]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/alpha/alphaev6/stxncpy.S
Add Changelog ...
[thirdparty/glibc.git] / sysdeps / alpha / alphaev6 / stxncpy.S
1 /* Copyright (C) 2000-2012 Free Software Foundation, Inc.
2 Contributed by Richard Henderson (rth@tamu.edu)
3 EV6 optimized by Rick Gorton <rick.gorton@alpha-processor.com>.
4 This file is part of the GNU C Library.
5
6 The GNU C Library is free software; you can redistribute it and/or
7 modify it under the terms of the GNU Lesser General Public
8 License as published by the Free Software Foundation; either
9 version 2.1 of the License, or (at your option) any later version.
10
11 The GNU C Library is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 Lesser General Public License for more details.
15
16 You should have received a copy of the GNU Lesser General Public
17 License along with the GNU C Library. If not, see
18 <http://www.gnu.org/licenses/>. */
19
20 /* Copy no more than COUNT bytes of the null-terminated string from
21 SRC to DST.
22
23 This is an internal routine used by strncpy, stpncpy, and strncat.
24 As such, it uses special linkage conventions to make implementation
25 of these public functions more efficient.
26
27 On input:
28 t9 = return address
29 a0 = DST
30 a1 = SRC
31 a2 = COUNT
32
33 Furthermore, COUNT may not be zero.
34
35 On output:
36 t0 = last word written
37 t8 = bitmask (with one bit set) indicating the last byte written
38 t10 = bitmask (with one bit set) indicating the byte position of
39 the end of the range specified by COUNT
40 a0 = unaligned address of the last *word* written
41 a2 = the number of full words left in COUNT
42
43 Furthermore, v0, a3-a5, t11, and t12 are untouched.
44 */
45
46 #include <sysdep.h>
47
48 .arch ev6
49 .set noat
50 .set noreorder
51
52 .text
53 .type __stxncpy, @function
54 .globl __stxncpy
55 .usepv __stxncpy, no
56
57 cfi_startproc
58 cfi_return_column (t9)
59
60 /* On entry to this basic block:
61 t0 == the first destination word for masking back in
62 t1 == the first source word. */
63 .align 4
64 stxncpy_aligned:
65 /* Create the 1st output word and detect 0's in the 1st input word. */
66 lda t2, -1 # E : build a mask against false zero
67 mskqh t2, a1, t2 # U : detection in the src word (stall)
68 mskqh t1, a1, t3 # U :
69 ornot t1, t2, t2 # E : (stall)
70
71 mskql t0, a1, t0 # U : assemble the first output word
72 cmpbge zero, t2, t7 # E : bits set iff null found
73 or t0, t3, t0 # E : (stall)
74 beq a2, $a_eoc # U :
75
76 bne t7, $a_eos # U :
77 nop
78 nop
79 nop
80
81 /* On entry to this basic block:
82 t0 == a source word not containing a null. */
83
84 /*
85 * nops here to:
86 * separate store quads from load quads
87 * limit of 1 bcond/quad to permit training
88 */
89 $a_loop:
90 stq_u t0, 0(a0) # L :
91 addq a0, 8, a0 # E :
92 subq a2, 1, a2 # E :
93 nop
94
95 ldq_u t0, 0(a1) # L :
96 addq a1, 8, a1 # E :
97 cmpbge zero, t0, t7 # E :
98 beq a2, $a_eoc # U :
99
100 beq t7, $a_loop # U :
101 nop
102 nop
103 nop
104
105 /* Take care of the final (partial) word store. At this point
106 the end-of-count bit is set in t7 iff it applies.
107
108 On entry to this basic block we have:
109 t0 == the source word containing the null
110 t7 == the cmpbge mask that found it. */
111 $a_eos:
112 negq t7, t8 # E : find low bit set
113 and t7, t8, t8 # E : (stall)
114 /* For the sake of the cache, don't read a destination word
115 if we're not going to need it. */
116 and t8, 0x80, t6 # E : (stall)
117 bne t6, 1f # U : (stall)
118
119 /* We're doing a partial word store and so need to combine
120 our source and original destination words. */
121 ldq_u t1, 0(a0) # L :
122 subq t8, 1, t6 # E :
123 or t8, t6, t7 # E : (stall)
124 zapnot t0, t7, t0 # U : clear src bytes > null (stall)
125
126 zap t1, t7, t1 # .. e1 : clear dst bytes <= null
127 or t0, t1, t0 # e1 : (stall)
128 nop
129 nop
130
131 1: stq_u t0, 0(a0) # L :
132 ret (t9) # L0 : Latency=3
133 nop
134 nop
135
136 /* Add the end-of-count bit to the eos detection bitmask. */
137 $a_eoc:
138 or t10, t7, t7 # E :
139 br $a_eos # L0 : Latency=3
140 nop
141 nop
142
143 .align 4
144 __stxncpy:
145 /* Are source and destination co-aligned? */
146 lda t2, -1 # E :
147 xor a0, a1, t1 # E :
148 and a0, 7, t0 # E : find dest misalignment
149 nop # E :
150
151 srl t2, 1, t2 # U :
152 and t1, 7, t1 # E :
153 cmovlt a2, t2, a2 # E : bound count to LONG_MAX (stall)
154 nop # E :
155
156 addq a2, t0, a2 # E : bias count by dest misalignment
157 subq a2, 1, a2 # E : (stall)
158 and a2, 7, t2 # E : (stall)
159 lda t10, 1 # E :
160
161 srl a2, 3, a2 # U : a2 = loop counter = (count - 1)/8
162 sll t10, t2, t10 # U : t10 = bitmask of last count byte
163 nop # E :
164 bne t1, $unaligned # U : (stall)
165
166 /* We are co-aligned; take care of a partial first word. */
167 ldq_u t1, 0(a1) # L : load first src word
168 addq a1, 8, a1 # E :
169 beq t0, stxncpy_aligned # U : avoid loading dest word if not needed
170 ldq_u t0, 0(a0) # L :
171
172 br stxncpy_aligned # U :
173 nop
174 nop
175 nop
176
177
178
179 /* The source and destination are not co-aligned. Align the destination
180 and cope. We have to be very careful about not reading too much and
181 causing a SEGV. */
182
183 .align 4
184 $u_head:
185 /* We know just enough now to be able to assemble the first
186 full source word. We can still find a zero at the end of it
187 that prevents us from outputting the whole thing.
188
189 On entry to this basic block:
190 t0 == the first dest word, unmasked
191 t1 == the shifted low bits of the first source word
192 t6 == bytemask that is -1 in dest word bytes */
193
194 ldq_u t2, 8(a1) # L : Latency=3 load second src word
195 addq a1, 8, a1 # E :
196 mskql t0, a0, t0 # U : mask trailing garbage in dst
197 extqh t2, a1, t4 # U : (3 cycle stall on t2)
198
199 or t1, t4, t1 # E : first aligned src word complete (stall)
200 mskqh t1, a0, t1 # U : mask leading garbage in src (stall)
201 or t0, t1, t0 # E : first output word complete (stall)
202 or t0, t6, t6 # E : mask original data for zero test (stall)
203
204 cmpbge zero, t6, t7 # E :
205 beq a2, $u_eocfin # U :
206 lda t6, -1 # E :
207 nop
208
209 bne t7, $u_final # U :
210 mskql t6, a1, t6 # U : mask out bits already seen
211 stq_u t0, 0(a0) # L : store first output word
212 or t6, t2, t2 # E :
213
214 cmpbge zero, t2, t7 # E : find nulls in second partial
215 addq a0, 8, a0 # E :
216 subq a2, 1, a2 # E :
217 bne t7, $u_late_head_exit # U :
218
219 /* Finally, we've got all the stupid leading edge cases taken care
220 of and we can set up to enter the main loop. */
221 extql t2, a1, t1 # U : position hi-bits of lo word
222 beq a2, $u_eoc # U :
223 ldq_u t2, 8(a1) # L : read next high-order source word
224 addq a1, 8, a1 # E :
225
226 extqh t2, a1, t0 # U : position lo-bits of hi word (stall)
227 cmpbge zero, t2, t7 # E :
228 nop
229 bne t7, $u_eos # U :
230
231 /* Unaligned copy main loop. In order to avoid reading too much,
232 the loop is structured to detect zeros in aligned source words.
233 This has, unfortunately, effectively pulled half of a loop
234 iteration out into the head and half into the tail, but it does
235 prevent nastiness from accumulating in the very thing we want
236 to run as fast as possible.
237
238 On entry to this basic block:
239 t0 == the shifted low-order bits from the current source word
240 t1 == the shifted high-order bits from the previous source word
241 t2 == the unshifted current source word
242
243 We further know that t2 does not contain a null terminator. */
244
245 .align 4
246 $u_loop:
247 or t0, t1, t0 # E : current dst word now complete
248 subq a2, 1, a2 # E : decrement word count
249 extql t2, a1, t1 # U : extract high bits for next time
250 addq a0, 8, a0 # E :
251
252 stq_u t0, -8(a0) # L : save the current word
253 beq a2, $u_eoc # U :
254 ldq_u t2, 8(a1) # L : Latency=3 load high word for next time
255 addq a1, 8, a1 # E :
256
257 extqh t2, a1, t0 # U : extract low bits (2 cycle stall)
258 cmpbge zero, t2, t7 # E : test new word for eos
259 nop
260 beq t7, $u_loop # U :
261
262 /* We've found a zero somewhere in the source word we just read.
263 If it resides in the lower half, we have one (probably partial)
264 word to write out, and if it resides in the upper half, we
265 have one full and one partial word left to write out.
266
267 On entry to this basic block:
268 t0 == the shifted low-order bits from the current source word
269 t1 == the shifted high-order bits from the previous source word
270 t2 == the unshifted current source word. */
271 $u_eos:
272 or t0, t1, t0 # E : first (partial) source word complete
273 nop
274 cmpbge zero, t0, t7 # E : is the null in this first bit? (stall)
275 bne t7, $u_final # U : (stall)
276
277 stq_u t0, 0(a0) # L : the null was in the high-order bits
278 addq a0, 8, a0 # E :
279 subq a2, 1, a2 # E :
280 nop
281
282 $u_late_head_exit:
283 extql t2, a1, t0 # U :
284 cmpbge zero, t0, t7 # E :
285 or t7, t10, t6 # E : (stall)
286 cmoveq a2, t6, t7 # E : Latency=2, extra map slot (stall)
287
288 /* Take care of a final (probably partial) result word.
289 On entry to this basic block:
290 t0 == assembled source word
291 t7 == cmpbge mask that found the null. */
292 $u_final:
293 negq t7, t6 # E : isolate low bit set
294 and t6, t7, t8 # E : (stall)
295 and t8, 0x80, t6 # E : avoid dest word load if we can (stall)
296 bne t6, 1f # U : (stall)
297
298 ldq_u t1, 0(a0) # L :
299 subq t8, 1, t6 # E :
300 or t6, t8, t7 # E : (stall)
301 zapnot t0, t7, t0 # U : kill source bytes > null
302
303 zap t1, t7, t1 # U : kill dest bytes <= null
304 or t0, t1, t0 # E : (stall)
305 nop
306 nop
307
308 1: stq_u t0, 0(a0) # L :
309 ret (t9) # L0 : Latency=3
310
311 /* Got to end-of-count before end of string.
312 On entry to this basic block:
313 t1 == the shifted high-order bits from the previous source word */
314 $u_eoc:
315 and a1, 7, t6 # E :
316 sll t10, t6, t6 # U : (stall)
317 and t6, 0xff, t6 # E : (stall)
318 bne t6, 1f # U : (stall)
319
320 ldq_u t2, 8(a1) # L : load final src word
321 nop
322 extqh t2, a1, t0 # U : extract low bits for last word (stall)
323 or t1, t0, t1 # E : (stall)
324
325 1: cmpbge zero, t1, t7 # E :
326 mov t1, t0
327
328 $u_eocfin: # end-of-count, final word
329 or t10, t7, t7 # E :
330 br $u_final # L0 : Latency=3
331
332 /* Unaligned copy entry point. */
333 .align 4
334 $unaligned:
335
336 ldq_u t1, 0(a1) # L : load first source word
337 and a0, 7, t4 # E : find dest misalignment
338 and a1, 7, t5 # E : find src misalignment
339 /* Conditionally load the first destination word and a bytemask
340 with 0xff indicating that the destination byte is sacrosanct. */
341 mov zero, t0 # E :
342
343 mov zero, t6 # E :
344 beq t4, 1f # U :
345 ldq_u t0, 0(a0) # L :
346 lda t6, -1 # E :
347
348 mskql t6, a0, t6 # U :
349 nop
350 nop
351 1: subq a1, t4, a1 # E : sub dest misalignment from src addr
352
353 /* If source misalignment is larger than dest misalignment, we need
354 extra startup checks to avoid SEGV. */
355
356 cmplt t4, t5, t8 # E :
357 extql t1, a1, t1 # U : shift src into place
358 lda t2, -1 # E : for creating masks later
359 beq t8, $u_head # U : (stall)
360
361 mskqh t2, t5, t2 # U : begin src byte validity mask
362 cmpbge zero, t1, t7 # E : is there a zero?
363 extql t2, a1, t2 # U :
364 or t7, t10, t5 # E : test for end-of-count too
365
366 cmpbge zero, t2, t3 # E :
367 cmoveq a2, t5, t7 # E : Latency=2, extra map slot
368 nop # E : keep with cmoveq
369 andnot t7, t3, t7 # E : (stall)
370
371 beq t7, $u_head # U :
372 /* At this point we've found a zero in the first partial word of
373 the source. We need to isolate the valid source data and mask
374 it into the original destination data. (Incidentally, we know
375 that we'll need at least one byte of that original dest word.) */
376 ldq_u t0, 0(a0) # L :
377 negq t7, t6 # E : build bitmask of bytes <= zero
378 mskqh t1, t4, t1 # U :
379
380 and t6, t7, t8 # E :
381 subq t8, 1, t6 # E : (stall)
382 or t6, t8, t7 # E : (stall)
383 zapnot t2, t7, t2 # U : prepare source word; mirror changes (stall)
384
385 zapnot t1, t7, t1 # U : to source validity mask
386 andnot t0, t2, t0 # E : zero place for source to reside
387 or t0, t1, t0 # E : and put it there (stall both t0, t1)
388 stq_u t0, 0(a0) # L : (stall)
389
390 ret (t9) # L0 : Latency=3
391
392 cfi_endproc