]> git.ipfire.org Git - thirdparty/glibc.git/blob - stdlib/strtod_l.c
Update copyright notices with scripts/update-copyrights.
[thirdparty/glibc.git] / stdlib / strtod_l.c
1 /* Convert string representing a number to float value, using given locale.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library; if not, see
18 <http://www.gnu.org/licenses/>. */
19
20 #include <xlocale.h>
21
22 extern double ____strtod_l_internal (const char *, char **, int, __locale_t);
23 extern unsigned long long int ____strtoull_l_internal (const char *, char **,
24 int, int, __locale_t);
25
26 /* Configuration part. These macros are defined by `strtold.c',
27 `strtof.c', `wcstod.c', `wcstold.c', and `wcstof.c' to produce the
28 `long double' and `float' versions of the reader. */
29 #ifndef FLOAT
30 # include <math_ldbl_opt.h>
31 # define FLOAT double
32 # define FLT DBL
33 # ifdef USE_WIDE_CHAR
34 # define STRTOF wcstod_l
35 # define __STRTOF __wcstod_l
36 # else
37 # define STRTOF strtod_l
38 # define __STRTOF __strtod_l
39 # endif
40 # define MPN2FLOAT __mpn_construct_double
41 # define FLOAT_HUGE_VAL HUGE_VAL
42 # define SET_MANTISSA(flt, mant) \
43 do { union ieee754_double u; \
44 u.d = (flt); \
45 if ((mant & 0xfffffffffffffULL) == 0) \
46 mant = 0x8000000000000ULL; \
47 u.ieee.mantissa0 = ((mant) >> 32) & 0xfffff; \
48 u.ieee.mantissa1 = (mant) & 0xffffffff; \
49 (flt) = u.d; \
50 } while (0)
51 #endif
52 /* End of configuration part. */
53 \f
54 #include <ctype.h>
55 #include <errno.h>
56 #include <float.h>
57 #include <ieee754.h>
58 #include "../locale/localeinfo.h"
59 #include <locale.h>
60 #include <math.h>
61 #include <stdlib.h>
62 #include <string.h>
63 #include <stdint.h>
64 #include <rounding-mode.h>
65 #include <tininess.h>
66
67 /* The gmp headers need some configuration frobs. */
68 #define HAVE_ALLOCA 1
69
70 /* Include gmp-mparam.h first, such that definitions of _SHORT_LIMB
71 and _LONG_LONG_LIMB in it can take effect into gmp.h. */
72 #include <gmp-mparam.h>
73 #include <gmp.h>
74 #include "gmp-impl.h"
75 #include "longlong.h"
76 #include "fpioconst.h"
77
78 #include <assert.h>
79
80
81 /* We use this code for the extended locale handling where the
82 function gets as an additional argument the locale which has to be
83 used. To access the values we have to redefine the _NL_CURRENT and
84 _NL_CURRENT_WORD macros. */
85 #undef _NL_CURRENT
86 #define _NL_CURRENT(category, item) \
87 (current->values[_NL_ITEM_INDEX (item)].string)
88 #undef _NL_CURRENT_WORD
89 #define _NL_CURRENT_WORD(category, item) \
90 ((uint32_t) current->values[_NL_ITEM_INDEX (item)].word)
91
92 #if defined _LIBC || defined HAVE_WCHAR_H
93 # include <wchar.h>
94 #endif
95
96 #ifdef USE_WIDE_CHAR
97 # include <wctype.h>
98 # define STRING_TYPE wchar_t
99 # define CHAR_TYPE wint_t
100 # define L_(Ch) L##Ch
101 # define ISSPACE(Ch) __iswspace_l ((Ch), loc)
102 # define ISDIGIT(Ch) __iswdigit_l ((Ch), loc)
103 # define ISXDIGIT(Ch) __iswxdigit_l ((Ch), loc)
104 # define TOLOWER(Ch) __towlower_l ((Ch), loc)
105 # define TOLOWER_C(Ch) __towlower_l ((Ch), _nl_C_locobj_ptr)
106 # define STRNCASECMP(S1, S2, N) \
107 __wcsncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
108 # define STRTOULL(S, E, B) ____wcstoull_l_internal ((S), (E), (B), 0, loc)
109 #else
110 # define STRING_TYPE char
111 # define CHAR_TYPE char
112 # define L_(Ch) Ch
113 # define ISSPACE(Ch) __isspace_l ((Ch), loc)
114 # define ISDIGIT(Ch) __isdigit_l ((Ch), loc)
115 # define ISXDIGIT(Ch) __isxdigit_l ((Ch), loc)
116 # define TOLOWER(Ch) __tolower_l ((Ch), loc)
117 # define TOLOWER_C(Ch) __tolower_l ((Ch), _nl_C_locobj_ptr)
118 # define STRNCASECMP(S1, S2, N) \
119 __strncasecmp_l ((S1), (S2), (N), _nl_C_locobj_ptr)
120 # define STRTOULL(S, E, B) ____strtoull_l_internal ((S), (E), (B), 0, loc)
121 #endif
122
123
124 /* Constants we need from float.h; select the set for the FLOAT precision. */
125 #define MANT_DIG PASTE(FLT,_MANT_DIG)
126 #define DIG PASTE(FLT,_DIG)
127 #define MAX_EXP PASTE(FLT,_MAX_EXP)
128 #define MIN_EXP PASTE(FLT,_MIN_EXP)
129 #define MAX_10_EXP PASTE(FLT,_MAX_10_EXP)
130 #define MIN_10_EXP PASTE(FLT,_MIN_10_EXP)
131 #define MAX_VALUE PASTE(FLT,_MAX)
132 #define MIN_VALUE PASTE(FLT,_MIN)
133
134 /* Extra macros required to get FLT expanded before the pasting. */
135 #define PASTE(a,b) PASTE1(a,b)
136 #define PASTE1(a,b) a##b
137
138 /* Function to construct a floating point number from an MP integer
139 containing the fraction bits, a base 2 exponent, and a sign flag. */
140 extern FLOAT MPN2FLOAT (mp_srcptr mpn, int exponent, int negative);
141 \f
142 /* Definitions according to limb size used. */
143 #if BITS_PER_MP_LIMB == 32
144 # define MAX_DIG_PER_LIMB 9
145 # define MAX_FAC_PER_LIMB 1000000000UL
146 #elif BITS_PER_MP_LIMB == 64
147 # define MAX_DIG_PER_LIMB 19
148 # define MAX_FAC_PER_LIMB 10000000000000000000ULL
149 #else
150 # error "mp_limb_t size " BITS_PER_MP_LIMB "not accounted for"
151 #endif
152
153 extern const mp_limb_t _tens_in_limb[MAX_DIG_PER_LIMB + 1];
154 \f
155 #ifndef howmany
156 #define howmany(x,y) (((x)+((y)-1))/(y))
157 #endif
158 #define SWAP(x, y) ({ typeof(x) _tmp = x; x = y; y = _tmp; })
159
160 #define RETURN_LIMB_SIZE howmany (MANT_DIG, BITS_PER_MP_LIMB)
161
162 #define RETURN(val,end) \
163 do { if (endptr != NULL) *endptr = (STRING_TYPE *) (end); \
164 return val; } while (0)
165
166 /* Maximum size necessary for mpn integers to hold floating point
167 numbers. The largest number we need to hold is 10^n where 2^-n is
168 1/4 ulp of the smallest representable value (that is, n = MANT_DIG
169 - MIN_EXP + 2). Approximate using 10^3 < 2^10. */
170 #define MPNSIZE (howmany (1 + ((MANT_DIG - MIN_EXP + 2) * 10) / 3, \
171 BITS_PER_MP_LIMB) + 2)
172 /* Declare an mpn integer variable that big. */
173 #define MPN_VAR(name) mp_limb_t name[MPNSIZE]; mp_size_t name##size
174 /* Copy an mpn integer value. */
175 #define MPN_ASSIGN(dst, src) \
176 memcpy (dst, src, (dst##size = src##size) * sizeof (mp_limb_t))
177
178
179 /* Set errno and return an overflowing value with sign specified by
180 NEGATIVE. */
181 static FLOAT
182 overflow_value (int negative)
183 {
184 __set_errno (ERANGE);
185 #if FLT_EVAL_METHOD != 0
186 volatile
187 #endif
188 FLOAT result = (negative ? -MAX_VALUE : MAX_VALUE) * MAX_VALUE;
189 return result;
190 }
191
192
193 /* Set errno and return an underflowing value with sign specified by
194 NEGATIVE. */
195 static FLOAT
196 underflow_value (int negative)
197 {
198 __set_errno (ERANGE);
199 #if FLT_EVAL_METHOD != 0
200 volatile
201 #endif
202 FLOAT result = (negative ? -MIN_VALUE : MIN_VALUE) * MIN_VALUE;
203 return result;
204 }
205
206
207 /* Return a floating point number of the needed type according to the given
208 multi-precision number after possible rounding. */
209 static FLOAT
210 round_and_return (mp_limb_t *retval, intmax_t exponent, int negative,
211 mp_limb_t round_limb, mp_size_t round_bit, int more_bits)
212 {
213 int mode = get_rounding_mode ();
214
215 if (exponent < MIN_EXP - 1)
216 {
217 if (exponent < MIN_EXP - 1 - MANT_DIG)
218 return underflow_value (negative);
219
220 mp_size_t shift = MIN_EXP - 1 - exponent;
221 bool is_tiny = true;
222
223 more_bits |= (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0;
224 if (shift == MANT_DIG)
225 /* This is a special case to handle the very seldom case where
226 the mantissa will be empty after the shift. */
227 {
228 int i;
229
230 round_limb = retval[RETURN_LIMB_SIZE - 1];
231 round_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
232 for (i = 0; i < RETURN_LIMB_SIZE; ++i)
233 more_bits |= retval[i] != 0;
234 MPN_ZERO (retval, RETURN_LIMB_SIZE);
235 }
236 else if (shift >= BITS_PER_MP_LIMB)
237 {
238 int i;
239
240 round_limb = retval[(shift - 1) / BITS_PER_MP_LIMB];
241 round_bit = (shift - 1) % BITS_PER_MP_LIMB;
242 for (i = 0; i < (shift - 1) / BITS_PER_MP_LIMB; ++i)
243 more_bits |= retval[i] != 0;
244 more_bits |= ((round_limb & ((((mp_limb_t) 1) << round_bit) - 1))
245 != 0);
246
247 (void) __mpn_rshift (retval, &retval[shift / BITS_PER_MP_LIMB],
248 RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB),
249 shift % BITS_PER_MP_LIMB);
250 MPN_ZERO (&retval[RETURN_LIMB_SIZE - (shift / BITS_PER_MP_LIMB)],
251 shift / BITS_PER_MP_LIMB);
252 }
253 else if (shift > 0)
254 {
255 if (TININESS_AFTER_ROUNDING && shift == 1)
256 {
257 /* Whether the result counts as tiny depends on whether,
258 after rounding to the normal precision, it still has
259 a subnormal exponent. */
260 mp_limb_t retval_normal[RETURN_LIMB_SIZE];
261 if (round_away (negative,
262 (retval[0] & 1) != 0,
263 (round_limb
264 & (((mp_limb_t) 1) << round_bit)) != 0,
265 (more_bits
266 || ((round_limb
267 & ((((mp_limb_t) 1) << round_bit) - 1))
268 != 0)),
269 mode))
270 {
271 mp_limb_t cy = __mpn_add_1 (retval_normal, retval,
272 RETURN_LIMB_SIZE, 1);
273
274 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
275 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
276 ((retval_normal[RETURN_LIMB_SIZE - 1]
277 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB)))
278 != 0)))
279 is_tiny = false;
280 }
281 }
282 round_limb = retval[0];
283 round_bit = shift - 1;
284 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, shift);
285 }
286 /* This is a hook for the m68k long double format, where the
287 exponent bias is the same for normalized and denormalized
288 numbers. */
289 #ifndef DENORM_EXP
290 # define DENORM_EXP (MIN_EXP - 2)
291 #endif
292 exponent = DENORM_EXP;
293 if (is_tiny
294 && ((round_limb & (((mp_limb_t) 1) << round_bit)) != 0
295 || more_bits
296 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0))
297 {
298 __set_errno (ERANGE);
299 volatile FLOAT force_underflow_exception = MIN_VALUE * MIN_VALUE;
300 (void) force_underflow_exception;
301 }
302 }
303
304 if (exponent > MAX_EXP)
305 goto overflow;
306
307 if (round_away (negative,
308 (retval[0] & 1) != 0,
309 (round_limb & (((mp_limb_t) 1) << round_bit)) != 0,
310 (more_bits
311 || (round_limb & ((((mp_limb_t) 1) << round_bit) - 1)) != 0),
312 mode))
313 {
314 mp_limb_t cy = __mpn_add_1 (retval, retval, RETURN_LIMB_SIZE, 1);
315
316 if (((MANT_DIG % BITS_PER_MP_LIMB) == 0 && cy) ||
317 ((MANT_DIG % BITS_PER_MP_LIMB) != 0 &&
318 (retval[RETURN_LIMB_SIZE - 1]
319 & (((mp_limb_t) 1) << (MANT_DIG % BITS_PER_MP_LIMB))) != 0))
320 {
321 ++exponent;
322 (void) __mpn_rshift (retval, retval, RETURN_LIMB_SIZE, 1);
323 retval[RETURN_LIMB_SIZE - 1]
324 |= ((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB);
325 }
326 else if (exponent == DENORM_EXP
327 && (retval[RETURN_LIMB_SIZE - 1]
328 & (((mp_limb_t) 1) << ((MANT_DIG - 1) % BITS_PER_MP_LIMB)))
329 != 0)
330 /* The number was denormalized but now normalized. */
331 exponent = MIN_EXP - 1;
332 }
333
334 if (exponent > MAX_EXP)
335 overflow:
336 return overflow_value (negative);
337
338 return MPN2FLOAT (retval, exponent, negative);
339 }
340
341
342 /* Read a multi-precision integer starting at STR with exactly DIGCNT digits
343 into N. Return the size of the number limbs in NSIZE at the first
344 character od the string that is not part of the integer as the function
345 value. If the EXPONENT is small enough to be taken as an additional
346 factor for the resulting number (see code) multiply by it. */
347 static const STRING_TYPE *
348 str_to_mpn (const STRING_TYPE *str, int digcnt, mp_limb_t *n, mp_size_t *nsize,
349 intmax_t *exponent
350 #ifndef USE_WIDE_CHAR
351 , const char *decimal, size_t decimal_len, const char *thousands
352 #endif
353
354 )
355 {
356 /* Number of digits for actual limb. */
357 int cnt = 0;
358 mp_limb_t low = 0;
359 mp_limb_t start;
360
361 *nsize = 0;
362 assert (digcnt > 0);
363 do
364 {
365 if (cnt == MAX_DIG_PER_LIMB)
366 {
367 if (*nsize == 0)
368 {
369 n[0] = low;
370 *nsize = 1;
371 }
372 else
373 {
374 mp_limb_t cy;
375 cy = __mpn_mul_1 (n, n, *nsize, MAX_FAC_PER_LIMB);
376 cy += __mpn_add_1 (n, n, *nsize, low);
377 if (cy != 0)
378 {
379 assert (*nsize < MPNSIZE);
380 n[*nsize] = cy;
381 ++(*nsize);
382 }
383 }
384 cnt = 0;
385 low = 0;
386 }
387
388 /* There might be thousands separators or radix characters in
389 the string. But these all can be ignored because we know the
390 format of the number is correct and we have an exact number
391 of characters to read. */
392 #ifdef USE_WIDE_CHAR
393 if (*str < L'0' || *str > L'9')
394 ++str;
395 #else
396 if (*str < '0' || *str > '9')
397 {
398 int inner = 0;
399 if (thousands != NULL && *str == *thousands
400 && ({ for (inner = 1; thousands[inner] != '\0'; ++inner)
401 if (thousands[inner] != str[inner])
402 break;
403 thousands[inner] == '\0'; }))
404 str += inner;
405 else
406 str += decimal_len;
407 }
408 #endif
409 low = low * 10 + *str++ - L_('0');
410 ++cnt;
411 }
412 while (--digcnt > 0);
413
414 if (*exponent > 0 && *exponent <= MAX_DIG_PER_LIMB - cnt)
415 {
416 low *= _tens_in_limb[*exponent];
417 start = _tens_in_limb[cnt + *exponent];
418 *exponent = 0;
419 }
420 else
421 start = _tens_in_limb[cnt];
422
423 if (*nsize == 0)
424 {
425 n[0] = low;
426 *nsize = 1;
427 }
428 else
429 {
430 mp_limb_t cy;
431 cy = __mpn_mul_1 (n, n, *nsize, start);
432 cy += __mpn_add_1 (n, n, *nsize, low);
433 if (cy != 0)
434 {
435 assert (*nsize < MPNSIZE);
436 n[(*nsize)++] = cy;
437 }
438 }
439
440 return str;
441 }
442
443
444 /* Shift {PTR, SIZE} COUNT bits to the left, and fill the vacated bits
445 with the COUNT most significant bits of LIMB.
446
447 Tege doesn't like this function so I have to write it here myself. :)
448 --drepper */
449 static inline void
450 __attribute ((always_inline))
451 __mpn_lshift_1 (mp_limb_t *ptr, mp_size_t size, unsigned int count,
452 mp_limb_t limb)
453 {
454 if (__builtin_constant_p (count) && count == BITS_PER_MP_LIMB)
455 {
456 /* Optimize the case of shifting by exactly a word:
457 just copy words, with no actual bit-shifting. */
458 mp_size_t i;
459 for (i = size - 1; i > 0; --i)
460 ptr[i] = ptr[i - 1];
461 ptr[0] = limb;
462 }
463 else
464 {
465 (void) __mpn_lshift (ptr, ptr, size, count);
466 ptr[0] |= limb >> (BITS_PER_MP_LIMB - count);
467 }
468 }
469
470
471 #define INTERNAL(x) INTERNAL1(x)
472 #define INTERNAL1(x) __##x##_internal
473 #ifndef ____STRTOF_INTERNAL
474 # define ____STRTOF_INTERNAL INTERNAL (__STRTOF)
475 #endif
476
477 /* This file defines a function to check for correct grouping. */
478 #include "grouping.h"
479
480
481 /* Return a floating point number with the value of the given string NPTR.
482 Set *ENDPTR to the character after the last used one. If the number is
483 smaller than the smallest representable number, set `errno' to ERANGE and
484 return 0.0. If the number is too big to be represented, set `errno' to
485 ERANGE and return HUGE_VAL with the appropriate sign. */
486 FLOAT
487 ____STRTOF_INTERNAL (nptr, endptr, group, loc)
488 const STRING_TYPE *nptr;
489 STRING_TYPE **endptr;
490 int group;
491 __locale_t loc;
492 {
493 int negative; /* The sign of the number. */
494 MPN_VAR (num); /* MP representation of the number. */
495 intmax_t exponent; /* Exponent of the number. */
496
497 /* Numbers starting `0X' or `0x' have to be processed with base 16. */
498 int base = 10;
499
500 /* When we have to compute fractional digits we form a fraction with a
501 second multi-precision number (and we sometimes need a second for
502 temporary results). */
503 MPN_VAR (den);
504
505 /* Representation for the return value. */
506 mp_limb_t retval[RETURN_LIMB_SIZE];
507 /* Number of bits currently in result value. */
508 int bits;
509
510 /* Running pointer after the last character processed in the string. */
511 const STRING_TYPE *cp, *tp;
512 /* Start of significant part of the number. */
513 const STRING_TYPE *startp, *start_of_digits;
514 /* Points at the character following the integer and fractional digits. */
515 const STRING_TYPE *expp;
516 /* Total number of digit and number of digits in integer part. */
517 size_t dig_no, int_no, lead_zero;
518 /* Contains the last character read. */
519 CHAR_TYPE c;
520
521 /* We should get wint_t from <stddef.h>, but not all GCC versions define it
522 there. So define it ourselves if it remains undefined. */
523 #ifndef _WINT_T
524 typedef unsigned int wint_t;
525 #endif
526 /* The radix character of the current locale. */
527 #ifdef USE_WIDE_CHAR
528 wchar_t decimal;
529 #else
530 const char *decimal;
531 size_t decimal_len;
532 #endif
533 /* The thousands character of the current locale. */
534 #ifdef USE_WIDE_CHAR
535 wchar_t thousands = L'\0';
536 #else
537 const char *thousands = NULL;
538 #endif
539 /* The numeric grouping specification of the current locale,
540 in the format described in <locale.h>. */
541 const char *grouping;
542 /* Used in several places. */
543 int cnt;
544
545 struct __locale_data *current = loc->__locales[LC_NUMERIC];
546
547 if (__builtin_expect (group, 0))
548 {
549 grouping = _NL_CURRENT (LC_NUMERIC, GROUPING);
550 if (*grouping <= 0 || *grouping == CHAR_MAX)
551 grouping = NULL;
552 else
553 {
554 /* Figure out the thousands separator character. */
555 #ifdef USE_WIDE_CHAR
556 thousands = _NL_CURRENT_WORD (LC_NUMERIC,
557 _NL_NUMERIC_THOUSANDS_SEP_WC);
558 if (thousands == L'\0')
559 grouping = NULL;
560 #else
561 thousands = _NL_CURRENT (LC_NUMERIC, THOUSANDS_SEP);
562 if (*thousands == '\0')
563 {
564 thousands = NULL;
565 grouping = NULL;
566 }
567 #endif
568 }
569 }
570 else
571 grouping = NULL;
572
573 /* Find the locale's decimal point character. */
574 #ifdef USE_WIDE_CHAR
575 decimal = _NL_CURRENT_WORD (LC_NUMERIC, _NL_NUMERIC_DECIMAL_POINT_WC);
576 assert (decimal != L'\0');
577 # define decimal_len 1
578 #else
579 decimal = _NL_CURRENT (LC_NUMERIC, DECIMAL_POINT);
580 decimal_len = strlen (decimal);
581 assert (decimal_len > 0);
582 #endif
583
584 /* Prepare number representation. */
585 exponent = 0;
586 negative = 0;
587 bits = 0;
588
589 /* Parse string to get maximal legal prefix. We need the number of
590 characters of the integer part, the fractional part and the exponent. */
591 cp = nptr - 1;
592 /* Ignore leading white space. */
593 do
594 c = *++cp;
595 while (ISSPACE (c));
596
597 /* Get sign of the result. */
598 if (c == L_('-'))
599 {
600 negative = 1;
601 c = *++cp;
602 }
603 else if (c == L_('+'))
604 c = *++cp;
605
606 /* Return 0.0 if no legal string is found.
607 No character is used even if a sign was found. */
608 #ifdef USE_WIDE_CHAR
609 if (c == (wint_t) decimal
610 && (wint_t) cp[1] >= L'0' && (wint_t) cp[1] <= L'9')
611 {
612 /* We accept it. This funny construct is here only to indent
613 the code correctly. */
614 }
615 #else
616 for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
617 if (cp[cnt] != decimal[cnt])
618 break;
619 if (decimal[cnt] == '\0' && cp[cnt] >= '0' && cp[cnt] <= '9')
620 {
621 /* We accept it. This funny construct is here only to indent
622 the code correctly. */
623 }
624 #endif
625 else if (c < L_('0') || c > L_('9'))
626 {
627 /* Check for `INF' or `INFINITY'. */
628 CHAR_TYPE lowc = TOLOWER_C (c);
629
630 if (lowc == L_('i') && STRNCASECMP (cp, L_("inf"), 3) == 0)
631 {
632 /* Return +/- infinity. */
633 if (endptr != NULL)
634 *endptr = (STRING_TYPE *)
635 (cp + (STRNCASECMP (cp + 3, L_("inity"), 5) == 0
636 ? 8 : 3));
637
638 return negative ? -FLOAT_HUGE_VAL : FLOAT_HUGE_VAL;
639 }
640
641 if (lowc == L_('n') && STRNCASECMP (cp, L_("nan"), 3) == 0)
642 {
643 /* Return NaN. */
644 FLOAT retval = NAN;
645
646 cp += 3;
647
648 /* Match `(n-char-sequence-digit)'. */
649 if (*cp == L_('('))
650 {
651 const STRING_TYPE *startp = cp;
652 do
653 ++cp;
654 while ((*cp >= L_('0') && *cp <= L_('9'))
655 || ({ CHAR_TYPE lo = TOLOWER (*cp);
656 lo >= L_('a') && lo <= L_('z'); })
657 || *cp == L_('_'));
658
659 if (*cp != L_(')'))
660 /* The closing brace is missing. Only match the NAN
661 part. */
662 cp = startp;
663 else
664 {
665 /* This is a system-dependent way to specify the
666 bitmask used for the NaN. We expect it to be
667 a number which is put in the mantissa of the
668 number. */
669 STRING_TYPE *endp;
670 unsigned long long int mant;
671
672 mant = STRTOULL (startp + 1, &endp, 0);
673 if (endp == cp)
674 SET_MANTISSA (retval, mant);
675
676 /* Consume the closing brace. */
677 ++cp;
678 }
679 }
680
681 if (endptr != NULL)
682 *endptr = (STRING_TYPE *) cp;
683
684 return retval;
685 }
686
687 /* It is really a text we do not recognize. */
688 RETURN (0.0, nptr);
689 }
690
691 /* First look whether we are faced with a hexadecimal number. */
692 if (c == L_('0') && TOLOWER (cp[1]) == L_('x'))
693 {
694 /* Okay, it is a hexa-decimal number. Remember this and skip
695 the characters. BTW: hexadecimal numbers must not be
696 grouped. */
697 base = 16;
698 cp += 2;
699 c = *cp;
700 grouping = NULL;
701 }
702
703 /* Record the start of the digits, in case we will check their grouping. */
704 start_of_digits = startp = cp;
705
706 /* Ignore leading zeroes. This helps us to avoid useless computations. */
707 #ifdef USE_WIDE_CHAR
708 while (c == L'0' || ((wint_t) thousands != L'\0' && c == (wint_t) thousands))
709 c = *++cp;
710 #else
711 if (__builtin_expect (thousands == NULL, 1))
712 while (c == '0')
713 c = *++cp;
714 else
715 {
716 /* We also have the multibyte thousands string. */
717 while (1)
718 {
719 if (c != '0')
720 {
721 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
722 if (thousands[cnt] != cp[cnt])
723 break;
724 if (thousands[cnt] != '\0')
725 break;
726 cp += cnt - 1;
727 }
728 c = *++cp;
729 }
730 }
731 #endif
732
733 /* If no other digit but a '0' is found the result is 0.0.
734 Return current read pointer. */
735 CHAR_TYPE lowc = TOLOWER (c);
736 if (!((c >= L_('0') && c <= L_('9'))
737 || (base == 16 && lowc >= L_('a') && lowc <= L_('f'))
738 || (
739 #ifdef USE_WIDE_CHAR
740 c == (wint_t) decimal
741 #else
742 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
743 if (decimal[cnt] != cp[cnt])
744 break;
745 decimal[cnt] == '\0'; })
746 #endif
747 /* '0x.' alone is not a valid hexadecimal number.
748 '.' alone is not valid either, but that has been checked
749 already earlier. */
750 && (base != 16
751 || cp != start_of_digits
752 || (cp[decimal_len] >= L_('0') && cp[decimal_len] <= L_('9'))
753 || ({ CHAR_TYPE lo = TOLOWER (cp[decimal_len]);
754 lo >= L_('a') && lo <= L_('f'); })))
755 || (base == 16 && (cp != start_of_digits
756 && lowc == L_('p')))
757 || (base != 16 && lowc == L_('e'))))
758 {
759 #ifdef USE_WIDE_CHAR
760 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
761 grouping);
762 #else
763 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
764 grouping);
765 #endif
766 /* If TP is at the start of the digits, there was no correctly
767 grouped prefix of the string; so no number found. */
768 RETURN (negative ? -0.0 : 0.0,
769 tp == start_of_digits ? (base == 16 ? cp - 1 : nptr) : tp);
770 }
771
772 /* Remember first significant digit and read following characters until the
773 decimal point, exponent character or any non-FP number character. */
774 startp = cp;
775 dig_no = 0;
776 while (1)
777 {
778 if ((c >= L_('0') && c <= L_('9'))
779 || (base == 16
780 && ({ CHAR_TYPE lo = TOLOWER (c);
781 lo >= L_('a') && lo <= L_('f'); })))
782 ++dig_no;
783 else
784 {
785 #ifdef USE_WIDE_CHAR
786 if (__builtin_expect ((wint_t) thousands == L'\0', 1)
787 || c != (wint_t) thousands)
788 /* Not a digit or separator: end of the integer part. */
789 break;
790 #else
791 if (__builtin_expect (thousands == NULL, 1))
792 break;
793 else
794 {
795 for (cnt = 0; thousands[cnt] != '\0'; ++cnt)
796 if (thousands[cnt] != cp[cnt])
797 break;
798 if (thousands[cnt] != '\0')
799 break;
800 cp += cnt - 1;
801 }
802 #endif
803 }
804 c = *++cp;
805 }
806
807 if (__builtin_expect (grouping != NULL, 0) && cp > start_of_digits)
808 {
809 /* Check the grouping of the digits. */
810 #ifdef USE_WIDE_CHAR
811 tp = __correctly_grouped_prefixwc (start_of_digits, cp, thousands,
812 grouping);
813 #else
814 tp = __correctly_grouped_prefixmb (start_of_digits, cp, thousands,
815 grouping);
816 #endif
817 if (cp != tp)
818 {
819 /* Less than the entire string was correctly grouped. */
820
821 if (tp == start_of_digits)
822 /* No valid group of numbers at all: no valid number. */
823 RETURN (0.0, nptr);
824
825 if (tp < startp)
826 /* The number is validly grouped, but consists
827 only of zeroes. The whole value is zero. */
828 RETURN (negative ? -0.0 : 0.0, tp);
829
830 /* Recompute DIG_NO so we won't read more digits than
831 are properly grouped. */
832 cp = tp;
833 dig_no = 0;
834 for (tp = startp; tp < cp; ++tp)
835 if (*tp >= L_('0') && *tp <= L_('9'))
836 ++dig_no;
837
838 int_no = dig_no;
839 lead_zero = 0;
840
841 goto number_parsed;
842 }
843 }
844
845 /* We have the number of digits in the integer part. Whether these
846 are all or any is really a fractional digit will be decided
847 later. */
848 int_no = dig_no;
849 lead_zero = int_no == 0 ? (size_t) -1 : 0;
850
851 /* Read the fractional digits. A special case are the 'american
852 style' numbers like `16.' i.e. with decimal point but without
853 trailing digits. */
854 if (
855 #ifdef USE_WIDE_CHAR
856 c == (wint_t) decimal
857 #else
858 ({ for (cnt = 0; decimal[cnt] != '\0'; ++cnt)
859 if (decimal[cnt] != cp[cnt])
860 break;
861 decimal[cnt] == '\0'; })
862 #endif
863 )
864 {
865 cp += decimal_len;
866 c = *cp;
867 while ((c >= L_('0') && c <= L_('9')) ||
868 (base == 16 && ({ CHAR_TYPE lo = TOLOWER (c);
869 lo >= L_('a') && lo <= L_('f'); })))
870 {
871 if (c != L_('0') && lead_zero == (size_t) -1)
872 lead_zero = dig_no - int_no;
873 ++dig_no;
874 c = *++cp;
875 }
876 }
877 assert (dig_no <= (uintmax_t) INTMAX_MAX);
878
879 /* Remember start of exponent (if any). */
880 expp = cp;
881
882 /* Read exponent. */
883 lowc = TOLOWER (c);
884 if ((base == 16 && lowc == L_('p'))
885 || (base != 16 && lowc == L_('e')))
886 {
887 int exp_negative = 0;
888
889 c = *++cp;
890 if (c == L_('-'))
891 {
892 exp_negative = 1;
893 c = *++cp;
894 }
895 else if (c == L_('+'))
896 c = *++cp;
897
898 if (c >= L_('0') && c <= L_('9'))
899 {
900 intmax_t exp_limit;
901
902 /* Get the exponent limit. */
903 if (base == 16)
904 {
905 if (exp_negative)
906 {
907 assert (int_no <= (uintmax_t) (INTMAX_MAX
908 + MIN_EXP - MANT_DIG) / 4);
909 exp_limit = -MIN_EXP + MANT_DIG + 4 * (intmax_t) int_no;
910 }
911 else
912 {
913 if (int_no)
914 {
915 assert (lead_zero == 0
916 && int_no <= (uintmax_t) INTMAX_MAX / 4);
917 exp_limit = MAX_EXP - 4 * (intmax_t) int_no + 3;
918 }
919 else if (lead_zero == (size_t) -1)
920 {
921 /* The number is zero and this limit is
922 arbitrary. */
923 exp_limit = MAX_EXP + 3;
924 }
925 else
926 {
927 assert (lead_zero
928 <= (uintmax_t) (INTMAX_MAX - MAX_EXP - 3) / 4);
929 exp_limit = (MAX_EXP
930 + 4 * (intmax_t) lead_zero
931 + 3);
932 }
933 }
934 }
935 else
936 {
937 if (exp_negative)
938 {
939 assert (int_no
940 <= (uintmax_t) (INTMAX_MAX + MIN_10_EXP - MANT_DIG));
941 exp_limit = -MIN_10_EXP + MANT_DIG + (intmax_t) int_no;
942 }
943 else
944 {
945 if (int_no)
946 {
947 assert (lead_zero == 0
948 && int_no <= (uintmax_t) INTMAX_MAX);
949 exp_limit = MAX_10_EXP - (intmax_t) int_no + 1;
950 }
951 else if (lead_zero == (size_t) -1)
952 {
953 /* The number is zero and this limit is
954 arbitrary. */
955 exp_limit = MAX_10_EXP + 1;
956 }
957 else
958 {
959 assert (lead_zero
960 <= (uintmax_t) (INTMAX_MAX - MAX_10_EXP - 1));
961 exp_limit = MAX_10_EXP + (intmax_t) lead_zero + 1;
962 }
963 }
964 }
965
966 if (exp_limit < 0)
967 exp_limit = 0;
968
969 do
970 {
971 if (__builtin_expect ((exponent > exp_limit / 10
972 || (exponent == exp_limit / 10
973 && c - L_('0') > exp_limit % 10)), 0))
974 /* The exponent is too large/small to represent a valid
975 number. */
976 {
977 FLOAT result;
978
979 /* We have to take care for special situation: a joker
980 might have written "0.0e100000" which is in fact
981 zero. */
982 if (lead_zero == (size_t) -1)
983 result = negative ? -0.0 : 0.0;
984 else
985 {
986 /* Overflow or underflow. */
987 result = (exp_negative
988 ? underflow_value (negative)
989 : overflow_value (negative));
990 }
991
992 /* Accept all following digits as part of the exponent. */
993 do
994 ++cp;
995 while (*cp >= L_('0') && *cp <= L_('9'));
996
997 RETURN (result, cp);
998 /* NOTREACHED */
999 }
1000
1001 exponent *= 10;
1002 exponent += c - L_('0');
1003
1004 c = *++cp;
1005 }
1006 while (c >= L_('0') && c <= L_('9'));
1007
1008 if (exp_negative)
1009 exponent = -exponent;
1010 }
1011 else
1012 cp = expp;
1013 }
1014
1015 /* We don't want to have to work with trailing zeroes after the radix. */
1016 if (dig_no > int_no)
1017 {
1018 while (expp[-1] == L_('0'))
1019 {
1020 --expp;
1021 --dig_no;
1022 }
1023 assert (dig_no >= int_no);
1024 }
1025
1026 if (dig_no == int_no && dig_no > 0 && exponent < 0)
1027 do
1028 {
1029 while (! (base == 16 ? ISXDIGIT (expp[-1]) : ISDIGIT (expp[-1])))
1030 --expp;
1031
1032 if (expp[-1] != L_('0'))
1033 break;
1034
1035 --expp;
1036 --dig_no;
1037 --int_no;
1038 exponent += base == 16 ? 4 : 1;
1039 }
1040 while (dig_no > 0 && exponent < 0);
1041
1042 number_parsed:
1043
1044 /* The whole string is parsed. Store the address of the next character. */
1045 if (endptr)
1046 *endptr = (STRING_TYPE *) cp;
1047
1048 if (dig_no == 0)
1049 return negative ? -0.0 : 0.0;
1050
1051 if (lead_zero)
1052 {
1053 /* Find the decimal point */
1054 #ifdef USE_WIDE_CHAR
1055 while (*startp != decimal)
1056 ++startp;
1057 #else
1058 while (1)
1059 {
1060 if (*startp == decimal[0])
1061 {
1062 for (cnt = 1; decimal[cnt] != '\0'; ++cnt)
1063 if (decimal[cnt] != startp[cnt])
1064 break;
1065 if (decimal[cnt] == '\0')
1066 break;
1067 }
1068 ++startp;
1069 }
1070 #endif
1071 startp += lead_zero + decimal_len;
1072 assert (lead_zero <= (base == 16
1073 ? (uintmax_t) INTMAX_MAX / 4
1074 : (uintmax_t) INTMAX_MAX));
1075 assert (lead_zero <= (base == 16
1076 ? ((uintmax_t) exponent
1077 - (uintmax_t) INTMAX_MIN) / 4
1078 : ((uintmax_t) exponent - (uintmax_t) INTMAX_MIN)));
1079 exponent -= base == 16 ? 4 * (intmax_t) lead_zero : (intmax_t) lead_zero;
1080 dig_no -= lead_zero;
1081 }
1082
1083 /* If the BASE is 16 we can use a simpler algorithm. */
1084 if (base == 16)
1085 {
1086 static const int nbits[16] = { 0, 1, 2, 2, 3, 3, 3, 3,
1087 4, 4, 4, 4, 4, 4, 4, 4 };
1088 int idx = (MANT_DIG - 1) / BITS_PER_MP_LIMB;
1089 int pos = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1090 mp_limb_t val;
1091
1092 while (!ISXDIGIT (*startp))
1093 ++startp;
1094 while (*startp == L_('0'))
1095 ++startp;
1096 if (ISDIGIT (*startp))
1097 val = *startp++ - L_('0');
1098 else
1099 val = 10 + TOLOWER (*startp++) - L_('a');
1100 bits = nbits[val];
1101 /* We cannot have a leading zero. */
1102 assert (bits != 0);
1103
1104 if (pos + 1 >= 4 || pos + 1 >= bits)
1105 {
1106 /* We don't have to care for wrapping. This is the normal
1107 case so we add the first clause in the `if' expression as
1108 an optimization. It is a compile-time constant and so does
1109 not cost anything. */
1110 retval[idx] = val << (pos - bits + 1);
1111 pos -= bits;
1112 }
1113 else
1114 {
1115 retval[idx--] = val >> (bits - pos - 1);
1116 retval[idx] = val << (BITS_PER_MP_LIMB - (bits - pos - 1));
1117 pos = BITS_PER_MP_LIMB - 1 - (bits - pos - 1);
1118 }
1119
1120 /* Adjust the exponent for the bits we are shifting in. */
1121 assert (int_no <= (uintmax_t) (exponent < 0
1122 ? (INTMAX_MAX - bits + 1) / 4
1123 : (INTMAX_MAX - exponent - bits + 1) / 4));
1124 exponent += bits - 1 + ((intmax_t) int_no - 1) * 4;
1125
1126 while (--dig_no > 0 && idx >= 0)
1127 {
1128 if (!ISXDIGIT (*startp))
1129 startp += decimal_len;
1130 if (ISDIGIT (*startp))
1131 val = *startp++ - L_('0');
1132 else
1133 val = 10 + TOLOWER (*startp++) - L_('a');
1134
1135 if (pos + 1 >= 4)
1136 {
1137 retval[idx] |= val << (pos - 4 + 1);
1138 pos -= 4;
1139 }
1140 else
1141 {
1142 retval[idx--] |= val >> (4 - pos - 1);
1143 val <<= BITS_PER_MP_LIMB - (4 - pos - 1);
1144 if (idx < 0)
1145 {
1146 int rest_nonzero = 0;
1147 while (--dig_no > 0)
1148 {
1149 if (*startp != L_('0'))
1150 {
1151 rest_nonzero = 1;
1152 break;
1153 }
1154 startp++;
1155 }
1156 return round_and_return (retval, exponent, negative, val,
1157 BITS_PER_MP_LIMB - 1, rest_nonzero);
1158 }
1159
1160 retval[idx] = val;
1161 pos = BITS_PER_MP_LIMB - 1 - (4 - pos - 1);
1162 }
1163 }
1164
1165 /* We ran out of digits. */
1166 MPN_ZERO (retval, idx);
1167
1168 return round_and_return (retval, exponent, negative, 0, 0, 0);
1169 }
1170
1171 /* Now we have the number of digits in total and the integer digits as well
1172 as the exponent and its sign. We can decide whether the read digits are
1173 really integer digits or belong to the fractional part; i.e. we normalize
1174 123e-2 to 1.23. */
1175 {
1176 register intmax_t incr = (exponent < 0
1177 ? MAX (-(intmax_t) int_no, exponent)
1178 : MIN ((intmax_t) dig_no - (intmax_t) int_no,
1179 exponent));
1180 int_no += incr;
1181 exponent -= incr;
1182 }
1183
1184 if (__builtin_expect (exponent > MAX_10_EXP + 1 - (intmax_t) int_no, 0))
1185 return overflow_value (negative);
1186
1187 if (__builtin_expect (exponent < MIN_10_EXP - (DIG + 1), 0))
1188 return underflow_value (negative);
1189
1190 if (int_no > 0)
1191 {
1192 /* Read the integer part as a multi-precision number to NUM. */
1193 startp = str_to_mpn (startp, int_no, num, &numsize, &exponent
1194 #ifndef USE_WIDE_CHAR
1195 , decimal, decimal_len, thousands
1196 #endif
1197 );
1198
1199 if (exponent > 0)
1200 {
1201 /* We now multiply the gained number by the given power of ten. */
1202 mp_limb_t *psrc = num;
1203 mp_limb_t *pdest = den;
1204 int expbit = 1;
1205 const struct mp_power *ttab = &_fpioconst_pow10[0];
1206
1207 do
1208 {
1209 if ((exponent & expbit) != 0)
1210 {
1211 size_t size = ttab->arraysize - _FPIO_CONST_OFFSET;
1212 mp_limb_t cy;
1213 exponent ^= expbit;
1214
1215 /* FIXME: not the whole multiplication has to be
1216 done. If we have the needed number of bits we
1217 only need the information whether more non-zero
1218 bits follow. */
1219 if (numsize >= ttab->arraysize - _FPIO_CONST_OFFSET)
1220 cy = __mpn_mul (pdest, psrc, numsize,
1221 &__tens[ttab->arrayoff
1222 + _FPIO_CONST_OFFSET],
1223 size);
1224 else
1225 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1226 + _FPIO_CONST_OFFSET],
1227 size, psrc, numsize);
1228 numsize += size;
1229 if (cy == 0)
1230 --numsize;
1231 (void) SWAP (psrc, pdest);
1232 }
1233 expbit <<= 1;
1234 ++ttab;
1235 }
1236 while (exponent != 0);
1237
1238 if (psrc == den)
1239 memcpy (num, den, numsize * sizeof (mp_limb_t));
1240 }
1241
1242 /* Determine how many bits of the result we already have. */
1243 count_leading_zeros (bits, num[numsize - 1]);
1244 bits = numsize * BITS_PER_MP_LIMB - bits;
1245
1246 /* Now we know the exponent of the number in base two.
1247 Check it against the maximum possible exponent. */
1248 if (__builtin_expect (bits > MAX_EXP, 0))
1249 return overflow_value (negative);
1250
1251 /* We have already the first BITS bits of the result. Together with
1252 the information whether more non-zero bits follow this is enough
1253 to determine the result. */
1254 if (bits > MANT_DIG)
1255 {
1256 int i;
1257 const mp_size_t least_idx = (bits - MANT_DIG) / BITS_PER_MP_LIMB;
1258 const mp_size_t least_bit = (bits - MANT_DIG) % BITS_PER_MP_LIMB;
1259 const mp_size_t round_idx = least_bit == 0 ? least_idx - 1
1260 : least_idx;
1261 const mp_size_t round_bit = least_bit == 0 ? BITS_PER_MP_LIMB - 1
1262 : least_bit - 1;
1263
1264 if (least_bit == 0)
1265 memcpy (retval, &num[least_idx],
1266 RETURN_LIMB_SIZE * sizeof (mp_limb_t));
1267 else
1268 {
1269 for (i = least_idx; i < numsize - 1; ++i)
1270 retval[i - least_idx] = (num[i] >> least_bit)
1271 | (num[i + 1]
1272 << (BITS_PER_MP_LIMB - least_bit));
1273 if (i - least_idx < RETURN_LIMB_SIZE)
1274 retval[RETURN_LIMB_SIZE - 1] = num[i] >> least_bit;
1275 }
1276
1277 /* Check whether any limb beside the ones in RETVAL are non-zero. */
1278 for (i = 0; num[i] == 0; ++i)
1279 ;
1280
1281 return round_and_return (retval, bits - 1, negative,
1282 num[round_idx], round_bit,
1283 int_no < dig_no || i < round_idx);
1284 /* NOTREACHED */
1285 }
1286 else if (dig_no == int_no)
1287 {
1288 const mp_size_t target_bit = (MANT_DIG - 1) % BITS_PER_MP_LIMB;
1289 const mp_size_t is_bit = (bits - 1) % BITS_PER_MP_LIMB;
1290
1291 if (target_bit == is_bit)
1292 {
1293 memcpy (&retval[RETURN_LIMB_SIZE - numsize], num,
1294 numsize * sizeof (mp_limb_t));
1295 /* FIXME: the following loop can be avoided if we assume a
1296 maximal MANT_DIG value. */
1297 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1298 }
1299 else if (target_bit > is_bit)
1300 {
1301 (void) __mpn_lshift (&retval[RETURN_LIMB_SIZE - numsize],
1302 num, numsize, target_bit - is_bit);
1303 /* FIXME: the following loop can be avoided if we assume a
1304 maximal MANT_DIG value. */
1305 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize);
1306 }
1307 else
1308 {
1309 mp_limb_t cy;
1310 assert (numsize < RETURN_LIMB_SIZE);
1311
1312 cy = __mpn_rshift (&retval[RETURN_LIMB_SIZE - numsize],
1313 num, numsize, is_bit - target_bit);
1314 retval[RETURN_LIMB_SIZE - numsize - 1] = cy;
1315 /* FIXME: the following loop can be avoided if we assume a
1316 maximal MANT_DIG value. */
1317 MPN_ZERO (retval, RETURN_LIMB_SIZE - numsize - 1);
1318 }
1319
1320 return round_and_return (retval, bits - 1, negative, 0, 0, 0);
1321 /* NOTREACHED */
1322 }
1323
1324 /* Store the bits we already have. */
1325 memcpy (retval, num, numsize * sizeof (mp_limb_t));
1326 #if RETURN_LIMB_SIZE > 1
1327 if (numsize < RETURN_LIMB_SIZE)
1328 # if RETURN_LIMB_SIZE == 2
1329 retval[numsize] = 0;
1330 # else
1331 MPN_ZERO (retval + numsize, RETURN_LIMB_SIZE - numsize);
1332 # endif
1333 #endif
1334 }
1335
1336 /* We have to compute at least some of the fractional digits. */
1337 {
1338 /* We construct a fraction and the result of the division gives us
1339 the needed digits. The denominator is 1.0 multiplied by the
1340 exponent of the lowest digit; i.e. 0.123 gives 123 / 1000 and
1341 123e-6 gives 123 / 1000000. */
1342
1343 int expbit;
1344 int neg_exp;
1345 int more_bits;
1346 int need_frac_digits;
1347 mp_limb_t cy;
1348 mp_limb_t *psrc = den;
1349 mp_limb_t *pdest = num;
1350 const struct mp_power *ttab = &_fpioconst_pow10[0];
1351
1352 assert (dig_no > int_no
1353 && exponent <= 0
1354 && exponent >= MIN_10_EXP - (DIG + 1));
1355
1356 /* We need to compute MANT_DIG - BITS fractional bits that lie
1357 within the mantissa of the result, the following bit for
1358 rounding, and to know whether any subsequent bit is 0.
1359 Computing a bit with value 2^-n means looking at n digits after
1360 the decimal point. */
1361 if (bits > 0)
1362 {
1363 /* The bits required are those immediately after the point. */
1364 assert (int_no > 0 && exponent == 0);
1365 need_frac_digits = 1 + MANT_DIG - bits;
1366 }
1367 else
1368 {
1369 /* The number is in the form .123eEXPONENT. */
1370 assert (int_no == 0 && *startp != L_('0'));
1371 /* The number is at least 10^(EXPONENT-1), and 10^3 <
1372 2^10. */
1373 int neg_exp_2 = ((1 - exponent) * 10) / 3 + 1;
1374 /* The number is at least 2^-NEG_EXP_2. We need up to
1375 MANT_DIG bits following that bit. */
1376 need_frac_digits = neg_exp_2 + MANT_DIG;
1377 /* However, we never need bits beyond 1/4 ulp of the smallest
1378 representable value. (That 1/4 ulp bit is only needed to
1379 determine tinyness on machines where tinyness is determined
1380 after rounding.) */
1381 if (need_frac_digits > MANT_DIG - MIN_EXP + 2)
1382 need_frac_digits = MANT_DIG - MIN_EXP + 2;
1383 /* At this point, NEED_FRAC_DIGITS is the total number of
1384 digits needed after the point, but some of those may be
1385 leading 0s. */
1386 need_frac_digits += exponent;
1387 /* Any cases underflowing enough that none of the fractional
1388 digits are needed should have been caught earlier (such
1389 cases are on the order of 10^-n or smaller where 2^-n is
1390 the least subnormal). */
1391 assert (need_frac_digits > 0);
1392 }
1393
1394 if (need_frac_digits > (intmax_t) dig_no - (intmax_t) int_no)
1395 need_frac_digits = (intmax_t) dig_no - (intmax_t) int_no;
1396
1397 if ((intmax_t) dig_no > (intmax_t) int_no + need_frac_digits)
1398 {
1399 dig_no = int_no + need_frac_digits;
1400 more_bits = 1;
1401 }
1402 else
1403 more_bits = 0;
1404
1405 neg_exp = (intmax_t) dig_no - (intmax_t) int_no - exponent;
1406
1407 /* Construct the denominator. */
1408 densize = 0;
1409 expbit = 1;
1410 do
1411 {
1412 if ((neg_exp & expbit) != 0)
1413 {
1414 mp_limb_t cy;
1415 neg_exp ^= expbit;
1416
1417 if (densize == 0)
1418 {
1419 densize = ttab->arraysize - _FPIO_CONST_OFFSET;
1420 memcpy (psrc, &__tens[ttab->arrayoff + _FPIO_CONST_OFFSET],
1421 densize * sizeof (mp_limb_t));
1422 }
1423 else
1424 {
1425 cy = __mpn_mul (pdest, &__tens[ttab->arrayoff
1426 + _FPIO_CONST_OFFSET],
1427 ttab->arraysize - _FPIO_CONST_OFFSET,
1428 psrc, densize);
1429 densize += ttab->arraysize - _FPIO_CONST_OFFSET;
1430 if (cy == 0)
1431 --densize;
1432 (void) SWAP (psrc, pdest);
1433 }
1434 }
1435 expbit <<= 1;
1436 ++ttab;
1437 }
1438 while (neg_exp != 0);
1439
1440 if (psrc == num)
1441 memcpy (den, num, densize * sizeof (mp_limb_t));
1442
1443 /* Read the fractional digits from the string. */
1444 (void) str_to_mpn (startp, dig_no - int_no, num, &numsize, &exponent
1445 #ifndef USE_WIDE_CHAR
1446 , decimal, decimal_len, thousands
1447 #endif
1448 );
1449
1450 /* We now have to shift both numbers so that the highest bit in the
1451 denominator is set. In the same process we copy the numerator to
1452 a high place in the array so that the division constructs the wanted
1453 digits. This is done by a "quasi fix point" number representation.
1454
1455 num: ddddddddddd . 0000000000000000000000
1456 |--- m ---|
1457 den: ddddddddddd n >= m
1458 |--- n ---|
1459 */
1460
1461 count_leading_zeros (cnt, den[densize - 1]);
1462
1463 if (cnt > 0)
1464 {
1465 /* Don't call `mpn_shift' with a count of zero since the specification
1466 does not allow this. */
1467 (void) __mpn_lshift (den, den, densize, cnt);
1468 cy = __mpn_lshift (num, num, numsize, cnt);
1469 if (cy != 0)
1470 num[numsize++] = cy;
1471 }
1472
1473 /* Now we are ready for the division. But it is not necessary to
1474 do a full multi-precision division because we only need a small
1475 number of bits for the result. So we do not use __mpn_divmod
1476 here but instead do the division here by hand and stop whenever
1477 the needed number of bits is reached. The code itself comes
1478 from the GNU MP Library by Torbj\"orn Granlund. */
1479
1480 exponent = bits;
1481
1482 switch (densize)
1483 {
1484 case 1:
1485 {
1486 mp_limb_t d, n, quot;
1487 int used = 0;
1488
1489 n = num[0];
1490 d = den[0];
1491 assert (numsize == 1 && n < d);
1492
1493 do
1494 {
1495 udiv_qrnnd (quot, n, n, 0, d);
1496
1497 #define got_limb \
1498 if (bits == 0) \
1499 { \
1500 register int cnt; \
1501 if (quot == 0) \
1502 cnt = BITS_PER_MP_LIMB; \
1503 else \
1504 count_leading_zeros (cnt, quot); \
1505 exponent -= cnt; \
1506 if (BITS_PER_MP_LIMB - cnt > MANT_DIG) \
1507 { \
1508 used = MANT_DIG + cnt; \
1509 retval[0] = quot >> (BITS_PER_MP_LIMB - used); \
1510 bits = MANT_DIG + 1; \
1511 } \
1512 else \
1513 { \
1514 /* Note that we only clear the second element. */ \
1515 /* The conditional is determined at compile time. */ \
1516 if (RETURN_LIMB_SIZE > 1) \
1517 retval[1] = 0; \
1518 retval[0] = quot; \
1519 bits = -cnt; \
1520 } \
1521 } \
1522 else if (bits + BITS_PER_MP_LIMB <= MANT_DIG) \
1523 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, BITS_PER_MP_LIMB, \
1524 quot); \
1525 else \
1526 { \
1527 used = MANT_DIG - bits; \
1528 if (used > 0) \
1529 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, quot); \
1530 } \
1531 bits += BITS_PER_MP_LIMB
1532
1533 got_limb;
1534 }
1535 while (bits <= MANT_DIG);
1536
1537 return round_and_return (retval, exponent - 1, negative,
1538 quot, BITS_PER_MP_LIMB - 1 - used,
1539 more_bits || n != 0);
1540 }
1541 case 2:
1542 {
1543 mp_limb_t d0, d1, n0, n1;
1544 mp_limb_t quot = 0;
1545 int used = 0;
1546
1547 d0 = den[0];
1548 d1 = den[1];
1549
1550 if (numsize < densize)
1551 {
1552 if (num[0] >= d1)
1553 {
1554 /* The numerator of the number occupies fewer bits than
1555 the denominator but the one limb is bigger than the
1556 high limb of the numerator. */
1557 n1 = 0;
1558 n0 = num[0];
1559 }
1560 else
1561 {
1562 if (bits <= 0)
1563 exponent -= BITS_PER_MP_LIMB;
1564 else
1565 {
1566 if (bits + BITS_PER_MP_LIMB <= MANT_DIG)
1567 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1568 BITS_PER_MP_LIMB, 0);
1569 else
1570 {
1571 used = MANT_DIG - bits;
1572 if (used > 0)
1573 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1574 }
1575 bits += BITS_PER_MP_LIMB;
1576 }
1577 n1 = num[0];
1578 n0 = 0;
1579 }
1580 }
1581 else
1582 {
1583 n1 = num[1];
1584 n0 = num[0];
1585 }
1586
1587 while (bits <= MANT_DIG)
1588 {
1589 mp_limb_t r;
1590
1591 if (n1 == d1)
1592 {
1593 /* QUOT should be either 111..111 or 111..110. We need
1594 special treatment of this rare case as normal division
1595 would give overflow. */
1596 quot = ~(mp_limb_t) 0;
1597
1598 r = n0 + d1;
1599 if (r < d1) /* Carry in the addition? */
1600 {
1601 add_ssaaaa (n1, n0, r - d0, 0, 0, d0);
1602 goto have_quot;
1603 }
1604 n1 = d0 - (d0 != 0);
1605 n0 = -d0;
1606 }
1607 else
1608 {
1609 udiv_qrnnd (quot, r, n1, n0, d1);
1610 umul_ppmm (n1, n0, d0, quot);
1611 }
1612
1613 q_test:
1614 if (n1 > r || (n1 == r && n0 > 0))
1615 {
1616 /* The estimated QUOT was too large. */
1617 --quot;
1618
1619 sub_ddmmss (n1, n0, n1, n0, 0, d0);
1620 r += d1;
1621 if (r >= d1) /* If not carry, test QUOT again. */
1622 goto q_test;
1623 }
1624 sub_ddmmss (n1, n0, r, 0, n1, n0);
1625
1626 have_quot:
1627 got_limb;
1628 }
1629
1630 return round_and_return (retval, exponent - 1, negative,
1631 quot, BITS_PER_MP_LIMB - 1 - used,
1632 more_bits || n1 != 0 || n0 != 0);
1633 }
1634 default:
1635 {
1636 int i;
1637 mp_limb_t cy, dX, d1, n0, n1;
1638 mp_limb_t quot = 0;
1639 int used = 0;
1640
1641 dX = den[densize - 1];
1642 d1 = den[densize - 2];
1643
1644 /* The division does not work if the upper limb of the two-limb
1645 numerator is greater than the denominator. */
1646 if (__mpn_cmp (num, &den[densize - numsize], numsize) > 0)
1647 num[numsize++] = 0;
1648
1649 if (numsize < densize)
1650 {
1651 mp_size_t empty = densize - numsize;
1652 register int i;
1653
1654 if (bits <= 0)
1655 exponent -= empty * BITS_PER_MP_LIMB;
1656 else
1657 {
1658 if (bits + empty * BITS_PER_MP_LIMB <= MANT_DIG)
1659 {
1660 /* We make a difference here because the compiler
1661 cannot optimize the `else' case that good and
1662 this reflects all currently used FLOAT types
1663 and GMP implementations. */
1664 #if RETURN_LIMB_SIZE <= 2
1665 assert (empty == 1);
1666 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE,
1667 BITS_PER_MP_LIMB, 0);
1668 #else
1669 for (i = RETURN_LIMB_SIZE - 1; i >= empty; --i)
1670 retval[i] = retval[i - empty];
1671 while (i >= 0)
1672 retval[i--] = 0;
1673 #endif
1674 }
1675 else
1676 {
1677 used = MANT_DIG - bits;
1678 if (used >= BITS_PER_MP_LIMB)
1679 {
1680 register int i;
1681 (void) __mpn_lshift (&retval[used
1682 / BITS_PER_MP_LIMB],
1683 retval,
1684 (RETURN_LIMB_SIZE
1685 - used / BITS_PER_MP_LIMB),
1686 used % BITS_PER_MP_LIMB);
1687 for (i = used / BITS_PER_MP_LIMB - 1; i >= 0; --i)
1688 retval[i] = 0;
1689 }
1690 else if (used > 0)
1691 __mpn_lshift_1 (retval, RETURN_LIMB_SIZE, used, 0);
1692 }
1693 bits += empty * BITS_PER_MP_LIMB;
1694 }
1695 for (i = numsize; i > 0; --i)
1696 num[i + empty] = num[i - 1];
1697 MPN_ZERO (num, empty + 1);
1698 }
1699 else
1700 {
1701 int i;
1702 assert (numsize == densize);
1703 for (i = numsize; i > 0; --i)
1704 num[i] = num[i - 1];
1705 num[0] = 0;
1706 }
1707
1708 den[densize] = 0;
1709 n0 = num[densize];
1710
1711 while (bits <= MANT_DIG)
1712 {
1713 if (n0 == dX)
1714 /* This might over-estimate QUOT, but it's probably not
1715 worth the extra code here to find out. */
1716 quot = ~(mp_limb_t) 0;
1717 else
1718 {
1719 mp_limb_t r;
1720
1721 udiv_qrnnd (quot, r, n0, num[densize - 1], dX);
1722 umul_ppmm (n1, n0, d1, quot);
1723
1724 while (n1 > r || (n1 == r && n0 > num[densize - 2]))
1725 {
1726 --quot;
1727 r += dX;
1728 if (r < dX) /* I.e. "carry in previous addition?" */
1729 break;
1730 n1 -= n0 < d1;
1731 n0 -= d1;
1732 }
1733 }
1734
1735 /* Possible optimization: We already have (q * n0) and (1 * n1)
1736 after the calculation of QUOT. Taking advantage of this, we
1737 could make this loop make two iterations less. */
1738
1739 cy = __mpn_submul_1 (num, den, densize + 1, quot);
1740
1741 if (num[densize] != cy)
1742 {
1743 cy = __mpn_add_n (num, num, den, densize);
1744 assert (cy != 0);
1745 --quot;
1746 }
1747 n0 = num[densize] = num[densize - 1];
1748 for (i = densize - 1; i > 0; --i)
1749 num[i] = num[i - 1];
1750 num[0] = 0;
1751
1752 got_limb;
1753 }
1754
1755 for (i = densize; num[i] == 0 && i >= 0; --i)
1756 ;
1757 return round_and_return (retval, exponent - 1, negative,
1758 quot, BITS_PER_MP_LIMB - 1 - used,
1759 more_bits || i >= 0);
1760 }
1761 }
1762 }
1763
1764 /* NOTREACHED */
1765 }
1766 #if defined _LIBC && !defined USE_WIDE_CHAR
1767 libc_hidden_def (____STRTOF_INTERNAL)
1768 #endif
1769 \f
1770 /* External user entry point. */
1771
1772 FLOAT
1773 #ifdef weak_function
1774 weak_function
1775 #endif
1776 __STRTOF (nptr, endptr, loc)
1777 const STRING_TYPE *nptr;
1778 STRING_TYPE **endptr;
1779 __locale_t loc;
1780 {
1781 return ____STRTOF_INTERNAL (nptr, endptr, 0, loc);
1782 }
1783 #if defined _LIBC
1784 libc_hidden_def (__STRTOF)
1785 libc_hidden_ver (__STRTOF, STRTOF)
1786 #endif
1787 weak_alias (__STRTOF, STRTOF)
1788
1789 #ifdef LONG_DOUBLE_COMPAT
1790 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_1)
1791 # ifdef USE_WIDE_CHAR
1792 compat_symbol (libc, __wcstod_l, __wcstold_l, GLIBC_2_1);
1793 # else
1794 compat_symbol (libc, __strtod_l, __strtold_l, GLIBC_2_1);
1795 # endif
1796 # endif
1797 # if LONG_DOUBLE_COMPAT(libc, GLIBC_2_3)
1798 # ifdef USE_WIDE_CHAR
1799 compat_symbol (libc, wcstod_l, wcstold_l, GLIBC_2_3);
1800 # else
1801 compat_symbol (libc, strtod_l, strtold_l, GLIBC_2_3);
1802 # endif
1803 # endif
1804 #endif