]> git.ipfire.org Git - thirdparty/kernel/linux.git/blame - mm/page_alloc.c
mm: rename and change semantics of nr_indirectly_reclaimable_bytes
[thirdparty/kernel/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
1da177e4 69
7ee3d4e8 70#include <asm/sections.h>
1da177e4 71#include <asm/tlbflush.h>
ac924c60 72#include <asm/div64.h>
1da177e4
LT
73#include "internal.h"
74
c8e251fa
CS
75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 77#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 78
72812019
LS
79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80DEFINE_PER_CPU(int, numa_node);
81EXPORT_PER_CPU_SYMBOL(numa_node);
82#endif
83
4518085e
KW
84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
85
7aac7898
LS
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 95int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
96#endif
97
bd233f53
MG
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
38addce8 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 103volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
1da177e4 107/*
13808910 108 * Array of node states.
1da177e4 109 */
13808910
CL
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 117#endif
20b2f52b 118 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
bb14c2c7
VB
134/*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142static inline int get_pcppage_migratetype(struct page *page)
143{
144 return page->index;
145}
146
147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148{
149 page->index = migratetype;
150}
151
452aa699
RW
152#ifdef CONFIG_PM_SLEEP
153/*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
157 * they should always be called with system_transition_mutex held
158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
160 * with that modification).
452aa699 161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699 166{
55f2503c 167 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
55f2503c 176 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
d3cda233 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
d3cda233 209 [ZONE_DMA] = 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
d3cda233 212 [ZONE_DMA32] = 256,
fb0e7942 213#endif
d3cda233 214 [ZONE_NORMAL] = 32,
e53ef38d 215#ifdef CONFIG_HIGHMEM
d3cda233 216 [ZONE_HIGHMEM] = 0,
e53ef38d 217#endif
d3cda233 218 [ZONE_MOVABLE] = 0,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
7f16f91f
DR
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
1da177e4 271
0ee332c1 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
a5c6d650 276static unsigned long required_kernelcore_percent __initdata;
7f16f91f 277static unsigned long required_movablecore __initdata;
a5c6d650 278static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 286
418508c1
MS
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 289int nr_online_nodes __read_mostly = 1;
418508c1 290EXPORT_SYMBOL(nr_node_ids);
62bc62a8 291EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
292#endif
293
9ef9acb0
MG
294int page_group_by_mobility_disabled __read_mostly;
295
3a80a7fa 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315{
3c2c6488 316 /* Always populate low zones for address-constrained allocations */
3a80a7fa
MG
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
3a80a7fa 319 (*nr_initialised)++;
d135e575 320 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
321 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 pgdat->first_deferred_pfn = pfn;
323 return false;
324 }
325
326 return true;
327}
328#else
3a80a7fa
MG
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
334static inline bool update_defer_init(pg_data_t *pgdat,
335 unsigned long pfn, unsigned long zone_end,
336 unsigned long *nr_initialised)
337{
338 return true;
339}
340#endif
341
0b423ca2
MG
342/* Return a pointer to the bitmap storing bits affecting a block of pages */
343static inline unsigned long *get_pageblock_bitmap(struct page *page,
344 unsigned long pfn)
345{
346#ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn)->pageblock_flags;
348#else
349 return page_zone(page)->pageblock_flags;
350#endif /* CONFIG_SPARSEMEM */
351}
352
353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
358#else
359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#endif /* CONFIG_SPARSEMEM */
362}
363
364/**
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
370 *
371 * Return: pageblock_bits flags
372 */
373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
374 unsigned long pfn,
375 unsigned long end_bitidx,
376 unsigned long mask)
377{
378 unsigned long *bitmap;
379 unsigned long bitidx, word_bitidx;
380 unsigned long word;
381
382 bitmap = get_pageblock_bitmap(page, pfn);
383 bitidx = pfn_to_bitidx(page, pfn);
384 word_bitidx = bitidx / BITS_PER_LONG;
385 bitidx &= (BITS_PER_LONG-1);
386
387 word = bitmap[word_bitidx];
388 bitidx += end_bitidx;
389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
390}
391
392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 unsigned long end_bitidx,
394 unsigned long mask)
395{
396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
397}
398
399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
400{
401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
402}
403
404/**
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
411 */
412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long old_word, word;
420
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
422
423 bitmap = get_pageblock_bitmap(page, pfn);
424 bitidx = pfn_to_bitidx(page, pfn);
425 word_bitidx = bitidx / BITS_PER_LONG;
426 bitidx &= (BITS_PER_LONG-1);
427
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429
430 bitidx += end_bitidx;
431 mask <<= (BITS_PER_LONG - bitidx - 1);
432 flags <<= (BITS_PER_LONG - bitidx - 1);
433
434 word = READ_ONCE(bitmap[word_bitidx]);
435 for (;;) {
436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 if (word == old_word)
438 break;
439 word = old_word;
440 }
441}
3a80a7fa 442
ee6f509c 443void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 444{
5d0f3f72
KM
445 if (unlikely(page_group_by_mobility_disabled &&
446 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
447 migratetype = MIGRATE_UNMOVABLE;
448
b2a0ac88
MG
449 set_pageblock_flags_group(page, (unsigned long)migratetype,
450 PB_migrate, PB_migrate_end);
451}
452
13e7444b 453#ifdef CONFIG_DEBUG_VM
c6a57e19 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 455{
bdc8cb98
DH
456 int ret = 0;
457 unsigned seq;
458 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 459 unsigned long sp, start_pfn;
c6a57e19 460
bdc8cb98
DH
461 do {
462 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
463 start_pfn = zone->zone_start_pfn;
464 sp = zone->spanned_pages;
108bcc96 465 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
466 ret = 1;
467 } while (zone_span_seqretry(zone, seq));
468
b5e6a5a2 469 if (ret)
613813e8
DH
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn, zone_to_nid(zone), zone->name,
472 start_pfn, start_pfn + sp);
b5e6a5a2 473
bdc8cb98 474 return ret;
c6a57e19
DH
475}
476
477static int page_is_consistent(struct zone *zone, struct page *page)
478{
14e07298 479 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 480 return 0;
1da177e4 481 if (zone != page_zone(page))
c6a57e19
DH
482 return 0;
483
484 return 1;
485}
486/*
487 * Temporary debugging check for pages not lying within a given zone.
488 */
d73d3c9f 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
490{
491 if (page_outside_zone_boundaries(zone, page))
1da177e4 492 return 1;
c6a57e19
DH
493 if (!page_is_consistent(zone, page))
494 return 1;
495
1da177e4
LT
496 return 0;
497}
13e7444b 498#else
d73d3c9f 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
500{
501 return 0;
502}
503#endif
504
d230dec1
KS
505static void bad_page(struct page *page, const char *reason,
506 unsigned long bad_flags)
1da177e4 507{
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 goto out;
520 }
521 if (nr_unshown) {
ff8e8116 522 pr_alert(
1e9e6365 523 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
ff8e8116 532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 533 current->comm, page_to_pfn(page));
ff8e8116
VB
534 __dump_page(page, reason);
535 bad_flags &= page->flags;
536 if (bad_flags)
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags, &bad_flags);
4e462112 539 dump_page_owner(page);
3dc14741 540
4f31888c 541 print_modules();
1da177e4 542 dump_stack();
d936cf9b 543out:
8cc3b392 544 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 545 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
547}
548
1da177e4
LT
549/*
550 * Higher-order pages are called "compound pages". They are structured thusly:
551 *
1d798ca3 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 553 *
1d798ca3
KS
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 556 *
1d798ca3
KS
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
1da177e4 559 *
1d798ca3 560 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 561 * This usage means that zero-order pages may not be compound.
1da177e4 562 */
d98c7a09 563
9a982250 564void free_compound_page(struct page *page)
d98c7a09 565{
d85f3385 566 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
567}
568
d00181b9 569void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
570{
571 int i;
572 int nr_pages = 1 << order;
573
f1e61557 574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++) {
578 struct page *p = page + i;
58a84aa9 579 set_page_count(p, 0);
1c290f64 580 p->mapping = TAIL_MAPPING;
1d798ca3 581 set_compound_head(p, page);
18229df5 582 }
53f9263b 583 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
584}
585
c0a32fc5
SG
586#ifdef CONFIG_DEBUG_PAGEALLOC
587unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
588bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
591bool _debug_guardpage_enabled __read_mostly;
592
031bc574
JK
593static int __init early_debug_pagealloc(char *buf)
594{
595 if (!buf)
596 return -EINVAL;
2a138dc7 597 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
598}
599early_param("debug_pagealloc", early_debug_pagealloc);
600
e30825f1
JK
601static bool need_debug_guardpage(void)
602{
031bc574
JK
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
605 return false;
606
f1c1e9f7
JK
607 if (!debug_guardpage_minorder())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
f1c1e9f7
JK
618 if (!debug_guardpage_minorder())
619 return;
620
e30825f1
JK
621 _debug_guardpage_enabled = true;
622}
623
624struct page_ext_operations debug_guardpage_ops = {
625 .need = need_debug_guardpage,
626 .init = init_debug_guardpage,
627};
c0a32fc5
SG
628
629static int __init debug_guardpage_minorder_setup(char *buf)
630{
631 unsigned long res;
632
633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 634 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
635 return 0;
636 }
637 _debug_guardpage_minorder = res;
1170532b 638 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
639 return 0;
640}
f1c1e9f7 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 642
acbc15a4 643static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 644 unsigned int order, int migratetype)
c0a32fc5 645{
e30825f1
JK
646 struct page_ext *page_ext;
647
648 if (!debug_guardpage_enabled())
acbc15a4
JK
649 return false;
650
651 if (order >= debug_guardpage_minorder())
652 return false;
e30825f1
JK
653
654 page_ext = lookup_page_ext(page);
f86e4271 655 if (unlikely(!page_ext))
acbc15a4 656 return false;
f86e4271 657
e30825f1
JK
658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659
2847cf95
JK
660 INIT_LIST_HEAD(&page->lru);
661 set_page_private(page, order);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
664
665 return true;
c0a32fc5
SG
666}
667
2847cf95
JK
668static inline void clear_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
c0a32fc5 670{
e30825f1
JK
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
674 return;
675
676 page_ext = lookup_page_ext(page);
f86e4271
YS
677 if (unlikely(!page_ext))
678 return;
679
e30825f1
JK
680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
681
2847cf95
JK
682 set_page_private(page, 0);
683 if (!is_migrate_isolate(migratetype))
684 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
685}
686#else
980ac167 687struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
688static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype) { return false; }
2847cf95
JK
690static inline void clear_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
c0a32fc5
SG
692#endif
693
7aeb09f9 694static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 695{
4c21e2f2 696 set_page_private(page, order);
676165a8 697 __SetPageBuddy(page);
1da177e4
LT
698}
699
700static inline void rmv_page_order(struct page *page)
701{
676165a8 702 __ClearPageBuddy(page);
4c21e2f2 703 set_page_private(page, 0);
1da177e4
LT
704}
705
1da177e4
LT
706/*
707 * This function checks whether a page is free && is the buddy
6e292b9b 708 * we can coalesce a page and its buddy if
13ad59df 709 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 710 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
676165a8 713 *
6e292b9b
MW
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 716 *
676165a8 717 * For recording page's order, we use page_private(page).
1da177e4 718 */
cb2b95e1 719static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 720 unsigned int order)
1da177e4 721{
c0a32fc5 722 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
723 if (page_zone_id(page) != page_zone_id(buddy))
724 return 0;
725
4c5018ce
WY
726 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
727
c0a32fc5
SG
728 return 1;
729 }
730
cb2b95e1 731 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 /*
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
735 * never merge.
736 */
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
6aa3001b 742 return 1;
676165a8 743 }
6aa3001b 744 return 0;
1da177e4
LT
745}
746
747/*
748 * Freeing function for a buddy system allocator.
749 *
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
1da177e4 762 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
1da177e4 765 * If a block is freed, and its buddy is also free, then this
5f63b720 766 * triggers coalescing into a block of larger size.
1da177e4 767 *
6d49e352 768 * -- nyc
1da177e4
LT
769 */
770
48db57f8 771static inline void __free_one_page(struct page *page,
dc4b0caf 772 unsigned long pfn,
ed0ae21d
MG
773 struct zone *zone, unsigned int order,
774 int migratetype)
1da177e4 775{
76741e77
VB
776 unsigned long combined_pfn;
777 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 778 struct page *buddy;
d9dddbf5
VB
779 unsigned int max_order;
780
781 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 782
d29bb978 783 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 784 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 785
ed0ae21d 786 VM_BUG_ON(migratetype == -1);
d9dddbf5 787 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 788 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 789
76741e77 790 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 791 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 792
d9dddbf5 793continue_merging:
3c605096 794 while (order < max_order - 1) {
76741e77
VB
795 buddy_pfn = __find_buddy_pfn(pfn, order);
796 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
797
798 if (!pfn_valid_within(buddy_pfn))
799 goto done_merging;
cb2b95e1 800 if (!page_is_buddy(page, buddy, order))
d9dddbf5 801 goto done_merging;
c0a32fc5
SG
802 /*
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
805 */
806 if (page_is_guard(buddy)) {
2847cf95 807 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
808 } else {
809 list_del(&buddy->lru);
810 zone->free_area[order].nr_free--;
811 rmv_page_order(buddy);
812 }
76741e77
VB
813 combined_pfn = buddy_pfn & pfn;
814 page = page + (combined_pfn - pfn);
815 pfn = combined_pfn;
1da177e4
LT
816 order++;
817 }
d9dddbf5
VB
818 if (max_order < MAX_ORDER) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
823 *
824 * We don't want to hit this code for the more frequent
825 * low-order merging.
826 */
827 if (unlikely(has_isolate_pageblock(zone))) {
828 int buddy_mt;
829
76741e77
VB
830 buddy_pfn = __find_buddy_pfn(pfn, order);
831 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
832 buddy_mt = get_pageblock_migratetype(buddy);
833
834 if (migratetype != buddy_mt
835 && (is_migrate_isolate(migratetype) ||
836 is_migrate_isolate(buddy_mt)))
837 goto done_merging;
838 }
839 max_order++;
840 goto continue_merging;
841 }
842
843done_merging:
1da177e4 844 set_page_order(page, order);
6dda9d55
CZ
845
846 /*
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
853 */
13ad59df 854 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 855 struct page *higher_page, *higher_buddy;
76741e77
VB
856 combined_pfn = buddy_pfn & pfn;
857 higher_page = page + (combined_pfn - pfn);
858 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
859 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
860 if (pfn_valid_within(buddy_pfn) &&
861 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
862 list_add_tail(&page->lru,
863 &zone->free_area[order].free_list[migratetype]);
864 goto out;
865 }
866 }
867
868 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
869out:
1da177e4
LT
870 zone->free_area[order].nr_free++;
871}
872
7bfec6f4
MG
873/*
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
877 */
878static inline bool page_expected_state(struct page *page,
879 unsigned long check_flags)
880{
881 if (unlikely(atomic_read(&page->_mapcount) != -1))
882 return false;
883
884 if (unlikely((unsigned long)page->mapping |
885 page_ref_count(page) |
886#ifdef CONFIG_MEMCG
887 (unsigned long)page->mem_cgroup |
888#endif
889 (page->flags & check_flags)))
890 return false;
891
892 return true;
893}
894
bb552ac6 895static void free_pages_check_bad(struct page *page)
1da177e4 896{
7bfec6f4
MG
897 const char *bad_reason;
898 unsigned long bad_flags;
899
7bfec6f4
MG
900 bad_reason = NULL;
901 bad_flags = 0;
f0b791a3 902
53f9263b 903 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
904 bad_reason = "nonzero mapcount";
905 if (unlikely(page->mapping != NULL))
906 bad_reason = "non-NULL mapping";
fe896d18 907 if (unlikely(page_ref_count(page) != 0))
0139aa7b 908 bad_reason = "nonzero _refcount";
f0b791a3
DH
909 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
910 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
912 }
9edad6ea
JW
913#ifdef CONFIG_MEMCG
914 if (unlikely(page->mem_cgroup))
915 bad_reason = "page still charged to cgroup";
916#endif
7bfec6f4 917 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
918}
919
920static inline int free_pages_check(struct page *page)
921{
da838d4f 922 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 923 return 0;
bb552ac6
MG
924
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page);
7bfec6f4 927 return 1;
1da177e4
LT
928}
929
4db7548c
MG
930static int free_tail_pages_check(struct page *head_page, struct page *page)
931{
932 int ret = 1;
933
934 /*
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
937 */
938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
939
940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
941 ret = 0;
942 goto out;
943 }
944 switch (page - head_page) {
945 case 1:
4da1984e 946 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
947 if (unlikely(compound_mapcount(page))) {
948 bad_page(page, "nonzero compound_mapcount", 0);
949 goto out;
950 }
951 break;
952 case 2:
953 /*
954 * the second tail page: ->mapping is
fa3015b7 955 * deferred_list.next -- ignore value.
4db7548c
MG
956 */
957 break;
958 default:
959 if (page->mapping != TAIL_MAPPING) {
960 bad_page(page, "corrupted mapping in tail page", 0);
961 goto out;
962 }
963 break;
964 }
965 if (unlikely(!PageTail(page))) {
966 bad_page(page, "PageTail not set", 0);
967 goto out;
968 }
969 if (unlikely(compound_head(page) != head_page)) {
970 bad_page(page, "compound_head not consistent", 0);
971 goto out;
972 }
973 ret = 0;
974out:
975 page->mapping = NULL;
976 clear_compound_head(page);
977 return ret;
978}
979
e2769dbd
MG
980static __always_inline bool free_pages_prepare(struct page *page,
981 unsigned int order, bool check_free)
4db7548c 982{
e2769dbd 983 int bad = 0;
4db7548c 984
4db7548c
MG
985 VM_BUG_ON_PAGE(PageTail(page), page);
986
e2769dbd 987 trace_mm_page_free(page, order);
e2769dbd
MG
988
989 /*
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
992 */
993 if (unlikely(order)) {
994 bool compound = PageCompound(page);
995 int i;
996
997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 998
9a73f61b
KS
999 if (compound)
1000 ClearPageDoubleMap(page);
e2769dbd
MG
1001 for (i = 1; i < (1 << order); i++) {
1002 if (compound)
1003 bad += free_tail_pages_check(page, page + i);
1004 if (unlikely(free_pages_check(page + i))) {
1005 bad++;
1006 continue;
1007 }
1008 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009 }
1010 }
bda807d4 1011 if (PageMappingFlags(page))
4db7548c 1012 page->mapping = NULL;
c4159a75 1013 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1014 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
4db7548c 1019
e2769dbd
MG
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
4db7548c
MG
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 debug_check_no_obj_freed(page_address(page),
e2769dbd 1028 PAGE_SIZE << order);
4db7548c 1029 }
e2769dbd
MG
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
29b52de1 1033 kasan_free_pages(page, order);
4db7548c 1034
4db7548c
MG
1035 return true;
1036}
1037
e2769dbd
MG
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041 return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046 return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051 return free_pages_prepare(page, 0, false);
1052}
1053
4db7548c
MG
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056 return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
97334162
AL
1060static inline void prefetch_buddy(struct page *page)
1061{
1062 unsigned long pfn = page_to_pfn(page);
1063 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064 struct page *buddy = page + (buddy_pfn - pfn);
1065
1066 prefetch(buddy);
1067}
1068
1da177e4 1069/*
5f8dcc21 1070 * Frees a number of pages from the PCP lists
1da177e4 1071 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1072 * count is the number of pages to free.
1da177e4
LT
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
5f8dcc21
MG
1080static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1da177e4 1082{
5f8dcc21 1083 int migratetype = 0;
a6f9edd6 1084 int batch_free = 0;
97334162 1085 int prefetch_nr = 0;
3777999d 1086 bool isolated_pageblocks;
0a5f4e5b
AL
1087 struct page *page, *tmp;
1088 LIST_HEAD(head);
f2260e6b 1089
e5b31ac2 1090 while (count) {
5f8dcc21
MG
1091 struct list_head *list;
1092
1093 /*
a6f9edd6
MG
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
5f8dcc21
MG
1099 */
1100 do {
a6f9edd6 1101 batch_free++;
5f8dcc21
MG
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
48db57f8 1106
1d16871d
NK
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1109 batch_free = count;
1d16871d 1110
a6f9edd6 1111 do {
a16601c5 1112 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1113 /* must delete to avoid corrupting pcp list */
a6f9edd6 1114 list_del(&page->lru);
77ba9062 1115 pcp->count--;
aa016d14 1116
4db7548c
MG
1117 if (bulkfree_pcp_prepare(page))
1118 continue;
1119
0a5f4e5b 1120 list_add_tail(&page->lru, &head);
97334162
AL
1121
1122 /*
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1130 */
1131 if (prefetch_nr++ < pcp->batch)
1132 prefetch_buddy(page);
e5b31ac2 1133 } while (--count && --batch_free && !list_empty(list));
1da177e4 1134 }
0a5f4e5b
AL
1135
1136 spin_lock(&zone->lock);
1137 isolated_pageblocks = has_isolate_pageblock(zone);
1138
1139 /*
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1142 */
1143 list_for_each_entry_safe(page, tmp, &head, lru) {
1144 int mt = get_pcppage_migratetype(page);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks))
1149 mt = get_pageblock_migratetype(page);
1150
1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 trace_mm_page_pcpu_drain(page, 0, mt);
1153 }
d34b0733 1154 spin_unlock(&zone->lock);
1da177e4
LT
1155}
1156
dc4b0caf
MG
1157static void free_one_page(struct zone *zone,
1158 struct page *page, unsigned long pfn,
7aeb09f9 1159 unsigned int order,
ed0ae21d 1160 int migratetype)
1da177e4 1161{
d34b0733 1162 spin_lock(&zone->lock);
ad53f92e
JK
1163 if (unlikely(has_isolate_pageblock(zone) ||
1164 is_migrate_isolate(migratetype))) {
1165 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1166 }
dc4b0caf 1167 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1168 spin_unlock(&zone->lock);
48db57f8
NP
1169}
1170
1e8ce83c 1171static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1172 unsigned long zone, int nid)
1e8ce83c 1173{
d0dc12e8 1174 mm_zero_struct_page(page);
1e8ce83c 1175 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1e8ce83c 1179
1e8ce83c
RH
1180 INIT_LIST_HEAD(&page->lru);
1181#ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185#endif
1186}
1187
7e18adb4 1188#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1189static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1190{
1191 pg_data_t *pgdat;
1192 int nid, zid;
1193
1194 if (!early_page_uninitialised(pfn))
1195 return;
1196
1197 nid = early_pfn_to_nid(pfn);
1198 pgdat = NODE_DATA(nid);
1199
1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 struct zone *zone = &pgdat->node_zones[zid];
1202
1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 break;
1205 }
d0dc12e8 1206 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1207}
1208#else
1209static inline void init_reserved_page(unsigned long pfn)
1210{
1211}
1212#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
92923ca3
NZ
1214/*
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1219 */
4b50bcc7 1220void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1221{
1222 unsigned long start_pfn = PFN_DOWN(start);
1223 unsigned long end_pfn = PFN_UP(end);
1224
7e18adb4
MG
1225 for (; start_pfn < end_pfn; start_pfn++) {
1226 if (pfn_valid(start_pfn)) {
1227 struct page *page = pfn_to_page(start_pfn);
1228
1229 init_reserved_page(start_pfn);
1d798ca3
KS
1230
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page->lru);
1233
7e18adb4
MG
1234 SetPageReserved(page);
1235 }
1236 }
92923ca3
NZ
1237}
1238
ec95f53a
KM
1239static void __free_pages_ok(struct page *page, unsigned int order)
1240{
d34b0733 1241 unsigned long flags;
95e34412 1242 int migratetype;
dc4b0caf 1243 unsigned long pfn = page_to_pfn(page);
ec95f53a 1244
e2769dbd 1245 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1246 return;
1247
cfc47a28 1248 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1249 local_irq_save(flags);
1250 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1251 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1252 local_irq_restore(flags);
1da177e4
LT
1253}
1254
949698a3 1255static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1256{
c3993076 1257 unsigned int nr_pages = 1 << order;
e2d0bd2b 1258 struct page *p = page;
c3993076 1259 unsigned int loop;
a226f6c8 1260
e2d0bd2b
YL
1261 prefetchw(p);
1262 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263 prefetchw(p + 1);
c3993076
JW
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
a226f6c8 1266 }
e2d0bd2b
YL
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
c3993076 1269
e2d0bd2b 1270 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1271 set_page_refcounted(page);
1272 __free_pages(page, order);
a226f6c8
DH
1273}
1274
75a592a4
MG
1275#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1277
75a592a4
MG
1278static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279
1280int __meminit early_pfn_to_nid(unsigned long pfn)
1281{
7ace9917 1282 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1283 int nid;
1284
7ace9917 1285 spin_lock(&early_pfn_lock);
75a592a4 1286 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1287 if (nid < 0)
e4568d38 1288 nid = first_online_node;
7ace9917
MG
1289 spin_unlock(&early_pfn_lock);
1290
1291 return nid;
75a592a4
MG
1292}
1293#endif
1294
1295#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1296static inline bool __meminit __maybe_unused
1297meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
75a592a4
MG
1299{
1300 int nid;
1301
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1304 return false;
1305 return true;
1306}
1307
1308/* Only safe to use early in boot when initialisation is single-threaded */
1309static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310{
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312}
1313
1314#else
1315
1316static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317{
1318 return true;
1319}
d73d3c9f
MK
1320static inline bool __meminit __maybe_unused
1321meminit_pfn_in_nid(unsigned long pfn, int node,
1322 struct mminit_pfnnid_cache *state)
75a592a4
MG
1323{
1324 return true;
1325}
1326#endif
1327
1328
0e1cc95b 1329void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1330 unsigned int order)
1331{
1332 if (early_page_uninitialised(pfn))
1333 return;
949698a3 1334 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1335}
1336
7cf91a98
JK
1337/*
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1342 * pageblocks.
1343 *
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 *
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1353 */
1354struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 unsigned long end_pfn, struct zone *zone)
1356{
1357 struct page *start_page;
1358 struct page *end_page;
1359
1360 /* end_pfn is one past the range we are checking */
1361 end_pfn--;
1362
1363 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1364 return NULL;
1365
2d070eab
MH
1366 start_page = pfn_to_online_page(start_pfn);
1367 if (!start_page)
1368 return NULL;
7cf91a98
JK
1369
1370 if (page_zone(start_page) != zone)
1371 return NULL;
1372
1373 end_page = pfn_to_page(end_pfn);
1374
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page) != page_zone_id(end_page))
1377 return NULL;
1378
1379 return start_page;
1380}
1381
1382void set_zone_contiguous(struct zone *zone)
1383{
1384 unsigned long block_start_pfn = zone->zone_start_pfn;
1385 unsigned long block_end_pfn;
1386
1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 for (; block_start_pfn < zone_end_pfn(zone);
1389 block_start_pfn = block_end_pfn,
1390 block_end_pfn += pageblock_nr_pages) {
1391
1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393
1394 if (!__pageblock_pfn_to_page(block_start_pfn,
1395 block_end_pfn, zone))
1396 return;
1397 }
1398
1399 /* We confirm that there is no hole */
1400 zone->contiguous = true;
1401}
1402
1403void clear_zone_contiguous(struct zone *zone)
1404{
1405 zone->contiguous = false;
1406}
1407
7e18adb4 1408#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1409static void __init deferred_free_range(unsigned long pfn,
1410 unsigned long nr_pages)
a4de83dd 1411{
2f47a91f
PT
1412 struct page *page;
1413 unsigned long i;
a4de83dd 1414
2f47a91f 1415 if (!nr_pages)
a4de83dd
MG
1416 return;
1417
2f47a91f
PT
1418 page = pfn_to_page(pfn);
1419
a4de83dd 1420 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1424 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1425 return;
1426 }
1427
e780149b
XQ
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1431 __free_pages_boot_core(page, 0);
e780149b 1432 }
a4de83dd
MG
1433}
1434
d3cd131d
NS
1435/* Completion tracking for deferred_init_memmap() threads */
1436static atomic_t pgdat_init_n_undone __initdata;
1437static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439static inline void __init pgdat_init_report_one_done(void)
1440{
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443}
0e1cc95b 1444
2f47a91f 1445/*
80b1f41c
PT
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1447 *
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1451 *
1452 * Then, we check if a current large page is valid by only checking the validity
1453 * of the head pfn.
1454 *
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
2f47a91f 1458 */
80b1f41c
PT
1459static inline bool __init
1460deferred_pfn_valid(int nid, unsigned long pfn,
1461 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1462{
80b1f41c
PT
1463 if (!pfn_valid_within(pfn))
1464 return false;
1465 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1466 return false;
1467 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1468 return false;
1469 return true;
1470}
2f47a91f 1471
80b1f41c
PT
1472/*
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1475 */
1476static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477 unsigned long end_pfn)
1478{
1479 struct mminit_pfnnid_cache nid_init_state = { };
1480 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481 unsigned long nr_free = 0;
2f47a91f 1482
80b1f41c
PT
1483 for (; pfn < end_pfn; pfn++) {
1484 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485 deferred_free_range(pfn - nr_free, nr_free);
1486 nr_free = 0;
1487 } else if (!(pfn & nr_pgmask)) {
1488 deferred_free_range(pfn - nr_free, nr_free);
1489 nr_free = 1;
3a2d7fa8 1490 touch_nmi_watchdog();
80b1f41c
PT
1491 } else {
1492 nr_free++;
1493 }
1494 }
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1497}
1498
80b1f41c
PT
1499/*
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1503 */
1504static unsigned long __init deferred_init_pages(int nid, int zid,
1505 unsigned long pfn,
1506 unsigned long end_pfn)
2f47a91f
PT
1507{
1508 struct mminit_pfnnid_cache nid_init_state = { };
1509 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1510 unsigned long nr_pages = 0;
2f47a91f 1511 struct page *page = NULL;
2f47a91f 1512
80b1f41c
PT
1513 for (; pfn < end_pfn; pfn++) {
1514 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1515 page = NULL;
2f47a91f 1516 continue;
80b1f41c 1517 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1518 page = pfn_to_page(pfn);
3a2d7fa8 1519 touch_nmi_watchdog();
80b1f41c
PT
1520 } else {
1521 page++;
2f47a91f 1522 }
d0dc12e8 1523 __init_single_page(page, pfn, zid, nid);
80b1f41c 1524 nr_pages++;
2f47a91f 1525 }
80b1f41c 1526 return (nr_pages);
2f47a91f
PT
1527}
1528
7e18adb4 1529/* Initialise remaining memory on a node */
0e1cc95b 1530static int __init deferred_init_memmap(void *data)
7e18adb4 1531{
0e1cc95b
MG
1532 pg_data_t *pgdat = data;
1533 int nid = pgdat->node_id;
7e18adb4
MG
1534 unsigned long start = jiffies;
1535 unsigned long nr_pages = 0;
3a2d7fa8 1536 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1537 phys_addr_t spa, epa;
1538 int zid;
7e18adb4 1539 struct zone *zone;
0e1cc95b 1540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1541 u64 i;
7e18adb4 1542
3a2d7fa8
PT
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask))
1545 set_cpus_allowed_ptr(current, cpumask);
1546
1547 pgdat_resize_lock(pgdat, &flags);
1548 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1549 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1550 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1551 pgdat_init_report_one_done();
0e1cc95b
MG
1552 return 0;
1553 }
1554
7e18adb4
MG
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558 pgdat->first_deferred_pfn = ULONG_MAX;
1559
1560 /* Only the highest zone is deferred so find it */
1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 zone = pgdat->node_zones + zid;
1563 if (first_init_pfn < zone_end_pfn(zone))
1564 break;
1565 }
2f47a91f 1566 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1567
80b1f41c
PT
1568 /*
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1573 */
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1578 }
2f47a91f
PT
1579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1582 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1583 }
3a2d7fa8 1584 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1585
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1588
0e1cc95b 1589 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1590 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1591
1592 pgdat_init_report_one_done();
0e1cc95b
MG
1593 return 0;
1594}
c9e97a19
PT
1595
1596/*
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1600 */
1601static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1602
1603/*
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1609 *
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1613 *
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1617 */
1618static noinline bool __init
1619deferred_grow_zone(struct zone *zone, unsigned int order)
1620{
1621 int zid = zone_idx(zone);
1622 int nid = zone_to_nid(zone);
1623 pg_data_t *pgdat = NODE_DATA(nid);
1624 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625 unsigned long nr_pages = 0;
1626 unsigned long first_init_pfn, spfn, epfn, t, flags;
1627 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628 phys_addr_t spa, epa;
1629 u64 i;
1630
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1633 return false;
1634
1635 pgdat_resize_lock(pgdat, &flags);
1636
1637 /*
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1642 */
1643 if (!static_branch_unlikely(&deferred_pages)) {
1644 pgdat_resize_unlock(pgdat, &flags);
1645 return true;
1646 }
1647
1648 /*
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1651 */
1652 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653 pgdat_resize_unlock(pgdat, &flags);
1654 return true;
1655 }
1656
1657 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1658
1659 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660 pgdat_resize_unlock(pgdat, &flags);
1661 return false;
1662 }
1663
1664 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1667
1668 while (spfn < epfn && nr_pages < nr_pages_needed) {
1669 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670 first_deferred_pfn = min(t, epfn);
1671 nr_pages += deferred_init_pages(nid, zid, spfn,
1672 first_deferred_pfn);
1673 spfn = first_deferred_pfn;
1674 }
1675
1676 if (nr_pages >= nr_pages_needed)
1677 break;
1678 }
1679
1680 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683 deferred_free_pages(nid, zid, spfn, epfn);
1684
1685 if (first_deferred_pfn == epfn)
1686 break;
1687 }
1688 pgdat->first_deferred_pfn = first_deferred_pfn;
1689 pgdat_resize_unlock(pgdat, &flags);
1690
1691 return nr_pages > 0;
1692}
1693
1694/*
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1699 */
1700static bool __ref
1701_deferred_grow_zone(struct zone *zone, unsigned int order)
1702{
1703 return deferred_grow_zone(zone, order);
1704}
1705
7cf91a98 1706#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1707
1708void __init page_alloc_init_late(void)
1709{
7cf91a98
JK
1710 struct zone *zone;
1711
1712#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1713 int nid;
1714
d3cd131d
NS
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1717 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1718 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1719 }
1720
1721 /* Block until all are initialised */
d3cd131d 1722 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1723
c9e97a19
PT
1724 /*
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1727 */
1728 static_branch_disable(&deferred_pages);
1729
4248b0da
MG
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
7cf91a98 1732#endif
3010f876
PT
1733#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1735 memblock_discard();
1736#endif
7cf91a98
JK
1737
1738 for_each_populated_zone(zone)
1739 set_zone_contiguous(zone);
7e18adb4 1740}
7e18adb4 1741
47118af0 1742#ifdef CONFIG_CMA
9cf510a5 1743/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1744void __init init_cma_reserved_pageblock(struct page *page)
1745{
1746 unsigned i = pageblock_nr_pages;
1747 struct page *p = page;
1748
1749 do {
1750 __ClearPageReserved(p);
1751 set_page_count(p, 0);
d883c6cf 1752 } while (++p, --i);
47118af0 1753
47118af0 1754 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1755
1756 if (pageblock_order >= MAX_ORDER) {
1757 i = pageblock_nr_pages;
1758 p = page;
1759 do {
1760 set_page_refcounted(p);
1761 __free_pages(p, MAX_ORDER - 1);
1762 p += MAX_ORDER_NR_PAGES;
1763 } while (i -= MAX_ORDER_NR_PAGES);
1764 } else {
1765 set_page_refcounted(page);
1766 __free_pages(page, pageblock_order);
1767 }
1768
3dcc0571 1769 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1770}
1771#endif
1da177e4
LT
1772
1773/*
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1784 *
6d49e352 1785 * -- nyc
1da177e4 1786 */
085cc7d5 1787static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1788 int low, int high, struct free_area *area,
1789 int migratetype)
1da177e4
LT
1790{
1791 unsigned long size = 1 << high;
1792
1793 while (high > low) {
1794 area--;
1795 high--;
1796 size >>= 1;
309381fe 1797 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1798
acbc15a4
JK
1799 /*
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1804 */
1805 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1806 continue;
acbc15a4 1807
b2a0ac88 1808 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1809 area->nr_free++;
1810 set_page_order(&page[size], high);
1811 }
1da177e4
LT
1812}
1813
4e611801 1814static void check_new_page_bad(struct page *page)
1da177e4 1815{
4e611801
VB
1816 const char *bad_reason = NULL;
1817 unsigned long bad_flags = 0;
7bfec6f4 1818
53f9263b 1819 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1820 bad_reason = "nonzero mapcount";
1821 if (unlikely(page->mapping != NULL))
1822 bad_reason = "non-NULL mapping";
fe896d18 1823 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1824 bad_reason = "nonzero _count";
f4c18e6f
NH
1825 if (unlikely(page->flags & __PG_HWPOISON)) {
1826 bad_reason = "HWPoisoned (hardware-corrupted)";
1827 bad_flags = __PG_HWPOISON;
e570f56c
NH
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page); /* remove PageBuddy */
1830 return;
f4c18e6f 1831 }
f0b791a3
DH
1832 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1835 }
9edad6ea
JW
1836#ifdef CONFIG_MEMCG
1837 if (unlikely(page->mem_cgroup))
1838 bad_reason = "page still charged to cgroup";
1839#endif
4e611801
VB
1840 bad_page(page, bad_reason, bad_flags);
1841}
1842
1843/*
1844 * This page is about to be returned from the page allocator
1845 */
1846static inline int check_new_page(struct page *page)
1847{
1848 if (likely(page_expected_state(page,
1849 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1850 return 0;
1851
1852 check_new_page_bad(page);
1853 return 1;
2a7684a2
WF
1854}
1855
bd33ef36 1856static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1857{
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1859 page_poisoning_enabled();
1414c7f4
LA
1860}
1861
479f854a
MG
1862#ifdef CONFIG_DEBUG_VM
1863static bool check_pcp_refill(struct page *page)
1864{
1865 return false;
1866}
1867
1868static bool check_new_pcp(struct page *page)
1869{
1870 return check_new_page(page);
1871}
1872#else
1873static bool check_pcp_refill(struct page *page)
1874{
1875 return check_new_page(page);
1876}
1877static bool check_new_pcp(struct page *page)
1878{
1879 return false;
1880}
1881#endif /* CONFIG_DEBUG_VM */
1882
1883static bool check_new_pages(struct page *page, unsigned int order)
1884{
1885 int i;
1886 for (i = 0; i < (1 << order); i++) {
1887 struct page *p = page + i;
1888
1889 if (unlikely(check_new_page(p)))
1890 return true;
1891 }
1892
1893 return false;
1894}
1895
46f24fd8
JK
1896inline void post_alloc_hook(struct page *page, unsigned int order,
1897 gfp_t gfp_flags)
1898{
1899 set_page_private(page, 0);
1900 set_page_refcounted(page);
1901
1902 arch_alloc_page(page, order);
1903 kernel_map_pages(page, 1 << order, 1);
1904 kernel_poison_pages(page, 1 << order, 1);
1905 kasan_alloc_pages(page, order);
1906 set_page_owner(page, order, gfp_flags);
1907}
1908
479f854a 1909static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1910 unsigned int alloc_flags)
2a7684a2
WF
1911{
1912 int i;
689bcebf 1913
46f24fd8 1914 post_alloc_hook(page, order, gfp_flags);
17cf4406 1915
bd33ef36 1916 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1917 for (i = 0; i < (1 << order); i++)
1918 clear_highpage(page + i);
17cf4406
NP
1919
1920 if (order && (gfp_flags & __GFP_COMP))
1921 prep_compound_page(page, order);
1922
75379191 1923 /*
2f064f34 1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1928 */
2f064f34
MH
1929 if (alloc_flags & ALLOC_NO_WATERMARKS)
1930 set_page_pfmemalloc(page);
1931 else
1932 clear_page_pfmemalloc(page);
1da177e4
LT
1933}
1934
56fd56b8
MG
1935/*
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1938 */
85ccc8fa 1939static __always_inline
728ec980 1940struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1941 int migratetype)
1942{
1943 unsigned int current_order;
b8af2941 1944 struct free_area *area;
56fd56b8
MG
1945 struct page *page;
1946
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949 area = &(zone->free_area[current_order]);
a16601c5 1950 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1951 struct page, lru);
a16601c5
GT
1952 if (!page)
1953 continue;
56fd56b8
MG
1954 list_del(&page->lru);
1955 rmv_page_order(page);
1956 area->nr_free--;
56fd56b8 1957 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1958 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1959 return page;
1960 }
1961
1962 return NULL;
1963}
1964
1965
b2a0ac88
MG
1966/*
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1969 */
47118af0 1970static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1971 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1972 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1973 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1974#ifdef CONFIG_CMA
974a786e 1975 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1976#endif
194159fb 1977#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1978 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1979#endif
b2a0ac88
MG
1980};
1981
dc67647b 1982#ifdef CONFIG_CMA
85ccc8fa 1983static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1984 unsigned int order)
1985{
1986 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1987}
1988#else
1989static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 unsigned int order) { return NULL; }
1991#endif
1992
c361be55
MG
1993/*
1994 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1995 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1996 * boundary. If alignment is required, use move_freepages_block()
1997 */
02aa0cdd 1998static int move_freepages(struct zone *zone,
b69a7288 1999 struct page *start_page, struct page *end_page,
02aa0cdd 2000 int migratetype, int *num_movable)
c361be55
MG
2001{
2002 struct page *page;
d00181b9 2003 unsigned int order;
d100313f 2004 int pages_moved = 0;
c361be55
MG
2005
2006#ifndef CONFIG_HOLES_IN_ZONE
2007 /*
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2012 * grouping pages by mobility
c361be55 2013 */
3e04040d
AB
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015 pfn_valid(page_to_pfn(end_page)) &&
2016 page_zone(start_page) != page_zone(end_page));
c361be55
MG
2017#endif
2018
02aa0cdd
VB
2019 if (num_movable)
2020 *num_movable = 0;
2021
c361be55
MG
2022 for (page = start_page; page <= end_page;) {
2023 if (!pfn_valid_within(page_to_pfn(page))) {
2024 page++;
2025 continue;
2026 }
2027
f073bdc5
AB
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2030
c361be55 2031 if (!PageBuddy(page)) {
02aa0cdd
VB
2032 /*
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2036 */
2037 if (num_movable &&
2038 (PageLRU(page) || __PageMovable(page)))
2039 (*num_movable)++;
2040
c361be55
MG
2041 page++;
2042 continue;
2043 }
2044
2045 order = page_order(page);
84be48d8
KS
2046 list_move(&page->lru,
2047 &zone->free_area[order].free_list[migratetype]);
c361be55 2048 page += 1 << order;
d100313f 2049 pages_moved += 1 << order;
c361be55
MG
2050 }
2051
d100313f 2052 return pages_moved;
c361be55
MG
2053}
2054
ee6f509c 2055int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2056 int migratetype, int *num_movable)
c361be55
MG
2057{
2058 unsigned long start_pfn, end_pfn;
2059 struct page *start_page, *end_page;
2060
2061 start_pfn = page_to_pfn(page);
d9c23400 2062 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2063 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2064 end_page = start_page + pageblock_nr_pages - 1;
2065 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2066
2067 /* Do not cross zone boundaries */
108bcc96 2068 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2069 start_page = page;
108bcc96 2070 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2071 return 0;
2072
02aa0cdd
VB
2073 return move_freepages(zone, start_page, end_page, migratetype,
2074 num_movable);
c361be55
MG
2075}
2076
2f66a68f
MG
2077static void change_pageblock_range(struct page *pageblock_page,
2078 int start_order, int migratetype)
2079{
2080 int nr_pageblocks = 1 << (start_order - pageblock_order);
2081
2082 while (nr_pageblocks--) {
2083 set_pageblock_migratetype(pageblock_page, migratetype);
2084 pageblock_page += pageblock_nr_pages;
2085 }
2086}
2087
fef903ef 2088/*
9c0415eb
VB
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2092 *
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2098 * pageblocks.
fef903ef 2099 */
4eb7dce6
JK
2100static bool can_steal_fallback(unsigned int order, int start_mt)
2101{
2102 /*
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2108 */
2109 if (order >= pageblock_order)
2110 return true;
2111
2112 if (order >= pageblock_order / 2 ||
2113 start_mt == MIGRATE_RECLAIMABLE ||
2114 start_mt == MIGRATE_UNMOVABLE ||
2115 page_group_by_mobility_disabled)
2116 return true;
2117
2118 return false;
2119}
2120
2121/*
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2128 */
2129static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2130 int start_type, bool whole_block)
fef903ef 2131{
d00181b9 2132 unsigned int current_order = page_order(page);
3bc48f96 2133 struct free_area *area;
02aa0cdd
VB
2134 int free_pages, movable_pages, alike_pages;
2135 int old_block_type;
2136
2137 old_block_type = get_pageblock_migratetype(page);
fef903ef 2138
3bc48f96
VB
2139 /*
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2142 */
02aa0cdd 2143 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2144 goto single_page;
2145
fef903ef
SB
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order >= pageblock_order) {
2148 change_pageblock_range(page, current_order, start_type);
3bc48f96 2149 goto single_page;
fef903ef
SB
2150 }
2151
3bc48f96
VB
2152 /* We are not allowed to try stealing from the whole block */
2153 if (!whole_block)
2154 goto single_page;
2155
02aa0cdd
VB
2156 free_pages = move_freepages_block(zone, page, start_type,
2157 &movable_pages);
2158 /*
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2162 */
2163 if (start_type == MIGRATE_MOVABLE) {
2164 alike_pages = movable_pages;
2165 } else {
2166 /*
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2172 */
2173 if (old_block_type == MIGRATE_MOVABLE)
2174 alike_pages = pageblock_nr_pages
2175 - (free_pages + movable_pages);
2176 else
2177 alike_pages = 0;
2178 }
2179
3bc48f96 2180 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2181 if (!free_pages)
3bc48f96 2182 goto single_page;
fef903ef 2183
02aa0cdd
VB
2184 /*
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2187 */
2188 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2189 page_group_by_mobility_disabled)
2190 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2191
2192 return;
2193
2194single_page:
2195 area = &zone->free_area[current_order];
2196 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2197}
2198
2149cdae
JK
2199/*
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2204 */
2205int find_suitable_fallback(struct free_area *area, unsigned int order,
2206 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2207{
2208 int i;
2209 int fallback_mt;
2210
2211 if (area->nr_free == 0)
2212 return -1;
2213
2214 *can_steal = false;
2215 for (i = 0;; i++) {
2216 fallback_mt = fallbacks[migratetype][i];
974a786e 2217 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2218 break;
2219
2220 if (list_empty(&area->free_list[fallback_mt]))
2221 continue;
fef903ef 2222
4eb7dce6
JK
2223 if (can_steal_fallback(order, migratetype))
2224 *can_steal = true;
2225
2149cdae
JK
2226 if (!only_stealable)
2227 return fallback_mt;
2228
2229 if (*can_steal)
2230 return fallback_mt;
fef903ef 2231 }
4eb7dce6
JK
2232
2233 return -1;
fef903ef
SB
2234}
2235
0aaa29a5
MG
2236/*
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2239 */
2240static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241 unsigned int alloc_order)
2242{
2243 int mt;
2244 unsigned long max_managed, flags;
2245
2246 /*
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2249 */
2250 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251 if (zone->nr_reserved_highatomic >= max_managed)
2252 return;
2253
2254 spin_lock_irqsave(&zone->lock, flags);
2255
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone->nr_reserved_highatomic >= max_managed)
2258 goto out_unlock;
2259
2260 /* Yoink! */
2261 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2262 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2264 zone->nr_reserved_highatomic += pageblock_nr_pages;
2265 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2266 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2267 }
2268
2269out_unlock:
2270 spin_unlock_irqrestore(&zone->lock, flags);
2271}
2272
2273/*
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
29fac03b
MK
2278 *
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
0aaa29a5 2281 */
29fac03b
MK
2282static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2283 bool force)
0aaa29a5
MG
2284{
2285 struct zonelist *zonelist = ac->zonelist;
2286 unsigned long flags;
2287 struct zoneref *z;
2288 struct zone *zone;
2289 struct page *page;
2290 int order;
04c8716f 2291 bool ret;
0aaa29a5
MG
2292
2293 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2294 ac->nodemask) {
29fac03b
MK
2295 /*
2296 * Preserve at least one pageblock unless memory pressure
2297 * is really high.
2298 */
2299 if (!force && zone->nr_reserved_highatomic <=
2300 pageblock_nr_pages)
0aaa29a5
MG
2301 continue;
2302
2303 spin_lock_irqsave(&zone->lock, flags);
2304 for (order = 0; order < MAX_ORDER; order++) {
2305 struct free_area *area = &(zone->free_area[order]);
2306
a16601c5
GT
2307 page = list_first_entry_or_null(
2308 &area->free_list[MIGRATE_HIGHATOMIC],
2309 struct page, lru);
2310 if (!page)
0aaa29a5
MG
2311 continue;
2312
0aaa29a5 2313 /*
4855e4a7
MK
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
0aaa29a5 2319 */
a6ffdc07 2320 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2321 /*
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2326 * underflows.
2327 */
2328 zone->nr_reserved_highatomic -= min(
2329 pageblock_nr_pages,
2330 zone->nr_reserved_highatomic);
2331 }
0aaa29a5
MG
2332
2333 /*
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2340 * may increase.
2341 */
2342 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2343 ret = move_freepages_block(zone, page, ac->migratetype,
2344 NULL);
29fac03b
MK
2345 if (ret) {
2346 spin_unlock_irqrestore(&zone->lock, flags);
2347 return ret;
2348 }
0aaa29a5
MG
2349 }
2350 spin_unlock_irqrestore(&zone->lock, flags);
2351 }
04c8716f
MK
2352
2353 return false;
0aaa29a5
MG
2354}
2355
3bc48f96
VB
2356/*
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2361 *
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
3bc48f96 2365 */
85ccc8fa 2366static __always_inline bool
b002529d 2367__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2368{
b8af2941 2369 struct free_area *area;
b002529d 2370 int current_order;
b2a0ac88 2371 struct page *page;
4eb7dce6
JK
2372 int fallback_mt;
2373 bool can_steal;
b2a0ac88 2374
7a8f58f3
VB
2375 /*
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2379 */
b002529d 2380 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2381 --current_order) {
4eb7dce6
JK
2382 area = &(zone->free_area[current_order]);
2383 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2384 start_migratetype, false, &can_steal);
4eb7dce6
JK
2385 if (fallback_mt == -1)
2386 continue;
b2a0ac88 2387
7a8f58f3
VB
2388 /*
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2395 */
2396 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397 && current_order > order)
2398 goto find_smallest;
b2a0ac88 2399
7a8f58f3
VB
2400 goto do_steal;
2401 }
e0fff1bd 2402
7a8f58f3 2403 return false;
e0fff1bd 2404
7a8f58f3
VB
2405find_smallest:
2406 for (current_order = order; current_order < MAX_ORDER;
2407 current_order++) {
2408 area = &(zone->free_area[current_order]);
2409 fallback_mt = find_suitable_fallback(area, current_order,
2410 start_migratetype, false, &can_steal);
2411 if (fallback_mt != -1)
2412 break;
b2a0ac88
MG
2413 }
2414
7a8f58f3
VB
2415 /*
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2418 */
2419 VM_BUG_ON(current_order == MAX_ORDER);
2420
2421do_steal:
2422 page = list_first_entry(&area->free_list[fallback_mt],
2423 struct page, lru);
2424
2425 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2426
2427 trace_mm_page_alloc_extfrag(page, order, current_order,
2428 start_migratetype, fallback_mt);
2429
2430 return true;
2431
b2a0ac88
MG
2432}
2433
56fd56b8 2434/*
1da177e4
LT
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2437 */
85ccc8fa
AL
2438static __always_inline struct page *
2439__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2440{
1da177e4
LT
2441 struct page *page;
2442
3bc48f96 2443retry:
56fd56b8 2444 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2445 if (unlikely(!page)) {
dc67647b
JK
2446 if (migratetype == MIGRATE_MOVABLE)
2447 page = __rmqueue_cma_fallback(zone, order);
2448
3bc48f96
VB
2449 if (!page && __rmqueue_fallback(zone, order, migratetype))
2450 goto retry;
728ec980
MG
2451 }
2452
0d3d062a 2453 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2454 return page;
1da177e4
LT
2455}
2456
5f63b720 2457/*
1da177e4
LT
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2461 */
5f63b720 2462static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2463 unsigned long count, struct list_head *list,
453f85d4 2464 int migratetype)
1da177e4 2465{
a6de734b 2466 int i, alloced = 0;
5f63b720 2467
d34b0733 2468 spin_lock(&zone->lock);
1da177e4 2469 for (i = 0; i < count; ++i) {
6ac0206b 2470 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2471 if (unlikely(page == NULL))
1da177e4 2472 break;
81eabcbe 2473
479f854a
MG
2474 if (unlikely(check_pcp_refill(page)))
2475 continue;
2476
81eabcbe 2477 /*
0fac3ba5
VB
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
81eabcbe 2486 */
0fac3ba5 2487 list_add_tail(&page->lru, list);
a6de734b 2488 alloced++;
bb14c2c7 2489 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2490 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2491 -(1 << order));
1da177e4 2492 }
a6de734b
MG
2493
2494 /*
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2499 */
f2260e6b 2500 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2501 spin_unlock(&zone->lock);
a6de734b 2502 return alloced;
1da177e4
LT
2503}
2504
4ae7c039 2505#ifdef CONFIG_NUMA
8fce4d8e 2506/*
4037d452
CL
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2509 * expired.
2510 *
879336c3
CL
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
8fce4d8e 2513 */
4037d452 2514void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2515{
4ae7c039 2516 unsigned long flags;
7be12fc9 2517 int to_drain, batch;
4ae7c039 2518
4037d452 2519 local_irq_save(flags);
4db0c3c2 2520 batch = READ_ONCE(pcp->batch);
7be12fc9 2521 to_drain = min(pcp->count, batch);
77ba9062 2522 if (to_drain > 0)
2a13515c 2523 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2524 local_irq_restore(flags);
4ae7c039
CL
2525}
2526#endif
2527
9f8f2172 2528/*
93481ff0 2529 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2530 *
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2533 * is not online.
2534 */
93481ff0 2535static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2536{
c54ad30c 2537 unsigned long flags;
93481ff0
VB
2538 struct per_cpu_pageset *pset;
2539 struct per_cpu_pages *pcp;
1da177e4 2540
93481ff0
VB
2541 local_irq_save(flags);
2542 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2543
93481ff0 2544 pcp = &pset->pcp;
77ba9062 2545 if (pcp->count)
93481ff0 2546 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2547 local_irq_restore(flags);
2548}
3dfa5721 2549
93481ff0
VB
2550/*
2551 * Drain pcplists of all zones on the indicated processor.
2552 *
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2555 * is not online.
2556 */
2557static void drain_pages(unsigned int cpu)
2558{
2559 struct zone *zone;
2560
2561 for_each_populated_zone(zone) {
2562 drain_pages_zone(cpu, zone);
1da177e4
LT
2563 }
2564}
1da177e4 2565
9f8f2172
CL
2566/*
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2568 *
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
9f8f2172 2571 */
93481ff0 2572void drain_local_pages(struct zone *zone)
9f8f2172 2573{
93481ff0
VB
2574 int cpu = smp_processor_id();
2575
2576 if (zone)
2577 drain_pages_zone(cpu, zone);
2578 else
2579 drain_pages(cpu);
9f8f2172
CL
2580}
2581
0ccce3b9
MG
2582static void drain_local_pages_wq(struct work_struct *work)
2583{
a459eeb7
MH
2584 /*
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2589 * a different one.
2590 */
2591 preempt_disable();
0ccce3b9 2592 drain_local_pages(NULL);
a459eeb7 2593 preempt_enable();
0ccce3b9
MG
2594}
2595
9f8f2172 2596/*
74046494
GBY
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2598 *
93481ff0
VB
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2600 *
0ccce3b9 2601 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2602 */
93481ff0 2603void drain_all_pages(struct zone *zone)
9f8f2172 2604{
74046494 2605 int cpu;
74046494
GBY
2606
2607 /*
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2610 */
2611 static cpumask_t cpus_with_pcps;
2612
ce612879
MH
2613 /*
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2615 * initialized.
2616 */
2617 if (WARN_ON_ONCE(!mm_percpu_wq))
2618 return;
2619
bd233f53
MG
2620 /*
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2624 */
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2626 if (!zone)
2627 return;
2628 mutex_lock(&pcpu_drain_mutex);
2629 }
0ccce3b9 2630
74046494
GBY
2631 /*
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2636 */
2637 for_each_online_cpu(cpu) {
93481ff0
VB
2638 struct per_cpu_pageset *pcp;
2639 struct zone *z;
74046494 2640 bool has_pcps = false;
93481ff0
VB
2641
2642 if (zone) {
74046494 2643 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2644 if (pcp->pcp.count)
74046494 2645 has_pcps = true;
93481ff0
VB
2646 } else {
2647 for_each_populated_zone(z) {
2648 pcp = per_cpu_ptr(z->pageset, cpu);
2649 if (pcp->pcp.count) {
2650 has_pcps = true;
2651 break;
2652 }
74046494
GBY
2653 }
2654 }
93481ff0 2655
74046494
GBY
2656 if (has_pcps)
2657 cpumask_set_cpu(cpu, &cpus_with_pcps);
2658 else
2659 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2660 }
0ccce3b9 2661
bd233f53
MG
2662 for_each_cpu(cpu, &cpus_with_pcps) {
2663 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664 INIT_WORK(work, drain_local_pages_wq);
ce612879 2665 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2666 }
bd233f53
MG
2667 for_each_cpu(cpu, &cpus_with_pcps)
2668 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2669
2670 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2671}
2672
296699de 2673#ifdef CONFIG_HIBERNATION
1da177e4 2674
556b969a
CY
2675/*
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2677 */
2678#define WD_PAGE_COUNT (128*1024)
2679
1da177e4
LT
2680void mark_free_pages(struct zone *zone)
2681{
556b969a 2682 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2683 unsigned long flags;
7aeb09f9 2684 unsigned int order, t;
86760a2c 2685 struct page *page;
1da177e4 2686
8080fc03 2687 if (zone_is_empty(zone))
1da177e4
LT
2688 return;
2689
2690 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2691
108bcc96 2692 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694 if (pfn_valid(pfn)) {
86760a2c 2695 page = pfn_to_page(pfn);
ba6b0979 2696
556b969a
CY
2697 if (!--page_count) {
2698 touch_nmi_watchdog();
2699 page_count = WD_PAGE_COUNT;
2700 }
2701
ba6b0979
JK
2702 if (page_zone(page) != zone)
2703 continue;
2704
7be98234
RW
2705 if (!swsusp_page_is_forbidden(page))
2706 swsusp_unset_page_free(page);
f623f0db 2707 }
1da177e4 2708
b2a0ac88 2709 for_each_migratetype_order(order, t) {
86760a2c
GT
2710 list_for_each_entry(page,
2711 &zone->free_area[order].free_list[t], lru) {
f623f0db 2712 unsigned long i;
1da177e4 2713
86760a2c 2714 pfn = page_to_pfn(page);
556b969a
CY
2715 for (i = 0; i < (1UL << order); i++) {
2716 if (!--page_count) {
2717 touch_nmi_watchdog();
2718 page_count = WD_PAGE_COUNT;
2719 }
7be98234 2720 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2721 }
f623f0db 2722 }
b2a0ac88 2723 }
1da177e4
LT
2724 spin_unlock_irqrestore(&zone->lock, flags);
2725}
e2c55dc8 2726#endif /* CONFIG_PM */
1da177e4 2727
2d4894b5 2728static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2729{
5f8dcc21 2730 int migratetype;
1da177e4 2731
4db7548c 2732 if (!free_pcp_prepare(page))
9cca35d4 2733 return false;
689bcebf 2734
dc4b0caf 2735 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2736 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2737 return true;
2738}
2739
2d4894b5 2740static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2741{
2742 struct zone *zone = page_zone(page);
2743 struct per_cpu_pages *pcp;
2744 int migratetype;
2745
2746 migratetype = get_pcppage_migratetype(page);
d34b0733 2747 __count_vm_event(PGFREE);
da456f14 2748
5f8dcc21
MG
2749 /*
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2755 */
2756 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2757 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2758 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2759 return;
5f8dcc21
MG
2760 }
2761 migratetype = MIGRATE_MOVABLE;
2762 }
2763
99dcc3e5 2764 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2765 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2766 pcp->count++;
48db57f8 2767 if (pcp->count >= pcp->high) {
4db0c3c2 2768 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2769 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2770 }
9cca35d4 2771}
5f8dcc21 2772
9cca35d4
MG
2773/*
2774 * Free a 0-order page
9cca35d4 2775 */
2d4894b5 2776void free_unref_page(struct page *page)
9cca35d4
MG
2777{
2778 unsigned long flags;
2779 unsigned long pfn = page_to_pfn(page);
2780
2d4894b5 2781 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2782 return;
2783
2784 local_irq_save(flags);
2d4894b5 2785 free_unref_page_commit(page, pfn);
d34b0733 2786 local_irq_restore(flags);
1da177e4
LT
2787}
2788
cc59850e
KK
2789/*
2790 * Free a list of 0-order pages
2791 */
2d4894b5 2792void free_unref_page_list(struct list_head *list)
cc59850e
KK
2793{
2794 struct page *page, *next;
9cca35d4 2795 unsigned long flags, pfn;
c24ad77d 2796 int batch_count = 0;
9cca35d4
MG
2797
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page, next, list, lru) {
2800 pfn = page_to_pfn(page);
2d4894b5 2801 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2802 list_del(&page->lru);
2803 set_page_private(page, pfn);
2804 }
cc59850e 2805
9cca35d4 2806 local_irq_save(flags);
cc59850e 2807 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2808 unsigned long pfn = page_private(page);
2809
2810 set_page_private(page, 0);
2d4894b5
MG
2811 trace_mm_page_free_batched(page);
2812 free_unref_page_commit(page, pfn);
c24ad77d
LS
2813
2814 /*
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2817 */
2818 if (++batch_count == SWAP_CLUSTER_MAX) {
2819 local_irq_restore(flags);
2820 batch_count = 0;
2821 local_irq_save(flags);
2822 }
cc59850e 2823 }
9cca35d4 2824 local_irq_restore(flags);
cc59850e
KK
2825}
2826
8dfcc9ba
NP
2827/*
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2831 *
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2834 */
2835void split_page(struct page *page, unsigned int order)
2836{
2837 int i;
2838
309381fe
SL
2839 VM_BUG_ON_PAGE(PageCompound(page), page);
2840 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2841
a9627bc5 2842 for (i = 1; i < (1 << order); i++)
7835e98b 2843 set_page_refcounted(page + i);
a9627bc5 2844 split_page_owner(page, order);
8dfcc9ba 2845}
5853ff23 2846EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2847
3c605096 2848int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2849{
748446bb
MG
2850 unsigned long watermark;
2851 struct zone *zone;
2139cbe6 2852 int mt;
748446bb
MG
2853
2854 BUG_ON(!PageBuddy(page));
2855
2856 zone = page_zone(page);
2e30abd1 2857 mt = get_pageblock_migratetype(page);
748446bb 2858
194159fb 2859 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2860 /*
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2864 * exists.
2865 */
2866 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2867 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2868 return 0;
2869
8fb74b9f 2870 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2871 }
748446bb
MG
2872
2873 /* Remove page from free list */
2874 list_del(&page->lru);
2875 zone->free_area[order].nr_free--;
2876 rmv_page_order(page);
2139cbe6 2877
400bc7fd 2878 /*
2879 * Set the pageblock if the isolated page is at least half of a
2880 * pageblock
2881 */
748446bb
MG
2882 if (order >= pageblock_order - 1) {
2883 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2884 for (; page < endpage; page += pageblock_nr_pages) {
2885 int mt = get_pageblock_migratetype(page);
88ed365e 2886 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2887 && !is_migrate_highatomic(mt))
47118af0
MN
2888 set_pageblock_migratetype(page,
2889 MIGRATE_MOVABLE);
2890 }
748446bb
MG
2891 }
2892
f3a14ced 2893
8fb74b9f 2894 return 1UL << order;
1fb3f8ca
MG
2895}
2896
060e7417
MG
2897/*
2898 * Update NUMA hit/miss statistics
2899 *
2900 * Must be called with interrupts disabled.
060e7417 2901 */
41b6167e 2902static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2903{
2904#ifdef CONFIG_NUMA
3a321d2a 2905 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2906
4518085e
KW
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key))
2909 return;
2910
c1093b74 2911 if (zone_to_nid(z) != numa_node_id())
060e7417 2912 local_stat = NUMA_OTHER;
060e7417 2913
c1093b74 2914 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 2915 __inc_numa_state(z, NUMA_HIT);
2df26639 2916 else {
3a321d2a
KW
2917 __inc_numa_state(z, NUMA_MISS);
2918 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2919 }
3a321d2a 2920 __inc_numa_state(z, local_stat);
060e7417
MG
2921#endif
2922}
2923
066b2393
MG
2924/* Remove page from the per-cpu list, caller must protect the list */
2925static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2926 struct per_cpu_pages *pcp,
066b2393
MG
2927 struct list_head *list)
2928{
2929 struct page *page;
2930
2931 do {
2932 if (list_empty(list)) {
2933 pcp->count += rmqueue_bulk(zone, 0,
2934 pcp->batch, list,
453f85d4 2935 migratetype);
066b2393
MG
2936 if (unlikely(list_empty(list)))
2937 return NULL;
2938 }
2939
453f85d4 2940 page = list_first_entry(list, struct page, lru);
066b2393
MG
2941 list_del(&page->lru);
2942 pcp->count--;
2943 } while (check_new_pcp(page));
2944
2945 return page;
2946}
2947
2948/* Lock and remove page from the per-cpu list */
2949static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950 struct zone *zone, unsigned int order,
2951 gfp_t gfp_flags, int migratetype)
2952{
2953 struct per_cpu_pages *pcp;
2954 struct list_head *list;
066b2393 2955 struct page *page;
d34b0733 2956 unsigned long flags;
066b2393 2957
d34b0733 2958 local_irq_save(flags);
066b2393
MG
2959 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960 list = &pcp->lists[migratetype];
453f85d4 2961 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2962 if (page) {
2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 zone_statistics(preferred_zone, zone);
2965 }
d34b0733 2966 local_irq_restore(flags);
066b2393
MG
2967 return page;
2968}
2969
1da177e4 2970/*
75379191 2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2972 */
0a15c3e9 2973static inline
066b2393 2974struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2975 struct zone *zone, unsigned int order,
c603844b
MG
2976 gfp_t gfp_flags, unsigned int alloc_flags,
2977 int migratetype)
1da177e4
LT
2978{
2979 unsigned long flags;
689bcebf 2980 struct page *page;
1da177e4 2981
d34b0733 2982 if (likely(order == 0)) {
066b2393
MG
2983 page = rmqueue_pcplist(preferred_zone, zone, order,
2984 gfp_flags, migratetype);
2985 goto out;
2986 }
83b9355b 2987
066b2393
MG
2988 /*
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2991 */
2992 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2994
066b2393
MG
2995 do {
2996 page = NULL;
2997 if (alloc_flags & ALLOC_HARDER) {
2998 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2999 if (page)
3000 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3001 }
a74609fa 3002 if (!page)
066b2393
MG
3003 page = __rmqueue(zone, order, migratetype);
3004 } while (page && check_new_pages(page, order));
3005 spin_unlock(&zone->lock);
3006 if (!page)
3007 goto failed;
3008 __mod_zone_freepage_state(zone, -(1 << order),
3009 get_pcppage_migratetype(page));
1da177e4 3010
16709d1d 3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3012 zone_statistics(preferred_zone, zone);
a74609fa 3013 local_irq_restore(flags);
1da177e4 3014
066b2393
MG
3015out:
3016 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3017 return page;
a74609fa
NP
3018
3019failed:
3020 local_irq_restore(flags);
a74609fa 3021 return NULL;
1da177e4
LT
3022}
3023
933e312e
AM
3024#ifdef CONFIG_FAIL_PAGE_ALLOC
3025
b2588c4b 3026static struct {
933e312e
AM
3027 struct fault_attr attr;
3028
621a5f7a 3029 bool ignore_gfp_highmem;
71baba4b 3030 bool ignore_gfp_reclaim;
54114994 3031 u32 min_order;
933e312e
AM
3032} fail_page_alloc = {
3033 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3034 .ignore_gfp_reclaim = true,
621a5f7a 3035 .ignore_gfp_highmem = true,
54114994 3036 .min_order = 1,
933e312e
AM
3037};
3038
3039static int __init setup_fail_page_alloc(char *str)
3040{
3041 return setup_fault_attr(&fail_page_alloc.attr, str);
3042}
3043__setup("fail_page_alloc=", setup_fail_page_alloc);
3044
deaf386e 3045static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3046{
54114994 3047 if (order < fail_page_alloc.min_order)
deaf386e 3048 return false;
933e312e 3049 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3050 return false;
933e312e 3051 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3052 return false;
71baba4b
MG
3053 if (fail_page_alloc.ignore_gfp_reclaim &&
3054 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3055 return false;
933e312e
AM
3056
3057 return should_fail(&fail_page_alloc.attr, 1 << order);
3058}
3059
3060#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3061
3062static int __init fail_page_alloc_debugfs(void)
3063{
0825a6f9 3064 umode_t mode = S_IFREG | 0600;
933e312e 3065 struct dentry *dir;
933e312e 3066
dd48c085
AM
3067 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068 &fail_page_alloc.attr);
3069 if (IS_ERR(dir))
3070 return PTR_ERR(dir);
933e312e 3071
b2588c4b 3072 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3073 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3074 goto fail;
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076 &fail_page_alloc.ignore_gfp_highmem))
3077 goto fail;
3078 if (!debugfs_create_u32("min-order", mode, dir,
3079 &fail_page_alloc.min_order))
3080 goto fail;
3081
3082 return 0;
3083fail:
dd48c085 3084 debugfs_remove_recursive(dir);
933e312e 3085
b2588c4b 3086 return -ENOMEM;
933e312e
AM
3087}
3088
3089late_initcall(fail_page_alloc_debugfs);
3090
3091#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3092
3093#else /* CONFIG_FAIL_PAGE_ALLOC */
3094
deaf386e 3095static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3096{
deaf386e 3097 return false;
933e312e
AM
3098}
3099
3100#endif /* CONFIG_FAIL_PAGE_ALLOC */
3101
1da177e4 3102/*
97a16fc8
MG
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
1da177e4 3107 */
86a294a8
MH
3108bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109 int classzone_idx, unsigned int alloc_flags,
3110 long free_pages)
1da177e4 3111{
d23ad423 3112 long min = mark;
1da177e4 3113 int o;
cd04ae1e 3114 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3115
0aaa29a5 3116 /* free_pages may go negative - that's OK */
df0a6daa 3117 free_pages -= (1 << order) - 1;
0aaa29a5 3118
7fb1d9fc 3119 if (alloc_flags & ALLOC_HIGH)
1da177e4 3120 min -= min / 2;
0aaa29a5
MG
3121
3122 /*
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3126 */
cd04ae1e 3127 if (likely(!alloc_harder)) {
0aaa29a5 3128 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3129 } else {
3130 /*
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3135 */
3136 if (alloc_flags & ALLOC_OOM)
3137 min -= min / 2;
3138 else
3139 min -= min / 4;
3140 }
3141
e2b19197 3142
d883c6cf
JK
3143#ifdef CONFIG_CMA
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags & ALLOC_CMA))
3146 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3147#endif
3148
97a16fc8
MG
3149 /*
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3153 */
3154 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3155 return false;
1da177e4 3156
97a16fc8
MG
3157 /* If this is an order-0 request then the watermark is fine */
3158 if (!order)
3159 return true;
3160
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o = order; o < MAX_ORDER; o++) {
3163 struct free_area *area = &z->free_area[o];
3164 int mt;
3165
3166 if (!area->nr_free)
3167 continue;
3168
97a16fc8
MG
3169 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170 if (!list_empty(&area->free_list[mt]))
3171 return true;
3172 }
3173
3174#ifdef CONFIG_CMA
d883c6cf
JK
3175 if ((alloc_flags & ALLOC_CMA) &&
3176 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3177 return true;
d883c6cf 3178 }
97a16fc8 3179#endif
b050e376
VB
3180 if (alloc_harder &&
3181 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3182 return true;
1da177e4 3183 }
97a16fc8 3184 return false;
88f5acf8
MG
3185}
3186
7aeb09f9 3187bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3188 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3189{
3190 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191 zone_page_state(z, NR_FREE_PAGES));
3192}
3193
48ee5f36
MG
3194static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3196{
3197 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3198 long cma_pages = 0;
3199
3200#ifdef CONFIG_CMA
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags & ALLOC_CMA))
3203 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3204#endif
48ee5f36
MG
3205
3206 /*
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3212 */
d883c6cf 3213 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3214 return true;
3215
3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 free_pages);
3218}
3219
7aeb09f9 3220bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3221 unsigned long mark, int classzone_idx)
88f5acf8
MG
3222{
3223 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224
3225 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3227
e2b19197 3228 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3229 free_pages);
1da177e4
LT
3230}
3231
9276b1bc 3232#ifdef CONFIG_NUMA
957f822a
DR
3233static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234{
e02dc017 3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3236 RECLAIM_DISTANCE;
957f822a 3237}
9276b1bc 3238#else /* CONFIG_NUMA */
957f822a
DR
3239static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240{
3241 return true;
3242}
9276b1bc
PJ
3243#endif /* CONFIG_NUMA */
3244
7fb1d9fc 3245/*
0798e519 3246 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3247 * a page.
3248 */
3249static struct page *
a9263751
VB
3250get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251 const struct alloc_context *ac)
753ee728 3252{
c33d6c06 3253 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3254 struct zone *zone;
3b8c0be4
MG
3255 struct pglist_data *last_pgdat_dirty_limit = NULL;
3256
7fb1d9fc 3257 /*
9276b1bc 3258 * Scan zonelist, looking for a zone with enough free.
344736f2 3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3260 */
c33d6c06 3261 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3262 ac->nodemask) {
be06af00 3263 struct page *page;
e085dbc5
JW
3264 unsigned long mark;
3265
664eedde
MG
3266 if (cpusets_enabled() &&
3267 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3268 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3269 continue;
a756cf59
JW
3270 /*
3271 * When allocating a page cache page for writing, we
281e3726
MG
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
a756cf59 3274 * proportional share of globally allowed dirty pages.
281e3726 3275 * The dirty limits take into account the node's
a756cf59
JW
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3279 *
a756cf59 3280 * XXX: For now, allow allocations to potentially
281e3726 3281 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3282 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3283 * which is important when on a NUMA setup the allowed
281e3726 3284 * nodes are together not big enough to reach the
a756cf59 3285 * global limit. The proper fix for these situations
281e3726 3286 * will require awareness of nodes in the
a756cf59
JW
3287 * dirty-throttling and the flusher threads.
3288 */
3b8c0be4
MG
3289 if (ac->spread_dirty_pages) {
3290 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3291 continue;
3292
3293 if (!node_dirty_ok(zone->zone_pgdat)) {
3294 last_pgdat_dirty_limit = zone->zone_pgdat;
3295 continue;
3296 }
3297 }
7fb1d9fc 3298
e085dbc5 3299 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3300 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3301 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3302 int ret;
3303
c9e97a19
PT
3304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3305 /*
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3308 */
3309 if (static_branch_unlikely(&deferred_pages)) {
3310 if (_deferred_grow_zone(zone, order))
3311 goto try_this_zone;
3312 }
3313#endif
5dab2911
MG
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316 if (alloc_flags & ALLOC_NO_WATERMARKS)
3317 goto try_this_zone;
3318
a5f5f91d 3319 if (node_reclaim_mode == 0 ||
c33d6c06 3320 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3321 continue;
3322
a5f5f91d 3323 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3324 switch (ret) {
a5f5f91d 3325 case NODE_RECLAIM_NOSCAN:
fa5e084e 3326 /* did not scan */
cd38b115 3327 continue;
a5f5f91d 3328 case NODE_RECLAIM_FULL:
fa5e084e 3329 /* scanned but unreclaimable */
cd38b115 3330 continue;
fa5e084e
MG
3331 default:
3332 /* did we reclaim enough */
fed2719e 3333 if (zone_watermark_ok(zone, order, mark,
93ea9964 3334 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3335 goto try_this_zone;
3336
fed2719e 3337 continue;
0798e519 3338 }
7fb1d9fc
RS
3339 }
3340
fa5e084e 3341try_this_zone:
066b2393 3342 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3343 gfp_mask, alloc_flags, ac->migratetype);
75379191 3344 if (page) {
479f854a 3345 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3346
3347 /*
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3350 */
3351 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352 reserve_highatomic_pageblock(page, zone, order);
3353
75379191 3354 return page;
c9e97a19
PT
3355 } else {
3356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages)) {
3359 if (_deferred_grow_zone(zone, order))
3360 goto try_this_zone;
3361 }
3362#endif
75379191 3363 }
54a6eb5c 3364 }
9276b1bc 3365
4ffeaf35 3366 return NULL;
753ee728
MH
3367}
3368
29423e77
DR
3369/*
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3372 */
3373static inline bool should_suppress_show_mem(void)
3374{
3375 bool ret = false;
3376
3377#if NODES_SHIFT > 8
3378 ret = in_interrupt();
3379#endif
3380 return ret;
3381}
3382
9af744d7 3383static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3384{
a238ab5b 3385 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3386 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3387
aa187507 3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3389 return;
3390
3391 /*
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3394 * of allowed nodes.
3395 */
3396 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3397 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3398 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3400 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3401 filter &= ~SHOW_MEM_FILTER_NODES;
3402
9af744d7 3403 show_mem(filter, nodemask);
aa187507
MH
3404}
3405
a8e99259 3406void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3407{
3408 struct va_format vaf;
3409 va_list args;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411 DEFAULT_RATELIMIT_BURST);
3412
0f7896f1 3413 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3414 return;
3415
7877cdcc
MH
3416 va_start(args, fmt);
3417 vaf.fmt = fmt;
3418 vaf.va = &args;
0205f755
MH
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current->comm, &vaf, gfp_mask, &gfp_mask,
3421 nodemask_pr_args(nodemask));
7877cdcc 3422 va_end(args);
3ee9a4f0 3423
a8e99259 3424 cpuset_print_current_mems_allowed();
3ee9a4f0 3425
a238ab5b 3426 dump_stack();
685dbf6f 3427 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3428}
3429
6c18ba7a
MH
3430static inline struct page *
3431__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432 unsigned int alloc_flags,
3433 const struct alloc_context *ac)
3434{
3435 struct page *page;
3436
3437 page = get_page_from_freelist(gfp_mask, order,
3438 alloc_flags|ALLOC_CPUSET, ac);
3439 /*
3440 * fallback to ignore cpuset restriction if our nodes
3441 * are depleted
3442 */
3443 if (!page)
3444 page = get_page_from_freelist(gfp_mask, order,
3445 alloc_flags, ac);
3446
3447 return page;
3448}
3449
11e33f6a
MG
3450static inline struct page *
3451__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3452 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3453{
6e0fc46d
DR
3454 struct oom_control oc = {
3455 .zonelist = ac->zonelist,
3456 .nodemask = ac->nodemask,
2a966b77 3457 .memcg = NULL,
6e0fc46d
DR
3458 .gfp_mask = gfp_mask,
3459 .order = order,
6e0fc46d 3460 };
11e33f6a
MG
3461 struct page *page;
3462
9879de73
JW
3463 *did_some_progress = 0;
3464
9879de73 3465 /*
dc56401f
JW
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
9879de73 3468 */
dc56401f 3469 if (!mutex_trylock(&oom_lock)) {
9879de73 3470 *did_some_progress = 1;
11e33f6a 3471 schedule_timeout_uninterruptible(1);
1da177e4
LT
3472 return NULL;
3473 }
6b1de916 3474
11e33f6a
MG
3475 /*
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
11e33f6a 3481 */
e746bf73
TH
3482 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483 ~__GFP_DIRECT_RECLAIM, order,
3484 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3485 if (page)
11e33f6a
MG
3486 goto out;
3487
06ad276a
MH
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current->flags & PF_DUMPCORE)
3490 goto out;
3491 /* The OOM killer will not help higher order allocs */
3492 if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 goto out;
dcda9b04
MH
3494 /*
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3499 */
3500 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3501 goto out;
06ad276a
MH
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac->high_zoneidx < ZONE_NORMAL)
3504 goto out;
3505 if (pm_suspended_storage())
3506 goto out;
3507 /*
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3515 */
3516
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask & __GFP_THISNODE)
3519 goto out;
3da88fb3 3520
3c2c6488 3521 /* Exhausted what can be done so it's blame time */
5020e285 3522 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3523 *did_some_progress = 1;
5020e285 3524
6c18ba7a
MH
3525 /*
3526 * Help non-failing allocations by giving them access to memory
3527 * reserves
3528 */
3529 if (gfp_mask & __GFP_NOFAIL)
3530 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3531 ALLOC_NO_WATERMARKS, ac);
5020e285 3532 }
11e33f6a 3533out:
dc56401f 3534 mutex_unlock(&oom_lock);
11e33f6a
MG
3535 return page;
3536}
3537
33c2d214
MH
3538/*
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3541 */
3542#define MAX_COMPACT_RETRIES 16
3543
56de7263
MG
3544#ifdef CONFIG_COMPACTION
3545/* Try memory compaction for high-order allocations before reclaim */
3546static struct page *
3547__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3548 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3549 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3550{
98dd3b48 3551 struct page *page;
499118e9 3552 unsigned int noreclaim_flag;
53853e2d
VB
3553
3554 if (!order)
66199712 3555 return NULL;
66199712 3556
499118e9 3557 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3559 prio);
499118e9 3560 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3561
c5d01d0d 3562 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3563 return NULL;
53853e2d 3564
98dd3b48
VB
3565 /*
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3568 */
3569 count_vm_event(COMPACTSTALL);
8fb74b9f 3570
31a6c190 3571 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3572
98dd3b48
VB
3573 if (page) {
3574 struct zone *zone = page_zone(page);
53853e2d 3575
98dd3b48
VB
3576 zone->compact_blockskip_flush = false;
3577 compaction_defer_reset(zone, order, true);
3578 count_vm_event(COMPACTSUCCESS);
3579 return page;
3580 }
56de7263 3581
98dd3b48
VB
3582 /*
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3585 */
3586 count_vm_event(COMPACTFAIL);
66199712 3587
98dd3b48 3588 cond_resched();
56de7263
MG
3589
3590 return NULL;
3591}
33c2d214 3592
3250845d
VB
3593static inline bool
3594should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595 enum compact_result compact_result,
3596 enum compact_priority *compact_priority,
d9436498 3597 int *compaction_retries)
3250845d
VB
3598{
3599 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3600 int min_priority;
65190cff
MH
3601 bool ret = false;
3602 int retries = *compaction_retries;
3603 enum compact_priority priority = *compact_priority;
3250845d
VB
3604
3605 if (!order)
3606 return false;
3607
d9436498
VB
3608 if (compaction_made_progress(compact_result))
3609 (*compaction_retries)++;
3610
3250845d
VB
3611 /*
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3615 */
d9436498
VB
3616 if (compaction_failed(compact_result))
3617 goto check_priority;
3250845d
VB
3618
3619 /*
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3623 * compaction.
3624 */
65190cff
MH
3625 if (compaction_withdrawn(compact_result)) {
3626 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3627 goto out;
3628 }
3250845d
VB
3629
3630 /*
dcda9b04 3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3637 */
3638 if (order > PAGE_ALLOC_COSTLY_ORDER)
3639 max_retries /= 4;
65190cff
MH
3640 if (*compaction_retries <= max_retries) {
3641 ret = true;
3642 goto out;
3643 }
3250845d 3644
d9436498
VB
3645 /*
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3648 */
3649check_priority:
c2033b00
VB
3650 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3652
c2033b00 3653 if (*compact_priority > min_priority) {
d9436498
VB
3654 (*compact_priority)--;
3655 *compaction_retries = 0;
65190cff 3656 ret = true;
d9436498 3657 }
65190cff
MH
3658out:
3659 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3660 return ret;
3250845d 3661}
56de7263
MG
3662#else
3663static inline struct page *
3664__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3665 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3666 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3667{
33c2d214 3668 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3669 return NULL;
3670}
33c2d214
MH
3671
3672static inline bool
86a294a8
MH
3673should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674 enum compact_result compact_result,
a5508cd8 3675 enum compact_priority *compact_priority,
d9436498 3676 int *compaction_retries)
33c2d214 3677{
31e49bfd
MH
3678 struct zone *zone;
3679 struct zoneref *z;
3680
3681 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3682 return false;
3683
3684 /*
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3689 */
3690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3691 ac->nodemask) {
3692 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693 ac_classzone_idx(ac), alloc_flags))
3694 return true;
3695 }
33c2d214
MH
3696 return false;
3697}
3250845d 3698#endif /* CONFIG_COMPACTION */
56de7263 3699
d92a8cfc 3700#ifdef CONFIG_LOCKDEP
93781325 3701static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3703
3704static bool __need_fs_reclaim(gfp_t gfp_mask)
3705{
3706 gfp_mask = current_gfp_context(gfp_mask);
3707
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3710 return false;
3711
3712 /* this guy won't enter reclaim */
2e517d68 3713 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3714 return false;
3715
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask & __GFP_FS))
3718 return false;
3719
3720 if (gfp_mask & __GFP_NOLOCKDEP)
3721 return false;
3722
3723 return true;
3724}
3725
93781325
OS
3726void __fs_reclaim_acquire(void)
3727{
3728 lock_map_acquire(&__fs_reclaim_map);
3729}
3730
3731void __fs_reclaim_release(void)
3732{
3733 lock_map_release(&__fs_reclaim_map);
3734}
3735
d92a8cfc
PZ
3736void fs_reclaim_acquire(gfp_t gfp_mask)
3737{
3738 if (__need_fs_reclaim(gfp_mask))
93781325 3739 __fs_reclaim_acquire();
d92a8cfc
PZ
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742
3743void fs_reclaim_release(gfp_t gfp_mask)
3744{
3745 if (__need_fs_reclaim(gfp_mask))
93781325 3746 __fs_reclaim_release();
d92a8cfc
PZ
3747}
3748EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749#endif
3750
bba90710
MS
3751/* Perform direct synchronous page reclaim */
3752static int
a9263751
VB
3753__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 const struct alloc_context *ac)
11e33f6a 3755{
11e33f6a 3756 struct reclaim_state reclaim_state;
bba90710 3757 int progress;
499118e9 3758 unsigned int noreclaim_flag;
11e33f6a
MG
3759
3760 cond_resched();
3761
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
d92a8cfc 3764 fs_reclaim_acquire(gfp_mask);
93781325 3765 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3766 reclaim_state.reclaimed_slab = 0;
c06b1fca 3767 current->reclaim_state = &reclaim_state;
11e33f6a 3768
a9263751
VB
3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 ac->nodemask);
11e33f6a 3771
c06b1fca 3772 current->reclaim_state = NULL;
499118e9 3773 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3774 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3775
3776 cond_resched();
3777
bba90710
MS
3778 return progress;
3779}
3780
3781/* The really slow allocator path where we enter direct reclaim */
3782static inline struct page *
3783__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3784 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3785 unsigned long *did_some_progress)
bba90710
MS
3786{
3787 struct page *page = NULL;
3788 bool drained = false;
3789
a9263751 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3791 if (unlikely(!(*did_some_progress)))
3792 return NULL;
11e33f6a 3793
9ee493ce 3794retry:
31a6c190 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
9ee493ce
MG
3801 */
3802 if (!page && !drained) {
29fac03b 3803 unreserve_highatomic_pageblock(ac, false);
93481ff0 3804 drain_all_pages(NULL);
9ee493ce
MG
3805 drained = true;
3806 goto retry;
3807 }
3808
11e33f6a
MG
3809 return page;
3810}
3811
5ecd9d40
DR
3812static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 const struct alloc_context *ac)
3a025760
JW
3814{
3815 struct zoneref *z;
3816 struct zone *zone;
e1a55637 3817 pg_data_t *last_pgdat = NULL;
5ecd9d40 3818 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3819
5ecd9d40
DR
3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 ac->nodemask) {
e1a55637 3822 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3824 last_pgdat = zone->zone_pgdat;
3825 }
3a025760
JW
3826}
3827
c603844b 3828static inline unsigned int
341ce06f
PZ
3829gfp_to_alloc_flags(gfp_t gfp_mask)
3830{
c603844b 3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3832
a56f57ff 3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3835
341ce06f
PZ
3836 /*
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3841 */
e6223a3b 3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3843
d0164adc 3844 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3845 /*
b104a35d
DR
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
5c3240d9 3848 */
b104a35d 3849 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3850 alloc_flags |= ALLOC_HARDER;
523b9458 3851 /*
b104a35d 3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3853 * comment for __cpuset_node_allowed().
523b9458 3854 */
341ce06f 3855 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3856 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3857 alloc_flags |= ALLOC_HARDER;
3858
d883c6cf
JK
3859#ifdef CONFIG_CMA
3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 alloc_flags |= ALLOC_CMA;
3862#endif
341ce06f
PZ
3863 return alloc_flags;
3864}
3865
cd04ae1e 3866static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3867{
cd04ae1e
MH
3868 if (!tsk_is_oom_victim(tsk))
3869 return false;
3870
3871 /*
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3874 */
3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3876 return false;
3877
cd04ae1e
MH
3878 return true;
3879}
3880
3881/*
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3884 */
3885static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886{
3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888 return 0;
31a6c190 3889 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3890 return ALLOC_NO_WATERMARKS;
31a6c190 3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3892 return ALLOC_NO_WATERMARKS;
3893 if (!in_interrupt()) {
3894 if (current->flags & PF_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 else if (oom_reserves_allowed(current))
3897 return ALLOC_OOM;
3898 }
31a6c190 3899
cd04ae1e
MH
3900 return 0;
3901}
3902
3903bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904{
3905 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3906}
3907
0a0337e0
MH
3908/*
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
491d79ae
JW
3911 *
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3915 *
3916 * Returns true if a retry is viable or false to enter the oom path.
3917 */
3918static inline bool
3919should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 struct alloc_context *ac, int alloc_flags,
423b452e 3921 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3922{
3923 struct zone *zone;
3924 struct zoneref *z;
15f570bf 3925 bool ret = false;
0a0337e0 3926
423b452e
VB
3927 /*
3928 * Costly allocations might have made a progress but this doesn't mean
3929 * their order will become available due to high fragmentation so
3930 * always increment the no progress counter for them
3931 */
3932 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3933 *no_progress_loops = 0;
3934 else
3935 (*no_progress_loops)++;
3936
0a0337e0
MH
3937 /*
3938 * Make sure we converge to OOM if we cannot make any progress
3939 * several times in the row.
3940 */
04c8716f
MK
3941 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3942 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3943 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3944 }
0a0337e0 3945
bca67592
MG
3946 /*
3947 * Keep reclaiming pages while there is a chance this will lead
3948 * somewhere. If none of the target zones can satisfy our allocation
3949 * request even if all reclaimable pages are considered then we are
3950 * screwed and have to go OOM.
0a0337e0
MH
3951 */
3952 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3953 ac->nodemask) {
3954 unsigned long available;
ede37713 3955 unsigned long reclaimable;
d379f01d
MH
3956 unsigned long min_wmark = min_wmark_pages(zone);
3957 bool wmark;
0a0337e0 3958
5a1c84b4 3959 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3960 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3961
3962 /*
491d79ae
JW
3963 * Would the allocation succeed if we reclaimed all
3964 * reclaimable pages?
0a0337e0 3965 */
d379f01d
MH
3966 wmark = __zone_watermark_ok(zone, order, min_wmark,
3967 ac_classzone_idx(ac), alloc_flags, available);
3968 trace_reclaim_retry_zone(z, order, reclaimable,
3969 available, min_wmark, *no_progress_loops, wmark);
3970 if (wmark) {
ede37713
MH
3971 /*
3972 * If we didn't make any progress and have a lot of
3973 * dirty + writeback pages then we should wait for
3974 * an IO to complete to slow down the reclaim and
3975 * prevent from pre mature OOM
3976 */
3977 if (!did_some_progress) {
11fb9989 3978 unsigned long write_pending;
ede37713 3979
5a1c84b4
MG
3980 write_pending = zone_page_state_snapshot(zone,
3981 NR_ZONE_WRITE_PENDING);
ede37713 3982
11fb9989 3983 if (2 * write_pending > reclaimable) {
ede37713
MH
3984 congestion_wait(BLK_RW_ASYNC, HZ/10);
3985 return true;
3986 }
3987 }
5a1c84b4 3988
15f570bf
MH
3989 ret = true;
3990 goto out;
0a0337e0
MH
3991 }
3992 }
3993
15f570bf
MH
3994out:
3995 /*
3996 * Memory allocation/reclaim might be called from a WQ context and the
3997 * current implementation of the WQ concurrency control doesn't
3998 * recognize that a particular WQ is congested if the worker thread is
3999 * looping without ever sleeping. Therefore we have to do a short sleep
4000 * here rather than calling cond_resched().
4001 */
4002 if (current->flags & PF_WQ_WORKER)
4003 schedule_timeout_uninterruptible(1);
4004 else
4005 cond_resched();
4006 return ret;
0a0337e0
MH
4007}
4008
902b6281
VB
4009static inline bool
4010check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011{
4012 /*
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4022 */
4023 if (cpusets_enabled() && ac->nodemask &&
4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 ac->nodemask = NULL;
4026 return true;
4027 }
4028
4029 /*
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4034 * retry.
4035 */
4036 if (read_mems_allowed_retry(cpuset_mems_cookie))
4037 return true;
4038
4039 return false;
4040}
4041
11e33f6a
MG
4042static inline struct page *
4043__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4044 struct alloc_context *ac)
11e33f6a 4045{
d0164adc 4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4048 struct page *page = NULL;
c603844b 4049 unsigned int alloc_flags;
11e33f6a 4050 unsigned long did_some_progress;
5ce9bfef 4051 enum compact_priority compact_priority;
c5d01d0d 4052 enum compact_result compact_result;
5ce9bfef
VB
4053 int compaction_retries;
4054 int no_progress_loops;
5ce9bfef 4055 unsigned int cpuset_mems_cookie;
cd04ae1e 4056 int reserve_flags;
1da177e4 4057
72807a74
MG
4058 /*
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4062 * too large.
4063 */
1fc28b70
MG
4064 if (order >= MAX_ORDER) {
4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 4066 return NULL;
1fc28b70 4067 }
1da177e4 4068
d0164adc
MG
4069 /*
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4072 */
4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 gfp_mask &= ~__GFP_ATOMIC;
4076
5ce9bfef
VB
4077retry_cpuset:
4078 compaction_retries = 0;
4079 no_progress_loops = 0;
4080 compact_priority = DEF_COMPACT_PRIORITY;
4081 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4082
4083 /*
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4087 */
4088 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089
e47483bc
VB
4090 /*
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4095 */
4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 ac->high_zoneidx, ac->nodemask);
4098 if (!ac->preferred_zoneref->zone)
4099 goto nopage;
4100
23771235 4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4102 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4103
4104 /*
4105 * The adjusted alloc_flags might result in immediate success, so try
4106 * that first
4107 */
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 if (page)
4110 goto got_pg;
4111
a8161d1e
VB
4112 /*
4113 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4117 * same migratetype.
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4120 */
282722b0
VB
4121 if (can_direct_reclaim &&
4122 (costly_order ||
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4126 alloc_flags, ac,
a5508cd8 4127 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4128 &compact_result);
4129 if (page)
4130 goto got_pg;
4131
3eb2771b
VB
4132 /*
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4135 */
282722b0 4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4137 /*
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4143 * direct reclaim.
4144 */
4145 if (compact_result == COMPACT_DEFERRED)
4146 goto nopage;
4147
a8161d1e 4148 /*
3eb2771b
VB
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
25160354 4151 * using async compaction.
a8161d1e 4152 */
a5508cd8 4153 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4154 }
4155 }
23771235 4156
31a6c190 4157retry:
23771235 4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4159 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4160 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4161
cd04ae1e
MH
4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 if (reserve_flags)
4164 alloc_flags = reserve_flags;
23771235 4165
e46e7b77 4166 /*
d6a24df0
VB
4167 * Reset the nodemask and zonelist iterators if memory policies can be
4168 * ignored. These allocations are high priority and system rather than
4169 * user oriented.
e46e7b77 4170 */
cd04ae1e 4171 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4172 ac->nodemask = NULL;
e46e7b77
MG
4173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174 ac->high_zoneidx, ac->nodemask);
4175 }
4176
23771235 4177 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4178 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4179 if (page)
4180 goto got_pg;
1da177e4 4181
d0164adc 4182 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4183 if (!can_direct_reclaim)
1da177e4
LT
4184 goto nopage;
4185
9a67f648
MH
4186 /* Avoid recursion of direct reclaim */
4187 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4188 goto nopage;
4189
a8161d1e
VB
4190 /* Try direct reclaim and then allocating */
4191 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4192 &did_some_progress);
4193 if (page)
4194 goto got_pg;
4195
4196 /* Try direct compaction and then allocating */
a9263751 4197 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4198 compact_priority, &compact_result);
56de7263
MG
4199 if (page)
4200 goto got_pg;
75f30861 4201
9083905a
JW
4202 /* Do not loop if specifically requested */
4203 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4204 goto nopage;
9083905a 4205
0a0337e0
MH
4206 /*
4207 * Do not retry costly high order allocations unless they are
dcda9b04 4208 * __GFP_RETRY_MAYFAIL
0a0337e0 4209 */
dcda9b04 4210 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4211 goto nopage;
0a0337e0 4212
0a0337e0 4213 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4214 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4215 goto retry;
4216
33c2d214
MH
4217 /*
4218 * It doesn't make any sense to retry for the compaction if the order-0
4219 * reclaim is not able to make any progress because the current
4220 * implementation of the compaction depends on the sufficient amount
4221 * of free memory (see __compaction_suitable)
4222 */
4223 if (did_some_progress > 0 &&
86a294a8 4224 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4225 compact_result, &compact_priority,
d9436498 4226 &compaction_retries))
33c2d214
MH
4227 goto retry;
4228
902b6281
VB
4229
4230 /* Deal with possible cpuset update races before we start OOM killing */
4231 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4232 goto retry_cpuset;
4233
9083905a
JW
4234 /* Reclaim has failed us, start killing things */
4235 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4236 if (page)
4237 goto got_pg;
4238
9a67f648 4239 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4240 if (tsk_is_oom_victim(current) &&
4241 (alloc_flags == ALLOC_OOM ||
c288983d 4242 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4243 goto nopage;
4244
9083905a 4245 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4246 if (did_some_progress) {
4247 no_progress_loops = 0;
9083905a 4248 goto retry;
0a0337e0 4249 }
9083905a 4250
1da177e4 4251nopage:
902b6281
VB
4252 /* Deal with possible cpuset update races before we fail */
4253 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4254 goto retry_cpuset;
4255
9a67f648
MH
4256 /*
4257 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4258 * we always retry
4259 */
4260 if (gfp_mask & __GFP_NOFAIL) {
4261 /*
4262 * All existing users of the __GFP_NOFAIL are blockable, so warn
4263 * of any new users that actually require GFP_NOWAIT
4264 */
4265 if (WARN_ON_ONCE(!can_direct_reclaim))
4266 goto fail;
4267
4268 /*
4269 * PF_MEMALLOC request from this context is rather bizarre
4270 * because we cannot reclaim anything and only can loop waiting
4271 * for somebody to do a work for us
4272 */
4273 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4274
4275 /*
4276 * non failing costly orders are a hard requirement which we
4277 * are not prepared for much so let's warn about these users
4278 * so that we can identify them and convert them to something
4279 * else.
4280 */
4281 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4282
6c18ba7a
MH
4283 /*
4284 * Help non-failing allocations by giving them access to memory
4285 * reserves but do not use ALLOC_NO_WATERMARKS because this
4286 * could deplete whole memory reserves which would just make
4287 * the situation worse
4288 */
4289 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4290 if (page)
4291 goto got_pg;
4292
9a67f648
MH
4293 cond_resched();
4294 goto retry;
4295 }
4296fail:
a8e99259 4297 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4298 "page allocation failure: order:%u", order);
1da177e4 4299got_pg:
072bb0aa 4300 return page;
1da177e4 4301}
11e33f6a 4302
9cd75558 4303static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4304 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4305 struct alloc_context *ac, gfp_t *alloc_mask,
4306 unsigned int *alloc_flags)
11e33f6a 4307{
9cd75558 4308 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4309 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4310 ac->nodemask = nodemask;
4311 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4312
682a3385 4313 if (cpusets_enabled()) {
9cd75558 4314 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4315 if (!ac->nodemask)
4316 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4317 else
4318 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4319 }
4320
d92a8cfc
PZ
4321 fs_reclaim_acquire(gfp_mask);
4322 fs_reclaim_release(gfp_mask);
11e33f6a 4323
d0164adc 4324 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4325
4326 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4327 return false;
11e33f6a 4328
d883c6cf
JK
4329 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4330 *alloc_flags |= ALLOC_CMA;
4331
9cd75558
MG
4332 return true;
4333}
21bb9bd1 4334
9cd75558 4335/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4336static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4337{
c9ab0c4f 4338 /* Dirty zone balancing only done in the fast path */
9cd75558 4339 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4340
e46e7b77
MG
4341 /*
4342 * The preferred zone is used for statistics but crucially it is
4343 * also used as the starting point for the zonelist iterator. It
4344 * may get reset for allocations that ignore memory policies.
4345 */
9cd75558
MG
4346 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4347 ac->high_zoneidx, ac->nodemask);
4348}
4349
4350/*
4351 * This is the 'heart' of the zoned buddy allocator.
4352 */
4353struct page *
04ec6264
VB
4354__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4355 nodemask_t *nodemask)
9cd75558
MG
4356{
4357 struct page *page;
4358 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4359 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4360 struct alloc_context ac = { };
4361
4362 gfp_mask &= gfp_allowed_mask;
f19360f0 4363 alloc_mask = gfp_mask;
04ec6264 4364 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4365 return NULL;
4366
a380b40a 4367 finalise_ac(gfp_mask, &ac);
5bb1b169 4368
5117f45d 4369 /* First allocation attempt */
a9263751 4370 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4371 if (likely(page))
4372 goto out;
11e33f6a 4373
4fcb0971 4374 /*
7dea19f9
MH
4375 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4376 * resp. GFP_NOIO which has to be inherited for all allocation requests
4377 * from a particular context which has been marked by
4378 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4379 */
7dea19f9 4380 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4381 ac.spread_dirty_pages = false;
23f086f9 4382
4741526b
MG
4383 /*
4384 * Restore the original nodemask if it was potentially replaced with
4385 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4386 */
e47483bc 4387 if (unlikely(ac.nodemask != nodemask))
4741526b 4388 ac.nodemask = nodemask;
16096c25 4389
4fcb0971 4390 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4391
4fcb0971 4392out:
c4159a75
VD
4393 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4394 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4395 __free_pages(page, order);
4396 page = NULL;
4949148a
VD
4397 }
4398
4fcb0971
MG
4399 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4400
11e33f6a 4401 return page;
1da177e4 4402}
d239171e 4403EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4404
4405/*
9ea9a680
MH
4406 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4407 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4408 * you need to access high mem.
1da177e4 4409 */
920c7a5d 4410unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4411{
945a1113
AM
4412 struct page *page;
4413
9ea9a680 4414 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4415 if (!page)
4416 return 0;
4417 return (unsigned long) page_address(page);
4418}
1da177e4
LT
4419EXPORT_SYMBOL(__get_free_pages);
4420
920c7a5d 4421unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4422{
945a1113 4423 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4424}
1da177e4
LT
4425EXPORT_SYMBOL(get_zeroed_page);
4426
920c7a5d 4427void __free_pages(struct page *page, unsigned int order)
1da177e4 4428{
b5810039 4429 if (put_page_testzero(page)) {
1da177e4 4430 if (order == 0)
2d4894b5 4431 free_unref_page(page);
1da177e4
LT
4432 else
4433 __free_pages_ok(page, order);
4434 }
4435}
4436
4437EXPORT_SYMBOL(__free_pages);
4438
920c7a5d 4439void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4440{
4441 if (addr != 0) {
725d704e 4442 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4443 __free_pages(virt_to_page((void *)addr), order);
4444 }
4445}
4446
4447EXPORT_SYMBOL(free_pages);
4448
b63ae8ca
AD
4449/*
4450 * Page Fragment:
4451 * An arbitrary-length arbitrary-offset area of memory which resides
4452 * within a 0 or higher order page. Multiple fragments within that page
4453 * are individually refcounted, in the page's reference counter.
4454 *
4455 * The page_frag functions below provide a simple allocation framework for
4456 * page fragments. This is used by the network stack and network device
4457 * drivers to provide a backing region of memory for use as either an
4458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4459 */
2976db80
AD
4460static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4461 gfp_t gfp_mask)
b63ae8ca
AD
4462{
4463 struct page *page = NULL;
4464 gfp_t gfp = gfp_mask;
4465
4466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4467 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4468 __GFP_NOMEMALLOC;
4469 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4470 PAGE_FRAG_CACHE_MAX_ORDER);
4471 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4472#endif
4473 if (unlikely(!page))
4474 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4475
4476 nc->va = page ? page_address(page) : NULL;
4477
4478 return page;
4479}
4480
2976db80 4481void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4482{
4483 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4484
4485 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4486 unsigned int order = compound_order(page);
4487
44fdffd7 4488 if (order == 0)
2d4894b5 4489 free_unref_page(page);
44fdffd7
AD
4490 else
4491 __free_pages_ok(page, order);
4492 }
4493}
2976db80 4494EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4495
8c2dd3e4
AD
4496void *page_frag_alloc(struct page_frag_cache *nc,
4497 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4498{
4499 unsigned int size = PAGE_SIZE;
4500 struct page *page;
4501 int offset;
4502
4503 if (unlikely(!nc->va)) {
4504refill:
2976db80 4505 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4506 if (!page)
4507 return NULL;
4508
4509#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4510 /* if size can vary use size else just use PAGE_SIZE */
4511 size = nc->size;
4512#endif
4513 /* Even if we own the page, we do not use atomic_set().
4514 * This would break get_page_unless_zero() users.
4515 */
fe896d18 4516 page_ref_add(page, size - 1);
b63ae8ca
AD
4517
4518 /* reset page count bias and offset to start of new frag */
2f064f34 4519 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4520 nc->pagecnt_bias = size;
4521 nc->offset = size;
4522 }
4523
4524 offset = nc->offset - fragsz;
4525 if (unlikely(offset < 0)) {
4526 page = virt_to_page(nc->va);
4527
fe896d18 4528 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4529 goto refill;
4530
4531#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4532 /* if size can vary use size else just use PAGE_SIZE */
4533 size = nc->size;
4534#endif
4535 /* OK, page count is 0, we can safely set it */
fe896d18 4536 set_page_count(page, size);
b63ae8ca
AD
4537
4538 /* reset page count bias and offset to start of new frag */
4539 nc->pagecnt_bias = size;
4540 offset = size - fragsz;
4541 }
4542
4543 nc->pagecnt_bias--;
4544 nc->offset = offset;
4545
4546 return nc->va + offset;
4547}
8c2dd3e4 4548EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4549
4550/*
4551 * Frees a page fragment allocated out of either a compound or order 0 page.
4552 */
8c2dd3e4 4553void page_frag_free(void *addr)
b63ae8ca
AD
4554{
4555 struct page *page = virt_to_head_page(addr);
4556
4557 if (unlikely(put_page_testzero(page)))
4558 __free_pages_ok(page, compound_order(page));
4559}
8c2dd3e4 4560EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4561
d00181b9
KS
4562static void *make_alloc_exact(unsigned long addr, unsigned int order,
4563 size_t size)
ee85c2e1
AK
4564{
4565 if (addr) {
4566 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4567 unsigned long used = addr + PAGE_ALIGN(size);
4568
4569 split_page(virt_to_page((void *)addr), order);
4570 while (used < alloc_end) {
4571 free_page(used);
4572 used += PAGE_SIZE;
4573 }
4574 }
4575 return (void *)addr;
4576}
4577
2be0ffe2
TT
4578/**
4579 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4580 * @size: the number of bytes to allocate
4581 * @gfp_mask: GFP flags for the allocation
4582 *
4583 * This function is similar to alloc_pages(), except that it allocates the
4584 * minimum number of pages to satisfy the request. alloc_pages() can only
4585 * allocate memory in power-of-two pages.
4586 *
4587 * This function is also limited by MAX_ORDER.
4588 *
4589 * Memory allocated by this function must be released by free_pages_exact().
4590 */
4591void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4592{
4593 unsigned int order = get_order(size);
4594 unsigned long addr;
4595
4596 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4597 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4598}
4599EXPORT_SYMBOL(alloc_pages_exact);
4600
ee85c2e1
AK
4601/**
4602 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4603 * pages on a node.
b5e6ab58 4604 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4605 * @size: the number of bytes to allocate
4606 * @gfp_mask: GFP flags for the allocation
4607 *
4608 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4609 * back.
ee85c2e1 4610 */
e1931811 4611void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4612{
d00181b9 4613 unsigned int order = get_order(size);
ee85c2e1
AK
4614 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4615 if (!p)
4616 return NULL;
4617 return make_alloc_exact((unsigned long)page_address(p), order, size);
4618}
ee85c2e1 4619
2be0ffe2
TT
4620/**
4621 * free_pages_exact - release memory allocated via alloc_pages_exact()
4622 * @virt: the value returned by alloc_pages_exact.
4623 * @size: size of allocation, same value as passed to alloc_pages_exact().
4624 *
4625 * Release the memory allocated by a previous call to alloc_pages_exact.
4626 */
4627void free_pages_exact(void *virt, size_t size)
4628{
4629 unsigned long addr = (unsigned long)virt;
4630 unsigned long end = addr + PAGE_ALIGN(size);
4631
4632 while (addr < end) {
4633 free_page(addr);
4634 addr += PAGE_SIZE;
4635 }
4636}
4637EXPORT_SYMBOL(free_pages_exact);
4638
e0fb5815
ZY
4639/**
4640 * nr_free_zone_pages - count number of pages beyond high watermark
4641 * @offset: The zone index of the highest zone
4642 *
4643 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4644 * high watermark within all zones at or below a given zone index. For each
4645 * zone, the number of pages is calculated as:
0e056eb5
MCC
4646 *
4647 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4648 */
ebec3862 4649static unsigned long nr_free_zone_pages(int offset)
1da177e4 4650{
dd1a239f 4651 struct zoneref *z;
54a6eb5c
MG
4652 struct zone *zone;
4653
e310fd43 4654 /* Just pick one node, since fallback list is circular */
ebec3862 4655 unsigned long sum = 0;
1da177e4 4656
0e88460d 4657 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4658
54a6eb5c 4659 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4660 unsigned long size = zone->managed_pages;
41858966 4661 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4662 if (size > high)
4663 sum += size - high;
1da177e4
LT
4664 }
4665
4666 return sum;
4667}
4668
e0fb5815
ZY
4669/**
4670 * nr_free_buffer_pages - count number of pages beyond high watermark
4671 *
4672 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4673 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4674 */
ebec3862 4675unsigned long nr_free_buffer_pages(void)
1da177e4 4676{
af4ca457 4677 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4678}
c2f1a551 4679EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4680
e0fb5815
ZY
4681/**
4682 * nr_free_pagecache_pages - count number of pages beyond high watermark
4683 *
4684 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4685 * high watermark within all zones.
1da177e4 4686 */
ebec3862 4687unsigned long nr_free_pagecache_pages(void)
1da177e4 4688{
2a1e274a 4689 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4690}
08e0f6a9
CL
4691
4692static inline void show_node(struct zone *zone)
1da177e4 4693{
e5adfffc 4694 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4695 printk("Node %d ", zone_to_nid(zone));
1da177e4 4696}
1da177e4 4697
d02bd27b
IR
4698long si_mem_available(void)
4699{
4700 long available;
4701 unsigned long pagecache;
4702 unsigned long wmark_low = 0;
4703 unsigned long pages[NR_LRU_LISTS];
b29940c1 4704 unsigned long reclaimable;
d02bd27b
IR
4705 struct zone *zone;
4706 int lru;
4707
4708 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4709 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4710
4711 for_each_zone(zone)
4712 wmark_low += zone->watermark[WMARK_LOW];
4713
4714 /*
4715 * Estimate the amount of memory available for userspace allocations,
4716 * without causing swapping.
4717 */
c41f012a 4718 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4719
4720 /*
4721 * Not all the page cache can be freed, otherwise the system will
4722 * start swapping. Assume at least half of the page cache, or the
4723 * low watermark worth of cache, needs to stay.
4724 */
4725 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4726 pagecache -= min(pagecache / 2, wmark_low);
4727 available += pagecache;
4728
4729 /*
b29940c1
VB
4730 * Part of the reclaimable slab and other kernel memory consists of
4731 * items that are in use, and cannot be freed. Cap this estimate at the
4732 * low watermark.
d02bd27b 4733 */
b29940c1
VB
4734 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4735 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4736 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4737
d02bd27b
IR
4738 if (available < 0)
4739 available = 0;
4740 return available;
4741}
4742EXPORT_SYMBOL_GPL(si_mem_available);
4743
1da177e4
LT
4744void si_meminfo(struct sysinfo *val)
4745{
4746 val->totalram = totalram_pages;
11fb9989 4747 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4748 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4749 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4750 val->totalhigh = totalhigh_pages;
4751 val->freehigh = nr_free_highpages();
1da177e4
LT
4752 val->mem_unit = PAGE_SIZE;
4753}
4754
4755EXPORT_SYMBOL(si_meminfo);
4756
4757#ifdef CONFIG_NUMA
4758void si_meminfo_node(struct sysinfo *val, int nid)
4759{
cdd91a77
JL
4760 int zone_type; /* needs to be signed */
4761 unsigned long managed_pages = 0;
fc2bd799
JK
4762 unsigned long managed_highpages = 0;
4763 unsigned long free_highpages = 0;
1da177e4
LT
4764 pg_data_t *pgdat = NODE_DATA(nid);
4765
cdd91a77
JL
4766 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4767 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4768 val->totalram = managed_pages;
11fb9989 4769 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4770 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4771#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4772 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4773 struct zone *zone = &pgdat->node_zones[zone_type];
4774
4775 if (is_highmem(zone)) {
4776 managed_highpages += zone->managed_pages;
4777 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4778 }
4779 }
4780 val->totalhigh = managed_highpages;
4781 val->freehigh = free_highpages;
98d2b0eb 4782#else
fc2bd799
JK
4783 val->totalhigh = managed_highpages;
4784 val->freehigh = free_highpages;
98d2b0eb 4785#endif
1da177e4
LT
4786 val->mem_unit = PAGE_SIZE;
4787}
4788#endif
4789
ddd588b5 4790/*
7bf02ea2
DR
4791 * Determine whether the node should be displayed or not, depending on whether
4792 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4793 */
9af744d7 4794static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4795{
ddd588b5 4796 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4797 return false;
ddd588b5 4798
9af744d7
MH
4799 /*
4800 * no node mask - aka implicit memory numa policy. Do not bother with
4801 * the synchronization - read_mems_allowed_begin - because we do not
4802 * have to be precise here.
4803 */
4804 if (!nodemask)
4805 nodemask = &cpuset_current_mems_allowed;
4806
4807 return !node_isset(nid, *nodemask);
ddd588b5
DR
4808}
4809
1da177e4
LT
4810#define K(x) ((x) << (PAGE_SHIFT-10))
4811
377e4f16
RV
4812static void show_migration_types(unsigned char type)
4813{
4814 static const char types[MIGRATE_TYPES] = {
4815 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4816 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4817 [MIGRATE_RECLAIMABLE] = 'E',
4818 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4819#ifdef CONFIG_CMA
4820 [MIGRATE_CMA] = 'C',
4821#endif
194159fb 4822#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4823 [MIGRATE_ISOLATE] = 'I',
194159fb 4824#endif
377e4f16
RV
4825 };
4826 char tmp[MIGRATE_TYPES + 1];
4827 char *p = tmp;
4828 int i;
4829
4830 for (i = 0; i < MIGRATE_TYPES; i++) {
4831 if (type & (1 << i))
4832 *p++ = types[i];
4833 }
4834
4835 *p = '\0';
1f84a18f 4836 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4837}
4838
1da177e4
LT
4839/*
4840 * Show free area list (used inside shift_scroll-lock stuff)
4841 * We also calculate the percentage fragmentation. We do this by counting the
4842 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4843 *
4844 * Bits in @filter:
4845 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4846 * cpuset.
1da177e4 4847 */
9af744d7 4848void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4849{
d1bfcdb8 4850 unsigned long free_pcp = 0;
c7241913 4851 int cpu;
1da177e4 4852 struct zone *zone;
599d0c95 4853 pg_data_t *pgdat;
1da177e4 4854
ee99c71c 4855 for_each_populated_zone(zone) {
9af744d7 4856 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4857 continue;
d1bfcdb8 4858
761b0677
KK
4859 for_each_online_cpu(cpu)
4860 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4861 }
4862
a731286d
KM
4863 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4864 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4865 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4866 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4867 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4868 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4869 global_node_page_state(NR_ACTIVE_ANON),
4870 global_node_page_state(NR_INACTIVE_ANON),
4871 global_node_page_state(NR_ISOLATED_ANON),
4872 global_node_page_state(NR_ACTIVE_FILE),
4873 global_node_page_state(NR_INACTIVE_FILE),
4874 global_node_page_state(NR_ISOLATED_FILE),
4875 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4876 global_node_page_state(NR_FILE_DIRTY),
4877 global_node_page_state(NR_WRITEBACK),
4878 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4879 global_node_page_state(NR_SLAB_RECLAIMABLE),
4880 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4881 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4882 global_node_page_state(NR_SHMEM),
c41f012a
MH
4883 global_zone_page_state(NR_PAGETABLE),
4884 global_zone_page_state(NR_BOUNCE),
4885 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4886 free_pcp,
c41f012a 4887 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4888
599d0c95 4889 for_each_online_pgdat(pgdat) {
9af744d7 4890 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4891 continue;
4892
599d0c95
MG
4893 printk("Node %d"
4894 " active_anon:%lukB"
4895 " inactive_anon:%lukB"
4896 " active_file:%lukB"
4897 " inactive_file:%lukB"
4898 " unevictable:%lukB"
4899 " isolated(anon):%lukB"
4900 " isolated(file):%lukB"
50658e2e 4901 " mapped:%lukB"
11fb9989
MG
4902 " dirty:%lukB"
4903 " writeback:%lukB"
4904 " shmem:%lukB"
4905#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4906 " shmem_thp: %lukB"
4907 " shmem_pmdmapped: %lukB"
4908 " anon_thp: %lukB"
4909#endif
4910 " writeback_tmp:%lukB"
4911 " unstable:%lukB"
599d0c95
MG
4912 " all_unreclaimable? %s"
4913 "\n",
4914 pgdat->node_id,
4915 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4916 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4917 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4918 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4919 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4920 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4921 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4922 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4923 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4924 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4925 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4926#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4927 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4928 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4929 * HPAGE_PMD_NR),
4930 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4931#endif
11fb9989
MG
4932 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4933 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4934 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4935 "yes" : "no");
599d0c95
MG
4936 }
4937
ee99c71c 4938 for_each_populated_zone(zone) {
1da177e4
LT
4939 int i;
4940
9af744d7 4941 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4942 continue;
d1bfcdb8
KK
4943
4944 free_pcp = 0;
4945 for_each_online_cpu(cpu)
4946 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4947
1da177e4 4948 show_node(zone);
1f84a18f
JP
4949 printk(KERN_CONT
4950 "%s"
1da177e4
LT
4951 " free:%lukB"
4952 " min:%lukB"
4953 " low:%lukB"
4954 " high:%lukB"
71c799f4
MK
4955 " active_anon:%lukB"
4956 " inactive_anon:%lukB"
4957 " active_file:%lukB"
4958 " inactive_file:%lukB"
4959 " unevictable:%lukB"
5a1c84b4 4960 " writepending:%lukB"
1da177e4 4961 " present:%lukB"
9feedc9d 4962 " managed:%lukB"
4a0aa73f 4963 " mlocked:%lukB"
c6a7f572 4964 " kernel_stack:%lukB"
4a0aa73f 4965 " pagetables:%lukB"
4a0aa73f 4966 " bounce:%lukB"
d1bfcdb8
KK
4967 " free_pcp:%lukB"
4968 " local_pcp:%ukB"
d1ce749a 4969 " free_cma:%lukB"
1da177e4
LT
4970 "\n",
4971 zone->name,
88f5acf8 4972 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4973 K(min_wmark_pages(zone)),
4974 K(low_wmark_pages(zone)),
4975 K(high_wmark_pages(zone)),
71c799f4
MK
4976 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4977 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4978 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4979 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4980 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4981 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4982 K(zone->present_pages),
9feedc9d 4983 K(zone->managed_pages),
4a0aa73f 4984 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4985 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4986 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4987 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4988 K(free_pcp),
4989 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4990 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4991 printk("lowmem_reserve[]:");
4992 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4993 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4994 printk(KERN_CONT "\n");
1da177e4
LT
4995 }
4996
ee99c71c 4997 for_each_populated_zone(zone) {
d00181b9
KS
4998 unsigned int order;
4999 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5000 unsigned char types[MAX_ORDER];
1da177e4 5001
9af744d7 5002 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5003 continue;
1da177e4 5004 show_node(zone);
1f84a18f 5005 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5006
5007 spin_lock_irqsave(&zone->lock, flags);
5008 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5009 struct free_area *area = &zone->free_area[order];
5010 int type;
5011
5012 nr[order] = area->nr_free;
8f9de51a 5013 total += nr[order] << order;
377e4f16
RV
5014
5015 types[order] = 0;
5016 for (type = 0; type < MIGRATE_TYPES; type++) {
5017 if (!list_empty(&area->free_list[type]))
5018 types[order] |= 1 << type;
5019 }
1da177e4
LT
5020 }
5021 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5022 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5023 printk(KERN_CONT "%lu*%lukB ",
5024 nr[order], K(1UL) << order);
377e4f16
RV
5025 if (nr[order])
5026 show_migration_types(types[order]);
5027 }
1f84a18f 5028 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5029 }
5030
949f7ec5
DR
5031 hugetlb_show_meminfo();
5032
11fb9989 5033 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5034
1da177e4
LT
5035 show_swap_cache_info();
5036}
5037
19770b32
MG
5038static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5039{
5040 zoneref->zone = zone;
5041 zoneref->zone_idx = zone_idx(zone);
5042}
5043
1da177e4
LT
5044/*
5045 * Builds allocation fallback zone lists.
1a93205b
CL
5046 *
5047 * Add all populated zones of a node to the zonelist.
1da177e4 5048 */
9d3be21b 5049static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5050{
1a93205b 5051 struct zone *zone;
bc732f1d 5052 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5053 int nr_zones = 0;
02a68a5e
CL
5054
5055 do {
2f6726e5 5056 zone_type--;
070f8032 5057 zone = pgdat->node_zones + zone_type;
6aa303de 5058 if (managed_zone(zone)) {
9d3be21b 5059 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5060 check_highest_zone(zone_type);
1da177e4 5061 }
2f6726e5 5062 } while (zone_type);
bc732f1d 5063
070f8032 5064 return nr_zones;
1da177e4
LT
5065}
5066
5067#ifdef CONFIG_NUMA
f0c0b2b8
KH
5068
5069static int __parse_numa_zonelist_order(char *s)
5070{
c9bff3ee
MH
5071 /*
5072 * We used to support different zonlists modes but they turned
5073 * out to be just not useful. Let's keep the warning in place
5074 * if somebody still use the cmd line parameter so that we do
5075 * not fail it silently
5076 */
5077 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5078 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5079 return -EINVAL;
5080 }
5081 return 0;
5082}
5083
5084static __init int setup_numa_zonelist_order(char *s)
5085{
ecb256f8
VL
5086 if (!s)
5087 return 0;
5088
c9bff3ee 5089 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5090}
5091early_param("numa_zonelist_order", setup_numa_zonelist_order);
5092
c9bff3ee
MH
5093char numa_zonelist_order[] = "Node";
5094
f0c0b2b8
KH
5095/*
5096 * sysctl handler for numa_zonelist_order
5097 */
cccad5b9 5098int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5099 void __user *buffer, size_t *length,
f0c0b2b8
KH
5100 loff_t *ppos)
5101{
c9bff3ee 5102 char *str;
f0c0b2b8
KH
5103 int ret;
5104
c9bff3ee
MH
5105 if (!write)
5106 return proc_dostring(table, write, buffer, length, ppos);
5107 str = memdup_user_nul(buffer, 16);
5108 if (IS_ERR(str))
5109 return PTR_ERR(str);
dacbde09 5110
c9bff3ee
MH
5111 ret = __parse_numa_zonelist_order(str);
5112 kfree(str);
443c6f14 5113 return ret;
f0c0b2b8
KH
5114}
5115
5116
62bc62a8 5117#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5118static int node_load[MAX_NUMNODES];
5119
1da177e4 5120/**
4dc3b16b 5121 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5122 * @node: node whose fallback list we're appending
5123 * @used_node_mask: nodemask_t of already used nodes
5124 *
5125 * We use a number of factors to determine which is the next node that should
5126 * appear on a given node's fallback list. The node should not have appeared
5127 * already in @node's fallback list, and it should be the next closest node
5128 * according to the distance array (which contains arbitrary distance values
5129 * from each node to each node in the system), and should also prefer nodes
5130 * with no CPUs, since presumably they'll have very little allocation pressure
5131 * on them otherwise.
5132 * It returns -1 if no node is found.
5133 */
f0c0b2b8 5134static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5135{
4cf808eb 5136 int n, val;
1da177e4 5137 int min_val = INT_MAX;
00ef2d2f 5138 int best_node = NUMA_NO_NODE;
a70f7302 5139 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5140
4cf808eb
LT
5141 /* Use the local node if we haven't already */
5142 if (!node_isset(node, *used_node_mask)) {
5143 node_set(node, *used_node_mask);
5144 return node;
5145 }
1da177e4 5146
4b0ef1fe 5147 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5148
5149 /* Don't want a node to appear more than once */
5150 if (node_isset(n, *used_node_mask))
5151 continue;
5152
1da177e4
LT
5153 /* Use the distance array to find the distance */
5154 val = node_distance(node, n);
5155
4cf808eb
LT
5156 /* Penalize nodes under us ("prefer the next node") */
5157 val += (n < node);
5158
1da177e4 5159 /* Give preference to headless and unused nodes */
a70f7302
RR
5160 tmp = cpumask_of_node(n);
5161 if (!cpumask_empty(tmp))
1da177e4
LT
5162 val += PENALTY_FOR_NODE_WITH_CPUS;
5163
5164 /* Slight preference for less loaded node */
5165 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5166 val += node_load[n];
5167
5168 if (val < min_val) {
5169 min_val = val;
5170 best_node = n;
5171 }
5172 }
5173
5174 if (best_node >= 0)
5175 node_set(best_node, *used_node_mask);
5176
5177 return best_node;
5178}
5179
f0c0b2b8
KH
5180
5181/*
5182 * Build zonelists ordered by node and zones within node.
5183 * This results in maximum locality--normal zone overflows into local
5184 * DMA zone, if any--but risks exhausting DMA zone.
5185 */
9d3be21b
MH
5186static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5187 unsigned nr_nodes)
1da177e4 5188{
9d3be21b
MH
5189 struct zoneref *zonerefs;
5190 int i;
5191
5192 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5193
5194 for (i = 0; i < nr_nodes; i++) {
5195 int nr_zones;
5196
5197 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5198
9d3be21b
MH
5199 nr_zones = build_zonerefs_node(node, zonerefs);
5200 zonerefs += nr_zones;
5201 }
5202 zonerefs->zone = NULL;
5203 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5204}
5205
523b9458
CL
5206/*
5207 * Build gfp_thisnode zonelists
5208 */
5209static void build_thisnode_zonelists(pg_data_t *pgdat)
5210{
9d3be21b
MH
5211 struct zoneref *zonerefs;
5212 int nr_zones;
523b9458 5213
9d3be21b
MH
5214 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5215 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5216 zonerefs += nr_zones;
5217 zonerefs->zone = NULL;
5218 zonerefs->zone_idx = 0;
523b9458
CL
5219}
5220
f0c0b2b8
KH
5221/*
5222 * Build zonelists ordered by zone and nodes within zones.
5223 * This results in conserving DMA zone[s] until all Normal memory is
5224 * exhausted, but results in overflowing to remote node while memory
5225 * may still exist in local DMA zone.
5226 */
f0c0b2b8 5227
f0c0b2b8
KH
5228static void build_zonelists(pg_data_t *pgdat)
5229{
9d3be21b
MH
5230 static int node_order[MAX_NUMNODES];
5231 int node, load, nr_nodes = 0;
1da177e4 5232 nodemask_t used_mask;
f0c0b2b8 5233 int local_node, prev_node;
1da177e4
LT
5234
5235 /* NUMA-aware ordering of nodes */
5236 local_node = pgdat->node_id;
62bc62a8 5237 load = nr_online_nodes;
1da177e4
LT
5238 prev_node = local_node;
5239 nodes_clear(used_mask);
f0c0b2b8 5240
f0c0b2b8 5241 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5242 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5243 /*
5244 * We don't want to pressure a particular node.
5245 * So adding penalty to the first node in same
5246 * distance group to make it round-robin.
5247 */
957f822a
DR
5248 if (node_distance(local_node, node) !=
5249 node_distance(local_node, prev_node))
f0c0b2b8
KH
5250 node_load[node] = load;
5251
9d3be21b 5252 node_order[nr_nodes++] = node;
1da177e4
LT
5253 prev_node = node;
5254 load--;
1da177e4 5255 }
523b9458 5256
9d3be21b 5257 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5258 build_thisnode_zonelists(pgdat);
1da177e4
LT
5259}
5260
7aac7898
LS
5261#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5262/*
5263 * Return node id of node used for "local" allocations.
5264 * I.e., first node id of first zone in arg node's generic zonelist.
5265 * Used for initializing percpu 'numa_mem', which is used primarily
5266 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5267 */
5268int local_memory_node(int node)
5269{
c33d6c06 5270 struct zoneref *z;
7aac7898 5271
c33d6c06 5272 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5273 gfp_zone(GFP_KERNEL),
c33d6c06 5274 NULL);
c1093b74 5275 return zone_to_nid(z->zone);
7aac7898
LS
5276}
5277#endif
f0c0b2b8 5278
6423aa81
JK
5279static void setup_min_unmapped_ratio(void);
5280static void setup_min_slab_ratio(void);
1da177e4
LT
5281#else /* CONFIG_NUMA */
5282
f0c0b2b8 5283static void build_zonelists(pg_data_t *pgdat)
1da177e4 5284{
19655d34 5285 int node, local_node;
9d3be21b
MH
5286 struct zoneref *zonerefs;
5287 int nr_zones;
1da177e4
LT
5288
5289 local_node = pgdat->node_id;
1da177e4 5290
9d3be21b
MH
5291 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5292 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5293 zonerefs += nr_zones;
1da177e4 5294
54a6eb5c
MG
5295 /*
5296 * Now we build the zonelist so that it contains the zones
5297 * of all the other nodes.
5298 * We don't want to pressure a particular node, so when
5299 * building the zones for node N, we make sure that the
5300 * zones coming right after the local ones are those from
5301 * node N+1 (modulo N)
5302 */
5303 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5304 if (!node_online(node))
5305 continue;
9d3be21b
MH
5306 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5307 zonerefs += nr_zones;
1da177e4 5308 }
54a6eb5c
MG
5309 for (node = 0; node < local_node; node++) {
5310 if (!node_online(node))
5311 continue;
9d3be21b
MH
5312 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5313 zonerefs += nr_zones;
54a6eb5c
MG
5314 }
5315
9d3be21b
MH
5316 zonerefs->zone = NULL;
5317 zonerefs->zone_idx = 0;
1da177e4
LT
5318}
5319
5320#endif /* CONFIG_NUMA */
5321
99dcc3e5
CL
5322/*
5323 * Boot pageset table. One per cpu which is going to be used for all
5324 * zones and all nodes. The parameters will be set in such a way
5325 * that an item put on a list will immediately be handed over to
5326 * the buddy list. This is safe since pageset manipulation is done
5327 * with interrupts disabled.
5328 *
5329 * The boot_pagesets must be kept even after bootup is complete for
5330 * unused processors and/or zones. They do play a role for bootstrapping
5331 * hotplugged processors.
5332 *
5333 * zoneinfo_show() and maybe other functions do
5334 * not check if the processor is online before following the pageset pointer.
5335 * Other parts of the kernel may not check if the zone is available.
5336 */
5337static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5338static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5339static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5340
11cd8638 5341static void __build_all_zonelists(void *data)
1da177e4 5342{
6811378e 5343 int nid;
afb6ebb3 5344 int __maybe_unused cpu;
9adb62a5 5345 pg_data_t *self = data;
b93e0f32
MH
5346 static DEFINE_SPINLOCK(lock);
5347
5348 spin_lock(&lock);
9276b1bc 5349
7f9cfb31
BL
5350#ifdef CONFIG_NUMA
5351 memset(node_load, 0, sizeof(node_load));
5352#endif
9adb62a5 5353
c1152583
WY
5354 /*
5355 * This node is hotadded and no memory is yet present. So just
5356 * building zonelists is fine - no need to touch other nodes.
5357 */
9adb62a5
JL
5358 if (self && !node_online(self->node_id)) {
5359 build_zonelists(self);
c1152583
WY
5360 } else {
5361 for_each_online_node(nid) {
5362 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5363
c1152583
WY
5364 build_zonelists(pgdat);
5365 }
99dcc3e5 5366
7aac7898
LS
5367#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5368 /*
5369 * We now know the "local memory node" for each node--
5370 * i.e., the node of the first zone in the generic zonelist.
5371 * Set up numa_mem percpu variable for on-line cpus. During
5372 * boot, only the boot cpu should be on-line; we'll init the
5373 * secondary cpus' numa_mem as they come on-line. During
5374 * node/memory hotplug, we'll fixup all on-line cpus.
5375 */
d9c9a0b9 5376 for_each_online_cpu(cpu)
7aac7898 5377 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5378#endif
d9c9a0b9 5379 }
b93e0f32
MH
5380
5381 spin_unlock(&lock);
6811378e
YG
5382}
5383
061f67bc
RV
5384static noinline void __init
5385build_all_zonelists_init(void)
5386{
afb6ebb3
MH
5387 int cpu;
5388
061f67bc 5389 __build_all_zonelists(NULL);
afb6ebb3
MH
5390
5391 /*
5392 * Initialize the boot_pagesets that are going to be used
5393 * for bootstrapping processors. The real pagesets for
5394 * each zone will be allocated later when the per cpu
5395 * allocator is available.
5396 *
5397 * boot_pagesets are used also for bootstrapping offline
5398 * cpus if the system is already booted because the pagesets
5399 * are needed to initialize allocators on a specific cpu too.
5400 * F.e. the percpu allocator needs the page allocator which
5401 * needs the percpu allocator in order to allocate its pagesets
5402 * (a chicken-egg dilemma).
5403 */
5404 for_each_possible_cpu(cpu)
5405 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5406
061f67bc
RV
5407 mminit_verify_zonelist();
5408 cpuset_init_current_mems_allowed();
5409}
5410
4eaf3f64 5411/*
4eaf3f64 5412 * unless system_state == SYSTEM_BOOTING.
061f67bc 5413 *
72675e13 5414 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5415 * [protected by SYSTEM_BOOTING].
4eaf3f64 5416 */
72675e13 5417void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5418{
5419 if (system_state == SYSTEM_BOOTING) {
061f67bc 5420 build_all_zonelists_init();
6811378e 5421 } else {
11cd8638 5422 __build_all_zonelists(pgdat);
6811378e
YG
5423 /* cpuset refresh routine should be here */
5424 }
bd1e22b8 5425 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5426 /*
5427 * Disable grouping by mobility if the number of pages in the
5428 * system is too low to allow the mechanism to work. It would be
5429 * more accurate, but expensive to check per-zone. This check is
5430 * made on memory-hotadd so a system can start with mobility
5431 * disabled and enable it later
5432 */
d9c23400 5433 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5434 page_group_by_mobility_disabled = 1;
5435 else
5436 page_group_by_mobility_disabled = 0;
5437
c9bff3ee 5438 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5439 nr_online_nodes,
756a025f
JP
5440 page_group_by_mobility_disabled ? "off" : "on",
5441 vm_total_pages);
f0c0b2b8 5442#ifdef CONFIG_NUMA
f88dfff5 5443 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5444#endif
1da177e4
LT
5445}
5446
1da177e4
LT
5447/*
5448 * Initially all pages are reserved - free ones are freed
5449 * up by free_all_bootmem() once the early boot process is
5450 * done. Non-atomic initialization, single-pass.
5451 */
c09b4240 5452void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5453 unsigned long start_pfn, enum memmap_context context,
5454 struct vmem_altmap *altmap)
1da177e4 5455{
29751f69 5456 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5457 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5458 unsigned long pfn;
3a80a7fa 5459 unsigned long nr_initialised = 0;
d0dc12e8 5460 struct page *page;
342332e6
TI
5461#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5462 struct memblock_region *r = NULL, *tmp;
5463#endif
1da177e4 5464
22b31eec
HD
5465 if (highest_memmap_pfn < end_pfn - 1)
5466 highest_memmap_pfn = end_pfn - 1;
5467
4b94ffdc
DW
5468 /*
5469 * Honor reservation requested by the driver for this ZONE_DEVICE
5470 * memory
5471 */
5472 if (altmap && start_pfn == altmap->base_pfn)
5473 start_pfn += altmap->reserve;
5474
cbe8dd4a 5475 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5476 /*
b72d0ffb
AM
5477 * There can be holes in boot-time mem_map[]s handed to this
5478 * function. They do not exist on hotplugged memory.
a2f3aa02 5479 */
b72d0ffb
AM
5480 if (context != MEMMAP_EARLY)
5481 goto not_early;
5482
f59f1caf 5483 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5484 continue;
5485 if (!early_pfn_in_nid(pfn, nid))
5486 continue;
5487 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5488 break;
342332e6
TI
5489
5490#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5491 /*
5492 * Check given memblock attribute by firmware which can affect
5493 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5494 * mirrored, it's an overlapped memmap init. skip it.
5495 */
5496 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5497 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5498 for_each_memblock(memory, tmp)
5499 if (pfn < memblock_region_memory_end_pfn(tmp))
5500 break;
5501 r = tmp;
5502 }
5503 if (pfn >= memblock_region_memory_base_pfn(r) &&
5504 memblock_is_mirror(r)) {
5505 /* already initialized as NORMAL */
5506 pfn = memblock_region_memory_end_pfn(r);
5507 continue;
342332e6 5508 }
a2f3aa02 5509 }
b72d0ffb 5510#endif
ac5d2539 5511
b72d0ffb 5512not_early:
d0dc12e8
PT
5513 page = pfn_to_page(pfn);
5514 __init_single_page(page, pfn, zone, nid);
5515 if (context == MEMMAP_HOTPLUG)
5516 SetPageReserved(page);
5517
ac5d2539
MG
5518 /*
5519 * Mark the block movable so that blocks are reserved for
5520 * movable at startup. This will force kernel allocations
5521 * to reserve their blocks rather than leaking throughout
5522 * the address space during boot when many long-lived
974a786e 5523 * kernel allocations are made.
ac5d2539
MG
5524 *
5525 * bitmap is created for zone's valid pfn range. but memmap
5526 * can be created for invalid pages (for alignment)
5527 * check here not to call set_pageblock_migratetype() against
5528 * pfn out of zone.
9bb5a391
MH
5529 *
5530 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5531 * because this is done early in sparse_add_one_section
ac5d2539
MG
5532 */
5533 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5534 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5535 cond_resched();
ac5d2539 5536 }
1da177e4
LT
5537 }
5538}
5539
1e548deb 5540static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5541{
7aeb09f9 5542 unsigned int order, t;
b2a0ac88
MG
5543 for_each_migratetype_order(order, t) {
5544 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5545 zone->free_area[order].nr_free = 0;
5546 }
5547}
5548
5549#ifndef __HAVE_ARCH_MEMMAP_INIT
5550#define memmap_init(size, nid, zone, start_pfn) \
a99583e7 5551 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
1da177e4
LT
5552#endif
5553
7cd2b0a3 5554static int zone_batchsize(struct zone *zone)
e7c8d5c9 5555{
3a6be87f 5556#ifdef CONFIG_MMU
e7c8d5c9
CL
5557 int batch;
5558
5559 /*
5560 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5561 * size of the zone.
e7c8d5c9 5562 */
b40da049 5563 batch = zone->managed_pages / 1024;
d8a759b5
AL
5564 /* But no more than a meg. */
5565 if (batch * PAGE_SIZE > 1024 * 1024)
5566 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5567 batch /= 4; /* We effectively *= 4 below */
5568 if (batch < 1)
5569 batch = 1;
5570
5571 /*
0ceaacc9
NP
5572 * Clamp the batch to a 2^n - 1 value. Having a power
5573 * of 2 value was found to be more likely to have
5574 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5575 *
0ceaacc9
NP
5576 * For example if 2 tasks are alternately allocating
5577 * batches of pages, one task can end up with a lot
5578 * of pages of one half of the possible page colors
5579 * and the other with pages of the other colors.
e7c8d5c9 5580 */
9155203a 5581 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5582
e7c8d5c9 5583 return batch;
3a6be87f
DH
5584
5585#else
5586 /* The deferral and batching of frees should be suppressed under NOMMU
5587 * conditions.
5588 *
5589 * The problem is that NOMMU needs to be able to allocate large chunks
5590 * of contiguous memory as there's no hardware page translation to
5591 * assemble apparent contiguous memory from discontiguous pages.
5592 *
5593 * Queueing large contiguous runs of pages for batching, however,
5594 * causes the pages to actually be freed in smaller chunks. As there
5595 * can be a significant delay between the individual batches being
5596 * recycled, this leads to the once large chunks of space being
5597 * fragmented and becoming unavailable for high-order allocations.
5598 */
5599 return 0;
5600#endif
e7c8d5c9
CL
5601}
5602
8d7a8fa9
CS
5603/*
5604 * pcp->high and pcp->batch values are related and dependent on one another:
5605 * ->batch must never be higher then ->high.
5606 * The following function updates them in a safe manner without read side
5607 * locking.
5608 *
5609 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5610 * those fields changing asynchronously (acording the the above rule).
5611 *
5612 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5613 * outside of boot time (or some other assurance that no concurrent updaters
5614 * exist).
5615 */
5616static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5617 unsigned long batch)
5618{
5619 /* start with a fail safe value for batch */
5620 pcp->batch = 1;
5621 smp_wmb();
5622
5623 /* Update high, then batch, in order */
5624 pcp->high = high;
5625 smp_wmb();
5626
5627 pcp->batch = batch;
5628}
5629
3664033c 5630/* a companion to pageset_set_high() */
4008bab7
CS
5631static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5632{
8d7a8fa9 5633 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5634}
5635
88c90dbc 5636static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5637{
5638 struct per_cpu_pages *pcp;
5f8dcc21 5639 int migratetype;
2caaad41 5640
1c6fe946
MD
5641 memset(p, 0, sizeof(*p));
5642
3dfa5721 5643 pcp = &p->pcp;
2caaad41 5644 pcp->count = 0;
5f8dcc21
MG
5645 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5646 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5647}
5648
88c90dbc
CS
5649static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5650{
5651 pageset_init(p);
5652 pageset_set_batch(p, batch);
5653}
5654
8ad4b1fb 5655/*
3664033c 5656 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5657 * to the value high for the pageset p.
5658 */
3664033c 5659static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5660 unsigned long high)
5661{
8d7a8fa9
CS
5662 unsigned long batch = max(1UL, high / 4);
5663 if ((high / 4) > (PAGE_SHIFT * 8))
5664 batch = PAGE_SHIFT * 8;
8ad4b1fb 5665
8d7a8fa9 5666 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5667}
5668
7cd2b0a3
DR
5669static void pageset_set_high_and_batch(struct zone *zone,
5670 struct per_cpu_pageset *pcp)
56cef2b8 5671{
56cef2b8 5672 if (percpu_pagelist_fraction)
3664033c 5673 pageset_set_high(pcp,
56cef2b8
CS
5674 (zone->managed_pages /
5675 percpu_pagelist_fraction));
5676 else
5677 pageset_set_batch(pcp, zone_batchsize(zone));
5678}
5679
169f6c19
CS
5680static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5681{
5682 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5683
5684 pageset_init(pcp);
5685 pageset_set_high_and_batch(zone, pcp);
5686}
5687
72675e13 5688void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5689{
5690 int cpu;
319774e2 5691 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5692 for_each_possible_cpu(cpu)
5693 zone_pageset_init(zone, cpu);
319774e2
WF
5694}
5695
2caaad41 5696/*
99dcc3e5
CL
5697 * Allocate per cpu pagesets and initialize them.
5698 * Before this call only boot pagesets were available.
e7c8d5c9 5699 */
99dcc3e5 5700void __init setup_per_cpu_pageset(void)
e7c8d5c9 5701{
b4911ea2 5702 struct pglist_data *pgdat;
99dcc3e5 5703 struct zone *zone;
e7c8d5c9 5704
319774e2
WF
5705 for_each_populated_zone(zone)
5706 setup_zone_pageset(zone);
b4911ea2
MG
5707
5708 for_each_online_pgdat(pgdat)
5709 pgdat->per_cpu_nodestats =
5710 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5711}
5712
c09b4240 5713static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5714{
99dcc3e5
CL
5715 /*
5716 * per cpu subsystem is not up at this point. The following code
5717 * relies on the ability of the linker to provide the
5718 * offset of a (static) per cpu variable into the per cpu area.
5719 */
5720 zone->pageset = &boot_pageset;
ed8ece2e 5721
b38a8725 5722 if (populated_zone(zone))
99dcc3e5
CL
5723 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5724 zone->name, zone->present_pages,
5725 zone_batchsize(zone));
ed8ece2e
DH
5726}
5727
dc0bbf3b 5728void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5729 unsigned long zone_start_pfn,
b171e409 5730 unsigned long size)
ed8ece2e
DH
5731{
5732 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5733
ed8ece2e
DH
5734 pgdat->nr_zones = zone_idx(zone) + 1;
5735
ed8ece2e
DH
5736 zone->zone_start_pfn = zone_start_pfn;
5737
708614e6
MG
5738 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5739 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5740 pgdat->node_id,
5741 (unsigned long)zone_idx(zone),
5742 zone_start_pfn, (zone_start_pfn + size));
5743
1e548deb 5744 zone_init_free_lists(zone);
9dcb8b68 5745 zone->initialized = 1;
ed8ece2e
DH
5746}
5747
0ee332c1 5748#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5749#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5750
c713216d
MG
5751/*
5752 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5753 */
8a942fde
MG
5754int __meminit __early_pfn_to_nid(unsigned long pfn,
5755 struct mminit_pfnnid_cache *state)
c713216d 5756{
c13291a5 5757 unsigned long start_pfn, end_pfn;
e76b63f8 5758 int nid;
7c243c71 5759
8a942fde
MG
5760 if (state->last_start <= pfn && pfn < state->last_end)
5761 return state->last_nid;
c713216d 5762
e76b63f8
YL
5763 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5764 if (nid != -1) {
8a942fde
MG
5765 state->last_start = start_pfn;
5766 state->last_end = end_pfn;
5767 state->last_nid = nid;
e76b63f8
YL
5768 }
5769
5770 return nid;
c713216d
MG
5771}
5772#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5773
c713216d 5774/**
6782832e 5775 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5776 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5777 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5778 *
7d018176
ZZ
5779 * If an architecture guarantees that all ranges registered contain no holes
5780 * and may be freed, this this function may be used instead of calling
5781 * memblock_free_early_nid() manually.
c713216d 5782 */
c13291a5 5783void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5784{
c13291a5
TH
5785 unsigned long start_pfn, end_pfn;
5786 int i, this_nid;
edbe7d23 5787
c13291a5
TH
5788 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5789 start_pfn = min(start_pfn, max_low_pfn);
5790 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5791
c13291a5 5792 if (start_pfn < end_pfn)
6782832e
SS
5793 memblock_free_early_nid(PFN_PHYS(start_pfn),
5794 (end_pfn - start_pfn) << PAGE_SHIFT,
5795 this_nid);
edbe7d23 5796 }
edbe7d23 5797}
edbe7d23 5798
c713216d
MG
5799/**
5800 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5801 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5802 *
7d018176
ZZ
5803 * If an architecture guarantees that all ranges registered contain no holes and may
5804 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5805 */
5806void __init sparse_memory_present_with_active_regions(int nid)
5807{
c13291a5
TH
5808 unsigned long start_pfn, end_pfn;
5809 int i, this_nid;
c713216d 5810
c13291a5
TH
5811 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5812 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5813}
5814
5815/**
5816 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5817 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5818 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5819 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5820 *
5821 * It returns the start and end page frame of a node based on information
7d018176 5822 * provided by memblock_set_node(). If called for a node
c713216d 5823 * with no available memory, a warning is printed and the start and end
88ca3b94 5824 * PFNs will be 0.
c713216d 5825 */
a3142c8e 5826void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5827 unsigned long *start_pfn, unsigned long *end_pfn)
5828{
c13291a5 5829 unsigned long this_start_pfn, this_end_pfn;
c713216d 5830 int i;
c13291a5 5831
c713216d
MG
5832 *start_pfn = -1UL;
5833 *end_pfn = 0;
5834
c13291a5
TH
5835 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5836 *start_pfn = min(*start_pfn, this_start_pfn);
5837 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5838 }
5839
633c0666 5840 if (*start_pfn == -1UL)
c713216d 5841 *start_pfn = 0;
c713216d
MG
5842}
5843
2a1e274a
MG
5844/*
5845 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5846 * assumption is made that zones within a node are ordered in monotonic
5847 * increasing memory addresses so that the "highest" populated zone is used
5848 */
b69a7288 5849static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5850{
5851 int zone_index;
5852 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5853 if (zone_index == ZONE_MOVABLE)
5854 continue;
5855
5856 if (arch_zone_highest_possible_pfn[zone_index] >
5857 arch_zone_lowest_possible_pfn[zone_index])
5858 break;
5859 }
5860
5861 VM_BUG_ON(zone_index == -1);
5862 movable_zone = zone_index;
5863}
5864
5865/*
5866 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5867 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5868 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5869 * in each node depending on the size of each node and how evenly kernelcore
5870 * is distributed. This helper function adjusts the zone ranges
5871 * provided by the architecture for a given node by using the end of the
5872 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5873 * zones within a node are in order of monotonic increases memory addresses
5874 */
b69a7288 5875static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5876 unsigned long zone_type,
5877 unsigned long node_start_pfn,
5878 unsigned long node_end_pfn,
5879 unsigned long *zone_start_pfn,
5880 unsigned long *zone_end_pfn)
5881{
5882 /* Only adjust if ZONE_MOVABLE is on this node */
5883 if (zone_movable_pfn[nid]) {
5884 /* Size ZONE_MOVABLE */
5885 if (zone_type == ZONE_MOVABLE) {
5886 *zone_start_pfn = zone_movable_pfn[nid];
5887 *zone_end_pfn = min(node_end_pfn,
5888 arch_zone_highest_possible_pfn[movable_zone]);
5889
e506b996
XQ
5890 /* Adjust for ZONE_MOVABLE starting within this range */
5891 } else if (!mirrored_kernelcore &&
5892 *zone_start_pfn < zone_movable_pfn[nid] &&
5893 *zone_end_pfn > zone_movable_pfn[nid]) {
5894 *zone_end_pfn = zone_movable_pfn[nid];
5895
2a1e274a
MG
5896 /* Check if this whole range is within ZONE_MOVABLE */
5897 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5898 *zone_start_pfn = *zone_end_pfn;
5899 }
5900}
5901
c713216d
MG
5902/*
5903 * Return the number of pages a zone spans in a node, including holes
5904 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5905 */
6ea6e688 5906static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5907 unsigned long zone_type,
7960aedd
ZY
5908 unsigned long node_start_pfn,
5909 unsigned long node_end_pfn,
d91749c1
TI
5910 unsigned long *zone_start_pfn,
5911 unsigned long *zone_end_pfn,
c713216d
MG
5912 unsigned long *ignored)
5913{
b5685e92 5914 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5915 if (!node_start_pfn && !node_end_pfn)
5916 return 0;
5917
7960aedd 5918 /* Get the start and end of the zone */
d91749c1
TI
5919 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5920 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5921 adjust_zone_range_for_zone_movable(nid, zone_type,
5922 node_start_pfn, node_end_pfn,
d91749c1 5923 zone_start_pfn, zone_end_pfn);
c713216d
MG
5924
5925 /* Check that this node has pages within the zone's required range */
d91749c1 5926 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5927 return 0;
5928
5929 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5930 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5931 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5932
5933 /* Return the spanned pages */
d91749c1 5934 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5935}
5936
5937/*
5938 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5939 * then all holes in the requested range will be accounted for.
c713216d 5940 */
32996250 5941unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5942 unsigned long range_start_pfn,
5943 unsigned long range_end_pfn)
5944{
96e907d1
TH
5945 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5946 unsigned long start_pfn, end_pfn;
5947 int i;
c713216d 5948
96e907d1
TH
5949 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5950 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5951 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5952 nr_absent -= end_pfn - start_pfn;
c713216d 5953 }
96e907d1 5954 return nr_absent;
c713216d
MG
5955}
5956
5957/**
5958 * absent_pages_in_range - Return number of page frames in holes within a range
5959 * @start_pfn: The start PFN to start searching for holes
5960 * @end_pfn: The end PFN to stop searching for holes
5961 *
88ca3b94 5962 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5963 */
5964unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5965 unsigned long end_pfn)
5966{
5967 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5968}
5969
5970/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5971static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5972 unsigned long zone_type,
7960aedd
ZY
5973 unsigned long node_start_pfn,
5974 unsigned long node_end_pfn,
c713216d
MG
5975 unsigned long *ignored)
5976{
96e907d1
TH
5977 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5978 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5979 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5980 unsigned long nr_absent;
9c7cd687 5981
b5685e92 5982 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5983 if (!node_start_pfn && !node_end_pfn)
5984 return 0;
5985
96e907d1
TH
5986 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5987 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5988
2a1e274a
MG
5989 adjust_zone_range_for_zone_movable(nid, zone_type,
5990 node_start_pfn, node_end_pfn,
5991 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5992 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5993
5994 /*
5995 * ZONE_MOVABLE handling.
5996 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5997 * and vice versa.
5998 */
e506b996
XQ
5999 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6000 unsigned long start_pfn, end_pfn;
6001 struct memblock_region *r;
6002
6003 for_each_memblock(memory, r) {
6004 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6005 zone_start_pfn, zone_end_pfn);
6006 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6007 zone_start_pfn, zone_end_pfn);
6008
6009 if (zone_type == ZONE_MOVABLE &&
6010 memblock_is_mirror(r))
6011 nr_absent += end_pfn - start_pfn;
6012
6013 if (zone_type == ZONE_NORMAL &&
6014 !memblock_is_mirror(r))
6015 nr_absent += end_pfn - start_pfn;
342332e6
TI
6016 }
6017 }
6018
6019 return nr_absent;
c713216d 6020}
0e0b864e 6021
0ee332c1 6022#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6023static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6024 unsigned long zone_type,
7960aedd
ZY
6025 unsigned long node_start_pfn,
6026 unsigned long node_end_pfn,
d91749c1
TI
6027 unsigned long *zone_start_pfn,
6028 unsigned long *zone_end_pfn,
c713216d
MG
6029 unsigned long *zones_size)
6030{
d91749c1
TI
6031 unsigned int zone;
6032
6033 *zone_start_pfn = node_start_pfn;
6034 for (zone = 0; zone < zone_type; zone++)
6035 *zone_start_pfn += zones_size[zone];
6036
6037 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6038
c713216d
MG
6039 return zones_size[zone_type];
6040}
6041
6ea6e688 6042static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6043 unsigned long zone_type,
7960aedd
ZY
6044 unsigned long node_start_pfn,
6045 unsigned long node_end_pfn,
c713216d
MG
6046 unsigned long *zholes_size)
6047{
6048 if (!zholes_size)
6049 return 0;
6050
6051 return zholes_size[zone_type];
6052}
20e6926d 6053
0ee332c1 6054#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6055
a3142c8e 6056static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6057 unsigned long node_start_pfn,
6058 unsigned long node_end_pfn,
6059 unsigned long *zones_size,
6060 unsigned long *zholes_size)
c713216d 6061{
febd5949 6062 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6063 enum zone_type i;
6064
febd5949
GZ
6065 for (i = 0; i < MAX_NR_ZONES; i++) {
6066 struct zone *zone = pgdat->node_zones + i;
d91749c1 6067 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6068 unsigned long size, real_size;
c713216d 6069
febd5949
GZ
6070 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6071 node_start_pfn,
6072 node_end_pfn,
d91749c1
TI
6073 &zone_start_pfn,
6074 &zone_end_pfn,
febd5949
GZ
6075 zones_size);
6076 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6077 node_start_pfn, node_end_pfn,
6078 zholes_size);
d91749c1
TI
6079 if (size)
6080 zone->zone_start_pfn = zone_start_pfn;
6081 else
6082 zone->zone_start_pfn = 0;
febd5949
GZ
6083 zone->spanned_pages = size;
6084 zone->present_pages = real_size;
6085
6086 totalpages += size;
6087 realtotalpages += real_size;
6088 }
6089
6090 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6091 pgdat->node_present_pages = realtotalpages;
6092 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6093 realtotalpages);
6094}
6095
835c134e
MG
6096#ifndef CONFIG_SPARSEMEM
6097/*
6098 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6099 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6100 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6101 * round what is now in bits to nearest long in bits, then return it in
6102 * bytes.
6103 */
7c45512d 6104static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6105{
6106 unsigned long usemapsize;
6107
7c45512d 6108 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6109 usemapsize = roundup(zonesize, pageblock_nr_pages);
6110 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6111 usemapsize *= NR_PAGEBLOCK_BITS;
6112 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6113
6114 return usemapsize / 8;
6115}
6116
7cc2a959 6117static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6118 struct zone *zone,
6119 unsigned long zone_start_pfn,
6120 unsigned long zonesize)
835c134e 6121{
7c45512d 6122 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6123 zone->pageblock_flags = NULL;
58a01a45 6124 if (usemapsize)
6782832e
SS
6125 zone->pageblock_flags =
6126 memblock_virt_alloc_node_nopanic(usemapsize,
6127 pgdat->node_id);
835c134e
MG
6128}
6129#else
7c45512d
LT
6130static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6131 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6132#endif /* CONFIG_SPARSEMEM */
6133
d9c23400 6134#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6135
d9c23400 6136/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6137void __init set_pageblock_order(void)
d9c23400 6138{
955c1cd7
AM
6139 unsigned int order;
6140
d9c23400
MG
6141 /* Check that pageblock_nr_pages has not already been setup */
6142 if (pageblock_order)
6143 return;
6144
955c1cd7
AM
6145 if (HPAGE_SHIFT > PAGE_SHIFT)
6146 order = HUGETLB_PAGE_ORDER;
6147 else
6148 order = MAX_ORDER - 1;
6149
d9c23400
MG
6150 /*
6151 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6152 * This value may be variable depending on boot parameters on IA64 and
6153 * powerpc.
d9c23400
MG
6154 */
6155 pageblock_order = order;
6156}
6157#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6158
ba72cb8c
MG
6159/*
6160 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6161 * is unused as pageblock_order is set at compile-time. See
6162 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6163 * the kernel config
ba72cb8c 6164 */
03e85f9d 6165void __init set_pageblock_order(void)
ba72cb8c 6166{
ba72cb8c 6167}
d9c23400
MG
6168
6169#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6170
03e85f9d 6171static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6172 unsigned long present_pages)
01cefaef
JL
6173{
6174 unsigned long pages = spanned_pages;
6175
6176 /*
6177 * Provide a more accurate estimation if there are holes within
6178 * the zone and SPARSEMEM is in use. If there are holes within the
6179 * zone, each populated memory region may cost us one or two extra
6180 * memmap pages due to alignment because memmap pages for each
89d790ab 6181 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6182 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6183 */
6184 if (spanned_pages > present_pages + (present_pages >> 4) &&
6185 IS_ENABLED(CONFIG_SPARSEMEM))
6186 pages = present_pages;
6187
6188 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6189}
6190
ace1db39
OS
6191#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6192static void pgdat_init_split_queue(struct pglist_data *pgdat)
6193{
6194 spin_lock_init(&pgdat->split_queue_lock);
6195 INIT_LIST_HEAD(&pgdat->split_queue);
6196 pgdat->split_queue_len = 0;
6197}
6198#else
6199static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6200#endif
6201
6202#ifdef CONFIG_COMPACTION
6203static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6204{
6205 init_waitqueue_head(&pgdat->kcompactd_wait);
6206}
6207#else
6208static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6209#endif
6210
03e85f9d 6211static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6212{
208d54e5 6213 pgdat_resize_init(pgdat);
ace1db39 6214
ace1db39
OS
6215 pgdat_init_split_queue(pgdat);
6216 pgdat_init_kcompactd(pgdat);
6217
1da177e4 6218 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6219 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6220
eefa864b 6221 pgdat_page_ext_init(pgdat);
a52633d8 6222 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6223 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6224}
6225
6226static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6227 unsigned long remaining_pages)
6228{
6229 zone->managed_pages = remaining_pages;
6230 zone_set_nid(zone, nid);
6231 zone->name = zone_names[idx];
6232 zone->zone_pgdat = NODE_DATA(nid);
6233 spin_lock_init(&zone->lock);
6234 zone_seqlock_init(zone);
6235 zone_pcp_init(zone);
6236}
6237
6238/*
6239 * Set up the zone data structures
6240 * - init pgdat internals
6241 * - init all zones belonging to this node
6242 *
6243 * NOTE: this function is only called during memory hotplug
6244 */
6245#ifdef CONFIG_MEMORY_HOTPLUG
6246void __ref free_area_init_core_hotplug(int nid)
6247{
6248 enum zone_type z;
6249 pg_data_t *pgdat = NODE_DATA(nid);
6250
6251 pgdat_init_internals(pgdat);
6252 for (z = 0; z < MAX_NR_ZONES; z++)
6253 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6254}
6255#endif
6256
6257/*
6258 * Set up the zone data structures:
6259 * - mark all pages reserved
6260 * - mark all memory queues empty
6261 * - clear the memory bitmaps
6262 *
6263 * NOTE: pgdat should get zeroed by caller.
6264 * NOTE: this function is only called during early init.
6265 */
6266static void __init free_area_init_core(struct pglist_data *pgdat)
6267{
6268 enum zone_type j;
6269 int nid = pgdat->node_id;
5f63b720 6270
03e85f9d 6271 pgdat_init_internals(pgdat);
385386cf
JW
6272 pgdat->per_cpu_nodestats = &boot_nodestats;
6273
1da177e4
LT
6274 for (j = 0; j < MAX_NR_ZONES; j++) {
6275 struct zone *zone = pgdat->node_zones + j;
e6943859 6276 unsigned long size, freesize, memmap_pages;
d91749c1 6277 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6278
febd5949 6279 size = zone->spanned_pages;
e6943859 6280 freesize = zone->present_pages;
1da177e4 6281
0e0b864e 6282 /*
9feedc9d 6283 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6284 * is used by this zone for memmap. This affects the watermark
6285 * and per-cpu initialisations
6286 */
e6943859 6287 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6288 if (!is_highmem_idx(j)) {
6289 if (freesize >= memmap_pages) {
6290 freesize -= memmap_pages;
6291 if (memmap_pages)
6292 printk(KERN_DEBUG
6293 " %s zone: %lu pages used for memmap\n",
6294 zone_names[j], memmap_pages);
6295 } else
1170532b 6296 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6297 zone_names[j], memmap_pages, freesize);
6298 }
0e0b864e 6299
6267276f 6300 /* Account for reserved pages */
9feedc9d
JL
6301 if (j == 0 && freesize > dma_reserve) {
6302 freesize -= dma_reserve;
d903ef9f 6303 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6304 zone_names[0], dma_reserve);
0e0b864e
MG
6305 }
6306
98d2b0eb 6307 if (!is_highmem_idx(j))
9feedc9d 6308 nr_kernel_pages += freesize;
01cefaef
JL
6309 /* Charge for highmem memmap if there are enough kernel pages */
6310 else if (nr_kernel_pages > memmap_pages * 2)
6311 nr_kernel_pages -= memmap_pages;
9feedc9d 6312 nr_all_pages += freesize;
1da177e4 6313
9feedc9d
JL
6314 /*
6315 * Set an approximate value for lowmem here, it will be adjusted
6316 * when the bootmem allocator frees pages into the buddy system.
6317 * And all highmem pages will be managed by the buddy system.
6318 */
03e85f9d 6319 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6320
d883c6cf 6321 if (!size)
1da177e4
LT
6322 continue;
6323
955c1cd7 6324 set_pageblock_order();
d883c6cf
JK
6325 setup_usemap(pgdat, zone, zone_start_pfn, size);
6326 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6327 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6328 }
6329}
6330
0cd842f9 6331#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6332static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6333{
b0aeba74 6334 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6335 unsigned long __maybe_unused offset = 0;
6336
1da177e4
LT
6337 /* Skip empty nodes */
6338 if (!pgdat->node_spanned_pages)
6339 return;
6340
b0aeba74
TL
6341 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6342 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6343 /* ia64 gets its own node_mem_map, before this, without bootmem */
6344 if (!pgdat->node_mem_map) {
b0aeba74 6345 unsigned long size, end;
d41dee36
AW
6346 struct page *map;
6347
e984bb43
BP
6348 /*
6349 * The zone's endpoints aren't required to be MAX_ORDER
6350 * aligned but the node_mem_map endpoints must be in order
6351 * for the buddy allocator to function correctly.
6352 */
108bcc96 6353 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6354 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6355 size = (end - start) * sizeof(struct page);
79375ea3 6356 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6357 pgdat->node_mem_map = map + offset;
1da177e4 6358 }
0cd842f9
OS
6359 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6360 __func__, pgdat->node_id, (unsigned long)pgdat,
6361 (unsigned long)pgdat->node_mem_map);
12d810c1 6362#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6363 /*
6364 * With no DISCONTIG, the global mem_map is just set as node 0's
6365 */
c713216d 6366 if (pgdat == NODE_DATA(0)) {
1da177e4 6367 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6368#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6369 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6370 mem_map -= offset;
0ee332c1 6371#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6372 }
1da177e4
LT
6373#endif
6374}
0cd842f9
OS
6375#else
6376static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6377#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6378
0188dc98
OS
6379#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6380static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6381{
6382 /*
6383 * We start only with one section of pages, more pages are added as
6384 * needed until the rest of deferred pages are initialized.
6385 */
6386 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6387 pgdat->node_spanned_pages);
6388 pgdat->first_deferred_pfn = ULONG_MAX;
6389}
6390#else
6391static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6392#endif
6393
03e85f9d 6394void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6395 unsigned long node_start_pfn,
6396 unsigned long *zholes_size)
1da177e4 6397{
9109fb7b 6398 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6399 unsigned long start_pfn = 0;
6400 unsigned long end_pfn = 0;
9109fb7b 6401
88fdf75d 6402 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6403 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6404
1da177e4
LT
6405 pgdat->node_id = nid;
6406 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6407 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6408#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6409 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6410 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6411 (u64)start_pfn << PAGE_SHIFT,
6412 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6413#else
6414 start_pfn = node_start_pfn;
7960aedd
ZY
6415#endif
6416 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6417 zones_size, zholes_size);
1da177e4
LT
6418
6419 alloc_node_mem_map(pgdat);
0188dc98 6420 pgdat_set_deferred_range(pgdat);
1da177e4 6421
7f3eb55b 6422 free_area_init_core(pgdat);
1da177e4
LT
6423}
6424
d1b47a7c 6425#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
a4a3ede2
PT
6426/*
6427 * Only struct pages that are backed by physical memory are zeroed and
6428 * initialized by going through __init_single_page(). But, there are some
6429 * struct pages which are reserved in memblock allocator and their fields
6430 * may be accessed (for example page_to_pfn() on some configuration accesses
6431 * flags). We must explicitly zero those struct pages.
6432 */
03e85f9d 6433void __init zero_resv_unavail(void)
a4a3ede2
PT
6434{
6435 phys_addr_t start, end;
6436 unsigned long pfn;
6437 u64 i, pgcnt;
6438
6439 /*
6440 * Loop through ranges that are reserved, but do not have reported
6441 * physical memory backing.
6442 */
6443 pgcnt = 0;
6444 for_each_resv_unavail_range(i, &start, &end) {
6445 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
720e14eb
PT
6446 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6447 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6448 + pageblock_nr_pages - 1;
e8c24773 6449 continue;
720e14eb 6450 }
a4a3ede2
PT
6451 mm_zero_struct_page(pfn_to_page(pfn));
6452 pgcnt++;
6453 }
6454 }
6455
6456 /*
6457 * Struct pages that do not have backing memory. This could be because
6458 * firmware is using some of this memory, or for some other reasons.
6459 * Once memblock is changed so such behaviour is not allowed: i.e.
6460 * list of "reserved" memory must be a subset of list of "memory", then
6461 * this code can be removed.
6462 */
6463 if (pgcnt)
6464 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6465}
d1b47a7c 6466#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6467
0ee332c1 6468#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6469
6470#if MAX_NUMNODES > 1
6471/*
6472 * Figure out the number of possible node ids.
6473 */
f9872caf 6474void __init setup_nr_node_ids(void)
418508c1 6475{
904a9553 6476 unsigned int highest;
418508c1 6477
904a9553 6478 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6479 nr_node_ids = highest + 1;
6480}
418508c1
MS
6481#endif
6482
1e01979c
TH
6483/**
6484 * node_map_pfn_alignment - determine the maximum internode alignment
6485 *
6486 * This function should be called after node map is populated and sorted.
6487 * It calculates the maximum power of two alignment which can distinguish
6488 * all the nodes.
6489 *
6490 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6491 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6492 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6493 * shifted, 1GiB is enough and this function will indicate so.
6494 *
6495 * This is used to test whether pfn -> nid mapping of the chosen memory
6496 * model has fine enough granularity to avoid incorrect mapping for the
6497 * populated node map.
6498 *
6499 * Returns the determined alignment in pfn's. 0 if there is no alignment
6500 * requirement (single node).
6501 */
6502unsigned long __init node_map_pfn_alignment(void)
6503{
6504 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6505 unsigned long start, end, mask;
1e01979c 6506 int last_nid = -1;
c13291a5 6507 int i, nid;
1e01979c 6508
c13291a5 6509 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6510 if (!start || last_nid < 0 || last_nid == nid) {
6511 last_nid = nid;
6512 last_end = end;
6513 continue;
6514 }
6515
6516 /*
6517 * Start with a mask granular enough to pin-point to the
6518 * start pfn and tick off bits one-by-one until it becomes
6519 * too coarse to separate the current node from the last.
6520 */
6521 mask = ~((1 << __ffs(start)) - 1);
6522 while (mask && last_end <= (start & (mask << 1)))
6523 mask <<= 1;
6524
6525 /* accumulate all internode masks */
6526 accl_mask |= mask;
6527 }
6528
6529 /* convert mask to number of pages */
6530 return ~accl_mask + 1;
6531}
6532
a6af2bc3 6533/* Find the lowest pfn for a node */
b69a7288 6534static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6535{
a6af2bc3 6536 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6537 unsigned long start_pfn;
6538 int i;
1abbfb41 6539
c13291a5
TH
6540 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6541 min_pfn = min(min_pfn, start_pfn);
c713216d 6542
a6af2bc3 6543 if (min_pfn == ULONG_MAX) {
1170532b 6544 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6545 return 0;
6546 }
6547
6548 return min_pfn;
c713216d
MG
6549}
6550
6551/**
6552 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6553 *
6554 * It returns the minimum PFN based on information provided via
7d018176 6555 * memblock_set_node().
c713216d
MG
6556 */
6557unsigned long __init find_min_pfn_with_active_regions(void)
6558{
6559 return find_min_pfn_for_node(MAX_NUMNODES);
6560}
6561
37b07e41
LS
6562/*
6563 * early_calculate_totalpages()
6564 * Sum pages in active regions for movable zone.
4b0ef1fe 6565 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6566 */
484f51f8 6567static unsigned long __init early_calculate_totalpages(void)
7e63efef 6568{
7e63efef 6569 unsigned long totalpages = 0;
c13291a5
TH
6570 unsigned long start_pfn, end_pfn;
6571 int i, nid;
6572
6573 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6574 unsigned long pages = end_pfn - start_pfn;
7e63efef 6575
37b07e41
LS
6576 totalpages += pages;
6577 if (pages)
4b0ef1fe 6578 node_set_state(nid, N_MEMORY);
37b07e41 6579 }
b8af2941 6580 return totalpages;
7e63efef
MG
6581}
6582
2a1e274a
MG
6583/*
6584 * Find the PFN the Movable zone begins in each node. Kernel memory
6585 * is spread evenly between nodes as long as the nodes have enough
6586 * memory. When they don't, some nodes will have more kernelcore than
6587 * others
6588 */
b224ef85 6589static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6590{
6591 int i, nid;
6592 unsigned long usable_startpfn;
6593 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6594 /* save the state before borrow the nodemask */
4b0ef1fe 6595 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6596 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6597 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6598 struct memblock_region *r;
b2f3eebe
TC
6599
6600 /* Need to find movable_zone earlier when movable_node is specified. */
6601 find_usable_zone_for_movable();
6602
6603 /*
6604 * If movable_node is specified, ignore kernelcore and movablecore
6605 * options.
6606 */
6607 if (movable_node_is_enabled()) {
136199f0
EM
6608 for_each_memblock(memory, r) {
6609 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6610 continue;
6611
136199f0 6612 nid = r->nid;
b2f3eebe 6613
136199f0 6614 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6615 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6616 min(usable_startpfn, zone_movable_pfn[nid]) :
6617 usable_startpfn;
6618 }
6619
6620 goto out2;
6621 }
2a1e274a 6622
342332e6
TI
6623 /*
6624 * If kernelcore=mirror is specified, ignore movablecore option
6625 */
6626 if (mirrored_kernelcore) {
6627 bool mem_below_4gb_not_mirrored = false;
6628
6629 for_each_memblock(memory, r) {
6630 if (memblock_is_mirror(r))
6631 continue;
6632
6633 nid = r->nid;
6634
6635 usable_startpfn = memblock_region_memory_base_pfn(r);
6636
6637 if (usable_startpfn < 0x100000) {
6638 mem_below_4gb_not_mirrored = true;
6639 continue;
6640 }
6641
6642 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6643 min(usable_startpfn, zone_movable_pfn[nid]) :
6644 usable_startpfn;
6645 }
6646
6647 if (mem_below_4gb_not_mirrored)
6648 pr_warn("This configuration results in unmirrored kernel memory.");
6649
6650 goto out2;
6651 }
6652
7e63efef 6653 /*
a5c6d650
DR
6654 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6655 * amount of necessary memory.
6656 */
6657 if (required_kernelcore_percent)
6658 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6659 10000UL;
6660 if (required_movablecore_percent)
6661 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6662 10000UL;
6663
6664 /*
6665 * If movablecore= was specified, calculate what size of
7e63efef
MG
6666 * kernelcore that corresponds so that memory usable for
6667 * any allocation type is evenly spread. If both kernelcore
6668 * and movablecore are specified, then the value of kernelcore
6669 * will be used for required_kernelcore if it's greater than
6670 * what movablecore would have allowed.
6671 */
6672 if (required_movablecore) {
7e63efef
MG
6673 unsigned long corepages;
6674
6675 /*
6676 * Round-up so that ZONE_MOVABLE is at least as large as what
6677 * was requested by the user
6678 */
6679 required_movablecore =
6680 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6681 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6682 corepages = totalpages - required_movablecore;
6683
6684 required_kernelcore = max(required_kernelcore, corepages);
6685 }
6686
bde304bd
XQ
6687 /*
6688 * If kernelcore was not specified or kernelcore size is larger
6689 * than totalpages, there is no ZONE_MOVABLE.
6690 */
6691 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6692 goto out;
2a1e274a
MG
6693
6694 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6695 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6696
6697restart:
6698 /* Spread kernelcore memory as evenly as possible throughout nodes */
6699 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6700 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6701 unsigned long start_pfn, end_pfn;
6702
2a1e274a
MG
6703 /*
6704 * Recalculate kernelcore_node if the division per node
6705 * now exceeds what is necessary to satisfy the requested
6706 * amount of memory for the kernel
6707 */
6708 if (required_kernelcore < kernelcore_node)
6709 kernelcore_node = required_kernelcore / usable_nodes;
6710
6711 /*
6712 * As the map is walked, we track how much memory is usable
6713 * by the kernel using kernelcore_remaining. When it is
6714 * 0, the rest of the node is usable by ZONE_MOVABLE
6715 */
6716 kernelcore_remaining = kernelcore_node;
6717
6718 /* Go through each range of PFNs within this node */
c13291a5 6719 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6720 unsigned long size_pages;
6721
c13291a5 6722 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6723 if (start_pfn >= end_pfn)
6724 continue;
6725
6726 /* Account for what is only usable for kernelcore */
6727 if (start_pfn < usable_startpfn) {
6728 unsigned long kernel_pages;
6729 kernel_pages = min(end_pfn, usable_startpfn)
6730 - start_pfn;
6731
6732 kernelcore_remaining -= min(kernel_pages,
6733 kernelcore_remaining);
6734 required_kernelcore -= min(kernel_pages,
6735 required_kernelcore);
6736
6737 /* Continue if range is now fully accounted */
6738 if (end_pfn <= usable_startpfn) {
6739
6740 /*
6741 * Push zone_movable_pfn to the end so
6742 * that if we have to rebalance
6743 * kernelcore across nodes, we will
6744 * not double account here
6745 */
6746 zone_movable_pfn[nid] = end_pfn;
6747 continue;
6748 }
6749 start_pfn = usable_startpfn;
6750 }
6751
6752 /*
6753 * The usable PFN range for ZONE_MOVABLE is from
6754 * start_pfn->end_pfn. Calculate size_pages as the
6755 * number of pages used as kernelcore
6756 */
6757 size_pages = end_pfn - start_pfn;
6758 if (size_pages > kernelcore_remaining)
6759 size_pages = kernelcore_remaining;
6760 zone_movable_pfn[nid] = start_pfn + size_pages;
6761
6762 /*
6763 * Some kernelcore has been met, update counts and
6764 * break if the kernelcore for this node has been
b8af2941 6765 * satisfied
2a1e274a
MG
6766 */
6767 required_kernelcore -= min(required_kernelcore,
6768 size_pages);
6769 kernelcore_remaining -= size_pages;
6770 if (!kernelcore_remaining)
6771 break;
6772 }
6773 }
6774
6775 /*
6776 * If there is still required_kernelcore, we do another pass with one
6777 * less node in the count. This will push zone_movable_pfn[nid] further
6778 * along on the nodes that still have memory until kernelcore is
b8af2941 6779 * satisfied
2a1e274a
MG
6780 */
6781 usable_nodes--;
6782 if (usable_nodes && required_kernelcore > usable_nodes)
6783 goto restart;
6784
b2f3eebe 6785out2:
2a1e274a
MG
6786 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6787 for (nid = 0; nid < MAX_NUMNODES; nid++)
6788 zone_movable_pfn[nid] =
6789 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6790
20e6926d 6791out:
66918dcd 6792 /* restore the node_state */
4b0ef1fe 6793 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6794}
6795
4b0ef1fe
LJ
6796/* Any regular or high memory on that node ? */
6797static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6798{
37b07e41
LS
6799 enum zone_type zone_type;
6800
4b0ef1fe 6801 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6802 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6803 if (populated_zone(zone)) {
7b0e0c0e
OS
6804 if (IS_ENABLED(CONFIG_HIGHMEM))
6805 node_set_state(nid, N_HIGH_MEMORY);
6806 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 6807 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6808 break;
6809 }
37b07e41 6810 }
37b07e41
LS
6811}
6812
c713216d
MG
6813/**
6814 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6815 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6816 *
6817 * This will call free_area_init_node() for each active node in the system.
7d018176 6818 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6819 * zone in each node and their holes is calculated. If the maximum PFN
6820 * between two adjacent zones match, it is assumed that the zone is empty.
6821 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6822 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6823 * starts where the previous one ended. For example, ZONE_DMA32 starts
6824 * at arch_max_dma_pfn.
6825 */
6826void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6827{
c13291a5
TH
6828 unsigned long start_pfn, end_pfn;
6829 int i, nid;
a6af2bc3 6830
c713216d
MG
6831 /* Record where the zone boundaries are */
6832 memset(arch_zone_lowest_possible_pfn, 0,
6833 sizeof(arch_zone_lowest_possible_pfn));
6834 memset(arch_zone_highest_possible_pfn, 0,
6835 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6836
6837 start_pfn = find_min_pfn_with_active_regions();
6838
6839 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6840 if (i == ZONE_MOVABLE)
6841 continue;
90cae1fe
OH
6842
6843 end_pfn = max(max_zone_pfn[i], start_pfn);
6844 arch_zone_lowest_possible_pfn[i] = start_pfn;
6845 arch_zone_highest_possible_pfn[i] = end_pfn;
6846
6847 start_pfn = end_pfn;
c713216d 6848 }
2a1e274a
MG
6849
6850 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6851 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6852 find_zone_movable_pfns_for_nodes();
c713216d 6853
c713216d 6854 /* Print out the zone ranges */
f88dfff5 6855 pr_info("Zone ranges:\n");
2a1e274a
MG
6856 for (i = 0; i < MAX_NR_ZONES; i++) {
6857 if (i == ZONE_MOVABLE)
6858 continue;
f88dfff5 6859 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6860 if (arch_zone_lowest_possible_pfn[i] ==
6861 arch_zone_highest_possible_pfn[i])
f88dfff5 6862 pr_cont("empty\n");
72f0ba02 6863 else
8d29e18a
JG
6864 pr_cont("[mem %#018Lx-%#018Lx]\n",
6865 (u64)arch_zone_lowest_possible_pfn[i]
6866 << PAGE_SHIFT,
6867 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6868 << PAGE_SHIFT) - 1);
2a1e274a
MG
6869 }
6870
6871 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6872 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6873 for (i = 0; i < MAX_NUMNODES; i++) {
6874 if (zone_movable_pfn[i])
8d29e18a
JG
6875 pr_info(" Node %d: %#018Lx\n", i,
6876 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6877 }
c713216d 6878
f2d52fe5 6879 /* Print out the early node map */
f88dfff5 6880 pr_info("Early memory node ranges\n");
c13291a5 6881 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6882 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6883 (u64)start_pfn << PAGE_SHIFT,
6884 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6885
6886 /* Initialise every node */
708614e6 6887 mminit_verify_pageflags_layout();
8ef82866 6888 setup_nr_node_ids();
e181ae0c 6889 zero_resv_unavail();
c713216d
MG
6890 for_each_online_node(nid) {
6891 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6892 free_area_init_node(nid, NULL,
c713216d 6893 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6894
6895 /* Any memory on that node */
6896 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6897 node_set_state(nid, N_MEMORY);
6898 check_for_memory(pgdat, nid);
c713216d
MG
6899 }
6900}
2a1e274a 6901
a5c6d650
DR
6902static int __init cmdline_parse_core(char *p, unsigned long *core,
6903 unsigned long *percent)
2a1e274a
MG
6904{
6905 unsigned long long coremem;
a5c6d650
DR
6906 char *endptr;
6907
2a1e274a
MG
6908 if (!p)
6909 return -EINVAL;
6910
a5c6d650
DR
6911 /* Value may be a percentage of total memory, otherwise bytes */
6912 coremem = simple_strtoull(p, &endptr, 0);
6913 if (*endptr == '%') {
6914 /* Paranoid check for percent values greater than 100 */
6915 WARN_ON(coremem > 100);
2a1e274a 6916
a5c6d650
DR
6917 *percent = coremem;
6918 } else {
6919 coremem = memparse(p, &p);
6920 /* Paranoid check that UL is enough for the coremem value */
6921 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 6922
a5c6d650
DR
6923 *core = coremem >> PAGE_SHIFT;
6924 *percent = 0UL;
6925 }
2a1e274a
MG
6926 return 0;
6927}
ed7ed365 6928
7e63efef
MG
6929/*
6930 * kernelcore=size sets the amount of memory for use for allocations that
6931 * cannot be reclaimed or migrated.
6932 */
6933static int __init cmdline_parse_kernelcore(char *p)
6934{
342332e6
TI
6935 /* parse kernelcore=mirror */
6936 if (parse_option_str(p, "mirror")) {
6937 mirrored_kernelcore = true;
6938 return 0;
6939 }
6940
a5c6d650
DR
6941 return cmdline_parse_core(p, &required_kernelcore,
6942 &required_kernelcore_percent);
7e63efef
MG
6943}
6944
6945/*
6946 * movablecore=size sets the amount of memory for use for allocations that
6947 * can be reclaimed or migrated.
6948 */
6949static int __init cmdline_parse_movablecore(char *p)
6950{
a5c6d650
DR
6951 return cmdline_parse_core(p, &required_movablecore,
6952 &required_movablecore_percent);
7e63efef
MG
6953}
6954
ed7ed365 6955early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6956early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6957
0ee332c1 6958#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6959
c3d5f5f0
JL
6960void adjust_managed_page_count(struct page *page, long count)
6961{
6962 spin_lock(&managed_page_count_lock);
6963 page_zone(page)->managed_pages += count;
6964 totalram_pages += count;
3dcc0571
JL
6965#ifdef CONFIG_HIGHMEM
6966 if (PageHighMem(page))
6967 totalhigh_pages += count;
6968#endif
c3d5f5f0
JL
6969 spin_unlock(&managed_page_count_lock);
6970}
3dcc0571 6971EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6972
11199692 6973unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6974{
11199692
JL
6975 void *pos;
6976 unsigned long pages = 0;
69afade7 6977
11199692
JL
6978 start = (void *)PAGE_ALIGN((unsigned long)start);
6979 end = (void *)((unsigned long)end & PAGE_MASK);
6980 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
6981 struct page *page = virt_to_page(pos);
6982 void *direct_map_addr;
6983
6984 /*
6985 * 'direct_map_addr' might be different from 'pos'
6986 * because some architectures' virt_to_page()
6987 * work with aliases. Getting the direct map
6988 * address ensures that we get a _writeable_
6989 * alias for the memset().
6990 */
6991 direct_map_addr = page_address(page);
dbe67df4 6992 if ((unsigned int)poison <= 0xFF)
0d834328
DH
6993 memset(direct_map_addr, poison, PAGE_SIZE);
6994
6995 free_reserved_page(page);
69afade7
JL
6996 }
6997
6998 if (pages && s)
adb1fe9a
JP
6999 pr_info("Freeing %s memory: %ldK\n",
7000 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7001
7002 return pages;
7003}
11199692 7004EXPORT_SYMBOL(free_reserved_area);
69afade7 7005
cfa11e08
JL
7006#ifdef CONFIG_HIGHMEM
7007void free_highmem_page(struct page *page)
7008{
7009 __free_reserved_page(page);
7010 totalram_pages++;
7b4b2a0d 7011 page_zone(page)->managed_pages++;
cfa11e08
JL
7012 totalhigh_pages++;
7013}
7014#endif
7015
7ee3d4e8
JL
7016
7017void __init mem_init_print_info(const char *str)
7018{
7019 unsigned long physpages, codesize, datasize, rosize, bss_size;
7020 unsigned long init_code_size, init_data_size;
7021
7022 physpages = get_num_physpages();
7023 codesize = _etext - _stext;
7024 datasize = _edata - _sdata;
7025 rosize = __end_rodata - __start_rodata;
7026 bss_size = __bss_stop - __bss_start;
7027 init_data_size = __init_end - __init_begin;
7028 init_code_size = _einittext - _sinittext;
7029
7030 /*
7031 * Detect special cases and adjust section sizes accordingly:
7032 * 1) .init.* may be embedded into .data sections
7033 * 2) .init.text.* may be out of [__init_begin, __init_end],
7034 * please refer to arch/tile/kernel/vmlinux.lds.S.
7035 * 3) .rodata.* may be embedded into .text or .data sections.
7036 */
7037#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7038 do { \
7039 if (start <= pos && pos < end && size > adj) \
7040 size -= adj; \
7041 } while (0)
7ee3d4e8
JL
7042
7043 adj_init_size(__init_begin, __init_end, init_data_size,
7044 _sinittext, init_code_size);
7045 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7046 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7047 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7048 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7049
7050#undef adj_init_size
7051
756a025f 7052 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7053#ifdef CONFIG_HIGHMEM
756a025f 7054 ", %luK highmem"
7ee3d4e8 7055#endif
756a025f
JP
7056 "%s%s)\n",
7057 nr_free_pages() << (PAGE_SHIFT - 10),
7058 physpages << (PAGE_SHIFT - 10),
7059 codesize >> 10, datasize >> 10, rosize >> 10,
7060 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7061 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7062 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7063#ifdef CONFIG_HIGHMEM
756a025f 7064 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7065#endif
756a025f 7066 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7067}
7068
0e0b864e 7069/**
88ca3b94
RD
7070 * set_dma_reserve - set the specified number of pages reserved in the first zone
7071 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7072 *
013110a7 7073 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7074 * In the DMA zone, a significant percentage may be consumed by kernel image
7075 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7076 * function may optionally be used to account for unfreeable pages in the
7077 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7078 * smaller per-cpu batchsize.
0e0b864e
MG
7079 */
7080void __init set_dma_reserve(unsigned long new_dma_reserve)
7081{
7082 dma_reserve = new_dma_reserve;
7083}
7084
1da177e4
LT
7085void __init free_area_init(unsigned long *zones_size)
7086{
e181ae0c 7087 zero_resv_unavail();
9109fb7b 7088 free_area_init_node(0, zones_size,
1da177e4
LT
7089 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7090}
1da177e4 7091
005fd4bb 7092static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7093{
1da177e4 7094
005fd4bb
SAS
7095 lru_add_drain_cpu(cpu);
7096 drain_pages(cpu);
9f8f2172 7097
005fd4bb
SAS
7098 /*
7099 * Spill the event counters of the dead processor
7100 * into the current processors event counters.
7101 * This artificially elevates the count of the current
7102 * processor.
7103 */
7104 vm_events_fold_cpu(cpu);
9f8f2172 7105
005fd4bb
SAS
7106 /*
7107 * Zero the differential counters of the dead processor
7108 * so that the vm statistics are consistent.
7109 *
7110 * This is only okay since the processor is dead and cannot
7111 * race with what we are doing.
7112 */
7113 cpu_vm_stats_fold(cpu);
7114 return 0;
1da177e4 7115}
1da177e4
LT
7116
7117void __init page_alloc_init(void)
7118{
005fd4bb
SAS
7119 int ret;
7120
7121 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7122 "mm/page_alloc:dead", NULL,
7123 page_alloc_cpu_dead);
7124 WARN_ON(ret < 0);
1da177e4
LT
7125}
7126
cb45b0e9 7127/*
34b10060 7128 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7129 * or min_free_kbytes changes.
7130 */
7131static void calculate_totalreserve_pages(void)
7132{
7133 struct pglist_data *pgdat;
7134 unsigned long reserve_pages = 0;
2f6726e5 7135 enum zone_type i, j;
cb45b0e9
HA
7136
7137 for_each_online_pgdat(pgdat) {
281e3726
MG
7138
7139 pgdat->totalreserve_pages = 0;
7140
cb45b0e9
HA
7141 for (i = 0; i < MAX_NR_ZONES; i++) {
7142 struct zone *zone = pgdat->node_zones + i;
3484b2de 7143 long max = 0;
cb45b0e9
HA
7144
7145 /* Find valid and maximum lowmem_reserve in the zone */
7146 for (j = i; j < MAX_NR_ZONES; j++) {
7147 if (zone->lowmem_reserve[j] > max)
7148 max = zone->lowmem_reserve[j];
7149 }
7150
41858966
MG
7151 /* we treat the high watermark as reserved pages. */
7152 max += high_wmark_pages(zone);
cb45b0e9 7153
b40da049
JL
7154 if (max > zone->managed_pages)
7155 max = zone->managed_pages;
a8d01437 7156
281e3726 7157 pgdat->totalreserve_pages += max;
a8d01437 7158
cb45b0e9
HA
7159 reserve_pages += max;
7160 }
7161 }
7162 totalreserve_pages = reserve_pages;
7163}
7164
1da177e4
LT
7165/*
7166 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7167 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7168 * has a correct pages reserved value, so an adequate number of
7169 * pages are left in the zone after a successful __alloc_pages().
7170 */
7171static void setup_per_zone_lowmem_reserve(void)
7172{
7173 struct pglist_data *pgdat;
2f6726e5 7174 enum zone_type j, idx;
1da177e4 7175
ec936fc5 7176 for_each_online_pgdat(pgdat) {
1da177e4
LT
7177 for (j = 0; j < MAX_NR_ZONES; j++) {
7178 struct zone *zone = pgdat->node_zones + j;
b40da049 7179 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
7180
7181 zone->lowmem_reserve[j] = 0;
7182
2f6726e5
CL
7183 idx = j;
7184 while (idx) {
1da177e4
LT
7185 struct zone *lower_zone;
7186
2f6726e5 7187 idx--;
1da177e4 7188 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7189
7190 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7191 sysctl_lowmem_reserve_ratio[idx] = 0;
7192 lower_zone->lowmem_reserve[j] = 0;
7193 } else {
7194 lower_zone->lowmem_reserve[j] =
7195 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7196 }
b40da049 7197 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7198 }
7199 }
7200 }
cb45b0e9
HA
7201
7202 /* update totalreserve_pages */
7203 calculate_totalreserve_pages();
1da177e4
LT
7204}
7205
cfd3da1e 7206static void __setup_per_zone_wmarks(void)
1da177e4
LT
7207{
7208 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7209 unsigned long lowmem_pages = 0;
7210 struct zone *zone;
7211 unsigned long flags;
7212
7213 /* Calculate total number of !ZONE_HIGHMEM pages */
7214 for_each_zone(zone) {
7215 if (!is_highmem(zone))
b40da049 7216 lowmem_pages += zone->managed_pages;
1da177e4
LT
7217 }
7218
7219 for_each_zone(zone) {
ac924c60
AM
7220 u64 tmp;
7221
1125b4e3 7222 spin_lock_irqsave(&zone->lock, flags);
b40da049 7223 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7224 do_div(tmp, lowmem_pages);
1da177e4
LT
7225 if (is_highmem(zone)) {
7226 /*
669ed175
NP
7227 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7228 * need highmem pages, so cap pages_min to a small
7229 * value here.
7230 *
41858966 7231 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7232 * deltas control asynch page reclaim, and so should
669ed175 7233 * not be capped for highmem.
1da177e4 7234 */
90ae8d67 7235 unsigned long min_pages;
1da177e4 7236
b40da049 7237 min_pages = zone->managed_pages / 1024;
90ae8d67 7238 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7239 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7240 } else {
669ed175
NP
7241 /*
7242 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7243 * proportionate to the zone's size.
7244 */
41858966 7245 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7246 }
7247
795ae7a0
JW
7248 /*
7249 * Set the kswapd watermarks distance according to the
7250 * scale factor in proportion to available memory, but
7251 * ensure a minimum size on small systems.
7252 */
7253 tmp = max_t(u64, tmp >> 2,
7254 mult_frac(zone->managed_pages,
7255 watermark_scale_factor, 10000));
7256
7257 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7258 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7259
1125b4e3 7260 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7261 }
cb45b0e9
HA
7262
7263 /* update totalreserve_pages */
7264 calculate_totalreserve_pages();
1da177e4
LT
7265}
7266
cfd3da1e
MG
7267/**
7268 * setup_per_zone_wmarks - called when min_free_kbytes changes
7269 * or when memory is hot-{added|removed}
7270 *
7271 * Ensures that the watermark[min,low,high] values for each zone are set
7272 * correctly with respect to min_free_kbytes.
7273 */
7274void setup_per_zone_wmarks(void)
7275{
b93e0f32
MH
7276 static DEFINE_SPINLOCK(lock);
7277
7278 spin_lock(&lock);
cfd3da1e 7279 __setup_per_zone_wmarks();
b93e0f32 7280 spin_unlock(&lock);
cfd3da1e
MG
7281}
7282
1da177e4
LT
7283/*
7284 * Initialise min_free_kbytes.
7285 *
7286 * For small machines we want it small (128k min). For large machines
7287 * we want it large (64MB max). But it is not linear, because network
7288 * bandwidth does not increase linearly with machine size. We use
7289 *
b8af2941 7290 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7291 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7292 *
7293 * which yields
7294 *
7295 * 16MB: 512k
7296 * 32MB: 724k
7297 * 64MB: 1024k
7298 * 128MB: 1448k
7299 * 256MB: 2048k
7300 * 512MB: 2896k
7301 * 1024MB: 4096k
7302 * 2048MB: 5792k
7303 * 4096MB: 8192k
7304 * 8192MB: 11584k
7305 * 16384MB: 16384k
7306 */
1b79acc9 7307int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7308{
7309 unsigned long lowmem_kbytes;
5f12733e 7310 int new_min_free_kbytes;
1da177e4
LT
7311
7312 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7313 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7314
7315 if (new_min_free_kbytes > user_min_free_kbytes) {
7316 min_free_kbytes = new_min_free_kbytes;
7317 if (min_free_kbytes < 128)
7318 min_free_kbytes = 128;
7319 if (min_free_kbytes > 65536)
7320 min_free_kbytes = 65536;
7321 } else {
7322 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7323 new_min_free_kbytes, user_min_free_kbytes);
7324 }
bc75d33f 7325 setup_per_zone_wmarks();
a6cccdc3 7326 refresh_zone_stat_thresholds();
1da177e4 7327 setup_per_zone_lowmem_reserve();
6423aa81
JK
7328
7329#ifdef CONFIG_NUMA
7330 setup_min_unmapped_ratio();
7331 setup_min_slab_ratio();
7332#endif
7333
1da177e4
LT
7334 return 0;
7335}
bc22af74 7336core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7337
7338/*
b8af2941 7339 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7340 * that we can call two helper functions whenever min_free_kbytes
7341 * changes.
7342 */
cccad5b9 7343int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7344 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7345{
da8c757b
HP
7346 int rc;
7347
7348 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7349 if (rc)
7350 return rc;
7351
5f12733e
MH
7352 if (write) {
7353 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7354 setup_per_zone_wmarks();
5f12733e 7355 }
1da177e4
LT
7356 return 0;
7357}
7358
795ae7a0
JW
7359int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7360 void __user *buffer, size_t *length, loff_t *ppos)
7361{
7362 int rc;
7363
7364 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7365 if (rc)
7366 return rc;
7367
7368 if (write)
7369 setup_per_zone_wmarks();
7370
7371 return 0;
7372}
7373
9614634f 7374#ifdef CONFIG_NUMA
6423aa81 7375static void setup_min_unmapped_ratio(void)
9614634f 7376{
6423aa81 7377 pg_data_t *pgdat;
9614634f 7378 struct zone *zone;
9614634f 7379
a5f5f91d 7380 for_each_online_pgdat(pgdat)
81cbcbc2 7381 pgdat->min_unmapped_pages = 0;
a5f5f91d 7382
9614634f 7383 for_each_zone(zone)
a5f5f91d 7384 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7385 sysctl_min_unmapped_ratio) / 100;
9614634f 7386}
0ff38490 7387
6423aa81
JK
7388
7389int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7390 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7391{
0ff38490
CL
7392 int rc;
7393
8d65af78 7394 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7395 if (rc)
7396 return rc;
7397
6423aa81
JK
7398 setup_min_unmapped_ratio();
7399
7400 return 0;
7401}
7402
7403static void setup_min_slab_ratio(void)
7404{
7405 pg_data_t *pgdat;
7406 struct zone *zone;
7407
a5f5f91d
MG
7408 for_each_online_pgdat(pgdat)
7409 pgdat->min_slab_pages = 0;
7410
0ff38490 7411 for_each_zone(zone)
a5f5f91d 7412 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7413 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7414}
7415
7416int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7417 void __user *buffer, size_t *length, loff_t *ppos)
7418{
7419 int rc;
7420
7421 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7422 if (rc)
7423 return rc;
7424
7425 setup_min_slab_ratio();
7426
0ff38490
CL
7427 return 0;
7428}
9614634f
CL
7429#endif
7430
1da177e4
LT
7431/*
7432 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7433 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7434 * whenever sysctl_lowmem_reserve_ratio changes.
7435 *
7436 * The reserve ratio obviously has absolutely no relation with the
41858966 7437 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7438 * if in function of the boot time zone sizes.
7439 */
cccad5b9 7440int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7441 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7442{
8d65af78 7443 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7444 setup_per_zone_lowmem_reserve();
7445 return 0;
7446}
7447
8ad4b1fb
RS
7448/*
7449 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7450 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7451 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7452 */
cccad5b9 7453int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7454 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7455{
7456 struct zone *zone;
7cd2b0a3 7457 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7458 int ret;
7459
7cd2b0a3
DR
7460 mutex_lock(&pcp_batch_high_lock);
7461 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7462
8d65af78 7463 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7464 if (!write || ret < 0)
7465 goto out;
7466
7467 /* Sanity checking to avoid pcp imbalance */
7468 if (percpu_pagelist_fraction &&
7469 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7470 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7471 ret = -EINVAL;
7472 goto out;
7473 }
7474
7475 /* No change? */
7476 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7477 goto out;
c8e251fa 7478
364df0eb 7479 for_each_populated_zone(zone) {
7cd2b0a3
DR
7480 unsigned int cpu;
7481
22a7f12b 7482 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7483 pageset_set_high_and_batch(zone,
7484 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7485 }
7cd2b0a3 7486out:
c8e251fa 7487 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7488 return ret;
8ad4b1fb
RS
7489}
7490
a9919c79 7491#ifdef CONFIG_NUMA
f034b5d4 7492int hashdist = HASHDIST_DEFAULT;
1da177e4 7493
1da177e4
LT
7494static int __init set_hashdist(char *str)
7495{
7496 if (!str)
7497 return 0;
7498 hashdist = simple_strtoul(str, &str, 0);
7499 return 1;
7500}
7501__setup("hashdist=", set_hashdist);
7502#endif
7503
f6f34b43
SD
7504#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7505/*
7506 * Returns the number of pages that arch has reserved but
7507 * is not known to alloc_large_system_hash().
7508 */
7509static unsigned long __init arch_reserved_kernel_pages(void)
7510{
7511 return 0;
7512}
7513#endif
7514
9017217b
PT
7515/*
7516 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7517 * machines. As memory size is increased the scale is also increased but at
7518 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7519 * quadruples the scale is increased by one, which means the size of hash table
7520 * only doubles, instead of quadrupling as well.
7521 * Because 32-bit systems cannot have large physical memory, where this scaling
7522 * makes sense, it is disabled on such platforms.
7523 */
7524#if __BITS_PER_LONG > 32
7525#define ADAPT_SCALE_BASE (64ul << 30)
7526#define ADAPT_SCALE_SHIFT 2
7527#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7528#endif
7529
1da177e4
LT
7530/*
7531 * allocate a large system hash table from bootmem
7532 * - it is assumed that the hash table must contain an exact power-of-2
7533 * quantity of entries
7534 * - limit is the number of hash buckets, not the total allocation size
7535 */
7536void *__init alloc_large_system_hash(const char *tablename,
7537 unsigned long bucketsize,
7538 unsigned long numentries,
7539 int scale,
7540 int flags,
7541 unsigned int *_hash_shift,
7542 unsigned int *_hash_mask,
31fe62b9
TB
7543 unsigned long low_limit,
7544 unsigned long high_limit)
1da177e4 7545{
31fe62b9 7546 unsigned long long max = high_limit;
1da177e4
LT
7547 unsigned long log2qty, size;
7548 void *table = NULL;
3749a8f0 7549 gfp_t gfp_flags;
1da177e4
LT
7550
7551 /* allow the kernel cmdline to have a say */
7552 if (!numentries) {
7553 /* round applicable memory size up to nearest megabyte */
04903664 7554 numentries = nr_kernel_pages;
f6f34b43 7555 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7556
7557 /* It isn't necessary when PAGE_SIZE >= 1MB */
7558 if (PAGE_SHIFT < 20)
7559 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7560
9017217b
PT
7561#if __BITS_PER_LONG > 32
7562 if (!high_limit) {
7563 unsigned long adapt;
7564
7565 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7566 adapt <<= ADAPT_SCALE_SHIFT)
7567 scale++;
7568 }
7569#endif
7570
1da177e4
LT
7571 /* limit to 1 bucket per 2^scale bytes of low memory */
7572 if (scale > PAGE_SHIFT)
7573 numentries >>= (scale - PAGE_SHIFT);
7574 else
7575 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7576
7577 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7578 if (unlikely(flags & HASH_SMALL)) {
7579 /* Makes no sense without HASH_EARLY */
7580 WARN_ON(!(flags & HASH_EARLY));
7581 if (!(numentries >> *_hash_shift)) {
7582 numentries = 1UL << *_hash_shift;
7583 BUG_ON(!numentries);
7584 }
7585 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7586 numentries = PAGE_SIZE / bucketsize;
1da177e4 7587 }
6e692ed3 7588 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7589
7590 /* limit allocation size to 1/16 total memory by default */
7591 if (max == 0) {
7592 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7593 do_div(max, bucketsize);
7594 }
074b8517 7595 max = min(max, 0x80000000ULL);
1da177e4 7596
31fe62b9
TB
7597 if (numentries < low_limit)
7598 numentries = low_limit;
1da177e4
LT
7599 if (numentries > max)
7600 numentries = max;
7601
f0d1b0b3 7602 log2qty = ilog2(numentries);
1da177e4 7603
3749a8f0 7604 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7605 do {
7606 size = bucketsize << log2qty;
ea1f5f37
PT
7607 if (flags & HASH_EARLY) {
7608 if (flags & HASH_ZERO)
7609 table = memblock_virt_alloc_nopanic(size, 0);
7610 else
7611 table = memblock_virt_alloc_raw(size, 0);
7612 } else if (hashdist) {
3749a8f0 7613 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7614 } else {
1037b83b
ED
7615 /*
7616 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7617 * some pages at the end of hash table which
7618 * alloc_pages_exact() automatically does
1037b83b 7619 */
264ef8a9 7620 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7621 table = alloc_pages_exact(size, gfp_flags);
7622 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7623 }
1da177e4
LT
7624 }
7625 } while (!table && size > PAGE_SIZE && --log2qty);
7626
7627 if (!table)
7628 panic("Failed to allocate %s hash table\n", tablename);
7629
1170532b
JP
7630 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7631 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7632
7633 if (_hash_shift)
7634 *_hash_shift = log2qty;
7635 if (_hash_mask)
7636 *_hash_mask = (1 << log2qty) - 1;
7637
7638 return table;
7639}
a117e66e 7640
a5d76b54 7641/*
80934513
MK
7642 * This function checks whether pageblock includes unmovable pages or not.
7643 * If @count is not zero, it is okay to include less @count unmovable pages
7644 *
b8af2941 7645 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7646 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7647 * check without lock_page also may miss some movable non-lru pages at
7648 * race condition. So you can't expect this function should be exact.
a5d76b54 7649 */
b023f468 7650bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7651 int migratetype,
b023f468 7652 bool skip_hwpoisoned_pages)
49ac8255
KH
7653{
7654 unsigned long pfn, iter, found;
47118af0 7655
49ac8255 7656 /*
15c30bc0
MH
7657 * TODO we could make this much more efficient by not checking every
7658 * page in the range if we know all of them are in MOVABLE_ZONE and
7659 * that the movable zone guarantees that pages are migratable but
7660 * the later is not the case right now unfortunatelly. E.g. movablecore
7661 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7662 */
49ac8255 7663
4da2ce25
MH
7664 /*
7665 * CMA allocations (alloc_contig_range) really need to mark isolate
7666 * CMA pageblocks even when they are not movable in fact so consider
7667 * them movable here.
7668 */
7669 if (is_migrate_cma(migratetype) &&
7670 is_migrate_cma(get_pageblock_migratetype(page)))
7671 return false;
7672
49ac8255
KH
7673 pfn = page_to_pfn(page);
7674 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7675 unsigned long check = pfn + iter;
7676
29723fcc 7677 if (!pfn_valid_within(check))
49ac8255 7678 continue;
29723fcc 7679
49ac8255 7680 page = pfn_to_page(check);
c8721bbb 7681
d7ab3672 7682 if (PageReserved(page))
15c30bc0 7683 goto unmovable;
d7ab3672 7684
c8721bbb
NH
7685 /*
7686 * Hugepages are not in LRU lists, but they're movable.
7687 * We need not scan over tail pages bacause we don't
7688 * handle each tail page individually in migration.
7689 */
7690 if (PageHuge(page)) {
464c7ffb
AK
7691
7692 if (!hugepage_migration_supported(page_hstate(page)))
7693 goto unmovable;
7694
c8721bbb
NH
7695 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7696 continue;
7697 }
7698
97d255c8
MK
7699 /*
7700 * We can't use page_count without pin a page
7701 * because another CPU can free compound page.
7702 * This check already skips compound tails of THP
0139aa7b 7703 * because their page->_refcount is zero at all time.
97d255c8 7704 */
fe896d18 7705 if (!page_ref_count(page)) {
49ac8255
KH
7706 if (PageBuddy(page))
7707 iter += (1 << page_order(page)) - 1;
7708 continue;
7709 }
97d255c8 7710
b023f468
WC
7711 /*
7712 * The HWPoisoned page may be not in buddy system, and
7713 * page_count() is not 0.
7714 */
7715 if (skip_hwpoisoned_pages && PageHWPoison(page))
7716 continue;
7717
0efadf48
YX
7718 if (__PageMovable(page))
7719 continue;
7720
49ac8255
KH
7721 if (!PageLRU(page))
7722 found++;
7723 /*
6b4f7799
JW
7724 * If there are RECLAIMABLE pages, we need to check
7725 * it. But now, memory offline itself doesn't call
7726 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7727 */
7728 /*
7729 * If the page is not RAM, page_count()should be 0.
7730 * we don't need more check. This is an _used_ not-movable page.
7731 *
7732 * The problematic thing here is PG_reserved pages. PG_reserved
7733 * is set to both of a memory hole page and a _used_ kernel
7734 * page at boot.
7735 */
7736 if (found > count)
15c30bc0 7737 goto unmovable;
49ac8255 7738 }
80934513 7739 return false;
15c30bc0
MH
7740unmovable:
7741 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7742 return true;
49ac8255
KH
7743}
7744
080fe206 7745#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7746
7747static unsigned long pfn_max_align_down(unsigned long pfn)
7748{
7749 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7750 pageblock_nr_pages) - 1);
7751}
7752
7753static unsigned long pfn_max_align_up(unsigned long pfn)
7754{
7755 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7756 pageblock_nr_pages));
7757}
7758
041d3a8c 7759/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7760static int __alloc_contig_migrate_range(struct compact_control *cc,
7761 unsigned long start, unsigned long end)
041d3a8c
MN
7762{
7763 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7764 unsigned long nr_reclaimed;
041d3a8c
MN
7765 unsigned long pfn = start;
7766 unsigned int tries = 0;
7767 int ret = 0;
7768
be49a6e1 7769 migrate_prep();
041d3a8c 7770
bb13ffeb 7771 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7772 if (fatal_signal_pending(current)) {
7773 ret = -EINTR;
7774 break;
7775 }
7776
bb13ffeb
MG
7777 if (list_empty(&cc->migratepages)) {
7778 cc->nr_migratepages = 0;
edc2ca61 7779 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7780 if (!pfn) {
7781 ret = -EINTR;
7782 break;
7783 }
7784 tries = 0;
7785 } else if (++tries == 5) {
7786 ret = ret < 0 ? ret : -EBUSY;
7787 break;
7788 }
7789
beb51eaa
MK
7790 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7791 &cc->migratepages);
7792 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7793
9c620e2b 7794 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7795 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7796 }
2a6f5124
SP
7797 if (ret < 0) {
7798 putback_movable_pages(&cc->migratepages);
7799 return ret;
7800 }
7801 return 0;
041d3a8c
MN
7802}
7803
7804/**
7805 * alloc_contig_range() -- tries to allocate given range of pages
7806 * @start: start PFN to allocate
7807 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7808 * @migratetype: migratetype of the underlaying pageblocks (either
7809 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7810 * in range must have the same migratetype and it must
7811 * be either of the two.
ca96b625 7812 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7813 *
7814 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7815 * aligned. The PFN range must belong to a single zone.
041d3a8c 7816 *
2c7452a0
MK
7817 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7818 * pageblocks in the range. Once isolated, the pageblocks should not
7819 * be modified by others.
041d3a8c
MN
7820 *
7821 * Returns zero on success or negative error code. On success all
7822 * pages which PFN is in [start, end) are allocated for the caller and
7823 * need to be freed with free_contig_range().
7824 */
0815f3d8 7825int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7826 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7827{
041d3a8c 7828 unsigned long outer_start, outer_end;
d00181b9
KS
7829 unsigned int order;
7830 int ret = 0;
041d3a8c 7831
bb13ffeb
MG
7832 struct compact_control cc = {
7833 .nr_migratepages = 0,
7834 .order = -1,
7835 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7836 .mode = MIGRATE_SYNC,
bb13ffeb 7837 .ignore_skip_hint = true,
2583d671 7838 .no_set_skip_hint = true,
7dea19f9 7839 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7840 };
7841 INIT_LIST_HEAD(&cc.migratepages);
7842
041d3a8c
MN
7843 /*
7844 * What we do here is we mark all pageblocks in range as
7845 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7846 * have different sizes, and due to the way page allocator
7847 * work, we align the range to biggest of the two pages so
7848 * that page allocator won't try to merge buddies from
7849 * different pageblocks and change MIGRATE_ISOLATE to some
7850 * other migration type.
7851 *
7852 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7853 * migrate the pages from an unaligned range (ie. pages that
7854 * we are interested in). This will put all the pages in
7855 * range back to page allocator as MIGRATE_ISOLATE.
7856 *
7857 * When this is done, we take the pages in range from page
7858 * allocator removing them from the buddy system. This way
7859 * page allocator will never consider using them.
7860 *
7861 * This lets us mark the pageblocks back as
7862 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7863 * aligned range but not in the unaligned, original range are
7864 * put back to page allocator so that buddy can use them.
7865 */
7866
7867 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7868 pfn_max_align_up(end), migratetype,
7869 false);
041d3a8c 7870 if (ret)
86a595f9 7871 return ret;
041d3a8c 7872
8ef5849f
JK
7873 /*
7874 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7875 * So, just fall through. test_pages_isolated() has a tracepoint
7876 * which will report the busy page.
7877 *
7878 * It is possible that busy pages could become available before
7879 * the call to test_pages_isolated, and the range will actually be
7880 * allocated. So, if we fall through be sure to clear ret so that
7881 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7882 */
bb13ffeb 7883 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7884 if (ret && ret != -EBUSY)
041d3a8c 7885 goto done;
63cd4489 7886 ret =0;
041d3a8c
MN
7887
7888 /*
7889 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7890 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7891 * more, all pages in [start, end) are free in page allocator.
7892 * What we are going to do is to allocate all pages from
7893 * [start, end) (that is remove them from page allocator).
7894 *
7895 * The only problem is that pages at the beginning and at the
7896 * end of interesting range may be not aligned with pages that
7897 * page allocator holds, ie. they can be part of higher order
7898 * pages. Because of this, we reserve the bigger range and
7899 * once this is done free the pages we are not interested in.
7900 *
7901 * We don't have to hold zone->lock here because the pages are
7902 * isolated thus they won't get removed from buddy.
7903 */
7904
7905 lru_add_drain_all();
510f5507 7906 drain_all_pages(cc.zone);
041d3a8c
MN
7907
7908 order = 0;
7909 outer_start = start;
7910 while (!PageBuddy(pfn_to_page(outer_start))) {
7911 if (++order >= MAX_ORDER) {
8ef5849f
JK
7912 outer_start = start;
7913 break;
041d3a8c
MN
7914 }
7915 outer_start &= ~0UL << order;
7916 }
7917
8ef5849f
JK
7918 if (outer_start != start) {
7919 order = page_order(pfn_to_page(outer_start));
7920
7921 /*
7922 * outer_start page could be small order buddy page and
7923 * it doesn't include start page. Adjust outer_start
7924 * in this case to report failed page properly
7925 * on tracepoint in test_pages_isolated()
7926 */
7927 if (outer_start + (1UL << order) <= start)
7928 outer_start = start;
7929 }
7930
041d3a8c 7931 /* Make sure the range is really isolated. */
b023f468 7932 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7933 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7934 __func__, outer_start, end);
041d3a8c
MN
7935 ret = -EBUSY;
7936 goto done;
7937 }
7938
49f223a9 7939 /* Grab isolated pages from freelists. */
bb13ffeb 7940 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7941 if (!outer_end) {
7942 ret = -EBUSY;
7943 goto done;
7944 }
7945
7946 /* Free head and tail (if any) */
7947 if (start != outer_start)
7948 free_contig_range(outer_start, start - outer_start);
7949 if (end != outer_end)
7950 free_contig_range(end, outer_end - end);
7951
7952done:
7953 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7954 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7955 return ret;
7956}
7957
7958void free_contig_range(unsigned long pfn, unsigned nr_pages)
7959{
bcc2b02f
MS
7960 unsigned int count = 0;
7961
7962 for (; nr_pages--; pfn++) {
7963 struct page *page = pfn_to_page(pfn);
7964
7965 count += page_count(page) != 1;
7966 __free_page(page);
7967 }
7968 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7969}
7970#endif
7971
d883c6cf 7972#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7973/*
7974 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7975 * page high values need to be recalulated.
7976 */
4ed7e022
JL
7977void __meminit zone_pcp_update(struct zone *zone)
7978{
0a647f38 7979 unsigned cpu;
c8e251fa 7980 mutex_lock(&pcp_batch_high_lock);
0a647f38 7981 for_each_possible_cpu(cpu)
169f6c19
CS
7982 pageset_set_high_and_batch(zone,
7983 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7984 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7985}
7986#endif
7987
340175b7
JL
7988void zone_pcp_reset(struct zone *zone)
7989{
7990 unsigned long flags;
5a883813
MK
7991 int cpu;
7992 struct per_cpu_pageset *pset;
340175b7
JL
7993
7994 /* avoid races with drain_pages() */
7995 local_irq_save(flags);
7996 if (zone->pageset != &boot_pageset) {
5a883813
MK
7997 for_each_online_cpu(cpu) {
7998 pset = per_cpu_ptr(zone->pageset, cpu);
7999 drain_zonestat(zone, pset);
8000 }
340175b7
JL
8001 free_percpu(zone->pageset);
8002 zone->pageset = &boot_pageset;
8003 }
8004 local_irq_restore(flags);
8005}
8006
6dcd73d7 8007#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8008/*
b9eb6319
JK
8009 * All pages in the range must be in a single zone and isolated
8010 * before calling this.
0c0e6195
KH
8011 */
8012void
8013__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8014{
8015 struct page *page;
8016 struct zone *zone;
7aeb09f9 8017 unsigned int order, i;
0c0e6195
KH
8018 unsigned long pfn;
8019 unsigned long flags;
8020 /* find the first valid pfn */
8021 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8022 if (pfn_valid(pfn))
8023 break;
8024 if (pfn == end_pfn)
8025 return;
2d070eab 8026 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8027 zone = page_zone(pfn_to_page(pfn));
8028 spin_lock_irqsave(&zone->lock, flags);
8029 pfn = start_pfn;
8030 while (pfn < end_pfn) {
8031 if (!pfn_valid(pfn)) {
8032 pfn++;
8033 continue;
8034 }
8035 page = pfn_to_page(pfn);
b023f468
WC
8036 /*
8037 * The HWPoisoned page may be not in buddy system, and
8038 * page_count() is not 0.
8039 */
8040 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8041 pfn++;
8042 SetPageReserved(page);
8043 continue;
8044 }
8045
0c0e6195
KH
8046 BUG_ON(page_count(page));
8047 BUG_ON(!PageBuddy(page));
8048 order = page_order(page);
8049#ifdef CONFIG_DEBUG_VM
1170532b
JP
8050 pr_info("remove from free list %lx %d %lx\n",
8051 pfn, 1 << order, end_pfn);
0c0e6195
KH
8052#endif
8053 list_del(&page->lru);
8054 rmv_page_order(page);
8055 zone->free_area[order].nr_free--;
0c0e6195
KH
8056 for (i = 0; i < (1 << order); i++)
8057 SetPageReserved((page+i));
8058 pfn += (1 << order);
8059 }
8060 spin_unlock_irqrestore(&zone->lock, flags);
8061}
8062#endif
8d22ba1b 8063
8d22ba1b
WF
8064bool is_free_buddy_page(struct page *page)
8065{
8066 struct zone *zone = page_zone(page);
8067 unsigned long pfn = page_to_pfn(page);
8068 unsigned long flags;
7aeb09f9 8069 unsigned int order;
8d22ba1b
WF
8070
8071 spin_lock_irqsave(&zone->lock, flags);
8072 for (order = 0; order < MAX_ORDER; order++) {
8073 struct page *page_head = page - (pfn & ((1 << order) - 1));
8074
8075 if (PageBuddy(page_head) && page_order(page_head) >= order)
8076 break;
8077 }
8078 spin_unlock_irqrestore(&zone->lock, flags);
8079
8080 return order < MAX_ORDER;
8081}
d4ae9916
NH
8082
8083#ifdef CONFIG_MEMORY_FAILURE
8084/*
8085 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8086 * test is performed under the zone lock to prevent a race against page
8087 * allocation.
8088 */
8089bool set_hwpoison_free_buddy_page(struct page *page)
8090{
8091 struct zone *zone = page_zone(page);
8092 unsigned long pfn = page_to_pfn(page);
8093 unsigned long flags;
8094 unsigned int order;
8095 bool hwpoisoned = false;
8096
8097 spin_lock_irqsave(&zone->lock, flags);
8098 for (order = 0; order < MAX_ORDER; order++) {
8099 struct page *page_head = page - (pfn & ((1 << order) - 1));
8100
8101 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8102 if (!TestSetPageHWPoison(page))
8103 hwpoisoned = true;
8104 break;
8105 }
8106 }
8107 spin_unlock_irqrestore(&zone->lock, flags);
8108
8109 return hwpoisoned;
8110}
8111#endif