]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ia64/fpu/e_exp2f.S
localedata: dz_BT, bo_CN: convert to UTF-8
[thirdparty/glibc.git] / sysdeps / ia64 / fpu / e_exp2f.S
1 .file "exp2f.s"
2
3
4 // Copyright (c) 2000 - 2005, Intel Corporation
5 // All rights reserved.
6 //
7 //
8 // Redistribution and use in source and binary forms, with or without
9 // modification, are permitted provided that the following conditions are
10 // met:
11 //
12 // * Redistributions of source code must retain the above copyright
13 // notice, this list of conditions and the following disclaimer.
14 //
15 // * Redistributions in binary form must reproduce the above copyright
16 // notice, this list of conditions and the following disclaimer in the
17 // documentation and/or other materials provided with the distribution.
18 //
19 // * The name of Intel Corporation may not be used to endorse or promote
20 // products derived from this software without specific prior written
21 // permission.
22
23 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
27 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
31 // OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
32 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 //
35 // Intel Corporation is the author of this code, and requests that all
36 // problem reports or change requests be submitted to it directly at
37 // http://www.intel.com/software/products/opensource/libraries/num.htm.
38 //
39 // History
40 //==============================================================
41 // 08/25/00 Initial version
42 // 05/20/02 Cleaned up namespace and sf0 syntax
43 // 09/05/02 Improved performance and accuracy
44 // 01/17/03 Fixed to call error support when x=128.0
45 // 03/31/05 Reformatted delimiters between data tables
46 //
47 // API
48 //==============================================================
49 // float exp2f(float)
50 //
51 // Overview of operation
52 //==============================================================
53 // Background
54 //
55 // Implementation
56 //
57 // Let x= (K + fh + fl + r), where
58 // K is an integer, fh= 0.b1 b2 b3 b4 b5,
59 // fl= 2^{-5}* 0.b6 b7 b8 b8 b10 (fh, fl >= 0),
60 // and |r|<2^{-11}
61 // Th is a table that stores 2^fh (32 entries) rounded to
62 // double extended precision (only mantissa is stored)
63 // Tl is a table that stores 2^fl (32 entries) rounded to
64 // double extended precision (only mantissa is stored)
65 //
66 // 2^x is approximated as
67 // 2^K * Th [ f ] * Tl [ f ] * (1+c1*r+c2*r^2)
68
69 // Note: We use the following trick to speed up conversion from FP to integer:
70 //
71 // Let x = K + r, where K is an integer, and |r| <= 0.5
72 // Let N be the number of significand bits for the FP format used
73 // ( N=64 for double-extended, N=53 for double)
74 //
75 // Then let y = 1.5 * 2^(N-1) + x for RN mode
76 // K = y - 1.5 * 2^(N-1)
77 // r = x - K
78 //
79 // If we want to obtain the integer part and the first m fractional bits of x,
80 // we can use the same trick, but with a constant of 1.5 * 2^(N-1-m):
81 //
82 // Let x = K + f + r
83 // f = 0.b_1 b_2 ... b_m
84 // |r| <= 2^(-m-1)
85 //
86 // Then let y = 1.5 * 2^(N-1-m) + x for RN mode
87 // (K+f) = y - 1.5 * 2^(N-1-m)
88 // r = x - K
89
90
91 // Special values
92 //==============================================================
93 // exp2(0)= 1
94 // exp2(+inf)= inf
95 // exp2(-inf)= 0
96 //
97
98 // Registers used
99 //==============================================================
100 // r2-r3, r14-r40
101 // f6-f15, f32-f45
102 // p6-p8, p12
103 //
104
105
106 GR_TBL_START = r2
107 GR_LOG_TBL = r3
108
109 GR_OF_LIMIT = r14
110 GR_UF_LIMIT = r15
111 GR_EXP_CORR = r16
112 GR_F_low = r17
113 GR_F_high = r18
114 GR_K = r19
115 GR_Flow_ADDR = r20
116
117 GR_BIAS = r21
118 GR_Fh = r22
119 GR_Fh_ADDR = r23
120 GR_EXPMAX = r24
121 GR_EMIN = r25
122
123 GR_ROUNDVAL = r26
124 GR_MASK = r27
125 GR_KF0 = r28
126 GR_MASK_low = r29
127 GR_COEFF_START = r30
128
129 GR_SAVE_B0 = r33
130 GR_SAVE_PFS = r34
131 GR_SAVE_GP = r35
132 GR_SAVE_SP = r36
133
134 GR_Parameter_X = r37
135 GR_Parameter_Y = r38
136 GR_Parameter_RESULT = r39
137 GR_Parameter_TAG = r40
138
139
140 FR_X = f10
141 FR_Y = f1
142 FR_RESULT = f8
143
144
145 FR_COEFF1 = f6
146 FR_COEFF2 = f7
147 FR_R = f9
148
149 FR_KF0 = f12
150 FR_UF_LIMIT = f15
151
152 FR_OF_LIMIT = f32
153 FR_EXPMIN = f33
154 FR_ROUNDVAL = f34
155 FR_KF = f35
156
157 FR_2_TO_K = f36
158 FR_T_low = f37
159 FR_T_high = f38
160
161 FR_P12 = f41
162 FR_T_low_K = f42
163 FR_T = f44
164 FR_P = f45
165
166
167 // Data tables
168 //==============================================================
169
170 RODATA
171
172 .align 16
173
174 LOCAL_OBJECT_START(poly_coeffs)
175
176 data8 0xb17217f7d1cf79ab, 0x00003ffe // C_1
177 data8 0xf5fdeffc162c7541, 0x00003ffc // C_2
178 LOCAL_OBJECT_END(poly_coeffs)
179
180
181 LOCAL_OBJECT_START(T_table)
182
183 // 2^{0.00000 b6 b7 b8 b9 b10}
184 data8 0x8000000000000000, 0x8016302f17467628
185 data8 0x802c6436d0e04f50, 0x80429c17d77c18ed
186 data8 0x8058d7d2d5e5f6b0, 0x806f17687707a7af
187 data8 0x80855ad965e88b83, 0x809ba2264dada76a
188 data8 0x80b1ed4fd999ab6c, 0x80c83c56b50cf77f
189 data8 0x80de8f3b8b85a0af, 0x80f4e5ff089f763e
190 data8 0x810b40a1d81406d4, 0x81219f24a5baa59d
191 data8 0x813801881d886f7b, 0x814e67cceb90502c
192 data8 0x8164d1f3bc030773, 0x817b3ffd3b2f2e47
193 data8 0x8191b1ea15813bfd, 0x81a827baf7838b78
194 data8 0x81bea1708dde6055, 0x81d51f0b8557ec1c
195 data8 0x81eba08c8ad4536f, 0x820225f44b55b33b
196 data8 0x8218af4373fc25eb, 0x822f3c7ab205c89a
197 data8 0x8245cd9ab2cec048, 0x825c62a423d13f0c
198 data8 0x8272fb97b2a5894c, 0x828998760d01faf3
199 data8 0x82a0393fe0bb0ca8, 0x82b6ddf5dbc35906
200 //
201 // 2^{0.b1 b2 b3 b4 b5}
202 data8 0x8000000000000000, 0x82cd8698ac2ba1d7
203 data8 0x85aac367cc487b14, 0x88980e8092da8527
204 data8 0x8b95c1e3ea8bd6e6, 0x8ea4398b45cd53c0
205 data8 0x91c3d373ab11c336, 0x94f4efa8fef70961
206 data8 0x9837f0518db8a96f, 0x9b8d39b9d54e5538
207 data8 0x9ef5326091a111ad, 0xa27043030c496818
208 data8 0xa5fed6a9b15138ea, 0xa9a15ab4ea7c0ef8
209 data8 0xad583eea42a14ac6, 0xb123f581d2ac258f
210 data8 0xb504f333f9de6484, 0xb8fbaf4762fb9ee9
211 data8 0xbd08a39f580c36be, 0xc12c4cca66709456
212 data8 0xc5672a115506dadd, 0xc9b9bd866e2f27a2
213 data8 0xce248c151f8480e3, 0xd2a81d91f12ae45a
214 data8 0xd744fccad69d6af4, 0xdbfbb797daf23755
215 data8 0xe0ccdeec2a94e111, 0xe5b906e77c8348a8
216 data8 0xeac0c6e7dd24392e, 0xefe4b99bdcdaf5cb
217 data8 0xf5257d152486cc2c, 0xfa83b2db722a033a
218 LOCAL_OBJECT_END(T_table)
219
220
221
222 .section .text
223 WEAK_LIBM_ENTRY(exp2f)
224
225
226 {.mfi
227 alloc r32= ar.pfs, 1, 4, 4, 0
228 // will continue only for non-zero normal/denormal numbers
229 fclass.nm p12, p0= f8, 0x1b
230 // GR_TBL_START= pointer to C_1...C_2 followed by T_table
231 addl GR_TBL_START= @ltoff(poly_coeffs), gp
232 }
233 {.mlx
234 mov GR_OF_LIMIT= 0xffff + 7 // Exponent of overflow limit
235 movl GR_ROUNDVAL= 0x5a400000 // 1.5*2^(63-10) (SP)
236 }
237 ;;
238
239 // Form special constant 1.5*2^(63-10) to give integer part and first 10
240 // fractional bits of x
241 {.mfi
242 setf.s FR_ROUNDVAL= GR_ROUNDVAL // Form special constant
243 fcmp.lt.s1 p6, p8= f8, f0 // X<0 ?
244 nop.i 0
245 }
246 {.mfb
247 ld8 GR_COEFF_START= [ GR_TBL_START ] // Load pointer to coeff table
248 nop.f 0
249 (p12) br.cond.spnt SPECIAL_exp2 // Branch if nan, inf, zero
250 }
251 ;;
252
253 {.mlx
254 setf.exp FR_OF_LIMIT= GR_OF_LIMIT // Set overflow limit
255 movl GR_UF_LIMIT= 0xc3160000 // (-2^7-22) = -150
256 }
257 ;;
258
259 {.mfi
260 ldfe FR_COEFF1= [ GR_COEFF_START ], 16 // load C_1
261 fma.s0 f8= f8, f1, f0 // normalize x
262 nop.i 0
263 }
264 ;;
265
266 {.mmi
267 ldfe FR_COEFF2= [ GR_COEFF_START ], 16 // load C_2
268 setf.s FR_UF_LIMIT= GR_UF_LIMIT // Set underflow limit
269 mov GR_EXP_CORR= 0xffff-126
270 }
271 ;;
272
273 {.mfi
274 nop.m 0
275 fma.s1 FR_KF0= f8, f1, FR_ROUNDVAL // y= x + 1.5*2^(63-10)
276 nop.i 0
277 }
278 ;;
279
280 {.mfi
281 mov GR_MASK= 1023
282 fms.s1 FR_KF= FR_KF0, f1, FR_ROUNDVAL // (K+f)
283 mov GR_MASK_low= 31
284 }
285 ;;
286
287 {.mfi
288 getf.sig GR_KF0= FR_KF0 // (K+f)*2^10= round_to_int(y)
289 fcmp.ge.s1 p12, p7= f8, FR_OF_LIMIT // x >= overflow threshold ?
290 add GR_LOG_TBL= 256, GR_COEFF_START // Pointer to high T_table
291 }
292 ;;
293
294 {.mmi
295 and GR_F_low= GR_KF0, GR_MASK_low // f_low
296 and GR_F_high= GR_MASK, GR_KF0 // f_high*32
297 shr GR_K= GR_KF0, 10 // K
298 }
299 ;;
300
301 {.mmi
302 shladd GR_Flow_ADDR= GR_F_low, 3, GR_COEFF_START // address of 2^{f_low}
303 add GR_BIAS= GR_K, GR_EXP_CORR // K= bias-2*63
304 shr GR_Fh= GR_F_high, 5 // f_high
305 }
306 ;;
307
308 {.mfi
309 setf.exp FR_2_TO_K= GR_BIAS // 2^{K-126}
310 fnma.s1 FR_R= FR_KF, f1, f8 // r= x - (K+f)
311 shladd GR_Fh_ADDR= GR_Fh, 3, GR_LOG_TBL // address of 2^{f_high}
312 }
313 {.mlx
314 ldf8 FR_T_low= [ GR_Flow_ADDR ] // load T_low= 2^{f_low}
315 movl GR_EMIN= 0xc2fc0000 // EMIN= -126
316 }
317 ;;
318
319 {.mfi
320 ldf8 FR_T_high= [ GR_Fh_ADDR ] // load T_high= 2^{f_high}
321 (p7) fcmp.lt.s1 p12, p7= f8, FR_UF_LIMIT // x<underflow threshold ?
322 nop.i 0
323 }
324 ;;
325
326 {.mfb
327 setf.s FR_EXPMIN= GR_EMIN // FR_EXPMIN= EMIN
328 fma.s1 FR_P12= FR_COEFF2, FR_R, FR_COEFF1 // P12= C_1+C_2*r
329 (p12) br.cond.spnt OUT_RANGE_exp2
330 }
331 ;;
332
333 {.mfi
334 nop.m 0
335 fma.s1 FR_T_low_K= FR_T_low, FR_2_TO_K, f0 // T= 2^{K-126}*T_low
336 nop.i 0
337 }
338 ;;
339
340 {.mfi
341 nop.m 0
342 fma.s1 FR_P= FR_R, FR_P12, f0 // P= P12+r
343 nop.i 0
344 }
345 ;;
346
347 {.mfi
348 nop.m 0
349 fma.s1 FR_T= FR_T_low_K, FR_T_high, f0 // T= T*T_high
350 nop.i 0
351 }
352 ;;
353
354 {.mfi
355 nop.m 0
356 fcmp.lt.s0 p6, p8= f8, FR_EXPMIN // underflow (x<EMIN) ?
357 nop.i 0
358 }
359 ;;
360
361 {.mfb
362 nop.m 0
363 fma.s.s0 f8= FR_P, FR_T, FR_T // result= T+T*P
364 (p8) br.ret.sptk b0 // return
365 }
366 ;;
367
368 {.mfb
369 (p6) mov GR_Parameter_TAG= 164
370 nop.f 0
371 (p6) br.cond.sptk __libm_error_region
372 }
373 ;;
374
375
376 SPECIAL_exp2:
377 {.mfi
378 nop.m 0
379 fclass.m p6, p0= f8, 0x22 // x= -Infinity ?
380 nop.i 0
381 }
382 ;;
383
384 {.mfi
385 nop.m 0
386 fclass.m p7, p0= f8, 0x21 // x= +Infinity ?
387 nop.i 0
388 }
389 ;;
390
391 {.mfi
392 nop.m 0
393 fclass.m p8, p0= f8, 0x7 // x= +/-Zero ?
394 nop.i 0
395 }
396 {.mfb
397 nop.m 0
398 (p6) mov f8= f0 // exp2(-Infinity)= 0
399 (p6) br.ret.spnt b0
400 }
401 ;;
402
403 {.mfb
404 nop.m 0
405 nop.f 0
406 (p7) br.ret.spnt b0 // exp2(+Infinity)= +Infinity
407 }
408 ;;
409
410 {.mfb
411 nop.m 0
412 (p8) mov f8= f1 // exp2(+/-0)= 1
413 (p8) br.ret.spnt b0
414 }
415 ;;
416
417 {.mfb
418 nop.m 0
419 fma.s.s0 f8= f8, f1, f0 // Remaining cases: NaNs
420 br.ret.sptk b0
421 }
422 ;;
423
424
425 OUT_RANGE_exp2:
426
427 // overflow: p8= 1
428
429 {.mii
430 (p8) mov GR_EXPMAX= 0x1fffe
431 nop.i 0
432 nop.i 0
433 }
434 ;;
435
436 {.mmb
437 (p8) mov GR_Parameter_TAG= 163
438 (p8) setf.exp FR_R= GR_EXPMAX
439 nop.b 999
440 }
441 ;;
442
443 {.mfi
444 nop.m 999
445 (p8) fma.s.s0 f8= FR_R, FR_R, f0 // Create overflow
446 nop.i 999
447 }
448 // underflow: p6= 1
449 {.mii
450 (p6) mov GR_Parameter_TAG= 164
451 (p6) mov GR_EXPMAX= 1
452 nop.i 0
453 }
454 ;;
455
456 {.mmb
457 nop.m 0
458 (p6) setf.exp FR_R= GR_EXPMAX
459 nop.b 999
460 }
461 ;;
462
463 {.mfb
464 nop.m 999
465 (p6) fma.s.s0 f8= FR_R, FR_R, f0 // Create underflow
466 nop.b 0
467 }
468 ;;
469
470 WEAK_LIBM_END(exp2f)
471 libm_alias_float_other (__exp2, exp2)
472 #ifdef SHARED
473 .symver exp2f,exp2f@@GLIBC_2.27
474 .weak __exp2f_compat
475 .set __exp2f_compat,__exp2f
476 .symver __exp2f_compat,exp2f@GLIBC_2.2
477 #endif
478
479
480 LOCAL_LIBM_ENTRY(__libm_error_region)
481
482 .prologue
483 {.mfi
484 add GR_Parameter_Y= -32, sp // Parameter 2 value
485 nop.f 0
486 .save ar.pfs, GR_SAVE_PFS
487 mov GR_SAVE_PFS= ar.pfs // Save ar.pfs
488 }
489
490 {.mfi
491 .fframe 64
492 add sp= -64, sp // Create new stack
493 nop.f 0
494 mov GR_SAVE_GP= gp // Save gp
495 }
496 ;;
497
498 {.mmi
499 stfs [ GR_Parameter_Y ]= FR_Y, 16 // STORE Parameter 2 on stack
500 add GR_Parameter_X= 16, sp // Parameter 1 address
501 .save b0, GR_SAVE_B0
502 mov GR_SAVE_B0= b0 // Save b0
503 }
504 ;;
505
506 .body
507 {.mib
508 stfs [ GR_Parameter_X ]= FR_X // STORE Parameter 1 on stack
509 add GR_Parameter_RESULT= 0, GR_Parameter_Y // Parameter 3 address
510 nop.b 0
511 }
512 {.mib
513 stfs [ GR_Parameter_Y ]= FR_RESULT // STORE Parameter 3 on stack
514 add GR_Parameter_Y= -16, GR_Parameter_Y
515 br.call.sptk b0= __libm_error_support# // Call error handling function
516 }
517 ;;
518
519 {.mmi
520 add GR_Parameter_RESULT= 48, sp
521 nop.m 0
522 nop.i 0
523 }
524 ;;
525
526 {.mmi
527 ldfs f8= [ GR_Parameter_RESULT ] // Get return result off stack
528 .restore sp
529 add sp= 64, sp // Restore stack pointer
530 mov b0= GR_SAVE_B0 // Restore return address
531 }
532 ;;
533
534 {.mib
535 mov gp= GR_SAVE_GP // Restore gp
536 mov ar.pfs= GR_SAVE_PFS // Restore ar.pfs
537 br.ret.sptk b0 // Return
538 }
539 ;;
540
541
542 LOCAL_LIBM_END(__libm_error_region)
543
544 .type __libm_error_support#, @function
545 .global __libm_error_support#