]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/ieee754/ldbl-128ibm/e_expl.c
Fix typos.
[thirdparty/glibc.git] / sysdeps / ieee754 / ldbl-128ibm / e_expl.c
1 /* Quad-precision floating point e^x.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Jakub Jelinek <jj@ultra.linux.cz>
5 Partly based on double-precision code
6 by Geoffrey Keating <geoffk@ozemail.com.au>
7
8 The GNU C Library is free software; you can redistribute it and/or
9 modify it under the terms of the GNU Lesser General Public
10 License as published by the Free Software Foundation; either
11 version 2.1 of the License, or (at your option) any later version.
12
13 The GNU C Library is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 Lesser General Public License for more details.
17
18 You should have received a copy of the GNU Lesser General Public
19 License along with the GNU C Library; if not, see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The basic design here is from
23 Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
24 Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
25 pp. 410-423.
26
27 We work with number pairs where the first number is the high part and
28 the second one is the low part. Arithmetic with the high part numbers must
29 be exact, without any roundoff errors.
30
31 The input value, X, is written as
32 X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
33 - n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
34
35 where:
36 - n is an integer, 16384 >= n >= -16495;
37 - ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
38 - t1 is an integer, 89 >= t1 >= -89
39 - t2 is an integer, 65 >= t2 >= -65
40 - |arg1[t1]-t1/256.0| < 2^-53
41 - |arg2[t2]-t2/32768.0| < 2^-53
42 - x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
43
44 Then e^x is approximated as
45
46 e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
47 + 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
48 * p (x + xl + n * ln(2)_1))
49 where:
50 - p(x) is a polynomial approximating e(x)-1
51 - e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
52 - e^(arg2[t2]_0 + arg2[t2]_1) likewise
53 - n_1 + n_0 = n, so that |n_0| < -LDBL_MIN_EXP-1.
54
55 If it happens that n_1 == 0 (this is the usual case), that multiplication
56 is omitted.
57 */
58
59 #ifndef _GNU_SOURCE
60 #define _GNU_SOURCE
61 #endif
62 #include <float.h>
63 #include <ieee754.h>
64 #include <math.h>
65 #include <fenv.h>
66 #include <inttypes.h>
67 #include <math_private.h>
68 #include <sysdeps/ieee754/ldbl-128/t_expl.h>
69
70 static const long double C[] = {
71 /* Smallest integer x for which e^x overflows. */
72 #define himark C[0]
73 709.78271289338399678773454114191496482L,
74
75 /* Largest integer x for which e^x underflows. */
76 #define lomark C[1]
77 -744.44007192138126231410729844608163411L,
78
79 /* 3x2^96 */
80 #define THREEp96 C[2]
81 59421121885698253195157962752.0L,
82
83 /* 3x2^103 */
84 #define THREEp103 C[3]
85 30423614405477505635920876929024.0L,
86
87 /* 3x2^111 */
88 #define THREEp111 C[4]
89 7788445287802241442795744493830144.0L,
90
91 /* 1/ln(2) */
92 #define M_1_LN2 C[5]
93 1.44269504088896340735992468100189204L,
94
95 /* first 93 bits of ln(2) */
96 #define M_LN2_0 C[6]
97 0.693147180559945309417232121457981864L,
98
99 /* ln2_0 - ln(2) */
100 #define M_LN2_1 C[7]
101 -1.94704509238074995158795957333327386E-31L,
102
103 /* very small number */
104 #define TINY C[8]
105 1.0e-308L,
106
107 /* 2^16383 */
108 #define TWO1023 C[9]
109 8.988465674311579538646525953945123668E+307L,
110
111 /* 256 */
112 #define TWO8 C[10]
113 256.0L,
114
115 /* 32768 */
116 #define TWO15 C[11]
117 32768.0L,
118
119 /* Chebyshev polynom coefficients for (exp(x)-1)/x */
120 #define P1 C[12]
121 #define P2 C[13]
122 #define P3 C[14]
123 #define P4 C[15]
124 #define P5 C[16]
125 #define P6 C[17]
126 0.5L,
127 1.66666666666666666666666666666666683E-01L,
128 4.16666666666666666666654902320001674E-02L,
129 8.33333333333333333333314659767198461E-03L,
130 1.38888888889899438565058018857254025E-03L,
131 1.98412698413981650382436541785404286E-04L,
132 };
133
134 long double
135 __ieee754_expl (long double x)
136 {
137 /* Check for usual case. */
138 if (isless (x, himark) && isgreater (x, lomark))
139 {
140 int tval1, tval2, unsafe, n_i, exponent2;
141 long double x22, n, result, xl;
142 union ibm_extended_long_double ex2_u, scale_u;
143 fenv_t oldenv;
144
145 feholdexcept (&oldenv);
146 #ifdef FE_TONEAREST
147 fesetround (FE_TONEAREST);
148 #endif
149
150 n = __roundl (x*M_1_LN2);
151 x = x-n*M_LN2_0;
152 xl = n*M_LN2_1;
153
154 tval1 = __roundl (x*TWO8);
155 x -= __expl_table[T_EXPL_ARG1+2*tval1];
156 xl -= __expl_table[T_EXPL_ARG1+2*tval1+1];
157
158 tval2 = __roundl (x*TWO15);
159 x -= __expl_table[T_EXPL_ARG2+2*tval2];
160 xl -= __expl_table[T_EXPL_ARG2+2*tval2+1];
161
162 x = x + xl;
163
164 /* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
165 ex2_u.d = __expl_table[T_EXPL_RES1 + tval1]
166 * __expl_table[T_EXPL_RES2 + tval2];
167 n_i = (int)n;
168 /* 'unsafe' is 1 iff n_1 != 0. */
169 unsafe = fabsl(n_i) >= -LDBL_MIN_EXP - 1;
170 ex2_u.ieee.exponent += n_i >> unsafe;
171 /* Fortunately, there are no subnormal lowpart doubles in
172 __expl_table, only normal values and zeros.
173 But after scaling it can be subnormal. */
174 exponent2 = ex2_u.ieee.exponent2 + (n_i >> unsafe);
175 if (ex2_u.ieee.exponent2 == 0)
176 /* assert ((ex2_u.ieee.mantissa2|ex2_u.ieee.mantissa3) == 0) */;
177 else if (exponent2 > 0)
178 ex2_u.ieee.exponent2 = exponent2;
179 else if (exponent2 <= -54)
180 {
181 ex2_u.ieee.exponent2 = 0;
182 ex2_u.ieee.mantissa2 = 0;
183 ex2_u.ieee.mantissa3 = 0;
184 }
185 else
186 {
187 static const double
188 two54 = 1.80143985094819840000e+16, /* 4350000000000000 */
189 twom54 = 5.55111512312578270212e-17; /* 3C90000000000000 */
190 ex2_u.dd[1] *= two54;
191 ex2_u.ieee.exponent2 += n_i >> unsafe;
192 ex2_u.dd[1] *= twom54;
193 }
194
195 /* Compute scale = 2^n_1. */
196 scale_u.d = 1.0L;
197 scale_u.ieee.exponent += n_i - (n_i >> unsafe);
198
199 /* Approximate e^x2 - 1, using a seventh-degree polynomial,
200 with maximum error in [-2^-16-2^-53,2^-16+2^-53]
201 less than 4.8e-39. */
202 x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
203
204 /* Return result. */
205 fesetenv (&oldenv);
206
207 result = x22 * ex2_u.d + ex2_u.d;
208
209 /* Now we can test whether the result is ultimate or if we are unsure.
210 In the later case we should probably call a mpn based routine to give
211 the ultimate result.
212 Empirically, this routine is already ultimate in about 99.9986% of
213 cases, the test below for the round to nearest case will be false
214 in ~ 99.9963% of cases.
215 Without proc2 routine maximum error which has been seen is
216 0.5000262 ulp.
217
218 union ieee854_long_double ex3_u;
219
220 #ifdef FE_TONEAREST
221 fesetround (FE_TONEAREST);
222 #endif
223 ex3_u.d = (result - ex2_u.d) - x22 * ex2_u.d;
224 ex2_u.d = result;
225 ex3_u.ieee.exponent += LDBL_MANT_DIG + 15 + IEEE854_LONG_DOUBLE_BIAS
226 - ex2_u.ieee.exponent;
227 n_i = abs (ex3_u.d);
228 n_i = (n_i + 1) / 2;
229 fesetenv (&oldenv);
230 #ifdef FE_TONEAREST
231 if (fegetround () == FE_TONEAREST)
232 n_i -= 0x4000;
233 #endif
234 if (!n_i) {
235 return __ieee754_expl_proc2 (origx);
236 }
237 */
238 if (!unsafe)
239 return result;
240 else
241 return result * scale_u.d;
242 }
243 /* Exceptional cases: */
244 else if (isless (x, himark))
245 {
246 if (__isinfl (x))
247 /* e^-inf == 0, with no error. */
248 return 0;
249 else
250 /* Underflow */
251 return TINY * TINY;
252 }
253 else
254 /* Return x, if x is a NaN or Inf; or overflow, otherwise. */
255 return TWO1023*x;
256 }
257 strong_alias (__ieee754_expl, __expl_finite)