288 addr, addr+size, meta_begin, meta_end);
289 }
290
291 void MapThreadTrace(uptr addr, uptr size, const char *name) {
292 DPrintf("#0: Mapping trace at %p-%p(0x%zx)\n", addr, addr + size, size);
293 CHECK_GE(addr, TraceMemBeg());
294 CHECK_LE(addr + size, TraceMemEnd());
295 CHECK_EQ(addr, addr & ~((64 << 10) - 1)); // windows wants 64K alignment
296 if (!MmapFixedNoReserve(addr, size, name)) {
297 Printf("FATAL: ThreadSanitizer can not mmap thread trace (%p/%p)\n",
298 addr, size);
299 Die();
300 }
301 }
302
303 static void CheckShadowMapping() {
304 uptr beg, end;
305 for (int i = 0; GetUserRegion(i, &beg, &end); i++) {
306 // Skip cases for empty regions (heap definition for architectures that
307 // do not use 64-bit allocator).
308 if (beg == end)
309 continue;
310 VPrintf(3, "checking shadow region %p-%p\n", beg, end);
311 uptr prev = 0;
312 for (uptr p0 = beg; p0 <= end; p0 += (end - beg) / 4) {
313 for (int x = -(int)kShadowCell; x <= (int)kShadowCell; x += kShadowCell) {
314 const uptr p = RoundDown(p0 + x, kShadowCell);
315 if (p < beg || p >= end)
316 continue;
317 const uptr s = MemToShadow(p);
318 const uptr m = (uptr)MemToMeta(p);
319 VPrintf(3, " checking pointer %p: shadow=%p meta=%p\n", p, s, m);
320 CHECK(IsAppMem(p));
321 CHECK(IsShadowMem(s));
322 CHECK_EQ(p, ShadowToMem(s));
323 CHECK(IsMetaMem(m));
324 if (prev) {
325 // Ensure that shadow and meta mappings are linear within a single
326 // user range. Lots of code that processes memory ranges assumes it.
327 const uptr prev_s = MemToShadow(prev);
328 const uptr prev_m = (uptr)MemToMeta(prev);
329 CHECK_EQ(s - prev_s, (p - prev) * kShadowMultiplier);
330 CHECK_EQ((m - prev_m) / kMetaShadowSize,
331 (p - prev) / kMetaShadowCell);
332 }
333 prev = p;
334 }
335 }
336 }
337 }
338
339 #if !SANITIZER_GO
340 static void OnStackUnwind(const SignalContext &sig, const void *,
341 BufferedStackTrace *stack) {
342 stack->Unwind(StackTrace::GetNextInstructionPc(sig.pc), sig.bp, sig.context,
343 common_flags()->fast_unwind_on_fatal);
344 }
345
346 static void TsanOnDeadlySignal(int signo, void *siginfo, void *context) {
347 HandleDeadlySignal(siginfo, context, GetTid(), &OnStackUnwind, nullptr);
348 }
349 #endif
350
351 void Initialize(ThreadState *thr) {
352 // Thread safe because done before all threads exist.
353 static bool is_initialized = false;
354 if (is_initialized)
355 return;
356 is_initialized = true;
357 // We are not ready to handle interceptors yet.
358 ScopedIgnoreInterceptors ignore;
359 SanitizerToolName = "ThreadSanitizer";
360 // Install tool-specific callbacks in sanitizer_common.
361 SetCheckFailedCallback(TsanCheckFailed);
362
363 ctx = new(ctx_placeholder) Context;
364 const char *env_name = SANITIZER_GO ? "GORACE" : "TSAN_OPTIONS";
365 const char *options = GetEnv(env_name);
366 CacheBinaryName();
367 CheckASLR();
368 InitializeFlags(&ctx->flags, options, env_name);
369 AvoidCVE_2016_2143();
370 __sanitizer::InitializePlatformEarly();
371 __tsan::InitializePlatformEarly();
372
373 #if !SANITIZER_GO
374 // Re-exec ourselves if we need to set additional env or command line args.
375 MaybeReexec();
376
377 InitializeAllocator();
378 ReplaceSystemMalloc();
379 #endif
380 if (common_flags()->detect_deadlocks)
381 ctx->dd = DDetector::Create(flags());
382 Processor *proc = ProcCreate();
383 ProcWire(proc, thr);
384 InitializeInterceptors();
385 CheckShadowMapping();
386 InitializePlatform();
387 InitializeMutex();
388 InitializeDynamicAnnotations();
389 #if !SANITIZER_GO
390 InitializeShadowMemory();
391 InitializeAllocatorLate();
392 InstallDeadlySignalHandlers(TsanOnDeadlySignal);
393 #endif
394 // Setup correct file descriptor for error reports.
395 __sanitizer_set_report_path(common_flags()->log_path);
396 InitializeSuppressions();
397 #if !SANITIZER_GO
398 InitializeLibIgnore();
399 Symbolizer::GetOrInit()->AddHooks(EnterSymbolizer, ExitSymbolizer);
400 #endif
401
402 VPrintf(1, "***** Running under ThreadSanitizer v2 (pid %d) *****\n",
403 (int)internal_getpid());
404
405 // Initialize thread 0.
406 int tid = ThreadCreate(thr, 0, 0, true);
407 CHECK_EQ(tid, 0);
408 ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
409 #if TSAN_CONTAINS_UBSAN
410 __ubsan::InitAsPlugin();
411 #endif
412 ctx->initialized = true;
413
414 #if !SANITIZER_GO
415 Symbolizer::LateInitialize();
416 #endif
417
418 if (flags()->stop_on_start) {
419 Printf("ThreadSanitizer is suspended at startup (pid %d)."
420 " Call __tsan_resume().\n",
421 (int)internal_getpid());
422 while (__tsan_resumed == 0) {}
423 }
424
425 OnInitialize();
426 }
427
428 void MaybeSpawnBackgroundThread() {
429 // On MIPS, TSan initialization is run before
430 // __pthread_initialize_minimal_internal() is finished, so we can not spawn
431 // new threads.
432 #if !SANITIZER_GO && !defined(__mips__)
433 static atomic_uint32_t bg_thread = {};
434 if (atomic_load(&bg_thread, memory_order_relaxed) == 0 &&
435 atomic_exchange(&bg_thread, 1, memory_order_relaxed) == 0) {
436 StartBackgroundThread();
437 SetSandboxingCallback(StopBackgroundThread);
438 }
439 #endif
440 }
441
442
443 int Finalize(ThreadState *thr) {
444 bool failed = false;
445
446 if (common_flags()->print_module_map == 1) PrintModuleMap();
447
448 if (flags()->atexit_sleep_ms > 0 && ThreadCount(thr) > 1)
449 SleepForMillis(flags()->atexit_sleep_ms);
450
451 // Wait for pending reports.
452 ctx->report_mtx.Lock();
453 { ScopedErrorReportLock l; }
454 ctx->report_mtx.Unlock();
455
456 #if !SANITIZER_GO
457 if (Verbosity()) AllocatorPrintStats();
458 #endif
459
460 ThreadFinalize(thr);
461
462 if (ctx->nreported) {
463 failed = true;
464 #if !SANITIZER_GO
465 Printf("ThreadSanitizer: reported %d warnings\n", ctx->nreported);
466 #else
467 Printf("Found %d data race(s)\n", ctx->nreported);
468 #endif
469 }
470
471 if (ctx->nmissed_expected) {
472 failed = true;
473 Printf("ThreadSanitizer: missed %d expected races\n",
474 ctx->nmissed_expected);
475 }
476
477 if (common_flags()->print_suppressions)
478 PrintMatchedSuppressions();
479 #if !SANITIZER_GO
480 if (flags()->print_benign)
481 PrintMatchedBenignRaces();
482 #endif
483
484 failed = OnFinalize(failed);
485
486 #if TSAN_COLLECT_STATS
487 StatAggregate(ctx->stat, thr->stat);
488 StatOutput(ctx->stat);
489 #endif
490
491 return failed ? common_flags()->exitcode : 0;
492 }
493
494 #if !SANITIZER_GO
495 void ForkBefore(ThreadState *thr, uptr pc) {
496 ctx->thread_registry->Lock();
497 ctx->report_mtx.Lock();
498 // Ignore memory accesses in the pthread_atfork callbacks.
499 // If any of them triggers a data race we will deadlock
500 // on the report_mtx.
501 // We could ignore interceptors and sync operations as well,
502 // but so far it's unclear if it will do more good or harm.
503 // Unnecessarily ignoring things can lead to false positives later.
504 ThreadIgnoreBegin(thr, pc);
505 }
506
507 void ForkParentAfter(ThreadState *thr, uptr pc) {
508 ThreadIgnoreEnd(thr, pc); // Begin is in ForkBefore.
509 ctx->report_mtx.Unlock();
510 ctx->thread_registry->Unlock();
511 }
512
513 void ForkChildAfter(ThreadState *thr, uptr pc) {
514 ThreadIgnoreEnd(thr, pc); // Begin is in ForkBefore.
515 ctx->report_mtx.Unlock();
516 ctx->thread_registry->Unlock();
517
518 uptr nthread = 0;
519 ctx->thread_registry->GetNumberOfThreads(0, 0, &nthread /* alive threads */);
520 VPrintf(1, "ThreadSanitizer: forked new process with pid %d,"
521 " parent had %d threads\n", (int)internal_getpid(), (int)nthread);
522 if (nthread == 1) {
523 StartBackgroundThread();
524 } else {
525 // We've just forked a multi-threaded process. We cannot reasonably function
526 // after that (some mutexes may be locked before fork). So just enable
527 // ignores for everything in the hope that we will exec soon.
528 ctx->after_multithreaded_fork = true;
529 thr->ignore_interceptors++;
530 ThreadIgnoreBegin(thr, pc);
531 ThreadIgnoreSyncBegin(thr, pc);
532 }
533 }
534 #endif
535
536 #if SANITIZER_GO
537 NOINLINE
538 void GrowShadowStack(ThreadState *thr) {
539 const int sz = thr->shadow_stack_end - thr->shadow_stack;
540 const int newsz = 2 * sz;
541 uptr *newstack = (uptr*)internal_alloc(MBlockShadowStack,
542 newsz * sizeof(uptr));
543 internal_memcpy(newstack, thr->shadow_stack, sz * sizeof(uptr));
544 internal_free(thr->shadow_stack);
545 thr->shadow_stack = newstack;
546 thr->shadow_stack_pos = newstack + sz;
547 thr->shadow_stack_end = newstack + newsz;
548 }
549 #endif
550
551 u32 CurrentStackId(ThreadState *thr, uptr pc) {
552 if (!thr->is_inited) // May happen during bootstrap.
553 return 0;
554 if (pc != 0) {
555 #if !SANITIZER_GO
556 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
557 #else
558 if (thr->shadow_stack_pos == thr->shadow_stack_end)
559 GrowShadowStack(thr);
560 #endif
561 thr->shadow_stack_pos[0] = pc;
562 thr->shadow_stack_pos++;
563 }
564 u32 id = StackDepotPut(
565 StackTrace(thr->shadow_stack, thr->shadow_stack_pos - thr->shadow_stack));
566 if (pc != 0)
567 thr->shadow_stack_pos--;
568 return id;
569 }
570
571 void TraceSwitch(ThreadState *thr) {
572 #if !SANITIZER_GO
573 if (ctx->after_multithreaded_fork)
574 return;
575 #endif
576 thr->nomalloc++;
577 Trace *thr_trace = ThreadTrace(thr->tid);
578 Lock l(&thr_trace->mtx);
579 unsigned trace = (thr->fast_state.epoch() / kTracePartSize) % TraceParts();
580 TraceHeader *hdr = &thr_trace->headers[trace];
581 hdr->epoch0 = thr->fast_state.epoch();
582 ObtainCurrentStack(thr, 0, &hdr->stack0);
583 hdr->mset0 = thr->mset;
584 thr->nomalloc--;
585 }
586
587 Trace *ThreadTrace(int tid) {
588 return (Trace*)GetThreadTraceHeader(tid);
589 }
590
591 uptr TraceTopPC(ThreadState *thr) {
592 Event *events = (Event*)GetThreadTrace(thr->tid);
593 uptr pc = events[thr->fast_state.GetTracePos()];
594 return pc;
595 }
596
597 uptr TraceSize() {
598 return (uptr)(1ull << (kTracePartSizeBits + flags()->history_size + 1));
599 }
600
601 uptr TraceParts() {
602 return TraceSize() / kTracePartSize;
603 }
604
605 #if !SANITIZER_GO
606 extern "C" void __tsan_trace_switch() {
607 TraceSwitch(cur_thread());
608 }
609
610 extern "C" void __tsan_report_race() {
611 ReportRace(cur_thread());
612 }
613 #endif
614
615 ALWAYS_INLINE
616 Shadow LoadShadow(u64 *p) {
617 u64 raw = atomic_load((atomic_uint64_t*)p, memory_order_relaxed);
618 return Shadow(raw);
619 }
620
621 ALWAYS_INLINE
622 void StoreShadow(u64 *sp, u64 s) {
623 atomic_store((atomic_uint64_t*)sp, s, memory_order_relaxed);
624 }
625
626 ALWAYS_INLINE
627 void StoreIfNotYetStored(u64 *sp, u64 *s) {
628 StoreShadow(sp, *s);
629 *s = 0;
630 }
631
632 ALWAYS_INLINE
633 void HandleRace(ThreadState *thr, u64 *shadow_mem,
634 Shadow cur, Shadow old) {
635 thr->racy_state[0] = cur.raw();
636 thr->racy_state[1] = old.raw();
637 thr->racy_shadow_addr = shadow_mem;
638 #if !SANITIZER_GO
639 HACKY_CALL(__tsan_report_race);
640 #else
641 ReportRace(thr);
642 #endif
643 }
644
645 static inline bool HappensBefore(Shadow old, ThreadState *thr) {
646 return thr->clock.get(old.TidWithIgnore()) >= old.epoch();
647 }
648
649 ALWAYS_INLINE
650 void MemoryAccessImpl1(ThreadState *thr, uptr addr,
651 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
652 u64 *shadow_mem, Shadow cur) {
653 StatInc(thr, StatMop);
654 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
655 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
656
657 // This potentially can live in an MMX/SSE scratch register.
658 // The required intrinsics are:
659 // __m128i _mm_move_epi64(__m128i*);
660 // _mm_storel_epi64(u64*, __m128i);
661 u64 store_word = cur.raw();
662 bool stored = false;
663
664 // scan all the shadow values and dispatch to 4 categories:
665 // same, replace, candidate and race (see comments below).
666 // we consider only 3 cases regarding access sizes:
667 // equal, intersect and not intersect. initially I considered
668 // larger and smaller as well, it allowed to replace some
669 // 'candidates' with 'same' or 'replace', but I think
670 // it's just not worth it (performance- and complexity-wise).
671
672 Shadow old(0);
673
674 // It release mode we manually unroll the loop,
675 // because empirically gcc generates better code this way.
676 // However, we can't afford unrolling in debug mode, because the function
677 // consumes almost 4K of stack. Gtest gives only 4K of stack to death test
678 // threads, which is not enough for the unrolled loop.
679 #if SANITIZER_DEBUG
680 for (int idx = 0; idx < 4; idx++) {
681 #include "tsan_update_shadow_word_inl.h"
682 }
683 #else
684 int idx = 0;
685 #include "tsan_update_shadow_word_inl.h"
686 idx = 1;
687 if (stored) {
688 #include "tsan_update_shadow_word_inl.h"
689 } else {
690 #include "tsan_update_shadow_word_inl.h"
691 }
692 idx = 2;
693 if (stored) {
694 #include "tsan_update_shadow_word_inl.h"
695 } else {
696 #include "tsan_update_shadow_word_inl.h"
697 }
698 idx = 3;
699 if (stored) {
700 #include "tsan_update_shadow_word_inl.h"
701 } else {
702 #include "tsan_update_shadow_word_inl.h"
703 }
704 #endif
705
706 // we did not find any races and had already stored
707 // the current access info, so we are done
708 if (LIKELY(stored))
709 return;
710 // choose a random candidate slot and replace it
711 StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word);
712 StatInc(thr, StatShadowReplace);
713 return;
714 RACE:
715 HandleRace(thr, shadow_mem, cur, old);
716 return;
717 }
718
719 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
720 int size, bool kAccessIsWrite, bool kIsAtomic) {
721 while (size) {
722 int size1 = 1;
723 int kAccessSizeLog = kSizeLog1;
724 if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) {
725 size1 = 8;
726 kAccessSizeLog = kSizeLog8;
727 } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) {
728 size1 = 4;
729 kAccessSizeLog = kSizeLog4;
730 } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) {
731 size1 = 2;
732 kAccessSizeLog = kSizeLog2;
733 }
734 MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic);
735 addr += size1;
736 size -= size1;
737 }
738 }
739
740 ALWAYS_INLINE
741 bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
742 Shadow cur(a);
743 for (uptr i = 0; i < kShadowCnt; i++) {
744 Shadow old(LoadShadow(&s[i]));
745 if (Shadow::Addr0AndSizeAreEqual(cur, old) &&
746 old.TidWithIgnore() == cur.TidWithIgnore() &&
747 old.epoch() > sync_epoch &&
748 old.IsAtomic() == cur.IsAtomic() &&
749 old.IsRead() <= cur.IsRead())
750 return true;
751 }
752 return false;
753 }
754
755 #if defined(__SSE3__)
756 #define SHUF(v0, v1, i0, i1, i2, i3) _mm_castps_si128(_mm_shuffle_ps( \
757 _mm_castsi128_ps(v0), _mm_castsi128_ps(v1), \
758 (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64))
759 ALWAYS_INLINE
760 bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
761 // This is an optimized version of ContainsSameAccessSlow.
762 // load current access into access[0:63]
763 const m128 access = _mm_cvtsi64_si128(a);
764 // duplicate high part of access in addr0:
765 // addr0[0:31] = access[32:63]
766 // addr0[32:63] = access[32:63]
767 // addr0[64:95] = access[32:63]
768 // addr0[96:127] = access[32:63]
769 const m128 addr0 = SHUF(access, access, 1, 1, 1, 1);
770 // load 4 shadow slots
771 const m128 shadow0 = _mm_load_si128((__m128i*)s);
772 const m128 shadow1 = _mm_load_si128((__m128i*)s + 1);
773 // load high parts of 4 shadow slots into addr_vect:
774 // addr_vect[0:31] = shadow0[32:63]
775 // addr_vect[32:63] = shadow0[96:127]
776 // addr_vect[64:95] = shadow1[32:63]
777 // addr_vect[96:127] = shadow1[96:127]
778 m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3);
779 if (!is_write) {
780 // set IsRead bit in addr_vect
781 const m128 rw_mask1 = _mm_cvtsi64_si128(1<<15);
782 const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0);
783 addr_vect = _mm_or_si128(addr_vect, rw_mask);
784 }
785 // addr0 == addr_vect?
786 const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect);
787 // epoch1[0:63] = sync_epoch
788 const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch);
789 // epoch[0:31] = sync_epoch[0:31]
790 // epoch[32:63] = sync_epoch[0:31]
791 // epoch[64:95] = sync_epoch[0:31]
792 // epoch[96:127] = sync_epoch[0:31]
793 const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0);
794 // load low parts of shadow cell epochs into epoch_vect:
795 // epoch_vect[0:31] = shadow0[0:31]
796 // epoch_vect[32:63] = shadow0[64:95]
797 // epoch_vect[64:95] = shadow1[0:31]
798 // epoch_vect[96:127] = shadow1[64:95]
799 const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2);
800 // epoch_vect >= sync_epoch?
801 const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch);
802 // addr_res & epoch_res
803 const m128 res = _mm_and_si128(addr_res, epoch_res);
804 // mask[0] = res[7]
805 // mask[1] = res[15]
806 // ...
807 // mask[15] = res[127]
808 const int mask = _mm_movemask_epi8(res);
809 return mask != 0;
810 }
811 #endif
812
813 ALWAYS_INLINE
814 bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) {
815 #if defined(__SSE3__)
816 bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write);
817 // NOTE: this check can fail if the shadow is concurrently mutated
818 // by other threads. But it still can be useful if you modify
819 // ContainsSameAccessFast and want to ensure that it's not completely broken.
820 // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write));
821 return res;
822 #else
823 return ContainsSameAccessSlow(s, a, sync_epoch, is_write);
824 #endif
825 }
826
827 ALWAYS_INLINE USED
828 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
829 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic) {
830 u64 *shadow_mem = (u64*)MemToShadow(addr);
831 DPrintf2("#%d: MemoryAccess: @%p %p size=%d"
832 " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n",
833 (int)thr->fast_state.tid(), (void*)pc, (void*)addr,
834 (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem,
835 (uptr)shadow_mem[0], (uptr)shadow_mem[1],
836 (uptr)shadow_mem[2], (uptr)shadow_mem[3]);
837 #if SANITIZER_DEBUG
838 if (!IsAppMem(addr)) {
839 Printf("Access to non app mem %zx\n", addr);
840 DCHECK(IsAppMem(addr));
841 }
842 if (!IsShadowMem((uptr)shadow_mem)) {
843 Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr);
844 DCHECK(IsShadowMem((uptr)shadow_mem));
845 }
846 #endif
847
848 if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) {
849 // Access to .rodata section, no races here.
850 // Measurements show that it can be 10-20% of all memory accesses.
851 StatInc(thr, StatMop);
852 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
853 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
854 StatInc(thr, StatMopRodata);
855 return;
856 }
857
858 FastState fast_state = thr->fast_state;
859 if (UNLIKELY(fast_state.GetIgnoreBit())) {
860 StatInc(thr, StatMop);
861 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
862 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
863 StatInc(thr, StatMopIgnored);
864 return;
865 }
866
867 Shadow cur(fast_state);
868 cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog);
869 cur.SetWrite(kAccessIsWrite);
870 cur.SetAtomic(kIsAtomic);
871
872 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
873 thr->fast_synch_epoch, kAccessIsWrite))) {
874 StatInc(thr, StatMop);
875 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
876 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
877 StatInc(thr, StatMopSame);
878 return;
879 }
880
881 if (kCollectHistory) {
882 fast_state.IncrementEpoch();
883 thr->fast_state = fast_state;
884 TraceAddEvent(thr, fast_state, EventTypeMop, pc);
885 cur.IncrementEpoch();
886 }
887
888 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
889 shadow_mem, cur);
890 }
891
892 // Called by MemoryAccessRange in tsan_rtl_thread.cpp
893 ALWAYS_INLINE USED
894 void MemoryAccessImpl(ThreadState *thr, uptr addr,
895 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
896 u64 *shadow_mem, Shadow cur) {
897 if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(),
898 thr->fast_synch_epoch, kAccessIsWrite))) {
899 StatInc(thr, StatMop);
900 StatInc(thr, kAccessIsWrite ? StatMopWrite : StatMopRead);
901 StatInc(thr, (StatType)(StatMop1 + kAccessSizeLog));
902 StatInc(thr, StatMopSame);
903 return;
904 }
905
906 MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic,
907 shadow_mem, cur);
908 }
909
910 static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size,
911 u64 val) {
912 (void)thr;
913 (void)pc;
914 if (size == 0)
915 return;
916 // FIXME: fix me.
917 uptr offset = addr % kShadowCell;
918 if (offset) {
919 offset = kShadowCell - offset;
920 if (size <= offset)
921 return;
922 addr += offset;
923 size -= offset;
924 }
925 DCHECK_EQ(addr % 8, 0);
926 // If a user passes some insane arguments (memset(0)),
927 // let it just crash as usual.
928 if (!IsAppMem(addr) || !IsAppMem(addr + size - 1))
929 return;
930 // Don't want to touch lots of shadow memory.
931 // If a program maps 10MB stack, there is no need reset the whole range.
932 size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1);
933 // UnmapOrDie/MmapFixedNoReserve does not work on Windows.
934 if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) {
935 u64 *p = (u64*)MemToShadow(addr);
936 CHECK(IsShadowMem((uptr)p));
937 CHECK(IsShadowMem((uptr)(p + size * kShadowCnt / kShadowCell - 1)));
938 // FIXME: may overwrite a part outside the region
939 for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) {
940 p[i++] = val;
941 for (uptr j = 1; j < kShadowCnt; j++)
942 p[i++] = 0;
943 }
944 } else {
945 // The region is big, reset only beginning and end.
946 const uptr kPageSize = GetPageSizeCached();
947 u64 *begin = (u64*)MemToShadow(addr);
948 u64 *end = begin + size / kShadowCell * kShadowCnt;
949 u64 *p = begin;
950 // Set at least first kPageSize/2 to page boundary.
951 while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) {
952 *p++ = val;
953 for (uptr j = 1; j < kShadowCnt; j++)
954 *p++ = 0;
955 }
956 // Reset middle part.
957 u64 *p1 = p;
958 p = RoundDown(end, kPageSize);
959 UnmapOrDie((void*)p1, (uptr)p - (uptr)p1);
960 if (!MmapFixedNoReserve((uptr)p1, (uptr)p - (uptr)p1))
961 Die();
962 // Set the ending.
963 while (p < end) {
964 *p++ = val;
965 for (uptr j = 1; j < kShadowCnt; j++)
966 *p++ = 0;
967 }
968 }
969 }
970
971 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) {
972 MemoryRangeSet(thr, pc, addr, size, 0);
973 }
974
975 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) {
976 // Processing more than 1k (4k of shadow) is expensive,
977 // can cause excessive memory consumption (user does not necessary touch
978 // the whole range) and most likely unnecessary.
979 if (size > 1024)
980 size = 1024;
981 CHECK_EQ(thr->is_freeing, false);
982 thr->is_freeing = true;
983 MemoryAccessRange(thr, pc, addr, size, true);
984 thr->is_freeing = false;
985 if (kCollectHistory) {
986 thr->fast_state.IncrementEpoch();
987 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
988 }
989 Shadow s(thr->fast_state);
990 s.ClearIgnoreBit();
991 s.MarkAsFreed();
992 s.SetWrite(true);
993 s.SetAddr0AndSizeLog(0, 3);
994 MemoryRangeSet(thr, pc, addr, size, s.raw());
995 }
996
997 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) {
998 if (kCollectHistory) {
999 thr->fast_state.IncrementEpoch();
1000 TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc);
1001 }
1002 Shadow s(thr->fast_state);
1003 s.ClearIgnoreBit();
1004 s.SetWrite(true);
1005 s.SetAddr0AndSizeLog(0, 3);
1006 MemoryRangeSet(thr, pc, addr, size, s.raw());
1007 }
1008
1009 void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr,
1010 uptr size) {
1011 if (thr->ignore_reads_and_writes == 0)
1012 MemoryRangeImitateWrite(thr, pc, addr, size);
1013 else
1014 MemoryResetRange(thr, pc, addr, size);
1015 }
1016
1017 ALWAYS_INLINE USED
1018 void FuncEntry(ThreadState *thr, uptr pc) {
1019 StatInc(thr, StatFuncEnter);
1020 DPrintf2("#%d: FuncEntry %p\n", (int)thr->fast_state.tid(), (void*)pc);
1021 if (kCollectHistory) {
1022 thr->fast_state.IncrementEpoch();
1023 TraceAddEvent(thr, thr->fast_state, EventTypeFuncEnter, pc);
1024 }
1025
1026 // Shadow stack maintenance can be replaced with
1027 // stack unwinding during trace switch (which presumably must be faster).
1028 DCHECK_GE(thr->shadow_stack_pos, thr->shadow_stack);
1029 #if !SANITIZER_GO
1030 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1031 #else
1032 if (thr->shadow_stack_pos == thr->shadow_stack_end)
1033 GrowShadowStack(thr);
1034 #endif
1035 thr->shadow_stack_pos[0] = pc;
1036 thr->shadow_stack_pos++;
1037 }
1038
1039 ALWAYS_INLINE USED
1040 void FuncExit(ThreadState *thr) {
1041 StatInc(thr, StatFuncExit);
1042 DPrintf2("#%d: FuncExit\n", (int)thr->fast_state.tid());
1043 if (kCollectHistory) {
1044 thr->fast_state.IncrementEpoch();
1045 TraceAddEvent(thr, thr->fast_state, EventTypeFuncExit, 0);
1046 }
1047
1048 DCHECK_GT(thr->shadow_stack_pos, thr->shadow_stack);
1049 #if !SANITIZER_GO
1050 DCHECK_LT(thr->shadow_stack_pos, thr->shadow_stack_end);
1051 #endif
1052 thr->shadow_stack_pos--;
1053 }
1054
1055 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack) {
1056 DPrintf("#%d: ThreadIgnoreBegin\n", thr->tid);
1057 thr->ignore_reads_and_writes++;
1058 CHECK_GT(thr->ignore_reads_and_writes, 0);
1059 thr->fast_state.SetIgnoreBit();
1060 #if !SANITIZER_GO
1061 if (save_stack && !ctx->after_multithreaded_fork)
1062 thr->mop_ignore_set.Add(CurrentStackId(thr, pc));
1063 #endif
1064 }
1065
1066 void ThreadIgnoreEnd(ThreadState *thr, uptr pc) {
1067 DPrintf("#%d: ThreadIgnoreEnd\n", thr->tid);
1068 CHECK_GT(thr->ignore_reads_and_writes, 0);
1069 thr->ignore_reads_and_writes--;
1070 if (thr->ignore_reads_and_writes == 0) {
1071 thr->fast_state.ClearIgnoreBit();
1072 #if !SANITIZER_GO
1073 thr->mop_ignore_set.Reset();
1074 #endif
1075 }
1076 }
1077
1078 #if !SANITIZER_GO
1079 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
1080 uptr __tsan_testonly_shadow_stack_current_size() {
1081 ThreadState *thr = cur_thread();
1082 return thr->shadow_stack_pos - thr->shadow_stack;
1083 }
1084 #endif
1085
1086 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack) {
1087 DPrintf("#%d: ThreadIgnoreSyncBegin\n", thr->tid);
1088 thr->ignore_sync++;
1089 CHECK_GT(thr->ignore_sync, 0);
1090 #if !SANITIZER_GO
1091 if (save_stack && !ctx->after_multithreaded_fork)
1092 thr->sync_ignore_set.Add(CurrentStackId(thr, pc));
1093 #endif
1094 }
1095
1096 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc) {
1097 DPrintf("#%d: ThreadIgnoreSyncEnd\n", thr->tid);
1098 CHECK_GT(thr->ignore_sync, 0);
1099 thr->ignore_sync--;
1100 #if !SANITIZER_GO
1101 if (thr->ignore_sync == 0)
1102 thr->sync_ignore_set.Reset();
1103 #endif
1104 }
1105
1106 bool MD5Hash::operator==(const MD5Hash &other) const {
1107 return hash[0] == other.hash[0] && hash[1] == other.hash[1];
1108 }
1109
1110 #if SANITIZER_DEBUG
1111 void build_consistency_debug() {}
1112 #else
1113 void build_consistency_release() {}
1114 #endif
1115
1116 #if TSAN_COLLECT_STATS
1117 void build_consistency_stats() {}
1118 #else
1119 void build_consistency_nostats() {}
1120 #endif
1121
1122 } // namespace __tsan
1123
1124 #if !SANITIZER_GO
1125 // Must be included in this file to make sure everything is inlined.
1126 #include "tsan_interface_inl.h"
1127 #endif