]> git.ipfire.org Git - thirdparty/glibc.git/blob - sysdeps/powerpc/fpu/e_sqrt.c
Fix powerpc software sqrt (bug 17964).
[thirdparty/glibc.git] / sysdeps / powerpc / fpu / e_sqrt.c
1 /* Double-precision floating point square root.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4
5 The GNU C Library is free software; you can redistribute it and/or
6 modify it under the terms of the GNU Lesser General Public
7 License as published by the Free Software Foundation; either
8 version 2.1 of the License, or (at your option) any later version.
9
10 The GNU C Library is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 Lesser General Public License for more details.
14
15 You should have received a copy of the GNU Lesser General Public
16 License along with the GNU C Library; if not, see
17 <http://www.gnu.org/licenses/>. */
18
19 #include <math.h>
20 #include <math_private.h>
21 #include <fenv_libc.h>
22 #include <inttypes.h>
23 #include <stdint.h>
24 #include <sysdep.h>
25 #include <ldsodefs.h>
26
27 #ifndef _ARCH_PPCSQ
28 static const double almost_half = 0.5000000000000001; /* 0.5 + 2^-53 */
29 static const ieee_float_shape_type a_nan = {.word = 0x7fc00000 };
30 static const ieee_float_shape_type a_inf = {.word = 0x7f800000 };
31 static const float two108 = 3.245185536584267269e+32;
32 static const float twom54 = 5.551115123125782702e-17;
33 extern const float __t_sqrt[1024];
34
35 /* The method is based on a description in
36 Computation of elementary functions on the IBM RISC System/6000 processor,
37 P. W. Markstein, IBM J. Res. Develop, 34(1) 1990.
38 Basically, it consists of two interleaved Newton-Raphson approximations,
39 one to find the actual square root, and one to find its reciprocal
40 without the expense of a division operation. The tricky bit here
41 is the use of the POWER/PowerPC multiply-add operation to get the
42 required accuracy with high speed.
43
44 The argument reduction works by a combination of table lookup to
45 obtain the initial guesses, and some careful modification of the
46 generated guesses (which mostly runs on the integer unit, while the
47 Newton-Raphson is running on the FPU). */
48
49 double
50 __slow_ieee754_sqrt (double x)
51 {
52 const float inf = a_inf.value;
53
54 if (x > 0)
55 {
56 /* schedule the EXTRACT_WORDS to get separation between the store
57 and the load. */
58 ieee_double_shape_type ew_u;
59 ieee_double_shape_type iw_u;
60 ew_u.value = (x);
61 if (x != inf)
62 {
63 /* Variables named starting with 's' exist in the
64 argument-reduced space, so that 2 > sx >= 0.5,
65 1.41... > sg >= 0.70.., 0.70.. >= sy > 0.35... .
66 Variables named ending with 'i' are integer versions of
67 floating-point values. */
68 double sx; /* The value of which we're trying to find the
69 square root. */
70 double sg, g; /* Guess of the square root of x. */
71 double sd, d; /* Difference between the square of the guess and x. */
72 double sy; /* Estimate of 1/2g (overestimated by 1ulp). */
73 double sy2; /* 2*sy */
74 double e; /* Difference between y*g and 1/2 (se = e * fsy). */
75 double shx; /* == sx * fsg */
76 double fsg; /* sg*fsg == g. */
77 fenv_t fe; /* Saved floating-point environment (stores rounding
78 mode and whether the inexact exception is
79 enabled). */
80 uint32_t xi0, xi1, sxi, fsgi;
81 const float *t_sqrt;
82
83 fe = fegetenv_register ();
84 /* complete the EXTRACT_WORDS (xi0,xi1,x) operation. */
85 xi0 = ew_u.parts.msw;
86 xi1 = ew_u.parts.lsw;
87 relax_fenv_state ();
88 sxi = (xi0 & 0x3fffffff) | 0x3fe00000;
89 /* schedule the INSERT_WORDS (sx, sxi, xi1) to get separation
90 between the store and the load. */
91 iw_u.parts.msw = sxi;
92 iw_u.parts.lsw = xi1;
93 t_sqrt = __t_sqrt + (xi0 >> (52 - 32 - 8 - 1) & 0x3fe);
94 sg = t_sqrt[0];
95 sy = t_sqrt[1];
96 /* complete the INSERT_WORDS (sx, sxi, xi1) operation. */
97 sx = iw_u.value;
98
99 /* Here we have three Newton-Raphson iterations each of a
100 division and a square root and the remainder of the
101 argument reduction, all interleaved. */
102 sd = -__builtin_fma (sg, sg, -sx);
103 fsgi = (xi0 + 0x40000000) >> 1 & 0x7ff00000;
104 sy2 = sy + sy;
105 sg = __builtin_fma (sy, sd, sg); /* 16-bit approximation to
106 sqrt(sx). */
107
108 /* schedule the INSERT_WORDS (fsg, fsgi, 0) to get separation
109 between the store and the load. */
110 INSERT_WORDS (fsg, fsgi, 0);
111 iw_u.parts.msw = fsgi;
112 iw_u.parts.lsw = (0);
113 e = -__builtin_fma (sy, sg, -almost_half);
114 sd = -__builtin_fma (sg, sg, -sx);
115 if ((xi0 & 0x7ff00000) == 0)
116 goto denorm;
117 sy = __builtin_fma (e, sy2, sy);
118 sg = __builtin_fma (sy, sd, sg); /* 32-bit approximation to
119 sqrt(sx). */
120 sy2 = sy + sy;
121 /* complete the INSERT_WORDS (fsg, fsgi, 0) operation. */
122 fsg = iw_u.value;
123 e = -__builtin_fma (sy, sg, -almost_half);
124 sd = -__builtin_fma (sg, sg, -sx);
125 sy = __builtin_fma (e, sy2, sy);
126 shx = sx * fsg;
127 sg = __builtin_fma (sy, sd, sg); /* 64-bit approximation to
128 sqrt(sx), but perhaps
129 rounded incorrectly. */
130 sy2 = sy + sy;
131 g = sg * fsg;
132 e = -__builtin_fma (sy, sg, -almost_half);
133 d = -__builtin_fma (g, sg, -shx);
134 sy = __builtin_fma (e, sy2, sy);
135 fesetenv_register (fe);
136 return __builtin_fma (sy, d, g);
137 denorm:
138 /* For denormalised numbers, we normalise, calculate the
139 square root, and return an adjusted result. */
140 fesetenv_register (fe);
141 return __slow_ieee754_sqrt (x * two108) * twom54;
142 }
143 }
144 else if (x < 0)
145 {
146 /* For some reason, some PowerPC32 processors don't implement
147 FE_INVALID_SQRT. */
148 #ifdef FE_INVALID_SQRT
149 __feraiseexcept (FE_INVALID_SQRT);
150
151 fenv_union_t u = { .fenv = fegetenv_register () };
152 if ((u.l & FE_INVALID) == 0)
153 #endif
154 __feraiseexcept (FE_INVALID);
155 x = a_nan.value;
156 }
157 return f_wash (x);
158 }
159 #endif /* _ARCH_PPCSQ */
160
161 #undef __ieee754_sqrt
162 double
163 __ieee754_sqrt (double x)
164 {
165 double z;
166
167 #ifdef _ARCH_PPCSQ
168 asm ("fsqrt %0,%1\n" :"=f" (z):"f" (x));
169 #else
170 z = __slow_ieee754_sqrt (x);
171 #endif
172
173 return z;
174 }
175 strong_alias (__ieee754_sqrt, __sqrt_finite)