]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/bzero.S
Remove "Contributed by" lines
[thirdparty/glibc.git] / sysdeps / ia64 / bzero.S
1 /* Optimized version of the standard bzero() function.
2 This file is part of the GNU C Library.
3 Copyright (C) 2000-2021 Free Software Foundation, Inc.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <https://www.gnu.org/licenses/>. */
18
19 /* Return: dest
20
21 Inputs:
22 in0: dest
23 in1: count
24
25 The algorithm is fairly straightforward: set byte by byte until we
26 we get to a 16B-aligned address, then loop on 128 B chunks using an
27 early store as prefetching, then loop on 32B chucks, then clear remaining
28 words, finally clear remaining bytes.
29 Since a stf.spill f0 can store 16B in one go, we use this instruction
30 to get peak speed. */
31
32 #include <sysdep.h>
33 #undef ret
34
35 #define dest in0
36 #define cnt in1
37
38 #define tmp r31
39 #define save_lc r30
40 #define ptr0 r29
41 #define ptr1 r28
42 #define ptr2 r27
43 #define ptr3 r26
44 #define ptr9 r24
45 #define loopcnt r23
46 #define linecnt r22
47 #define bytecnt r21
48
49 // This routine uses only scratch predicate registers (p6 - p15)
50 #define p_scr p6 // default register for same-cycle branches
51 #define p_unalgn p9
52 #define p_y p11
53 #define p_n p12
54 #define p_yy p13
55 #define p_nn p14
56
57 #define movi0 mov
58
59 #define MIN1 15
60 #define MIN1P1HALF 8
61 #define LINE_SIZE 128
62 #define LSIZE_SH 7 // shift amount
63 #define PREF_AHEAD 8
64
65 #define USE_FLP
66 #if defined(USE_INT)
67 #define store st8
68 #define myval r0
69 #elif defined(USE_FLP)
70 #define store stf8
71 #define myval f0
72 #endif
73
74 .align 64
75 ENTRY(bzero)
76 { .mmi
77 .prologue
78 alloc tmp = ar.pfs, 2, 0, 0, 0
79 lfetch.nt1 [dest]
80 .save ar.lc, save_lc
81 movi0 save_lc = ar.lc
82 } { .mmi
83 .body
84 mov ret0 = dest // return value
85 nop.m 0
86 cmp.eq p_scr, p0 = cnt, r0
87 ;; }
88 { .mmi
89 and ptr2 = -(MIN1+1), dest // aligned address
90 and tmp = MIN1, dest // prepare to check for alignment
91 tbit.nz p_y, p_n = dest, 0 // Do we have an odd address? (M_B_U)
92 } { .mib
93 mov ptr1 = dest
94 nop.i 0
95 (p_scr) br.ret.dpnt.many rp // return immediately if count = 0
96 ;; }
97 { .mib
98 cmp.ne p_unalgn, p0 = tmp, r0
99 } { .mib // NB: # of bytes to move is 1
100 sub bytecnt = (MIN1+1), tmp // higher than loopcnt
101 cmp.gt p_scr, p0 = 16, cnt // is it a minimalistic task?
102 (p_scr) br.cond.dptk.many .move_bytes_unaligned // go move just a few (M_B_U)
103 ;; }
104 { .mmi
105 (p_unalgn) add ptr1 = (MIN1+1), ptr2 // after alignment
106 (p_unalgn) add ptr2 = MIN1P1HALF, ptr2 // after alignment
107 (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 3 // should we do a st8 ?
108 ;; }
109 { .mib
110 (p_y) add cnt = -8, cnt
111 (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 2 // should we do a st4 ?
112 } { .mib
113 (p_y) st8 [ptr2] = r0,-4
114 (p_n) add ptr2 = 4, ptr2
115 ;; }
116 { .mib
117 (p_yy) add cnt = -4, cnt
118 (p_unalgn) tbit.nz.unc p_y, p_n = bytecnt, 1 // should we do a st2 ?
119 } { .mib
120 (p_yy) st4 [ptr2] = r0,-2
121 (p_nn) add ptr2 = 2, ptr2
122 ;; }
123 { .mmi
124 mov tmp = LINE_SIZE+1 // for compare
125 (p_y) add cnt = -2, cnt
126 (p_unalgn) tbit.nz.unc p_yy, p_nn = bytecnt, 0 // should we do a st1 ?
127 } { .mmi
128 nop.m 0
129 (p_y) st2 [ptr2] = r0,-1
130 (p_n) add ptr2 = 1, ptr2
131 ;; }
132
133 { .mmi
134 (p_yy) st1 [ptr2] = r0
135 cmp.gt p_scr, p0 = tmp, cnt // is it a minimalistic task?
136 } { .mbb
137 (p_yy) add cnt = -1, cnt
138 (p_scr) br.cond.dpnt.many .fraction_of_line // go move just a few
139 ;; }
140 { .mib
141 nop.m 0
142 shr.u linecnt = cnt, LSIZE_SH
143 nop.b 0
144 ;; }
145
146 .align 32
147 .l1b: // ------------------// L1B: store ahead into cache lines; fill later
148 { .mmi
149 and tmp = -(LINE_SIZE), cnt // compute end of range
150 mov ptr9 = ptr1 // used for prefetching
151 and cnt = (LINE_SIZE-1), cnt // remainder
152 } { .mmi
153 mov loopcnt = PREF_AHEAD-1 // default prefetch loop
154 cmp.gt p_scr, p0 = PREF_AHEAD, linecnt // check against actual value
155 ;; }
156 { .mmi
157 (p_scr) add loopcnt = -1, linecnt
158 add ptr2 = 16, ptr1 // start of stores (beyond prefetch stores)
159 add ptr1 = tmp, ptr1 // first address beyond total range
160 ;; }
161 { .mmi
162 add tmp = -1, linecnt // next loop count
163 movi0 ar.lc = loopcnt
164 ;; }
165 .pref_l1b:
166 { .mib
167 stf.spill [ptr9] = f0, 128 // Do stores one cache line apart
168 nop.i 0
169 br.cloop.dptk.few .pref_l1b
170 ;; }
171 { .mmi
172 add ptr0 = 16, ptr2 // Two stores in parallel
173 movi0 ar.lc = tmp
174 ;; }
175 .l1bx:
176 { .mmi
177 stf.spill [ptr2] = f0, 32
178 stf.spill [ptr0] = f0, 32
179 ;; }
180 { .mmi
181 stf.spill [ptr2] = f0, 32
182 stf.spill [ptr0] = f0, 32
183 ;; }
184 { .mmi
185 stf.spill [ptr2] = f0, 32
186 stf.spill [ptr0] = f0, 64
187 cmp.lt p_scr, p0 = ptr9, ptr1 // do we need more prefetching?
188 ;; }
189 { .mmb
190 stf.spill [ptr2] = f0, 32
191 (p_scr) stf.spill [ptr9] = f0, 128
192 br.cloop.dptk.few .l1bx
193 ;; }
194 { .mib
195 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
196 (p_scr) br.cond.dpnt.many .move_bytes_from_alignment
197 ;; }
198
199 .fraction_of_line:
200 { .mib
201 add ptr2 = 16, ptr1
202 shr.u loopcnt = cnt, 5 // loopcnt = cnt / 32
203 ;; }
204 { .mib
205 cmp.eq p_scr, p0 = loopcnt, r0
206 add loopcnt = -1, loopcnt
207 (p_scr) br.cond.dpnt.many .store_words
208 ;; }
209 { .mib
210 and cnt = 0x1f, cnt // compute the remaining cnt
211 movi0 ar.lc = loopcnt
212 ;; }
213 .align 32
214 .l2: // -----------------------------// L2A: store 32B in 2 cycles
215 { .mmb
216 store [ptr1] = myval, 8
217 store [ptr2] = myval, 8
218 ;; } { .mmb
219 store [ptr1] = myval, 24
220 store [ptr2] = myval, 24
221 br.cloop.dptk.many .l2
222 ;; }
223 .store_words:
224 { .mib
225 cmp.gt p_scr, p0 = 8, cnt // just a few bytes left ?
226 (p_scr) br.cond.dpnt.many .move_bytes_from_alignment // Branch
227 ;; }
228
229 { .mmi
230 store [ptr1] = myval, 8 // store
231 cmp.le p_y, p_n = 16, cnt //
232 add cnt = -8, cnt // subtract
233 ;; }
234 { .mmi
235 (p_y) store [ptr1] = myval, 8 // store
236 (p_y) cmp.le.unc p_yy, p_nn = 16, cnt
237 (p_y) add cnt = -8, cnt // subtract
238 ;; }
239 { .mmi // store
240 (p_yy) store [ptr1] = myval, 8
241 (p_yy) add cnt = -8, cnt // subtract
242 ;; }
243
244 .move_bytes_from_alignment:
245 { .mib
246 cmp.eq p_scr, p0 = cnt, r0
247 tbit.nz.unc p_y, p0 = cnt, 2 // should we terminate with a st4 ?
248 (p_scr) br.cond.dpnt.few .restore_and_exit
249 ;; }
250 { .mib
251 (p_y) st4 [ptr1] = r0,4
252 tbit.nz.unc p_yy, p0 = cnt, 1 // should we terminate with a st2 ?
253 ;; }
254 { .mib
255 (p_yy) st2 [ptr1] = r0,2
256 tbit.nz.unc p_y, p0 = cnt, 0 // should we terminate with a st1 ?
257 ;; }
258
259 { .mib
260 (p_y) st1 [ptr1] = r0
261 ;; }
262 .restore_and_exit:
263 { .mib
264 nop.m 0
265 movi0 ar.lc = save_lc
266 br.ret.sptk.many rp
267 ;; }
268
269 .move_bytes_unaligned:
270 { .mmi
271 .pred.rel "mutex",p_y, p_n
272 .pred.rel "mutex",p_yy, p_nn
273 (p_n) cmp.le p_yy, p_nn = 4, cnt
274 (p_y) cmp.le p_yy, p_nn = 5, cnt
275 (p_n) add ptr2 = 2, ptr1
276 } { .mmi
277 (p_y) add ptr2 = 3, ptr1
278 (p_y) st1 [ptr1] = r0, 1 // fill 1 (odd-aligned) byte
279 (p_y) add cnt = -1, cnt // [15, 14 (or less) left]
280 ;; }
281 { .mmi
282 (p_yy) cmp.le.unc p_y, p0 = 8, cnt
283 add ptr3 = ptr1, cnt // prepare last store
284 movi0 ar.lc = save_lc
285 } { .mmi
286 (p_yy) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
287 (p_yy) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
288 (p_yy) add cnt = -4, cnt // [11, 10 (o less) left]
289 ;; }
290 { .mmi
291 (p_y) cmp.le.unc p_yy, p0 = 8, cnt
292 add ptr3 = -1, ptr3 // last store
293 tbit.nz p_scr, p0 = cnt, 1 // will there be a st2 at the end ?
294 } { .mmi
295 (p_y) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
296 (p_y) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
297 (p_y) add cnt = -4, cnt // [7, 6 (or less) left]
298 ;; }
299 { .mmi
300 (p_yy) st2 [ptr1] = r0, 4 // fill 2 (aligned) bytes
301 (p_yy) st2 [ptr2] = r0, 4 // fill 2 (aligned) bytes
302 // [3, 2 (or less) left]
303 tbit.nz p_y, p0 = cnt, 0 // will there be a st1 at the end ?
304 } { .mmi
305 (p_yy) add cnt = -4, cnt
306 ;; }
307 { .mmb
308 (p_scr) st2 [ptr1] = r0 // fill 2 (aligned) bytes
309 (p_y) st1 [ptr3] = r0 // fill last byte (using ptr3)
310 br.ret.sptk.many rp
311 ;; }
312 END(bzero)